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Abstract. C-systems were defined by Cartmell as the algebraic structures that correspond
exactly to generalised algebraic theories. B-systems were defined by Voevodsky in his quest
to formulate and prove an initiality conjecture for type theories. They play a crucial role
in Voevodsky’s construction of a syntactic C-system from a term monad.

In this work, we construct an equivalence between the category of C-systems and
the category of B-systems, thus proving a conjecture by Voevodsky. We construct this
equivalence as the restriction of an equivalence between more general structures, called
CE-systems and E-systems, respectively. To this end, we identify C-systems and B-systems
as “stratified” CE-systems and E-systems, respectively; that is, systems whose contexts are
built iteratively via context extension, starting from the empty context.

1. Introduction

In his unfinished and only partially published [Voe15, Voe23a, Voe16a, Voe16b, Voe17a]
research programme on type theories, Voevodsky aimed to develop a mathematical theory of
type theories, similar to the theory of groups or rings. In particular, he aimed to state and
prove rigorously an “Initiality Conjecture” for type theories, in line with the initial semantics
approach to the syntax of (programming) languages (cf. Section 1.1).

One aspect of this Initiality Conjecture is to construct, from the types and terms of a
programming language, a “model”, that is, a mathematical object (which is supposed to be
an initial object in a category of models and their morphisms). To help with this endeavour
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C-systems.
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in the context of initial semantics for type theories, Voevodsky introduced the essentially-
algebraic theory of B-systems. The models of this theory, he conjectured in [Voe14], are
constructively equivalent to the well-known C-systems or contextual categories first introduced
by Cartmell [Car86]. Furthermore, in his Templeton grant application [Voe16c], Voevodsky
writes:

The theory of B-systems is conjecturally equivalent to the theory of C-systems
that were introduced by John Cartmell under the name “contextual categories”
in [2],[3]. Proving this equivalence is among the first goals of the proposed
research.

The precise role of B-systems in Voevodsky’s programme is described in [Voe16b]; we
give an overview in Section 1.2 below.

In this present work, we construct an equivalence of categories between C-systems and
B-systems, each equipped with a suitable notion of homomorphism. Our construction is
entirely constructive, in the sense that it does not rely on the law of excluded middle or the
axiom of choice.

C- and B-systems are “stratified”, in a sense that will be defined later (in Sections 3.3
and 4.3, respectively). In this work, we also introduce unstratified structures, under the
name of E-system and CE-system, respectively. We construct an adjunction between these
structures, and obtain the equivalence between B- and C-systems via an equivalence of
suitable subcategories. The construction is summarized in the following diagram, in which
maps are annotated with the respective section numbers where they are constructed:

Esys CEsys

Bsys
stratified
Esys

stratified
CEsys Csys

E2CE,§5.2
⊤

CE2E,§5.1

≃
§4.3

≃
§5.4

≃
§3.3

The unstratified structures are of interest in their own right: they will serve, in a follow-up
work, to relate C-systems and B-systems to other, well-established, unstratified categorical
structures for the interpretation of type theories, such as categories with families [Dyb96]
and natural models [Awo18], categories with attributes [Car78, Hof97],1 and display map
categories [Tay99, Nor19].

1.1. Initial Semantics. The “template” for initial semantics is as follows: One starts by
defining a suitable notion of signature—an abstract specification device describing the (types
and) terms of a language. To any signature, one then associates a category of models of that
signature, in such a way that the2 initial object in that category—if it exists—deserves to
be called the syntax generated by the signature. Finally, one aims to construct such initial
objects, or identify sufficient criteria for a signature to admit initial objects.

1Hofmann [Hof97, §§3.1, 3.2] also compares categories with families and categories with attributes in a
set-theoretic setting, and a comparison between these notions in a univalent setting is given in [ALV18].

2We are working modulo isomorphism in a category.
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A particularly simple example of initial semantics is the following: consider the category
an object of which is given by a triple (X,x, s) where X is a set, x ∈ X, and s : X → X.
Then the initial object in that category is given by (N, 0, (+1)), and the structure of being
initial provides the well-known iteration principle: to define a map N → X, it suffices to
specify x ∈ X (the image of 0) and an endomap s : X → X (the recursive image of (+1)).
That is, no explicit application of recursion or induction principles on N is required once it is
established that (N, 0, (+1)) is an initial object; instead, the initiality property provides an
interface to these black-boxed principles.

For “simple” programming languages (e.g., for untyped or simply-typed lambda calculi),
notions of signature, and initial semantics for such signatures, have been constructed; see,
e.g., [LA24] for an overview.

For some specific dependently-typed languages, Streicher [Str91], and, more recently,
De Boer, Brunerie, Lumsdaine, and Mörtberg [dBBLM], have constructed initial models.
Voevodsky aimed at developing a general notion of signature for dependently-typed languages,
and an initial semantics result for such signatures. In Section 1.2 we sketch Voevodsky’s
approach towards a theory of type theories, and the role of C- and B-systems therein.

Meanwhile, Uemura [Uem21, Section 5] has also developed a notion of signature for
dependently-typed theories, and an initial semantics result for them.

1.2. Voevodsky’s approach towards a theory of type theories. In this section, we
sketch Voevodsky’s plan for an initial semantics result for type theories. Voevodsky’s Bonn
lectures [Voe] served as the main source for this overview.

1.2.1. Setting the scene. In [Voe23a], Voevodsky opens with the following statement:
The first few steps in all approaches to the set-theoretic semantics of dependent
type theories remain insufficiently understood.

According to him, constructions and theorems about type theories are currently assumed by
analogy. Instead, they should be proved by specialization of a general theorem.

Voevodsky aimed to build his theory on top of the notion of C-system, introduced by
Cartmell [Car86] under the name of contextual category. Voevodsky calls a C-system equipped
with extra operations corresponding to the inference rules of a type theory a C-system
model—or just model—of type theory. To give semantics of type theory, Voevodsky aimed
to build two C-system models: (i) one from the formulas and derivations of some type theory,
and (ii) one from a category of abstract mathematical objects. Furthermore, one should
construct an interpretation (a functor) from the first to the second.

Such an interpretation typically needs to be constructed by recursion over the derivations
of the type theory. As explained in Section 1.1, the recursive pattern can be encapsulated in
an initiality result; the methodology of initial semantics thus suggests the following approach:
(1) Show that the term model is initial in a suitable category.
(2) Then, any model yields automatically a (unique) interpretation from the term model.

Now, for the construction of the two desired models, syntactic and semantic, respectively,
Voevodsky developed different methodologies. For the construction of semantic models,
Voevodsky exhibited several constructions of C-systems from universe categories [Voe15]. He
also sketched a strictification from categories with families to C-systems. For the construction
of syntactic (or term) models, Voevodsky developed a framework outlined across several
papers. We summarize the ingredients involved here:
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(1) Restricted 2-sorted binding signatures (cf. [Voe23a, Section 1]) with sorts for terms and
types are used as abstract specificiation devices for pretypes and preterms.

(2) From a restricted 2-sorted binding signature, a “term” monad R : Set→ Set and a “type”
module LM : Set→ Set over R are constructed (cf. [Voe23a, Section 1]).

(3) Any monad R on Set gives rise to a C-system C(R), corresponding to the mono-typed
(or untyped) syntax of R, cf. [Voe23a, Section 4.2].

(4) The presheaf extension of C(R) by the module LM over R, called C(R)[LM ], constitutes
the C-system of pretypes and preterms—but without any typing relation yet, cf. [Voe23a,
Section 4.2].

(5) Finally, Voevodsky’s theory of sub-C-systems and regular quotients of C-systems [Voe16b]
allows one to carve out C-systems of types and well-typed terms modulo a regular
congruence relation.
In the following, we discuss some of these ingredients in slightly more detail, but without

any rigorous definitions.
A “restricted 2-sorted binding signature” is a signature that specifies a 2-sorted language.

We can think of these two sorts as a sort type of “types” and a sort term of “terms”, respectively.
The signatures are “restricted” in the sense that constructors can bind variables of sort term
but not of sort type.

We do not dwell on the notion of signature, but refer instead to [Voe23a, Section 1] for
details; here, we give an example of a language specified by such a signature.

Example 1.1. An example of a syntax generated by a 2-sorted binding signature is the syntax
of the Calculus of Constructions, adapted from Streicher’s Semantics of Type Theory [Str91]:

A,B ::= Π(A, x.B) Product of types
| Prop Type of propositions
| Proof(t) Type of proofs of proposition t

t, u ::= x Variable
| λ(A, x.t) Function abstraction
| App(A, x.B, t, u) Function application
| ∀(A, x.t) Universal quant. over propositions t

This signature specifies a language with two sorts, the sort type of “types” and the sort
term of “terms”. It is restricted because there is no binding of variables of sort type, only of
variables of sort term. Such a signature yields a monad T : Set× Set→ Set× Set,

(X,Y ) 7→ (type(X,Y ), term(X,Y ))

where type(X,Y ) is the set of expressions of sort type with variables of kind type in X
and of kind term in Y and similarly for term(X,Y ). From such a monad on Set × Set,
Voevodsky [Voe23a] constructs, by fixing a set of type variables, a monad R = term on Set,
and a module LM = type over R. Here, the action of the module LM is substitution of term
expressions in type expressions. From R and LM , in turn, Voevodsky [Voe23a] constructs
two C-systems, called C(R) and C(R)[LM ], respectively. The C-system C(R) corresponds
to a mono-typed syntax of just terms—in detail:
(1) Objects are natural numbers (untyped contexts).
(2) Morphisms m→ n are maps [n]→ R([m]), where [k] is the standard finite set associated

to k ∈ N.
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(3) The category thus obtained is the opposite of the Kleisli category on R restricted to
natural numbers.3

(4) The morphism pn : n+ 1→ n is given by the composition [n]
ι−→ [n+ 1]

η−→ R([n+ 1]).
(5) Given a morphism f : m→ n, that is, a function f : [n]→ R([m]), the pullback of pn :

n+1→ n along f is the morphism pm : m+1→ m. The morphismm+1→ n+1 required
to complete the pullback square is the morphism q(f) : n+ 1→ R([m+ 1]) induced by

the morphisms n f−→ R([m])
R(ι)−−→ R([m+ 1]) and 1

ι−→ [m+ 1]
η−→ R([m+ 1]); intuitively,

q(f) extends the substitution f by one variable. See also [Voe23a, Lemma 4.2.2].
The C-system C(R)[LM ], in turn, looks as follows:
(1) C(R)[LM ] has, as contexts, finite sequences of types (with a suitable number of free

variables).
(2) Pullback is given by substitution of terms in type expressions.
(3) There is no typing relationship yet: C(R)[LM ] is a C-system of pretypes and preterms.
In order to build, from C(R)[LM ], a C-system of types and well-formed terms, with the
intended typing relation, Voevodsky devised (i) sub-C-systems (for eliminating ill-formed
pretypes and preterms), (ii) quotients of C-systems (for considering terms and types modulo
judgemental equality). To construct such subsystems and quotients, Voevodsky devised the
theory of B-systems.

1.2.2. B-systems for the construction of C-systems. Intuitively, the idea is to use the C-system
C(R)[LM ] to obtain the pretypes and preterms to formulate judgements:
• A statement Γ ⊢ is an element of

B(R,LM) :=
∐
n≥0

n−1∏
i=0

LM([i]) (1.1)

• A statement Γ ⊢ t : T is an element of

B̃(R,LM) :=
∐
n≥0

(
n−1∏
i=0

LM([i])×R([n])× LM([n])

)
(1.2)

Voevodsky [Voe14] defines eight operations on B and B̃, corresponding to structural rules of
type theory. The resulting mathematical structure is captured by the notion of B-system,
illustrated in more detail in Section 1.3 and studied in detail in Section 4.

Given a C-system C, we call B(C) and B̃(C) the B-sets associated to C. Voevod-
sky [Voe16b] constructed a bijection between
(1) Sub-C-systems of a given C-system
(2) Subsets of (B, B̃(C)) that are closed under the eight operations
and similar, but more complicated, for quotients. This bijection is used by Voevodsky to
construct suitable C-systems; Voevodsky himself [Voe14] positions B-systems as follows:

B-systems are algebras (models) of an essentially algebraic theory that is
expected to be constructively equivalent to the essentially algebraic theory
of C-systems which is, in turn, constructively equivalent to the theory of
contextual categories. The theory of B-systems is closer in its form to the

3Put differently, it is the Kleisli category of the Jf -relative monad induced by the monad R, as indicated
by the title of Voevodsky’s article [Voe23a].
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structures directly modeled by contexts and typing judgements of (dependent)
type theories and further away from categories than contextual categories
and C-systems.

This concludes our overview of the use of B-systems in Voevodsky’s research program. In
the remainder of the introduction, we provide more intuition for the notions of B-system and
C-system, before giving rigorous definitions and constructions.

1.3. Models of Type Theory. When studying type theories mathematically, one question
to answer is: what is the appropriate mathematical structure that captures the essential
behaviour of type theories? Technically speaking: what are the objects in the category of
models of a type theory?

Many different answers have been given to this question. The purpose of this section
is to present the two contenders studied and compared in this work, and to relate them to
other notions of “model”.

1.3.1. Contextual categories and C-systems. Contextual categories were defined, by Cart-
mell [Car86, §14], as a mathematical structure for the interpretation of generalized algebraic
theories and of the judgements of Martin-Löf type theory. A contextual category comes with
a tree structure, in particular, a partial ordering, on its objects; think of the objects of C as
“contexts”, and Γ ≤ ∆ stating that Γ can be obtained from ∆ by truncation. Furthermore,
there is a special class of morphisms, closed under pullback along arbitrary morphisms—
thought of as substitution by that morphism. In his PhD dissertation [Car78, Section 2.4],
Cartmell shows that the category of contextual categories and homomorphisms between
them is equivalent to the category of generalized algebraic theories and (equivalence classes
of) interpretations between them.

Voevodsky defined C-systems as equivalent to contextual categories: a C-system is a
category coming, in particular, with a length function and a compatible “father” function
on objects of the category, signifying truncation of contexts. Again, we have a class of
morphisms closed under pullback along arbitrary morphisms. Voevodsky rejected the name
“contextual category” for these mathematical object, for the reason that the extra structure
on top of the underlying category cannot be transported along equivalence of categories and
is thus not “categorical” in nature. As an example, consider the terminal category: it can be
equipped with exactly one C-system structure. However, there is no C-system structure on
any category with more than one, but finitely many, objects.

More recently, Cartmell [Car18] gave two Generalized Algebraic axiomatizations of
contextual categories, one of which is using Voevodsky’s s-operator [Voe16b, Definition 2.3]
for pullbacks.

1.3.2. B-systems. Voevodsky’s definition of B-systems [Voe14] is inspired by the presentation
of type theories in terms of inference rules. Specifically, type theories “of Martin-Löf genus”
are given by sets of five kinds of judgements:
Well-formed context:

Γ ⊢
Well-formed type in some context:

Γ ⊢ A type
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Well-formed term of some type in some context:

Γ ⊢ a : A

Equality of types:
Γ ⊢ A ≡ B

Equality of terms:
Γ ⊢ a ≡ b : A

Interpreting equality of types and terms as actual equality, and expressing Γ ⊢ A instead
as Γ, A ⊢, lead Voevodsky to defining a B-system to consist of families of sets (Bn)n∈N and
(B̃n)n∈N>0 , intuitively denoting, for any n ∈ N, contexts of length n and terms in a context of
length n− 1, together with their types, respectively. Furthermore, any B-system has various
operations on B and B̃, such as maps ∂n : B̃n+1 → Bn+1 specifying, intuitively, for each
“term” t ∈ B̃n+1, the context ∂n(t) ∈ Bn+1 in which t lives.

Voevodsky’s B-systems are very similar to the algebras of the theory MetaGAT defined
by John Cartmell [Car14], and to the algebras of a monad studied by Richard Garner [Gar15].
The intention is that these are all equivalent notions of structure. Below, we will indicate
more precise connections to Garner’s work.

Compared to other semantics for dependent type theories, B-systems appear the closest
to syntax. For this reason it seems easier to describe extensions of the structural rules by type
constructors or modal operators for B-systems than it is for, say, C-systems (i.e. contextual
categories). For the same reason, B-systems seem also more suitable than other semantics to
describe notions of substructural dependent type theories and, more generally, variations on
the syntax.

1.3.3. Other Notions of Model. There are many other mathematical structures for the
interpretation of type theory. Here, we give some pointers to related literature.

Voevodsky sketched a relation between C-systems and categories with families in his
Lectures in the Max Planck Institute in Bonn [Voe, Lecture 5], identifying C-systems as
categories with families with a particular property. In the present work, we introduce and
study unstratified categorical structures, in the form of E-systems and CE-systems, which
we anticipate will be useful in giving a precise construction for Voevodsky’s conjecture.

Categories with families, in turn, are related to categories with attributes (a.k.a. split
type categories) in [Bla91] (in a categorical setting) and in [ALV18] (in the univalent setting).
Composing these characterizations with the equivalence presented here provides a comparison
between B-systems and other mathematical structures for type theory.

Garner [Gar15] studies and compares two structures related to Voevodsky’s B-systems:
Generalized Algebraic Theories (GATs) and algebras for a monad on the category of type-
and-term structures (see also Examples 4.4 and 4.13).

Remark 1.2. Garner’s and Cartmell’s works, taken together, also point to another possible
way to constructing an equivalence between C-systems and B-systems: Cartmell [Car78,
Section 2.4] constructs an equivalence of categories between the category of contextual cate-
gories and homomorphisms between them, and the category of GATs and (equivalence classes
of) interpretations between them. Garner [Gar15] constructs an equivalence of categories
between the category of B-frames and the category of ∅-GATs (GATs without structural
rules) (see also Example 4.4). Garner’s equivalence looks like it could be “upgraded” to an
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equivalence between the category of B-systems and the category of GATs (see also Exam-
ple 4.13). Constructing an equivalence between B- and C-systems in this way is, however,
conceptually circular — if not in actuality, then at least in spirit. After all, B- and C-systems
were studied by Voevodsky in the context of the Initiality Conjecture; one purpose of the
Initiality Conjecture is to give a specification of dependently-typed syntax. We believe
that such a specification is best given without recourse to such syntax itself.

1.4. About the present work. The main result of this paper is the construction of an
equivalence of categories, between the category of C-systems and the category of B-systems.
The existence of such an equivalence was conjectured by Voevodsky.

We construct this equivalence as a restriction of an equivalence between more general,
unstratified structures introduced in this paper, called CE-systems and E-systems, respectively.
While it is not necessary to pass via E-systems and CE-systems to construct an equivalence
between B-systems and C-systems, it seems desirable to us for two reasons:
(1) The definitions and constructions are automatically more modular, isolating structure

on either side that corresponds to each other.
(2) The study of unstratified structures is useful in connecting B-systems and C-systems

to other unstratified structures, such as categories with families [Dyb96]. Work on
constructing a suitable comparison is already underway.

This paper is organized as follows. In Section 2 we discuss some prerequisites that we
build upon in later sections. In Section 3 we review the definition of C-systems given by
Voevodsky in [Voe16b, Def. 2.1], itself an equivalent formulation of Cartmell’s definition of
contextual categories [Car86, §14]. Here we also introduce CE-systems. In Section 4, we
give Voevodsky’s definition of B-system [Voe14] and introduce E-systems. In Section 5 we
construct our equivalence of categories between B-systems and C-systems.

1.4.1. Foundations. The work described in this result can be read to take place in intuitionistic
set theory (IZF) or extensional type theory, i.e., a type theory with equality reflection. In
particular, we do not make use of classical reasoning principles such as an axiom of choice or
excluded middle. We consider in this work categories built from algebraic structures (which
sometimes are themselves categories with structure, but see Section 1.4.2). Implicitly, we
take these algebraic structures to be built from sets (or types) from a universe U1. The
categories of such structures are hence categories built from sets (or types) of objects and
morphisms of a universe U2. In the following, we leave the universe levels implicit.

1.4.2. About our use of categories. In this work, categories are used on two different levels.
Firstly, we use categories as algebraic structures, as the basis for C-systems and CE-

systems. This use of categories is somewhat “accidental”, and our constructions on these
categories are not invariant under equivalence of categories. In particular, we liberally reason
about equality of objects in such categories. Consequently, we avoid the unadorned word
“category” for these structures, and call them strict categories instead. We denote by Cat
the category of strict categories and functors between them.

Secondly, we use categories to compare different mathematical structures to each other,
by considering a suitable category of such structures and their homomorphisms. Here, we
never consider equality, but only isomorphism, of such mathematical structures; our reasoning



Vol. 21:1 ALGEBRAIC PRESENTATIONS OF TYPE DEPENDENCY 14:9

on that level is entirely categorical. We reserve the word “category” for such uses of the
concept.

We use different fonts for strict categories and categories, respectively: calligraphic font,
such as C, is used for strict categories; boldface, such as Grph, is used for categories. We
use the same notation for arrows in strict categories and in categories. We write either g ◦ f
or gf for the composition of f : a→ b and g : b→ c.

1.5. Version history. We first reported on the construction of an equivalence of categories
between B-systems and C-systems in a short summary paper [AENR23]. The present work
expands on that previous work in the following ways:
(1) An expanded introduction summarizes the role of B-systems and C-systems in Voevodsky’s

unfinished theory of type theories.
(2) We consider here more general “unstratified” variants of B-systems and C-systems, called

E-systems and CE-systems, respectively. We construct an equivalence of categories
between E-systems and CE-systems.

(3) We then construct the equivalence between B-systems and C-systems as a restriction, to
the respective subcategories of stratified objects, of the aforementioned equivalence.

(4) We give full details of all the constructions in this paper.

1.6. Acknowledgements. We thank Steve Awodey for feedback on a draft of this paper
and the anonymous referees for helpful remarks and suggestions. The research described in
this paper was presented at the Seminar on Contextual Categories in Ljubljana and online
in May 2021, at the TYPES conference in Leiden and online in June 2021, and at the first
meeting of WG6 of the COST action CA20111 “EuroProofNet” in Stockholm in May 2022.
We thank the organisers and participants of the three events for valuable discussions.

2. Preliminaries: stratification of categories

In this section we collect definitions and results related to stratification of strict categories
and morphisms between them. A stratification (see Definition 2.1) associates, to any object
of a strict category a natural number, its “length”, and to any length-decreasing morphism
a factorization of this morphism into morphisms “of length 1”. Such a stratification can
equivalently be described as a rooted tree, see Section 2.2.

2.1. Stratification of strict categories.

Definition 2.1 (Stratified strict categories, stratified functors). Let C be a strict category
with terminal object 1. A stratification for C consists of a stratification functor

L : C → (N,≥)

such that
(1) L(X) = 0 if and only if X is the chosen terminal object 1,
(2) for any f : X → Y we have L(X) = L(Y ) if and only if X = Y and f = idX , and
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(3) every morphism f : X → Y in C, where L(X) = n+m+ 1 and L(Y ) = n, has a unique
factorization

X = Xm+1 Xm · · · X1 X0 = Y
fm fm−1 f1 f0

where L(Xi) = n+ i.
A functor F : C → D between strict categories with stratifications LC and LD, respectively,

is said to be stratified if LC = LD ◦ F .

Remark 2.2. We emphasize that stratifications do not transport along equivalence of
categories. For instance, there is a (necessarily unique, see Proposition 2.8) stratification
on the terminal strict category, but no stratification on the strict chaotic category with two
objects and a choice of terminal object.

Remark 2.3. Those readers familiar with Conduché functors might note that a stratified
category (C, L) is equivalently a Conduché functor L : C → N with discrete fibers which takes
the chosen terminal object of C to 0.

Definition 2.4. Let C be a category with a terminal object and ℓ : Ob(C)→ N a function.
An arrow f : X → Y in C is indecomposable if ℓ(X) = ℓ(Y ) + 1.

Remarks 2.5.
(1) In a stratified category, there is a unique terminal object 1. More generally, if there is an

arrow 1→ X, then X = 1.
(2) The factorisation of an arrow f : X → Y such that L(X)− L(Y ) = m+ 1 > 0 in 2.1.3

consists of m+ 1 indecomposable arrows.
(3) A stratified functor is determined by its action on indecomposable arrows.

Lemma 2.6. Let C be a category with a terminal object 1. A function ℓ : Ob(C)→ N extends
to a stratification L : C → (N,≥) of C if and only if the following three conditions hold:

(i) ℓ(1) = 0,
(ii) for every object X and k ≤ ℓ(X), the set∐

Y | ℓ(Y )=k

C(X,Y )

is a singleton, i.e. there is a unique arrow xk : X → Xk such that ℓ(Xk) = k, and
(iii) for every X and k > ℓ(X), the set∐

Y | ℓ(Y )=k

C(X,Y )

is empty, i.e. there are no arrows X → Y such that ℓ(X) < ℓ(Y ).

Proof. If C is stratified by L such that L(X) = ℓ(X), condition (i) follows from 2.1.1. To show
condition (ii), note that every arrow X → 1 factors uniquely into l = ℓ(X) indecomposable
arrows

X Xl−1 · · · X1 1.
xl xl−1 x2 x1

In particular, for every n ≤ ℓ(X), the composite xn+1 · · ·xl : X → Xn is such that ℓ(Xn) = n.
If f : X → Y is also such that ℓ(Y ) = n, then f factors into l − n indecomposable arrows
(fi)

l−n
i=1 . Let y1 · · · yn be the factorisation of Y → 1 into indecomposable arrows. The
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composite y1 · · · ynf0 · · · fl−n−1 is a factorisation of X → 1 into indecomposable arrows. It
follows by uniqueness of such factorisations that

x1 = y1, x2 = y2, . . . , xn = yn, xn+1 = f1, . . . , xl = fl−n.

In particular, f = xn+1 · · ·xl as required.
Since (N,≥) is a poset, condition (iii) is equivalent to the fact that the function ℓ extends

uniquely to a functor L : C → (N,≥).
Suppose now that conditions (i–iii) above hold. In particular, the function ℓ extends to

a functor L.
(1) Let X be such that ℓ(X) = 0. Then X → 1 and idX : X → X are both such that

ℓ(X) = 0 = ℓ(1). Hence X = 1 and the object X is terminal. Conversely, let X be terminal.
Then there is 1→ X and thus 0 ≥ ℓ(X).

(2) Let f : X → Y and suppose ℓ(X) = ℓ(Y ), then Y = X and f = idX by (ii) with
n = ℓ(X).

(3) For every X such that n + 1 = ℓ(X) > 0, let X : X → X ′ be the unique arrow
such that ℓ(X ′) = n given by (ii). For every k ≤ ℓ(X), we have a composite xk of k
indecomposable arrows

X X ′ · · · X(k−1) X(k)X

xk

X′ X(k−2) X(k−1)

(2.1)

where ℓ(X(k)) = ℓ(X) − k, which is the unique arrow X → Y such that ℓ(Y ) = ℓ(X) − k
by (ii). Let us show that (2.1) is also the unique factorisation of xk into indecomposable
arrows, for every 0 < k ≤ ℓ(X). We proceed by induction on n. If n = 0, then factorisations
consist of only one indecomposable arrow and uniqueness follow from (ii). For n > 0, let
0 < k ≤ n + 1 and consider a factorisation X

g0−→ Z1
g1−→ · · · gk−2−−−→ Zk−1

gk−1−−−→ X(k) of
xk into indecomposable arrows. Then ℓ(Z1) = ℓ(X) − 1 = ℓ(X ′), and so g0 = X by (ii).
Again, gk−1 · · · g1 = x′k−1 : X

′ → (X ′)(k−1) by (ii) and, by inductive hypothesis, gi = X(i)

for 0 < i < k. Therefore (2.1) is the unique factorisation of xk into indecomposable arrows.
Given an arrow f : X → Y such that n = ℓ(Y ) < ℓ(X) = m+ n+ 1, it must be Y =

X(m+1) and f = xm+1 by (ii). It follows that f factors uniquely into m+ 1 indecomposable
arrows X(m) · · ·X ′X.

Remark 2.7. Condition (ii) in Lemma 2.6 is equivalent to requiring that, for every object
X:
(ii.a) for every n ≤ ℓ(X) there is at most one arrow f : X → Y such that ℓ(Y ) = n, and
(ii.b) there is an indecomposable arrow X : X → X ′.

One direction is clear. For the converse it is enough to show that for every n < ℓ(X) there
is f : X → Y such that ℓ(Y ) = n. Such an arrow is given as the composite of ℓ(X) − n
indecomposable arrows as in Eq. (2.1) above.

Proposition 2.8. Any category can be stratified in at most one way.

Proof. Consider a category C with two stratifications L,M : C → N. By Lemma 2.6.ii ,

L−1(n+ 1) =
{
X | ∃ Y ∈ L−1(n) and an indecomposablef : X → Y

}
and similarly for M−1(n + 1). Thus, if L−1(n) = M−1(n), we find that L−1(n + 1) =
M−1(n+1), and the claim follows by induction since L−1(0) =M−1(0) by Definition 2.1.1.
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Uniqueness of stratification justifies the following definition:

Definition 2.9. We define Cats to be the subcategory of Cat consisting of stratified strict
categories and stratified functors between them.

Lemma 2.10. Let F : C → D be a functor between stratified categories. The following are
equivalent.
(1) The functor F is stratified.
(2) The functor F preserves terminal objects and indecomposable arrows.

Proof. That 1 implies 2 is clear. The converse is by induction on the length of objects using
that, for every f : X → Y , LC(X) = LC(Y ) + 1 implies LD(F (X)) = LD(F (Y )) + 1.

Lemma 2.11. Let C be a stratified category with stratification functor L. Then for every
object X and every f : Y → X,

LX(f) := L(Y )− L(X)

defines a stratification functor LX for the slice C/X.

Proof. The above clearly defines a functor LX : C/X → (N,≥) and conditions (1–3) in
Definition 2.1 are easily verified.

Corollary 2.12. Let F : C → D be a stratified functor between stratified categories. For
every object X in C, the functor

C/X D/FXF/X

is stratified.

2.2. Rooted trees. In this section, we compare stratified categories to rooted trees. Rooted
trees were used by Cartmell [Car86] to give his original definition of contextual categories.

Definition 2.13.
(1) We define a rooted tree T to be a family of sets (Tn)n∈N indexed by the natural numbers

such that T0 is a singleton, together with functions (tn : Tn+1 → Tn)n∈N mapping a node
to its parent. A homomorphism of rooted trees f : T → S is a family of functions
(fn : Tn → Sn)n∈N such that fn ◦ tn = sn ◦ fn+1 for every n ∈ N. Let RtTr be the
category of rooted trees and homomorphisms.

(2) Let Grph be the category of directed (multi)graphs and homomorphisms. We define
the functor G : RtTr → Grph as follows. For a rooted tree T , the directed graph
G(T ) has the set of vertices given by the disjoint union

∐
n∈N Tn, and there is an edge

(n+ 1, X)→ (n, tn(X)) for every n ∈ N and X ∈ Tn+1. It is straightforward to verify
that each homomorphism T → T ′ of rooted trees gives rise to a homomorphism of graphs
G(T )→ G(T ′).

(3) Let F : Grph→ Cat be the well-known functor [Mac98, II.7] that takes a graph to the
category freely generated by it.

We now show that the image of the composite

RtTr Grph CatG F

is the subcategory of stratified strict categories defined in Definition 2.9.
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Proposition 2.14. The functor FG : RtTr→ Cat lifts to an equivalence RtTr
≃−→ Cats.

Proof. First, observe that, for a rooted tree T , the free category FG(T ) is stratified. We
define L : FG(T ) → (N,≥) by sending an object (n,X) to n and a generating morphism
(n + 1, X) → (n, tn(X)) to n + 1 ≥ n. Given a morphism f : S → T of rooted trees,
the functor FG(f) : FG(S) → FG(T ) is stratified by construction. Thus, the functor
FG : RtTr→ Cat lifts to an functor RtTr→ Cats.

Next we define a functor I : Cats → RtTr. Consider a stratified category (C, L) and
define a rooted tree I(C, L) as follows. Let I(C, L)n := L−1(n). By Lemma 2.6(ii), for every
X ∈ I(C, L)n there is exactly one indecomposable arrow with domain X, say X → X ′. Then
we define tn : I(C, L)n+1 → I(C, L)n by tn(X) := X ′. A stratified functor F : C → D induces
a homomorphism of rooted trees I(C, L)→ I(C,M) since it commutes with the stratification
functors and it preserves indecomposable arrows.

It is now straightforward to verify that FG ◦ I ∼= 1Cats and I ◦ FG ∼= 1RtTr.

3. The category of C-systems

This section is dedicated to the study of C-systems.
In Section 3.1 we review Voevodsky’s definition of C-system, an equivalent formulation

of Cartmell’s contextual categories. We then give, in Section 3.2 our definition of CE-system,
and identify, in Section 3.3, the category of C-systems as a subcategory of “stratified” objects
in the category of CE-systems.

3.1. The category of C-systems. John Cartmell [Car86, Section 14] defined contextual
categories as mathematical structures for the interpretation of type theories. Vladimir Vo-
evodsky [Voe16b, Definition 2.1] gave a slightly modified, but obviously equivalent definition,
and coined them C-systems.

Definition 3.1 (C-system, [Voe16b, Def. 2.1]). A C-system consists of
(1) a strict category C,
(2) a “length” function ℓ : Ob(C)→ N,
(3) a chosen object 1 ∈ Ob(C),
(4) a function ft : Ob(C)→ Ob(C),
(5) for any object Γ ∈ Ob(C) such that ℓ(Γ) > 0, a morphism pΓ : Γ→ ft(Γ),
(6) for any Γ ∈ Ob(C) with ℓ(Γ) > 0 and any f : ∆→ ft(Γ), an object f∗Γ and a morphism

q(f,Γ): f∗Γ→ Γ.
satisfying the following axioms:

i) ℓ−1(0) = {1},
ii) for Γ with ℓ(Γ) > 0, we have ℓ(ft(Γ)) = ℓ(Γ)− 1,
iii) ft(1) = 1,
iv) 1 is a final object,
v) for Γ ∈ Ob(C) with ℓ(Γ) > 0 and f : ∆→ ft(Γ), one has ℓ(f∗Γ) > 0, ft(f∗Γ) = ∆, and

the square

f∗Γ Γ

∆ ft(Γ)

q(f,Γ)

pf∗(Γ) pΓ

f

(3.1)
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commutes and is a pullback square,
vi) for Γ ∈ Ob(C) with ℓ(Γ) > 0, we have

(
idft(Γ)

)∗
Γ = Γ and q(idft(Γ),Γ) = idΓ, and

vii) for Γ ∈ Ob(C) with ℓ(Γ) > 0, g : ∆→ ft(Γ) and f : E → ∆, we have (g ◦ f)∗Γ = f∗g∗Γ
and q(g ◦ f,Γ) = q(g,Γ) ◦ q(f, g∗Γ).

Intuitively, an object Γ of the category underlying a C-system can be thought of as a context
of length ℓ(Γ). Types in context Γ are encoded by the projections p∆ with ft(∆) = Γ (hence,
in particular, ℓ(∆) = ℓ(Γ) + 1). Terms are not explicitly given; a term of type p∆ (in context
ft(∆)) corresponds to a section to p∆. This is exactly how terms are defined in the E-system
constructed from a CE-system in Construction 5.6.

In case the reader wonders whether the length function ℓ lifts to a stratification, in
Corollary 3.9 we show that it does so on a suitable subcategory of C.

Definition 3.2. A morphism of C-systems from C to D is a functor F : C → D between
the underlying categories that strictly preserves the rest of the structure, that is:

i) F (1C) = 1D,
ii) ℓD ◦Ob(F ) = ℓC : Ob(C)→ N,
iii) Ob(F ) ◦ ftC = ftD ◦Ob(F ) : Ob(C)→ Ob(D),
iv) FpΓ = pFΓ, for every Γ ∈ Ob(C),
v) F (f∗Γ) = (Ff)∗(FΓ) and F (q(f,Γ)) = q(Ff, FΓ), for every Γ ∈ Ob(C) such that

ℓC(Γ) > 0 and f : ∆→ ft(Γ).

Example 3.3 (C-systems and Lavwere theories). Fiore and Voevodsky [FV20] construct
an isomorphism of categories between the category of Lawvere theories and the category of
ℓ-bijective C-systems, that is, of C-systems whose length function is a bijection. Intuitively,
such a C-system can be seen as modelling an untyped (or single-sorted) language.

Example 3.4 (C-systems and contextual categories). C-systems are equivalent to Cartmell’s
contextual categories. In his Ph.D. dissertation, Cartmell [Car78, Section 2.4] constructs
an equivalence between the category of contextual categories and homomorphisms between
them and the category of Generalized Algebraic Theories (GATs) and (equivalence classes
of) interpretations between them. Hence C-systems are equivalent to GATs.

Example 3.5 (C-system from a universe category). Any universe category gives rise to a
C-system, via a construction by Voevodsky [Voe15, Construction 2.12]. A universe category
is a category with a chosen terminal object and a universe, that is, a morphism p : Ũ → U
together with a choice of pullback of p along any morphism X → U . Roughly, the C-system
constructed from a universe category has, as objects of length n, sequences of n morphisms
f1, . . . , fn into U such that the domain of fi+1 is the chosen pullback of p along fi. Such a
sequence can be thought of as a sequence of (dependent) types (A1, A2, . . . , An) such that
A1, . . . Ai ⊢ Ai+1. Furthermore, any small C-system can be obtained via this construction;
given a C-system C, a universe can be constructed [Voe15, Construction 5.2] on the presheaf
category Ĉ such that the C-system obtained from that universe is isomorphic to the C-system
C. For a brief overview of these constructions, see [KL21, Section 1.3].

Voevodsky’s simplicial model of univalent foundations [KL21] is built on top of a C-system
obtained from a universe in the category of simplicial sets.

Problem 3.6. To construct a functor C2RtTr : Csys→ RtTr.
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Construction 3.7 (for Problem 3.6). Let C = (C, 1, ℓ, ft, p, . . . ) be a C-system. The objects
of C can be arranged into a rooted tree by defining

Tn := {Γ | ℓ(Γ) = n} and tn(Γ) := ft(Γ) ∈ Tn, for Γ ∈ Tn+1.

That is, the front square in the diagram of sets and functions

Tn+1 Ob(C)

Tn Ob(C)

1 N

1 N

tn

ℓ

ft

ℓ
n+1

pred

n

is a pullback for every n ∈ N, and the function tn is defined by its universal property as the
right-hand square commutes by 3.1.ii . The set T0 is a singleton by (i) in Definition 3.1.

A homomorphism of C-systems F : C → D restricts, for every n ∈ N, to a function
Fn : Tn → Sn between the fibres Tn and Sn of the length function of C and D, respectively,
by 3.2.ii as in the front part of the diagram below.

Tn+1 Ob(C)

Tn Ob(C)

Sn+1 Ob(D)

Sn Ob(D)

1 N

1 N

Fn+1

tn

Ob(F )

ft

Ob(F )

ℓ

sn

ℓ

ftFn

ℓ
n+1

pred

n

(3.2)

The upper-right square commutes by Definition 3.2.iii , thus the upper-left square commutes
as well since the rest of the diagram commutes. Functoriality holds since each Fn is defined
by a universal property.

Lemma 3.8. Let C be a C-system with underlying strict category C and let p(C) denote the
wide subgraph of C on the canonical projections pΓ for Γ in C. Then p(C) is isomorphic to
the graph G ◦C2RtTr(C) naturally in C, where G : RtTr→ Grph is from Definition 2.13.

Proof. The vertices of G◦C2RtTr(C) are pairs (ℓ(Γ),Γ) and edges are of the form (ℓ(Γ),Γ)→
(ℓ(ft(Γ)), ft(Γ)) for ℓ(Γ) > 0. In particular, every vertex (n+ 1,Γ) has exactly one outgoing
edge. The bijection between vertices then extends to an isomorphism between p(C) and
G ◦C2RtTr(C).
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Every C-homomorphism F : C→ D induces a morphism of graphs p(F ) : p(CC)→ p(CD)
by 3.2.iv . Naturality then follows from 3.2ii .

Corollary 3.9. Let F be the free category on the graph p(C) on the canonical projections.
Then the terminal object 1 of C is terminal in F and the function ℓ extends to a stratification
functor on F .

Proof. By Lemma 3.8 there is an iso F = Fp(C) ∼= F ◦G ◦C2RtTr(C). The claim thus
follows from Proposition 2.14.

3.2. The category of CE-systems. In this section, we define CE-systems and their
morphisms.

Definition 3.10. A CE-system consists of two strict category structures F and C on the
same set of objects Ob(F) = Ob(C) and an identity-on-objects functor I : F → C between
them, together with
(1) a chosen object 1 which is terminal in F, and
(2) for any f : ∆→ Γ in C and any A ∈ F/Γ, a functorial choice of a pullback square

∆.f∗A Γ.A

∆ Γ

π2(f,A)

I(f∗A) I(A)

f

such that f∗A ∈ F/∆. Explicitly, the functoriality requirement is that
(a) For any f : ∆→ Γ, one has

f∗(idΓ) = id∆ and π2 (f, idΓ) = f.

(b) For any A ∈ F/Γ, one has

(idΓ)
∗A = A and π2 (idΓ, A) = idΓ.A

(c) For any f : ∆→ Γ, g : Ξ→ ∆ and A ∈ F/Γ, one has

(f ◦ g)∗A = g∗(f∗A) and π2 (f ◦ g,A) = π2 (f,A) ◦ π2 (g, f∗A)

(d) For any P ∈ F/Γ.A and f : ∆→ Γ, one has

f∗(A.P ) = f∗A ◦ (π2 (f,A))∗P and π2 (f,A.P ) = π2 (π2 (f,A) , P )

A CE-system is rooted if I(1) = 1 is terminal in C.
For any f : ∆ → Γ we write f∗ for the induced functor F/Γ → F/∆ and refer to the

arrows in F as the families of the CE-system. We shall write arrows in F with a double
head as in the above diagram.

We may write IA : FA → CA for the categories and functor underlying a CE-system A,
whenever we need to make the CE-system explicit.

We show in Section 3.3 that CE-systems generalize C-systems. To provide some intuition,
we can think of the image of F in C as the subcategory of C spanned by the projections
pΓ : Γ→ ft(Γ) of a C-system.
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Example 3.11 (CE-system on finite sets). Let F be the category whose objects are natural
numbers, and whose morphisms f : m → n are functions f : std(m) → std(n) from the
standard finite set of m elements to the standard finite set of n elements. Consider the
identity-on-objects functor [−] : (N,≥) → Fop given, on n+ k ≥ n, by the opposite of the
initial-segment inclusion, which we write in+kn : [n+ k]→ [n].

We equip it with the structure of a CE-system as follows. The chosen pullback of a
family n+ k ≥ n and an arrow f : [m]→ [n] in Fop is

[m+ k] [n+ k]

[m] [n]

im+k
m

π2(f,n+k≥n)

in+k
n

f

where the morphism π2(f, n+ k ≥ n) is the opposite of the arrow [f, 1k] : [n+ k]→ [m+ k]
in F obtained from the universal property of the coproduct [n + k]. Functoriality follows
immediately from the definitions.

This CE-system is, of course, rooted — as [0] is terminal in Fop — and stratified in
the sense of Definition 3.16 — as initial-segment inclusions factor uniquely into arrows in+1

n

which are indecomposable in the sense of Definition 2.4. Note also that the choice of pullback
squares is forced by Remark 3.19.

We can think of this example as the category of renamings, that is, variable-for-variable
substitutions, of a untyped (or uni-typed) theory; see, for instance, [FPT99, LA24].

Example 3.12. Categories with attributes [Car78], or type categories [Pit01], produce
examples of CE-systems which are rooted but not stratified. A category with attributes
consists of a category C with a terminal object 1 together with a set of “types” T (X) for
each object of C such that each A ∈ T (X) is assigned an arrow pA in C with codomain X.
Moreover a strictly functorial choice of pullbacks of these arrows along any arrow in C is
required. A CE-system is obtained by taking as F the free category on the arrows of the
form pA and as I the obvious functor into C. Another CE-system is obtained by taking as F
the subcategory of C spanned by the arrows of the form pA. In this case the functor I is
simply the inclusion.

Display map categories [Tay99] and clans [Joy17] also produce examples of rooted non-
stratified CE-systems, as soon as the choice of pullbacks is strictly functorial. Recall that a
display map category consists of a category C together with a class of arrows D such that
pullbacks of arrows in D along any arrow in C exist and are again in D. Clans also have a
terminal object 1 and require D to be closed under composition and to contain all arrows
towards 1. When the choice of pullbacks is strictly functorial, the wide subcategory of C
on the arrows in D together with the inclusion D → C provides an example of a rooted,
non-stratified CE-system.

Definition 3.13. Let A and B be two CE-systems. A CE-homomorphism F : A → B
consists of a commutative square of functors

FA FB

CA CB

IA

FF

IB

FC
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such that,
(1) FF (1A) = 1B, and
(2) for every A ∈ FA/Γ and f : ∆→ Γ, it is

FF (f
∗A) = (FCf)

∗(FFA) and FC(π2 (f,A)) = π2 (FCf, FFA) .

Remark 3.14. If F is a CE-homomorphism between rooted CE-systems A and B, then
FC(1A) = 1B and FC preserves terminal objects in the usual categorical sense.

Definition 3.15. We write CEsys for the category of CE-systems and CE-system homo-
morphisms and rCEsys for its full subcategory on rooted CE-systems.

For the comparison of CE-systems with C-systems, the notion of stratification of a
CE-system is needed:

Definition 3.16. A CE-system A is stratified if its category of families F is stratified in
the sense of Definition 2.1 and, for every f : ∆→ Γ in C, the functor

F/Γ F/∆f∗

induced by the functorial choice of pullbacks is stratified with respect to the stratification
induced on slices in Lemma 2.11.

A CE-homomorphism between stratified CE-systems is stratified if its component on
families is a stratified functor.

Remark 3.17. It follows from Proposition 2.8 that CE-systems are stratified in at most one
way.

Definition 3.18. We denote by CEsyss ↪→ CEsys and rCEsyss ↪→ rCEsys the respective
subcategories spanned by stratified (rooted) CE-systems and stratified CE-homomorphisms
between them.

Remark 3.19. In a stratified CE-system, for every f : ∆→ Γ in C and A ∈ F/Γ we have

L(∆.f∗A) = L(∆) + L(Γ.A)− L(Γ).

Lemma 3.20. Let A and B be two stratified CE-system. A commuting square of functors

FA FB

CA CB

IA

FF

IB

FC

is a stratified CE-homomorphism A→ B if and only if
(1) FF is a stratified functor, and
(2) for every indecomposable arrow A ∈ FA/Γ and every f : ∆→ Γ, we have

FF (f
∗A) = (FCf)

∗(FFA) and FC(π2 (f,A)) = π2 (FCf, FFA) .

Proof. One direction is trivial. The other one is proved by induction on the length n of an
arrow A ∈ F/Γ.
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3.3. Characterising C-systems as stratified CE-systems. Recall from Corollary 3.9
that every C-system C has a stratified wide subcategory F of its underlying category C.
In this section, we show that the inclusion F → C has the structure of a stratified CE-
system (Construction 3.22). Moreover, we prove that this correspondence is functorial
(Construction 3.25) and, in fact, an equivalence between the category of C-systems and the
category of stratified CE-systems (Theorem 3.31).

Problem 3.21. To construct a CE-system CE(C) from a C-system C = (C, 1, ℓ, ft, . . .).

Construction 3.22 (for Problem 3.21). Recall from Lemma 3.8 that p(C) denotes the wide
subgraph of C on the canonical projections pΓ for Γ in C and let F be the free category
on p(C). In particular, F has the same objects of C and the object 1 is terminal in F by
Corollary 3.9. It follows that the inclusion p(C) ↪→ C extends to an identity-on-objects
functor I : F → C that maps a path of length n > 0 in p(C), i.e. a list of composable
canonical projections

Γ ft(Γ) · · · ftn−1(Γ) ftn(Γ).
pΓ pft(Γ)

pft2(Γ) pftn−1(Γ)
(3.3)

to their composite in C.
It remains to provide I with a suitable choice of pullback squares along an arbitrary

arrow f : ∆→ Γ in C. As an arrow p : Ξ→ Γ in F is a path in p(C), we proceed by induction
on the length n of the path p, proving also conditions (2b) and (2c) from Definition 3.10.

If n = 0, the path p is the identity on Γ and we take f∗(idΓ) := id∆ and π2(f, idΓ) := f .
This choice is clearly functorial in f and it trivially gives rise to a pullback square. It also
ensures condition (2a).

For n > 0, it is I(p) = pΞ ◦ I(p′) where the length of p′ is n− 1. By inductive hypothesis
we have f∗p′ ∈ F/∆ and a chosen pullback square of I(p′) along f , which is the lower square
in the diagram below. The upper square is the canonical pullback square (3.1) given by the
C-system structure.

(π2(f, p
′))∗Ξ Ξ

∆.f∗(p′) ft(Ξ)

∆ Γ

p(π2(f,p′))∗Ξ

q(π2(f,p′),Ξ)

pΞ

I(f∗p′)

π2(f,p′)

I(p′)

f

(3.4)

Thus we define π2(f, p) := q(π2(f, p
′),Ξ) and f∗p to be the concatenation of f∗p′ with

pp(π2(f,p′))∗Ξ
so that I(f∗p) = I(f∗p′)◦pp(π2(f,p′))∗Ξ . Functoriality in f of this choice of pullback

squares follows from the fact that both the lower and upper pullback squares are functorial
by inductive hypothesis and by assumption, respectively. In more details: given g : Θ→ ∆,
the inductive hypothesis yields (f ◦ g)∗p′ = g∗(f∗p′) and π2(f ◦ g, p′) = π2(f, p

′) ◦ π2(g, f∗p′).
It follows by 3.1.vii that

π2(f ◦ g, p′)∗Ξ = π2(g, f
∗p′)∗

(
π2(f, p

′)∗Ξ
)
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and, in turn, that (f ◦ g)∗p = g∗(f∗p). The other component also follows from 3.1.vii :

π2(f ◦ g, p) = q(π2(f ◦ g, p′),Ξ)
= q(π2(f, p

′),Ξ) ◦ q(π2(g, f∗p′), π2(f, p′)∗Ξ)
= π2(f, p) ◦ π2(g, f∗p).

Finally, condition (2d) for a composite q ◦ p in F is proven by induction on the length of the
path p.

Lemma 3.23. Let C be a C-system and F the category of families of CE(C).
(1) The indecomposable arrows in F are of the form pΓ for some object Γ.
(2) The CE-system CE(C) is stratified and L(Γ) = ℓ(Γ), for every object Γ.
(3) The CE-system CE(C) is rooted.

Proof.
1. Immediate from the description of arrows in F in (3.3) and 3.1.ii .
2. By Corollary 3.9, the category F is stratified and L(Γ) = ℓ(Γ). By Lemma 2.10, it

is enough to show that the choice of pullback squares in Construction 3.22 preserves
indecomposable arrows. But this follows immediately from the construction of pullbacks
in (3.4) and (1) just shown.

3. The terminal object in F is terminal in C by assumption.

Problem 3.24. To construct a functor CE : Csys→ rCEsyss into rooted stratified CE-
systems and stratified homomorphisms.

Construction 3.25 (for Problem 3.24). The action of CE on objects is defined in Con-
struction 3.22. Every morphism F : C→ D of C-systems restricts to the graphs of canonical
projections p(F ) : p(C)→ p(D) by conditions (i ,iii ,iv) in Definition 3.2 and induces, in turn,
a functor between free categories FF : FC → FD whose action is determined by the action of
F on indecomposable arrows. The square

FC FD

CC CD

IC

FF

ID

F

commutes since it does so when precomposed by the unit p(C) → FC. The functor FF is
stratified by 3.2.ii . Lemma 3.20 then ensures that the pair CE(F ) := (FF , F ) lifts to a
stratified CE-homomorphism as soon as it preserves pullbacks of indecomposable arrows.
But this is precisely condition 3.2.v . Functoriality of CE follows since FF is defined by a
universal property.

Problem 3.26. To construct a C-system C(A) from a stratified and rooted CE-system A.

Construction 3.27 (for Problem 3.26). Let I : F → C be the underlying functor of A. The
underlying category of C(A) is C and the length function ℓ is given by the action of the
stratification functor L on objects. Since A is rooted, the chosen terminal object 1 in F is
terminal in C too. Conditions (iv) and (i) are clearly met.

Given an object X with n = L(X) > 0, let X xn−→ Xn−1 → · · · → X1
x1−→ 1 be the

factorisation of X → 1 into n indecomposable arrows in F . We define

ft(1) := 1, ft(X) := Xn−1 and pX := I(xn). (3.5)
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Conditions (ii) and (iii) hold by construction.
Given also f : Y → ft(X), let Y yn−→ Yn−1 → · · · → Y1

y1−→ 1 be the factorisation of
Y → 1 into indecomposable arrows and consider the pullback square below.

Y.f∗xn X

Y ft(X)

I(f∗xn)

π2(f,xn)

I(xn)

f

(3.6)

It is L(Y.f∗(xn)) = L(Y ) + 1 by Remark 3.19, thus Y.f∗xn
f∗xn−−−→ Y

yn−→ Yn−1 → · · · →
Y1

y1−→ 1 is the factorisation of Y.f∗xn → 1 into indecomposable arrows. It follows that
ft(Y.f∗xn) = Y and pf∗xn = I(f∗xn). Condition (v) follows defining f∗X := Y.f∗(xn)
and q(f,X) := π2(f, xn). Condition (vi) holds by 3.10.2b since ft(X).xn = X, and (vii)
by 3.10.2c as below:

(f ◦ g)∗X = Z.(f ◦ g)∗xn = Z.(g∗(f∗xn))

= g∗(f∗X)

q(f ◦ g,X) = π2(f ◦ g, xn) = π2(f, xn) ◦ π2(g, f∗xn)
= q(f,X) ◦ q(g, f∗X).

Lemma 3.28. Let F : A→ B be a stratified homomorphism of rooted stratified CE-systems.
Then the underlying functor F : CA → CB is a homomorphism of C-systems C(F ) : C(A)→
C(B).

Proof. We verify the conditions in Definition 3.2. (i) The functor F maps the chosen
terminal object of A to the one of B by assumption. (ii) Since F is stratified, its action on
objects commutes with the length functions. (iii–iv) The action on objects also preserves
indecomposable arrows by Lemma 2.10, thus it commutes with the father functions and
preserves canonical projections. (v) F maps chosen pullback squares in A to chosen ones
in B by 3.13.2. In particular, it preserves the choice of pullbacks along indecomposable
arrows.

Definition 3.29. Let C : rCEsyss → Csys be the functor given by Construction 3.27 and
Lemma 3.28.

Lemma 3.30. For every C-system C, the identity functor on the underlying strict category
of C is an isomorphism C(CE(C)) ∼= C of C-systems, naturally in C.

Proof. Let C be the underlying strict category of C. To see that the identity functor idC is a
C-homomorphism note first that the category C, its terminal object and the length function
are the same in C(CE(C)) and C. Since indecomposable arrows in CE(C) coincide with
the canonical projections pΓ by Lemma 3.23, factorisations in CE(C) into indecomposable
arrows are of the form in (3.3). It follows that the function ft and the canonical projections
as defined in (3.5) are equal to the ones from C. Since the choice of pullback squares in
CE(C) is defined inductively by the choice along indecomposable arrows in (3.4), the choice
of pullbacks along canonical projections in (3.6) coincides with the one in C.

Naturality follows from the fact that C(CE(F )) = F for every C-homomorphism F .

Theorem 3.31. The functor CE : Csys→ rCEsyss from Construction 3.25 is an equiva-
lence.
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Proof. By Lemma 3.30, it is enough to find, for every stratified rooted CE-system A, an
isomorphism CE(C(A)) ∼= A natural in A. Let I : F → C be the underlying functor of A
and let Fi := p(C(A)) be the subgraph of F on the indecomposable arrows. The CE-system
CE(C(A)) consists, in particular, of a functor Î : F̂ → C, where F̂ is the free category on Fi,
and Î maps a list of composable indecomposable arrows to the composite of their images in
C under I, by (3.5), (3.3) and Lemma 3.23.2.

The inclusion Fi ↪→ F induces an identity-on-objects functor comp : F̂ → F . Conversely,
the factorisation into indecomposable arrows (3) in A yields an identity-on-objects functor
fact : F → F̂ , which is a (strict) inverse of comp. Since I is a functor, the squares

F̂ F

C C
Î

comp

I

idC

F F̂

C C

I

fact

Î

idC

(3.7)

commute. Since both functors comp and fact are identities on objects and on indecomposable
arrows, the squares above are stratified CE-homomorphisms CE(C(A)) → A and A →
CE(C(A)), respectively, by Lemma 3.20. Therefore CE(C(A)) ∼= A.

To see that this isomorphism is natural in A, note that (comp, idC) is natural in A since
comp is equivalently defined as the composite of the counit of the free-forgetful adjunction
at F with the image under the left adjoint of the graph inclusion Fi ↪→ F .

4. The category of B-systems

In this section, we study Voevodsky’s B-systems.
In Section 4.1 we review the definition of B-systems and their homomorphisms. In Sec-

tion 4.2 we introduce the notion of E-system and their homomorphisms. Intuitively, E-systems
model type theory with strict Σ-types, see Section 4.2.5. Finally, in Section 4.3 we con-
struct an equivalence between the category of B-systems and the subcategory of “stratified”
E-systems.

In order to simplify the construction of such equivalence, we structure the definitions in
the next sections in three steps. In the case of B-systems, for example, we first introduce some
piece of structure on sets consisting of functions, which we refer to as pre-B-systems, see Defini-
tion 4.7. Then we define morphisms between these structures, also called pre-homomorphisms,
and finally we define B-systems as those pre-B-systems whose structure functions are them-
selves pre-homomorphisms. Homomorphisms are then just pre-homomorphisms between
B-systems. We shall follow the same pattern when introducing each of the structures that give
rise to an E-system, in Sections 4.2.1 to 4.2.3, and when defining E-systems in Section 4.2.4.

4.1. The category of B-systems. In this section, we review the definition of Voevodsky’s
B-systems [Voe14]. We shall rephrase his definition in order to introduce a few auxiliary
intermediate structures which we will use in later constructions. An explicit comparison is in
Remark 4.12.
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Definition 4.1. A B-frame B is a diagram of sets of the following form:

B̃1 B̃2

{∗} ∼= B0 B1 B2 · · ·

∂ ∂

ft ft ft

In other words, a B-frame consists of:

(1) for all n ∈ N two sets Bn and B̃n+1.
(2) for all n ∈ N functions of the form

ftn : Bn+1 → Bn

∂n : B̃n+1 → Bn+1.

called father functions and boundary functions, respectively.
(3) B0 is a singleton.

For m,n ∈ N, we denote the composition ftn ◦ · · · ◦ ftn+m : Bn+m+1 → Bn by ftmn .
A homomorphism H : B→ A of B-frames is a natural transformation of B-frames,

i.e., it consists of maps Hn : Bn → An and H̃n+1 : B̃n+1 → Ãn+1 such that

ft(H(X)) = H(ft(X))

∂(H̃(x)) = H(∂(x))

for any X ∈ Bn and x ∈ B̃n+1. The category of B-frames is denoted by Bfr.

As we already did in the above definition, we shall often omit the subscripts from father
and boundary functions and from homomorphisms of B-frames, since these can be easily
inferred from the context (often from their argument).

We should remark that we are abusing notation when denoting the pieces of structure
of B-frames and, later on, of B-systems. Regarding a B-frame as a diagram on the “comb
category”

1̃ 2̃

0 1 2 · · ·

we denote the value of a B-frame at n by changing the font from blackboard bold to roman,
and the value at ñ by also adding a tilde. This (can) only apply to the blackboard bold letter:
for instance, the values of the slice B-frame (defined in Definition 4.5) B/X are denoted
(B/X)m and (B̃/X)m+1.

We shall consider specific B-frames (and B-systems) only as individual examples, and
we do not need to give names to them. Otherwise, we shall only deal with generic B-frames
(and B-systems), denoted by capital blackboard letters. Therefore we do not expect this
abuse of notation to create any inconvenience.

To provide some intuition for B-frames, we look back at the introduction, where we
constructed, implicitly, a B-frame from a module over a monad.

Example 4.2. Recall from Section 1.2.2 the two sets B(R,LM) (see Eq. (1.1)) and B̃(R,LM)
(see Eq. (1.2)). From these sets, we obtain a B-frame with the following sets of families (note
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the shift in the indexing of B̃),

Bn := B(R,LM)n :=

n−1∏
i=0

LM([i])

B̃n+1 := B̃(R,LM)n :=
n−1∏
i=0

LM([i])×R([n])× LM([n])

and the obvious maps for ft and ∂. We call this B-frame the B-frame generated by a module
LM over a monad R. We write elements of Bn as A0, . . . , An−1 ⊢ An, and elements of B̃n+1

as A0, . . . , An ⊢ t : An+1, where t ∈ R([n]).

More generally, the elements of Bn+1 of a B-frame can be thought of as a pair of a
context of length n, and a type in that context. Hence, the elements of B1 are the types in
the empty context. Just like with C-systems, there is no explicit structure to denote types in
a given context. An element t ∈ B̃n+1 is then a term, and the context and type t lives in is
given by ∂n+1(t).

Example 4.3. Recall from Example 3.11 that std(n) denotes the set {0, . . . , n − 1}. We
shall consider the B-frame defined, for each n ∈ N, by Bn := {n} and B̃n+1 := std(n).

Example 4.4. B-frames are the same as Garner’s “type-and-term structures” [Gar15, Def. 8].
Garner [Gar15, Prop. 13] constructs an equivalence between the category of type-and-term
structures and the category of ∅-GATs, that is, of Generalized Algebraic Theories [Car86]
without weakening, projection, and substitution rules, and interpretations between them.

We now define more structure on B-frames which represents operations on syntax.
The first operation could be called “slicing”; given a B-frame B and a “context” X ∈ Bn

in that B-frame, we construct the slice of B over X:

Definition 4.5. For every B-frame B and any X ∈ Bn, there is a B-frame B/X given by

(B/X)m := {Y ∈ Bn+m | ftm(Y ) = X}

(B̃/X)m+1 := {y ∈ B̃n+m+1 | ftm+1(∂(y)) = X}.
Also, for any homomorphism H : B→ A of B-frames and any X ∈ Bn, there is a homomor-
phism H/X : B/X → A/H(X) defined in the obvious way.

Note that for X ∈ Bn and Y ∈ Bn+m such that ftm(Y ) = X, we have an isomorphism
(B/X)/Y ∼= B/Y of B-frames, constructed in the obvious way, which is natural in the sense
that for any homomorphism H : B→ A of B-frames, the square

(B/X)/Y B/Y

(A/H(X))/H(Y ) A/H(Y )

∼=

(H/X)/Y H/Y

∼=

commutes.

Definition 4.6. Every B-frame B has an underlying rooted tree given by the sets Bn and
the functions ftn : Bn+1 → Bn, for n ∈ N. Similarly, a homomorphism of B-frames is in
particular a homomorphism of rooted trees. Thus we define

Bfr RtTrR
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to be the forgetful functor from B-frames to rooted trees.

We will now consider different type-theoretic structures on B-frames, specifically substi-
tution, weakening, and projection. Garner considers similar structures in terms of algebras
of suitable monads on the category of B-frames a. k. a. type-and-term structures. We have
not established a precise relationship (e.g., an equivalence) between our structures and the
ones obtained by Garner as the algebras for his monads.

Definition 4.7. (1) A substitution structure on a B-frame B is a collection of homomor-
phisms

Sx : B/∂(x)→ B/ft(∂(x))
for all x ∈ B̃n+1 and all n ∈ N.

(2) A weakening structure on a B-frame B is a collection of homomorphisms

WX : B/ft(X)→ B/X
for all X ∈ Bn+1 and all n ∈ N.

(3) The structure of generic elements on a B-frame B equipped with weakening structure
W is a collection of functions

δn : Bn+1 → B̃n+2

such that ∂(δn(X)) =WX(X) for any X ∈ Bn+1.
A pre-B-system B is a B-frame equipped with weakening structure, substitution

structure, and generic elements.

We shall often omit the subscript from the functions δn, since it can be easily inferred
from the context.

Example 4.8. Consider the B-frame generated by a module LM over a monad R of
Example 4.2. Given an element x ∈ B̃n+1, and hence in particular, a term t ∈ R([n]), we
obtain a substitution map Sx : B/∂(x)→ B/ft(∂(x)) that substitutes the term t for the “last”
free variable in any element of B lying “over” ∂(x). For instance, taking x to be A0 ⊢ t1 : A1,
the substitution Sx maps the element A0, A1 ⊢ s : A2 to A0 ⊢ s[t1] : A2[t1].

For weakening, consider X ∈ B1+1 to be a context A0 ⊢ A1. The weakening WX maps
any context of the form A0, A

′
1, . . . , A

′
n ⊢ A′

n+1 to the weakened context A0, A1, A
′
1, . . . , A

′
n ⊢

A′
n+1, and similar for elements in B̃.

For the generic element, consider, for instance, a context X = A0 ⊢ A1 in B2. This
context induces the generic element A0, A1 ⊢ var(1) : A1, where η(1) ∈ R([2]) is the “de
Bruijn” variable 1 bound by A1 in the context, and considered as a term by being wrapped in
an application of the monadic unit η of the monad R (the inclusion of variables into terms).
We have

∂(A0, A1 ⊢ var(1) : A1) = A0, A1 ⊢ A1 = WA0⊢A1(A0 ⊢ A1).

Example 4.9. Recall the B-frame of finite sets defined in Example 4.3. Here we construct
structures of substitution, weakening and generic elements on it.

Note first that its slice on the (unique) element n in Bn is such that

(B̃/n)m+1 = B̃n+m+1 = std(n+m).

It follows that a substitution structure must consist of a family of functions Sx,j : std(n+

1 + j) → std(n + j), for n, j ∈ N and x ∈ B̃n+1. We define Sx,j := sx + idj , where sx is
the function [idn, x] : std(n+ 1)→ std(n) given by the universal property of the coproduct
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std(n+1). In other words, Sx,j lists all elements in std(n+j) repeating the element x ∈ std(n)
in position n+ 1. In particular, it fixes the first n elements, and decreases the last j by 1.

Similarly, a weakening structure must consist of a family of functions Wn,j : std(n+ j)→
std(n+ 1 + j). We define Wn,j to be the function in + idj , where in : std(n)→ std(n+ 1) is
the initial-segment inclusion. In other words, it lists all elements in std(n+ 1 + j) except for
n. Equivalently, it fixes the first n elements, and increases the remaining j by 1.

Finally, the structure of generic elements is given by an element δn ∈ B̃n+2 = std(n+ 1)
for every n ∈ N, which we define to be its maximum, that is, δn := n.

Taking advantage of the fact that finite sets are finite coproducts, and slightly abusing
notation, we find it convenient to write

n
n

1

j

j

+

+x

+

n
n

1

j

j

+

+

+

for the functions Sx,j : std(n+ 1 + j) → std(n+ j) and Wn,j : std(n+ j) → std(n+ 1 + j),
respectively.

Definition 4.10.
(1) Consider two B-frames B and A, both equipped with substitution structure. A homo-

morphism H : B→ A of B-frames is said to preserve the substitution structure if
the diagram

B/∂(x) A/∂(H(X))

B/ft(∂(x)) A/ft(∂(H(X)))

H/∂(x)

Sx SH̃(x)

H/ft(∂(x))

of B-frame homomorphisms commutes for every x ∈ B̃n+1 and every n ∈ N.
(2) Consider two B-frames B and A, both equipped with weakening structure. A homomor-

phism H : B → A of B-frames is said to preserve the weakening structure if the
diagram

B/X A/H(X)

B/ft(X) A/ft(H(X))

H/X

WX

H/ft(X)

WH(X)

of B-frame homomorphisms commutes for all X ∈ Bn and all n ∈ N.
(3) Consider two B-frames B and A, both equipped with weakening structure, and both

equipped with generic elements. A B-frame homomorphism H : B → A is said to
preserve the generic elements if

H̃(δ(X)) = δ(H(X))

for any X ∈ Bn+1 and any n ∈ N.
A pre-B-homomorphism H : B→ A is a homomorphism of pre-B-systems preserving the
weakening structure, substitution structure and the generic elements.
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Definition 4.11. A B-system is a pre-B-system for which the following conditions hold:
(1) Every Sx is a pre-B-homomorphism.
(2) Every WX is a pre-B-homomorphism.
(3) For every x ∈ B̃n+1 one has Sx ◦W∂(x) = idB/ft(∂(x)).
(4) For every x ∈ B̃n+1 one has Sx(δ(∂(x))) = x.
(5) For every X ∈ Bn+1 one has Sδ(X) ◦WX/X = idB/X .
B-homomorphisms are pre-B-homomorphisms between B-systems. We denote the category
of B-systems by Bsys.

The idea is that first substitution and weakening preserve all the structure of a
(pre-)B-system. The third axiom asserts that substitution in weakened type families is
constant. Furthermore, the generic elements should behave like internal identity morphisms.
Axioms 4 and 5 are akin to two of the well-known monadic laws of substitution.

Remark 4.12. Here we provide an explicit comparison of Definition 4.11 with Voevodsky’s
definition of B-system in the arXiv version of [Voe14].

Conditions 1–3 in [Voe14, Def. 2.1] and condition 1 in [Voe14, Def. 2.5] define a B-frame
B. The functions T and T̃ from condition 4 in [Voe14, Def. 2.1] together with conditions 2
and 3 in [Voe14, Def. 2.5] define a weakening structure W on B. The functions S and S̃
from condition 4 in [Voe14, Def. 2.1] together with conditions 4 and 5 in [Voe14, Def. 2.5]
define a substitution structure S on B. The function δ in [Voe14, Def. 2.1] together with the
condition in [Voe14, Def. 2.6] defines a structure of generic elements on B with weakening
structure W . Therefore what we call a pre-B-system is a unital B0-system in [Voe14].

Consider now the conditions in [Voe14, Def. 3.1 and 3.2]. The TT-condition amounts to
saying that every WX preserves the weakening structure, the ST-condition amounts to saying
that every WX preserves the substitution structure, and the δT-condition amounts to saying
that every WX preserves the generic elements. Therefore condition (2) in Definition 4.11
unfolds to [Voe14, 3.1.1, 3.1.4, 3.2.1]. Similarly, the SS-condition amounts to saying that
every Sx preserves the substitution structure, the TS-condition amounts to saying that
every Sx preserves the weakening structure, and the δS-condition amounts to saying that
every Sx preserves the generic elements. Therefore condition (1) in Definition 4.11 unfolds
to [Voe14, 3.1.2, 3.1.3, 3.2.2]. Finally, conditions (3), (4), and (5) in Definition 4.11 unfold
to conditions 3.1.5, 3.2.3, and 3.2.4, respectively, in [Voe14].

Example 4.13 (B-frames with structure and D-GATs). Garner [Gar15] constructs an
equivalence between the category of GATs and a category of algebras for a monad on
B-frames. We expect B-systems to be equivalent to Garner’s algebras.

Lemma 4.14. The forgetful functor Bsys→ Bfr is faithful.

Proof. This functor faithful because its action on morphisms only forgets a property.

Example 4.15. The structures given in Example 4.9 make the B-frame defined in Example 4.3
into a B-system as follows. This B-system and the category of renamings from Example 3.11
correspond to each other under the equivalence between B-systems and C-systems in Theo-
rem 5.45, in the sense that each of them is isomorphic to the image of the other (under the
correct functor). This B-system can thus be regarded as the B-system of renamings of an
untyped theory.

Consider first homomorphism of B-frames Sy : B/(k + 1) → B/k, for k ∈ N and y ∈
std(k). The homomorphism Sy preserves the substitution structure if, for every n ∈ N,
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x ∈ std(k + 1 + n) and j ∈ N, the square

std(k + 1 + n+ 1 + j) std(k + n+ 1 + j)

std(k + 1 + n+ j) std(k + n+ j)

Sx,j

Sy,n+1+j

SSy,n(x),j

Sy,n+j

commutes. This can be readily verified in the three cases x < k, x = k or k < x < n+ 1 + k.
For example, in the last case Sy,n(x) = x− 1 and

k

k

1 k

1
n n

n

1 j

j

j

+

+

+ +y

+
+ +

+x

+

=

k

1 k

n n

1 j

j

+

y
+ +

+ +
x−1

+

=

k

k

1 k
n

n n

1

1 j

j

j

+

+y

+ +
+

+ +Sy,n(x)

+

+

The homomorphism Sy preserves the weakening structure if for every n, j ∈ N, the square

std(k + 1 + n+ 1 + j) std(k + n+ 1 + j)

std(k + 1 + n+ j) std(k + n+ j)

Sy,n+1+j

Wk+1+n,j

Sy,n+j

Wk+n,j

commutes. This is indeed the case:

k

k k

1

1 n
n

n 1

1

j j

j

y

=

k k

1 n

n 1

j j

y

=

k k

k

1 n
n

n 1

j

j j

y

Finally, for every n ∈ N, the function Sy,n+1 : std(k + 1 + n+ 1)→ std(k + n+ 1) preserves
the maximum. It follows that Sy preserves the generic elements.

We have shown that Sy is a pre-B-homomorphism. We leave the verification that
Wn : B/n → B/(n + 1) is a pre-B-homomorphism to the reader and consider instead the
remaining three conditions of Definition 4.11.
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Condition 3 amounts to the commutativity of the left-hand diagram below, for every
n, j ∈ N and x ∈ std(n). Its commutativity is shown in the right-hand diagram.

std(n+ j) std(n+ 1 + j)

std(n+ j)

id

Wn,j

Sx,j

n
n n

1

j j

j

+

+ +x

+

Condition 4 holds since Sx,0(δn) = Sx,0(n) = x, for every n ∈ N and x ∈ std(n).
Condition 5 amounts to the commutativity of the left-hand diagram below, for every

n, j ∈ N. Its commutativity is shown in the right-hand diagram.

std(n+ 1 + j) std(n+ 2 + j)

std(n+ 1 + j)

idn+1+j

Wn,1+j

Sδn,j

n
n n

1

1 1

1

j j

j

+

+ +

+

+ +

+

Example 4.16 (B-systems and Generalized Algebraic Theories). Continuing Example 4.13,
any Generalized Algebraic Theory (in Garner’s taxonomy also known as {w, p, s}-GATs
[Gar15, Definition 4]) gives rise to a B-system. The axioms of Definition 4.11 follow mostly
from the definition of substitution and the congruence rules that substitution satisfies.

Composing Cartmell’s equivalence of categories between contextual categories and GATs
with our equivalence between B-systems and C-systems constructed in Section 5.4, we later
can establish a more precise relationship between B-systems and GATs, in the form of an
equivalence of categories.

4.2. The category of E-systems. In Section 4.3 we will show how for any B-frame we get
a category F with objects (n,X) where X ∈ Bn. As we saw in Definition 4.6, the family
of sets Bn induces a tree, with objects (n,X), and F is the free category generated by this
tree. The sets B̃n+1 then induce a family of sets of terms indexed by the morphisms of F .
In particular for a morphism (n+ 1, X)→ (n, ft(X)) we get a set of terms ∂−1(X).

In this section we will define the structure of a type theory directly on F of the kind
that one gets when turning a B-system into a category. Such systems are called E-systems,
and in Section 4.3 we will show that the category of B-systems is equivalent to a subcategory
of E-systems. Thus, E-systems can be seen as a generalisation of B-systems.

Just like B-systems (and different from C-systems), E-systems have an explicit structure
for “terms”. Indeed, the first step towards the definition of E-system is that of a “term
structure”:

Definition 4.17. A category with term structure is a category F equipped with a
family of sets (T (A))A∈Mor(F) indexed by the morphisms Mor(F) of F . Given two categories
F and D with term structure, a functor with term structure from F to D is a functor
F : F → D equipped with a family of functions T (A)→ T (F (A)) for every morphism A in
F .
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Any B-frame, and hence any B-system, generates a category with term structure; details
will be given in Construction 4.69.

The identity functor with term structure idF : F → F is the identity functor on F
equipped with the identity functions T (A) → T (A) indexed by the morphisms A in F .
Similarly, the composition G ◦ F of two functors F and G with term structure is defined to
be the composition of the underlying functors, equipped with the composites

T (A) T (F (A)) T (G(F (A))).

Definition 4.18. Let F be a strict category with term structure and Γ an object of F . The
slice term structure on the strict slice category F/Γ is given by TF/Γ(A) = TF (A).

Remark 4.19. Every functor F : F → F ′ with term structure gives rise to a functor with
term structure F/X : F/X → F ′/F (X).

In order to illustrate the additional structure that we shall consider on a category with
term structure, we introduce the following example.

Example 4.20. Consider the the poset (N,≥). We write (n, k) : n+ k ≥ n for arrows in
(N,≥). Let N be the category with term structure which consists of the poset (N,≥) and the
term structure given by T (n, k) := Set([k], [n]), i.e. the set of functions from the standard
set with k elements to the standard set with n elements.

This category with term structure, equipped with the additional structure described in
this section, corresponds (up to isomorphism) to the B-system of renaming from Example 4.15
under the equivalence between B-systems and stratified E-sytems in Theorem 4.90.

Example 4.21. Consider a category C with a terminal object together with a class of arrows
F such that pullbacks along arrows in F exist in C, F is closed under composition and
pullback, and it contains all isomorphisms and arrows towards a terminal object. This is a
type-theoretic fibration category in the sense of [Shu15], or a clan in the sense [Joy17], or a
display map category [Tay99] which models Σ-types in the sense of [Nor19].

If we also denote by F the wide subcategory of C on the arrows that occur in F , then
we can equip F with a term structure T by requiring T (A) to be the set of sections of A,
that is, those arrows x : Γ→ Γ.A in C such that A ◦ x = idΓ.

4.2.1. Substitution systems. Given a (strict) category F , an object Γ ∈ F and an object
A ∈ F/Γ, we will write Γ.A for the domain of A. In other words, A is a morphism Γ.A→ Γ.

Definition 4.22. A pre-substitution structure on a strict category with term structure
F consists of a functor with term structure Sx : F/Γ.A → F/Γ for every x ∈ T (A) and
A ∈ F/Γ, such that Sx(idΓ.A) = idΓ.

A pre-substitution system is a strict category with term structure together with a
pre-substitution structure.

Definition 4.23. A pre-substitution homomorphism F : F → D is a functor with term
structure for which the diagram

F/Γ.A D/F (Γ.A)

F/Γ D/F (Γ)

F/Γ.A

Sx SF (x)

F/Γ
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commutes for every x ∈ T (A) and A ∈ F/Γ.

Definition 4.24. Let F be a pre-substitution system and Γ an object of F . The slice
pre-substitution structure on the strict slice category with term structure F/Γ from
Definition 4.18 is given by S(F/Γ)x = S(F)x, for every A ∈ F/Γ, P ∈ F/Γ.A and x ∈ TF (P ).

Definition 4.25. A substitution system is a pre-substitution system for which each Sx is
a pre-substitution homomorphism. A substitution homomorphism is a pre-substitution
homomorphism between substitution systems.

Corollary 4.26. For any object Γ of a substitution system F , the slice pre-substitution
system F/Γ from Definition 4.24 is a substitution system, called the slice substitution
system on Γ.

Remark 4.27. The condition that every Sx is a substitution homomorphism, asserts that
the diagram

F/Γ.A.P .Q F/Γ.Sx(P ).Sx(Q)

F/Γ.A.P F/Γ.Sx(P )

Sx/P.Q

Sy SSx(y)

Sx/P

commutes for every y ∈ T (Q).

Example 4.28. We can equip the category with term structure N from Example 4.20
with a substitution structure as follows. Consider the functor −k : N/(n+ k)→ N/n that
maps (n + k + j, l) to (n + j, l). It preserves terminal objects since an arrow (m, i) is an
identity if and only if i = 0. Given (n, k) : n + k ≥ n and a function f : [k] → [n], define
Sf : N/(n+k)→ N/n as the functor −k together with functions T (n+k+ j, l)→ T (n+ j, l)
defined by postcomposition

[l] [l]

[n+ k + j]

[n+ k + j] [n+ j]

h Sf (h)

h

[idn,f ]+idj

where [idn, f ] is the function given by the universal property of the coproduct [n]← [n+k]→
[k] in Set, and similarly for [idn, f ] + idj .

The fact that Sf is a pre-substitution homomorphism follows from the fact that post-
composition distributes on [−,−] as shown below: given g : [l]→ [n+ k + j], then

Sf/(n+ k, j) ◦ Sg = SSf (g) ◦ Sf/(n+ k, j + l)

since

([idn, f ] + idj) [idn+k+j , g] = [[idn, f ] + idj , Sf (g)]

= [idn+j , Sf (g)] ([idn, f ] + idj+l) .

Example 4.29. Given a clan (C,F), consider the induced category with term structure
from Example 4.21, where T (A) is the set of all sections of A ∈ F/Γ.

Say that a choice of pullbacks of arrows in F is locally functorial if, for every f : ∆→ Γ
in C, we have f∗(idΓ) = id∆, f idΓ = f , and, for every composable A,P in F , we also have
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f∗(A ◦ P ) = f∗A ◦ (fA)∗P and fA◦P = (fA)P , where f∗A and fA are the first and second
leg, respectively, of the chosen pullback of A along f .

Every choice of pullbacks of arrows in F uniquely determines a choice of pullbacks of
sections of arrows in F . It follows that the category with term structure from Example 4.21
can be equipped with a pre-substitution structure, by setting Sx := x∗ for every x ∈ T (A).
This pre-substitution structure gives rise to a substitution system if the choice of pullbacks
is functorial, i.e. such that (f ◦ g)∗A = g∗(f∗A) and (f ◦ g)A = fA ◦ gf∗A. Note that every
choice of pullbacks can be made normal, i.e. such that id ∗

ΓA = A and idAΓ = idΓ.A (this holds
true more generally for every cleavage on a Grothendieck fibration).

The following is not an intended example, but rather a surprising one.

Example 4.30. Consider a group G. A term structure on G consists of a set T (g) for every
element g of G.

A pre-substitution structure on G consists of a functor with term structure Sx : G/• →
G/• (where • denotes the only object in G viewed as a category) for every g ∈ G and
every x ∈ T (g) such that Sx(id•) = id•. One can show that such functors Sx : G/• → G/•
correspond to functions G→ G which preserve the identity, so a pre-substitution structure
amounts to functions Sx : G→ G for every g ∈ G, x ∈ T (g) preserving the identity together
with functions Sx : T (h)→ T (Sx(h)) for every g, h ∈ G, x ∈ T (g).

A substitution structure T on G is a pre-substitution structure S as described above
such that the following diagrams commute for all g, h, k ∈ G, x ∈ T (g), and y ∈ T (h).

G G

G G

Sx

Sy SSx(y)

Sx

T (k) T (Sxk)

T (Syk) T (SxSyk)

Sx

Sy SSx(y)

Sx

Now for a particular example, suppose that each T (g) is Aut(G), that each Sx : G→ G is
just the automorphism x, and that each Sx : T (h)→ T (Sxh) takes y ∈ T (h) to xyx−1. Then
we find indeed that the first diagram commutes since (xyx−1)x = xy for all x ∈ Sx = Aut(G)
and all y ∈ Sy = Aut(G). The second diagram commutes since (xyx−1)xzx−1(xyx−1)−1 =
xyzy−1x−1 for all x ∈ T (g) = Aut(G), y ∈ T (h) = Aut(G), and z ∈ T (k) = Aut(G).

4.2.2. Weakening systems.

Definition 4.31. Consider a category F with term structure T . A pre-weakening struc-
ture on F is a family of functors with term structure WA : F/Γ→ F/Γ.A indexed by the
morphisms A : Γ.A→ Γ in F such that

(1) WidΓ = idF/Γ for every object Γ ∈ F .
(2) WA◦P =WP ◦WA for every P ∈ F/Γ.A and A ∈ F/Γ.
(3) WA strictly preserves the final object, i.e., WA(idΓ) = idΓ.A.

A pre-weakening system is a strict category with term structure equipped with a pre-
weakening structure.
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Definition 4.32. A pre-weakening homomorphism F : F → D between pre-weakening
systems is a functor F : F → D with term structure such that the square

F/Γ.A D/F (Γ.A)

F/Γ D/F (Γ)

F/Γ.A

WA

F/Γ

WF (A)

of functors with term structure commutes for any A ∈ F/Γ.

Definition 4.33. Let F be a pre-weakening system and Γ an object of F . The slice
pre-weakening system on the strict slice category with term structure from Definition 4.18
F/Γ is given by W (F/Γ)P =W (F)P for every P ∈ F/Γ.A and A ∈ F/Γ.

Definition 4.34. A weakening system is a pre-weakening system F such that WA is a
pre-weakening homomorphism for every morphism A in F . A weakening homomorphism
is a pre-weakening homomorphism between weakening systems.

Remark 4.35. The condition that every WA is a pre-weakening homomorphism implies
that the square

F/Γ.B.Q F/Γ.A.WA(B.Q)

F/Γ.B F/Γ.A.WA(B)

WA/B.Q

WQ

WA/B

WWA(Q)

commutes for each A,B ∈ F/Γ and Q ∈ F/Γ.B. On objects, this property asserts that for
any k ∈ F/E, the dotted arrows in the diagram

• • •

• • • •

• Γ.B

Γ.A Γ

(WA/B.Q)(WQ(R)) W(WA/B)(Q)((WA/B)(R))
WQ(R)

(WA/B)(Q) (WA/B)(R) Q R

WA(B) B

A

are equal.
A useful special case of this property is where B = idΓ. Thus, if W is a weakening

system, then the diagram

F/Γ.C F/Γ.A.WA(C)

F/Γ F/Γ.A

WA/C

WC

WA

WWA(C)

commutes for every A,C ∈ F/Γ. In particular, we see that WA(WC(D)) =WWA(C)(WA(D))
for any D ∈ F/Γ, i.e. that weakening is a self-distributive operation.
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Corollary 4.36. For any object Γ of a weakening system F , the slice pre-weakening system
on F/Γ from Definition 4.33 is a weakening system, called the slice weakening system on
Γ.

Example 4.37. Consider the category with term structure N from Example 4.20. We can
equip N with a weakening structure as follows. Consider the functor +k : N/n→ N/(n+ k)
that maps (n+ j, l) to (n+ k+ j, l). It preserves terminal objects as in Example 4.28. Given
(n, k) : n+ k ≥ n, define Wn,k : N/n→ N/(n+ k) as the functor +k together with functions
T (n+ j, l)→ T (n+ k + j, l) defined by postcomposition

[l] [l]

[n+ j]

[n+ j] [n+ k + j]

h Wn,k(h)

h

in+k
n +idj

where in+kn : [n]→ [n+ k] is the initial-segment inclusion and in+kn + idj is the function given
by the universal property of the coproduct [n]← [n+ j]→ [j] in Set.

The fact that Wn,k is a pre-weakening homomorphism follows from the fact that initial-
segment inclusions factor uniquely into inclusions whose images have codimension 1: given
(n+ j, l) in N/n, then

Wn,k/(n, j + l) ◦Wn+j,l =WWn,k(n+j,l) ◦Wn,k/(n, j)

since
(in+kn + idj+l)i

n+j+l
n+j = in+k+j+ln+k+j (in+kn + idj).

Example 4.38. Given a clan (C,F), the induced category with term structure from Exam-
ple 4.21 can be made into a weakening system if there is a choice of pullbacks in F which is
functorial and locally functorial in the sense of Example 4.29.

Note that, since F is closed under pullbacks, every clan with a choice of pullbacks that
gives rise to a substitution structure also has an induced weakening structure.

Example 4.39. Consider the situation of Example 4.30 above where the underlying category
is a group G with term structure S.

A pre-weakening structure on G is a family of functions Wg : G → G for each g ∈ G
which preserves the identity in each coordinate (i.e. We(g) =Wg(e) = g for any g ∈ G) and
where Whg =Wg ◦Wh together with term structure Wg : T (h)→ T (Wg(h)) for any g, h ∈ G.

If each Wg : G → G is a group homomorphism, this structure is a weakening system
when the following diagrams commute for every g, h, k ∈ G.

G G

G G

Wh

Wg

Wh

WWh(g)

T (Wgk) T (Wghk)

T (k) T (Whk)

Wh

Wg

Wh

WWh(g)

Now consider the more particular example discussed in Example 4.30, where G is still an
arbitrary group, but T (g) = Aut(G) for all g ∈ G. We can let each Wg : G → G be φg,
the conjugation automorphism sending h to ghg−1, and we can let each Wg : T (k)→ T (k)
be ‘conjugation by conjugation’ taking each automorphism x ∈ T (k) to φgxφ

−1
g . Since
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φhφg = φφh(g)φh , the left-hand diagram above commutes, and using that equation we find
that φhφg(−)φ−1

g φ−1
h = φφh(g)φh(−)φ

−1
φh(g)

φ−1
h so the right-hand diagram commutes.

4.2.3. Projection systems.

Definition 4.40. A pre-projection system is a pre-weakening system F equipped with
an element idtmA ∈ T (WA(A)) for every A ∈ F/Γ and Γ ∈ F .

Definition 4.41. A pre-projection homomorphism F : F → D is a pre-weakening
homomorphism for which

F (idtmA) = idtmF (A)

for every A ∈ F/Γ and Γ ∈ F .

Definition 4.42. Let F be a pre-projection system and Γ an object of F . The slice pre-
projection structure on F/Γ is given by the slice pre-weakening structure in Definition 4.33
together with idtmΓ

P := idtmP , for every P ∈ F/Γ.A and A ∈ F/Γ.

Definition 4.43. A projection system is a pre-projection system for which every WA

is a pre-projection homomorphism. A projection homomorphism is a pre-projection
homomorphism between projection systems.

Corollary 4.44. For any object Γ of a projection system F , the slice pre-projection system
on F/Γ from Definition 4.42 is a projection system, called the slice projection system on
Γ.

Example 4.45. Consider the weakening system on N from Example 4.37. We can equip
it with a projection structure defining, for every (n, k) in (N,≥), the element idtmn,k ∈
T (Wn,k(n, k)) = Set([k], [n+ k]) to be the final-segment inclusion

[k] [n+ k]
in+k
k

The fact that each Wn,j : N/n→ N/(n+ j) is a projection homomorphism is readily verified:

Wn,j(idtmn+m,k) = (in+jn + idm+k)i
n+m+k
k

= in+m+j+k
k

= idtmWn,j(n+m,k).

Example 4.46. Given a clan (C,F), the weakening system from Example 4.38 can be
upgraded to a projection system by defining the element idtmA ∈ T (WA(A)) to be the unique
section of the pullback of A along itself induced by the pair of identity arrows on Γ.A.

Note that no additional condition on the choice of pullbacks has to be imposed, besides
those mentioned in Example 4.38. In particular, every clan with a choice of pullbacks that
gives rise to a weakening structure has also an induced projection structure.

Example 4.47. Consider the particular example discussed in Example 4.39 where the
underlying category is an arbitrary group G, each T (g) is the set of automorphisms of G,
and Wg is conjugation by G both on elements of G and terms (automorphisms of G).

A pre-projection system consists of an element idtmg ∈ Aut(G) for every g ∈ G. We will
let idtmg be the identity automorphism on G.

For a projection system on a group G, we need Wg(idtmh) = idtmWg(h) for every g, h ∈ G.
In our particular example, this means g1Gg−1 = 1G, which holds.
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4.2.4. The definition of E-systems. We can now give the definition of E-systems.

Definition 4.48. A pre-E-system E is a strict category F with term structure equipped
with a chosen terminal object [ ] in F , the structure of a pre-substitution system S, the
structure of a pre-weakening system W , and the structure of a pre-projection system idtm.

Definition 4.49. A pre-E-homomorphism from E to D is a functor H : FE → FD
between the underlying categories with term structure such that F ([ ]E) = [ ]D, which is
a pre-substitution homomorphism, a pre-weakening homomorphism, and a pre-projection
homomorphism.

Definition 4.50. For every object Γ in a pre-E-system E, the slice pre-E-system E/Γ on the
slice category with term structure FE/Γ is given by the slice structures from Definitions 4.24,
4.33 and 4.42, and the identity on Γ as terminal object.

Definition 4.51. An E-system is a pre-E-system E such that
(1) each Sx is a pre-E-homomorphism,
(2) each WA is a pre-E-homomorphism,
(3) Sx ◦WA = idE/Γ for any x ∈ T (A) and A ∈ F/Γ,
(4) Sx(idtmA) = x for any x ∈ T (A) and A ∈ F/Γ, and
(5) SidtmA

◦WA/A = idE/Γ.A for any A ∈ F/Γ.
An E-homomorphism H : E→ D is a pre-E-homomorphism from an E-system E to

an E-system D. We write Esys for the category of E-systems and E-homomorphisms.

Remark 4.52. The condition that each WA is a substitution homomorphism asserts that
the diagram

F/Γ.B.Q F/Γ.A.WA(B).WA(Q)

F/Γ.B F/Γ.A.WA(B)

WA/B.Q

Sy SWA(y)

WA/B

of functors with term structure commutes for every Q ∈ F/Γ.B, B ∈ F/Γ and each y ∈ T (Q).
Likewise, the condition that each Sx is a weakening homomorphism asserts that the

diagram

F/Γ.A.P F/Γ.Sx(P )

F/Γ.A.P .Q F/Γ.Sx(P ).Sx(Q)

Sx/P

WQ WSx(Q)

Sx/P.Q

of functors with term structure commutes for every Q ∈ F/Γ.A.P .

Corollary 4.53. For any object Γ of a E-system F , the slice pre-E-system on F/Γ from
Definition 4.50 is an E-system, called the slice E-system on Γ.

Example 4.54. We can finally show that the category with term structure N from Ex-
ample 4.20 can be equipped with the structure of an E-system. It can be turned into a
pre-E-system because of Examples 4.28, 4.37 and 4.45. The terminal object is [0]. Conditions
1 and 2 of Definition 4.51 are left to the reader. The other ones are verified as follows:
3. Given f : [k]→ [n], it is Sf ◦Wn,k = idN/n since [idn, f ]i

n+k
n = idn.

4. Given f : [k]→ [n], it is Sf (idtmn,k) = [idn, f ]i
n,k
k = f .
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5. Given (n, k) in N , it is Sidtmn,k
◦Wn,k/(n, k) = idN/(n+k) since [idn+k, i

n+k
k ](in+kn +idk) =

idn+k.

Example 4.55. Given a clan (C,F) together with a functorial and locally functorial choice
of pullbacks of arrows in F along arrows in C in the sense of Example 4.29, the induced
category with term structure from Example 4.21 can be made into an E-system as follows.
It is a pre-E-system because of Examples 4.29, 4.38 and 4.46. Conditions (1) and (2) are
satisfied since weakening is a particular case of substitution. Condition (3) follows from
A ◦ x = id and the functoriality conditions on the choice of pullbacks. In particular, the
left-hand vertical square in the commutative diagram below is a pullback, since so is the
right-hand one. It follows that the upper square is a pullback too. Therefore condition (4) is
also satisfied. Finally, condition (5) follows from the commutativity of the upper triangle
involving idtmA in the commutative diagram below, together, again, with the functoriality
conditions on the choice of pullbacks.

Γ Γ.A

Γ.A Γ.A.WAA Γ.A

Γ Γ.A Γ

x

x

id

idtmA
id

idA WAA A

x A

id

id

Example 4.56. Consider the situation in Example 4.47 where our underlying category is an
arbitrary group G, the terms of each g ∈ G are Aut, substitution Sx : G→ G is given by the
automorphism x itself and substitution Sx : T (h)→ T (Sxh), weakening Wg : G→ G, and
weakening Wg : T (h)→ T (Wgh) are given by conjugation.

Understood as a category, G does not have a terminal object (unless it is trivial), but
we can still understand the conditions of Definition 4.51. The condition 2 in that definition
means that the following diagrams must commute for g, h, k ∈ G and x ∈ T (h)

G G

G G

Wg

Sx SWg(x)

Wg

T (k) T (Wgk)

T (Sxk) T (SWg(x)Wgk)

Wg

Sx SWg(x)

Wg

Since φgx = φgxφ
−1
g φg, the left-hand diagram above commutes, and since φgx(−)x−1φ−1

g =

(φgxφ
−1
g )φg(−)φ−1

g (φgxφ
−1
g )−1, the right-hand square above commutes.

The condition 1 in Definition 4.51 means that the following diagrams must commute for
g, h, k ∈ G and x ∈ T (h).

G G

G G

Sx

Wg WSx(g)

Sx

T (k) T (Sxk)

T (Wgk) T (SxWgk)

Sx

Wg WSx(g)

Sx
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Since xφg = φx(g)x, the left-hand diagram commutes, and since then xφg(−)φ−1
g x−1 =

φx(g)x(−)x−1φ−1
x(g), the right-hand diagram commutes.

Condition 3 does not hold since (on G) Sx ◦Wg = xφg, and in general this is not the
identity.

Condition 4 does not hold since Sxidtmg = x1Gx
−1 which is not in general x.

Condition 5 does not hold since (on G) SidtmgWg = 1Gφg = φg which is not the identity
in general.

We introduce more convenient notation for weakening and substitution.

Definition 4.57. Let A ∈ F/Γ. Recall that WA : F/Γ→ F/Γ.A acts on objects, morphisms
and terms. We introduce the infix form of weakening by A ∈ F/Γ to be ⟨A⟩−. Thus, we will
write

⟨A⟩B :=WA(B) for B ∈ F/Γ
⟨A⟩Q :=WA(Q) for B ∈ F/Γ and Q ∈ F/Γ.B
⟨A⟩g :=WA(g) for B ∈ F/Γ, Q ∈ F/Γ.B and g ∈ T (Q)

Definition 4.58. Let x ∈ T (A) for a family A ∈ F/Γ. The infix form of substitution by x
is taken to be −[x]. Thus, we will write

P [x] := Sx(P ) for P ∈ F/Γ.A
Q[x] := Sx(Q) for P ∈ F/Γ.A and Q ∈ F/Γ.A.P
g[x] := Sx(g) for P ∈ F/Γ.A, Q ∈ F/Γ.A.P and g ∈ T (Q)

Definition 4.59. A (pre-)E-system is stratified if its underlying category is stratified in
the sense of Definition 2.1 and the underlying functor of each WA and Sx is stratified with
respect to the stratification induced on slices.

A morphism of stratified (pre-)E-systems is stratified if its underlying functor is
stratified.

The category of stratified E-systems and stratified E-homomorphisms between them is
denoted by Esyss.

Example 4.60. The E-system on N from Example 4.54 is stratified by the identity functor.

4.2.5. Pairing and the projections. The composition A.P of A ∈ F/Γ and P ∈ F/Γ.A
behaves like a strict Σ-type. In this section we define the pairing term pairA,P := idtmA.P ∈
T (WP (WA(A.P ))) and the projections and prove several useful properties about them. The
strictness is found, among other things, in the fact that we can prove judgmental η-equality,
and that pairing is strictly associative.

In this section we make use of the infix form of the weakening and substitution operations
introduced in Definitions 4.57 and 4.58.

Definition 4.61. Let x ∈ T (A) and u ∈ T (Sx(P )) for A ∈ F/Γ and P ∈ F/Γ.A. We define
the term extension of x and u to be

x.u := idtmA.P [x][u] ∈ T (A.P ).
It is well defined since

T (WA.P (A.P )) T (WP [x](A.P )) T (A.P )
Sx Su (4.1)
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where Sx ◦WA.P =WP [x] because Sx is a weakening homomorphism and Sx ◦WA = Id.

To prove anything about the term x.u, we need the following property.

Theorem 4.62. Let x ∈ T (A) and u ∈ T (Sx(P )) for A ∈ F/Γ and P ∈ F/Γ.A. Then we
have

Sx.u = Su ◦ (Sx/P ) : E/Γ.A.P → E/Γ

Proof.

Sx.u = SSu(Sx(idtmA.P )) (By 4.61)
= SSu(Sx(idtmA.P )) ◦ (Su ◦WSx(P )) ◦ (Sx ◦WA) (By 4.51.3)
= Su ◦ SSx(idtmA.P ) ◦WSx(P ) ◦ Sx ◦WA (By 4.51.1)
= Su ◦ (Sx/P ) ◦ SidtmA.P

◦WP ◦WA (By 4.51.1)
= Su ◦ (Sx/P ) ◦ SidtmA.P

◦WA.P (By 4.31.2)
= Su ◦ (Sx/P ). (By 4.51.5)

Corollary 4.63. For every x ∈ T (A), u ∈ T (Sx(P )) and v ∈ T (Sx.u(Q)) we have

(x.u).v = x.(u.v) ∈ T (A.P .Q).

Proof. By Theorem 4.62, we have Sv◦(Sx.u/Q) = Sv◦(Su/Q[x])◦(Sx/P.Q) = Su.v◦(Sx/P.Q),
so associativity of term extension follows.

Definition 4.64. Let A ∈ F/Γ and P ∈ F/Γ.A. We define

prA,P0 := ⟨P ⟩idtmA ∈ T (⟨A.P ⟩A)

prA,P1 := idtmP ∈ T (⟨P ⟩P )

Lemma 4.65. Let F : E → D be an E-homomorphism. For every A ∈ F/Γ, P ∈ F/Γ.A,
x ∈ T (A) and u ∈ T (Sx(P )), it is

F (x.u) = F (x).F (u), F (prA,P0 ) = pr
F (A),F (P )
0 , and F (prA,P1 ) = pr

F (A),F (P )
1

Proof. We compute:

F (x.u) = F (idtmA.P [x][u]) = idtmFA.FP [Fx][Fu] = Fx.Fu,

F (prA,P0 ) = F (⟨P ⟩idtmA) = ⟨FP ⟩idtmFA = prFA,FP0 ,

F (prA,P1 ) = F (idtmP ) = idtmFP = prFA,FP1

where the outer equalities hold by definition, and the inner ones since F is an E-homomorphism.

Lemma 4.66. For every A ∈ F/Γ, P ∈ F/Γ.A, x ∈ T (A) and u ∈ T (Sx(P )), it is

prA,P0 [x.u] = x,

prA,P1 [x.u] = u,

prA,P0 .prA,P1 = idtmA.P .
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Proof. To show that prA,P0 [x.u] = x, we use that Sx.u = Su ◦ Sx/P to show that

prA,P0 [x.u] = (⟨P ⟩idtmA)[x.u] (By 4.64)
= (⟨P ⟩idtmA)[x][u] (By Theorem 4.62)
= (⟨P [x]⟩idtmA[x])[u] (By 4.51.1)
= idtmA[x] (By 4.51.3)
= x (By 4.51.4)

To show that prA,P1 [x.u] = u, note that

prA,P1 [x.u] = idtmP [x][u] = idtmP [x][u] = u

Finally note that

⟨A.P ⟩A.(WA.P /A)(P ) = ⟨A.P ⟩A.P : Γ.A.P.⟨A.P ⟩(A.P )→ Γ.A.P

and idtm⟨A.P ⟩A.P = (WA.P /A.P )(idtmA.P ). Thus prA,P0 .prA,P1 = idtmA.P follows from the
commutativity of the outer square in the diagram below.

T (W⟨A.P ⟩A.P (⟨A.P ⟩A.P )) T (WP /P (⟨A.P ⟩A.P ))

T (⟨A.P ⟩A.P ) T (⟨A.P ⟩A.P )

S
pr

A,P
0

S
pr

A,P
1

WA.P /A.P
WP /P

id

The bottom-right triangle commutes by 4.51.5. For the top-left one:

S⟨P ⟩idtmA
◦WA.P /A.P = S⟨P ⟩idtmA

◦WP /(WA(A.P )) ◦WA/A.P (By 4.31.2)
= (WP ◦ SidtmA

◦WA/A) /P (By 4.51.2)
=WP /P. (By 4.51.5)

Theorem 4.67. For every A ∈ F/Γ and P ∈ F/Γ.A, the map∐
x∈T (A) T (P [x]) T (A.P )

(x, u) x.u

is a bijection.

Proof. The inverse to the given map is defined by w 7→ (prA,P0 [w], prA,P1 [w]). Thanks to
Lemma 4.66 it is enough to show that, for every w ∈ T (A.P ), one has

prA,P0 [w].prA,P1 [w] = w.

Lemma 4.65 gives us that y

prA,P0 [w].prA,P1 [w] = (prA,P0 .prA,P1 )[w].

Thus the claim follows from prA,P0 .prA,P1 = idtmA.P , which holds again by Lemma 4.66.

One consequence of this theorem is that the set T (idΓ) has exactly one element, see
Corollary 5.17.
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4.3. Characterising B-systems as stratified E-systems. In this section we construct an
equivalence of categories between B-systems and the subcategory of Esys on the stratified
E-systems and stratified homomorphisms. The functor from B-systems to stratified E-systems
is constructed in Section 4.3.1, the one in the other direction in Section 4.3.2. That these
form an equivalence is shown in Section 4.3.3.

4.3.1. From B-systems to stratified E-systems. Note first that we obtain a functor Bfr→ Cat
as the composition

Bfr RtTr Grph CatR G F

where G and F are the functors from Definition 2.13 and R is the forgetful functor from
Definition 4.6. Arrows in FGR(B) are of the form (X, k) : (n + k,X) → (n, ftk(X)), for
X ∈ Bn+k.

We begin by equipping FGR(B) with a term structure. The B-frame B already provides
us with sets of terms for the edges of GR(B), namely T (X, 1) := ∂−1(X). In order to
construct sets of terms for (X, k) for each k, which we do in Construction 4.69, we assume
that B comes with a substitution structure in the sense of Definition 4.25. We then show in
Construction 4.72 that FGR gives rise to a functor T from B-frames with substitution to
strict categories with term structure. Next, in Construction 4.75 we provide T(B) with a
pre-E-system structure when B is a B-system, and prove in Lemma 4.76 that T preserves
and reflects weakening and projection homomorphisms. Finally, we show in Lemma 4.78
that the functor T lifts to a full and faithful functor from B-systems to stratified E-systems.

Problem 4.68. For every B-frame B with substitution structure S, to construct a term
structure T on the strict category FB := FGR(B) and to construct, for any t ∈ T (X, k), a
homomorphism of B-frames Skt : B/X → B/ftk(X).

Construction 4.69 (for Problem 4.68). We define the term structure by induction on
n ∈ N. More precisely, for any X ∈ Bn and k ≤ n we will define a set T (X, k) and, for any
t ∈ T (X, k), a homomorphism of B-frames Skt : B/X → B/ftk(X).

For every n and X ∈ Bn, let T (X, 0) := {∗} and S0
∗ := id : B/X → B/X.

For every n and X ∈ Bn+1, let

T (X, 1) := ∂−1(X) ⊆ B̃n+1 (4.2)

and S1
x := Sx : B/X → B/ft(X) which is a homomorphism of B-frames by assumption.

Suppose now that, for every m ≤ n and Y ∈ Bm, we have defined sets T (Y, k) for
k ≤ m and, for every t ∈ T (Y, k), a homomorphism of B-frames Skt : B/Y → B/ftk(Y ). Let
X ∈ Bn+1 and define, for 1 ≤ k ≤ n,

T (X, k + 1) :=
∐

t∈T (ft(X),k)

T (St(X), 1). (4.3)

and, for (t, x) ∈ T (X, k + 1), a homomorphism of B-frames Sk+1
(t,x) as the composite below

B/X B/ftk+1(X)

B/Skt (X)

Sk+1
(t,x)

Sk
t /X Sx

(4.4)
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where Sx comes from the substitution structure and Skt from the inductive hypothesis.

Remarks 4.70.
(1) For every B-frame B and X ∈ Bn, we have an isomorphism of strict categories

FGR(B/X) ∼= FGR(B)/(n,X) natural in B which maps (i, Y ) to (n+ i, Y ) and it is the
identity on arrows. It follows that, when B is a B-system, we can choose the identity as
the action on the term structure. Therefore this isomorphism of categories lifts to an iso-
morphism of categories with term structure (FGR(B/X), TB) ∼= (FGR(B)/(n,X), TB).

Once we establish an E-system structure on FGR(B), we will see that this isomorphism
is in fact an isomorphism of E-systems.

(2) Let A and B be B-frames with substitution structure and H : A→ B be a homomorphism
of B-frames. If H preserves the substitution structure, then for every X ∈ Bn+k and
t ∈ T (X, k) the square

A/X B/H(X)

A/ftk(X) B/ftkH(X)

Sk
t

H/X

Sk
H̃(t)

H/ftk(X)

(4.5)

commutes in Bfr, where H̃(t) := (H̃(t1), . . . , H̃(tk)). Indeed, by definition of Skt in (4.4),
the square (4.5) factors vertically into k squares of the form in Definition 4.10.1, each of
which commutes if H preserves the substitution structure.

(3) Let A and B be B-frames with substitution structure and H : A→ B be a homomorphism
of B-frames. Suppose that A and B have weakening structure and define, for every
X ∈ Bn+k, the homomorphism of B-frames W k

X : B/ftk(X)→ B/X as the composite

B/ftk(X) · · · B/ft(X) B/X

Wk
X

W
ftk−1(X)

Wft(X) WX
(4.6)

which we take to be idB if n = k = 0.
If H preserves weakening structure, then for every X ∈ Bn+k the square

A/X B/H(X)

A/ftk(X) B/ftkH(X)

H/X

Wk
X

H/ftk(X)

Wk
H(X)

(4.7)

commutes in Bfr. Indeed, by definition of W k
X in (4.6) the square (4.7) factors vertically

into k squares of the form in Definition 4.10.2, each of which commutes if H preserves
the weakening structure.

Problem 4.71. To lift the functor FGR : Bfr → Cat to a functor T : SubBfr → TCat
from the category SubBfr of B-frames with substitution structure and homomorphisms of
B-frames that preserve the substitution structure, to the category of strict categories with
term structure.
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Construction 4.72 (for Problem 4.71). Let A and B be B-frames with substitution structure.
For every homomorphism of B-frames H : A→ B, the functor FGR(H) : FA → FB, maps an
object (n,X) to (n,H(X)) and an arrow (X, k) to (H(X), k). Since H(∗) = ∗, the functor
FGR(H) strictly preserves the (unique) terminal object.

To make T(H) := FGR(H) into a functor with term structure note that, for every
t = (t1, . . . , tk) ∈ T (X, k) and 1 ≤ j ≤ k, the function H̃ restricts as follows

T (ftk−jStj−1 · · ·St1(X), 1) Ãn−k+1

T (ftk−jSH̃(tj−1)
· · ·SH̃(t1)

H(Y ), 1) B̃n−k+1

H̃ H̃ (4.8)

since H commutes with the functions ft and preserves the substitution structure in the sense
of Definition 4.10. It follows that

T(H)(t) := (H̃(t1), . . . , H̃(tk)) ∈ T (H̃(X), k). (4.9)

This makes T(H) : F/(n,X)→ F/(n− k, ftk(X)) into a functor with term structure.
The action of H on the sets T (X, k) is clearly functorial in H.

Remarks 4.73.
(1) The functor T : SubBfr→ TCat from Construction 4.72 is faithful, since the functors

R : Bfr → RtTr, G : RtTr → Grph and F : Grph → Cat are faithful and the sets
T (X, 1) for X ∈ Bn form a partition of B̃n.

(2) For every B-frame with substitution structure B, it follows by Propositions 2.8 and 2.14
that the underlying category of T(B) is stratified by the functor that maps (X, k) : (n+

k,X)→ (n, ftk(X)) to n+ k ≥ n.

Problem 4.74. For every B-system B, to construct a pre-E-system structure on the category
with term structure T(B) from Construction 4.69.

Construction 4.75 (for Problem 4.74). Construction 4.69 provides a homomorphism of
B-frames Skt : B/X → B/ftk(X) for every X ∈ Bn+k and t ∈ T (X, k). The homomorphism
Skt preserves the substitution structure since it factors, as in Remark 4.70.2, into k B-
homomorphisms of the form Sxj , where xj ∈ B̃n+k−j for j < k. Construction 4.72 and
Remark 4.70.1 then yield a functor with term structure

(T(B)/(n+ k,X), TB) (T(B)/(n, ftk(X)), TB)
St:=T(Sk

t ) (4.10)

as required.
To construct the pre-weakening structure, consider the homomorphism of B-frames

W k
X : B/ftk(X)→ B/X defined in Remark 4.70.3. Since B is a B-system, each factor of W k

X

in (4.6) is a homomorphism of B-systems and so is W k
X . Construction 4.72 and Remark 4.70.1

provide a functor with term structure

T(B)/(n, ftk(X)) T(B)/(n,X).
W(X,k):=T(Wk

X)
(4.11)

It remains to construct the pre-projection structure. In fact, we will prove a little bit
more. We construct by induction on n ∈ N, for every X ∈ Bn and k ≤ n, an element
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idtm(X,k) ∈ T (W(X,k)(X, k)) = T (W k
X(X), k) with the property that the triangle of B-

homomorphisms

B/X B/X

B/W k
X(X)

Wk
X/X

id

Sk
idtm(X,k)

commutes. This additional condition is needed in the inductive construction. For every n
and X ∈ Bn, let

idtm(X,0) := ∗ ∈ T (W(X,0)(X, 0), 0) = T (X, 0).

For every n and X ∈ Bn+1, it is ∂ ◦ δ(X) =WX(X) ∈ Bn+2. Thus we can define

idtm(X,1) := δ(X) ∈ T (W(X,1)(X, 1)) = T (WX(X), 1) (4.12)

and S1
idtm(X,1)

◦WX/X = idB/X by condition 5 in Definition 4.11.
Suppose now that we have defined, for every m ≤ n, Y ∈ Bm and i ≤ m, an element

idtm(Y,i) ∈ T (W(Y,i)(Y, i)) such that Siidtm(Y,i)
◦W i

Y /Y = idT /(m,Y ). Let X ∈ Bn+1. It follows
from (4.3) that, for every 1 ≤ k ≤ n

T (W(X,k+1)(X, k + 1)) =
∐

t∈T (Wk+1
X (ft(X)),k)

T (Skt ◦W k+1
X (X), 1).

But W k+1
X =WX ◦W k

ft(X), thus

t̄ := W̃X(idtm(ft(X),k)) ∈ T (W k+1
X (ft(X)), k)

and
Skt̄ ◦W

k+1
X /ft(X) = Skt̄ ◦WX/W

k
ft(X)(ft(X)) ◦W k

ft(X)/ft(X)

=WX ◦ Skidtm(ft(X),k)
◦W k

ft(X)/ft(X)

=WX

(4.13)

by Remark 4.70.2 and the fact that WX preserves the substitution structure, and assump-
tion (4.75). In particular, T (St̄ ◦W k+1

X (X), 1) = T (WX(X), 1) and we can define

idtm(X,k+1) := (t̄, δ(X)). (4.14)

It remains to check that Sk+1
idtm(X,k+1)

◦W k+1
X /X = idB/X . This is indeed the case by (4.4),

(4.13) and condition 5 in Definition 4.11:

Sk+1
idtm(X,k+1)

◦W k+1
X /X = Sδ(X) ◦

(
Skt̄ ◦W

k+1
X /ft(X)

)
/X

= Sδ(X) ◦WX/X

= idB/X .

This completes the construction of the pre-E-system structure.

Lemma 4.76. Let A and B be B-systems and H : A→ B a homomorphism of B-frames that
preserves the substitution structure.
(1) The functor with term structure T(H) : FA → FB is a pre-substitution homomorphism.
(2) H preserves the weakening structure if and only if T(H) is a pre-weakening homomor-

phism.
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(3) H preserves the structure of generic elements if and only if T(H) is a pre-projection
homomorphism.

Proof.
(1) By definition of the pre-substitution structure in Construction 4.75 and Remark 4.70.1,

T(H) is a pre-substitution homomorphism if every image under T of any square in Bfr
of the form (4.5) commutes. By Remark 4.70.2, such squares commute since H preserves
the substitution structure.

(2) By definition of the pre-weakening structure (4.6) and Remark 4.70.1, T(H) is a pre-
weakening homomorphism if and only if the image under T : Bsys → TCat of any
square in Bfr of the form (4.7) commutes. By Remark 4.70.3, such squares commute
if H preserves the weakening structure. The converse holds since T is faithful by
Remark 4.73.1.

(3) By (4.8) and (4.9), T(H) acts componentwise as H̃ on a term t ∈ T (X, t). It follows
that T(H) preserves the terms idtm(X,k+1) = (δ(ftk(X)), . . . , δ(X)) for X ∈ Bn, k < n if
and only if H preserves generic elements.

Lemma 4.77. For every B-system B, the pre-E-system constructed in 4.75 is a stratified
E-system.

Proof. First, we need to verify conditions 1–4 in Definition 4.51, as condition 5 holds by
construction.
1. It follows from Lemma 4.76 and (4.10) since Skt , as defined in (4.4), is a homomorphism of

B-systems when B is a B-system.
2. As above, it follows by Lemma 4.76 and (4.11) since W k

X , as defined in (4.6), is a homo-
morphism of B-systems.

3. The case X ∈ Bn, ∗ ∈ T (X, 0) holds trivially. The case X ∈ Bn+1, x ∈ T (X, 1) follows from
condition 3 in Definition 4.11 and functoriality of T. The case X ∈ Bn+k+1, (t, x) ∈ T (X,
k+ 1), where t ∈ T (ft(X), k) and x ∈ T (Skt (X), 1), holds by induction and functoriality of
T as

Sk(t,x) ◦W
k+1
X = Sx ◦ Skt /X ◦WX ◦W k

ft(X)

= Sx ◦WSt(X) ◦ Skt ◦W k
ft(X)

= idB/ftk+1(X)

by (4.4) and (4.6), the fact that St is a pre-E-homomorphism, and Definition 4.11.2 and
the inductive hypothesis.

4. As above, the case k = 0 holds trivially and the case k = 1 holds by condition 4 in
Definition 4.11. For X ∈ Bn+1, k ≤ n and (t, x) ∈ T (X, k + 1),

S̃k+1
(t,x)(idtm(X,k+1)) = S̃x ◦ S̃kt (W̃X(idtm(ft(X),k)), δ(X))

= S̃x(W̃Sk
t (X) ◦ S̃

k
t (idtm(ft(X),k)), δ(S

k
t (X)))

= (S̃x ◦ W̃Sk
t (X)(t), S̃x(δ(S

k
t (X))))

= (t, x)

by (4.4) and (4.14), the fact that St is a pre-E-homomorphism, the inductive hypothesis,
and conditions 3 and 4 in Definition 4.11.
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Finally, the underlying category F = FGR(B) is stratified by Remark 4.73.2. By definition,
weakening and substitution functors preserve the N-component of objects and arrows. It
follows that T(B) is a stratified E-system.

Lemma 4.78.
(1) The functor T : SubBfr → TCat described in Construction 4.72 lifts to a functor

B2E : Bsys→ Esyss.
(2) The functor B2E is full and faithful.

Proof.
1. By Lemma 4.77, it is enough to show that, for every homomorphism of B-systems H : A→

B, the functor with term structure T(H) : T(A)→ T(B) is a stratified homomorphism
of E-systems. By Lemma 4.76, T(H) is a homomorphism of E-systems. It is stratified
since it preserves the N-component of objects and arrows by definition.

2. The functor B2E is faithful by Remark 4.73.1. Let then K : B2E(A)→ B2E(B) be a
stratified homomorphism of E-systems. Since K is stratified, the function on objects
K :

∐
mAm →

∐
nBn is the identity on indices and gives rise to a family of functions

H :
∏
n(An → Bn) such that, for every object (n,X) and arrow (X, k) : (n+ k,X) →

(n, ftk(X))

K(n,X) = (n,Hn(X)) and K(X, k) = (Hn+k(X), k). (4.15)

We shall show that H is a morphism of B-system such that B2E(H) = K.
The functions Hn commute with the father functions ft since, for every X ∈ An+1,

the arrow K(X, 1) : (n+ 1, Hn+1(X))→ (n,Hn(ft(X))) in FB is necessarily of the form
(n+ 1, Y )→ (n, ft(Y )).

The family of sets T (X, 1) indexed on X ∈ An+1 forms a partition of Ãn+1. There-
fore the functions KX : T (X, 1) → T (Hn+1(X), 1) glue together to form a function
H̃n+1 : Ãn+1 → B̃n+1 such that

H̃n+1(x) = K∂(x)(x). (4.16)

It follows that ∂ ◦ H̃ = H ◦ ∂ since H̃n+1(x) ∈ T (Hn+1(∂(x)), 1). Therefore H is a
homomorphism of B-frames from A to B.

Let x ∈ B̃n+1. Since K is a substitution homomorphism, for every Y ∈ Bn+k+1 such
that ftk(Y ) = ∂(x), it is

(n+ k, H̃n+k ◦ Sx(Y )) = K ◦ Sx(n+ k + 1, Y )

= SK∂(x)(x) ◦K(n+ k + 1, Y )

= (n+ k, SH̃n+1(x)
◦Hn+k+1(Y ))

and, for every y ∈ B̃n+k+1 such that ftk ◦ ∂(y) = ∂(x), it is

H̃n+k ◦ S̃x(y) = K∂◦Sx(y) ◦ Sx(y)
= SK∂(x)(x) ◦K∂(y)(y)

= S̃H̃n+1(x)
◦ H̃n+k+1(y).

It follows that the homomorphism of B-frames H preserves the substitution structure.
We can thus apply Construction 4.72 to H and observe that T(H) = K. Indeed T(H)

andK have the same action on objects and arrows because of (4.15) and Construction 4.72.
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To see that they also agree on the term structure, recall from Construction 4.69 that the
term structure of an E-system of the form B2E(B) is given by lists of elements in the
sets B̃n, and then use (4.16) and (4.9). Therefore B2E(H) = T(H) = K once we show
that H is a homomorphism of B-systems.

It remains to verify that H also preserve the weakening structure and the structure of
generic elements. Since K is a projection homomorphism, for every X ∈ Bn+1 it is

T(H/X ◦WX) = K/(n+1, X)◦W(X,1) =WK(X,1)◦K/(n, ft(X)) = T(WHn+1(X)◦H/ft(X)).

The first claim then follows from faithfulness of B2E. Finally, H preserves generic
elements

H̃n+2 ◦ δ(X) = KWX(X)(idtm(X,1)) = idtmK(X,1) = δ ◦Hn+1(X)

since K is a projection homomorphism.

4.3.2. From stratified E-sytems to B-systems. We have constructed a full and faithful functor
Bsys → Esyss. Here we construct a functor in the opposite direction. We begin in
Construction 4.82 with a functor E2B from stratified categories with term structures to
B-frames. In Construction 4.84 we consider substitution, weakening and projection structures
and prove in Lemma 4.85 that E2B maps homomorphisms into homomorphisms. This allows
us to lift E2B to a functor Esyss → Bsys in Construction 4.87.

Problem 4.79. Given a stratified category with term structure (F , T ), to construct a
B-frame B2E(F , T ).

Construction 4.80 (for Problem 4.79). For every object X in F , let X denote the unique
indecomposable arrow with domain X given by Lemma 2.6. For every n ∈ N, define sets

B(F , T )n := {X ∈ Ob(F) | L(X) = n} (4.17)

B̃(F , T )n+1 :=
∐

X∈B(F ,T )n+1

T (X) (4.18)

and functions ftn : B(F , T )n+1 → B(F , T )n and ∂n : B̃(F , T )n+1 → B(F , T )n+1 by

ft(X) := cod(X) (4.19)

∂(X,x) := X. (4.20)

These definitions give rise to a B-frame E2B(F , T ).

Problem 4.81. To construct a functor E2B : TCats → Bfr from the category of stratified
categories with term structure and stratified functors with term structure to the category of
B-frames and homomorphisms.

Construction 4.82 (for Problem 4.81). The action on objects is given by Construction 4.80.
Let then F : (F , T ) → (F ′, T ′) be a stratified functor with term structure. We need to
construct a homomorphism of B-frames E2B(F ) : E2B(F , T )→ E2B(F ′, T ′). Since F is
stratified, it maps B(F , T )n into B(F ′, T ′)n. For every X ∈ B(F , T )n+1, the functor F
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maps the indecomposable arrow X to the indecomposable arrow F (X) by Lemma 2.10. It
follows first that

F ◦ ft(X) = F ◦ cod(X)

= cod(F (X))

= ft ◦ F (X),

and secondly that we can define, for every n ∈ N, a function F̃ : B̃(F , T )n+1 → B̃(F ′, T ′)n+1

such that ∂ ◦ F̃ (X, t) = F ◦ ∂(X, t) by

F̃ (X, t) := (F (X), F (t)). (4.21)

This defines a homomorphism of B-frames E2B(F ) := (F, F̃ ).

Problem 4.83. Let (F , T ) be a stratified category with term structure and consider the
B-frame E2B(F , T ) from Construction 4.80
(1) From a stratified pre-substitution structure on (F , T ), construct a substitution structure

on E2B(F , T ).
(2) From a stratified pre-weakening structure on (F , T ), construct a weakening structure on

E2B(F , T ).
(3) From a pre-projection structure on (F , T ), construct a structure of generic elements on

E2B(F , T ).

Construction 4.84 (for Problem 4.83).
1. For every (X, t) ∈ B̃(F , T )n+1, the functor with term structure St : (F , T )/X →

(F , T )/ft(X) is stratified. Construction 4.82 then yields a homomorphism of B-frames

E2B(F , T )/X E2B(F , T )/ft(X).
S(X,t):=E2B(St)

(4.22)

2. For everyX ∈ B(F , T )n, the functor with term structureWX : (F , T )/ft(X)→ (F , T )/X
is stratified, where X denotes the unique indecomposable arrow with domain X. Con-
struction 4.82 then yields a homomorphism of B-frames

E2B(F , T )/ft(X) E2B(F , T )/X.
WX :=E2B(WX)

(4.23)

3. For every X ∈ B(F , T )n+1, we can define

δ(X) := (WX(X), idtmX) ∈ B̃(F , T )n+2 (4.24)

since WX(X) =WX(X).

Lemma 4.85. Let F : (F , T )→ (F ′, T ′) be a stratified functor with term structure.
(1) If (F , T ) and (F ′, T ′) have stratified pre-substitution structure and F is a pre-substitution

homomorphism, then E2B(F ) : E2B(F , T ) → E2B(F ′, T ′) preserves the substitution
structure.

(2) If (F , T ) and (F ′, T ′) have stratified pre-weakening structure and F is a pre-weakening
homomorphism, then E2B(F ) : E2B(F , T ) → E2B(F ′, T ′) preserves the weakening
structure.

(3) If (F , T ) and (F ′, T ′) have stratified pre-projection structure and F is a pre-projection
homomorphism, then E2B(F ) : E2B(F , T ) → E2B(F ′, T ′) preserves the structure of
generic elements.
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Proof.
1. We need to show that, for every (X, t) ∈ B̃(F , T )n+1, it is E2B(F )/ft(X) ◦ S(X,t) =
S(F (X),F (t)) ◦E2B(F )/X. This follows from (4.22), functoriality of E2B and F/ft(X) ◦
St = SF (t) ◦ F/X, which holds because F is a pre-substitution homomorphism.

2. We need to show that, for every X ∈ B(F , T )n, it is E2B(F )/X ◦ WX = WF (X) ◦
E2B(F )/ft(X). This follows from (4.23), functoriality of E2B and F/X ◦ WX =
W
F (X)

◦ F/ft(X), which holds because F is a pre-substitution homomorphism and

F (X) = F (X).
3. For every X ∈ B(F , T )n+1, it is

E2B(F ) ◦ δ(X) = (F (WX(X)), F (idtmX)) = (WF (X)(F (X)), idtm
F (X)

) = δ ◦E2B(F )(X)

where the first and last equality hold by (4.21) and (4.24), and the middle one because
F is a pre-projection homomorphism.

Problem 4.86. To lift the functor E2B : TCats → Bfr to a functor E2B : Esyss → Bsys.

Construction 4.87 (for Problem 4.86). Let E be a stratified E-system. Then E2B(F , T )
can be given the structure of a pre-B-system E2B(E) by Construction 4.84. To show that
E2B(E) is a B-system, we need to verify conditions 1–5 of Definition 4.11.
1,2. Since, for every A ∈ F/Γ and t ∈ T (A), the morphisms WA and St are stratified

E-homomorphism, it follows by Lemma 4.85 that the homomorphisms of B-frames
constructed in (4.22) and (4.23) are homomorphisms of B-systems.

3. For (X, t) ∈ B̃(E)n+1, it is

S(X,t) ◦WX = E2B(St ◦WX) = idE2B(E)/ft(X)

by (4.22), (4.23), functoriality of E2B and 4.51.3.
4. For (X, t) ∈ B̃(E)n+1, it is

S(X,t) ◦ δ(X) = ((S(X,t) ◦WX)(X), St(idtmX)) = (X, t)

by (4.22), (4.24), condition 3 just proved and 4.51.4.
5. For every X ∈ B(E)n+1, it is

Sδ(X) ◦WX/X = E2B(SidtmX
◦WX/X) = idE2B(E)/X

by (4.22–4.24), functoriality of E2B and 4.51.5.
Finally, for every stratified E-homomorphism F : E → D, the homomorphism of B-frames
E2B(F ) : E2B(E)→ E2B(D) is a homomorphism of B-systems by Lemma 4.85.

4.3.3. Equivalence of B-systems and stratified E-systems. Here we show in Theorem 4.90 that
the functors B2E from Lemma 4.78 and E2B from Construction 4.87 form an equivalence
of categories. We do so by showing in Construction 4.89 that E2B : Esyss → Bsys is an
essential section of the full and faithful functor B2E.

Problem 4.88. For every stratified E-system E, to construct an isomorphism of stratified
E-systems B2E(E2B(E)) ∼= E, natural in E.
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Construction 4.89 (for Problem 4.88). In this construction we decorate the structures
from B2E(E2B(E)) with a hat, as in F̂ . Since F is stratified, the function mapping
(n,X) ∈

∐
nB(E)n to X extends to an isomorphism φ between the underlying strict category

F̂ of B2E(E2B(E)), constructed in 4.69, and F . In particular, it maps an arrow (X, k) to
the arrow X

k
:= ftk−1(X) ◦ · · · ◦X : X → ftk(X) in F as in (2.1).

In order to lift φ to an isomorphism of categories with term structure, we need to show
that T̂ (X, k) ∼= T (X

k
) for every X ∈ B(E)n and k ≤ n, where T̂ (X, k) is the set defined in

Construction 4.69. For every X ∈ Bn+1, by (4.2) it is

T̂ (X, 1) = ∂−1(X) =
{
(Y, y) ∈ B̃(E)n+1 | Y = X, y ∈ T (Y )

}
∼= T (X).

Suppose that T̂ (Y, j) ∼= T (Y
j
) for every m < n, Y ∈ Bm and j ≤ m. It follows by (4.3) that

T̂ (X, k + 1) =
∐

t∈T (ft(X),k)

T (St(X), 1) ∼=
∐

t∈T (ft(X)
k
)

T (St(X)) ∼= T (X
k+1

)

where the last bijection follows from Theorem 4.67 since Xk+1
= ft(X)

k ◦X and St(X) =

St(X). In other words, elements of T̂ (X, k) are lists of length k of pairs (Y, y) ∈ B̃(E)n+j
for j = 1, . . . , k, where y ∈ T (Y ), and the action on terms of φ first acts componentwise
dropping the first component of each pair and then applies the bijection from Theorem 4.67.

Next, we show that this choice of isos is natural in E. Given a stratified E-homomorphism
F : E→ D, we need to show that φD ◦B2E(E2B(F )) = F ◦φE. The functor B2E(E2B(F ))
maps an arrow (X, k) to (F (X), k), thus

φD ◦B2E(E2B(F ))(X, k) = F (X)
k
= F (X

k
) = F ◦ φE(X, k).

since F preserves indecomposable arrows by Lemma 2.10. The functor with term structure
B2E(E2B(F )) maps (X,x) ∈ T̂ (X, 1) to (F (X), F (x)) by (4.8) and (4.21), thus

φD ◦B2E(E2B(F ))(X,x) = F (x) = F ◦ φE(X,x).

Suppose now that, for every m ≤ n, Y ∈ B(E)m, i ≤ m and (Y, t) ∈ T̂ (Y, i), it is
φD ◦B2E(E2B(F ))(Y, t) = F ◦ φE(Y, t). Let X ∈ B(E)n+1 and (t, (X,x)) ∈ T̂ (X, k + 1),
then

φD ◦B2E(E2B(F ))(t, (X,x)) = (φD ◦B2E(E2B(F ))(t)).F (x)

= (F ◦ φE(t)).F (x)

= F (φE(t).x)

= F ◦ φE(t, (X,x))

by definition of φ, inductive hypothesis, Lemma 4.65, and definition of φ again. Therefore
we conclude that, for every E-homomorphism F : E→ D,

φD ◦B2E(E2B(F )) = F ◦ φE. (4.25)

It remains to show that each component φE is an E-homomorphism.
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To show that φ is a weakening homomorphism, note that for every X ∈ B(E)n+k, it is
Ŵ(X,k) = B2E(W k

X) by (4.11) and

W k
X =Wftk−1(X) ◦ · · ·WX

= E2B(W
ftk−1(X)

◦ · · · ◦WX)

= E2B(Wφ(X,k))

by, in order, (4.6); (4.23) and functoriality of E2B; condition 4.31.1 in the case k = 0 and
condition 4.31.2 for k > 0; and definition of φ. Moreover, Wφ(X,k) is an E-homomorphism,
thus φ is a weakening homomorphism by (4.25).

To show that φ is a substitution homomorphism we reason by induction. The case
X ∈ B(E)n and ∗ ∈ T̂ (X, 0) is trivial. For every X ∈ B(E)n+1 and (X,x) ∈ T̂ (X, 1), it is
Ŝ(X,x) = B2E(S(X,x)) by (4.10) and

S(X,x) = E2B(Sx) = E2B(Sφ(X,x))

by (4.22) and definition of φ. Suppose now that, for every m ≤ n, Y ∈ B(E)m, i ≤ m

and t ∈ T̂ (Y, i), it is St = E2B(Sφ(t)) as homomorphisms of B-systems. Then for every
X ∈ B(E)n+1, k ≤ n and (t, (X,x)) ∈ T̂ (X, k+1), it is Ŝ(t,(X,x)) = B2E(S(t,(X,x))) by (4.10)
and

S(t,(X,x)) = S(X,x) ◦ St/X
= E2B(Sx ◦ Sφ(t)/X)

= E2B(Sφ(t).x)

= E2B(Sφ(t,(X,x)))

by, in order, (4.4); inductive hypothesis, (4.22) and functoriality of E2B; Theorem 4.62; and
definition of φ. Therefore St = B2E(E2B(Sφ(t))) for every X ∈ B(E)n+k and t ∈ T̂ (X, k)).
We conclude that φ is a substitution homomorphism by naturality (4.25).

To show that φ is a projection homomorphism we reason by induction. The case (X, 0)
for X ∈ B(E)n is again trivial. Let X ∈ B(E)n+1, then

ˆidtm(X,1) = δ(X) = (WX(X), idtmX)

by (4.12) and (4.24). Therefore φ( ˆidtm(X,1)) = idtmφ(X,1) by definition of φ. Suppose that,
for every m ≤ n, Y ∈ B(E)m, i ≤ m, it is φ( ˆidtm(Y,i)) = idtmφ(Y,i). Let X ∈ B(E)n+1 and
k ≤ n. Then

φ( ˆidtm(X,k+1)) = φ(W(X,1)( ˆidtm(ft(X),k)), δ(X))

=
(
WX(φ(

ˆidtm(ft(X),k)))
)
.idtmX

=
(
WX(idtmφ(ft(X),k))

)
.idtmX

= idtm
ft(X)

k◦X

= idtmφ(X,k+1)

by (4.14), definition of φ and the fact that φ is a weakening homomorphism, the inductive
hypothesis, Lemma 5.19, and definition of φ again. Therefore φ( ˆidtm(X,k)) = idtmφ(X,k) for
every X ∈ B(E)n+k. This concludes the proof that φ is an E-homomorphism.

Finally we reach the main result of this section.
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Theorem 4.90. The functors B2E : Bsys→ Esyss from Lemma 4.78 and E2B : Esyss →
Bsys from Construction 4.87 form an equivalence of categories.

Proof. As the functor B2E is fully faithful by Lemma 4.78.2, it is enough to show that E2B
is an essential section of B2E. This holds by Construction 4.89.

5. Equivalence between B- and C-systems

In this section, we construct an equivalence between B-systems and C-systems, in several steps.
We first construct an adjunction between the categories of CE-systems and of E-systems.
To this end, we construct, in Section 5.1, a functor from CE-systems to E-systems, and,
in Section 5.2, a functor in the other direction, from E-systems to CE-systems. In Section 5.3
we show that these functors form an adjunction that restricts to an equivalence when
considering rooted CE-systems. Finally, in Section 5.4, we give our equivalence between
B-systems and C-systems, obtained by restricting the aforementioned equivalence to stratified
rooted CE-systems and E-systems, respectively.

5.1. From CE-sytems to E-systems.

Definition 5.1. Let A be a CE-system. For any Γ ∈ C, we define the slice CE-system
A/Γ as follows. Let CA(Γ) be the strict category with the same objects as FA/Γ and with all
arrows from I(A) to I(B) in CA/Γ as arrows from A to B. The functor I/Γ: FA/Γ→ CA/Γ
factors as an identity-on-objects IΓ followed by a full and faithful one as shown in the diagram
below.

FA/Γ CA/Γ

CA(Γ)

I/Γ

IΓ

We take IΓ to be the underlying functor of A/Γ. The choice of pullback squares is induced
by A.

We shall omit the subscript A from CA(Γ) whenever the CE-system is clear from context.

Remarks 5.2. Let A be a CE-system.
(1) For every object Γ, the identity idΓ is terminal in CA(Γ). It follows that any slice

CE-system is rooted.
(2) For every f : ∆→ Γ in C, the functor f∗ : F/Γ→ F/∆ lifts to a functor f∗ : C(Γ)→ C(∆)

making the square below commute.

F/Γ F/∆

C(Γ) C(∆)

IΓ

f∗

I∆

f∗

(5.1)

(3) For every f : ∆ → Γ the commutative square in (5.1) lifts to a CE-homomorphism
f∗ : A/Γ→ A/∆.



Vol. 21:1 ALGEBRAIC PRESENTATIONS OF TYPE DEPENDENCY 14:53

Lemma 5.3. Let F : A→ B be a CE-homomorphism. Then for every f : ∆→ Γ in CA the
diagram below commutes.

FA/Γ FB/FΓ

CA(Γ) CB(FΓ)

FA/∆ FB/F∆

CA(∆) CB(FC∆)

IΓ

f∗

FF/Γ

IFΓ

(Ff)∗

FC/Γ

f∗

I∆

FF/∆

IF∆

F/∆

(Ff)∗

Proof. Commutativity of the back face follows from the fact that (Ff)∗(FA) = F (f∗A) for
every A ∈ FA/Γ, commutativity of the front face follows from the universal property of
pullbacks, and commutativity of the other faces is immediate.

Lemma 5.4. Let A be a CE-system. For every f : ∆→ Γ in C and every g : A→ B in C(Γ)
the diagram below commutes.

F/Γ.B F/∆.f∗B

C(Γ.B) C(∆.f∗B)

F/Γ.A F/∆.f∗A

C(Γ.A) C(∆.f∗A)

I/Γ.B

g∗

I/∆.f∗B

(f∗g)∗

f∗/B

g∗

I/Γ.A I/∆.f∗A

f∗/A

(f∗g)∗

Proof. This is Lemma 5.3 applied to f∗ seen as a homomorphism of CE-systems thanks to
Remark 5.2.3.

Problem 5.5. To construct a functor CE2E : CEsys→ Esys.

Construction 5.6 (for Problem 5.5). Let A be a CE-system with underlying functor
I : F → C. The underlying category of the E-system CE2E(A) is F . The chosen terminal
object is the one in A. To equip F with a term structure we define, for every A ∈ F/Γ, the
set

T (A) := {x : Γ→ Γ.A | I(A) ◦ x = idΓ}. (5.2)

We define for any A ∈ F/Γ, the functor

WA := A∗ : F/Γ→ F/Γ.A. (5.3)

Likewise, we define for any x ∈ T (A), the functor

Sx := x∗ : F/Γ.A→ F/Γ. (5.4)
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These clearly extend to functors with term structure. We also define idtmA : T (WA(A)) by
the universal property of pullbacks as in the diagram below.

Γ.A

ΓA.WA(A) Γ.A

Γ.A Γ

idΓ.A

idΓ.A

idtmA

π2(I(A),A)

I(A)

As an immediate consequence of Lemma 5.4, we get that each functor WA and Sx is both a
weakening functor and a substitution functor. It follows by the definitions that weakening
and substitution preserve the terms idtmA.

It remains to verify the remaining conditions of E-systems.
3. To show that substitution in weakened families is constant, note that

Sx ◦WA = x∗ ◦A∗ = (A ◦ x)∗ = (idΓ)
∗ = idCF/Γ.

5. The identity terms are neutral for pre-composition:

SidtmA
◦WA/A = SidtmA

◦ π2(A,A)∗ = (π2(A,A) ◦ idtmA)
∗ = (idΓ.A)

∗ = idCF/Γ.A.

4. The identity terms behave like identity functions: by the universal property, Sx(idtmA) is
the unique section of A such that the square

Γ Γ.A

Γ.A ΓA.WA(A)

Sx(idtmA)

π2(x,idΓ.A)

idtmA

π2(x,WA(A))

commutes. Thus, it suffices to show that this square also commutes with x in the place
of Sx(idtmA). Note that π2(x, idΓ.A) = x. Since ΓA.WA(A) is itself a pullback, it suffices
and it is straightforward to verify the equalities

WA(A) ◦ π2(x,WA(A)) ◦ x =WA(A) ◦ idtmA ◦ x
π2(A,A) ◦ π2(x,WA(A)) ◦ x = π2(A,A) ◦ idtmA ◦ x.

Let now F : A→ B be a CE-system homomorphism. The underlying functor of CE2E(F )
is FF : FA → FB, which clearly preserves the choice of terminal objects, while the action on
terms is given by FC . This functor with term structure is both a weakening and a substitution
homomorphism because of Lemma 5.3. Note that commutativity of the front square in the
diagram in Lemma 5.3 is needed for the equations on the action on terms. Finally, it is a
projection homomorphism since it preserves identities.

Remark 5.7. It follows immediately from the above construction that, for every CE-system
A, the E-system CE2E(A) has the property that T (idΓ) is a singleton set for every Γ ∈ F .
As we shall see in Corollary 5.17, this is true for every E-system. In fact, it will follow from
Theorem 5.34(1) that CE2E is essentially surjective on objects.
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5.2. From E-systems to CE-systems. In this section we construct a functor from Esys
to CEsys. We proceed in several steps: In Section 5.2.1 we define the strict category of
internal morphisms of an E-system. There are two kinds of morphisms in this category:
internal morphisms from A to B in context Γ, and for any internal morphism f : A → B
in context Γ there are morphisms over f . There are also two kinds of composition, and
in Section 5.2.2 we prove an interchange law for them. In Section 5.2.3 we complete the
construction of the functor from Esys to CEsys.

5.2.1. The strict category of internal morphisms of an E-sytem. In this section we define for
every E-system E, and every context Γ in E, a category CE(Γ). This goal is accomplished in
Theorem 5.16. The empty context [ ] of E, i.e. a terminal object in F , allows us to have a
non-trivial category structure on the contexts of E. In this case, the category structure is
inherited from the category CE := CE([ ]).
Definition 5.8. For every A,B ∈ F/Γ we define the set

thom(A,B) := T (⟨A⟩B).

An element f ∈ thom(A,B) is called an internal morphism in context Γ. We sometimes
write f ∈ thom(A,B) to indicate that f is an internal morphism over Γ, or we may draw a
diagram of the form

A B

Γ

f

or we may omit the arrows down to Γ and say instead that we have a diagram in context Γ.
Note however that this is not (yet) a diagram in any category: the double-head arrows are
arrows in F, but the other ones are just elements in some thom(A,B).
Remark 5.9. Note that thom(idΓ, A) = T (A) for any A ∈ F/Γ, because we have WidΓ.A

=
idF/Γ.A.

Note also that thom(A.P,B) = thom(P, ⟨A⟩B) for any P ∈ F/Γ.A and B ∈ F/Γ,
because WA.P = WP ◦ WA. Once we have established a strict category of which the
morphisms are given by thom(−,−), we therefore get that

A.(−) ⊣WA.

The right adjoint to weakening by A, if it exists, will be the dependent product ΠA.
Definition 5.10. Let A,B ∈ F/Γ. For any f ∈ thom(A,B) we define the pre-composition
E-homomorphism

f∗ := Sf ◦WA/B : E/Γ.B → E/Γ.A.
We shall denote the action of f∗ on a family Q ∈ F/Γ.B as Q · f . Similarly, for every
C ∈ F/Γ, we shall write g · f for the action of f∗ on g ∈ thom(B,C) = T (WB(C)).
Lemma 5.11. Let F : E→ D be an E-homomorphism. Then for every f ∈ thom(A,B) in
E, the square of E-homomorphisms below commutes.

E/Γ.B D/FΓ.FB

E/Γ.A D/FΓ.FA

F/Γ.B

f∗ (Ff)∗

F/Γ.A
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Proof. As F is both a weakening and a substitution homomorphism, it is

(F/Γ.A) ◦ f∗ = (F/Γ.A) ◦ Sf ◦ (WA/B) = SFf ◦ (F/Γ.A.WA(B)) ◦ (WA/B)

= SFf ◦ (WFA/FB) ◦ (F/Γ.B) = (Ff)∗ ◦ (F/Γ.B).

Definition 5.12. Let A,B ∈ F/Γ, Q ∈ F/Γ.A and R ∈ F/Γ.B. For every f ∈ thom(A,B)
we define

thomf (Q,R) := thom(Q,R · f).
Remarks 5.13.
(1) The terms prA,P0 and prA,P1 from Definition 4.64 are internal morphisms:

prA,P0 ∈ thom(A.P,A) and prA,P1 ∈ thom
prA,P

0
(idA.P , P ).

(2) Note that for g ∈ thom(B,C), we have g ·f ∈ T (Sf (WA/B(WB(C)))), whereas we would
like that g · f ∈ thom(A,C). More generally, we can show that

Sf ◦ (WA/B) ◦WB =WA.

Since weakening is a weakening homomorphism, we have

Sf ◦ (WA/B) ◦WB = Sf ◦WWA(B) ◦WA.

By condition 3 in Definition 4.51 we get that

Sf ◦WWA(B) ◦WA =WA.

Remark 5.14. Note that condition 5 in Definition 4.51 asserts precisely that (idtmA)
∗ =

idF/Γ.A for any A ∈ F/Γ. In particular, it follows that g ◦ idtmA = g for any g ∈ thom(A,B)

Lemma 5.15. For any f ∈ thom(A,B) and g ∈ thom(B,C) we have f∗ ◦ g∗ = (g · f)∗.
Proof.

f∗ ◦ g∗ = Sf ◦ (WA/B) ◦ Sg ◦ (WB/C)

= Sf ◦ SWA(g) ◦ (WA/B.WB(C)) ◦ (WB/C)

= SSf (WA(g)) ◦ (Sf/WA(WB(C))) ◦ (WA/B.WB(C)) ◦WB/C

= SSf (WA(g)) ◦ ((Sf ◦ (WA/B) ◦WB)/C)

= SSf (WA(g)) ◦ ((Sf ◦WWA(B) ◦WA)/C)

= SSf (WA(g)) ◦WA/C

= (g · f)∗.
Theorem 5.16.
(1) For every E-system E and every object Γ in its underlying strict category F , objects of
F/Γ and internal morphisms of E over Γ form a strict category CE(Γ).

(2) Every E-homomorphism F : E→ D induces a functor FΓ : CE(Γ)→ CD(F (Γ)) for every
Γ in FE.

Proof.
1. For A,B ∈ F/Γ, the set of arrows from A to B is thom(A,B). The fact that composition

is associative is a direct corollary of Lemma 5.15. The axiom (idtmA)
∗ = idΓ.A implies that

the identity morphisms satisfy the right identity law. It remains to show that f · idtmB = f ,
which is a simple calculation:

f · idtmB = Sf ◦WA(idtmB) = Sf (idtmWAB) = f.
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2. The action of FΓ on arrows is given by the term structure of F . Functoriality of FΓ follows
from Lemma 5.11 and the fact that F is a projection homomorphism.

Now that we have a category structure, we can state and prove the following consequence
of Theorem 4.67.

Corollary 5.17.
(1) Let A ∈ F/Γ and Q ∈ F/Γ.B, then for every f ∈ thom(A,B) there is a bijection

φ : T (Q · f)
{
h ∈ thom(A,B.Q) | prB,Q0 · h = f

}
.∼

given by φ(t) = f.t.
(2) For every object Γ, T (idΓ) = {idtmidΓ}.

Proof.
1. Theorem 4.67 yields the following bijection:

thom(A,B.Q) = T (⟨A⟩(B.Q))

= T (⟨A⟩B.⟨A⟩Q)

∼=
∐

f∈T (⟨A⟩B)

T (⟨A⟩Q[f ])

=
∐

f∈thom(A,B)

T (Q · f).

Also, we find pr
⟨A⟩B,⟨A⟩Q
0 [h] = ⟨A⟩prB,Q0 [h] = prB,Q0 · h.

2. The above bijection becomes in this case

T (idΓ.A) ∼= {h ∈ thom(A,A) | prA,idΓ.A
0 · h = idtmA} = {idtmA}

where the second equality follows from prA,idΓ.A
0 = idtmA. Since idΓ =WidΓ(idΓ), the only

element in T (idΓ) is idtmidΓ .

Theorem 5.18. Let A ∈ F/Γ and P ∈ F/Γ.A. Precomposition with prA,P0 is weakening by
P , i.e.

E/Γ.A E/Γ.A.P
(prA,P

0 )
∗
=WP

Proof. (
prA,P0

)∗
= S

prA,P
0
◦WA.P /A

= S⟨P ⟩idtmA
◦WP /WA(A) ◦WA/A

=WP ◦ SidtmA
◦WA/A

=WP

We conclude this section with a description of the projections and the pairing operation
of an E-system in the image of the functor CE2E from Construction 5.6 in terms of the
underlying CE-system structure.
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Lemma 5.19. Let A be a CE-system and consider the E-system E := CE2E(A). For every
object Γ, every A ∈ F/Γ, P ∈ F/Γ.A, it is

prA,P0 = ⟨idΓ.A.P , P ⟩ ∈ CA(Γ.A.P,Γ.A.P .⟨A.P ⟩A)

prA,P1 = ⟨idΓ.A.P , idΓ.A.P ⟩ ∈ CA(Γ.A.P,Γ.A.P .⟨P ⟩P )
and, for every x ∈ T (A) and u ∈ T (SxP ), it is

x.u = π2 (x, P ) ◦ u ∈ CA(Γ,Γ.A.P ).

Proof. The first two claims follow immediately from Definition 4.64 and the definitions in
Construction 5.6. The third claim follows from commutativity of the front-left face in the
diagram below.

Γ Γ.SxP Γ.A.P

Γ Γ.SxP Γ.A.P

Γ.A.P • •

Γ Γ.A

Γ.A.P •

Γ

Γ.A.P

x.u

u

id

π2(x,P )

id id

id

u

SxP

π2(x,P )

P

A.P

id

WSxP (A.P )
idtmA.P

WA.P (A.P )

id

x

A

π2(x,P )

A.P

id

WA(A.P )

A.P

id

This diagram commutes by definition, in the sense that every square not involving the top
row is a chosen pullback in A, and the remaining part commutes by definition of idtmA.P

and x.u in Construction 5.6 and Definition 4.61, respectively. In this diagram we drop
occurrences of the functor I and freely use notation from the E-system CE2E(A) to increase
readability.

5.2.2. The interchange laws. We are now in the position to define vertical and horizontal
composition, and prove properties of them. In particular, we conclude the section showing in
Theorem 5.28 that every pair f ∈ thom(A,B) and F ∈ thomf (P,Q) induces a morphism,
i.e. a commuting square, from prA,P0 to prB,Q0 .

Definition 5.20. Let f ∈ thom(A,B) and F ∈ thomf (P,Q). Then we define

f ⋉ F := (⟨P ⟩f).F ∈ thom(A.P,B.Q).

This is well defined: we have ⟨P ⟩(Q · f) = Q ·(⟨P ⟩f) = S⟨P ⟩f ◦WA.P /B(Q) since WP is a
substitution homomorphism, therefore f ⋉ F ∈ T ((⟨A.P ⟩B).WA.P /B(Q)) = T (⟨A.P ⟩(B.Q))
by Definition 4.61 and functoriality of WA.P .
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Whenever we say that we have a diagram of the form

R S

P Q

A B

f2

f1

f0

we mean that we have f0 ∈ thom(A,B), f1 ∈ thomf0(P,Q) and f2 ∈ thomf0⋉f1(R,S).

Lemma 5.21. Let H : E → D be an E-homomorphism. For every f ∈ thom(A,B) and
F ∈ thomf (P,Q) it is

H(f ⋉ F ) = H(f)⋉H(F ).

Proof. H(f ⋉ F ) = H(⟨Q⟩f.F ) = ⟨HQ⟩Hf.HF = H(f)⋉H(F ).

Lemma 5.22. Vertical composition is associative.

Proof. Consider the diagram

R S

P Q

A B

f2

f1

f0

in context Γ. Because weakening distributes over term extension, and term extension is
associative, we have

(f0 ⋉ f1)⋉ f2 = ⟨R⟩(⟨P ⟩f0.f1).f2
= (⟨R⟩⟨P ⟩f0.⟨R⟩f1).f2
= ⟨P.R⟩f0.(⟨R⟩f1.f2) (By Corollary 4.63)
= f0 ⋉ (f1 ⋉ f2).

Definition 5.23. Let f ∈ thom(A,B) and F ∈ thomf (P,Q). Then we define the E-
homomorphism

F • := F ∗ ◦ (f∗/Q) : E/Γ.B.Q→ E/Γ.A.P.
The infix notation of F • is taken to be − • F .

Lemma 5.24. Let f ∈ thom(A,B) and F ∈ thomf (P,Q). Then we have the equality

F • = (f ⋉ F )∗.

Proof.

F ∗ ◦ (f∗/Q) = SF ◦WP ◦ Sf/(WA(Q)) ◦WA/B.Q

= SF ◦ SWP (f)/WP (WA(Q)) ◦WP /WA(B.Q) ◦WA/B.Q

= SF ◦ SWP (f)/WP (WA(Q)) ◦WA.P /B.Q

= SWP (f).F ◦WA.P /B.Q (By Theorem 4.62)
= (f ⋉ F )∗.
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In the next theorem we prove the interchange law of horizontal and vertical composition.
Its proof uses the following fact.

Lemma 5.25. Let f ∈ thom(A,B) be an internal morphism in context Γ. Then one has

f∗ ◦WB =WA.

Proof. The proof is a simple calculation:

f∗ ◦WB = Sf ◦WA/B ◦WB = Sf ◦WWA(B) ◦WA =WA.

Theorem 5.26. Consider the diagram

P Q R

A B C

F G

f g

in context Γ. Then the equality

(g ⋉G) · (f ⋉ F ) = (g · f)⋉ (G • F )

of morphisms from A.P to C.R in context Γ holds.

Proof. By Lemma 5.24, we have

(g ⋉G) · (f ⋉ F ) = F ∗ ◦ (f∗/Q)((⟨Q⟩g).G) (By Lemma 5.24)
= F ∗((⟨Q · f⟩g · f).(f∗/Q(G)))

= (F ∗(⟨Q · f⟩g · f)).(F ∗ ◦ f∗/Q(G))

= (F ∗(⟨Q · f⟩g · f)).(G • F )
= (⟨P ⟩g · f).(G • F ) (By Lemma 5.25)
= (g · f)⋉ (G • F ).

Theorem 5.27. Consider the diagram

P Q R

A B C

F G

f g

in context Γ. Then F • ◦G• = (G • F )•. In other words the composition − • − is associative.

Proof.

F • ◦G• = (f ⋉ F )∗ ◦ (g ⋉G)∗ (By Lemma 5.24)
= (g ⋉G · f ⋉ F )∗ (By Lemma 5.15)
= ((g · f)⋉ (G • F ))∗ (By Theorem 5.26)
= (G • F )•. (By Lemma 5.24)



Vol. 21:1 ALGEBRAIC PRESENTATIONS OF TYPE DEPENDENCY 14:61

Theorem 5.28. Let f ∈ thom(A,B) and F ∈ thomf (P,Q). Then f ⋉ F is the unique
morphism from A.P to B.Q with the property that both the diagram

A.P B.Q

A B

f⋉F

prA,P
0 prB,Q

0

f

commutes and prB,Q1 · (f ⋉ F ) = F .

Proof. We first note that

prB,Q0 · (f ⋉ F ) = F ∗ ◦ (f∗/Q)(⟨Q⟩idtmB) (By Lemma 5.24)
= F ∗ ◦ ⟨Q · f⟩(idtmB · f)
= F ∗ ◦ ⟨Q · f⟩f
= ⟨P ⟩f (By Lemma 5.25)

= f · prA,P0 . (By Theorem 5.18)

Also, we have

prB,Q1 · (f ⋉ F ) = F ∗ ◦ (f∗/Q)(idtmQ) (By Lemma 5.24)
= idtmQ·f · F
= F.

Thus, we conclude that f ⋉ F has indeed the stated property. For the uniqueness, let
G : A.P → B.Q be a morphism such that prB,Q0 ·G = f · prA,P0 and prB,Q1 ·G = F . Then it
follows that

G =
(
f · prA,P0

)
.F = ⟨P ⟩f.F = f ⋉ F.

5.2.3. The functor from E-systems to CE-systems. Let Esys∗ be the category of pointed
E-systems: objects are pairs (E,Γ) of an E-systems E and an object Γ in its underlying strict
category, and arrows are E-homomorphisms that preserve the distinguished object. There is an
evident forgetful functor Esys∗ → Esys together with an embedding E2E∗ : Esys ↪→ Esys∗
which picks out the terminal object of an E-system.

Problem 5.29. To construct a functor E∗2CE : Esys∗ → CEsys.

Construction 5.30 (for Problem 5.29). Let (E,Γ) be a pointed E-system and consider the
category of terms CE(Γ) from Theorem 5.16. Define a functor IΓE : F/Γ→ CE(Γ) as follows. It
is the identity on objects and maps an arrow Q : A.Q→ A in F/Γ to prA,Q0 ∈ thom(A.Q,A).
For functoriality, we compute prA,idΓ.A

0 = ⟨idΓ.A⟩idtmA = idtmA and

prA,Q.R0 = ⟨Q.R⟩idtmA = ⟨R⟩(⟨Q⟩idtmA)

= ⟨R⟩prA,Q0 =
(
prQ,R0

)∗(
prA,Q0

)
= prA,Q0 · prQ,R0 .
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Next, we show that CE(Γ) admits a functorial choice of pullbacks of arrows in the image
of IE. Given f ∈ thom(A,B) and R in F/Γ.B, there is R · f in F/Γ.A. We define

π2(f,R) := f ⋉ idtmR·f : A.R · f → B.R. (5.5)

Then the following diagram in CE(Γ)

A.(R · f) B.R

A B

π2(f,R)

prA,R·f
0

prB,R
0

f

(5.6)

commutes. The functoriality conditions follow immediately from the interchange laws proven
in Section 5.2.2. To show that (5.6) is a pullback square, consider a morphism g : X → A in
CE(Γ) and use the isomorphisms

{h ∈ thom(X,B.Q) | prB,Q0 · h = f · g} ∼= T (Q · (f · g)) = T ((Q · f) · g)
∼= {u ∈ thom(X,A.(Q · f)) | prA,Q·f

0 · u = g}
given by Corollary 5.17 and Lemma 5.15.

Therefore, we have constructed a CE-system E∗2CE(E,Γ) on IΓE : F/Γ→ CE(Γ).
Let now (D,∆) be a pointed E-system and let F : E→ D be an E-homomorphism such

that FΓ = ∆. In particular, for every A,B ∈ FE/Γ there is a function F : T (⟨A⟩B) →
T (⟨FA⟩FB). These functions give the action on arrows of a functor FΓ : CE(Γ)→ CD(FΓ)
whose action on objects is given by F/Γ: FE/Γ→ FD/FΓ. Functoriality of FΓ follows from
the fact that F is a projection homomorphism and Lemma 5.11. Using Lemma 4.65, we see
that FΓ ◦ IΓE = IFΓ

D ◦ (F/Γ). Finally, it follows from Lemma 5.11 and Lemma 5.21 that FΓ

preserves the choice of pullback squares.
We have described the action of E∗2CE on objects and arrows. Its functoriality is

straightforward.

We obtain a functor E2CE : Esys→ CEsys defining E2CE := E∗2CE ◦E2E∗.

Remark 5.31. The CE-system E2CE(E) = E∗2CE(E, [ ]) is on the functor I [ ]E : F/[ ] →
CE([ ]). It is also possible to have a CE-system with category of families given by F itself.
Consider the commutative square below, where the top functor ! maps an object Γ to the
unique arrow !Γ : Γ→ [ ].

FE FE/[ ]

C CE([ ])

I

!

I
[ ]
E

The left and bottom functors are obtained as the factorisation of the composite of the top
and right functors into an identity-on-objects functor I followed by a fully faithful one. The
above Construction 5.30 can be easily adapted to obtain a CE-system on the functor I.

Alternatively, one could rephrase the results in Section 5.2.1 leading to Theorem 5.16, as
happening over the terminal object of the E-system. In this case, the version of the results
over a generic object Γ can be recovered using the slice E-system E/Γ from Corollary 4.53.

Keeping the category of families fixed in the process might seem to be an advantage
of this construction. However, as we discuss in Remark 5.38, it does not seem to have any
actual useful consequence on the adjunction of which E2CE is the left adjoint. For this
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reason, and because it is not an instance of the general construction from Theorem 5.16, we
prefer to use the one given in Construction 5.30.

Remark 5.32. For every E-system E and every Γ, the CE-system E∗2CE(E,Γ) is rooted.
The canonical terminal object idΓ of FE/Γ is terminal in CE(Γ) by Corollary 5.17 since for
every A ∈ FE/Γ

thom(A, idΓ) = T (WA(idΓ)) = T (idΓ.A).

Next we give the choice of pullbacks in a CE-system in the image of E2CE in terms of
the underlying E-system structure.

Lemma 5.33. For E an E-sytem and Γ an object in E, consider the CE-system A :=
E∗2CE(E,Γ). For every A ∈ F/Γ and P,Q ∈ F/Γ.A it is(

prA,P0

)∗
Q = ⟨P ⟩Q ∈ F/Γ.A.P

and
π2(pr

A,P
0 , Q) = pr

P,⟨P ⟩Q
1 ∈ thom(P.⟨P ⟩Q,Q).

Proof. The first equality follows from Theorem 5.18. For the second one:

π2(pr
idΓ,A
0 , B) = pridΓ,A0 ⋉ idtm⟨A⟩B

=
(
W⟨A⟩B⟨A⟩idtmidΓ

)
.idtm⟨A⟩B

= (WA⟨B⟩idtmidΓ).(WAidtmB)

= ⟨A⟩(⟨B⟩idtmidΓ .idtmB)

= ⟨A⟩
(
pridΓ,B0 .pridΓ,B1

)
= ⟨A⟩idtmB = idtm⟨A⟩B

= pr
A,⟨A⟩B
1 .

5.3. Equivalence between E-systems and CE-systems. In this section, we show that
the functors constructed in Sections 5.1 and 5.2 form an adjunction that, when suitably
restricted, yields an equivalence of categories between rooted CE-systems and E-systems.

Specifically, we prove the following results:

Theorem 5.34.
(1) The functor E2CE is left adjoint to the functor CE2E.

CEsys Esys
CE2E

⊥
E2CE

(2) The unit of the adjunction is invertible. In particular, the left adjoint E2CE is full and
faithful and the right adjoint CE2E is essentially surjective on objects.

(3) The counit component at a CE-system A is invertible if and only if A is rooted.

Corollary 5.35. The adjoint functors E2CE and CE2E induce an (adjoint) equivalence
between the category Esys of E-systems and the category rCEsys of rooted CE-systems.

Proof. The equivalence follows from Theorem 5.34, the observation in Remark 5.32 that, for
every E-system E, the CE-system E2CE(E) is rooted, and the fact that rCEsys is a full
subcategory of CEsys by Remark 3.14.



14:64 B. Ahrens, J. Emmenegger, P.R. North, and E. Rijke Vol. 21:1

To prove Theorem 5.34 we construct unit and counit and prove the triangular identities.
In this proof we denote as

F/1 F
d

!
(5.7)

the canonical isomorphism of strict categories, for any strict category F with a terminal
object 1. We may still leave this isomorphism implicit when doing so creates no confusion.

Problem 5.36. To construct, for each E-system E, an invertible E-homomorphism ηE : E→
CE2E ◦E2CE(E), naturally in E.

Construction 5.37 (for Problem 5.36). Let E be an E-system and denote its terminal
object by [ ]. In this proof we shall decorate with a hat the constituents of the E-system
structure of Ê := CE2E ◦E2CE(E). The underlying strict category of Ê is FE/[ ] and, for
every X ∈ (FE/[ ])/!Γ, we have

T̂ (X) =
{
h ∈ thom(!Γ, !Γ.X) | pr!Γ,!Γ.X

0 · h = idtm!Γ

}
.

We define ηE as the functor ! : FE → FE/[ ] in (5.7) with term structure given by the bijections

T (A) T̂ (!(A))
φ (5.8)

from Corollary 5.17, that is, for A ∈ FE/Γ and t ∈ T (A), it is ηE(t) := idtm!Γ .t. Therefore
we have an invertible functor with term structure.

To conclude that this defines an invertible E-homomorphism, we compute for A ∈ FE/Γ

Ŵ!(A) ◦ (!/Γ) =
(
pr!Γ,A0

)∗
◦ (!/Γ) =WA ◦ (!/Γ)

= (!/Γ.A) ◦WA,

and for t ∈ T (A),

Ŝ!(t) ◦ (!/Γ.A)) = (idtm!Γ .t)
∗

= Sidtm!Γ
.t ◦ (W!Γ/!Γ.A)

= St ◦ (Sidtm!Γ
◦ (W!Γ/!Γ))/A

= (!/Γ) ◦ St,
and finally

φ(idtmA) = idtm!Γ .idtmA

= idtm!Γ.A

= ˆidtm!(A).

Finally, naturality in E requires that any E-homomorphism F : E→ D commutes with η
as functors with term structures. This follows from Lemmas 5.11 and 4.65.

Remark 5.38. With the alternative construction for E2CE described in Remark 5.31,
the underlying category of CE2E ◦E2CE(E) is F itself. In this case we could replace the
isomorphism from (5.7) with an identity. However, the unit ηE would not become an identity,
as the term structures would still be different (though isomorphic).

Problem 5.39. To construct, for each CE-system A, a CE-homomorphism εA : E2CE ◦
CE2E(A)→ A, naturally in A.
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Construction 5.40 (for Problem 5.39). Let A be a CE-system and let E := CE2E(A) be
the associated E-system. The underlying functor of the CE-system Â := E2CE ◦CE2E(A)
is IE : F/[ ] → CE defined in Construction 5.30. As before, we decorate with a hat the
constituents of the CE-system structure of Â. For Γ,∆ in F , recall that thom(!∆, !Γ) =

{∆ x−→ ∆.(!∆
∗!Γ) | I(!∆∗!Γ) ◦ x = id∆} and let

thom(!∆, !Γ) C(∆,Γ)ψ (5.9)

be the function that maps x to the arrow π2 (I(!∆), !Γ) ◦ x of C. The functions ψ give rise
to a functor Ψ: CE → C as follows. It maps identities to identities since the identity on Γ
in CE is the only h ∈ thom(!Γ, !Γ) such that π2 (I(!Γ, !Γ) ◦ h = idΓ. To see that it preserves
composites, consider the commutative diagram below which defines the composite y · x of
x ∈ thom(!∆, !Γ) and y ∈ thom(!Γ, !Ξ) in CE.

∆ ∆.(!∆
∗!Γ) Γ Γ.(!Γ

∗!Ξ)

∆.(!∆
∗!Ξ) Ξ

Γ

∆ 1
id∆

x π2(!∆,!Γ)

I(!Γ)

y

π2(!Γ,!Ξ)
π2(!∆,!Ξ)

y·x

I(!Ξ)

I(!Γ)

I(!∆)

Functoriality of Ψ amounts to the commutativity of the upper face.
To conclude that (d,Ψ) is a CE-homomorphism it remains to show that it preserves

chosen pullbacks, since the square below commutes by definition of Ψ.

F/[ ] F

CE C

IE

d

IA

Ψ

Let then x ∈ thom(!∆, !Γ) and A ∈ F/Γ. It is

x∗̂(!(A)) = Sx ◦ (W!∆/!Γ)◦!(A)
= x∗ ◦ (I(!∆)∗/!Γ)◦!(A)
= ! ((π2 (I(!∆), !Γ) ◦ x)∗A)
= ! (Ψ(x)∗A)

whereas

Ψ(π̂2 (x, !(A))) = π2(I(!∆.(Ψ(x)∗A)), !Γ.A) ◦ π̂2 (x, !(A)) = π2 (Ψ(x), A)
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holds by commutativity of the upper face in

∆.Ψ(x)∗A

• ∆.Ψ(x)∗A

• • Γ.A

∆.Ψ(x)∗A ∆

• • Γ

∆.Ψ(x)∗A ∆ 1

id

idtmΨ(x)∗A

id

Ψ(x)∗A

π2(Ψ(x),A)

π̂2(x,!(A))

A

id

Ψ(x)∗A

id

x
Ψ(x)

π2(I(!∆),!Γ)

!Γ

Ψ(x)∗A !∆

This diagram commutes because all the squares not involving the top-left object are chosen
pullback squares in A, two of the remaining triangles commute by definition of idtm, and the
third one involving π̂2(x, !(A)) commutes by (5.5) and Lemma 5.19.

The component εA : E2CE ◦CE2E(A)→ A of the counit at A is defined to be the pair
(d,Ψ). To see that this choice is natural in A it is enough to show that the square of functors

CCE2E(A) CA

CCE2E(B) CB

ΨA

FC

ΨB

commutes for every CE-homomorphism F : A → B. Note that the action of the left-hand
functor coincide with that of F . Commutativity of the square thus follows from

F (π2 (x,A)) = π2 (Fx, FA)

which holds by definition of CE-homomorphism.

Next we prove the second claim in Theorem 5.34.

Lemma 5.41. For every CE-system A, the CE-homomorphism εA from Problem 5.39 is
invertible if and only if A is rooted.

Proof. Note first that each function ψ in (5.9) induces a bijection

thom(!∆, !Γ) {f ∈ C(∆,Γ) | I(!Γ) ◦ f = I(!∆)}∼ (5.10)
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with inverse given by the universal property of the canonical pullback square below.

∆.!∆
∗!Γ Γ

∆ 1

I(!Γ)

I(!∆)

As soon as 1 is terminal in C, the right-hand set in (5.10) coincides with C(∆,Γ). Conversely,
if the counit components are invertible it follows from (5.10) that C(∆, 1) = {!∆}.

Proof of Theorem 5.34. 1. To complete the proof we show that, for an E-system E and a
CE-system A

CE2E(εA) ◦ ηCE2E(A) = IdCE2E(A) and εE2CE(E) ◦E2CE(ηE) = IdE2CE(E).

It is clear that these equations hold between functors on families by the isomorphism in (5.7).
It remains to show that they hold also between the term structures in the left-hand one, and
between functors on substitutions in the right-hand one.

For a CE-system A, a family A ∈ F/Γ and y ∈ T (A) = {x : Γ→ Γ.A | I(A) ◦ x = idΓ},
Lemma 5.33 yields ηCE2E(A)(y) = π2(idtm!Γ , π2(!Γ, !Γ)

∗A) ◦ y. It follows that

CE2E(εA) ◦ ηCE2E(A)(y) = π2(!Γ, !Γ.A) ◦ π2(idtm!Γ , π2(!Γ, !Γ)
∗A) ◦ y

= π2(π2(!Γ, !Γ), A) ◦ π2(idtm!Γ , π2(!Γ, !Γ)
∗A) ◦ y

= π2(π2(!Γ, !Γ) ◦ idtm!Γ , A) ◦ y
= y.

For an E-system E, objects ∆ and Γ and f ∈ thom(!∆, !Γ), Lemmas 5.33 and 4.66 yield

εE2CE(E) ◦E2CE(ηE)(f) = pr
!∆,⟨!∆⟩!Γ
1 [idtm!Γ .f ] = f.

This concludes the proof of the adjunction.
3. This is Lemma 5.41.

5.4. Equivalence between B-systems and C-systems. Here we describe the main
contribution of our work: the construction of an equivalence of categories between the
category of C-systems of Section 3 and the category of B-systems of Section 4.

Lemma 5.42. The functor CE2E : CEsys → Esys from Construction 5.6 restricts to a
functor CE2E : rCEsyss → Esyss between stratified systems.

Proof. To see that the E-system CE2E(A) is stratified whenever the rooted CE-system A is
stratified, note first that the underlying category F is stratified by assumption. Weakening
and substitution homomorphisms are stratified since the pullback functor that defines them
in Construction 5.6.(5.3,5.4) is stratified.

For a stratified CE-homomorphism F , the underlying functor of the E-homomorphism
CE2E(F ) is the component FF of F on families, which is stratified by assumption.

Lemma 5.43. The functor E2CE : Esys→ rCEsys restricts to a functor E2CE : Esyss →
rCEsyss between stratified systems.
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Proof. Let E be a stratified E-system. In particular, the underlying category F is stratified.
Since weakening and substitution homomorphisms are also stratified by assumption, so is
the precomposition homomorphisms from Definition 5.10. It follows that the CE-system
E2CE(E) is stratified.

For a stratified E-homomorphism F , the component on families of the CE-homomorphism
E2CE(F ) is the underlying functor of F , which is stratified by assumption.

Lemma 5.44.

(1) For every stratified E-system E, the unit component ηE of Construction 5.37 is a stratified
E-homomorphism.

(2) For every stratified CE-system A, the counit component εA of Construction 5.40 is a
stratified CE-homomorphism.

(3) The adjunction E2CE ⊣ CE2E from Theorem 5.34.1 restricts to an adjunction

CEsyss Esyss.
CE2E

⊥
E2CE

between subcategories of stratified structures.

Proof.

(1) The underlying functor of the unit component ηE is the functor ! : F → F/[ ] from (5.7).
This functor is stratified since L([ ]) = 0.

(2) The underlying functor of the counit component εA on families is the inverse d: F/1 → F
of ! : F → F/1, and it is stratified for the same reason.

(3) This is a consequence of Lemmas 5.42 and 5.43 and Items 1 and 2 just proved.

Define a functor C2B : Csys→ Bsys as the composite

Csys rCEsyss Esyss BsysCE CE2E E2B (5.11)

where the functors are, in order, CE from Construction 3.25 CE2E from Construction 5.6
and E2B from Construction 4.87. Similarly, we obtain a functor B2C : Bsys → Csys in
the other direction as the composite

Bsys Esyss rCEsyss CsysB2E E2CE C (5.12)

where the functors are, in order, B2E from Lemma 4.78, E2CE from Construction 5.30 and
C from Definition 3.29.

Theorem 5.45. The pair of functors C2B and B2C establish an equivalence between the
category of C-systems and the category of B-systems.

Proof. The functors defining C2B in (5.11) and B2C in (5.12) are essentially inverse to each
other by Theorems 3.31 and 4.90 and Corollary 5.35. The claim follows since equivalences
compose.
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6. Conclusion

We have constructed an equivalence between the category of C-systems and the category
of B-systems, each equipped with a suitable notion of morphism. The equivalence does not
rely on classical reasoning principles such as the axiom of choice or excluded middle. This
equivalence constitutes a crucial piece in Voevodsky’s research program on the formulation
and solution of an initiality conjecture.

Some questions that remain open:
• Voevodsky has studied different type constructions on C-systems, in particular, dependent

function types [Voe16a, Voe17b] and identity types [Voe23b]. The equivalence constructed
in the present paper should be extended to type and term constructors on C-systems and
B-systems.
• Via Generalized Algebraic Theories, B-systems and C-systems relate to Garner’s algebras

for a monad on type-and-term systems [Gar15], in the form of an equivalence of categories.
It would be very useful to have an explicit description of the maps back and forth, without
passing through GATs.
• E-systems and CE-systems should be related to other unstratified categorical structures

for the interpretation of type theory, such as categories with families [Dyb96].
• Voevodsky envisioned a formalization, in a computer proof assistant, of his theory of type

theories; some work by Voevodsky towards this goal is available online.4 A formalization
of the equivalence between B- and C-systems is still missing.
• As remarked in the introduction, B-systems seem more suitable than other semantics to

accommodate for modifications of the syntax (either restricting to substructural rules, or
extending it with type constructors and operators). Carrying these modifications over
along the equivalence could yield corresponding formulations for C-systems and more
traditional semantics.
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