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Gabriele Meoni1,2,3,∗ (B), Marcus Märtens2,∗, Dawa Derksen2,3, Kenneth See4, Toby Lightheart4,
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ABSTRACT

While novel artificial intelligence and machine learning techniques are evolving and

disrupting established terrestrial technologies at an unprecedented speed, their adaptation

onboard satellites is seemingly lagging. A major hindrance in this regard is the need for high-

quality annotated data for training such systems, which makes the development process of

machine learning solutions costly, time-consuming, and inefficient. This paper presents “the

OPS-SAT case”, a novel data-centric competition that seeks to address these challenges.

The powerful computational capabilities of the European Space Agency’s OPS-SAT

satellite are utilized to showcase the design of machine learning systems for space by using

only the small amount of available labeled data, relying on the widely adopted and freely

available open-source software. The generation of a suitable dataset, design and evaluation

of a public data-centric competition, and results of an onboard experimental campaign by

using the competition winners’ machine learning model directly on OPS-SAT are detailed.

The results indicate that adoption of open standards and deployment of advanced data

augmentation techniques can retrieve meaningful onboard results comparatively quickly,

simplifying and expediting an otherwise prolonged development period.
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1 Introduction

Over the last decade, the potential demonstrated by

artificial intelligence (AI) for the Earth observation (EO)

has prompted the space community to investigate its

suitability directly on board EO satellites for applications

having strict requirements in terms of latency and

downlink bandwidth [1–9]. In most previous studies, the

training of machine learning (ML) models was possible

only after the creation of suitable datasets for the target

application.

Depending on the required level of quality, creating

such datasets can be costly, involving the design of

data-acquisition strategies, substantial preprocessing, and

manual labeling of large quantities of data [2, 3, 6]. This

issue is exacerbated when data produced by the mission

imagers during operation are unavailable, as has been

frequently reported when novel image sensors that have

never been used in previous missions are deployed [1–3].

For some missions, such as Φ-Sat-1, the pixel signal-

to-noise ratio and spatial resolution of Sentinel-2 data

were manipulated to emulate the onboard sensor [2] in

an attempt to mitigate the issue. However, performing
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Nomenclature

AI artificial intelligence ML machine learning
EO Earth observation ODSET original dataset
ESA European Space Agency PDSET private dataset
FPGA field programmable gate array

such domain adaptations might add to the complexity of

the data collection and training processes.

In the cases wherein such techniques prove inadequate,

there is often no alternative to train the ML model after

deployment. For instance, the WorldFloods model used in

the WildRide mission [3] required to be retrained on the

miniaturized RGB camera data, which were collected

and labeled after the deployment of the mission in

order to achieve acceptable performance. For sufficiently

complex and specific applications, the deployment of such

pipelines for collecting, post-processing, and labeling

of data significantly increases the development time

of the mission, impedes the reconfigurability of the

satellite, and effectively shortens the mission lifetime [10].

Consequently, there is a significant need to accelerate

this procedure or find shortcuts that enable ML models

to be deployed as fast as possible.

To contribute towards this goal, this study investigated

the following question: How can a fixed ML model

be effectively trained offline for onboard satellite

classification if only a very reduced number of labeled

data from EO satellites are available?

The key aspects of this investigation are thus:

• Very reduced availability of labeled data from

EO satellites: Limiting the requirements in terms

of availability of labeled data from EO satellites

for training should significantly accelerate the phase

of dataset preparation. Sebastianelli et al. [11]

demonstrated that dataset collection and preparation

represent the most time-consuming design steps to

train ML models for satellite imagery. Furthermore,

labeling data for a specific application often requires

a pool of application experts [12, 13]; this could

significantly increase the cost and time for labeling.

• Fixed ML model: Modern ML models (e.g., deep

neural networks) derive part of their performance from

carefully engineered layers and operations that can be

tailored to the task at hand. However, when operational

constraints such as power consumption, bandwidth,

and memory [1] need to be considered, a risk that

overly specialized models might not be supported on

board arises. Fixing the ML model architecture during

the design of the mission minimizes such risks. A strict

implementation of such an approach would prohibit

the use of arbitrary and specialized ML models in

favor of a single general ML model, whose behavior

may only be reprogrammed by changing its parameters

(e.g., weights and biases). Leveraging a fixed ML model

would thus reduce the mission design time.

• Raw satellite data: Typically, “raw data” refer

to the data directly produced by a satellite sensor,

for example, the unprocessed images of an onboard

camera. Such images are affected by different distorting

phenomena, including radiometric distortion (e.g.,

the presence of additional noise, lack of sensor

calibration, and stripe noise), geometric effects (due

to the Earth’s rotation, attitude disturbances, and

other phenomena), and atmospheric distortion (e.g.,

Mie scattering, which distorts the image colors)

[14]. Correction for such phenomena requires the

development and automatization of extensive image

processing pipelines. These are generally not well-suited

for onboard application as their high computational

cost adds to the time that is required to classify one

image [15]. In contrast, by directly using raw data,

image processing becomes part of the training of the

ML model, further decreasing in the mission design

and onboard processing time.

Considering each of these key aspects, we designed

and conducted a data-centric competition called “the

OPS-SAT case”, leveraging mostly unlabeled and raw

data produced by the OPS-SAT satellite. A basic land-

cover classification problem was posed to resemble a

common application task for EO satellites. Furthermore,

a suitable ML model for this task was devised, and

its application was made a strict requirement for the

competition, accompanied by a rigid procedure for raw

image classification. The onboard capabilities of OPS-

SAT were closely emulated, and the competitors were

enabled to train this ML model offline by using their
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own methods. Thus, the competition design focused

on conceiving effective training strategies and data

augmentation rather than model architecture search,

which is a typical aspect of ML competitions. We

transferred the model of the winning team without any

additional training steps to the satellite for onboard

inference so as to test its performance directly in space.

The competition was conducted on the ESA’s online

platform Kelvins¬, which has hosted several challenges

including the “Pose Estimation Challenge” [16, 17],

“PROBA-V Super Resolution” [18], and “SpotGeo

Challenge” [19].

This paper is structured as follows. Section 2 and

Section 3 present related background for our target

system, the OPS-SAT satellite, and a general overview of

our vision for the data-centric competition. Section 4

details the dataset preparation for the competition,

while Section 5 presents further details concerning the

evaluation metrics, ML model selection, generation

of baseline solutions, and overall evaluation process.

Section 6 summarizes the results of the competition,

including a description of the training and data

augmentation procedures applied by the top 3 teams.

Section 7 describes the results from the post-competition

experiment in space, conducted during a flight campaign

on board OPS-SAT by using the winning ML model.

We summarize and discuss the results in Section 8,

concluding with the insights gained concerning possible

advancements in the development of onboard ML models

in Section 9.

2 The OPS-SAT satellite

In 2019, the European Space Agency (ESA) launched

OPS-SAT [20], a 3U CubeSat to orbit the Earth

at an altitude of 515 km. OPS-SAT was designed

as a technology demonstrator and space laboratory

focusing on high-performance computation, resembling

an advanced spacecraft, thus paving the way for future

systems of ESA. The satellite is equipped with an

Altera Cyclone V system-on-chip with an ARM dual-core

Cortex-A9 MPCore and a Cyclone V field programmable

gate array (FPGA), providing unprecedented capabilities

for onboard software execution [20]. Instead of proprietary

operating systems and specialized software commonly

¬ You can access ESA’s Kelvins platform through https://kelvins.
esa.int/

deployed in space, OPS-SAT aims to explore how general-

purpose open-source software running on modern office

personal computers or smartphones (e.g., Linux, Java,

and Python) can be utilized to control the satellite itself.

ESA provides access to the OPS-SAT platform

without cost and minimal bureaucratic overhead to

European academia, industry, and interested individuals

to schedule and run innovative experiments. Examples

of such onboard experiments include the first execution

of neuromorphic algorithms (based on spiking neural

networks) in space [21], a fully autonomous planning and

scheduling agent for image acquisition [22], and various

demonstrations of onboard ML models [23].

In particular, the capabilities of OPS-SAT to execute

an interpreter of TensorFlow Lite models, a popular and

widely adopted industry standard for ML on edge devices

[24], is essential for our research.

OPS-SAT can be interfaced from ESA’s ground station

via various means. The onboard S-band link allows for

uplink speeds of up to 256 kbit/s and downlink speeds

of up to 1 Mbit/s, while the X-band transmitter ensures

a downlink data-rate of up to 50 Mbit/s. Considering

all operational constraints, OPS-SAT can receive and

execute TensorFlow Lite models of a maximum size of 10

MB. In addition to its ML capabilities, another essential

feature of OPS-SAT is its optical camera (BST IMS-

100), which serves as the source for the generation of

our dataset. This camera can provide images and video

with a ground resolution of up to 80 m × 80 m ground

sampling distance per pixel. The attitude determination

and control systems of OPS-SAT facilitate a high pointing

accuracy of well below 1◦. The images captured by OPS-

SAT are received as portable network graphics (.png)

with a resolution of at most 1944 × 2048. Figure 1 shows

an example capture of the optical camera featuring a land

scene with several atmospheric distortions, which we refer

to as the “raw image”, and its processed counterpart.

3 The OPS-SAT case: A data-centric
competition

Public competitions have been proven effective in

transferring state-of-the-art ML techniques toward

challenging space applications, such as satellite image

super-resolution [18], spacecraft pose estimation [25], or

collision avoidance [26]. These competitions are typically

designed around a split of a well-curated, space-related

https://kelvins.esa.int/
https://kelvins.esa.int/
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dataset: a large set of labeled and processed data is

provided to the competitors to design and train ML

models to the best of their capabilities. A more minor split

from this data is provided without labels and serves as the

test set. Following their submission to the competition

platform, the competitor’s models are tested on this test

set and get ranked according to certain merit function, for

example, a mean-square error between the inferred results

and the hidden labels of the test set. Such a competition

design incentivizes the development of powerful but often

also prohibitively large and sophisticated ML models

and can thus be seen as “model”-centric or “algorithm”-

centric competitions.

For the OPS-SAT case, whose concept is illustrated

in Fig. 2, we applied an alternative competition design.

We refer to this design as “data-centric” competition. It

differs from the aforementioned designs in the following

aspects:

(1) The majority of the training set consists of unlabeled

and unprocessed patches, while the labeled examples

Fig. 1 Left: raw capture of a ground-scene from the OPS-SAT optical camera. Right: an offline processed version of the
same image.

Model optimized for edge inference

Competitors cannot choose the model

+ Train Compete

Improve

Agricultural Cloud Mountain Natural River Sea ice Snow Water

Dataset

Train dataset
(available)

Test dataset
(hidden)

Fig. 2 Concept of “the OPS-SAT case” competition. Patches of the dataset are shown post-processed for visual aid.
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are comparatively an exiguous minority, with only a

few labels serving as examples.

(2) The test set is completely hidden from the

competitors, preventing them from running inference

on it directly.

(3) The ML model is fixed and cannot be freely chosen.

By adhering to these design principles, the competitors

can train the given ML model by using the provided and

additional data by using their own conceived training

strategy. The inference on the test set is then performed

by the organizers by instantiating the ML model and

loading the submitted parameters, eventually obtaining

a ranking of all submissions to determine the winning

team.

Following this “data-centric” design, the OPS-SAT

case competition is centered around a classification

task concerning patches of the raw images provided by

OPS-SAT. A few examples of land-cover types, such as

Mountain, Snow, Cloud, Sea ice, Water, and others, are

provided with many unlabeled raw images. Competitors

shall find and submit the parameters of a fixed ML model

without access to the test set’s image patches.

Imposing these limitations on the competitors allows

for the faithful replication of the onboard algorithmic

procedures of OPS-SAT, facilitating the transfer of

the results of the competition to the satellite without

additional steps involved. Denying the competitors access

to the test set patches for inference and forcing them

to work with unprocessed raw images for training align

with the specific difficulties of the onboard application

domain, emulating a live acquisition of previously unseen

images directly by the OPS-SAT camera.

4 The OPS-SAT case dataset

The creation of the OPS-SAT case dataset entailed

several steps, as shown in Fig. 3. Beginning with raw

captures from the OPS-SAT camera, this procedure

aimed to create numerous small and labeled 200 px ×
200 px patches from the larger 1944 px × 2048 px OPS-

SAT images, removing defects and selecting mountains,

rivers, clouds, and other distinguishable features. An

image processing step was needed to compensate for the

effects of atmospheric distortion and aid our team of

experts in the labeling process. As our labeling campaign

resulted in a non-negligible imbalance among target

classes, additional measures were devised to create a

meaningful split between the training and test part of the

dataset, with the hidden test part containing a significant

amount of labeled patches. Meanwhile, the training part

is composed of raw images with only a few labeled patches

per target class as examples. The training part of this

dataset was released on Zenodo [27] at the beginning

of the OPS-SAT case competition. In contrast, the test

part was released after the end of the challenge [28].

This section details each of the above mentioned steps,

highlighting several technical and practical challenges

that are emblematic of ML tasks related to EO.

4.1 Edge image removal

Generally, OPS-SAT images can be considered to belong

to one of two categories: Edge or Earth, as defined by

Labrèche et al. [22]. Edge images suffer from a high

elevation angle, containing part Earth and part sky,

whereas Earth images are close to the nadir (see Fig. 4

for an example). Such Edge images occur frequently in

the context of OPS-SAT, as the satellite was affected by

a tumbling motion during the dataset acquisition.

Although we initially considered classifying images

belonging to either Edge or Earth part of the competition,

we adopted the more challenging land-cover classification

task instead.

The removal of the Edge images from the dataset was

Edge image

removal

Image

preprocessing

Manual

labelling

Train/test

splitting and

patch selection

Labelled patches

Image

cropping

Train patches

Test patches

Fig. 3 Dataset creation procedure.
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Fig. 4 Edge (unprocessed) and Earth images (white-
balanced). Boundary striped and back spot defects are shown
on white-balanced Earth images.

performed using an approach similar to that described

in Section 5.3. Inspecting the results of our Edge images

removal procedure showed a near perfect accuracy;

therefore, the given problem is already easily solvable on

board. Consequently, only Earth images were considered

for the remainder of this study and in the OPS-SAT case

competition.

4.2 Image preprocessing

Raw OPS-SAT images are not calibrated or corrected

for atmospheric absorption; thus, their accurate labeling

is challenging even for experts. Therefore, we applied

successive steps of contrast enhancement and histogram

equalization, taken off the shelf from the EO image

processing toolkit Orfeo ToolBox [29]. Although this

procedure enhanced the noise in certain areas, the overall

visual quality of the images improved, paving the way

for the manual labeling procedure. We emphasize that

the patches of the enhanced images are neither part of

the public training nor the hidden test set but were only

deployed as a tool for obtaining human labels.

4.3 Image cropping

After surveying all the Earth images captured by OPS-

SAT, we selected a small subset containing a diverse set

of land-cover features for the image cropping step. In

this step, we divide each OPS-SAT image into patches

of size 200 px × 200 px each to match the onboard

memory requirements and to isolate specific features. We

extracted the patches from the original images without

overlap by following a regular grid.

Before extracting the patches, we removed 10 pixels

from the boundary of each image because a sensor defect

produced striped noise in those areas. In addition, we

removed one of the patches due to a different sensor

defect from each image, resulting in a dark spot on

fixed coordinates. Both of these defects are shown in

the processed Earth image of Fig. 4. We produced a

total of 1941 patches to serve as a starting point for

the labeling procedure, making each patch’s raw and

processed version available to our labelers.

4.4 Manual labeling

Upon studying our set of patches, we initially defined nine

classes of interest: Agricultural, Cloud, Desert, Mountain,

Natural, River, Sea ice, Snow, and Water. All of these

classes are representative of geological features or, in the

case of Cloud, atmospheric features that can be directly

discerned from the color and texture of the corresponding

patch. Defining classes with distinct visual features (i.e.,

the meandering pattern of a river or the white color of

snow) was necessary to guide our group of expert labelers

in their decision process, as no geo-reference was obtained

for the OPS-SAT images during acquisition. In particular,

we defined Natural patches as rural, not-exploited lands

that are not mountains or deserts and do not include

rivers or traces of human activities. The feature that

distinguishes Natural and Agricultural patches is the

absence/presence of human-cultivated crops. In the case

of snowy mountains, the labelers were asked to label as

“Snow” those patches containing more than 50% of snow

pixels.

However, patches lacking distinguishing features,

including artifacts or enhanced noise due to the image

preprocessing step, still exhibited significant ambiguity.

For example, patches containing water without coastal

areas were often indistinguishable from desert patches,

especially when their colors appeared significantly

distorted. This difficulty, however, could be mitigated by

contextualizing the patch within the entire uncropped

image to enable the labeler to grab additional information

from the surrounding patches. To this end, we equipped

the labelers with complete, uncropped satellite images.

We enforced a strict voter consensus to avoid including

ambiguous patches in the dataset. More precisely, all

patches with a voter consensus of less than 6 out of 8 votes

were discarded. Checking the discarded patches after the

labeling campaign confirmed that these contained either

blurry or noisy visuals or featured overlapping classes,
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Table 1 Labeling statistics. The retention rate is the ratio
of samples that have a high voter agreement (more than 6
out of 8 votes) to the total number of patches that have at
least one vote for the class. It shows how often a high number
of voters agreed on a certain class label

Retention rate Patches in final test set

Mountain 46.9% 99
Cloud 54.5% 114
Snow 58.4% 106
Water 60.8% 107
Agricultural 69.0% 36
Sea ice 84.6% 37
Desert 43.4% 0
Natural 27.5% 58
River 48.2% 31

inducing ambiguity. Table 1 summarizes the dataset’s

retention rate and final number of patches per class.

4.5 Train/test split and patch selection

To prevent data leakage between the training and test

sets, which could result in underestimating the true

classification error, we made the train/test splitting at

image level. In other words, all the patches cropped

from the same image were either included as part of the

training or the test set but never distributed between

them. In particular, the training set was populated by

using 10 labeled patches per class by selecting those with

perfect agreement among the labelers. Furthermore, we

provided the 26 raw satellite images to be used by the

competitors to procure unlabeled data.

At this point, our general competition design had

progressed already so far that it was certain that we

would use the EfficientNet-lite0 neural network for the

ML model of our choice (discussed in more detail in

Section 5.1). We trained EfficientNet-lite0 on several

different dataset splits and measured its performance not

only as a proof of concept but also to select a dataset

split of good quality. The training procedure used for

these experiments is the same that was use to create the

competition baseline, as outlined in Section 5.3.

Figure 5 shows the confusion matrix of the trained

EfficientNet-lite0 for one of our iterations. The most

remarkable challenge for the model was to distinguish

the Mountain from the Snow class. This was expected, as

features from the Snow and Mountain classes appeared

commonly in the same patch, making this particular case

ambiguous. We found that this type of ambiguity would

make for an interesting challenge without compromising

Fig. 5 Confusion matrix of the trained EfficientNet-lite0
model on an intermediate dataset splitting iteration.

the quality of the competition dataset. Therefore, we

decided to keep both the Mountain and Snow classes in

the final dataset.

Despite the poor consensus rate (27%) among the

labelers, the Natural class was surprisingly well classified

by the trained EfficientNet-lite0 model. This indicates

that the consensus filtering retained few but valid and

recognizable patches for training. In contrast, the Desert

class featured a low number of test samples, indicating

rarity in the dataset, combined with the difficulty faced

by our human labelers to correctly classify these patches.

Simultaneously, the EfficientNet-lite0 model showed low

accuracy when confronted with these patches. Therefore,

this class was removed from the final dataset. Although

the trained EfficientNet-lite0 was nearly incapable of

classifying the River class, we decided to include it in the

final dataset to provide more variety and challenge for

the competitors.

In summary, the final dataset version includes 8 classes

corresponding to the initial class selection except for

Desert. In particular, the final training subset contains

80 labeled patches and 26 raw images for the public

training set. Notably, the number of unlabeled patches

available to the competitors depends on the algorithm

used to crop the 26 original images. The algorithm was

never released so as to allow the participants to design

their own dataset creation strategy. The hidden test set

consists of 588 labeled patches. The number of patches

for each class in the final test set is presented in Table 1.
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5 Competition design

5.1 Choice of the ML model

To design the model for the competition, we considered

both the classification performance and onboard satellite

requirements. Nanosatellites such as CubeSats usually

feature strong limitations in terms of power-budget,

uplink, and downlink bandwidth [1]. In our specific

case, the main onboard limitation was due to the uplink

bandwidth, restricting the size of the ML model to 10

MB.

At the time of the competition design, EfficientNet

models [30] offered the best trade-offs in terms of model

size and classification performance. In particular, we

selected the EfficientNet-lite0 architecture, a modified

version of the EfficientNet-B0 suitable for embedded

systems. Owing to the removal of squeeze-and-excitation

networks and replacement of all the activations

with RELU6, EfficientNet-lite0 supports post-training

quantization, resulting in a significant shrinking of the

model size [31].

To test the suitability of the EfficientNet-lite0 model

on the OPS-SAT case dataset, we created a baseline

solution as described in Section 5.3. Application of post-

training quantization to the original 32-bit floating-point

model, which transformed all parameters into the 16-

bit floating-point format, resulted in a negligible loss in

performance while reducing the model size down to 5.6

MB. We did not face any underflow or overflow on the test

subset after halving the model precision. Consequently,

we decided on the EfficientNet-lite0 model as the fixed

ML model to be used for the competition, with the post-

training quantization as the fixed step performed on every

submission as part of their evaluation.

5.2 Evaluation metrics

As detailed in Section 4, the test dataset is imbalanced

with classes such as Agricultural, River, or Sea ice

appearing with lower frequency than classes such as

Snow, Water, or Clouds. Deploying accuracy as the

evaluation metric for ranking submitted models during

the competition would induce a bias towards over-

represented classes, with errors in less frequent classes

having only negligible impact. Thus, instead of accuracy,

we decided to select our own metric L (Eq. (1)) for this

competition:

L = 1− κ (1)

where κ is Cohen’s kappa coefficient. The Cohen’s kappa

has already found extensive application as a metric for

imbalanced classification problems for various remote

sensing applications [32–34]. The value κ represents a

measure of agreement between two different raters, which,

in our case, would be the labels of the test set and

predictions of the ML model. In the case of perfect

agreement, κ = 1, while κ = 0 if classes are predicted

at random according to their relative frequency. To be

consistent with ESA’s competition platform Kelvins, the

definition of our metric L switches this meaning, making

L = 0 the hypothetically best achievable score and

L = 1 corresponding to a score obtained by a random

assignment.

Following the requirement to apply a 16-bit floating-

point quantization, we define Lquant as the L value

computed after applying quantization to the submitted

network parameters. The leaderboard is ranked according

to Lquant. Meanwhile, the values of unquantized score

(i.e., L) were collected to investigate the influence of the

post-training quantization with regard to the score.

5.3 Competition baseline

We based our training pipeline on a variant of FixMatch

[35], called MSMatch [13], a semi-supervised training

pipeline that has been developed for remote sensing

applications. MSMatch is based on pseudo-labeling

and consistency regularization to create an additional

loss to the categorical cross-entropy, generally used for

supervised training for multi-class classification problems.

In particular, strong and weak augmentation are applied

to an unlabeled image. Then, if the model’s prediction on

the weakly augmented image passes a certain confidence

threshold, a consistency regularization loss is created to

teach the model to predict the same class for weakly and

strongly augmented images.

Compared to the original implementation that utilizes

a seeded random sampling of the entire dataset to create

the training and test datasets, we used the split created

via the procedure described in Section 4.5. In particular,

we used the selected ten examples per class as labeled

part of the dataset. To create an unlabeled portion, we

cropped the full images of the train set provided to the

competitors into 200 × 200 patches and used them as

 Challenges on ESA’s Kelvins platform are traditionally designed
to reach an “absolute zero” as a score, requiring the score to be
always minimized.
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unlabeled data. Furthermore, in contrast with the original

MSMatch implementation, we did not apply any image

normalization as it would require us to utilize undisclosed

channel statistics, such as mean and standard deviation,

of the test set.

To train the baseline model, we used a batch size of

16 labeled patches, an unlabeled ratio of 7 (which is the

number of unlabeled patches for each labeled one), a

weight decay of 0.00075, a learning rate of 0.03, and a

pseudo-label confidence threshold of 0.95. All training was

performed using PyTorch [36], followed by a conversion to

the TensorFlow Lite format. After 400 epochs of training,

the baseline achieved a score of Lquant = 0.539694 and

46.22% accuracy.

5.4 Submission evaluation

For the success of this competition, it was crucial

to prevent the participating teams from probing the

hidden test set and exploiting the public leaderboard

to gather excessive information about it. Consequently,

we implemented the following measures:

• Each team could score at most two submissions per

day.

• Only the score of the best submission for each team

was made public.

• Submissions were evaluated on only 50% of the hidden

test set during the submission period.

Figure 6 shows the evaluation and ranking procedure

regarding a single submission.

We forced the participants to submit a single.h5 file

containing a trained EfficientNet-lite0 model, whose

architecture was provided in the open code repository

of the OPS-SAT case starter-kit [37]. More precisely, we

derived the final implementation of the competition model

by removing the “stem activation” layer from the original

Keras implementation [38] provided by efficientnet-lite-

keras® to facilitate the conversions from the PyTorch

users relying on efficientnet-lite0-pytorch¯.

We discarded a submission if the model submitted did

not match the one provided in the starter-kit. Otherwise,

the submitted model was converted into a TensorFlow

Lite model and quantized into a 16-bit floating-point

format to match the uplink bandwidth requirements

of the OPS-SAT satellite, as detailed in Section 5.1.

During the submission period of the competition, we

® https://github.com/sebastian-sz/efficientnet-lite-keras
¯ https://pypi.org/project/efficientnet-lite0-pytorch-model/

performed the inference on a fixed 50% subset of the test

set, with both metrics L and Lquant as a result. Only if

the team improved upon their previous score (or had no

previous submission) was an update on their rank in the

leaderboard, according to Lquant, reported.

To support the participants on a technical level, we

made the serverside evaluation code, model conversion

utilities, and helper functions for generating valid

submission files available in the open code repository

of the OPS-SAT case starter-kit.

6 Competition results

6.1 Competition outcome

We extended invitations to expert teams and individuals

worldwide to participate in the competition. Overall,

56 teams registered, of which 41 managed to enter the

leaderboard by producing at least one valid submission.

Submissions were possible during a four-month period,

ranging from July 1 to October 31, 2022.

Figure 7 shows a timeline for the score (Lquant) during

the submission period. A total of 891 valid submissions

were received by the end of the competition. The best

submission of each team of the public leaderboard was

re-evaluated on 100% of the hidden test set to determine

the final ranking. This re-evaluation did not change the

ranking of the top 3 teams, indicating no overfitting. The

final results of the 48 teams produced a Lquant ranging

from 1.002 (worst result) to 0.381 (competition winner).

The baseline solution with Lquant = 0.5397 would have

been ranked the 11th place in the leaderboard, if it was

submitted. Table 2 shows the top 10 teams of the final

leaderboard. Although the final ranking was determined

on the basis of Lquant, the impact of the quantization error

was insignificant as it did not affect the ranking of the

top teams. In contrast, adopting accuracy as the ranking

metric would have significantly impacted the ranking,

in particular, moving the 4th ranked team Alcheringa-

Dreamtime up to the 3rd place.

6.2 Methods of the top 3 winning teams

We interviewed the top 3 teams to examine the

methodologies that led to their respective results. It was

confirmed that the scarcity of labels was forcing the

competitors to invest most of their efforts into creating

their own version of the data for training the model, which
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Fig. 7 Evolution of public leaderboard score for the top 5 teams. Each cross corresponds to a valid submission. Solid lines
indicate the best submission (lower values are better).

Table 2 Final ranking of top 10 teams evaluated on the
whole dataset

Rank Team name L Lquant Accuracy

1 inovor 0.38109 0.38109 0.67857
2 ND2I 0.40868 0.40870 0.65646
3 sim-team 0.47429 0.47429 0.59694
4 Alcheringa-Dreamtime 0.47635 0.47618 0.60034
5 Mobs 0.49790 0.49001 0.58503
6 deya109 0.50317 0.50114 0.57823
7 AgeniumTeam 0.50456 0.50456 0.57143
8 DOTE GTDxIRT 0.50624 0.50812 0.56463
9 vision creation 0.51393 0.51355 0.55952
10 perico 0.52893 0.52880 0.55272

was precisely our intention as organizers of this data-

centric competition. To allow for better differentiation

herein, we refer to the original, sparsely labeled OPS-

SAT case dataset as the “original dataset” (abbreviated:

ODSET). Any augmented or modified version of the data

by the competitors is referred to as a “private dataset”

(abbreviated: PDSET), as those were the keys for success

and thus never publicly shared by any team.

In addition to the interviews, deploying the submitted

models to the ODSET allowed us to analyze their

performances on a finer level than on the basis of

the scoring metric alone. Figure 8 shows the confusion

matrices of the best submission for each team evaluated

on the hidden test set of the ODSET. Figure 9 compares

the patch classification on an image from the training set

of the ODSET. A summary of the different methodologies

of the top 3 teams is presented in Table 3. The remainder

of this section presents the details concerning the training
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Fig. 8 Confusion matrices of the best submissions of the top 3 winning teams.

Fig. 9 Classification of an unlabeled image from the official OPS-SAT case dataset based on the best submission of the top 3
teams. From left to right: Inovor Technologies, Capgemini SE, Ubotica Technologies.

and data augmentations that the competitors chose to

share with us.

6.2.1 Inovor Technologies (1st rank)

The PDSET of the competition winners was generated

as follows. First, the unlabeled images of the ODSET

were cropped into multiple patches. Second, a new source

of OPS-SAT images was added by collecting the images

from the official OPS-SAT Flickr album°. This online

photo album was launched to showcase OPS-SAT images

for public viewing and therefore contains post-processed

images different from the raw images of the ODSET.

To effectively utilize these images, Inovor Technologies

applied linear scaling to match the color-channel statistics

of the labeled patches of the ODSET. The pixel mean

and standard deviation were computed separately for

each class and applied to normalize the patches from the

° https://www.flickr.com/photos/esa events/albums/721577164
91073681/

Flickr images after they received their label.

Patch labeling was performed manually by the team

itself, generating the first submissions by training the

model only on patches with a high confidence level.

Exploiting the feedback of the public leaderboard,

patches with lower confidence level were corrected and

incrementally added to the training set once their quality

could be assessed. For the final submission, the PDSET

used for training was composed of approximately 75%

patches from the normalized Flickr images.

Data augmentation was used to increase the size

of the competitor’s PDSET accordingly; this includes

cropping, zooming, rotation, brightness, contrast,

hue and saturation jitter, perspective shifting, and

gamma corrections. Inovor Technologies based their

augmentations on the assumption that the saliency of

geometrical and color features ought to be different for

each class, accordingly tuning the intensity of the various

https://www.flickr.com/photos/esa_events/albums/72157716491073681/
https://www.flickr.com/photos/esa_events/albums/72157716491073681/
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Table 3 Comparison of methodologies of the top 3 teams

Inovor Technologies Capgemini SE Ubotica

Usage of additional datasets OPS-SAT Flickr NWPU-RESICS45 [39] —
Manual labeling Yes Yes Yes
Pseudo labeling (Not disclosed) Yes Yes
Data augmentations Cropping, zooming, rotation,

brightness, contrast, hue,
and saturation jitter,
perspective shifting, and
gamma corrections

Vertical and horizontal flip,
random brightness and
contrast, solarize, RGB shift,
coarse dropout, shift scale
rotate, and resize

Flips and rotations

Size of final dataset (Not disclosed) 12,583 3000–7000
Optimizer Adam RMSprop Adam
Loss function Focal Loss Sigmoid Focal Cross Entropy Sparse Categorical Cross

Entropy + Cosine Similarity
Model trained EfficientNet-lite0 EfficientNet-lite0 Ensemble of EfficientNet-lite0

+ Xception [40]

augmentations. For instance, as a more substantial

presence of geometrical features characterizes patches

from the Agricultural and Natural categories, applying

stronger augmentation techniques for these classes was

possible. In contrast, Mountain and Snow patches

required a lower color augmentation as color was one

of the most distinguishing features between these classes.

As regards their final submission, the ML model was

trained using PyTorch for 80 epochs with Adam as

optimizer and a focal loss function to handle dataset

imbalance.

6.2.2 Capgemini SE (2nd rank)

Capgemini SE participated under the team name “ND2I”

in the competition. The PDSET of this team was

developed and grown three times during the submission

period. First, the unlabeled ODSET images were cropped

using a 40% overlap into patches. The most representative

of these patches were manually labeled, creating a first

set of 3679 patches.

Second, images from the external NWPU-RESICS45

dataset [39] were added. This dataset contains 31,500

images from various sources divided into 45 scene classes

and has been published for free use to support research

into remote sensing. In order to adapt patches from

NWPU-RESICS45 images to better resemble the raw

patches of the ODSET, a custom variant of the optimal

transport method [41–44] was deployed. Considering

the 80 labeled patches of the ODSET as a colorimetric

reference, an optimal vector minimizing the transport

cost was computed to replace the value of the source pixel

with the value of the target pixel, transferring the color

range of the ODSET to the NWPU-RESICS45 patches,

artificially recreating their blueish hue. After this step,

the size of the PDSET increased to 5578 labeled patches.

In a final step, Capgemini SE trained the EfficientNet-

lite0 model with self-training on 520,000 patches cropped

from the raw ODSET images using pseudo-labeling.

The generated pseudo-labels were used to retrain a new

instance of the model from scratch in an iterative process.

During each iteration, training was performed for 5

epochs on the pseudo-labeled patches provided from the

previous iteration and evaluated by using the 80 labeled

patches of the ODSET. Capgemini SE manually corrected

misclassified patches if the prediction confidence was

greater than 0.95 in order to reduce the bias induced

by the auto annotation. Furthermore, Capgemini SE

visually inspected and double-checked pseudo-labels of

underrepresented classes (e.g., River, Agricultural, or

Sea ice) to correct possible errors. In total, 2808 of

such patches were reviewed by a human for validation.

Subsequently, the final size of Capgemini SE’s PDSET

reached 12,583 labeled patches.

Concerning the training strategy, the EfficientNet-lite0

model was pre-trained using the complete PDSET. Then,

the weights originating from the pre-training were used

to initialize a new instance of EfficientNet-lite0 that was

trained leveraging only the 3679 labeled patches created

during the first step of the PDSET. This allowed for the

model to converge quicker to better solutions as compared

to using random starting weights.

During the training, Capgemini SE also used several

data augmentation techniques: vertical and horizontal

flip, random brightness and contrast, solarize, RGB shift,
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coarse dropout, shift scale rotate, and resize. These

augmentations were provided using the AutoAlbument

function from the Albumentations library [45].

The loss function used was a sigmoid focal cross

entropy. This family of loss functions can be adapted to

force an ML model to focus on classes of lesser frequency

within the training set, making it particularly useful

for situations with class imbalance [46, 47]. Specifically,

Capgemini SE deployed a parameter of γ = 3.1 and

a weighting according to the relative frequency of the

classes in the PDSET:

α = [nclass1/Ntot, nclass2/Ntot, · · · , nclass8/Ntot] (2)

Additionally, label smoothing was deployed to

regularize the one-hot encoded labels according to the α

factor using

yLSk = yk(1− α) + α/K (3)

where K = 8 is the number of classes. Smoothing the

labels prevents the model from becoming over-confident

by implicitly aligning its confidence with the accuracy of

its predictions [48, 49].

Lastly, RMSprop was selected as the optimizer, softmax

as the activation function, and 0.5 as the dropout rate. To

limit overfitting, the callbacks used are EarlyStopper and

ReduceLROnPlateau. The train/test split of the PDSET

(85/15) was generated by using the stratify method to

account for the class imbalance.

6.2.3 Ubotica (3rd rank)

Ubotica participated in the competition under the name

“sim-team”. The PDSET of this team was developed

using manual labeling, semi-supervised learning, and

data augmentations.

In the first step, Ubotica took the unlabeled images

provided by the ODSET and labeled them manually

on a pixel level, creating a partial image segmentation.

These segmented images were then cropped into patches,

allowing for an overlap of 100 px × 100 px at most. Only

patches having at least 60% labeled pixels were retained,

as only some regions could be confidently annotated.

The resulting PDSET had a size of approximately 5000

labeled patches with a significant class imbalance.

In the next step, Ubotica increased the size of the

PDSET by an iterative training and pseudo-labeling

procedure, by using an EfficientNet-lite0 model trained on

the manually labeled patches for 100 epochs, with sparse

categorical cross entropy as loss function. To prevent

the model from being biased by Ubotica’s labels, this

model was fine-tuned by retraining it for 20 epochs on

the labeled patches of the ODSET. Cosine similarity was

selected as loss function for this second training step, as it

provides better performance for neural network training

on small datasets [50]. Dropout rates were set to 0.6 and

0.4 for the first and second training steps, respectively.

The Adam optimizer was used for both steps to train the

network with a batch size of 8.

After data augmentation, the trained model was

deployed to generate pseudo-labels for unlabeled patches

cropped from the ODSET images. Ubotica worked under

the assumption that the data distribution between the

classes of the train and test part of the ODSET ought

to be skewed. As the test set of the ODSET was not

available to assess statistics to compensate for such skew,

deploying strong data augmentation techniques such as

adapting the patch’s brightness, hue, or contrast was

deemed potentially detrimental. Thus, only simple flips

and rotations were deployed, leaving the domain of the

data mostly unchanged. In particular, Ubotica used the

flip and rotation transformation to create five versions of

each unlabeled patch and included the pseudo-label into

their PDSET only if the trained model agreed on all five

patches with a confidence of at least 99%.

This pseudo-labeling procedure was used several times

to augment the PDSET and fine-tune the parameters of

the EfficientNet-lite0 model, evaluating its performance

during experiments and making submissions to the public

leaderboard. Depending on the iteration of this process,

the PDSET contained approximately 3000–7000 labeled

patches.

As regards the final submission of Ubotica, an ensemble

of different neural networks was trained to create the final

version of the PDSET and weights of the submitted

EfficientNet-lite0 model. The idea behind deploying

different model architectures for training was to allow for

convergence to a better local minimum on the loss surface,

thus increasing the robustness of the overall prediction of

the ensemble. More precisely, a 3-ensemble was created

by mixing one Xception network [40] with two distinct

instances of an EfficientNet-lite0 model. The Xception

network was trained using the same training and fine-

tuning procedure as described for the EfficientNet-lite0

model. After training, the ensemble was used to create

a new version of the PDSET as follows: all models were

shown five different flips and rotations of the same patch,
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and, only if all predictions agreed with high confidence,

the pseudo-label of the patch was included into the

PDSET. Seven training and fine-tuning iterations were

needed to produce Ubotica’s best performance.

7 Post-competition in-orbit experiment

Following the conclusion of the competition, we organized

an experimental campaign to evaluate the performance

of the trained models directly on board the OPS-SAT

satellite. In particular, owing to its superior performance,

the quantized model of Inovor Technologies was selected

and uploaded to the satellite. During the experimental

campaign, the satellite collected several raw images,

which were cropped into 200 px × 200 px patches and

directly fed into the model for inference by the satellite.

The resulting activation of the last layer was saved in a log

file, which was transferred back to the Earth alongside

the raw images and their patching. A comparison of

these onboard activations with an offline inference of

the same model resulted in a 100% agreement, thereby

verifying that the competition setup faithfully replicated

the software environment and processes on the actual

satellite.

Given the tight operational constraints of OPS-SAT, no

particular collection strategy for the experimental images

could be implemented. Instead, we collected all the images

without applying any filter during our allocated time slot

and power budget. Consequently, we discarded the results

related to those images whose significant distortion made

them incomparable to the patches in the OPS-SAT paper

and impossible to classify even through visual inspection.

Among the images of sufficient quality, examples that

display areas almost completely covered in clouds are

often found. The inference of the patches of those cloudy

images is primarily correct, assigning the cloud label,

with sporadic errors due to confusion with the Water and

Snow classes. Fortuitously, a few images were captured

showing only partial coverage with clouds, presenting

a more diverse set of land-cover features, including

mountains, glaciers, water surfaces, meandering rivers,

natural vegetation, and agricultural areas.

Given that these images were collected after the

labeling campaign of the OPS-SAT dataset, we missed

ground-truth labels that would have enabled us to

compare the results with respect to the metrics used in the

competition. We based our evaluation on opportunistic

observations instead, showcasing positive and negative

examples for cases in which the correct land-cover type

is evident without rigorous expert labeling. Furthermore,

as shown herein, the figures related to the in-orbit

experiments were enhanced in contrast to aid the reader

in discerning the different features. All onboard inference

was performed on raw image data. For example example,

Fig. 10 shows the image with the highest amount of

different classes (according to the Inovor Technologies

model).

Fig. 10 Example of onboard inference for image patches
using the winning model of the OPS-SAT competition.

The model inference reflects the dominating features of

mountains and snow, although they are only occasionally

accurate. For a few patches, other classes such as

Cloud, Water, and Natural are confused with Snow and

Mountain. While the cropping of the satellite images

for the original experiment did not overlap (including a

boundary of 10 px around each patch), a large number of

overlapping patches can be constructed from the image,

and each of them can be classified independently with

the model; this is also possible on board. When merging

the results of overlapping patches for a specific label

with each other, the classification task can be utilized

to perform a coarse image segmentation with some more

interpretable results.

Figure 11 shows a comparison between the classification

of the original cropping and the proposed coarse

segmentation, which allows for the identification of cloud

pixels with fair accuracy. Figure 12 shows a reasonable

segmentation of an image into the Cloud, Mountain, and

Natural classes.

This segmentation technique is capable of separating

small-scale features such as potential locations of rivers,
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which could otherwise be lost when applying the

more rigid non-overlapping cropping. Figure 13 shows

examples of (partially) successful and unsuccessful river

segmentation.

8 Discussion

8.1 Successful techniques

A comparison of the different solution strategies of the

top 3 teams from Section 6.2 shows certain similarities,

of which the manual labeling of the unlabeled part of

the OPS-SAT dataset is notable. While it is unknown

whether lower-ranked teams relied on manual labeling as

well, this could be considered an indication that auto-

labeling techniques that completely avoid a human in

the loop have not been competitive. This hypothesis is

corroborated by the performance of our competition’s

baseline solution, which was obtained by using a variant

of FixMatch without any manual labeling, achieving

an inferior score of Lquant = 0.5397. Manual labeling

Fig. 11 Left: onboard classification of separated image patches. Right: segmentation of the cloud-class using overlapping
patches by sliding a 200 px × 200 px window with a stride of 20 px and adding red color whenever the patch was classified as
Cloud.

Fig. 12 From left to right: segmentation of clouds (red), mountains (orange), and natural vegetation (green) for onboard
model.

Fig. 13 From left to right: purple region accurately segmenting a broad river; purple region only partially covering the river
(uncovered regions have been classified as Natural); false positive: water-surface classified as River.
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was not explicitly discouraged for this competition as

it would have been practically impossible to prevent it.

Nevertheless, we reckon that human annotations, despite

their high quality, remain too costly and will not be able

to scale with the increasing amount of data collected and

the strong demand for ML models in space. Thus, the

results of the competition highlight the need to improve

the state-of-the-art in semi-supervised learning and fully

automated labeling techniques.

One of our goals in setting up the OPS-SAT challenge

as a data-centric competition was to explore whether the

competitors would be able to exploit openly available

external datasets to improve their scores. For the first and

second-ranked teams, this appears to be the case. The

first-ranked team used data from the official OPS-SAT

Flickr webpage, and the 2nd ranked team utilized the

NWPU-RESISC45 [39] dataset. While NWPU-RESISC45

data were obtained from a completely different optical

sensor, the Flickr images of OPS-SAT were post-processed

before publication, making them remarkably different

from their unpublished raw data equivalent. Despite these

complications, both teams applied different techniques

to modify the external data to align with the general

properties found in the OPS-SAT dataset. Given their

success in the competition, we reckon that making

satellite data freely available may be a critical factor in

improving machine learning pipelines for onboard space

applications in general.

Conversely, the third-ranked team, Ubotica, achieved

a highly competitive score by utilizing only the provided

dataset. While the other two teams utilized a vast number

of different data augmentation techniques, including

flips, rotations, contrast enhancements, saturation shifts,

and brightness changes, Ubotica limited their approach

to flips and rotations. Thus, having a comparatively

simple approach in regard to data augmentation, the

use of ensembles consisting of additional network

architectures different from the EfficientNet-lite0 for

pseudo-labeling is a creative approach to circumvent

the restrictions on the model architecture that we

imposed by the competition design. Given their relative

success, this approach could be considered promising,

absorbing the benefits of more sophisticated and

potentially easier trainable models while ultimately

obeying the architecture constraints imposed by the

satellite environment. Thus, the impact of high-quality

pseudo-labeling and advanced neural network training

techniques such as the ensemble implemented by Ubotica

are worth considering. Nevertheless, definitive conclusions

on the impact of specific techniques would require

systematic ablations studies, which are out of the scope

of this study.

However, concerning the goal of the data-centric

competition as a means to explore whether sparsely

labeled data can already deliver meaningful results, we

interpret the success of the various approaches over

our baseline positively. The use of external datasets,

data augmentation techniques, and sophisticated training

methods are all viable options when confronted with the

development of onboard-AI from sparse data under the

limitations of the space environment.

8.2 Class-specific performance

It is worth investigating the most common sources of

errors among the top 3 competitors by comparing the

results shown by their confusion matrices shown in

Fig. 8. Cloud and Sea ice feature a higher recall—

(0.877, 0.9389, 0.8421) and (0.8108, 0.8108, 0.9189) for

the top 3 respective competitors, respectively. Except

for Capgemini, Sea ice also features—together with

Water—the highest precision, namely, (0.8824, 0.6818,

0.8947) and (0.8913, 0.9875, 0.7748), respectively. The

precision of the Cloud class is generally lowered because

of the relatively high number of Snow and Mountain

patches predicted as Cloud for all three competitors.

The confusion between Snow and Cloud should be

not surprising, given the similarity of the features

between these two classes. The Mountain class features a

maximum precision and recall of 0.5977 and 0.5253 due

to the confusion with the Snow and Cloud classes. This

fact is partially addressable to the presence of snow or

marble in some of the Mountain patches in the test set

and the fact that many of the Snow patches are located

in mountainous areas. Notably, only Mountain patches

free of snow or marble were provided in the train split,

which significantly curtailed the representativeness of

the training set, introducing a bias error. This is due to

the procedure used to select the training patches, which

favored the ones showing a complete agreement among the

labelers that led to exclude those with confusing features

such as snow and marble. Judging from the precision and

recall of these classes, this bias was not compensated by

any of the techniques of the top 3 competitors. However,

all their models tend to over-predict the Cloud class to
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the detriment of Mountain and Snow classes, resulting

in a high number of false positives.

All three models also tend to predict a significant

number of the Agricultural patches as Natural, leading to

a low recall for the Agricultural class. For the Capgemini

SE model, the recall for Agricultural is even zero.

Lastly, concerning the prediction of the class River,

only Inovor Technologies reached a recall higher than 0.45.

In most cases, most of the misclassified River patches

are images in which the river’s width is much smaller

compared to the patch size. Therefore, it is reasonable

to assume that the co-presence of other elements with

more prominent features in those patches led the model

to misclassify them.

Figure 14 shows several examples of misclassified

patches from the test test under the inference of the

model from Inovor Technologies.

8.3 Onboard experiments

When discussing the results of the post-competition

orbital experiments, the following aspect must be

considered: the OPS-SAT challenge was purposely

designed to expose its participants to serious difficulty

in order to faithfully simulate the many constraints

and hurdles that are expected for the development of

onboard AI in space in the near future. Our incentive

was to motivate the competitors to find innovative

solutions, deploy advanced data augmentation techniques,

and make the most of a minimum of data. While

releasing the fully labeled dataset would have arguably

allowed for better training of the ML model, resulting in

potentially higher classification accuracy, it would have

compromised our vision to demonstrate that meaningful

results can be obtained using remarkably little labeled

data. Consequently, the experimental results need to be

judged considering this context.

Accounting for the fact that most spacecraft hardware

and software differ from their commercial pendants, the

powerful computer on OPS-SAT has proven convenient

for development and deployment. By supporting

widespread and accepted model formats such as

TensorFlow Lite [24], the experts that we attracted by

organizing our competition were capable of developing

a space-ready and functional product without specific

knowledge about the OPS-SAT system or direct access

to it. The transfer of the winning model to the actual

satellite worked flawlessly as our competition setup

faithfully replicated the important onboard processes

from OPS-SAT. Thus, a widespread adaptation of

powerful hardware capable of running widely accepted

and established machine learning frameworks should

inspire the development of future systems.

Judging the overall quality of the onboard experiments

is difficult because of the lack of ground truth and other

reasons mentioned in Section 7. The overall performance

apparently depends on factors that are difficult to

control, as the unprocessed raw sensor data show a

high variability. While the competition was specifically

designed to work on the raw sensor data, it can be

argued that the architecture would be easier to train on

more regular data. While high-quality EO products are

incrementally refined through pipelines of sophisticated

Fig. 14 Misclassified patches by the Inovor Technologies model. Expected vs. predicted labels are shown. A post-processed
version of the patches is displayed to facilitate their visualization.
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image processing steps that would be cumbersome to

execute on board, several basic operations including

white-balancing, removal of scattering, and contrast

enhancement might be feasible as a pre-processing step

on platforms such as OPS-SAT, for example, by using

frameworks such as OpenCV [51]. If successful, this

could increase the robustness of the model, make it more

applicable to difficult conditions, and avoid a few of its

shortcomings observed during the orbital experiments.

Nevertheless, when conditions were favorable, the

tested model was capable of delivering a decent

image segmentation of clouds or other land-cover-

types. Surprisingly, the model was also capable of

detecting geometric features like rivers in some cases,

as long as they were clearly resolved by the sensor.

This shows that even small-scale models such as our

selection of EfficientNet-lite0 can perform complex tasks

in space. Having such and similar capabilities on board

a satellite could constitute valuable benefits by enabling

increased satellite autonomy. Detecting only the most

important and interesting parts of larger images by

means of classification and segmentation could allow

for optimizing and managing operational constraints

including communication and storage demands.

9 Conclusions

We herein present the design and results of “the OPS-SAT

case” competition, which was deployed on ESA’s Kelvins

competition platform to investigate how ML models for

in-orbit applications can be trained with access to only

minimal raw labeled data. Conducting the training of

an actual onboard ML model as a data-centric offline

competition allowed us to harness the competitiveness,

creativity, and strenuous efforts of various expert teams

worldwide. A key enabler for this approach was the

reconfigurable computing architecture of OPS-SAT,

which offered exceptionally high computational power and

the capability to utilize conventional open-source software

environments in space. The post-competition analysis of

the most successful participants’ methodologies revealed

a significant tendency to still deploy a human in the

loop for labeling uncertain examples; however, a trend

towards semi-supervised learning and data augmentation

techniques is visible.

With the development of future few-shot learning AI

systems, we can expect that onboard deployment will

gradually shift to follow the pattern that we propose

herein. Even further advances may be anticipated,

potentially utilizing the actual satellite as part of an

iterative development cycle. The advantages of such a

rapid deployment are clear: shortening the data collection

period of the satellite and reducing the costs and

complications involved with labeling campaigns.

On the basis of our EO application task, we conclude

that the emulation of OPS-SAT, including all its

operational limitations, was successful. The direct

transfer of the trained ML model to the satellite produced

several meaningful observations, demonstrating that the

best models produced during the competition phase are

equally effective in space. Consequently, we encourage

the community to follow this example by providing more

open data collected in space and allowing for fixed ML

models to be readily deployed on future satellites.

Data availability

The training± and test² datasets used for “the OPS-

SAT case” Kelvins competition are publicly available on

Zenodo.
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[22] Labrèche, G., Evans, D., Marszk, D., Mladenov, T.,

Shiradhonkar, V., Zelenevskiy, V. Artificial intelligence

for autonomous planning and scheduling of image

acquisition with the SmartCam app on-board the OPS-

SAT spacecraft. In: Proceedings of the AIAA SCITECH

Forum, 2022: AIAA 2022-2508.
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Anthony Sécher received his Ph.D.

degree in prehistory and archaeological

sciences from the University of Bordeaux

in 2017. He, then, joined in 2021

Capgemini Engineering’s R&I Department

in Blagnac, in the Hybrid Intelligence

team. His work is part of the ND2I research

project and focuses on new applications of

computer vision to soil recognition.

Arnaud Martin received his Ph.D.

degree in artificial intelligence. Since

2012, he is a senior data scientist

and was Tech Lead IA/Deep Learning

France in the team Hybrid Intelligence of

Capgemini Engineering. He is the leader

for the whole of France in the field of

AI and more specifically deep learning,

design/adaptation of intelligent systems, using and creating

new techniques from the field of artificial intelligence, mainly

deep learning, on both GPU and edge servers.

David Rijlaarsdam has his Master of

Science degree in aerospace engineering

from the Delft University of Technology

with a specialization in space system

engineering. He currently is a senior space

system engineer for Ubotica Technologies,

where he manages the space system

research group. He has previously been



22 G. Meoni, M. Märtens, D. Derksen, et al.

part of the automation and robotics section of the European

Space Agency and part of the advanced architecture team of

Intel Movidius.

Vincenzo Fanizza graduated with his

master degree in aerospace engineering at

Delft University of Technology. He worked

as an intern at Ubotica Technologies,

where he learned to develop systems based

on artificial intelligence and apply machine

learning to space imagery. His interests are

related to the general application of AI and

ML to space missions, ranging from the Earth observation to

spacecraft relative navigation.

Dario Izzo received his doctoral degree

in aeronautical engineering from the

University Sapienza of Rome, Rome,

Italy, in 1999, his second master degree

in satellite platforms from the University

of Cranfield, Bedford, UK, in 2002,

and his Ph.D. degree in mathematical

modeling from the University Sapienza of

Rome, in 2003. He lectured classical mechanics and space

flight mechanics with the University Sapienza of Rome. He

then joined the European Space Agency, Noordwijk, the

Netherlands, where he later became the scientific coordinator

with the Advanced Concepts Team. He devised and managed

the Global Trajectory Optimization Competitions events, the

ESA Summer of Code in Space, and the Kelvins innovation

and competition platform. He authored or coauthored more

than 170 papers in international journals and conferences

making key contributions to the understanding of flight

mechanics and spacecraft control and pioneering techniques

based on evolutionary and machine learning approaches. Dr.

Izzo received the Humies Gold Medal and led the team winning

the eighth edition of the Global Trajectory Optimization

Competition.

Open Access This article is licensed under a Creative

Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate

if changes were made.

The images or other third party material in this article are

included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons license and

your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission

directly from the copyright holder.

To view a copy of this license, visit http://creativecommon

s.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 The OPS-SAT satellite
	3 The OPS-SAT case: A data-centric competition
	4 The OPS-SAT case dataset
	4.1 Edge image removal
	4.2 Image preprocessing
	4.3 Image cropping
	4.4 Manual labeling
	4.5 Train/test split and patch selection

	5 Competition design
	5.1 Choice of the ML model
	5.2 Evaluation metrics
	5.3 Competition baseline
	5.4 Submission evaluation

	6 Competition results
	6.1 Competition outcome
	6.2 Methods of the top 3 winning teams
	6.2.1 Inovor Technologies (1st rank)
	6.2.2 Capgemini SE (2nd rank)
	6.2.3 Ubotica (3rd rank)


	7 Post-competition in-orbit experiment
	8 Discussion
	8.1 Successful techniques
	8.2 Class-specific performance
	8.3 Onboard experiments

	9 Conclusions

