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A B S T R A C T   

Purpose: Diagnosing desmoid-type fibromatosis (DTF) requires an invasive tissue biopsy with β-catenin staining 
and CTNNB1 mutational analysis, and is challenging due to its rarity. The aim of this study was to evaluate 
radiomics for distinguishing DTF from soft tissue sarcomas (STS), and in DTF, for predicting the CTNNB1 mu-
tation types. 
Methods: Patients with histologically confirmed extremity STS (non-DTF) or DTF and at least a pretreatment T1- 
weighted (T1w) MRI scan were retrospectively included. Tumors were semi-automatically annotated on the T1w 
scans, from which 411 features were extracted. Prediction models were created using a combination of various 
machine learning approaches. Evaluation was performed through a 100x random-split cross-validation. The 
model for DTF vs. non-DTF was compared to classification by two radiologists on a location matched subset. 
Results: The data included 203 patients (72 DTF, 131 STS). The T1w radiomics model showed a mean AUC of 
0.79 on the full dataset. Addition of T2w or T1w post-contrast scans did not improve the performance. On the 
location matched cohort, the T1w model had a mean AUC of 0.88 while the radiologists had an AUC of 0.80 and 
0.88, respectively. For the prediction of the CTNNB1 mutation types (S45 F, T41A and wild-type), the T1w model 
showed an AUC of 0.61, 0.56, and 0.74. 
Conclusions: Our radiomics model was able to distinguish DTF from STS with high accuracy similar to two ra-
diologists, but was not able to predict the CTNNB1 mutation status.   

1. Introduction 

Sporadic desmoid-type fibromatosis (DTF) is a rare borderline, soft 
tissue tumor arising in musculoaponeurotic structures [1]. Worldwide 
epidemiological data is lacking, but population studies in Scandinavia 
and the Netherlands show a low incidence of 2.4–5.4 cases per million 
per year [2,3]. Early recognition and diagnosis of DTF is therefore 
challenging. 

On MRI, DTF can display a wide variety of enhancement patterns [4]. 
DTF has imaging characteristics that are often associated with soft tissue 
sarcomas (STS), such as crossing fascial boundaries, an invasive growth 
pattern, little central necrosis, mildly hyperintense on T1-weighted 
(T1w) MRI, and hyperintense and heterogeneous on T2-weighted 
(T2w) MRI with hypointense bands [5]. Hence, the distinction be-
tween DTF and STS, i.e. non-DTF, can be difficult. An invasive tissue 
biopsy, with additional immunohistochemical staining for β-catenin and 
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mutation analysis of the CTNNB1 (β-catenin) gene, is therefore currently 
required to differentiate DTF from non-DTF [6]. 

As DTF is a borderline tumor who is unable to metastasize, and re-
quires a different treatment regimen than malignant STS, this distinction 
is highly relevant. Differentiation between DTF and STS based on im-
aging would be beneficial because of the rarity of DTF, making clinical 
and pathological recognition challenging. Furthermore, DTF exhibits an 
aggressive growth pattern and growth might be stimulated after (sur-
gical) trauma, including biopsies [7]. Avoiding (multiple) harmful bi-
opsies which potentially cause tumor growth is therefore of great 
importance. 

Several studies have addressed the prognostic role of the CTNNB1 
mutation in DTF [8–10], as serine 45 (S45 F) tumors appear to have a 
higher risk of recurrence after surgery compared to threonine 41 (T41A) 
and wild type (WT) (i.e. no CTNNB1 mutation [11]) tumors [12]. 
Obtaining the CTNNB1 mutation status is for diagnostic purposes and to 
guide the clinical work-up, but, for now, the CTNNB1 mutation status 
has no therapeutic consequences [13]. The majority of DTF harbors a 
CTNNB1 mutation at either T41A or S45 F [8]. Assessment of the mu-
tation status is currently done by Sanger Sequencing or Next Generation 
Sequencing, which are time consuming and expensive. 

In radiomics, large amounts of quantitative imaging features are 
related to clinical outcome [14]. Radiomics may serve as a non-invasive 
surrogate to contribute to diagnosis, prognosis and treatment planning 
[15,16]. Based on the results of previous studies in cancer [17], we 
hypothesized that radiomics may also be useful in DTF. 

This study investigated whether a radiomics model based on MRI is 
able to 1) distinguish DTF from non-DTF in the extremities, and 2) to 
predict the CTNNB1 mutation status of DTF. Additionally, in the DTF vs. 
non-DTF distinction, we evaluated which of the included MRI sequences 
has the highest predictive value. 

2. Material and methods 

2.1. Data collection 

Approval by the Erasmus Medical Center (MC) institutional review 
board (MEC-2016-339) was obtained. Patients diagnosed or referred to 
the Erasmus MC between 1990-2018 with a histologically proven pri-
mary or recurrent DTF were included. This resulted in a multicenter 
imaging dataset as patients referred to our sarcoma expert institute often 
received imaging at their referring hospital. The most frequently used 
imaging modality prior to treatment was T1w-MRI, and its availability 
was used as an inclusion criterion [18]. When available, other sequences 
such as T2w, T1w post-contrast, dynamical contrast enhanced (DCE), 
proton density (PD) and diffusion weighted imaging (DWI) MRI were 
collected. 

For the differential diagnosis (DTF vs. non-DTF), histologically 
confirmed malignant extremity STS were included. Benign STS were 
excluded, because this distinction is clinically less relevant. Non- 
extremity STS were excluded because of the infrequent use of MRI. 
Although DTF tumors commonly occur in the abdominal wall, their 
differential diagnosis is broad and includes pseudo-tumors such as 
myositis, nodular fasciitis and hematomas, and tumors such as lipomas, 
STS, endometriosis, carcinomas, lymphomas and metastasis [19]. 
Hence, we decided to focus on the distinction between DTF and STS, and 
included patients with a histologically proven primary fibromyx-
osarcoma, myxoid liposarcoma or leiomyosarcoma of the extremities. 
Similar to the DTF, patients with at least a pre-treatment T1w-MRI were 
retrospectively included. 

Sex, age at diagnosis, and tumor location were collected. For the 
DTF, in case of a missing CTNNB1 mutation status, Sanger Sequencing 
was performed after review of formalin-fixed paraffin-embedded tumor 
sections by a pathologist. Cases with a known CTNNB1 mutation did not 
undergo additional review by a pathologist. Poor scan quality (e.g. ar-
tifacts), poor DTF DNA quality with failure of sequencing, and CTNNB1 

mutation other than S45F, T41A or WT led to exclusion. 

2.2. Radiomics feature extraction 

The tumors were all manually segmented once on the T1w-MRI by 
one of two clinicians under supervision of a musculoskeletal radiologist 
(4 years of experience). A subset of 30 DTF was segmented by both 
clinicians, in which intra-observer variability was evaluated through the 
pairwise Dice Similarity Coefficient (DSC), with DSC > 0.70 indicating 
good agreement [20]. To transfer the segmentations to the other se-
quences, all sequences were automatically aligned to the T1w-MRI using 
image registration with the Elastix software [21]. For each lesion, per 
MRI sequence, 411 features quantifying intensity, shape and texture 
were extracted. Details can be found in Appendix A and Table A.2. 

2.3. Decision model creation 

To create a decision model from the features, the WORC toolbox was 
used, see Fig. 1 [22–24]. In WORC, the decision model creation consists 
of several steps, e.g. feature selection, resampling, and machine 
learning. WORC performs an automated search amongst a variety of 
algorithms for each step and determines which combination of algo-
rithms maximizes the prediction performance on the training set. More 
details can be found in Appendix B. 

For the differential diagnosis cohort, a binary classification model 
was created using a variety of machine learning models. For the DTF 
cohort (predicting the CTNNB1 mutation), a multiclass classification 
model was created using random forests. 

2.4. Evaluation 

Evaluation of all models was done through a 100x random-split 
cross-validation. In each iteration, the data was randomly split in 80 
% for training and 20 % for testing in a stratified manner, to make sure 
the distribution of the classes in all sets was similar to the original 
(Fig. A.1). Within the training set, model optimization was performed 
using an internal cross-validation (5x). Hence, all optimization was done 
on the training set to eliminate any risk of overfitting on the test set. 

Performance was evaluated using the Area Under the Curve (AUC) of 
the Receiver Operating Characteristic (ROC) curve, balanced classifi-
cation accuracy (BCA), sensitivity, specificity, negative predictive value 
(NPV), and positive predictive value (PPV). For the multiclass models, 
we reported the multiclass AUC [25] and overall BCA [26]. The positive 
classes included: DTF in the differential diagnosis, and the presence of 
the mutation in the mutation analysis. The 95 % confidence intervals 
were constructed using the corrected resampled t-test, thereby taking 
into account that the samples in the cross-validation splits are not sta-
tistically independent [27]. Both the mean and the confidence intervals 
are reported. ROC confidence bands were constructed using fixed-width 
bands [28]. 

To assess the predictive value of the various features, models were 
trained based on: 1) volume; 2) age and sex; 3) T1w-MRI imaging; 4) 
T1w-MRI imaging, age and sex. Model 1 was created to verify that the 
imaging models were not solely based on volume. Model 2 was created 
to evaluate potential age and gender biases. In model 4, the imaging and 
clinical characteristics are combined by using both the imaging features 
and age and sex as features for a total of 413 features. This allows WORC 
to combine the imaging and clinical characteristics in the most optimal 
way. Additionally, a model was made for each combination of T1w-MRI 
and one of the other included MRI sequences (e.g. based on T1w-MRI 
and T2w-MRI) to evaluate the added value of these other sequences. 
When a sequence was missing for a patient, feature imputation was used 
to estimate the missing values. 

The code for the feature extraction, model creation and evaluation 
has been published open-source [29]. 
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2.5. Model insight 

To explore the predictive value of individual features, the Mann- 
Whitney U univariate statistical test was used. P-values were corrected 
for multiple testing using the Bonferroni correction, and were consid-
ered statistically significant at a p-value <0.05. Feature robustness to 
variations in the segmentations was assessed on the subset of 30 DTF 
segmented by two observers using the intra-class correlation coefficient 
(ICC), were an ICC > 0.75 indicated good reliability [30]. To evaluate 
model reliability, a separate model was trained using only these features 
with a good reliability. To gain insight into the models, the patients were 
ranked based on the consistency of the model predictions. Typical ex-
amples for each class consisted of the patients that were correctly clas-
sified in all cross-validation iterations; atypical vice versa. 

2.6. Classification by radiologists 

To compare the models with clinical practice, the tumors were 
classified by two musculoskeletal radiologists (5 and 4 years of experi-
ence), which had access to all available MRI sequences, age, and sex. 
They were specifically instructed to distinguish between STS and DTF. 
Classification was made on a ten-point scale to indicate the radiologists’ 
certainty. As only extremity STS were selected for the non-DTF group, a 
location-matched database was used. This included all extremity DTF 
and the same number of non-DTF. Agreement between the radiologists 
was evaluated using Cohen’s kappa. The radiomics models were eval-
uated as well in this cohort. In each cross-validation iteration, these 
models were trained on 80 % of the full dataset, but tested only on pa-
tients from the location-matched cohort in the other 20 % of the dataset. 
The DeLong test was used to compare the AUCs [31]. 

3. Results 

3.1. Study selection and population 

The dataset included 203 patients; see Table 1 for the clinical char-
acteristics. The differential diagnosis cohort consisted of 64 fibromyx-
osarcomas, 31 leiomyosarcomas, 36 myxoid liposarcomas, and 72 DTFs 
(65 primary, 7 recurrent), of which 61 were suitable for the mutation 
analysis. 

The dataset originated from 68 scanners, resulting in a large het-
erogeneity in the acquisition protocols, see Table 2. From the 72 patients 
in the DTF cohort, there were 30 T1w post-contrast (42 %), 49 T1w post- 
contrast FatSat (68 %), 34 T2w (47 %), 33 T2w FatSat (46 %), 3 proton 
density (PD) (4%), 18 DCE (25 %) and 3 DWI (4%) MRI scans. Due to the 
limited availability of the PD, DCE, and DWI sequences, besides the 
T1w-MRI, only the T1w post-contrast and T2w (with/without FatSat) 
sequences were analyzed. 

On the subset of 30 DTF that was segmented by both observers, the 
mean DSC was 0.77 (standard deviation of 0.20), indicating good 
agreement. An example of the image registration results is depicted in 
Fig. 2. 

3.2. Differential diagnosis 

The performance of models 1–6 for the differential diagnosis is 
shown in Table 3. Model 1, based on volume, showed little predictive 
value (mean AUC of 0.69). Model 2, based on age and sex, performed 
better (mean AUC of 0.86). Model 3, based on T1w-MRI, had a mean 
AUC of 0.79, thus performing worse than age and sex, but better than 
volume alone. Model 4, combining the T1w-MRI, age, and sex, showed 
little improvement in terms of mean AUC (0.88) over model 2. Addition 
of a T2w-MRI, i.e. model 5, or T1 post-contrast MRI, i.e. model 6, both 
with or without FatSat, both yielded a minor overall improvement over 

Fig. 1. Schematic overview of the radiomics approach: adapted from [24]. Processing steps include segmentation of the tumor on the T1-weighted (T1w) MRI (1), 
registration of the T1w to the T2-weighted (T2w) MRI to transform this segmentation to the T2w-MRI (2), feature extraction from both the T1w-MRI and the 
T2w-MRI (3) and the creation of machine learning decision models (5), using an ensemble of the best 50 workflows from 100,000 candidates (4), where the 
workflows are different combinations of the processing and analysis steps. 
DTF, desmoid-type fibromatosis. 
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model 3 (mean AUC of 0.84 and 0.84, respectively). These observations 
were confirmed by the ROC curves in Fig. 3. The models using either 
only non-FatSat or FatSat scans, both for the T2w and T1w post-contrast 
MRI, faired similar, see Table A.1. 

3.3. Comparison with radiologists 

As described in the methods, for the comparison with radiologists, a 
location-matched cohort consisting of all extremity DTFs and an equal 
amount of extremity non-DTF was used. To this end, all 20 extremity 
DTFs and 20 randomly selected extremity non-DTFs were included in 
the location-matched cohort. The performance of radiomics and the 
radiologists in this cohort is shown in Table 4: model 1 and 5–6 were 
omitted from the results for brevity. The AUCs of the radiomics models 
(model 2: 0.93; model 3: 0.88; model 4: 0.98) were generally higher than 
both radiologists 1 (0.80) and 2 (0.88). This is confirmed by the ROC 
curves in Fig. 4. Cohen’s kappa between the two radiologists was 0.40, 
indicating intermediate observer agreement. A DeLong power analysis 
of the AUCs resulted in a power of only 0.1. Due to the limited power, 
the p-values of the DeLong test were omitted. 

Table 1 
Clinical characteristics of both cohorts.   

Differential diagnosis cohort Mutation analysis cohort  

DTF Fibro-myxosarcoma Leiomyosarcoma Myxoid liposarcoma DTF  
n = 72 n = 64 n = 31 n = 36 n = 61 

Sex      
Male 16 (22 %) 41 (64 %) 19 (61 %) 22 (61 %) 15 (25 %) 
Female 56 (78 %) 23 (36 %) 12 (39 %) 14 (39 %) 46 (75 %) 
Age median (IQR) 36 (23− 47) 67 (54− 77) 66 (55− 73) 42 (35− 56) 36 (22− 47) 
Tumor location      
Head/neck 12 (17 %) – – – 11 (18 %) 
Chest aperture 4 (6 %) – – – 3 (5 %) 
Abdominal wall 24 (33 %) – – – 16 (26 %) 
Back 11 (15 %) – – – 10 (16 %) 
Intra-abdominal 1 (1 %) – – – 1 (2 %) 
Upper extremity 5 (7 %) 6 (9 %) 7 (23 %) 1 (3 %) 5 (8 %) 
Lower extremity 15 (21 %) 58 (91 %) 24 (77 %) 35 (97 %) 15 (25 %) 
Tumor size in cma median (IQR) 6.3 (4.1− 9.8) 7.0 (4.9− 12.9) 8.3 (5.2− 9.4) 12.8 (8.5− 15.3) 6.3 (4.1− 9.5) 
Volume in cl median (IQR) 2.0 (0.5− 9.8) 5.6 (1.1− 34.1) 8.2 (1.7− 11.4) 16.8 (5.2− 37.4) 2.2 (0.7− 9.6) 
Mutation type      
T41A NA NA NA NA 24 (39 %) 
S45F NA NA NA NA 16 (26 %) 
Wild-type NA NA NA NA 21 (34 %) 
MRI sequences      
T2w FS 33 (46 %) 37 (58 %) 15 (48 %) 16 (44 %) 26 (43 %) 
T2w non-FS 32 (70 %) 37 (64 %) 19 (39 %) 19 (43 %) 26 (61 %) 
T1w PC FS 49 (70 %) 32 (50 %) 19 (48 %) 22 (51 %) 43 (70 %) 
T1w PC non-FS 30 (43 %) 24 (48 %) 11 (23 %) 17 (33 %) 25 (35 %) 

*Abbreviations: DTF: desmoid-type fibromatosis; IQR: interquartile range; cm: centimeter; cl: centiliter; MRI: magnetic resonance imaging; FS: FatSat; PC: post- 
contrast. 
Percentages might not add up to 100 % in total because of rounding. 

a Maximum diameter automatically measured in three planes. 

Table 2 
Properties of the acquisition protocols of the 203 T1-weighted MRI sequences in 
the dataset.  

Property Number % 

Magnetic field strength   
1T 20 10 
1.5T 167 82 
3T 16 8 
Manufacturer   
Siemens 93 46 
Philips 79 39 
General Electrics 27 13 
Toshiba 4 2  

Setting (Unit) Mean Std. Min Max 

Slice thickness (mm) 4.66 1.45 1.0 11.0 
Repetition time (ms) 619 533 0.0 4620 
Echo time (ms) 14 7 2.0 94.0 

*Abbreviations: T: tesla; Std: standard deviation; mm: millimeter; ms: 
milliseconds. 

Fig. 2. Segmentations on various MRI sequences before and after applying image registration in a desmoid-type fibromatosis case. The arrows are at the same 
position in each image and point at two details where the (mis)alignment is evident. (1) Original T1-weighted (T1w) MRI; (2) Original T2w-MRI; (3) Registered T2w- 
MRI; (4) Original T1w post-contrast MRI ; (5) Registered T1w post-contrast MRI. 
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3.4. CTNNB1 mutation status stratification 

Table 5 depicts the performance of the radiomics models for the 
CTNNB1 mutation stratification. Model 4, using T1w-MRI, age, and sex, 
had a high specificity (S45 F: 0.83, T41A: 0.59 and WT: 0.72), but a 
sensitivity similar to guessing (S45 F: 0.15, T41A: 0.49 and WT: 0.56). 

This indicates a strong bias in the models towards the negative classes, i. 
e. not-S45 F, not-T41A and not-WT. As model 4 did not perform well, 
models 1, 2, and 3 were omitted from the results, as these contain a 
subset of these features. Adding the T2w or T1w post-contrast imaging, i. 
e. models 5 and 6, did not improve the performance. Hence, the models 
using either only non-FatSat or FatSat scans were omitted, as these 

Table 3 
Performance of the radiomics models for the DTF differential diagnosis based on: model 1: volume only; model 2: age and sex only; model 3: T1w imaging features, 
including volume; model 4: the combination of T1w imaging features and age and sex; model 5: the combination of T1w and T2w imaging features; and model 6: the 
combination of T1w and T1w post-contrast imaging features. Outcomes are presented with the 95% confidence interval.   

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Volume Age + Sex T1w T1w + Age + Sex T1w + T2w T1w + T1w post-contrast 

AUC 0.69 [0.61, 0.76] 0.86 [0.79, 0.92] 0.79 [0.73, 0.85] 0.88 [0.82, 0.93] 0.84 [0.78, 0.89] 0.84 [0.78, 0.90] 
BCA 0.59 [0.53, 0.65] 0.78 [0.71, 0.86] 0.71 [0.65, 0.77] 0.79 [0.72, 0.86] 0.68 [0.62, 0.75] 0.75 [0.69, 0.81] 
Sensitivity 0.80 [0.70, 0.91] 0.78 [0.66, 0.90] 0.61 [0.49, 0.72] 0.70 [0.57, 0.83] 0.43 [0.31, 0.55] 0.62 [0.52, 0.73] 
Specificity 0.39 [0.28, 0.49] 0.79 [0.71, 0.87] 0.81 [0.73, 0.89] 0.88 [0.82, 0.94] 0.94 [0.88, 0.99] 0.88 [0.82, 0.95] 
NPV 0.50 [0.71, 0.89] 0.88 [0.81, 0.94] 0.80 [0.76, 0.75] 0.85 [0.80, 0.91] 0.76 [0.72, 0.80] 0.81 [0.76, 0.85] 
PPV 0.41 [0.36, 0.46] 0.72 [0.57, 0.76] 0.64 [0.53, 0.75] 0.76 [0.67, 0.86] 0.80 [0.66, 0.94] 0.76 [0.65, 0.88] 

*Abbreviations: T1w: T1-weighted; T2w: T2-weighted; AUC: area under the receiver operator characteristic curve; BCA: balanced classification accuracy; NPV: 
negative predictive value; PPV: positive predictive value. 

Fig. 3. Receiver operating characteristic curves of the radiomics models based on volume (1); age and sex (2); T1-weighted (T1w) features (3); T1w features, age, 
and sex (4); T1w + T2weighted imaging features (5); and T1w + T1w post-contrast imaging features (6). The grey crosses identify the 95 % confidence intervals of 
the 100x random-split cross-validation; the orange curve depicts the mean. 

Table 4 
Performance of the two radiologists and the radiomics models in differentiating between DTF (n = 20) and non-DTF (n = 20) in the location-matched cohort. Outcomes 
are presented with the 95% confidence interval.   

Model 2 Model 3 Model 4 
Rad 1 Rad 2 

Age + Sex T1w T1w + Age + Sex 

AUC 0.93 [0.84, >1] 0.87 [0.73, >1] 0.98 [0.92, >1] 0.80 0.88 
BCA 0.85 [0.71, 1.00] 0.71 [0.56, 0.87] 0.88 [0.77, 0.99] 0.75 0.90 
Sensitivity 0.79 [0.57, >1] 0.49 [0.21, 0.77] 0.78 [0.57, 1.00] 0.65 0.90 
Specificity 0.90 [0.71, >1] 0.93 [0.78, >1] 0.98 [0.91, >1] 0.85 0.89 
NPV 0.82 [0.61, >1] 0.65 [0.43, 0.76] 0.82 [0.64, >1] 0.71 0.89 
PPV 0.91 [0.72, >1] 0.81 [0.47, >1] 0.98 [0.91, >1] 0.81 0.90 

*Abbreviations: T1w: T1-weighted; AUC: area under the receiver operator characteristic curve; BCA: balanced classification accuracy; PPV: positive predictive value; 
NPV: negative predictive value. 
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contain subsets of the scans from models 5 and 6. 

3.5. Model insight 

As the CTNNB1 mutation status stratification models did not perform 
well, the model insight analysis was only conducted for the differential 
diagnosis. The p-values from the Mann-Whitney U test between the DTF 
and non-DTF patients of all features are shown in Table A.3. In the 
feature importance analysis, 76 T1w-MRI features had significant p- 
values (5.4 × 10− 8 to 4.8 × 10-2). These included two intensity features 
(entropy and peak), two shape features (radial distance and volume), 
and 72 texture features. The p-value of age (1 × 10-11) was lower than 
that of all imaging features. The ICC values of all T1w-MRI features are 
shown in Table A.4. Of the 411 features, 270 (66 %) had an ICC > 0.75 
and thus good reliability. Only using these features with a good reli-
ability in model 3 did not alter the performance. 

As we are mostly interested in which imaging features define typical 
DTF, and not age and sex, the patient ranking was conducted for model 
3. Of the 203 patients, 104 tumors (24 DTFs, 80 non-DTFs) were always 
classified correctly by model 3, i.e. in all 100 cross-validation iterations. 
Nineteen tumors (17 DTFs, 2 non-DTFs) were always classified incor-
rectly. In Fig. 5, MRI slices of such typical and atypical examples of DTFs 
are shown. 

4. Discussion 

This study showed that radiomics based on T1w-MRI can distinguish 

DTF from STS. Adding T2w or T1w post-contrast MRI did not substan-
tially improve the model. The DTF CTNNB1 mutation status could not be 
predicted through radiomics. To our knowledge, this is the first study to 
evaluate the DTF differential diagnosis and mutation status through an 
automated radiomics approach. 

Age and sex appeared to be strong predictors for the diagnosis of 
DTF, performing better than T1w-MRI. The combination of imaging, age 
and sex did not improve the model. This implies that age and sex are 
sufficient for distinguishing DTF from STS. In line with previous 
nationwide DTF cohort studies, females represented the majority of our 
cohort, with a lower median age compared to the median age of the 
patients from the non-DTF group [2,32]. The relation in our database 
may however be too strong, and thereby not representative of clinical 
practice. For example, above 63 years of age, our database included 60 
non-DTF and only a single DTF. While the peak incidence of DTF is 
between 20–40 years, DTF can affect patients of all ages with reported 
ranges from 2 to 90 years 32]. Simply classifying all tumors in patients 
above 63 years as non-DTF, regardless of any tumor (imaging) infor-
mation, is unfeasible. Such a model cannot be applied in the general 
population, while the model purely based on T1w-MRI imaging, as it 
does not use any population-based information. Our cohort might be 
biased due to the focus on MRI and the extremity as a location, while 
other modalities (e.g. CT or ultrasound) may be used for certain loca-
tions or for certain types of patients. Further research should include the 
expansion of our dataset to make especially the age distribution more 
representative. 

To estimate the clinical value of our model, we compared the per-
formance with the assessment of two radiologists. The model based on 
imaging performed similar to the radiologists. The model combining 
age, sex and imaging features, using the same dataset as the radiologist, 
had a higher AUC than the musculoskeletal radiologists. However this 
model may suffer from the selection bias as mentioned in the previous 
section. The agreement between the radiologists was intermediate, 
indicating observer dependence in the prediction. The radiomics model 
is observer independent, assuming the segmentation is reproducible as 
indicated by the high DSC and ICC, and will always give the same pre-
diction on the same image. 

The DTF differential diagnosis is highly important for treatment 
decisions, but difficult on imaging due to its rarity, while using invasive 
biopsies brings risks such as tumor growth. The use of our T1w-MRI 
radiomics model may therefore aid early recognition and diagnosis of 
DTF, thus shortening the diagnostic delay by enabling direct referral to 
an STS expertise center. Since all routine MRI protocols include a T1w- 
MRI, our radiomics method is generalizable, feasible and applicable for 
use in daily clinical practice. After further model optimization, it may 
serve as a quick, non-invasive, and low-cost alternative for a biopsy, 
currently limited to extremities due to the used dataset. 

Additionally, we investigated the predictive value of sequences other 
than T1w-MRI. The number of available sequences was however limited 

Table 5 
Performance of the random forest multilabel radiomics models for the DTF CTNNB1 mutation stratification based on; model 4: T1w imaging features, age and sex; 
model 5: T1w + T2w imaging features; and model 6: T1w + T1w post-contrast imaging features. Model 4 was evaluated for a single class (S45 F, T41A, and WT) or the 
overall performance (All). Outcomes are presented with the 95% confidence interval.   

Model 4 - S45 F Model 4 - T41A Model 4 - WT Model 4 - All Model 5 - All Model 5 - All 
T1w + age + sex T1w + age + sex T1w + age + sex T1w + age + sex T1w + T2w T1w + T1w post-contrast 

AUC 0.61 [0.44, 0.77] 0.56 [0.43, 0.68] 0.74 [0.60, 0.87] 0.63 [0.54, 0.72] 0.63 [0.53, 0.72] 0.60 [0.50, 0.69] 
BCA 0.48 [0.35, 0.61] 0.53 [0.42, 0.64] 0.65 [0.54, 0.75] 0.56 [0.47, 0.64] 0.57 [0.48, 0.66] 0.53 [0.44, 0.61] 
Sensitivity 0.15 [<0, 0.37] 0.49 [0.27, 0.71] 0.56 [0.35, 0.77] NA NA NA 
Specificity 0.83 [0.67, 0.98] 0.59 [0.41, 0.76] 0.72 [0.55, 0.89] NA NA NA 
NPV 0.76 [0.70, 0.82] 0.65 [0.53, 0.77] 0.73 [0.64, 0.82] NA NA NA 
PPV 0.17 [<0, 0.45] 0.42 [0.28, 0.56] 0.59 [0.40, 0.77] NA NA NA 

*Abbreviations: T1w: T1-weighted MRI; T2w: T2-weighted MRI; AUC: area under the receiver operator characteristic curve; BCA: balanced classification accuracy; 
PPV: positive predictive value; NPV: negative predictive value; WT: wild-type, NA: not applicable. 

Fig. 4. Receiver operating characteristic curves of the radiomics models based 
on age and sex (model 2); imaging (model 3); and imaging, age and sex (model 
4); and those of the radiologists (Rad1 and Rad2), in the location- 
matched cohort. 
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due to the multicenter imaging dataset. Although T2w-MRI is often used 
to correlate DTF signal intensity with prognosis or response to therapy 
[33–36], in the current study T2w-MRI added little predictive value to 
the T1w-MRI, similar to the T1w post-contrast MRI. This may however 
be attributed to the fact that these sequences were only available for a 
subset of the patients. Our cohort contained too few patients with PD, 
DCE, or DWI sequences to be analyzed. However, there is little to no 
indication of the added value of these sequences in DTF [37–39]. 

The second aim of this study was to predict the DTF CTNNB1 mu-
tation status. Our radiomics model was not able to stratify the CTNNB1 
mutation type, which is in line with the absence of literature linking DTF 
MRI appearance to the CTNNB1 mutation. 

The current study enclosed several limitations. First, due to the rarity 
of DTF, the DTF sample size was limited and possibly too small for the 
mutation stratification model to learn from. This also resulted in little 
statistical power for the mutation analysis, as shown by the large width 
of our confidence intervals, and for the comparison with the radiologists 
in the differential diagnosis. Besides primary tumors, the DTF cohort 
contained also recurrent tumors. As this number was low, and to our 
knowledge, there are no indications that recurrent DTF appear different 
on MRI than primary DTF, the expected influence is small. Within the 
DTF cohort, the WT group was relatively large and might have been 
subjected to incorrect allocation, as Sanger Sequencing is not always 
sensitive enough to detect all mutations [11]. The results of the CTNBB1 
mutation status stratification showed a strong bias towards the majority 
classes, which may be attributed to the class imbalance. Although we 
exploited commonly used imbalanced learning strategies such as 

resampling and ensembling. other strategies may improve the perfor-
mance. Second, only extremity DTFs were included for comparison with 
STS. This was due to the limited availability of MRI in non-extremity soft 
tissue tumors. However, this is not representative for the entire DTF 
population, which also occurs frequently in the abdominal wall and 
trunk [3]. Third, the current radiomics approach requires manual an-
notations. While accurate, this process is also time consuming and 
subject to some observer variability as indicated by our DSC, and thus 
limits the transition to clinical practice. Automatic segmentation 
methods, for example deep learning, may help to overcome these limi-
tations [40]. Lastly, the dataset originated from 68 different scanners, 
which resulted in substantial heterogeneity in the acquisition protocols. 
The lack of standard imaging parameters can be problematic as these 
can affect the appearance of the tumor and thus the radiomics perfor-
mance. However, our method was successfully able to create diagnostic 
models despite these differences. As these models were trained on a 
variety of imaging protocols, there is an increased chance that the re-
ported performance can be reproduced in a routine clinical setting when 
using other MRI scanners. Using a single-scanner with dedicated tumor 
protocols may improve the model performance, but will limit the 
generalizability. 

Future work should firstly focus on the prospective validation of our 
findings. Although we did use a multicenter imaging dataset and per-
formed a rigorous cross-validation experiment strictly separating 
training from testing data, we did not validate our model on an inde-
pendent, external dataset. Afterwards, the radiomics model could be 
used to predict clinical outcomes of DTF receiving active surveillance or 

Fig. 5. The typical examples (A and B) are two cases always classified correctly by the T1-weighted (T1w) imaging model; the atypical examples (C and D) are two 
cases always classified incorrectly by the T1w imaging model. 
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systemic treatment. 

5. Conclusions 

Our radiomics approach is capable of distinguishing DTF from non- 
DTF tumors on T1w-MRI, and can potentially aid diagnosis and 
shorten diagnostic delay. The performance of the model was similar to 
that of two experienced musculoskeletal radiologists. The model was not 
able to predict CTNNB1 mutation status of DTF tumors. Further opti-
mization and external validation of the model is needed to incorporate 
radiomics in clinical practice. 
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