
 
 

Delft University of Technology

Comprehending Test Code: An Empirical Study

Yu, Chak Shun; Treude, Christoph; Aniche, Maurício

DOI
10.1109/ICSME.2019.00084
Publication date
2019
Document Version
Submitted manuscript
Published in
Proceedings - 2019 IEEE International Conference on Software Maintenance and Evolution, ICSME 2019

Citation (APA)
Yu, C. S., Treude, C., & Aniche, M. (2019). Comprehending Test Code: An Empirical Study. In Proceedings
- 2019 IEEE International Conference on Software Maintenance and Evolution, ICSME 2019 (pp. 501-512).
Article 8918999 (Proceedings - 2019 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2019). IEEE. https://doi.org/10.1109/ICSME.2019.00084
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSME.2019.00084
https://doi.org/10.1109/ICSME.2019.00084


Comprehending Test Code: An Empirical Study
Chak Shun Yu

Department of Software Technology
Delft University of Technology

Delft, the Netherlands
chakshunyu@gmail.com

Christoph Treude
School of Computer Science

University of Adelaide
Adelaide, Australia

christoph.treude@adelaide.edu.au

Maurı́cio Aniche
Department of Software Technology

Delft University of Technology
Delft, the Netherlands

M.FinavaroAniche@tudelft.nl

Abstract—Developers spend a large portion of their time and
effort on comprehending source code. While many studies have
investigated how developers approach these comprehension tasks
and what factors influence their success, less is known about
how developers comprehend test code specifically, despite the
undisputed importance of testing. In this paper, we report on the
results of an empirical study with 44 developers to understand
which factors influence developers when comprehending Java
test code. We measured three dependent variables: the total time
spent reading a test suite, the ability to identify the overall
purpose of a test suite, and the ability to produce additional
test cases to extend a test suite. The main findings of our study,
with several implications for future research and practitioners,
are that (i) prior knowledge of the software project decreases the
total reading time, (ii) experience with Java affects the proportion
of time spent on the Arrange and Assert sections of test cases,
(iii) experience with Java and prior knowledge of the software
project positively influence the ability to produce additional test
cases of certain categories, and (iv) experience with automated
tests is an influential factor towards understanding and extending
an automated test suite.

Index Terms—Software Testing, Program Comprehension.

I. INTRODUCTION AND MOTIVATION

An essential aspect of software development is being able
to understand how a program works [1], [2], resulting in
developers spending the most significant portion of their time
on reading and understanding source code [1], [3], [4]. The
software engineering research community has investigated
the process of program comprehension from various angles.
While no single general approach exists to explain the process
of program comprehension of developers in its entirety [4],
studies have investigated the possible influences of various
aspects, ranging from how to approach and improve program
comprehension from a holistic point of view [1], [2], [4]
to properties of a system at source code level (e.g., style,
quality, and length of identifier names [5], [6], [7], [8]), at code
construct level (e.g., code regularity [9] and code beacons [3],
[10]), and at higher levels of abstraction (e.g., code smells [11],
readability [12], and familiarity [13]). Others have investigated
the role of code visualizations [14], [15], [16], [17] and drawn
parallels with natural language comprehension [18], [19], [20].

These studies provide important contributions towards our
knowledge on program comprehension and together form our
current understanding of program comprehension. However,
less is known about how developers comprehend test code
and which factors are of influence on this comprehension,

despite the undisputed importance of tests, e.g., to improve
the quality of software projects, to ensure correct behaviour, or
as documentation [16], [21], [22], [23], [24], [25]. Developers
often disregard test code during software maintenance activi-
ties because it tends to be complex and costly [21], [22], [26],
causing the quality and usefulness of test code to decrease
over time [21], [27], [28], [29].

To combat this, several studies have investigated ways of
enhancing the test maintenance process for developers [16],
[21], [22], [27], [29]. While these studies present ways to
enhance the process of test code comprehension and while the
theories behind their enhancements are valuable contributions
towards understanding test code comprehension, none of them
set their primary focus on learning more about the underlying
process of test code comprehension. However, it is necessary
to gain a better understanding of how developers approach the
comprehension of tests to be able to improve it.

In this work, we fill this gap by investigating the factors
which influence developers’ test code comprehension. We con-
ducted an exploratory empirical study with 44 participants and
a total of 132 data points, defining three metrics represented
across nine dependent variables: the amount of time spent on
reading a test suite, the ability to identify the overall purpose of
a test suite, and the ability to extend a test suite by producing
additional test cases of varying categories.

The main findings of our study are that (i) prior knowledge
of the software project decreases the total reading time,
(ii) experience with the programming language affects the
proportion of time spent on the Arrange and Assert sections of
test cases, (iii) experience with the programming language and
prior knowledge of the software project positively influence
the ability to produce additional test cases of certain categories,
and (iv) experience with automated tests is an influential factor
towards understanding and extending an automated test suite.

The contributions of this paper are:

• An exploratory empirical study to understand the factors
influencing test code comprehension. The study reveals a
collection of factors that influence test code comprehen-
sion along with their impact.

• A set of quantifiable metrics to measure test code com-
prehension that can be used in future studies.



TABLE I: Overview of related studies.

Work Contribution

C
on

ve
nt

io
na

l

[14] Enhancing mini-map visualization with layer of scope
chain information.

[29] Assessing whether developers are able to identify test
smells (initial survey).

[16] Use scenario diagrams to assist test code comprehension.
[13] Impact of code familiarity on software development.
[4] Study on how developers approach program comprehen-

sion.
[15] Use multivariate data visualization techniques to identify

bad smells.

E
ye

Tr
ac

ki
ng

[18] Linearity of developers’ source code reading behaviour.
[3] Role of experience during program comprehension.
[10] Using knowledge of experts to assist novice developers.
[6] Comparing eye movements between experts and novices

during program comprehension.
[9], [30] Impact of code regularity on effort and complexity.
[7] Impact of identifier naming conventions on program

comprehension.
[31] Impact of variability on debugging.
[32] Impact of (initial) scan time on finding code defects.

C
og

ni
tiv

e [8] Impact of poor code lexicon on cognitive effort.
[33] Detecting when tasks in software development are con-

sidered difficult by developers.
[34] Cognitive workload during program comprehension to

asses task difficulty.

O
th

er
s

[5] Impact of identifier name length on program compre-
hension.

[35] Comparing the impact of compound and short identifier
names on program comprehension.

[11] Impact of code smells on program comprehension.

II. RELATED WORK

Test code comprehension is not yet well explored in soft-
ware engineering, contrary to the more general domain of
program comprehension. This section discusses related studies
from the domain of program comprehension, and the few exist-
ing studies related to test code comprehension. We summarize
and group them by their research methods in Table I.

A. Impact of Code Lexicon on Program Comprehension

In their studies, Hofmeister et al. [5] and Schankin et al. [35]
investigated the impact of the length of identifier names on
the program comprehension of developers. The results of
their study indicate that shortening identifier names to ab-
breviations negatively impacts program comprehension. Work
by Fakhoury et al. [8] uses an alternative form of fMRI—
functional near infrared spectroscopy (fNIRS)—in combina-
tion with eye tracking to measure the effects of a poor source
code lexicon on the cognitive effort required by developers in
the process of program comprehension. Results indicate that a
poor source code lexicon, in any form, has a negative impact
on the comprehension of the respective source code and the
ability of developers to perform their software development
tasks. In another study, Kosti et al. [34] worked towards a
way to asses the cognitive workload of developers during
software development tasks and a model to assess the difficulty
of these tasks. To do so, they employed the research method
of Electroencephalography (EEG). Comparisons between the

EEG patterns of all participants indicated clear differences in
the cognitive workload during code comprehension and finding
syntax errors.

B. Code Constructs and Program Comprehension

Logically, more complex source code is more difficult to
comprehend than simpler code. While metrics exist to measure
the complexity of source code, such as lines of code (LOC)
and McCabe’s cyclomatic complexity, studies by Jbara and
Feitelson [9], [30] identified a mismatch between the theory
behind these metrics and how complexity is interpreted in
practice in certain cases. In their work, the authors introduce
the notion of code regularity—a repetitive code segment with
potential small adjustments in every iteration—and measure
the potential effects it has on code complexity and thus code
comprehension. To do so, eye tracking technology was used
to determine the differences in effort used by developers to
comprehend code snippets with varying levels of regularity,
which was measured by the time and number of fixations
spent. Results indicated that a high rate of regularity in code
snippets has no impact on the time spent on the tasks, but does
lead to better task performance and comprehension. Moreover,
the authors found a diminishing amount of effort with every
repetition of a code block, based on which they concluded
that the additive nature of the syntactic complexity metrics
causes an overestimation of the complexity of regular code,
and should be modified with context-dependent weights.

Melo et al. [31] used eye tracking to understand how
developers debug programs with variability, which in short is
the presence of configuration-dependencies at compile time.
The authors found that variability increases the debugging
time for code fragments containing variability as well as
code fragments in the proximity of variability-containing code
fragments. The number of saccades between definition-usages
of fields and call-returns for methods prolongs the initial
scan of the program and splits the debugging approach of
developers into either consecutive or simultaneous processing
of the configurations.

Work by Crosby et al. [3] investigated the impact of
experience on program comprehension by looking at how
different groups identify beacons (important code segments).
The results indicate that developers identify beacons differ-
ently based on their experience. Experienced developers will
focus more on identifying beacons in a software program,
while novice developers are less likely to search for beacons.
Building on this concept of beacons, work by Hegarty-Kelly et
al. [10] showed how knowledge on differences in performance
(in identifying beacons) can be used to improve the process
of program comprehension for certain groups of developers.

C. Similarities with Natural Language Comprehension

Busjahn et al. [18] conducted an eye-tracking study on the
linearity of developers’ source code reading behaviour. The
comparison between reading natural language text and source
code has often been made. However, the authors identify
that the linearity aspect, which is a significant property of



natural language text, is left quite unexplored. In this study,
Busjahn et al. [18] made an attempt in exploring this aspect of
linearity in source code reading behaviour. The results of their
study show that novices read source code less linearly than
natural language text—70% linear eye movements compared
to 80%—and, on top of that, experts read source code less
linearly than novices.

D. Test Code Comprehension

While program comprehension has been extensively studied,
the comprehension of test code has not received the same
amount of attention. Despite this, some studies have looked
into possible ways to enhance the test code comprehension
process of developers [16], [22], [29].

Greiler et al. [22] investigated a way to derive relations
between levels of test cases. Their approach attempts to
connect higher level end-to-end tests to low level unit tests
through similarity of their stack traces. This aids developers
when changes occur in requirements, by making it easier for
them to trace the changes from the end-to-end tests to the
affected source code through unit tests.

Bavota et al. [29] investigated the origin and survivability
of test smells and the relationships of their presence with
production code smells. Based on the analysis of the commit
history of 152 open source projects, their results indicate that
test smells originate during the creation of the test cases rather
than over time, that they have a high survivability, and that they
have certain relationships with the presence of code smells.

Finally, work by Cornelissen et al. [16] introduced a visual
approach to assisting developers’ test code comprehension
processes. Their approach creates scenario diagram models for
test cases based on dynamic analysis of the test suites. These
scenario diagrams focus on the interactions between objects,
abstracting away unnecessary or less important information,
and visualizing them in a human readable way. Based on their
case study, they conclude that test code visualization in the
form of scenario diagrams yields useful information regarding
the system’s inner workings.

III. RESEARCH DESIGN

In this section, we outline our research questions and
the overall methodology of our empirical study along with
independent and dependent variables. We also describe our
procedures for participant selection and data analysis.

A. Research Questions

The focus of this study lies in identifying and establishing
potential relationships between (software development related)
properties of developers and the degree to which they are able
to comprehend source code tests. We associate three factors
with test code comprehension: the developers’ Reading Time
(RT), their ability to Identify the Testing Purpose (ITP), and
their ability to Produce Additional Cases (PAC).
RQ1 What factors influence the time that developers spend

reading test code? Reading time is the amount of time

that developers spend on reading test code before moving
on to the next task.

RQ2 What factors influence the ability of developers to iden-
tify the purpose of a test suite? An important aspect when
reading test code is to understand the higher-level themes
that are used to group test cases which exercise similar
scenarios into test suites.

RQ3 What factors influence the ability of developers to
produce additional test cases to extend a test suite?
In practice, understanding test code and its underlying
purpose is not enough. After understanding the test code,
it is often necessary to produce additional test cases.

B. Methodology

To answer our research questions, we conducted an empiri-
cal study where participants were invited to read test suites and
answer questions about them. In the remainder of this section,
we explain the decisions and trade-offs that we considered
during the design of the study as well as the overall procedure
that participants went through.

The entire study procedure as well as resulting data are
publicly available in our online appendix [36].

1) Pre-Study Questionnaire: Participants were asked to
complete a pre-study questionnaire which asked for their
gender, age, software development role, amount of experience
with software development in years, amount of experience
with Java in years, current programming language of choice,
and amount of experience with automated test code (in this
case, experience with JUnit tests). Their experience with Java
and current programming language of choice together form
a proxy for their familiarity and comfort with Java, which is
important as the main programming language used in the study
was Java.

2) Trials: Participants were then asked to work on three
trials, each with a different test code snippet, one at a time.
We showed the specific instructions as well as a small tutorial
on how to use our tool (see below) before starting the trials.

Each trial consisted of two parts. First, participants were
given a test code snippet and were asked to read and com-
prehend it. We measured the time they spent on this task
(to answer RQ1). Whenever participants felt that they had
comprehended the test code, they moved to the next part of
the trial, which consisted of questions about the tests they
just read. Note that participants had no access to the test
code anymore as soon as they saw the questions, to ensure
they actually attempted to comprehend the code during the
reading period. We asked two questions (corresponding to
RQs 2 and 3):

1) What is the purpose of the test suite?
2) Describe additional test cases that you would write to

extend the current test suite. Use one line per case.
Besides measuring the time a participant spent reading the

test code, we collected the time they spent in its different
parts. Test code can be divided into three parts (also known
as AAA [37]): Arrange, where the inputs that will be passed
to the method under test are decided; Act, where the method



under test is invoked; and Assert, where the code verifies
that the method behaved as expected. To collect such fine-
grained data about what participants are looking at, our tool
only allows participants to see five lines of code at a time. To
see other lines, participants use their keyboard’s arrow keys.
Our tool collected the number of seconds each line was visible
to a participant.

In terms of functionality, the tool is similar to the design by
Hofmeister et al. [5], however, there are differences in terms
of configuration: While Hofmeister et al. [5] configured the
size of the viewport as approximately one third of the code
snippet—seven lines of code—we set this number to five to
ensure that the viewport does not cover too many different
AAA parts, thus improving the accuracy of our data collection.
We tested different numbers based on the specific test code
snippets used in the study.

The order in which the three trials are provided to each
participant is randomized to mitigate possible learning bias. To
mitigate bias possibly resulting from developers’ linear reading
patterns—past work [18] has shown that developers follow
linear reading patterns when reading source code, although less
than when reading natural language text—the starting viewport
of every trial (i.e., the lines the participant could see when the
trial started) is randomized across the test suite. We limited
each trial to 10 minutes.

3) Test Code Selection Criteria: We used test code from
JPacman, a software used to teach software testing in a
Computer Science programme, in our study to fulfill the
following selection criteria:

1) The test classes are understandable in an isolated and
standalone manner, which means that participants do not
have to see the entire test suite (that can be composed of
dozens of tests) to have a good grasp of its goals.

2) The test classes adhere to the AAA testing structure in an
unambiguous manner, which reduces the cognitive load
to understand the test classes, and enables us to measure
the time spent in each of the AAA parts.

3) Most people already know the concept of Pacman, which
reduces the cognitive effort required from participants to
understand the underlying domain.

To select test code snippets from the test code of JPacman,
we computed the number of lines of code of all test methods
in the project, and selected one test case from the first quartile
(six lines), one from the median (nine lines), and one from the
third quartile (fourteen lines). We selected test cases which
covered the three parts of the AAA pattern evenly, to ensure
that lines from each part had a similar chance of being read.

To support participants in identifying the purpose of a test
suite, we included one additional test case from the same suite
with each test case (i.e., participants had access to two test
cases per test suite). We ensured that test cases were self-
contained (e.g., not relying on variables declared outside of
the method) and anonymized the names of the test cases to
mitigate possible bias stemming from the clarity or lack of
clarity of these names. The final test snippets can be found in
our appendix.

C. Independent Variables

The independent variables in our research are mainly static
properties which we expected to be relevant based on previous
work. We discuss our expectations regarding their potential
influence on the different metrics of test code comprehension
below.

1) Participant Age: While age has been a common subject
of research in the field of linguistics regarding its effect on
language comprehension [38], [39], it has rarely been studied
in the field of Computer Science. Our expectations are that
the age of participants will not have any significant effects on
their test code comprehension.

2) Participant Gender: Gender has already been subject
of research in the field of Computer Science in previous
studies [40], [41], [42], [43]. Researchers have found that
the main difference between individuals of different genders
lies in the way in which software development related tasks
are approached, while the results and performance show no
correlation with gender. We expect that, similar to previous
studies, gender will have no influence on performance in our
study. However, we expect that differences might be observed
with regard to the amount of time that participants spend
on reading tests. A study by Sharafi et al. [40] showed that
female subjects take more time to carefully elaborate on their
decisions.

3) Participant Experience: Many researchers have investi-
gated the relationship between program comprehension and
developers’ experience level [3], [6], [7], [10], [18], [44],
[45], [46], [47]. In this research, we consider three types of
experience, with the expectation that similar to the findings of
previous work, more experience will positively affect the task
performance and the degree of code comprehension [3], [9],
[10], [30]:

• experience as a developer,
• experience with the Java programming language, and
• experience in using automated test code.
A previous study by Peitek et al. [19] has already high-

lighted the positive influence of familiarity with the program-
ming language on program comprehension.

4) Prior Knowledge of Software Project: This binary vari-
able indicates whether a participant has prior knowledge on
the specific software project. We expect that project knowledge
will affect the dependent variables positively.

5) Participant UUID and Trial number: The unique iden-
tifier for the participant and the trial number. These two
variables are used as random factors in our models (see
Section III-F).

D. Dependent Variables

In this section, we introduce the dependent variables we use
in our models.

1) TotalTimeInSecs: The amount of time the participant
spent reading the provided test code snippet, in seconds.

2) %Arrange, %Act, %Assert: The percentage of time the
participant spent in each of the three AAA parts of the test
code snippet.



3) Identification of the Testing Purpose (ITP): A binary
variable that captures whether the participant has correctly
identified the purpose of the provided test suite. We manu-
ally analyzed participants’ answers to question 1 (see Sec-
tion III-B2) and systematically assigned a 0 (not identified) or
a 1 (identified). This work was done by the first author of this
paper, who is an expert on JPacman’s source code.

As examples, participants gave us answers such as “I believe
the purpose of this test suite is to minimally check whether the
factory objects are capable of creating a level and a ghost.”
and “to check that when a player eats the last pellet, the player
wins and if a player eats a ghost, the game will end and the
player is dead”.

4) Producing Additional Cases (PAC): A set of binary
variables that indicate whether, and in which way, participants
were able to extend the test suite. We analyzed the data in two
steps. First, we analyzed all participants’ answers in order to
categorize the type of tests they were able to create. For each
answer, we either decided that an already emerged category
would fit, or we created a new category. The categories were
then refined together with the third author of this paper (who
is also an expert on JPacman’s source code and has more than
ten years of experience in automated software testing).

Participants’ answers were written in natural language (i.e.,
not source code). Examples of answers included “create levels
of different sizes” and “assert that ghosts are initialized
on their desired spawn location”. Given that the field was
required, we also received answers such as “I can’t think of
any additional test cases for this test suite”, indicating that a
participant was not able to devise more test cases (which does
not fit into any of the following categories).

The following four categories emerged from this analysis:
• Basic tests. Extension of the provided cases in a limited

manner based on the information in the provided cases.
• Domain tests. Extending cases to test valid scenarios and

input, but not limited to examples given in the provided
cases.

• Error tests. Additional cases with invalid input or dedi-
cated to fail.

• Other tests. Tests that did not fit any of the previous
categories.

As a second step, we then assigned values to four binary
variables (0s and 1s), related to the four categories above. For
each participant P and category C, we assigned a 1 if P was
able to produce one or more tests for category C; otherwise,
we assigned 0.

E. Participant Selection

For this research, we recruited two groups of participants:
a group that had prior knowledge of the software project (i.e.,
knows the source code of the project) and another group that
did not have this prior knowledge. We recruited participants
belonging to the former group in a university course which
uses the software project from which we draw test cases for
the study. These students had two months of experience with
the project’s code base. Participation was voluntarily, and did

not affect students’ grades. For the latter group, the study
was shared on social media platforms to invite developers
to participate. We did not have any further selection criteria,
aiming to recruit a diverse set of participants.

F. Analysis Procedure

We introduce our data analysis methodology in this section.
a) Reading Time: To investigate the influence of the

independent variables on reading time (RT), we used Linear
Mixed Model (LMM) analysis. For each dependent variable
(totalTimeInSecs, %Arrange, %Act, and %Assert), an LMM
was constructed with all independent variables as fixed effects.
As each participant completed three trials in our study and
these three trials were the same for every participant, patterns
caused by this overlap in trials and participants can affect the
results of our models. To mitigate this, both variables (trial
number and participant uuid) were represented as random
effects in the models.

The resulting model for an LMM analysis relies on several
assumptions: (i) linearity in the data of the model, (ii) there
should be no collinearity between fixed effects, (iii) absence
of heteroskedasticity, which means that the residuals in the
model need to have a similar amount of variation for all
predicted values, (iv) the residuals of the LMM model need
to be normally distributed, (v) there should be no influential
data points, and (vi) independence should hold across the data
of the model.

We verified Assumptions (i), (iii), and (iv) by inspecting
visual plots of the residuals, and we verified Assumption
(ii) using visual plots of the linearity between every pair of
independent variables. Assumption (v) was verified through
manual inspection and comparing the full model against
reduced models, which revealed no significant differences.
Finally, Assumption (vi) was adhered to by conforming to a
mixed effect model, rather than just a linear model.

All models were created with R [48] and the lme4 pack-
age [49]. We verified the fitness of the models using marginal
and conditional R2 values [50], using implementations of
the MuMIn package [51]. For every independent variable, we
conducted a likelihood ratio test of the full model against a
reduced model without the effect in question. As is common
with testing statistical significance, independent variables were
deemed influential over the dependent variable when the
probability of committing a Type-I error was at most 5%
(α = 0.05).

b) Identifying Testing Purpose (ITP) and Producing Ad-
ditional Cases (PAC): Contrary to the RT, the variables cap-
turing the participants’ abilities to identify the testing purpose
(purposeScore), and to produce additional cases (BasicTest,
DomainTest, ErrorTest, and OtherTest) are binary variables.
Therefore, we performed a Binomial Logistic Regression
(BLR) analysis to investigate the influence of the independent
variables on ITP and PAC.

We modeled the five dependent variables (purposeScore,
BasicCase, DomainCase, ErrorCase, and OtherCase) with the
same collection of fixed effects, i.e., the previously described



independent variables. The variables RT, %Arrange, %Act, and
%Assert are also included in the models as fixed effects. To
verify and assess the resulting models, we use McFadden’s
pseudo-R2 and analyze the deviance tables. Similar to RT,
independent variables are deemed statistically significant and
thus influential on the dependent variables when α ≤ 0.05.

IV. RESULTS

In this section, we report on the results of the empirical
study.

A. Participant Statistics

After three months of hosting the online study, a total of 44
developers participated in our research, 10 (23%) of which had
prior knowledge of the code base. Furthermore, 9 (20%) of the
participants were female and roughly 86% of the participants
were either a developer (39%) or a student (48%). By far the
most preferred programming language by the participants was
Java (43%), followed by Python (11%) and C# (9%).

Table II shows descriptive statistics of the participants,
separately for those with prior knowledge of the project and
for those without. Participants with prior knowledge of the
software project generally have less experience, which can be
expected based on the inclusion criteria of the group with
project knowledge (i.e., Computer Science students).

B. Descriptive Statistics of the Dependent Variables

For the ITP variables, the results in Table III show that every
trial (i.e., the different test snippets) had a similar success rate.
Roughly 18% to 32% of the participants correctly identified
the general testing purpose of the respective test suite.

Table IV shows the descriptive statistics for PAC. Par-
ticipants are evenly capable of producing Basic (55% of
participants produced at least one basic case) and Domain
(47%) test cases, while they are less likely to produce Error
(9%) and Other (19%) test cases.

Table V shows the distribution statistics of all numerical
dependent variables, i.e., the proportions of time that partic-
ipants spent on each AAA section during the study and the
total amount of reading time spent on the test suite. The range
for reading time is wide, from the minimum of less than half a
minute (25.74 seconds) to the maximum of almost 10 minutes
(590.35 seconds).

We can also observe that participants generally spent the
least amount of time on the Act section. The Arrange section
of tests was where most participants spent most of their time,
compared to the other AAA sections, but this section also had
the largest absolute differences between participants. While
the proportion of time that participants spent on the Assert
section is generally in between the other two sections, there
are outliers in either direction, leading to more time than the
Arrange section or less time than the Act section.

C. Model Assumptions

We observed that there is a negative correlation between
the proportion of time that participants spent on the Arrange
section and the Assert section of a test (data in the appendix).
Since none of these two variables shows any significant differ-
ence in the scatterplots with the other independent variables,
there are no clear benefits of choosing either of them. Without
any particular deterministic reasoning, the proportion of time
that participants spent on the Assert section was chosen over
the Arrange section for the RT, ITP, and PAC models.

Manual inspection of the histogram and the Q-Q plot of the
reading time LMM (in the appendix) indicates violations to
the linearity of the model and the required normal distribution
of residuals. When inspecting the residuals against the fitted
values of the model however, there is a noticeable pattern in
the graph: Higher fitted values have larger residuals, indicating
that the variance is larger in the higher range and smaller
in the lower range. This violates the assumed absence of
heteroskedasticity and thus renders the model inaccurate.

To address this violation, we applied one of the most
common solutions by conducting a log transformation of the
RT variable. Statistical and graphical analysis showed that the
RT data is log-normally distributed, justifying this choice. This
is further supported by re-inspecting the histogram and the Q-
Q plot of the newly created model (in the appendix), which
are improved compared to the original model and display
better indications of linearity of the model and normality of
the residuals. Furthermore, the residual plot against the fitted
values of the new model shows no marginal pattern in the
variations of the residuals.

D. Analysis of the Final Model

The results of the LMM and BLR models are reported
in Table VI in the form of p-values of all fixed effects per
dependent variable.

The demographic variables—age and gender of the
participants—have no statistically significant influence on any
of the predicted variables. The experience of the participant as
a developer and the proportion of time that they spent on each
AAA section also have no statistically significant effect on any
of the dependent variables. Table VII shows all relevant data
for statistically significant effects. In the following, we discuss
each model in detail.

1) Reading Time (RT): Our results do not indicate statisti-
cally significant effects of the different kinds of experience (as
a developer, with Java, and with using tests) on the dependent
variable of reading time (RT). The only statistically significant
independent variable (albeit with a small effect) is whether the
participant has prior knowledge of the software project that the
test suites are targeted at. The log transformed RT is negatively
affected by prior knowledge.

2) %Arrange: For the proportion of time that participants
spent on the Arrange section of the test cases, our results
indicate that their experience with Java has a statistically
significant effect on it, while we do not find statistically
significant results with regard to participants’ experience in



TABLE II: Descriptive statistics of participants, in years of experience.

Knowledge of the software project No knowledge of the software project
Factor Min Median Mean SD Max Min Median Mean SD Max

Age 18 19 19 1.44 23 19 24 26.7 5.94 43
Developer 1.0 2.5 3.2 2.12 7.0 0.0 5.5 7.37 5.40 20
Java 1.0 2.5 3.0 2.18 7.0 0.0 4.0 4.59 3.90 15
Tests 0.0 1.0 1.1 0.84 3.0 0.0 4.0 4.24 3.83 18

TABLE III: Distribution of the dependent binary variables for
the ability of participants to identify testing purpose (ITP).
Success means that the participant was able to identify the
purpose of that test suite. Participants = 44.

Trial 1 Trial 2 Trial 3
(small snippet) (medium snippet) (long snippet)

Success 8 14 8
Fail 36 30 36

TABLE IV: Distribution of the dependent binary variables for
the ability of participants to produce additional cases (PAC).
Success means that a participant was able to derive at least
one test case for that category. Numbers in each category add
up to 132 (i.e., 3 trials per participant, 44 participants).

Basic tests Domain tests Error tests Other tests

Success 73 62 12 25
Fail 59 70 120 107

using tests and or their prior knowledge. The %Arrange
variable is positively affected by the amount of experience
in Java in years.

3) %Act: For the proportion of time that participants spent
on the Act section of the test cases, our results do not show
any statistically significant effect of the independent variables
used in this study on the dependent variable.

4) %Assert: For the proportion of time that participants
spent on the Assert section of the test cases, our results
indicate only one statistically significant effect, namely for
the independent variable of experience with Java. The %Assert
variable is negatively affected by the amount of experience in
Java in years.

5) Purpose Score (ITP): With regard to participants’ ability
to identify the purpose of the provided test suite, our results
indicate only one statistically significant effect, namely for the
independent variable of experience with using tests. The odds
of identifying the testing purposes are positively affected by
experience with using tests.

TABLE V: Distribution of the numerical dependent variables.

Factor Min Median Mean SD Max

%Arrange 15.27 48.17 49.20 16.94 82.70
%Act 7.38 20.11 20.45 5.96 42.10
%Assert 4.26 34.12 30.35 17.31 61.70
Reading Time (sec) 25.74 93.04 129.59 107.28 590.35

6) Producing Basic Test Cases: With regard to participants’
ability to produce at least one additional test case that satisfies
the criteria of being a basic test case, our results do not indicate
any statistically significant relationship.

7) Producing Domain Test Cases: With regard to partici-
pants’ ability to produce at least one additional test case that
satisfies the criteria of being a domain-related test case, our
results indicate two independent variables with statistically
significant positive influence: the participants’ experience with
using tests and whether they have prior knowledge of the
software.

8) Producing Error Test Cases: With regard to participants’
ability to produce at least one additional test case that satisfies
the criteria of testing an error, our results indicate two factors
with statistically significant positive influence: the participants’
experience in Java and the total reading time on the particular
test suite. The latter is too small to be considered though (an
increase by 1.00001 times only).

9) Producing Other Test Cases: With regard to participants’
ability to produce at least one additional test case that did
not fit other categories, our results indicate one factor with
a statistically significant effect: the participants’ experience
with using tests. The odds of producing other test cases are
positively affected by experience with using tests.

V. DISCUSSION

In this section, we revisit our research questions, formulate
answers based on the obtained results, elaborate on how our
findings compare against relevant literature, and provide con-
crete recommendations to software developments teams and
researchers based on our work. A summary of the significant
factors identified in this work can be found in Table VII.

A. RQ1. What factors influence the time that developers spend
reading test code?

The only factor for which we found a statistically significant
influence on reading time was whether participants had prior
knowledge of the software project. Having prior knowledge
of the software project reduces the time that developers spend
reading test code. Contrary to similar studies focusing on
aspects relevant to reading source code [3], [5], [6], [7], [10],
[18], [32], [35], [44], we did not find differences in the reading
time between experts and novices. While observing significant
differences based on experience level is common in studies in
this field, none of the three types of considered experience in
this study show significant influence on the reading time of
participants.



TABLE VI: Models represented as rows with independent variables as columns. The values are the coefficients of the fixed
effects on the dependent variable. Asterisks indicate statistically significant effects (α ≤ 0.05).

Predicted Prior
Variables Age Gender Develop Java Tests Knowledge %Act %Assert RT

RT (log) 0.005 -0.090 -0.002 -0.010 -0.013 -0.259* -0.002 0.002 –
%Arrange -0.442 -4.300 -0.092 0.867* 0.051 -0.480 – – 0.008
%Act 0.056 1.930 0.169 -0.223 -0.121 -2.285 – – -0.001
%Assert 0.383 2.408 -0.073 -0.636* 0.071 2.895 – – -0.005

purposeScore (ITP) 0.063 0.018 0.007 -0.135 0.272* 0.773 0.046 -0.038 -0.000
BasicTest -0.016 0.042 -0.063 0.106 0.096 0.194 -0.067 0.021 0.000
DomainTest 0.021 0.077 -0.090 -0.051 0.339* 1.975* -0.001 -0.037 0.000
ErrorTest -0.168 0.285 -0.061 0.345* 0.236 1.982 0.159 -0.019 1.028e-5*
OtherTest -0.129 1.224 -0.030 0.049 0.266* 0.478 0.021 0.008 -0.000

TABLE VII: Dependent variables with their respective independent variables that have a statistically significant influence, if
any. Positive influences are depicted using ↑ and negative influences are depicted using ↓. The table includes the parameters
for each model.

Dependent Independent p-value Effect χ2(1) Marginal Conditional McFadden Log Effect
Variable Variables R2 R2 pseudo-R2

Reading Time Project Knowl. (↓) 0.022 −1.815± 1.284 sec. 5.364 0.165 0.726 – −0.259± 0.109
%Arrange Java (↑) 0.009 +0.867%± 0.328% 6.73 0.049 0.586 – –
%Act – – – – 0.1 0.298 – –
%Assert Java (↓) 0.020 −0.636%± 0.276% 4.92 0.021 0.776 – –
Purpose Tests (↑) 0.008 +e0.272 = 1.313 times – – – 0.216 +0.272± 0.103
Basic Test Cases – – – – – – 0.052 –
Domain Test Cases Tests (↑) 0.002 +e0.339 = 1.404 times – – – 0.157 +0.339± 0.108

Project Knowl. (↑) 0.001 +e1.975 = 7.207 times – – – 0.157 +1.975± 0.619
Error Test Cases Java (↑) 0.023 +e0.345 = 1.411 times – – – 0.279 +0.345± 0.152
Other Test Cases Tests (↑) 0.024 +e0.266 = 1.304 times – – – 0.153 +0.266± 0.118

Finding 1. Having prior knowledge of the software
under test significantly reduces the time developers
have to spend to comprehend its test code.

Based on the distribution of time that participants spent on
each section of the AAA test structure, several observations
can be made. In general, developers spent the least amount
of their time on the Act section of test classes, while most of
their time is spent on the Arrange section.

Finding 2. Developers spend the majority of their time
on comprehending the inputs of a given test (the Ar-
range part), and little time on actually comprehending
which method is under test (the Act part).

We found only one statistically significant factor of influ-
ence on the time that developers spend reading the Arrange
part of test code: their experience with the Java programming
language. The time spent reading the Arrange part of a test
case is positively affected by developers’ amount of experi-
ence with Java. Our results do not indicate any factor with
significant impact on the time spent by developers on reading
the Act part of a test case. Similar to the Arrange part, we
found only one statistically significant factor of influence on
the time that developers spend reading the Assert part of test
code: the amount of Java experience of participants, which

negatively affects the time. We speculate that developers with
more Java experience are more likely to care about the exact
inputs being tested, thus spending more time on the Arrange
section, and that they might be more familiar with the Assert
syntax, possibly explaining the lower amount of time spent on
test assertions.

Finding 3. Experience with Java reduces the amount
of time spent on reading test assertions.

Finding 4. Experience with Java increases the amount
of time spent on reading the Arrange section of a test
case.

B. RQ2. What factors influence the ability of developers to
identify the purpose of a test suite? (ITP)

The only factor for which we found a statistically significant
influence on ITP is the experience of participants with using
tests. Every additional year of experience with using tests has a
positive effect on the odds of correctly identifying the purpose
of a test suite.

Finding 5. Experience with tests significantly improves
test code comprehension.



C. RQ3. What factors influence the ability of developers to
produce additional test cases to extend a test suite? (PAC)

Our research revealed no statistically significant influential
factors on developers’ ability to produce basic test cases (i.e.,
test cases only based on information in the provided test cases).

Finding 6. We have no evidence to suggest that the
ability of developers to produce basic test cases is
correlated to any type of experience.

Prior knowledge of the software project and the experience
of participants with using tests have positive effects on the
ability of participants to produce domain test cases (i.e., test
cases extending the provided test suite with scenarios pertinent
to the software project).

Finding 7. Prior knowledge of the software project
is fundamental for domain-related test cases (even in
domains with which most people are already somewhat
familiar).

Lastly, the influential factor for being able to produce error
test cases (i.e., test cases validating invalid or erroneous sce-
narios) is the experience with the Java programming language,
having a positive effect.

Finding 8. Experience with programming language
significantly impacts the amount of error test cases a
developer can think of.

These findings are in line with existing literature stating
the differences in program comprehension between developers
with different levels of experience [3], [5], [6], [7], [10], [18],
[32], [35], [44]. However, our findings differ from existing
literature by going beyond solely finding these differences
based on experience level. Particularly, compared to existing
studies, our work also investigates the impact of different types
of experience (i.e., as a developer, with the Java programming
language, and with using tests) and states the specific impact
that independent variables have on different metrics of test
code comprehension. All dependent variables regarding test
code comprehension for which at least one significant rela-
tionship was found, are positively impacted by at least one
type of experience. Our work allows for the observation of
the differences in impact of different types of experience.

Finding 9. Different types of experience influence
different activities related to test code comprehension.

D. Practical Recommendations

In the following, we provide recommendations for software
development teams and researchers based on our work:

• We know that, in practice, developers rarely know their
entire source code bases (and even may forget what
they have seen/known before [13]). Nevertheless, we
reinforce the recommendation for software development
teams to invest in internal education, as our results
suggest that source code familiarity is related to faster
test code comprehension. We see future research on
recommending developers where to spend their learning
effort (e.g., [52]).

• Developers are already aware of test code smells [53]
and of how important test code quality is for software
maintenance (e.g., [29]). Our work adds to existing test
smell catalogues as it shows how important the Arrange
part of the test is for the comprehension of the test
itself. Thus, we recommend developers to make sure that
the Arrange parts of their tests are clear, concise and
self-explanatory. Future research should focus on how
DSLs such as AssertJ1 and the Test Data Builder pattern2

improve readability.
• Seniority in the project plays a role in developers’ ca-

pacity of comprehending test code. Our results show
that newcomers have more trouble in developing domain-
related test cases. The experience of developers is known
to play a role in other software maintenance activities,
such as code reviews [54]. We see a great importance for
approaches such as the one proposed by Pham et al. [55]
where newcomers receive examples of test code written
by senior developers as a way to learn more about the
project. However, given the current state of the practice,
we suggest experienced developers to review the test code
from novices, as odds are that they will not test domain
cases (and error cases, in case of language novices).

• Our study introduced two new metrics for test code
comprehension: the capacity of developers to produce
additional test cases (PAC) and the capacity of developers
to identify the overall purpose of a test suite (ITP). As
far as we know, we are the first to propose these metrics.
We strongly believe these variables are important when
it comes to test code comprehension. Future research
needs to 1) investigate how to better measure these
variables, and to 2) use these metrics in future test code
comprehension studies.

VI. THREATS TO VALIDITY

In this section, we discuss the threats that could affect the
validity of our results and conclusions.

A. Internal Validity

The participants were given a maximum amount of time to
read the provided test code, contrary to scenarios in realistic
environments, and there is a possibility that participants felt
rushed by the timer, resulting in the answers to the open
questions to be of lower quality. On the other hand, inspection
of the respective distribution in Table V shows that it is not

1http://joel-costigliola.github.io/assertj/
2http://www.natpryce.com/articles/000714.html

http://joel-costigliola.github.io/assertj/
http://www.natpryce.com/articles/000714.html


skewed towards the upper time limit (600 seconds). None of
the participants spent the full amount of time in any of the
trials and during 97% of the recorded trials, less than 400
seconds were spent on reading the provided test code. We
conclude that the time limit of ten minutes had no important
influence on the quality of our results.

Participants did not have access to the production code
when reading the test code to enable us to clearly identify
whether the answers provided by developers were given due
to knowledge they extracted from the production or from
the test code. In future work, we will study how test code
comprehension is affected by the presence of production code.

B. Construct Validity

In this research, we have associated and measured test
code comprehension with three different factors, namely the
total time that participants spent on reading the test suite
(RT), their ability to identify the testing purpose of a test
suite (ITP), and their ability to produce additional cases to
extend the test suite (PAC). While the factor of time is a
representative partial metric of program comprehension, as
used by previous studies [5], [6], [7], [9], [31], [32], [35],
no other studies have investigated factors similar to ITP and
PAC. We manually evaluated the participants’ answers to the
ITP and PAC questions, and thus, our results depend on the
quality of our manual work. Our online appendix [36] contains
the raw data for inspection.

We did not use eye tracking as a tool to track where
developers are looking in a test class, but rather created
our own tracking software with a limited 5-line window for
this purpose, similar to studies by Schankin et al. [35] and
Hofmeister et al. [5], [6]. The main trade-off that contributed to
this decision was between quality and quantity of the data to be
gathered. While performing an eye tracking study yields major
benefits in terms of the quality, it comes with major drawbacks
on how and how much data can be acquired. While the fine-
grained data (which part of the tests developers were looking
at) is only used as one variable in the logistic regression, many
of the studied variables (time, ITP, and PAC) do not require
it. Participants had to scroll back and forth to see a complete
test case, which may have affected their willingness to look
at different sections of the test code.

C. External Validity

All participants were volunteers, which possibly has influ-
ence on the results due to volunteers generally being more
motivated. The participants with knowledge of the code base
were students, adding potential bias to the comparison between
participants with project knowledge and those without. It is
also possible that the student participants were influenced by
having participated in our courses before. A scenario where
developers develop tests for a project which they are not
familiar with may be artificial, although casual contributors
have been found to add test cases to open source projects, for
example [56]. Whether participants had prior knowledge of the
software project is a factor that has rarely been investigated

in research towards program comprehension, even though it
can have considerable influence (as shown by our results). We
believe our results are a first step in raising the importance
of this feature for future studies. Participants had to first read
the code and answer questions subsequently, which does not
represent a realistic scenario and might affect generalizability.
Finally, we used test code snippets from JPacman, a small
project with a well-designed test suite in terms of code
quality. Although developers face more complicated test code
in real life, providing them with a well-designed suite gives
us a baseline for comparison in future studies. More realistic
settings, such as test suites with smells [27], test suites of
applications with complex problems, and test code at different
test levels (e.g., integration testing), are part of our future
work.

VII. CONCLUSION

We present an empirical study to investigate factors which
influence test code comprehension of software developers. To
measure test code comprehension, we decompose it into three
metrics: (i) how much time developers spend on reading a test
suite, (ii) whether developers are able to correctly identify the
testing purpose of a test suite, and (iii) their ability to provide
additional test cases to an existing test suite.

The main findings based on our results are that (i) having
prior knowledge of the software project decreases the amount
of time developers spend on reading the provided test suite,
(ii) experience with the Java programming language affects the
proportions of time spent on the Arrange and Assert sections
of tests, (iii) experience with the Java programming language
and having prior knowledge of the software project increases
the likelihood of producing certain categories of additional
test cases, and (iv) the most positive influential factor towards
understanding and extending a test suite is experience with
using tests.

To the best of our knowledge, this is the first study to
investigate the process of program comprehension with a focus
on testing, and it provides a basis for future work towards
understanding of test code comprehension.

ACKNOWLEDGEMENTS

This work has in part been supported by the Australian
Research Council’s Discovery Early Career Researcher Award
(DECRA) funding scheme (DE180100153).

REFERENCES

[1] J. Siegmund, “Program comprehension: Past, present, and future,” in
Proceedings of the International Conference on Software Analysis,
Evolution, and Reengineering, 2016, pp. 13–20.

[2] I. Schröter, J. Krüger, J. Siegmund, and T. Leich, “Comprehending
studies on program comprehension,” in Proceedings of the International
Conference on Program Comprehension, 2017, pp. 308–311.

[3] M. E. Crosby, J. Scholtz, and S. Wiedenbeck, “The roles beacons play in
comprehension for novice and expert programmers,” in Proceedings of
the Annual Workshop of the Psychology of Programming Interest Group,
2002, pp. 58–73.

[4] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the compre-
hension of program comprehension,” ACM Transactions on Software
Engineering and Methodology, vol. 23, no. 4, pp. 31:1–31:37, 2014.



[5] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” in Proceedings of the International Con-
ference on Software Analysis, Evolution, and Reengineering, 2017, pp.
217–227.

[6] J. Hofmeister, J. Bauer, J. Siegmund, S. Apel, and N. Peitek, “Comparing
novice and expert eye movements during program comprehension,”
Fachbereich Mathematik und Informatik Serie B, vol. 17, 2017.

[7] B. Sharif and J. I. Maletic, “An eye tracking study on camelcase
and under score identifier styles,” in Proceedings of the International
Conference on Program Comprehension, 2010, pp. 196–205.

[8] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect
of poor source code lexicon and readability on developers’ cognitive
load,” in Proceedings of the International Conference on Program
Comprehension, 2018, pp. 286–296.

[9] A. Jbara and D. G. Feitelson, “On the effect of code regularity on
comprehension,” in Proceedings of the International Conference on
Program Comprehension, 2014, pp. 189–200.

[10] E. Hegarty-Kelly, S. Bergin, and A. Mooney, “Using focused attention
to improve programming comprehension for novice programmers.” Eye
Movements in Programming: Models to Data, pp. 8–9, 2015.

[11] Z. Soh, A. Yamashita, F. Khomh, and Y.-G. Guéhéneuc, “Do code smells
impact the effort of different maintenance programming activities?”
in Proceedings of the International Conference on Software Analysis,
Evolution, and Reengineering, 2016, pp. 393–402.

[12] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of software
readability,” in Proceedings of the Working Conference on Mining
Software Repositories, 2011, pp. 73–82.

[13] J. Krüger, J. Wiemann, W. Fenske, G. Saake, and T. Leich, “Do
you remember this source code?” in Proceedings of the International
Conference on Software Engineering, 2018, pp. 764–775.

[14] I. Bacher, B. Mac Namee, and J. D. Kelleher, “The code mini-map
visualisation: Encoding conceptual structures within source code,” in
Proceedings of the Working Conference on Software Visualization, 2018,
pp. 127–131.

[15] H. Mumtaz, F. Beck, and D. Weiskopf, “Detecting bad smells in software
systems with linked multivariate visualizations,” in Proceedings of the
Working Conference on Software Visualization, 2018, pp. 12–20.

[16] B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaidman, “Visu-
alizing testsuites to aid in software understanding,” in Proceedings of
the European Conference on Software Maintenance and Reengineering,
2007, pp. 213–222.

[17] H. M. Kienle, A. Kuhn, K. Mens, M. van den Brand, and R. Wuyts,
“Tool building on the shoulders of others,” IEEE Software, vol. 26, no. 1,
pp. 22–23, 2009.

[18] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte,
B. Sharif, and S. Tamm, “Eye movements in code reading: Relaxing the
linear order,” in Proceedings of the International Conference on Program
Comprehension, 2015, pp. 255–265.

[19] N. Peitek, J. Siegmund, C. Parnin, S. Apel, J. C. Hofmeister, and
A. Brechmann, “Simultaneous measurement of program comprehension
with fmri and eye tracking: A case study,” in Proceedings of the Interna-
tional Symposium on Empirical Software Engineering and Measurement,
2018, pp. 24:1–24:10.

[20] N. Peitek, J. Siegmund, S. Apel, C. Kästner, C. Parnin, A. Bethmann,
T. Leich, G. Saake, and A. Brechmann, “A look into programmers’
heads,” IEEE Transactions on Software Engineering, 2018, to appear.

[21] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli,
“On the relation of test smells to software code quality,” in Proceedings
of the International Conference on Software Maintenance and Evolution,
2018, pp. 1–12.

[22] M. Greiler, A. van Deursen, and A. Zaidman, “Measuring test case
similarity to support test suite understanding,” in Proceedings of the
International Conference on Objects, Models, Components, Patterns,
2012, pp. 91–107.

[23] D. Fucci, S. Romano, M. T. Baldassarre, D. Caivano, G. Scanniello,
B. Turhan, and N. Juristo, “A longitudinal cohort study on the retain-
ment of test-driven development,” in Proceedings of the International
Symposium on Empirical Software Engineering and Measurement, 2018,
pp. 18:1–18:10.

[24] D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N. Juristo, “A
dissection of the test-driven development process: Does it really matter
to test-first or to test-last?” IEEE Transactions on Software Engineering,
vol. 43, no. 7, pp. 597–614, 2017.

[25] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366–427,
1997.

[26] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli,
“When testing meets code review: Why and how developers review
tests,” in Proceedings of the International Conference on Software
Engineering, 2018, pp. 677–687.

[27] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok, “Refactoring
test code,” in Proceedings of the International Conference on Extreme
Programming and Flexible Processes, 2001, pp. 92–95.

[28] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, “On
the interplay between software testing and evolution and its effect
on program comprehension,” in Software Evolution. Springer Berlin
Heidelberg, 2008, pp. 173–202.

[29] G. Bavota, A. Qusef, R. Oliveto, A. Lucia, and D. Binkley, “Are
test smells really harmful? an empirical study,” Empirical Software
Engineering, vol. 20, no. 4, pp. 1052–1094, 2015.

[30] A. Jbara and D. G. Feitelson, “How programmers read regular code:
a controlled experiment using eye tracking,” Empirical Software Engi-
neering, vol. 22, no. 3, pp. 1440–1477, 2017.

[31] J. Melo, F. B. Narcizo, D. W. Hansen, C. Brabrand, and A. Wasowski,
“Variability through the eyes of the programmer,” in Proceedings of the
International Conference on Program Comprehension, 2017, pp. 34–44.

[32] B. Sharif, M. Falcone, and J. I. Maletic, “An eye-tracking study on the
role of scan time in finding source code defects,” in Proceedings of
the Symposium on Eye Tracking Research and Applications, 2012, pp.
381–384.

[33] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger, “Using
psycho-physiological measures to assess task difficulty in software de-
velopment,” in Proceedings of the International Conference on Software
Engineering, 2014, pp. 402–413.

[34] M. V. Kosti, K. Georgiadis, D. A. Adamos, N. Laskaris, D. Spinellis,
and L. Angelis, “Towards an affordable brain computer interface for the
assessment of programmers’ mental workload,” International Journal of
Human-Computer Studies, vol. 115, pp. 52–66, 2018.

[35] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel,
and M. Beigl, “Descriptive compound identifier names improve source
code comprehension,” in Proceedings of the Conference on Program
Comprehension, 2018, pp. 31–40.

[36] M. A. Chal Shun Yu, Christoph Treude, “Comprehending test code:
An empirical study - online appendix,” 2019. [Online]. Available:
https://zenodo.org/record/3355068#.XUAEJKeB3UI

[37] J. Grigg, “Arrange act assert,” http://wiki.c2.com/?ArrangeActAssert,
accessed: 2019-04-02.

[38] J. Cenoz, “The influence of age on the acquisition of english: General
proficiency, attitudes and code mixing,” Age and the Acquisition of
English as a Foreign Language, pp. 77–93, 2003.

[39] K. Lidzba, E. Schwilling, W. Grodd, I. Krägeloh-Mann, and M. Wilke,
“Language comprehension vs. language production: Age effects on fmri
activation,” Brain and Language, vol. 119, no. 1, pp. 6–15, 2011.

[40] Z. Sharafi, Z. Soh, Y. Guéhéneuc, and G. Antoniol, “Women and men
- different but equal: On the impact of identifier style on source code
reading,” in Proceedings of the International Conference on Program
Comprehension, 2012, pp. 27–36.

[41] L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S. Sorte, and
M. Hastings, “Effectiveness of end-user debugging software features:
Are there gender issues?” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2005, pp. 869–878.

[42] M. Burnett, S. D. Fleming, S. Iqbal, G. Venolia, V. Rajaram, U. Farooq,
V. Grigoreanu, and M. Czerwinski, “Gender differences and program-
ming environments: Across programming populations,” in Proceedings
of the International Symposium on Empirical Software Engineering and
Measurement, 2010, 28:1–28:10.

[43] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier
names for comprehension and memory,” Innovations in Systems and
Software Engineering, vol. 3, no. 4, pp. 303–318, 2007.

[44] P. Peachock, N. Iovino, and B. Sharif, “Investigating eye movements
in natural language and c++ source code-a replication experiment,” in
Proceedings of the International Conference on Augmented Cognition,
2017, pp. 206–218.

[45] D. Kontogiorgos and K. Manikas, “Towards identifying programming
expertise with the use of physiological measures,” in Proceedings of the
International Workshop on Eye Movements in Programming, 2015.

https://zenodo.org/record/3355068#.XUAEJKeB3UI
http://wiki.c2.com/?ArrangeActAssert


[46] P. A. Orlov, “Experts vs novices in programming: Who knows where
to look?” Eye Movements in Programming: Models to Data, pp. 16–18,
2015.

[47] J. Tvarozek, M. Konopka, P. Navrat, and M. Bielikova, “Studying var-
ious source code comprehension strategies in programming education,”
Eye Movements in Programming: Models to Data, no. 23, pp. 25–26,
2016.

[48] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2018. [Online]. Available: https://www.R-project.org/

[49] D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-
effects models using lme4,” arXiv preprint arXiv:1406.5823, 2014.

[50] S. Nakagawa and H. Schielzeth, “A general and simple method for
obtaining r2 from generalized linear mixed-effects models,” Methods
in Ecology and Evolution, vol. 4, pp. 133–142, 2013.

[51] K. Barton, MuMIn: Multi-Model Inference, 2009, R package
version 1.42.1. [Online]. Available: https://CRAN.R-project.org/
package=MuMIn

[52] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of-
knowledge model to capture source code familiarity,” in Proceedings
of the International Conference on Software Engineering - Volume 1,
2010, pp. 385–394.

[53] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[54] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it? and
how fast?: Case study on the linux kernel,” in Proceedings of the Working
Conference on Mining Software Repositories, 2013, pp. 101–110.

[55] R. Pham, Y. Stoliar, and K. Schneider, “Automatically recommending
test code examples to inexperienced developers,” in Proceedings of the
Joint Meeting on Foundations of Software Engineering, 2015, pp. 890–
893.

[56] G. Pinto, I. Steinmacher, and M. A. Gerosa, “More common than
you think: An in-depth study of casual contributors,” in Proceedings
of the International Conference on Software Analysis, Evolution, and
Reengineering, 2016, pp. 112–123.

https://www.R-project.org/
https://CRAN.R-project.org/package=MuMIn
https://CRAN.R-project.org/package=MuMIn

