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Abstract
Relation extraction methods are currently dominated by deep neu-
ral models, which capture complex statistical patterns while being
brittle and vulnerable to perturbations in data and distribution.
Explainability techniques offer a means for understanding such
vulnerabilities, and thus represent an opportunity to mitigate fu-
ture errors; yet, existing methods are limited to describing what the
model ‘knows’, while totally failing at explaining what the model
does not know. This paper presents a new method for diagnos-
ing model predictions and detecting potential inaccuracies. Our
approach involves breaking down the problem into two compo-
nents: (i) determining the necessary knowledge the model should
possess for accurate prediction, through human annotations, and
(ii) assessing the actual knowledge possessed by the model, using
explainable AI methods (XAI). We apply our method to several
relation extraction tasks and conduct an empirical study leveraging
human specifications of what a model should know and does not
know. Results show that human workers are capable of accurately
specifying the model should-knows, despite variations in the speci-
fication, that the alignment between what a model really knows and
what it should know is indeed indicative of model accuracy, and
that the unknowns identified through our methods allow to foresee
future errors that may or may not have been observed otherwise.

CCS Concepts
• Computing methodologies → Model verification and vali-
dation; Information extraction; Causal reasoning and diag-
nostics.
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error analysis, relation extraction, model interpretation, human
computation
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1 Introduction
Relation extraction is a key step in populating structured data
and knowledge graphs, with application to a wide range of tasks
such as question answering and information retrieval; it is also
receiving renewed interest in machine learning for developing
neuro-symbolic AI systems [12, 19, 36]. Current relation extraction
techniques are dominated by deep learning architectures such as
LSTM and BERT [18, 30], which have demonstrated remarkable
performance; these models however suffer from an inherent issue in
terms of robustness: they are brittle and vulnerable to perturbations
in data and distributions [39].

Tackling the robustness issue requires an understanding of the
reasons or decision mechanisms underlying model failures—it thus
can be treated as a problem of diagnosis. Traditional diagnosis has
been mainly studied under the white-box setting where the decision
mechanisms are represented in human-understandable language
or logic [6], a property not held by those intrinsically opaque deep
learning architectures. The problem is therefore closely connected
with explainable AI (XAI), on which a growing body of work can
be found (e.g., for explanation-based debugging [22]). Yet, unlike
explanations that aim to answer the ‘why’ question—why a certain
decision is made by a model, diagnosis seeks the answer to the
‘why not’ question—why the correct decision is not made, also
referred to as the contrastive-why question [4, 43]. Answering the
‘why not’ requires knowledge on what the model has not learned,
in contrast to what the model has learned. Existing explanation-
based debugging work addresses this problem in a heuristic manner,
relying on the knowledge and spontaneous reaction of developers
in diagnosis practice. Such an approach is not only limited but offers
incomplete or even dubious insight into the weaknesses of deep
learning models.

In this paper, we propose XCrowd, a hybrid human-XAI ap-
proach for diagnosing relation extraction models combining both
crowdsourced knowledge elicitation and explainable AI. We de-
compose the diagnosis problem into two problems: eliciting what a
model should know and what it really knows, henceforth referred to
as should-knows and really-knows, respectively. To elicit the should-
knows, we design a crowdsourcing task that collects from crowd
workers a specification of should-knows, in the form of highlighted
tokens that represent workers’ rationales in relation classification.
Through a comparison with really-knows generated by a config-
urable XAI component, our approach produces a characterization
of model unknowns to explain model decisions. Our approach can
not only explain problems in model decision mechanisms that lead
to erroneous decision, but also allows to proactively expose such
problems even when no errors are observed in model output (i.e.,
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when the model is right but for the wrong reasons), thus allowing
for proactive diagnosis and treatment of model weaknesses.

We apply XCrowd to several relation extraction tasks and con-
duct an empirical study over human specification of model should-
knows and unknowns. Results show that crowdworkers are capable
of accurately specifying the model should-knows, despite variations
in the specification, that the alignment between really-knows and
should-knows is indeed indicative of model accuracy, and that the
unknowns produced through XCrowd allow us to automatically
predict model errors with high recall. Specifically, the crowdsourced
annotations score 88% F1 compared to expert annotations and are
highly aligned with true model reasoning with an F1 score of 78%
for BERT-based model and 95% for LSTM-based model. On error
prediction tasks, we are able to achieve 98% and 82% recall levels
for BERT-based and LSTM-based models, respectively.

2 Related Work
Relation Extraction & Robustness. Relation extraction (RE) is a
well-established NLP task, part of information extraction. Initially
leveraging rule-based and statistical methods, RE methods are cur-
rently mostly based on deep neural networks ranging from CNNs,
RNNs, LSTMs [29, 30, 46] to transformers-based architectures, such
as BERT [44] and SpanBERT [18]. More recently, generative AI
became significant for NLP tasks, including relation extraction. The
authors of [5] reframe relation extraction as a seq2seq task and pro-
pose a seq2seqmodel based on BART [23]. A very recent survey [41]
compares the performance of the state-of-the-art generative mod-
els for relation extraction. The authors compare state-of-the-art
supervised RE models with FLAN-T5 and GPT-3 in fine-tuned and
few-shot settings with a chain of thought. The authors note that pro-
viding explanations in the few shot setting leads to more standard-
ized outputs simplifying evaluation but notably, does not improve
the performance significantly.

Robustness refers to the insensitivity of a model’s performance
to miscalculations of its parameters [39]. Two main kinds of robust-
ness have been identified, 1) adversarial robustness, considering
the sensitivity to adversarial attacks and perturbations [37]; and 2)
natural robustness, relating to the ability of a model to preserve per-
formance under naturally induced data corruptions or alternations
[11]. Various methods have been proposed to identify or improve
a model’s adversarial robustness: data augmentation through ad-
versarial training [7, 13], adding noise [17], or employing robust
neural layers such as the spiking architecture [35]. Natural robust-
ness is generally associated to data outside the training set due
to distribution shift. This type of robustness is more challenging
as out-of-distribution data cannot be generated automatically. A
closely related notion is model unknowns [9, 34], describing from a
knowledge perspective missing or incorrect knowledge in a model.
A recent study investigates language models in terms of known
unknowns for question answering [2]. Little attention is devoted
to relation extraction in this context, however, which we address
in this work by leveraging human computation and explainability.
Explanation in Relation Extraction. Prior work has explored
the relationship between explanation and relation extraction per-
formance. Wang et al. [42] and Tang and Surdeanu [38] propose

approaches that leverage explanations to improve relation clas-
sification. Similarly, the authors of [42] propose a framework to
utilize natural language explanations in a low-resource setting
(that is, the number of NL explanations is very low compared to
the dataset size). They train a module to match a data instance
to a logical form and give a similarity score that indicates how
likely the instance matches a given form. The authors collected
free-form explanations on Amazon Mechanical Turk towards that
goal. In [38], researchers build an explainability classifier into the
relation extraction model. They demonstrate that the explanations
extracted during joint training are closer to grammars written by
experts than the ones produced by automated post-hoc methods.
The authors of [15] study under which circumstances explanations
of individual data instances can improve modeling performance
(that is, which explanations at prediction time will lead to better
results). They formulate the properties of the datasets when ex-
planations can be useful. Specifically, they report that explanation
retrieval does not improve model performance for relation extrac-
tion on TACRED, which is also empirically confirmed in [38]: the
ablation study demonstrates that explainability does not influence
model accuracy. The authors of [14] evaluated several explainability
methods on textual and tabular data. In their experiments, they
asked humans to predict model outputs on the test set based on
model outputs on the validation set. They compared two settings:
when humans are given only data instance vs. humans are given
data instances along with explanations. The experiments showed
limited impact of explanation on human predictions.

In our work, we not only focus on explaining correct predictions,
but we also aim at analyzing the model behavior and predicting
the incorrect predictions and reasoning of the model on unseen
data. We believe that the scenario we consider is more useful and
realistic: in practice, one might already have an existing model with
known performance and its architecture cannot be changed. Thus,
its performance might be improved through model interpretability,
as knowing when things go wrong helps improve model perfor-
mance in a post-hoc manner (e.g., involving human-in-the-loop to
fix model errors).
Human Computation. Human computation and crowdsourcing
aim to bring together human and artificial intelligence to solve
computational problems that are beyond the scope of AI [21, 40].
The computational roles of humans in NLP have been mainly con-
sidered in data labeling using crowdsourcing in various NLP tasks,
e.g., sentiment and opinion mining [28] and question answering
[16]. Recent work has looked into human involvement for cleaning
label noises (e.g., in relation extraction [45]), and on the model side,
for explaining model behavior with human concepts or evaluating
model explanations [32]. Work can also be found on characterizing
model unknowns, dating back to the seminal work of Attenberg
et al. [3] who propose to ask humans to gather publicly accessible
instances that are potentially difficult for the model to handle. The
approach has been recently extended by enabling human access to
more information related to unknowns for more efficient detection:
the authors of [20] introduce a data partitioning technique that
first organizes the test data into multiple partitions based on fea-
ture similarity, and then uses an explore-exploit strategy to search
for unknown instances across these partitions; the authors of [24]
propose to use human intelligence to detect unknowns to train an
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expansion classifier to identify additional unknowns from existing
data. In this work, we aim to bring to the fore the idea of not only
detecting, but more importantly, characterizing unknowns to gain
a deeper understanding of why the model fails, which will allow us
to explain erroneous decisions and proactively foresee future errors.
On the methodological level, we contribute to the state of the art
by introducing a systematic model diagnosis approach that elicits
human knowledge for specification of the model’s should-knows.

3 Methodology
3.1 Characterizing Knowns and Unknowns
For diagnosing model errors, we create a collection of model rea-
soning, namely, model knowns and model unknowns. Figure 1
gives an overview of our approach. Given a model and a dataset,
we aim to answer two questions: (i) what the model should know
to make a correct prediction, and (ii) what the model really knows.
In order to answer the first question, we employ crowd workers to
classify what words in the sentence are actually useful for making a
judgment on a specific data instance. In order to answer the second
question, we apply explainability AI methods (XAI).

3.1.1 Formal definition. Given a data instance x = (𝑥1, 𝑥2, . . . 𝑥𝑛)
where 𝑛 is a sentence length and 𝑥𝑖 denotes a token, human anno-
tations ha = (ℎ𝑎1, ℎ𝑎2, . . . ℎ𝑎𝑛) are defined as follows:

ℎ𝑎𝑖 =

{
1, if 𝑥𝑖 annotated as important,
0, otherwise.

Automatic explanation of a data instance is represented as a
vector xai = (𝑥𝑎𝑖1, . . . , 𝑥𝑎𝑖𝑛) where each element corresponds to
the weight of word 𝑥𝑖 . The bigger absolute value of 𝑥𝑎𝑖𝑖 corresponds
to the higher word importance. Explainability methods produce
explanations for several classes that have the highest probabilities.
For collecting model knowns and model unknowns, we only take
into account explanations made for the class predicted by the model.

3.1.2 Model knowns and unknowns. Given both vectors ha and
xai, and a threshold 𝑡 (see below), we definemodel knowns as a
set of tokens 𝑥𝑖 : ℎ𝑎𝑖 > 0 ∧ 𝑥𝑎𝑖𝑖 ≥ 𝑡 , which basically correspond
to true positives: those are the tokens that both the humans and
XAI marked as important. We distinguish two types of model un-
knowns: the ones corresponding to the false negatives (the tokens
annotated by humans but not by XAI) and the ones correspond-
ing to false positives (the tokens deemed important by XAI but
not by humans). They are formally defined as a set of tokens 𝑥𝑖
where 𝑥𝑖 : 0 < 𝑥𝑎𝑖𝑖 < 𝑡 ∧ ℎ𝑎𝑖 > 0 and a set of tokens 𝑥𝑖 where
𝑥𝑖 : 𝑥𝑎𝑖𝑖 >= 𝑡 ∧ ℎ𝑎𝑖 = 0, respectively. In this paper, we define the
threshold 𝑡 as follows:

𝑡 = argmax
𝑡

𝐹1(ℎ𝑎, 𝑥𝑎𝑖 > 𝑡), (1)

where F1 denotes the F-measure. The intuition behind this design
choice is that we want to maximize the alignment between human
annotations and automatic explanations. Maximizing the F-measure
means striking a balance between precision and recall, as this is
precisely what we want: extracting the most important tokens from
the automatic explanations and filtering out the tokens that are less
important while keeping the recall high enough.

For each relation class 𝐶 we collect model knowns and model
unknowns from the instances in the validation set where the model
predicted class 𝐶 . We mark them as correct if the model prediction
was correct, and as incorrect otherwise. Thus, we have a collection
of model reasoning that we can use to diagnose the model from
several perspectives: (i) when the model reasoning is incorrect
leading to the wrong prediction, and (ii) when the model makes a
correct prediction but its reasoning is considered wrong.

3.2 Proactively Predicting Errors
An important usage of model knowns and unknowns is predicting
errors in the unseen data. We consider in this context two differ-
ent methods for constructing the error predictor: decision Tree
classifier, and semantic similarity matching.

3.2.1 Decision Tree Classifier. Error Predictor should be a simple
and explainable model, such as a decision tree. Our design is as
follows. We feed the predictor with all the necessary information
that consists of three types of features:

• Instance encoding contains information about the classi-
fied data instance.

• Explanation encoding contains information about model
knowns and model unknowns and allows to build connec-
tions between right and wrong reasoning. For unseen data
instances, the predictor would not have access to the should-
knows, thus, it is not straightforward to obtainmodel knowns
and unknowns. To cope with this issue, we treat the should-
knows as the fixed feature space and fill the feature vector
with appearances of tokens in automatic explanations. That
is, we create a vocabulary of should-knows from the collected
human annotations of the validation set. Thus, to predict
the errors on the unseen data, where should-knows for the
specific data instance are unavailable, we fill the feature vec-
tor with appearances of tokens in automatic explanation,
i.e., really-knows, in this pre-built vocabulary. Our rationale
behind this design choice is that more appearances of such
tokens in the should-knows vocabulary indicate a higher
level of alignment between really-knows and should-knows,
and thus can be indicative of model errors.

• Prediction encoding connects model reasoning with model
predictions.

For instance encoding, we use a traditional set of features that
includes words between entities, their part-of-speech tags when
available, entity types, etc. Explanation is encoded is a bag of words
that have weights 𝑥𝑎𝑖𝑖 ≥ 𝑡𝑒𝑥𝑝𝑙 , where 𝑡𝑒𝑥𝑝𝑙 is a hyperparameter.
Prediction is encoded as a binarized model prediction. The classifier
is trained to perform binary classification: whether the model made
an error or not.

3.2.2 Semantic Similarity Matching. The intuition behind similar-
ity matching is straightforward. For each data instance x and the
corresponding predicted class 𝑟 we match the explanation of this
instance 𝑥𝑖 : 𝑥𝑎𝑖𝑖 ≥ 𝑡 with all human annotations for the given class
𝑟 . If we find a match, i.e., if the maximum similarity score is higher
than a certain threshold 𝑡𝑠𝑖𝑚 , then the prediction is correct. If there
is no match, we classify this prediction as erroneous. We use cosine
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Figure 1: An overview of the proposed approach. Given a data instance and a model we seek to answer two questions: what the
model should know about the data and what the model really knows. To answer the former question we design a crowdsourcing
task where we ask the crowd to evaluate which words in the sentence are important for making a specific prediction (i.e.,
relation classification). For the latter question, we employ an explainable AI method (XAI) to assign word weights and highlight
the text spans that are important for model predictions. Having both sets of explainability features, we are able to diagnose the
model and identify the gap between “true” reasoning and actual model reasoning.

similarity between the corresponding embeddings as a similarity
metric.

4 Collecting Human Annotations
In order to answer the question “what should the model know” we
employ human annotators on Toloka, a popular crowdsourcing
platform1. In this section, we explain our approach to design an
annotation project in order to obtain truthful annotations.

To ensure the good quality of the annotations, we need to take
into account the specific aspects of working with anonymous, on-
line crowd workers, for instance considering:

• the diversity of the crowd in terms of spoken languages and
education levels;

• the online nature of our task, where the means to explain
the task to workers and motivate them are limited.

4.1 Annotation Task Design
We follow the approach proposed in [27]: instead of asking anno-
tators directly about their rationales, we first ask them to “do” the
task of judging the type of relation between two given entities in a
sentence. By doing so, the workers are exercising their rationales
instead of imagining what could potentially make their rationales
annotation more reliable. If on the first step the answer is a positive
relation class (i.e., not the No relation), we ask workers to identify
the most relevant information and highlight the words that were
important for their judgment. When the answer is No relation, a
worker proceeds to the next task. Figure 2 shows an example of
our task. In order to simplify our classification task, we split the
full set of relation classes into subsets that are more likely to be
confused by either a model or a human. Those subsets are mostly

1https://platform.toloka.ai

Figure 2: Task design for annotating important words for a
subset of relations. The annotators are first asked to answer
if the relation is present in the sentence. If the answer is
positive, a text annotation field appears where the annotator
has to markup the words that they think are important for
classification.

defined on common entity types; for instance, there is a subset of
relations that most of the time is observed between the entities of
type Organization.

4.2 Ensuring the Quality of Annotations
4.2.1 Task Design. Crowdsourcing is an extremely powerful par-
adigm but also intricate in practice. Through crowdsourcing, we
are interacting on digital platforms with anonymous human beings
who have their own interpretations and routines. That is why prop-
erly describing the task at hand is a crucial step on the way to high
quality results. The task description needs to convey the logic of the
task in an exhaustive while concise form, and to provide illustrative
examples. The instruction must have a clear structure and help the
crowd workers navigate information easily, e.g., to look up entities

 

2100



XCrowd: Combining Explainability and Crowdsourcing to Diagnose Models in Relation Extraction CIKM ’24, October 21–25, 2024, Boise, ID, USA

during the annotator’s work. It is also essential to keep instructions
relatively simple. Having in mind that the annotators might not
read the instruction fully, we put the most essential rules first. Our
instruction covers the following key points:

• a brief task definition along with definitions of the main
concepts;

• the sequence of steps to perform as some workers might be
unfamiliar with an annotation interface;

• examples of correct annotations to illustrate various points
in our instructions.

Since a relation extraction dataset might consider many classes
(in our experiments, we used a dataset with 42 classes), we split
the task into several sub-tasks where each sub-task correspond
to a group of similar relations (e.g., family relations as shown on
Figure 2). We put an example extraction into our supplemental
material.

4.2.2 Crowd Identification and Training. Since the task is complex,
we want to ensure that the collected annotations are reliable. On
the other hand, we want to avoid manual checks as the dataset to
handle might be large (e.g., several thousands of instances).

It is important to identify the right crowd for the task at hand
in order to achieve good results [10]. The crowdsourcing platform
we used allows for a variety of filters as well as mechanisms for
training and quality control. For our task, we applied the following
filters:

Language. We only selected workers who know English and
passed a language test on the platform.

Top Annotators. We used a built-in filter to select the top
10% of annotators based on their overall performance on the
platform.

Skill. We only select workers who show that they understood
the task (see details below).

Crowd workers that meet the first two requirements are shown
the instructions to perform the task. To check that the workers un-
derstand our task, we implement a training task that is dedicated to
teach the workers to perform the task through exercise. Specifically,
in addition to input data (a piece of text and a character name), each
microtask contains a golden annotation and a hint that is shown
to the worker if they make a mistake in that microtask. After the
worker finishes their training, the skill evaluated as the percentage
of correct answers is assigned to the worker. Only the workers who
finish the training with a skill level of 25% or more are allowed to
complete the rest of the annotation tasks.

We ensure that annotators are fairly paid. We estimated how
long it takes to annotate one task by executing the tasks ourselves.
Then, we priced the task so that the annotators are paid 15$ per
hour.

5 Experiments
In this section we present an empirical analysis on XCrowd for
diagnosing relation extraction models. We focus on answering the
following questions:

• RQ1 How reliable are the answers of human annotators in
specifying the model’s should-knows?

• RQ2 How much are automatic explanations aligned with
human annotations when model predictions are correct or
incorrect?

• RQ3How effective is our approach at interpreting themodel’s
(erroneous) predictions and in proactively predicting model
errors?

Datasets.We evaluate our pipeline on two datasets,TACREV [1], a
revised version of TACRED [46], and CoNLL04 [33], both derived
from news articles. Each data instance is annotated with entity
spans and a relation between these two entities. TACREV has 42
relation types while CoNLL04 has only 6 relation types, including
no_relation.
Crowdsourcing setup. Our crowdsourcing task instructions are
based on the original TAC KBP 2014 guidelines2. We used 94%
of the positive instances in the validation set of TACREV for the
crowdsourcing task, excluding several classes. Specifically, we ex-
cluded (i) per:charges because of potentially triggering content,
(ii) org:political_religious_affiliation because it is very
rare, and (iii) org:website because in most of the cases only entity
names are important for classification. For CoNLL04 we annotated
all instances in the validation set.

For TACREV, we divided relation classes into groups as spec-
ified in Section 4.2 while for CoNLL04 there was no need to do
this because of the small number of relations. For each group, we
designed a set of training tasks that consisted of the data instances
from the training set and provided the correct answers, including
annotations, produced by the first author. An annotator should
complete at least 60% of training tasks correctly to get access to
the generic tasks. For each set of generic tasks, we used honeypots
(tasks with known answers) to measure the annotator’s skills. Only
the annotators with an accuracy of more than 60% were allowed to
keep doing the tasks. Finally, each annotation task was given to 3
annotators.
Relation Extraction Models. We explore two deep learning mod-
els for sentence-level relation extraction and assess their explain-
ability.

• Position-aware LSTMmodel (PA-LSTM) [46]: an LSTM-based
model with a position-aware attention mechanism.

• SpanBERT model [18]: an extension of BERT [8] with better
span representations, which is crucial for relation extraction.

• RoBERTa-based model [48]: an extension of RoBERTa model
[25] for sentence-level relation extraction with an improved
entity representation.

For all three models we use the open-source code released by
the authors with the default hyperparameters settings leading to
the best reported performance.

Though all models are deep learningmodels, there is a significant
difference in their architectures and what kind of knowledge they
use for inference. PA-LSTM uses GloVE embeddings [31] as the
only source of external knowledge and the rest of the features
(e.g., position features and lexical features when available) come
from the dataset. In contrast, SpanBERT and RoBERTa are both
extensions of pre-trained language models (PLM), that is, they
use all the statistical knowledge possessed during the pre-training

2https://tac.nist.gov/2014/KBP/ColdStart/guidelines/TAC_KBP_2014_Slot_
Descriptions_V1.4.pdf
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P R F1 𝛼

TACREV
Classification 0.95 0.85 0.90 0.767
Annotation 0.86 0.88 0.85 0.786

CoNLL04
Classification 0.91 0.84 0.87 0.83
Annotation 0.94 0.92 0.92 0.832

Table 1: Evaluation of human annotations on the validation
set. We calculate the metrics for the classification task auto-
matically since the ground truth is available. We calculate
agreement as Alpha Krippendorf. Agreement on annotations
is calculated on a per-token basis.

phase. Though they do yield better performance than PA-LSTM
with RoBERTA outperforming SpanBERT, interpretability of these
models can be difficult.
Automatic explainability methods. We compare the following
automatic explainability methods:

• All words between subject and object entities: a simple but
efficient heuristic for explaining relation extraction.

• LIME [32]: a model-agnostic framework that calculates ex-
planations of data instances by perturbating the tokens. In
our setting, we replace up to 50% of the tokens with the
unknown ([UNK]) token;

• SHAP [26]: amodel-agnostic framework that calculates Shap-
ley values where the score of the feature depends on its
interactions with other subsets of features.

We chose these two explainability methods because of (i) their
popularity in the NLP community, (ii) they are open-source, and
(iii) they are easy to adapt to relation extraction task. Both methods
are only applicable to the models that are able to produce class
probabilities that sum up to 1, which is typically not the case for
generative models.

We use the authors’ implementations of the relation extraction
models. For explainability methods, we use open-source imple-
mentations, adapting them to our relation extraction task and data
formats. Notably, we mask the full entity name if at least one of its
tokens is masked.

5.1 RQ1: Human Annotations Quality
We evaluate the quality of human annotations with respect to
both classification and annotations tasks. The evaluation on the
classification task gives us a generic understanding of annotation
quality. For the classification task, the ground truth is available. We
aggregate the annotations by majority vote and report results in
Table 1. Evaluating the annotation task is trickier. We proceed as
follows:

• We evaluate the agreement between the annotators on each
token;

Cuba ’s human rights situation has become increasingly
tense since the Feb. 23 death of Orlando Zapata Tamayo
after a long hunger strike in jail.

Cuba ’s human rights situation has become increasingly
tense since the Feb. 23 death of Orlando Zapata Tamayo
after a long hunger strike in jail.

Table 2: Example of how different annotators highlight the
words for the same task.

• We sample a random subset of 85 tasks and ask an expert to
annotate them. Then, we evaluate standard binarymetrics be-
tween aggregated crowd annotations and expert annotations.
We hired a third-party expert to perform this evaluation.

In total for TACREV, there were 5,586 annotations tasks with
187,467 tokens; 32,110 tokens were annotated as important by at
least one annotator and 17,841 tokens (more than a half) were
annotated by all 3 annotators. Analogously for CoNLL04, there
were 376 annotations tasks with 11,009 tokens; 2,486 tokens were
annotated as important by at least one annotator and 1,655 tokens
(more than a half) were annotated by all 3 annotators.

Table 1 presents the results of our evaluation. We observe that
the humans perform very well on the classification task and show
a decent agreement on both classification and annotation. A com-
parison with annotations produced by our expert also shows that
the produced annotations are reliable and of high quality. Table 2
shows examples of the subjectivity of the annotators. Specifically,
some annotators tend to be more detail-oriented than others as
they annotate not just a word but rather a phrase.

5.2 RQ2: Alignment of Automatic Explanations
In this section, we analyze the automatic explanations. We start by
comparing the automatic explanations produced by various explain-
ability methods against human annotations. For each pair (model,
explainability method) we take the explanations that correspond to
the class predicted by the model and calculate precision and recall
scores between explanations and human annotations. That is, given
two vectors ha and xai of human annotations and explainability
weights, respectively, we treat ha, a binary vector by our definition
in Section 3.1, as the ground truth and xai as predictions. We calcu-
late the threshold for xai as in Eq. 1. Thus, high precision means
that the explainability method assigns high weights to the relevant
tokens that annotators marked as important and low weights to
irrelevant tokens. High recall indicates that the model does not
miss important information.

It is worth noting that we use a per-input threshold to calculate
the alignment between XAI explanations and human annotations
as described in Section 3.1 rather than global threshold. This de-
sign choice follows the aim to maximize an alignment between
human annotation and explanation produced by the XAI method
for each data instance. In contrast to a per-input threshold, using
a global threshold would be less sensitive to variability between
different data instances such as a high number of relation types
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TACREV CoNLL04
Model Explainability method P𝑐𝑜𝑟𝑟 P𝑖𝑛𝑐 R𝑐𝑜𝑟𝑟 R𝑖𝑛𝑐 F1𝑐𝑜𝑟𝑟 F1𝑖𝑛𝑐 P𝑐𝑜𝑟𝑟 P𝑖𝑛𝑐 R𝑐𝑜𝑟𝑟 R𝑖𝑛𝑐 F1𝑐𝑜𝑟𝑟 F1𝑖𝑛𝑐

PA-LSTM
Words between entities 0.69 0.47 0.97 0.92 0.78 0.57 0.81 0.47 0.96 0.92 0.86 0.57
LIME 0.95 0.46 0.91 0.79 0.92 0.45 0.95 0.44 0.83 0.69 0.87 0.44
SHAP 0.92 0.44 0.91 0.79 0.9 0.44 0.93 0.45 0.84 0.69 0.87 0.46

SpanBERT
Words between entities 0.66 0.47 0.96 0.91 0.75 0.58 0.79 0.5 0.96 0.92 0.84 0.59
LIME 0.78 0.44 0.78 0.76 0.73 0.44 0.9 0.34 0.86 0.77 0.86 0.36
SHAP 0.74 0.45 0.75 0.72 0.67 0.46 0.83 0.28 0.86 0.84 0.82 0.34

RoBERTa
Words between entities 0.65 0.49 0.96 0.9 0.74 0.59 0.77 0.46 0.96 0.89 0.83 0.55
LIME 0.77 0.46 0.69 0.73 0.69 0.44 0.83 0.41 0.72 0.78 0.73 0.42
SHAP 0.76 0.43 0.74 0.78 0.71 0.44 0.75 0.41 0.73 0.75 0.7 0.42

Table 3: Precision, recall, and F1 of automatic explainability methods vs. human annotations for PA-LSTM, SpanBERT, and
RoBERTa on the TACREV and CoNLL04 datasets. P𝑐𝑜𝑟𝑟 , R𝑐𝑜𝑟𝑟 , F1𝑐𝑜𝑟𝑟 are precision, recall, and F1 calculated for the instances
with the correct predictions of the corresponding model, while P𝑖𝑛𝑐 , R𝑖𝑛𝑐 , F1𝑖𝑛𝑐 are calculated for the erroneous predictions.
The metrics are averaged over instances. Human annotations are aggregated by majority vote.

and heterogeneity of natural language. Depending on the scenario,
one can choose the threshold that is more specific to relevant data
characteristics (i.e., the per-input threshold as we do in our work)
or the one that is more robust to data variability and potential data
noise (i.e., global threshold). Another potential limitation of the
global threshold is that there are instances where all explainability
weights are lower than the threshold, thus, it is not possible to
calculate precision on these instances, limiting our evaluation and
analysis.

We explore two different methods to aggregate the annotations
coming from 3 annotators: (i) At least one: all tokens annotated by
at least one annotator, and (ii)Majority Vote (MV): only tokens
annotated by a majority of annotators. We observe very similar
results for both aggregation techniques with majority vote yielding
slightly higher precision and recall levels. The observation is in
line with results from related work that under most circumstances
majority voting remains a competitive aggregationmethod [47]. It is
worth noting that applying the quality control techniques described
in Section 4.2 and aggregating annotations help mitigate potential
negative impact of inexperienced or fraudulent annotators. For the
sake of clarity, we report only the results for majority vote.

5.2.1 Relationship Between Model Rationale and Human Annota-
tion. Wepresent the high-level results in Table 3 showing the binary
metrics for each model and each explainability methods on two
datasets. For both datasets and all models we see the same pattern:
precision and F1-score of explanations on instances with incorrect
predictions are significantly lower that on instances with correct
predictions. This is a clear sign that erroneous predictions are corre-
lated with some wrong reasoning of the model. The higher drop in
precision than in recall indicates that the models tend to pay atten-
tion to the irrelevant tokens rather than miss the relevant tokens.
In particular, the drop in precision for the baseline method, words
between entities, means that model errors tend to occur when there
is a lot of irrelevant information between the entities (for example,
when the entities are far from each other).

Our results show that there is a strong relationship between
the alignment of XAI explanations vs. human annotations and the

likelihood of the model prediction being correct. Figure 3 highlights
specific data instances with different alignment levels. Specifically,
rows 1-3 illustrate the “right” cases: high alignment of explanation
and correct model prediction, that is, the cases when the model is
right for right reason. Similarly, rows 6-8 correspond to the cases of
misalignment and incorrect model prediction. However, there are
counterexamples: (i) the cases when model reasoning significantly
deviates from human reasoning but the prediction is nevertheless
correct, shown in row 4, and (ii) the cases when model reasoning is
accurate but the prediction is wrong, shown in row 5.We discuss the
underlying reasons behind those cases in the following subsection.

5.2.2 Impact of Models and Datasets. As can be seen from Table 3,
there is a difference in alignment for the two datasets. Specifi-
cally, the baseline explainability method, words between entities,
has much higher precision on CoNLL04 than on TACREV while
the recall is almost the same. This indicates that in TACREV the
words between two entities contain irrelevant information more
frequently than in CoNLL04. Figure 4 provides insight into how
alignment metric F1 is distributed for correct and incorrect pre-
dictions across analyzed models and datasets3. On TACREV, the
difference between PA-LSTM and PLM-based models is significant
while on CoNLL04 it is less noticeable.

We hypothesize that the underlying reason is the very different
number of relation types in these two datasets (6 in CoNLL04 vs. 42
in TACREV). Moreover, some relation types in TACREV are very
similar and hardly distinguishable (e.g., countries_of_residence
and origin, see row 5 in Figure 3) which leads to high explanation
alignment but erroneous predictions. Note that for CoNLL04 F1
never equals 1 as there are no such relations that can have very
similar explanations of high-level alignment. In addition, a high
alignment of PA-LSTM on TACREV is partially attributed to the use
of additional lexical features (e.g., part-of-speech tags and named en-
tity tags). Indeed, our ablation study with PA-LSTM trained without
these features shows that average F1 of LIME explanations drops
from 0.95 to 0.89 while the percentage of instances with correct

3We used LIME explanations.
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Figure 3: Examples of different levels of alignment between XAI and human annotations from TACREV. Subject and object
entities are underlined. Model knowns (TP), model unknowns (FN), and model unknowns (FP) are colored accordingly. Accurate
automatic explanations correspond to 𝐹1 ≥ 0.98, small deviations correspond to 0.8 ≤ 𝐹1 < 0.98, and significant deviations
correspond to 𝐹1 < 0.8.

predictions and highly aligned explanations (𝐹1 ≥ 0.93) drops from
56% to 46%. In contrast, SpanBERT “looks” at the tokens that often
co-occur with the relevant tokens but are not directly relevant for
relation prediction: e.g., an instance with relation cause_of_death
will often mention a date and a place, see row 4 in Table 3 for
specific example.

5.2.3 Impact of XAI Methods. The baseline, words between enti-
ties, gives a good approximation of the relevant information, also
shown in [38] achieving a high precision of 0.8 on CoNLL04 and
high recall levels in all considered cases. However, more advanced
explainability methods yield higher precision values with the same
recall levels, except for both PLM-based models on TACREV. Finally,
the difference between the two explainability methods, LIME and
SHAP, is negligible.

5.3 RQ3: Predicting Model Errors
In the previous subsection, we observed a notable drop in precision
for the automatic explanations when the model is wrong. In that
sense, explanations might actually be used for predicting model
errors on unseen data. In this section, we evaluate the approaches

described in Section 3.2 for predicting model errors leveraging
model reasoning. Note that we do not try to find erroneous predic-
tions of no_relation because the explanations of such predictions
are in general not meaningful.

We implement a decision tree predictor as follows. A hyperpa-
rameter maximal depth of the decision tree is selected by 5-fold
cross-validation on the training data across 100, 150, 200, 250, 300,
350, 400 and set to 350. A hyperparameter 𝑡𝑒𝑥𝑝𝑙 is set to 0.28 for
TACREV and to 0.27 for CoNLL04. In addition, we present an ab-
lation study with the decision tree predictor without explanation
encoding. For the similarity matching approach, we use embed-
dings produced by Sentence Transformer4. A hyperparameter
𝑡𝑠𝑖𝑚 is selected by linear search in the range [0.9, 1] with the step
0.01 to maximize 𝐹1 on the validation set.

Table 4 presents the results of these two approaches for error
prediction on TACREV along with the results of a random classifier
that predicts 1 (model makes an error) proportionally to the number
of errors in the test set. It is worth noting that the task of predicting
model errors is imbalanced: naturally, there are much less positive

4https://huggingface.co/sentence-transformers
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(a) TACREV PA-LSTM. (b) CoNLL04 PA-LSTM.

(c) TACREV SpanBERT. (d) CoNLL04 SpanBERT.

(e) TACREV RoBERTa (f) CoNLL RoBERTa

Figure 4: Distribution of different values of F1 between LIME
and human explanations.

examples because the model naturally makes a correct prediction
most of the time. We make several observations: (i) Decision Tree
achieves significantly higher precision than Similarity Matching
due to the heterogeneity of the natural language: patterns in the un-
seen data are “new” and do not match the gathered collection of the
model knowns. Better generalization of model knowns is required
to achieve higher precision levels for Similarity Matching, the we
leave for future work. (ii) Similarity Matching has very high recall
confirming that most of the errors go together with unmatched (not
aligned with humans) explanations. (iii) Despite the highest F1 on
relation classification task, RoBERTa-based model is the least “fix-
able”. (iv) The task of predicting errors is difficult because language
is heterogeneous and, moreover, alignment and thus similarity be-
tween explanations produced by XAI and human annotations is
not perfect as discussed in Section 5.2. Overall, error prediction
with Similarity Matching reaches high recall values making this
approach a good chase for the use-cases when missing the errors is
costlier than overpredicting the errors. Decision Tree, on the other
hand, reaches a balance between precision and recall, showing that
model diagnosis represents a very promising approach for error
prediction.
Discussion on applications.We see a number of key applications
of our method. First, post-hoc interpretations of model predictions

Model Method P R F1

PA-LSTM
Random 0.296 0.287 0.291
Similarity Matching 0.267 0.826 0.403
Decision Tree 0.492 0.449 0.470

w/o explanations 0.445 0.356 0.395

SpanBERT
Random 0.314 0.313 0.313
Similarity Matching 0.234 0.981 0.377
Decision Tree 0.506 0.432 0.466

w/o explanations 0.479 0.376 0.421

RoBERTa
Random 0.277 0.279 0.278
Similarity Matching 0.205 0.899 0.334
Decision Tree 0.408 0.367 0.386

w/o explanations 0.384 0.352 0.367
Table 4: Performance of the different approaches for error
prediction on TACREV. We used LIME explanations for all
experiments.

open the door for model improvement, e.g., involving human-in-the-
loop to fix model errors. The second key application is improving
training data to include enough data for the model to correctly learn
to distinguish similar relations. The third application is targeting
the interpretability of relation extraction in specific domains, where
understanding model decisions is crucial, such as in biomedical or
legal fields. Finally, our method can be used to correct errors in
datasets. Despite the efforts in [1], our study found a number of
inconsistencies in the validation and the test data that are probably
also present in the training data.

We make our crowdsourced annotations along with the crowd-
sourcing task instructions publicly available5 in order to reproduce
our results and help other researchers evaluate the interpretability
of their relation extraction models and develop novel methods for
leveraging explanations in post-hoc manner.

6 Conclusion and Future Work
In this paper, we presented XCrowd, a hybrid human-XAI approach
for diagnosing relation extraction models that combines crowd-
sourced knowledge elicitation and explainable AI. We conducted
an empirical study over a human specification of the model should-
knows and unknowns and demonstrated that the unknowns pro-
duced through XCrowd allow to foresee future model errors. In
terms of future work, we plan to extend XCrowd to improve model
performance by fixing model unknowns (e.g., by integrating the
missing knowledge into the model via neuro-symbolic approaches).
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