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Abstract 22 

Biomass feeding problems greatly hinder the industrialization of entrained-flow gasification systems 23 

for production of 2nd generation biofuels. Appropriate DEM modelling could allow engineers to design 24 

solutions that overcome these flow problems. This work shows the application of a DEM calibration 25 

framework to produce a realistic, calibrated and efficient material model for lignocellulosic biomass.  A 26 

coarse (500-710 µm) and a fine (200-315 µm) sieving cuts of milled poplar were used in this study. The 27 

elongated shape and the cohesive behavior were respectively simulated using a coarse-grained multisphere 28 

approach and a cohesive SJKR contact model. Measurements of three physical responses (angle-of-29 

repose, bulk density, a retainment ratio) allowed calibration of the sliding (µs) and rolling friction (µr) 30 

coefficients and the cohesion energy density (CED). Using a statistical analysis, the most influential 31 

calibration parameters for each bulk response were identified. A Non-Dominated Sorting Genetic 32 

Algorithm was used to solve the calibration multi-objective optimization problem. Several sets of optimal 33 

solutions reproduced accurately the three physical responses and the experimental shear responses were 34 

closely reproduced by simulations for the population of coarse particles. The DEM calibration framework 35 

studied here aims to produce material models useful for assessing flow behavior and equipment 36 

interaction for biomass particles.  37 

Keywords: Woody biomass powder, Discrete Element Method, Parameter calibration, Multi-objective 38 

optimization, Cohesion 39 

Highlights 40 

• A realistic and calibrated DEM model for cohesive biomass powder is obtained. 41 

• A multisphere representation reproduces the elongated shape of particles. 42 

• A coarse-graining approach is used to reduce simulations runtime. 43 

• Three contact parameters are calibrated using a genetic algorithm of optimization. 44 

• Optimal solutions reproduce accurately the experimental physical responses. 45 

 46 
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 47 

1. INTRODUCTION 48 

 49 

Entrained-flow biomass gasification appears one of the most suitable technology for production of 50 

second-generation biodiesel, mainly because of its great flexibility for treating a variety of biomass 51 

feedstock and because it generates the purest syngas [1,2]. This process requires lignocellulosic biomass to 52 

be fed in sub-millimetric powder form. However, a major technical obstacle for a cost-effective 53 

industrialization of this technology is related to the feeding, handling and transport of biomass particles. 54 

Unsteady flow and equipment blockages are linked to the fibrous and cohesive characteristics of biomass 55 

powders, as well as to their relatively low weight per unit volume. Despite the importance of achieving 56 

trouble-free flow and the frequency of feeding problems, much more attention has been devoted typically 57 

to reactor design and operation than to biomass feeding and flow characterization [3]. 58 

Evaluation and design of biomass feeding systems need a full comprehension of the effects of 59 

biomass intrinsic properties such as particle size and shape on the flow characteristics. For this purpose, 60 

the use of numerical simulations constitutes a powerful alternative to experimental approaches, which are 61 

often limited regarding the exploration domain of influential variables, the presence of intrinsic sample 62 

variability, or as for the experimental difficulty of isolating individual parameter effects.  63 

The discrete element method (DEM) is the most frequently implemented method when designing and 64 

modelling particulate bulk solid handling systems. The particulate system is modelled as an assembly of 65 

singular discrete and interacting particles. Particle positions, velocity and forces acting on each particle are 66 

calculated at small intervals based on a force-displacement contact law and Newton’s second law of 67 

motion [4].  Whilst DEM simulations are being used more and more extensively in a wide range of 68 

applications, the question of whether DEM is capable of producing quantitative predictions, rather than 69 

only qualitative representations of a granular solid remains largely unanswered. Therefore, one of the main 70 

constraints for application of DEM in an industrial context is the determination of the input parameters 71 

needed to adequately simulate the behavior of particulate systems.   72 



4 

 

Due to the disparity between physical properties obtained via traditional tests and the simulation 73 

parameters such as stiffness, sliding and rolling friction, calibrations tests are essential. Though scarce, 74 

research in the area of calibrating and modelling biomass particles includes the determination of physical 75 

properties of briquettes to be used in DEM models by Ramirez-Gomez et al. [5] and the study through 76 

DEM of feeding systems for wood-chips by Rackl et al. [6]. More research remains to be done regarding 77 

measurements or calibrations of biomass particles at a sub-millimetric and powder scale. 78 

Calibration of biomass feedstocks can be complicated by the elastic, fibrous or stringy bulk behavior 79 

related to individual particle characteristics and requires adaptation of existing contact models [7]. 80 

Integration of realistic shape models remains also of major concern. Indeed, previous DEM investigations 81 

have primarily focused on spherical particles. However, non-spherical powders such as biomass powders 82 

are more often encountered in industrial applications. Recent advances in computing speed and power 83 

have opened the way to more complex approaches for non-spherical particles representation. Possible 84 

shape descriptors in two and three dimensions are multi-sphere approaches, ellipses or ellipsoids, super-85 

quadric bodies, discrete functions, shape combinations, composite particles and flexible fibers models. An 86 

overview of possible methods for DEM particles representation is given in [8–11].  87 

Another major challenge for DEM simulations is the limitation regarding the number of particles that 88 

can be modelled in a reasonable time period Most of DEM simulations considers a restricted number of 89 

particles (in the order of hundreds of thousands) with diameters in the order of some millimeters to 90 

achieve a reasonable computing time [12]. In industrial practice, however, it is often necessary to deal with 91 

billions of particles within a wide range of particle sizes. For this reason, it is unavoidable to upscale the 92 

particle size to reduce the total number of particles and thus the computational time. Several approaches 93 

of particles scale-up have been developed and can be generally sorted as: “exact scaling” [13–15], “coarse-94 

graining” [16–19]  and “cutting-off” [19,20]. Exact scaling has no advantage regarding the reduction of the 95 

number of particles, so the computation time can be reduced, as scaling factors are applied to both the 96 

equipment geometries and the particles size. Coarse-graining is defined as the reduction of computational 97 

cost by replacing actual particles by scaled representative models [17]. The scaling factor in the coarse-98 

graining approach is only applied to the radius or volume of the particle, while the geometries of the 99 

equipment are not scaled. Coarse-graining approaches has been widely applied to spherical cohesionless 100 
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materials [16,17,21,22] but, besides works by Thakur et al. [23], little research about its relevance on 101 

simulation of elongated and cohesive particles has been made.  102 

The main aim of this paper is to describe the application of a calibration framework proven successful 103 

for spherical materials [24–26] to biomass powders which are constituted of sub-millimetric elongated 104 

particles and have cohesive characteristics. In addition, other subjacent goals are: (i) to explore the 105 

usefulness of a coarse-graining approach for simulation of a large number of elongated biomass particles 106 

(ii) to assess the influence of DEM calibration parameters on the bulk properties of the material (iii) to 107 

illustrate the trade-offs encountered when dealing with multiobjective calibration and the multiplicity of 108 

valid solutions. In a broader perspective, this work intends to establish calibrated, realistic and efficient 109 

material models allowing the assessment of the effects of biomass particle properties on bulk behavior. 110 

This will allow the study of efficient design strategies of handling equipment for powdered lignocellulosic 111 

biomass.  112 

 113 

2. MATERIALS AND METHODS 114 

 115 

2.1. Samples preparation and particle size and shape characterization 116 

Poplar was chosen as a representative for lignocellulosic biomass as it is a promising energy crop, 117 

namely due to its fast growth in temperate climates. Additionally, the development of poplar genotypes 118 

with improved yield, higher pest resistance, increased site adaptability and easy vegetative propagation has 119 

made poplar a commercially valuable energy crop [27,28]. The poplar tree selected for the present study 120 

came from a forest located in La Suippe valley in Auménancourt-le-Petit (France). The tree was shopped 121 

and cut in boards that were subsequently dried. 122 

Samples of 60x80x15 mm3 were cut from the boards and ground using a Retsch SM300 cutting mill 123 

with a bottom sieve of 1 mm trapezoid holes at the outlet. The powders obtained after grinding were 124 

sieved to obtain two well differentiated sieving cuts representative of coarse and fine particles. A vibratory 125 
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sieve shaker Retsch AS 200 at a frequency of 60 Hz for 20 minutes was used along with sieves of opening 126 

500 µm and 710 µm for the coarse cut and 200 µm and 315 µm for the fine cut.  127 

A Sympatec-QICPIC morphological particle size analyzer was used to obtain biomass particles size 128 

distribution (PSD) after sieving [29]. The values of the descriptors of particles size distribution and shape 129 

distribution are listed in Table 1. The minimum value of the Feret diameters over all orientations of the 130 

particle is used as the magnitude characterizing particles size. The 50th centile of the cumulative volume 131 

distributions (x50) was taken as a mean size descriptor of each size distribution. PSD span (Sx) was 132 

calculated from values of the 90th and 10th centiles as: 133 

( ) ( )90 10 90 10/xS x x x x= − +  (1) 

Particle shape was characterized through the aspect ratio, a, which is defined as the ratio between the 134 

minimum and the maximum Feret diameters for a given particle. Mean values of the aspect ratio, a50 were 135 

calculated as the 50th centile of the cumulative aspect ratio distributions, and the aspect ratio span Sa is 136 

defined by: 137 

( ) ( )90 10 90 10/aS a a a a= − +  (2) 

where a90 and a10 correspond to the 90th and 10th centiles of the aspect ratio distribution, 138 

respectively. 139 

Table 1. Samples nomenclature and size/shape characteristics. 140 

Sample Sieving cut (µm) x50 (µm) x90 (µm) x10 (µm) Sx a50 Sa 

1 (Coarse sieving cut) 500-710 746 1092 519 0.36 0.38 0.49 
2 (Fine sieving cut) 200-315 352 513 243 0.36 0.42 0.53 

 141 

2.2. Bulk behavior tests 142 

The first stage in the DEM calibration procedure consists of choosing an adequate number of bulk 143 

experiments that characterize particles bulk behavior. Suitable calibration measurements should: (i) be easy 144 

to implement in laboratory tests and time-efficient, (ii) produce sufficiently discriminating values from 145 

variations in material properties and (iii) be highly reproducible and repeatable. From this point of view, 146 
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the bulk setups described hereafter have been proven suitable for cohesive materials such as biomass 147 

powders, according to preliminary tests made as part of this work.  148 

2.2.1. Angle-of-Repose from bulk solid heaps 149 

Angle-of-repose measurements have been extensively used in previous research for calibration of 150 

DEM models for bulk materials [22,30–32], with special focus on non-cohesive materials.  151 

Conventional methods for measuring the AoR such as the lifting cylinder test [19] were tested in the 152 

preliminary stages of this work. Due to the cohesive strength and interlocking effects within biomass 153 

samples, stable structures were formed regardless of the filling method or the cylinder size. As a result, 154 

this method was unsuccessful to obtain a heap from which the AoR could be calculated.  155 

A poured AoR method adapted from [33,34] was used in this work. Repeatable measurements of the 156 

AoR were attained by pouring 40 g of the powders manually over a stainless steel inclined surface, and 157 

then measuring the slope of the heap formed over a flat paper surface by the particles flowing out of the 158 

ramp (Figure 1). The inclination of the surface was fixed to be θ = 40° for the coarse samples and θ = 50° 159 

for the finer. The inclination was measured using a calibrated angle-meter fixed to the inclined surface. 160 

Flow rate was controlled manually to avoid accumulation of the particles on the surface and set to be 161 

around 0.5 g/s. A camera taking images from a side view of the heap was placed always at the same 162 

position during the experiments. Each measurement was repeated seven times. 163 

Image analysis using ImageJ [35] allowed heap’s profile extraction and AoR determination by linear 164 

regression. Shape and symmetry of the heap were occasionally influenced by flow intermittencies, so 165 

values of AoR were calculated from the left side of the heap as it was the region less sensitive to abrupt 166 

perturbations. 167 
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 168 

Figure 1. AoR setup: a. Heap formation and main setup dimensions; b. Examples of biomass powders heaps. 169 

For calculation of the AoR, a direct linear regression procedure using the heap’s surface line instead of 170 

an indirect measurement from the heap’s diameter and height [36] was preferred. Indeed, several authors 171 

have shown that there could be significant differences in AoR measurements depending on the chosen 172 

method of calculation, especially for asymmetric heaps [37–39]. Indirect methods can be very sensitive to 173 

the choice of the extreme points of the heap, while a calculation including the entire profile line represents 174 

better the pile shape. In all cases, relatively symmetric heaps were obtained and determination coefficients 175 

(r2) of linear regressions were always over 0.95.  176 

2.2.2. Bulk density 177 

Loose bulk density, ρb in kg/m3, refers to the ratio of the mass of bulk sample ml over its aerated 178 

volume Vl ( /b l lm Vρ = ). It represents the most loosely packed density of the material. Around 50 ml of 179 

oven-dried samples were smoothly poured into a graduated plastic vessel, and the mass of solid was then 180 

recorded. Each measurement was repeated for six refills using different oven-dried powder of the same 181 

sample. 182 
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2.2.3. Rectangular container test 183 

Preliminary studies showed that calibrated parameters for biomass powders using only information 184 

from AoR and bulk density measurements did not represent a realistic cohesive flow behavior when 185 

particles settled inside a container. Rectangular containers, also called “shear box” or “ledge test”, have 186 

been used in previous research for DEM calibration tests [19,32,40]. Therefore, a rectangular container 187 

with adjustable walls was used in this work for complementary calibration (Figure 2). Walls were adjusted 188 

to adapt to the available volume of sample, so that the final dimensions of the container were 25 cm 189 

(height) x 6 cm (length) x 5.7 cm (width). The bulk material was poured in the volume and the powder’s 190 

surface was carefully kept flat at the end of the pouring. The final height of the stack was 7 cm. The cabin 191 

lid of the container was then lifted, and particles were allowed to flow out of the volume. 192 

 193 

Figure 2. Rectangular container device. a. Container. b. Example of a sample inside a volume reduced by the adjustable walls. 194 

For simulation purposes, the retainment ratio p is defined by: 195 

0

rm
p

m
=  (3) 

where rm is the mass remaining in the volume after the cabin lid is lifted, and 0m corresponds to the mass 196 

initially poured inside the container. 197 

2.2.4. Ring shear tester 198 

A RST-XS Schulze ring shear tester [41,42] was used to assess the flow properties of the biomass 199 

powders. The ring shear tester is a widely-used device to measure flow properties of powders, including 200 
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unconfined yield strength, angle of internal friction and wall friction. The standard procedure leads to 201 

results with low variability [41]. A consolidation stress ρpre = 5 kPa, considered as representative of the 202 

stress range for industrial applications, was tested [43]. Three shear points at 25%, 50% and 75 % of ρpre 203 

were used to determine the yield locus of each sample. The yield locus curves were regressed from 204 

experimental points by a linear regression. 205 

2.3. DEM simulations setup 206 

This section contains an overview of the DEM contact model used in this work as well as the procedure 207 

for representing particles characteristics trough a multisphere and coarse-graining approach. Then the 208 

simulation setup for each bulk test is presented. 209 

2.3.1. DEM contact model 210 

In this study, simulations were run using the public version of LIGGGHTS 3.8.0 DEM code [44], on 211 

a E5-2620 v4 2.10 GHz Intel® Xeon® machine with 125.8 GB of RAM, and with parallelization on 8 212 

cores. A Hertz-Mindlin contact model along with an elastic-plastic spring-dashpot (EPSD2) rolling 213 

friction model and a simplified Johnson-Kendall-Roberts (SJKR) cohesion model were used. The Hertz-214 

Mindlin model stands as the most commonly used contact model due to its efficient and accurate force 215 

calculations. A representation of the contact model, accounting for a spring elastic force, a viscous 216 

damping and a frictional slider in the tangential direction, is shown in Figure 3 [45]. At any time t, the 217 

equations governing the translational and rotational motion of particle i of mass mi and radius Ri can be 218 

written as: 219 

( )e d cohi
i j ij ij ij i

d
m m

dt
= Σ + + +

v
F F F g  (4) 

and 220 

( )t ri
i j ij ij

d
I

dt
= Σ +

ω
T T  (5) 

Where ivand iω are the translational and rotational velocities of particle i, and iI  is the moment of inertia 221 

of the particle. The forces involved are: the gravitational force img and the forces between particles (and 222 

between particles and walls) which include the an elastic force e
ijF , a viscous damping component d

ijF  and 223 



11 

 

cohesive contributions through the c o h
i jF  term. The torque acting on particle i due to particle j includes 224 

two components: t
i jT  which is generated by the tangential force and causes particle i to rotate, and r

i jT , 225 

the rolling friction torque generated by asymmetric distribution of normal contact force and slows down 226 

the relative rotation between particles in contact [46]. If particle i undergoes multiple interactions, the 227 

individual interaction forces and torques sum up for all particles interacting with particle i. The equations 228 

for calculation of the particle-particle interaction forces within the Hertz-Mindlin contact model are listed 229 

in Table 2. 230 

 231 

 232 

Table 2. Equations for calculations of forces and torques on particle i according to the Hertz-Mindlin model. 233 

Force or torque contribution Equation 
Normal elastic force, 

,
e
ij nF  3/2

, ,
4

3n ij n eff eff ij nk Y R= −δ δ  

Normal damping force, 
,

d
ij nF  ( )1/2

, , ,2 2

2 5 / 6 ln(e)
2

ln (e)
n ij n eff eff ij n eff ij nY R mγ δ

π
= −

+
v v  

Tangential elastic force, 
,

e
ij tF  

, , ,8t ij t eff eff ij n ij tk G R δ= −δ δ  

Tangential damping force, 
,

d
ij tF  ( )1/2

, , ,2 2

2 5 / 6 ln(e)
8

ln (e)
t ij t eff eff ij n eff ij tG R mγ δ

π
= −

+
v v  

Coulomb friction limit 
,ij tδ  truncated to satisfy , , , ,

e e d coh
ij t s ij n ij n ij nµ≤ + +F F F F  

Torque by tangential forces, t
i jT  ( ), ,

e d
ij ij t ij t× +R F F  

Torque by rolling friction, r
i jT  EPSD2 model 

Where 1 1 1m m meff i j= + , 1 1 1R R Reff i j= + , ( ) ( )2 21 1 1Y Y Yeff i i j jν ν= − + − , ( )( ) ( )( )1 2 2 1 2 2 1G Y Yeff i i i j j jν ν ν ν= − + + − + , ( ) ( )R R Rij i j i i j= − +R r r , 234 

e : coefficient of restitution, Y : Young’s modulus, G : shear modulus, ρ: Poisson’s ratio. 235 

Regarding rolling friction modelling, the alternative elastic-plastic spring-dashpot model EPSD2 236 

[47] adds an additional torque contribution to the particles motion given by: 237 

,
,

r r k
ij ij r r ijk= = − ∆T T θ  (6) 

Where ,r k
i jT is a torque component modelled as a mechanical spring, rk is the rolling stiffness and

,r ij∆θ  is 238 

the incremental relative rotation between two particles. The torque contribution is truncated so:  239 
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, , maxr k r
ij ij r eff nµ R≤ =T T F  (7) 

Where rµ is the rolling friction coefficient, 
effR  the effective radius and , m axr

i jT being the limiting spring 240 

torque which is achieved at a full mobilization rolling angle m
rθ . In the EPSD2 model, the rolling stiffness 241 

rk is defined as: 242 

2
r t effk k R=  (8) 

Where tk  corresponds to the tangential (i.e. shear) stiffness. Figure 3b shows the mechanism of rolling 243 

resistance and the physical meaning of the coefficient of rolling friction rµ, which is a scalar value that 244 

represents the eccentricity of the resulting normal force exerted by a surface on a rolling particle. In the 245 

EPSD2 model rµ does not appear explicitly in the expression for the rolling stiffness (as for CDT or 246 

EPSD models) but instead is used for restricting the maximum spring torque.  247 

 248 

Figure 3.Schematic representation of the contact model used in this study: a) Hertz-Mindlin contact model; b) Mechanism of 249 

rolling resistance; c) rolling resistance angle [48] 250 

The simplified Johnson-Kendall-Roberts (SJKR) [49], used to simulate cohesion between particles, adds 251 

an additional normal force 
,

c o h
ij nF  tending to maintain the contact between two particles, given by: 252 

,
coh
ij n CED A= ⋅F  (9) 

Where CED is the Cohesive Energy Density in J/m3 and A  is the particle contact area. 253 

2.3.2. Particles representation 254 

The biomass powders were modelled as monodispersed populations of clumps of spheres (multi-255 

sphere method). Spheres comprising a multi-sphere particle are fixed in position relative to each other and 256 

may overlap to approximate more closely to the actual particle shape [50].  The multi-sphere method 257 
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stands as one of the most general and most efficient method for representing shape within DEM. By 258 

using a multi-sphere approach it is possible to ensure computational efficiency for contact detection and 259 

force calculation and it is widely implemented in many DEM codes [51,52]. Multi-sphere representations 260 

have previously been used for describing flow in silos of agricultural resources such as maize and rice 261 

grains [53,54]. When using a multisphere approach, finding a trade-off between particles representation 262 

accuracy and DEM run time is essential. For instance, in their study with maize grains, Markauskas et al. 263 

[53] found that models with 6 sub-spheres successfully reproduced discharging time in silos, but similar 264 

results could be obtained with 4 sub-spheres using another set of calibration parameters. 265 

In order to reduce the number of spheres needed to represent one single particle, in this study 266 

individual spheres were oriented over one single longitudinal axis, so the particles were needle-shaped 267 

(Figure 4). To approximate the true morphology obtained by PSD measurements, a simplified model for 268 

particle representation was proposed. In this model, the number of spheres in a clump, nsph, is function of 269 

the particles mean size (x50), the mean aspect ratio (a50) and an overlapping factor c. 270 

The overlapping factor can be expressed as 50/c xλ= , where ρ is the overlapping distance between 271 

adjacent spheres in µm (Figure 4a). A value of c = 0 means two spheres touching each other at one single 272 

point and c = 1 represents a total overlap between two contiguous spheres. As c increases the effective 273 

roughness of the particle decreases. Previous work [52] suggested that reducing surface roughness by 274 

increasing the number of spheres per clump did not necessarily lead to a better approximation of particles 275 

behavior. A value of c of 20% was chosen as it is considered a good trade-off between the accuracy of 276 

particles representation and the number of spheres needed. 277 

The diameter of each sphere is set to be equal to the mean minimum Feret diameter of the 278 

population, x50. Therefore, the length of the clump (lclump), which corresponds to the mean maximum 279 

Feret diameter, can be calculated as follows: 280 

( )50 50 50/clump sphl x a n x λ λ= = ⋅ − +  (10) 

So, from the definitions of a50 and c, the number of spheres needed per clump is: 281 
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50

1

1sph

ca
n

c

−
=

−
 (11) 

The calculated values were rounded to the closest integer and the length of the clump recalculated 282 

accordingly.  283 

Calculation of bulk density from simulations needs the value of the mass of each clump, which is 284 

computed from the clump’s volume, given by: 285 

( )( )3 2
14

6 2 4
3 12

sph
clump sph

sph

n
V n r c c

n
π

 −
= − −  

 
 (12) 

Where r is the spheres radius 50 / 2r x= .  Table 3 shows the model parameters used for particles 286 

representation. For the sake of comparison with spherical models for particle representation, the 287 

equivalent radius of a sphere having the same volume as one individual clump (
eqR ) is also reported. 288 

Table 3. Parameters of multispheres model for particles representation 289 

 Sample 1 Sample 2 
s p hn  3 3 

r (µm) 373 176 
clumpl (µm) 1940 915 

clumpV (mm3) 0.6282 0.0658 

eqR (µm) 531 251 
 290 

 291 

Figure 4. Particles representation for biomass samples. a. Nomenclature of main dimensions in a clump. b. Samples multispheres 292 

models (true relative size). c. Representation of a collision between spheres k and i within two multi-sphere particles ( ijklt
r

: 293 

tangential unit vector, ijkln
r

 : normal unit vector of contact zone) [55]. 294 
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2.3.2.1. Scaling up particle size 295 

Since parameters calibration commonly involves running an extensive amount of simulations, the 296 

representation of the actual number of particles used during the bulk tests would not be possible within a 297 

realistic frame time. A scaling factor, SF, can be defined as the ratio between the simulated particle radius 298 

and the actual value from PSD. As shown in Figure 5a, the computational time required to simulate one 299 

real-time second of heap formation for sample 1 significantly decreases by increasing the scaling factor, as 300 

the number of particles (nparticles) decreases. A series of test runs were performed to assess the effect of 301 

scaling particle size up on the AoR of the heap formed using non-calibrated parameters (µs = 0.9, µr = 0.5 302 

and CED = 0 J/m3). Testing values of SF over 7 leads to high uncertainty on the value of AoR as the 303 

number of particles is not enough to form a proper heap. The linear downward trend showed in Figure 5b 304 

clearly indicates that scaling effects on the AoR are not negligible.  This is in contrast with results by 305 

Roessler and Katterfeld [19] who found AoR to be scale-independent. However, their conclusions 306 

referred to the case of quasi-static formation of a heap using lifting cylinder setups, which is hardly the 307 

flow condition of particles forming the heap in this work. 308 

 In the aim of reducing computing time, a coarse-graining approach was followed and a trade-off 309 

between the actual representation accuracy and the calculation effort was made by scaling particles size up 310 

by a factor of 4. Since the effect of the scaling factor on the bulk responses could vary depending on the 311 

values of the calibrated parameters, calibration was made using the actual values from experiments 312 

(instead of, for example a value corrected by the SF using the trend of Figure 5b). This allowed to run a 313 

typical heap formation simulation in approximately 1 hour for coarse particles and in 8 hours for fine 314 

particles, while several weeks would be needed to run a single simulation of fine particles at their actual 315 

size.  316 
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 317 

Figure 5. Influence of scaling particles size up for sample 1: a. Number of particles and simulation time. b. Angle-of-repose value. 318 

2.3.3. Time-step 319 

Because of the explicit numerical scheme used for DEM integration, only relatively small time-step 320 

values ( t∆ ) guarantee stable simulations. A common strategy to fix a value for t∆  is based on the 321 

Rayleigh (
RT∆ ) and Hertz (

HT∆ ) critical time-steps, calculated as [56]: 322 
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Where r is the minimum particle radius in the system and 
m axV  is the maximum relative velocity. The 323 

other parameters correspond to those defined previously in Section 2.3.  In this work, both critical time-324 

steps were calculated during DEM integration and the simulation time-steps were fixed to be lower than 325 

10% of 
RT∆  and 

HT∆ . Values for both samples are reported in Table 4. 326 

2.3.4. Angle-of-Repose and bulk density determination from simulations 327 

The experimental test shown in Figure 1 was numerically replicated using LIGGGHTS. To reduce the 328 

simulation time, the simulated conveyor length is reduced to a half of the experimental length. The angle-329 

of-repose and bulk density were calculated using the positions of the particles in the heap at the end of the 330 

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11

n p
ar

tic
le

s
ru

n 
tim

e
/s

 (
s)

Scaling factor, SF

n particles
runtime/s

a.

AoR = -3.2×SF+ 37.8
R² = 0.97

0

5

10

15

20

25

30

35

40

1 3 5 7

A
o

R
 (°

)

Scaling factor, SF

b.



17 

 

simulation when all the particles are in a stable state. To avoid underestimation of those two bulk values, 331 

the particles non-connected to the heap were not considered in the calculation. 332 

As for the experiments, the angle of repose in the xz-plane was calculated for the left side of the heap. 333 

At first, the positions of the particle at the top and the particle at the leftmost of the heap were identified 334 

to determine the domain of the angle-of-repose slope. The particles in this domain were then binned into 335 

20 equally-spaced horizontal layers. For each layer, the x and z coordinates of the top particle on the slope 336 

were identified. The angle of repose was then determined using linear regression of these 20 x-y 337 

coordinates on the slope.  The number of layers = 20 was chosen as it is high enough to produce stable 338 

values of AoR and high correlation coefficient values for all calculations.     339 

The bulk density of the heap was calculated from its bulk mass divided by its aerated volume. The 340 

bulk mass is equal to the mass of one clump multiplied by the number of clumps in the heap. The concept 341 

of numerical integration in volume calculation was implemented in a C++ algorithm to estimate the 342 

aerated volume of the heap (analytically as the left-hand side of Eq. 15, and numerically “discretized”, as 343 

the right-hand side of the Eq. 15): 344 

max, max

min, min 1 1

( , ) ( , )
yx

nnx y

i i
x y

h x y dxdy h x y x y≈ ∆ ∆∑∑∫ ∫  (15) 

where xmin, xmax, ymin, ymax are the minimum and maximum of the x and y coordinates of particles inside 345 

the heap, respectively, nx and ny are the number of discretization intervals in the x and y directions, ρx and 346 

ρy are the distances between two adjacent sample points corresponding to x and y directions and h(xi,yi) is 347 

the height of the heap at the coordinate xi,yi. The choice of nx and ny is a trade-off between the numerical 348 

accuracy and the computational time. It should be high enough to mitigate the estimation error and as the 349 

same time it should be as low as possible for quick calculations and less consuming use of computer 350 

memory. In the present work, nx and ny were set to 10000. This number of sample points guarantees that 351 

each calculation takes only few seconds on a normal desktop computer and the results of bulk volume 352 

converge.  353 
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2.3.5. Ring shear tester simulations 354 

The simulated geometry of a ring shear tester cell (Figure 6) is analogous to the experimental device 355 

described in Section 2.2.4. Previous research [57] has shown that the yield stress was independent of the 356 

shear cell size in simulations. However, a high particle-to-cell size ratio inside the shear cell could lead to 357 

erroneous values of the shear measurements [58], so the geometry was also scaled up by a SF = 4. A 358 

servo-control functionality of LIGGGHTS was applied to the top lid so the vertical component of the 359 

applied stress was continuously updated and maintained constant during the simulation. As in 360 

experiments, a pre-shear stage at ρpre = 5 kPa followed by a shear at ρ = 2.5 kPa was simulated. Shear stress 361 

is calculated from the z-component of the torque exerted over the top lid surface as follows [41]: 362 

D

m D

M

r A
τ =  (16) 

Where 
DM is the torque acting during shear on the top of the lid, ( )( ) ( )3 3 2 22 /3m out in out inr r r r r= − − is the 363 

moment arm and ( )2 2

D out inA r rπ= −  is the area of the lid, with and the outer rout  and inner rin radii of the 364 

top lid, respectively. Other input parameters needed for the ring shear tester simulations are listed in Table 365 

4. 366 
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 367 

Figure 6. Geometry of the simulated ring shear tester. a. Top lid. b. Bottom cell. 368 

2.4. Calibration approach 369 

The flowchart of the calibration approach is presented in Figure 7. Regarding the choice of the 370 

parameters to be calibrated, a minimization of their number is desired since each additional parameter 371 

increases the complexity of the calibration. The previous research highlighted the high influence of the 372 

sliding and rolling friction coefficients on the angle-of-repose obtained in DEM simulations [19,22,59]. As 373 

the particle to wall interactions are very specific to each industrial or scientific problem, in this research 374 

only interparticle interaction parameters are calibrated: the sliding friction coefficient µs, the rolling friction 375 

coefficient µr and the cohesion energy density CED. All the other input values needed for the DEM 376 

model are shown in Table 4 and were set based on literature values for woody materials [6]. Preliminary 377 

simulations did not show significant effects of the particles’ density on the AoR nor the void fraction 378 

inside the heap, so the value is set to 1000 kg/m3 for the fine samples in order to increase the time-step 379 

allowing stable simulations. 380 

 381 
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 382 

Figure 7. Flowchart of the calibration procedure. 383 

 384 

2.4.1. Selection and range of values of parameters to be calibrated 385 

The tested values of each calibration parameter are shown in Table 5. If 5 values for each variable were to 386 

be tested, 53 = 125 simulations would be needed using a full factorial combination of variables. This is 387 

feasible in a practical time-frame for coarse samples (Sample 1) but for fine powders (Sample 2), even if 388 

using a coarse-graining approach, the high computation time required imposed a reduction of the number 389 

of values of the calibrated parameters from 5 to 3 (27 simulations). These values are the maximum, 390 

minimum and mean values written in bold type in Table 5. The full experimental plan of this work is 391 

presented in Appendix 1. 392 

 393 

 394 
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Table 4. DEM simulation parameters for particles and walls 395 

Parameter Sample 1 Sample 2 
Poisson’s ratio (particle-particle) 0.3 
Poisson’s ratio (particle-walls) 0.3 
Particles density, kg/m3 350 1000 
Young’s modulus (particle-particle), Pa 5×106 
Young’s modulus (particle-wall), Pa 5×106 
Coefficient of restitution (particle-particle) 0.1 
Coefficient of restitution (particle-walls) 0.1 
Coefficient of sliding friction (particle-steel) 0.4 
Coefficient of sliding friction (particle-paper surface) 0.5 
Coefficient of rolling friction (particle-walls) 0.5 
Cohesion Energy Density (particle-walls), J/m3 0 
Time-step (s) 1×10-5 7×10-6 
Total number of particles (3 particles/clump) 10638 81309 
Factory mass flow, heap AoR test, kg/s 5×10-4 
Ring shear tester simulations  
External radius, top lid, mm 127 
Internal radius, top lid, mm 65 
Depth, bottom cell, mm 52 
Total number of particles (3 particles/clump) 15000 150000 
Rotational speed, top lid, deg/s 18 
 396 

Table 5. Set of calibration parameters tested. 397 

Parameter Variable values 

Coefficient of sliding friction (µs) 0.1 0.3 0.5 0.7 0.9 
Coefficient of rolling friction (µr) 0.1 0.3 0.5 0.7 0.9 

Cohesion Energy Density, CED (J/m3) 0 10000 20000 50000 80000 
 398 

2.5. Optimization problem setup (genetic algorithm) 399 

The optimization was carried out using a multiobjective evolutionary algorithm (Non-dominated 400 

Sorting Genetic Algorithm II, NSGA-II) [60] proven successful for DEM calibration [24,25]. Input 401 

parameters for the genetic algorithm are listed in Table 6. By using 10 bits for encoding each calibration 402 

parameter, the number of possible values for each parameter is 210 = 1024. Since 3 parameters are being 403 

optimized, each “individual” in the population is encoded by a binary string of length 30 bits. This leads to 404 

the numerical precision listed in Table 6 for each parameter. 405 

Table 6. Input parameters of NSGA-II 406 

Population size 2000 
Chromosome length (bit) 30 
Maximum number of generations 100 
Crossover probability 0.9 
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Mutation probability 0.01 
Two specific objective functions were defined for the minimization of the discrepancy between 407 

numerical and experimental results. The first objective function O1 is defined as the total relative error 408 

between the simulation results and the experimental measurements of AoR and bulk density: 409 

1
ex sim ex sim

ex ex

AoR AoR
O

AoR

ρ ρ
ρ

− −
= +  (17) 

In this optimization function, the weights of the two error components are equally contributing to 410 

the total simulation error.  411 

The second objective function O2 is based on the rectangular container output and aims to reduce the 412 

difference between the simulated and the experimental p factor: 413 

2
ex sim

ex

p p
O

p

−
=  (18) 

Table 7. Numerical precision of binary encoded factors. 414 

Parameter Interval Numerical precision 
µs [0.1, 0.9] 7.81×10-4 
µr [0.1, 0.9] 7.81×10-4 

CED [0, 80000] 78.125 
 415 

3. RESULTS AND DISCUSSION 416 

3.1. Bulk behavior tests 417 

3.1.1. Bulk density 418 

The experimental results in the Table 8 show an effect of particle characteristics on bulk density of 419 

the samples. Interestingly, regarding the particle size, smaller values of bulk density were systematically 420 

found for powders with the lowest granulometry. Finer samples had a bulk density 10 % lower than 421 

coarse samples. When dealing with non-cohesive materials, a better spatial arrangement of particles is 422 

obtained for finer particles so, generally, a decrease of particle size is accompanied by an increase in bulk 423 

density. The opposite trend observed for biomass samples would be due to cohesion effects: the presence 424 
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of fine cohesive particles creates bigger void spaces which reduces bulk density.  Similar results were 425 

observed by Mani et al. [61] for wheat and barley straws, corn stover and switchgrass samples. 426 

3.1.2. Angle of Repose tests 427 

The mean values of the angles of repose are reported in Table 8. The values of the standard deviation 428 

are also reported and show that error was always below 4 %, meaning a relatively good reproducibility. 429 

There is an obvious effect of the sample characteristics on the AoR of the heaps formed. The finer sieving 430 

cut (sample 2) formed steeper heaps with values of AoR 67 % greater than the coarse cut (sample 1). 431 

Table 8. Bulk behavior experiments results (standard deviation is reported in parentheses). 432 

Sample 1 (Coarse sieving cut) 2 (Fine sieve cut) 
ρb (kg/m3) 184.2 (5.7) 165.6 (5.1) 
AoR (°) 27.7 (0.7) 46.3 (1.6) 
 433 

Following the classification criteria based on the AoR established by Ileji et al. [62] for lignocellulosic 434 

plant biomass, coarse poplar powders could be classified as free flowing, while fine powders are rather 435 

poor flowing. 436 

3.1.3. Rectangular container test  437 

No biomass particles were observed to flow when the lid of the rectangular container was lifted. 438 

Indeed, very stable stacks of particles were formed for all the samples. This is the result of the combined 439 

effect of particles shape and size that trigger interlocking and interparticle cohesive forces. As result of 440 

this, the retainment ratio p (Eq. 3) was found to be 1 for both samples. 441 

3.2. DEM simulations 442 

 443 

Figure 8 shows some typical heaps and rectangular containers obtained by DEM modelling for both 444 

samples, along with the values of the calibration parameters used.  Visually, the effect of modifying 445 

contact model parameters is evident. The situations represented on the left side of the Figure 8 show a 446 

material with a rather free flowing behavior, while images on the right side of Figure 8 represent rather a 447 



24 

 

very cohesive behavior, with greater angles of repose and the formation of a stable stack of particles inside 448 

a container.  449 

 450 

Figure 8. Examples of heaps obtained and rectangular container test from DEM simulations. 451 

3.2.1. Pareto chart analysis 452 

Determining if variation of DEM parameters produce discriminative effects in bulk responses is 453 

important to reduce the number of calibration inputs. For this purpose, a statistical analysis using Pareto 454 

charts was used in this work. 455 

A Pareto chart allows to compare the relative magnitude and the statistical significance of effects 456 

of tested variables on the measured responses. Details on the elaboration and interpretation of the Pareto 457 

charts can be found in [63].  458 
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 459 

Figure 9. Pareto charts of the standardized effects. 460 

For the coarse samples, the CED has the biggest effect on the values of AoR (Figure 9a).  In a 461 

lower degree, sliding friction, rolling friction and the combined effect of sliding friction and CED also 462 

influenced the AoR. In the case of the bulk density (Figure 9c), all the 3 factors seem to have the same 463 

level of influence on the response, as well as the combined effects of µs- CED. Regarding the retainment 464 

ratio, although CED and µs and their interactions had the greater effect, rolling friction also played a role 465 

in controlling the number of particles remaining in the container after the lid is opened (Figure 9c). 466 
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For the fines sample, CED was the predominant influential factor for both bulk density and p 467 

ratio responses (Figure 9b,d), while in the case of AoR, µs had a greater effect (Figure 9f). 468 

These results suggest that the three chosen calibration parameters were important in controlling the 469 

measured responses and determined the main effects that influence the system. In addition, the relative 470 

effects were different depending on the analyzed response. Therefore, their calibration is required.  471 

3.2.2. Heap angle of repose and bulk density 472 

Figure 10 and Figure 11 show 2D contour surface representations of the effects of the calibration 473 

parameters on the AoR, the bulk density and the retainment ratio p. For clarity reasons, only surfaces for 474 

CED = 0, 20 and 80 kJ/m3 are presented. Contour surfaces of the p ratio for CED = 80 kJ/m3 are not 475 

shown as all simulations led to pθ 1, regardless of µs and µr values. These representations clearly show the 476 

coupled effects that sliding and rolling friction coefficients as well as cohesion have on the three responses 477 

analyzed.  478 

From the contours of Figure 10 it is noticeable that a single value of the bulk responses can be 479 

achieved from a wide range of parameters (each contour line spans over a wide range of both sliding and 480 

rolling friction coefficients and the same colors in the color scale can be found in two or more different 481 

graphs). This highlights the importance of choosing enough bulk setups and responses for a robust DEM 482 

calibration.  483 

In the case of the AoR response, changing cohesion level affects the trends of the surfaces, showing 484 

that effects of µs and µr are dependent on each other but also on CED magnitude. This is especially 485 

noticeable for the highest values of CED. For non-cohesive simulations (Figure 10a), rolling friction 486 

effects are more important when sliding friction is increased, and maximum values of AoR are attained for 487 

the highest values of µs and µr. This is in agreement with previous results by Wensrich and Katterfeld [64] 488 

who stated that the only way in which a large angle of repose could be achieved was if both of these 489 

mechanisms (rolling and sliding) worked together. However, interestingly, when cohesion is included, 490 

even if AoR tends to increase with increase in µs and µr values, maximum AoR values do not necessarily 491 

correspond to the highest values of µs and µr; instead, they are located at intermedium values of µs and µr. 492 
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Figure 10c shows that effects of rolling and sliding friction follow a less monotonous trend when CED is 493 

80 kJ/m3. A reason for this is that, for values of CED over 50 kJ/m3, particles flowing over the conveyor 494 

tend to form relatively stable agglomerates that are spread over the heap’s surface, forming heaps with a 495 

rougher and more irregular surface (Figure 8b). Therefore, AoR determination for very cohesive 496 

simulations could lead to values with higher uncertainty as heap profiles are less well-described by linear 497 

regressions. This can be quantified through the calculation of the average coefficient of determination (r2) 498 

as function of the CED values (Figure 12). Indeed, a downward trend which is more marked for the 499 

sample 1 (coarse particles) than for sample 2 (fine particles) was observed.  500 

As for the AoR, effects of calibration parameters on bulk density go hand-in-hand. Bulk density 501 

decreases when friction and cohesion are increased or when the rolling is more restricted (so a less 502 

“spherical behavior”). This is the result of a higher void created between particles when normal forces are 503 

allowed to dissipate to a bigger extent through bigger µs values. Increasing the rolling resistance and 504 

cohesion also prevent particulates from finding a more compact spatial arrangement, so void fraction 505 

could be reduced.  Bulk density seems to be sliding dominated for the values on top left of the contour 506 

figures (µs < 0.3) and rolling dominated for the values at the bottom right corner on those representations. 507 

This accentuates when cohesion is increased.  508 

For sample 1, experimental values of AoR and bulk density (AoR = 27.7°, ρb = 184.2 kg/m3) can only 509 

be found for the lower values of cohesion, but a high p ratio needs a high value of CED. Thus, a trade-off 510 

through optimization has to be found.  511 

Regarding sample 2, small effects of cohesion on the AoR were found within the range 0 to 512 

20 kJ/m3. Unlike sample 1, a more gradual increase of AoR with rolling resistance increase was found for 513 

CED = 80 kJ/m3. Regarding bulk density, similar trends were found between both samples. Target values 514 

(AoR = 46.3°, ρb = 165.6 kg/m3) can be found on Figure 11c and Figure 11e, but as for sample 1,  a p 515 

value of 1 is only possible for the most cohesive sets of simulations.  516 

 517 
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 518 

Figure 10. Contour surface responses for sample 1. 519 

In order to reach values of p ratio close to 1, a particle’s shape representation that strengths 520 

particles spatial interlocking could reduce the need for high CED values (e.g. through non-axial or hooked 521 

shapes). Nevertheless, this would typically require a particle’s model including more spheres per clump, as 522 

well as a highly polydisperse system, which would reduce simulation performances beyond a practical 523 

interest. 524 
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Globally, when comparing simulations for samples 1 and 2 with low-mid cohesion, relatively 525 

similar values of AoR and bulk density were found for the two samples when calibration parameters were 526 

the same. On the contrary, the experimental results for samples 1 and 2 were significantly different. 527 

 528 

Figure 11. Contour surface responses for sample 2. 529 

 530 
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 531 

Figure 12. Average coefficients of determination of heaps profiles. 532 

3.2.3. Main effects of calibrated parameters 533 

Using MINITAB’s tool for analysis of factorial designs [65], the main effects plots presented in 534 

Figure 13 were obtained. These plots are useful for quantitatively assessing the influence of each level 535 

of µs, µr and CED on the mean responses of AoR, bulk density and p ratio.  536 
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 537 

Figure 13. Main effects plots. The dotted horizontal line represents the overall mean. 538 

Globally, similar trends were found for both samples, both qualitatively and quantitatively, with a 539 

greater resolution for sample 1 than that for sample 2 as more parameters values could be tested. In the 540 

case of the coarse sample 1, a sharp increase (21%) of AoR was observed as µs increased from 0.1 to 0.3. 541 

In average, higher values of AoR were obtained for µs = 0.5. Sliding friction governs the translational 542 

motion of the particles by defining the magnitude of normal force that it is dissipated as a tangential 543 

component. This means that a large sliding friction coefficient can tolerate a large magnitude of the elastic 544 

deformation in the tangential direction and enhance the stability of the individual contacts amongst 545 

particles. However, sliding friction defines only a truncation parameter of the tangential force and not its 546 

absolute value when the truncation criteria is not met. This could explain the important gap of AoR 547 
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observed when µs is increased from 0.1 to 0.3 and the low AoR variation when µs is increased above 0.3. 548 

For very low values of µs the tangential displacement is highly constrained and corresponds to the value 549 

defined by the product of µs and the normal force on particles (Coulomb’s friction limit). For higher 550 

values of µs the probability of normal forces exceeding the truncation criteria is reduced and therefore 551 

further increase of µs would have a lower effect on the variation of the tangential dissipation and therefore 552 

on the angle of repose. 553 

Increasing rolling friction from µr = 0.1 to µr = 0.7 gradually increased the mean AoR by +15 % 554 

as shown in Figure 13a. A large rolling friction coefficient means a large resistance force to the rotational 555 

movement of the spheres clump, which provides and effective mechanism to consume the kinetic energy 556 

and reduce the rotational motion, leading to the formation of heaps with higher potentials and AoR [66]. 557 

The greatest variation of AoR was observed when the CED effect is analyzed: AoR below 35° were 558 

obtained for non-cohesive simulations while the highest values of CED led to AoR over 46° (+36 %).  559 

Regarding bulk density, the downward trends of Figure 13c-d summarize the observations made for 560 

the contour surfaces presented in section 3.2.2. The increase of sliding and rolling friction coefficients 561 

triggered a less compacted settlement of particles inside the heap, thus creating more void spaces and 562 

reducing bulk density. For values of µs, µr > 0.7 bulk density seems to reach a low plateau.  As for CED 563 

effect, an important decrease of ρb by 36% and 30% for sample 1 and sample 2 respectively was observed 564 

when non-cohesive and highly cohesive simulations (CED = 80 kJ/m3) are compared.  565 

For both samples, there is a peak of p ratio when varying µs values from 0.1 to 0.9. Interestingly, in 566 

the case of the coarse sample, increasing sliding friction coefficient to 0.9 lead to much more particles 567 

flowing out of the container. This is probably because when increasing friction, particles at the border of 568 

the stack are more likely to be dragged by particles flowing out the silo, which, together with the effects of 569 

cohesion, will lead to smaller values of the retainment ratio. For CED = 80 kJ/m3, however, cohesion is 570 

strong enough to hold particles together and conceal the effects of µs or µr.  571 
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For both samples, limiting particles rotation tended to generate more stable stacks as can be seen 572 

from the slight increase of the p ratio with increase of µr. Finally, increasing values of the CED was 573 

directly related with the number of particles staying in the container after the lid was opened. Among the 574 

variables studied, CED increase is therefore the best approach to simulate particle interlocking and to 575 

numerically reproduce the particles cohesion observed in experiments. 576 

3.3. Calibration and selection of optimal values 577 

 578 

3.3.1. Pareto fronts, 3D representation of optimal values 579 

The evolution of the two objective functions for sample 1 over 100 generations are shown in the 580 

Figure 14. The 2000 individuals constituting the initial population are spread over a relatively wide range 581 

of the objective function values that gradually narrows with successive iterations. The number of 582 

individuals stay constant, so the Pareto fronts shrink around the optimal values with the evolution of the 583 

population. Through the iteration process, the fronts converged to an optimum where no further 584 

improvement was observed in succeeding generations. For both samples, a convergent front was obtained 585 

from the 50th generation.  586 

 587 

Figure 14. Pareto front evolution over 100 generations of NSGA-II optimization. 588 

As observed through the Pareto fronts, multiobjective optimizations lead to results in which 589 

trade-offs between the objective functions were encountered. The optimal solutions that allowed to obtain 590 

values of AoR and bulk density closer to the experimental measurements yielded low p values and vice 591 

versa. In order to have a comprehensive view of the sets of calibrated parameters that better adjust the 592 
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bulk experimental properties of each sample, the optimal values for the last generation of NSGA-II 593 

optimizations are presented in Figure 15. A color and size scale were used to highlight the values of the 594 

total error, calculated as the sum of the values of the objective functions O1 + O2. For sample 1, sets of 595 

optimal calibration parameters with a relatively broad range of solutions were obtained, especially for 596 

CED values which could vary between 10 and 50 kJ/m3. For sample 2, a narrower range of optimal sets is 597 

shown in Figure 15. The solutions giving the lowest value of O1 + O2 were input in the LIGGGHTS 598 

program and the simulation results are presented and compared against the experimental values in Table 599 

9. 600 

  601 

 602 

Figure 15. Sets of optimal calibrated parameters for sample 1 and 2. Size and color scale indicate the sum of O1 + O2 values 603 

corresponding to each set of µS, µr and CED. 604 

The calibrations based exclusively on the angle of repose and the bulk density would not lead to a 605 

material having enough interparticle cohesion to hold particles together inside a container. Therefore, 606 

including the rectangular container test as a bulk response for calibration was decisive to expose the 607 

cohesive character of biomass particles. Incorporating the retainment ratio response adds a cohesive 608 

feature to the material that could more realistically simulate blocking problems on feed systems for 609 

biomass particles. Additionally, calibration using the p ratio sensibly reduced the diversity of the optimal 610 

values of µs, µr and CED. Thus, it is clear that separate calibration test from different macroscopic 611 
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responses can yield different results and that calibration based on a large number of parameters and bulk 612 

responses is preferable. 613 

Table 9. Optimized values of µs, µr and CED and comparison of simulated responses (Sim.) against experimental measurements 614 

(Exp.). e: relative error between experimental and DEM responses. 615 

Sample µs µr 
CED 

(kJ/m3) 
 

O1 + O2 

AoR (°) ρb (kg/m3) p 

Sim. Exp. 
e 

(%) 
Sim. Exp. 

e 

(%) 
Sim. Exp. 

e 

(%) 
1 0.2298 0.1000 10.01 0.27 30.0 27.7 8.3 192.2 184.2 4.3 0.80 1 20.0 
2 0.1000 0.5004 80.00 0.17 42.3 46.3 8.7 157.1 165.6 5.1 1.00 1 0.0 

 616 

From Table 9 it can be seen that there was little discrepancy between the simulated and the 617 

experimental AoR, bulk density and p ratio for both samples. In the case of sample 1, even if the AoR 618 

and bulk density values were better adjusted than those of sample 2, optimization led to particles without 619 

enough cohesive strength to form a stable stack in the rectangular container simulations. The optimized 620 

values of CED reflect a much more cohesive behavior for finer samples, which corresponds to the 621 

experimental observations.  622 

3.3.2. Ring shear tester simulations 623 

Values presented in Table 9 were used to simulate a shear sequence in a ring shear tester. Figure 16 624 

compares the simulation results against the experimental evolution of shear stress. Two shear cycles are 625 

represented, starting by a preshear step at ρpre = 5 kPa and followed by a shear at θsh = 2.5 kPa. This 626 

preshear-shear sequence is repeated for ρsh = 3.75 kPa. Stresses are plotted against rotation angle defined as 627 

the product of time and shear velocity. Although simulation results are relatively noisy (due to the scaled 628 

particles and the oscillation of the servo-controlled normal force), it is encouraging that simulation results 629 

for sample 1 were very close to experimental shear stress profiles in terms of evolution of the curve shape 630 

and the average yield stresses.   631 
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 632 

Figure 16. Simulated (DEM) and experimental (Exp) evolution of shear (ρ) and consolidation stresses (ρ) for sample 1. 633 

Yield stresses of preshear and shear for both samples are listed in Table 10. Values of shear stress 634 

were slightly underestimated in DEM simulations for sample 1. A greater gap between the experimental 635 

and simulations results was yet observed for sample 2. This can be related to the fact that responses 636 

shown in Section 3.3.1 for sample 2 were less well predicted using the calibrated parameters than those of 637 

coarse powders. 638 

Table 10. Simulation (Sim.) and experimental (Exp.) results for ring shear tester tests. 639 

 Preshear stress at ρpresh = 5 kPa Shear stress at ρsh = 2.5 kPa 
 Exp. Sim. e (%) Exp. Sim. e (%) 
Sample 1 4.31 3.94 8.6 2.45 2.32 5.3 
Sample 2 4.81 3.49 27.4 2.87 2.51 12.5 
 640 

The under-estimation of the experimental results from simulations for sample 2 shows that these 641 

results should be treated with caution. Indeed, as highlighted by [67], calibration should take into account 642 

the nature of the actual simulated process. Calibration using angle of repose, bulk density and shear box 643 

tests might therefore not be sufficient for simulation of materials under a consolidated state, as is the case 644 

in shear testers. Furthermore, the use of JKR cohesion models has recently been shown not to adequately 645 

capture the stress behavior of some cohesive powders, particularly at relatively high consolidation stresses 646 

[68]. This has led to the development of new cohesion contact models that consider contact plasticity. 647 
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Additional work will therefore evaluate the relevance of JKR models compared to cohesive elasto-plastic 648 

models for biomass particles. 649 

4. CONCLUSION 650 

Biomass powders characteristics – such as small particles size, cohesive behavior, low particle density 651 

and elongated shape – make bulk simulations highly challenging considering the current DEM state of 652 

development. This work aimed at producing a realistic, calibrated and efficient material model for 653 

lignocellulosic biomass powders to be eventually used in feeding systems for entrained-flow gasification. 654 

We successfully developed a DEM material model for biomass powders by using a coarse-grained 655 

multisphere representation of shape and size distributions of particles along with a Hertz-Mindlin-EPDS2-656 

SJKR cohesive force model. 657 

The application of a calibration procedure that uses a NSGA-II optimization algorithm was successful in 658 

determining the coefficients of sliding friction, rolling friction and a cohesive energy density term for two 659 

biomass powder populations: a coarse sieving cut between 500 µm and 710 µm, and a fine cut between 660 

200 and 315 µm. The results presented here showed that the calibrated contact-law parameters fitted the 661 

physical responses accurately, and a validation using a ring shear tester showed promising results. The 662 

application of a typically used trial-and-error approach for calibration would have been highly time-663 

consuming compared to the systematic approach used in this work. 664 

This research highlighted the importance of adequately selecting bulk experiments for calibration: only 665 

taking results from angle-of-repose and bulk density measurements would not replicate the cohesive 666 

behavior of biomass particles to their actual extent. Including additional bulk responses such as a 667 

rectangular container test (shear box) reduced the diversity of optimal calibrated parameters and allowed 668 

to obtain a material model that represents better blocking problems in feeding systems. 669 

With the aim of improving the predictive capability of the DEM model for biomass powders, future 670 

research could include additional bulk setups that discriminate between different cohesive strengths of 671 

biomass powders, as well as validation under a variety of stress and flow conditions.  672 

The findings presented here showed a scale-dependency of the simulations for the AoR test. The prospect 673 

of being able to apply at an industrial scale the calibrated parameters found using the framework described 674 
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here serves as a stimulus for future research on the scalability of the calibration setups. This remains an 675 

important issue to be addressed in future studies, especially regarding cohesive and elongated materials 676 

such as biomass particles. Future work should also address the relevance of using flexible particle models 677 

that might be more suitable for biomass particles. 678 
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Appendix A. Experimental plan 688 

The Table A-1 contains the experimental plan used in this work. 689 

Table A-1. Experimental plan of this work. 690 

Sample 1 Sample 2 

Run 
N° 

µs µr 
CED 

(kJ/m3) 
Run 
N° 

µs µr 
CED 

(kJ/m3) 
Run 
N° 

µs µr 
CED 

(kJ/m3) 
Run 
N° 

µs µr 
CED 

(kJ/m3) 

1 0.1 0.1 0 43 0.5 0.7 10 85 0.9 0.3 50 1 0.1 0.1 0 
2 0.3 0.1 0 44 0.7 0.7 10 86 0.1 0.5 50 2 0.5 0.1 0 
3 0.5 0.1 0 45 0.9 0.7 10 87 0.3 0.5 50 3 0.9 0.1 0 
4 0.7 0.1 0 46 0.1 0.9 10 88 0.5 0.5 50 4 0.1 0.5 0 
5 0.9 0.1 0 47 0.3 0.9 10 89 0.7 0.5 50 5 0.5 0.5 0 
6 0.1 0.3 0 48 0.5 0.9 10 90 0.9 0.5 50 6 0.9 0.5 0 
7 0.3 0.3 0 49 0.7 0.9 10 91 0.1 0.7 50 7 0.1 0.9 0 
8 0.5 0.3 0 50 0.9 0.9 10 92 0.3 0.7 50 8 0.5 0.9 0 
9 0.7 0.3 0 51 0.1 0.1 20 93 0.5 0.7 50 9 0.9 0.9 0 

10 0.9 0.3 0 52 0.3 0.1 20 94 0.7 0.7 50 10 0.1 0.1 20 
11 0.1 0.5 0 53 0.5 0.1 20 95 0.9 0.7 50 11 0.5 0.1 20 
12 0.3 0.5 0 54 0.7 0.1 20 96 0.1 0.9 50 12 0.9 0.1 20 
13 0.5 0.5 0 55 0.9 0.1 20 97 0.3 0.9 50 13 0.1 0.5 20 
14 0.7 0.5 0 56 0.1 0.3 20 98 0.5 0.9 50 14 0.5 0.5 20 
15 0.9 0.5 0 57 0.3 0.3 20 99 0.7 0.9 50 15 0.9 0.5 20 
16 0.1 0.7 0 58 0.5 0.3 20 100 0.9 0.9 50 16 0.1 0.9 20 
17 0.3 0.7 0 59 0.7 0.3 20 101 0.1 0.1 80 17 0.5 0.9 20 
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18 0.5 0.7 0 60 0.9 0.3 20 102 0.3 0.1 80 18 0.9 0.9 20 
19 0.7 0.7 0 61 0.1 0.5 20 103 0.5 0.1 80 19 0.1 0.1 80 
20 0.9 0.7 0 62 0.3 0.5 20 104 0.7 0.1 80 20 0.5 0.1 80 
21 0.1 0.9 0 63 0.5 0.5 20 105 0.9 0.1 80 21 0.9 0.1 80 
22 0.3 0.9 0 64 0.7 0.5 20 106 0.1 0.3 80 22 0.1 0.5 80 
23 0.5 0.9 0 65 0.9 0.5 20 107 0.3 0.3 80 23 0.5 0.5 80 
24 0.7 0.9 0 66 0.1 0.7 20 108 0.5 0.3 80 24 0.9 0.5 80 
25 0.9 0.9 0 67 0.3 0.7 20 109 0.7 0.3 80 25 0.1 0.9 80 
26 0.1 0.1 10 68 0.5 0.7 20 110 0.9 0.3 80 26 0.5 0.9 80 
27 0.3 0.1 10 69 0.7 0.7 20 111 0.1 0.5 80 27 0.9 0.9 80 
28 0.5 0.1 10 70 0.9 0.7 20 112 0.3 0.5 80     
29 0.7 0.1 10 71 0.1 0.9 20 113 0.5 0.5 80     
30 0.9 0.1 10 72 0.3 0.9 20 114 0.7 0.5 80     
31 0.1 0.3 10 73 0.5 0.9 20 115 0.9 0.5 80     
32 0.3 0.3 10 74 0.7 0.9 20 116 0.1 0.7 80     
33 0.5 0.3 10 75 0.9 0.9 20 117 0.3 0.7 80     
34 0.7 0.3 10 76 0.1 0.1 50 118 0.5 0.7 80     
35 0.9 0.3 10 77 0.3 0.1 50 119 0.7 0.7 80     
36 0.1 0.5 10 78 0.5 0.1 50 120 0.9 0.7 80     
37 0.3 0.5 10 79 0.7 0.1 50 121 0.1 0.9 80     
38 0.5 0.5 10 80 0.9 0.1 50 122 0.3 0.9 80     
39 0.7 0.5 10 81 0.1 0.3 50 123 0.5 0.9 80     
40 0.9 0.5 10 82 0.3 0.3 50 124 0.7 0.9 80     
41 0.1 0.7 10 83 0.5 0.3 50 125 0.9 0.9 80     
42 0.3 0.7 10 84 0.7 0.3 50         

 691 

 692 

 693 

 694 

Appendix B. Individual simulation results 695 

Figure 17 shows the totality of results from simulations. Each run number corresponds to a set of 696 

µs, µr and CED values. 697 
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 698 

Figure 17. Simulation results of AoR, bulk density and p ratio for Sample 1 and 2. 699 

 700 

 701 

 702 
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