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Abstract

Machine learning (ML) has become a critical skill
across various disciplines, yet teaching it to stu-
dents outside Computer Science and Engineering
(CS) remains challenging due to differing academic
backgrounds. This study investigates the differ-
ences in learning outcomes between Industrial De-
sign (ID) and CS students when introduced to foun-
dational ML topics, focusing on the influence of
prior mathematical knowledge.

Through initial surveys on mathematical profi-
ciency, structured ML tutorials, and final assess-
ments on learning outcomes, the research exam-
ines correlations between mathematical proficiency
and ML performance, faculty-specific challenges,
and qualitative feedback on learning experiences.
Results reveal that prior mathematics knowledge
significantly impacts performance on mathematics-
intensive topics such as Bayes’ Rule, while its in-
fluence is minimal on less math-relevant topics like
ML pipelines. Furthermore, ID students empha-
sized creative and interactive teaching methods,
contrasting with the programming-oriented prefer-
ences of CS students.

These findings highlight the need for interdisci-
plinary instructional strategies that cater to diverse
learner strengths. By uncovering faculty-specific
patterns in ML learning, this study contributes to
the design of more inclusive and effective educa-
tional practices, fostering a broader understanding
and application of ML across disciplines.

1 Introduction

Machine learning (ML) has emerged as a key component
of contemporary technology, enabling applications ranging
from self-driving automobiles to voice assistants. Its per-
vasive influence means that people from diverse academic
and professional backgrounds increasingly encounter ML, re-
gardless of their technical expertise. Recognizing this, many
universities now integrate ML education into interdisciplinary
programs, emphasizing its relevance beyond computer sci-
ence and engineering (CS). Combined ML degrees, such as
Data Science for Business, Creative Practices, and other in-
terdisciplinary programs, reflect this growing trend, offering
ML education to students from fields such as business, social
sciences, and design. [27][11] Industrial design (ID) is one of
these fields which stands out for having a more design-based,
visual, and user-centric point of view in problem solving. [12]
In contrast to computer science (CS), which places a strong
emphasis on algorithmic problem solving, ID fosters concep-
tual and visual skillsets that may offer alternative methods for
comprehending and using machine learning. This discrep-
ancy presents an opportunity to investigate how ML might
be taught to ID students in order to provide them applicable
abilities and to find new ways where ML may improve human
experiences through design.

A recent study on the use of artificial intelligence (Al) in
industrial design states that although Al can be used in vari-
ous areas of industrial design from product design to develop-
ment and manufacturing, its role has not yet been extensively
explored. [24]. As there are increasing number of examples
where ML has worked as an important factor in solving tech-
nical challenges faced in the fourth industrial revolution [14],
the demand for higher-level education on this topic for prac-
titioners in related fields is increasing. This is also true for
ID students as they explore user-friendly solutions in vari-
ous contexts, where ML could play an important role. [25]
However, although recent studies have addressed ML educa-
tion for non-CS students, most have focused on STEM disci-
plines rather than design-driven fields. For instance, Cheong
examined how recommendation algorithms could guide non-
CS students in course selection, demonstrating that structured
pathways can mitigate the cognitive challenges of technical
prerequisites. [9] Similarly, Banadaki explored how super-
vised research experiences could improve engagement and
skill acquisition for non-CS students. [2] However, these
strategies have been tested among broad student populations
without specific focus on ID students, who may leverage their
visual and conceptual strengths in learning ML. This gap in
the literature suggests the need to investigate how ID students,
with their distinct skillsets, approach ML compared to CS
students, who often have stronger foundations in program-
ming and mathematics. This research addresses two centric
questions: What are the differences in learning outcomes
between industrial design and computer science students
when introduced to foundational machine learning top-
ics? How are these outcomes influenced by prior mathe-
matics knowledge? To answer these, I conducted a compar-
ative study, guiding ID and CS students through structured
ML tutorials and assessing their performances. By analyzing
the learning outcomes of these two groups, I aim to evalu-
ate whether a student’s mathematics background influences
their ability to successfully learn foundational machine learn-
ing topics and uncover any patterns that are present across
different faculties.

This paper will be presented in the following structure.
Chapter 2 provides the background of the research with re-
views of relevant literature, contextualizing the study within
existing research. Chapter 3 outlines the research method-
ology, including participant recruitment, tutorial design, and
data collection and analysis methods. Chapter 4 reflects on
the ethical aspects of the research and discusses the repro-
ducibility of the methods. Chapter 5 presents the results,
focusing on comparative analysis of learning outcomes be-
tween ID and CS students. Chapter 6 discusses the implica-
tions of these findings for interdisciplinary ML education by
providing interpretations of the results and comparisons with
other literature, and Chapter 7 concludes the paper with key
insights and recommendations for future research.

2 Background of Research

Machine Learning and Industrial Design

With increasing importance of ML, universities are increas-
ingly embedding ML courses in diverse curricula to prepare



students for the challenges of a data-driven world. [25] How-
ever, teaching ML effectively to students from non-CS dis-
ciplines presents significant challenges. Many of these stu-
dents lack the mathematical and programming foundations
typically assumed in ML education. [13]

At TU Delft, these challenges are amplified by the distinct
skillsets cultivated between faculties. Specifically, with in-
creasing popularity and usage in generative Al, changes have
been made to existing course curriculum and new courses
were created in ID faculty in order to provide insights on
this topic. [25] However, ID students excel in visual and
conceptual thinking, user-centered design, and creative prob-
lem solving, [12] and these strengths stand in contrast to
the mathematically rigorous and algorithmic problem solv-
ing approaches emphasized in CS education. This divergence
in skillsets raises compelling questions about how ML ed-
ucation should adapt to accommodate such diverse learning
needs.

Working as an ID teaching assistant, I observed how ID
students approached technical topics differently compared to
CS students. Although ID students demonstrated ingenuity in
conceptual and user-focused tasks, they often struggled with
algorithmic abstractions and programming. In contrast, CS
students excelled in these areas, but tended to approach tasks
with less emphasis on user experience or contextual design.
These experiences motivated this research to investigate how
such differences influence ML learning outcomes and to de-
velop teaching strategies that address these interdisciplinary
challenges.

Recent research supports these observations, emphasiz-
ing the higher-order cognitive challenges in ML education
for non-majors. Sulmont et al. interviewed instructors
of ML courses for non-majors and found that while algo-
rithms are often considered the difficult part of ML, instruc-
tors actually found that higher-level design decisions and
model comparisons — tasks aligned with the upper levels of
the SOLO taxonomy (Structure of Observed Learning Out-
comes taxonomy)[5] — were the most challenging to teach.
Conversely, procedural knowledge, such as following steps
aligned with lower-SOLO taxonomy levels, was described as
easier to convey. This distinction provides a framework for
understanding the difficulties faced by students, particularly
those in design-focused disciplines, and highlights the need
for courses to emphasize conceptual and decision-making
skills to address these challenges effectively. [22]

Research Themes in Literature

The literature on ML education provides a foundation for ad-
dressing the challenges of teaching ML to diverse student
populations, offering valuable insights into interdisciplinary
learning and pedagogical design. Cheong highlighted the
importance of structured learning pathways to reduce cog-
nitive load for non-CS students. By providing step-by-step
guidance, such pathways help bridge gaps in technical un-
derstanding, enabling students from diverse backgrounds to
grasp foundational ML concepts effectively. [9] Similarly, Ko
underscored the prevalence of misconceptions in ML learn-
ing, such as the over-reliance on default algorithm configu-
rations. This research emphasized the need for foundational

clarity in ML education to correct these misconceptions and
enhance understanding. [13]

Bloom’s Taxonomy, as revised by Anderson and Krath-
wohl, provides a hierarchical framework for designing learn-
ing objectives across cognitive levels, making it particularly
valuable for interdisciplinary education. By starting with
foundational knowledge and progressively building toward
complex problem-solving, educators can accommodate the
diverse strengths of ID and CS students. In this research,
Bloom’s Taxonomy was used to design tutorials and assess-
ments that align with the varied learning needs of these stu-
dent groups, ensuring a clear progression from basic to ad-
vanced ML concepts. [1]

Interdisciplinary approaches to learning have also been
shown to be instrumental in ML education. Banadaki demon-
strated that interactive and visual teaching methods sig-
nificantly improve comprehension for non-STEM students,
showcasing the benefits of visual aids and real-world analo-
gies in enhancing understanding. [2] Tokuta et al. empha-
sized the importance of designing educational frameworks
that resonate with non-CS audiences, such as those in data
science. [23] These strategies, which incorporate relatable
examples and foster conceptual understanding, align with
the design-focused nature of ID students and offer pathways
to efficient learning. Together, these studies underscore the
value of interdisciplinary approaches to ML education, pro-
viding a foundation for this research.

Connecting to the Research Question

This research seeks to build on these themes by investigating
how differences in faculty-specific skillsets and prior mathe-
matical knowledge affect learning outcomes in foundational
ML topics. The central research questions are:

What are the differences in learning outcomes be-
tween industrial design and computer science students
when introduced to foundational machine learning top-
ics? How are these outcomes influenced by prior mathe-
matics knowledge?

To answer these questions, the research addresses four sub-
questions:

1. How do industrial design and computer science students
differ in their prior knowledge in mathematics?

2. How does prior proficiency in mathematics correlate
with performance on foundational ML topics?

3. How do students from these faculties perform on ML
topics with varying levels of relevance in mathematics?

4. What qualitative patterns emerge in the challenges stu-
dents face while learning ML?

By aligning tutorial design with Bloom’s Taxonomy and
incorporating interdisciplinary teaching methods, this re-
search aims to uncover actionable insights into ML educa-
tion, contributing to more inclusive and effective strategies
for diverse student populations.

3 Methodology and Rationale

This study employed a multi-step design to explore the im-
pact of prior mathematics knowledge and faculty-specific fac-



tors on learning foundational ML concepts. Participants from
ID and CS faculties at TU Delft were recruited, emphasizing
voluntary and anonymous participation. All data from partic-
ipants who followed the full procedure - 10 and 13 from ID
and CS respectively - were used. This section introduces each
step that was taken to collect these data and draw conclusions
from them.

3.1 Study Design

The research consisted of three main sections: an initial math-
ematics survey, tutorials, and assessments. This structure was
inspired from other studies that used a methodology involv-
ing pre-testing one variable, followed by an intervention, then
post-testing a second variable, to explore correlations or out-
comes. [6] [21] The materials used in these steps can be found
in the Github repository'.

Initial Mathematics Survey
The initial survey? assessed participants’ prior mathematics
experiences, including coursework, extracurricular activities,
and self-rated confidence in and mathematics. Participants’
mathematic proficiency was also measured with mathematics
questions. These questions, aligned with ML tutorial topics,
spanned three domains — calculus, probability, and linear
algebra - and each question addressed one specific domain.
The questions also spanned varying levels of difficulty, cate-
gorized as easy, medium, and hard, and each of these ques-
tions contributed different number of points towards the to-
tal score. This approach enabled nuanced classifications of
participants’ mathematics proficiency and provided a base-
line for correlating performance with learning outcomes. [8]
This initial survey serves as more than a tool for clas-
sifying participants by their faculties; it enables a nuanced
exploration of the influence of prior mathematics knowl-
edge. By collecting detailed information on participants’ aca-
demic and extracurricular mathematics experiences, the sur-
vey allows for a double-layered analysis. Firstly, faculty-
based insights can be gained, comparing learning outcomes
by grouping students into their respective disciplines. Sec-
ondly, mathematics-based insights can also be gained, iden-
tifying correlations between participants’ performance on the
final assessment and their specific levels of mathematics pro-
ficiency. This dual classification allows for more detailed
observations. For example, if a student excels in a partic-
ular ML topic, the analysis can explore whether this suc-
cess stems from their faculty’s general approach to problem-
solving or their individual mathematics background. Further-
more, it allows for testing whether mathematics proficiency
significantly affects ML learning outcomes. If students with
similar levels of mathematics knowledge from different facul-
ties show varying performances, this could highlight faculty-
specific factors influencing ML learning.

ML Tutorials
Three tutorials hosted on a Notion website introduced key
ML topics:

' github.com/JustinBJo/CSE3000/
2github.com/JustinBJo/CSE3000/blob/main/forms/
initial_survey.md

1. Machine Learning Pipelines’: Covered conceptual
topics such as data preparation, model training, and eval-

uation.

2. Bayes’ Rule*: Introduced probabilistic reasoning and
classification concepts.

3. Perceptrons®: Explained basics of multilayered percep-
trons and training processes.

These tutorials were designed to incorporate varying lev-
els of mathematics relevance, ensuring the assessment could
differentiate between participants’ familiarity with and abil-
ity to grasp mathematics-heavy and mathematics-light topics.
Machine Learning Pipelines was included as a topic with the
least mathematics relevance, emphasizing conceptual under-
standing and process logic. Bayes Rule, on the other hand,
required mathematical reasoning and probabilistic thinking,
making it a strong indicator of mathematics proficiency. Per-
ceptron topic was included as a topic with a moderate level of
mathematics relevance; while still rooted in mathematical and
algorithmic concepts, this tutorial balanced theoretical expla-
nations with practical applications.

This progression allowed for a detailed examination of
how participants performed across topics with varying de-
mands on mathematics knowledge. Coupled with questions
that tested these topics, this design could reveal topic-specific
strengths - faculties or groups excelling in particular ML top-
ics - and sensitivity to mathematics relevance - whether stu-
dents perform better on topics aligned with their prior mathe-
matics training.

These tutorials were developed following the constructive
alignment, where the materials for learning and assessments
are constructed around the learning objectives. [3] For each
topic, intended learning objectives (ILO’s) were selected first
following Bloom’s taxonomy. The tutorials were then built
to accommodate these ILO’s, making sure that students were
provided with the appropriate level and amount of informa-
tion to achieve them. [4] The tutorials included ILO’s in the
beginning, making sure that students are aware of the con-
tents that the tutorials have and what they should focus on,
aiming for a more engaging and effective learning process.
[26] The ILO’s for each topic and how they were addressed
in the tutorials can also be found in Appendix A.

Assessments

After learning the tutorials, participants took an assessment®
to evaluate their learning outcomes with questions on the
learned ML topics. According to the constructive alignment,
the questions are formulated around the ILO’s in order to syn-
chronize learning and assessment. [15] This can also be found
in Appendix A.

3 github.com/JustinBJo/CSE3000/blob/main/tutorials/
tutorial 1_ml_pipeline.md

4github.com/JustinBJo/CSE3000/blob/main/tutorials/
tutorial2_bayes_rule.md

3 github.com/JustinBJo/CSE3000/blob/main/tutorials/
tutorial3_perceptrons.md

8 github.com/JustinBJo/CSE3000/blob/main/forms/
final_assessment.md
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The questions in the final assessment were designed to fea-
ture questions of varying difficulty levels (foundational and
critical), allowing for a more nuanced assessment of learn-
ing outcomes. Foundational questions tested basic recall and
understanding of tutorial content, while critical questions as-
sessed the ability to apply learned concepts in complex sce-
narios. Similar to the initial mathematics survey, the number
of points that can be gained from a question differed by their
difficulty level. This tiered approach enabled a granular eval-
uation of participants’ learning. [8]

In addition to the quantitative data, qualitative feedback
gathered from participants provided valuable insights into
their learning experiences. This feedback revealed patterns
in the challenges faced by students from different faculties
or with varying levels of mathematics proficiency, offering a
deeper understanding of the factors influencing their learning
outcomes. Participants were also asked to share their per-
ceptions of the tutorials and assessment questions, indicating
whether these materials were accessible, engaging, or overly
challenging. Furthermore, the feedback highlighted specific
areas where students struggled the most, offering actionable
insights for improving ML education strategies. [17]

The thematic analysis of this qualitative data supports the
broader goals of fostering inclusivity and effectiveness in
teaching ML concepts. [7] By identifying barriers and areas
for enhancement, the findings align with calls for pedagogical
content knowledge in ML education. [13]

3.2 Data Analysis

In this section, the methods used to analyze the data and ad-
dress the research questions will be explained. The analysis
was based on both quantitative and qualitative approaches,
employing various statistical tests and methods to answer
each of the sub-questions. The chosen methods were imple-
mented with Python’.

Sub-question 1: Comparison of Initial Mathematics
Scores

In order to answer the first sub-question "How do industrial
design and computer science students differ in their prior
knowledge in mathematics?”, the initial mathematics scores
of ID students and CS students were compared using the
Mann-Whitney U test. [16] This non-parametric test was
selected because it does not require assumptions of normal-
ity, making it a more appropriate choice given the small size
of the sample. The p-value from the test helps determine
whether there is a statistically significant difference between
the two groups in terms of their initial mathematics knowl-
edge. In addition, number of mathematics-related courses
the students took and activities related to mathematics were
counted to compare the students’ experience with mathemat-
ics. [10]

Sub-question 2: Correlation Analysis

The second sub-question "How does prior proficiency in
mathematics correlate with performance on foundational ML
topics?” was addressed by investigating the correlation be-
tween initial survey scores and performance across different

" github.com/JustinBJo/CSE3000/blob/main/analysis/analysis.py

machine learning topics. This was done by using a Pearson
correlation analysis. The Pearson correlation coefficient
measures the strength and direction of the linear relationship
between two continuous variables. The results of the analy-
sis help identify how strongly the initial mathematics scores
correlate with the final performance on the machine learning
topics. [20]

Sub-question 3: Performance across ML Topics

To answer the third sub-question "How do students from
these faculties perform on ML topics with varying levels of
relevance in mathematics?”, the performance of ID students
and CS students across the three machine learning topics were
compared. Since the data from both groups were not nor-
mally distributed, the Kruskal-Wallis H test was chosen for
this analysis. This method is designed to compare the distri-
butions of more than two groups; although there are only two
faculties, the Kruskal-Wallis test is appropriate for compar-
ing performance across multiple topics in each group. This
evaluates whether there are significant differences in the score
distribution between the topics for both faculties. [18]

Sub-question 4: Qualitative Patterns

To address the fourth sub-question "What qualitative patterns
emerge in the challenges students face while learning ML?”, a
thematic analysis was conducted on the qualitative responses
provided by the students. The analysis involved coding the
data by identifying key themes and categorizing them into
broader topics. These themes were then analyzed to under-
stand students’ experiences, challenges, and the effectiveness
of different learning materials. [19] [7]

4 Responsible Research

This research adheres to the principles of responsible re-
search, prioritizing ethical considerations and ensuring the
reproducibility of methods. In this section, the key aspects
of responsible research and the steps taken during the study
to align with these principles are reflected.

4.1 Dealing with Research Data

Each step of the research was conducted with a commitment
to ethical principles. Below is the outline of potential ethical
issues that could arise and the steps taken to address them.

Data Accuracy and Integrity

All data were handled with care to maintain integrity. Re-
sponses were recorded exactly as submitted, and no alter-
ations were made to the data. A robust data storage protocol
- Microsoft OneDrive - ensured that raw data were securely
stored in their original form for verification purposes.

Participant Anonymity and Confidentiality

Participant anonymity was maintained by using participant-
generated codes rather than personal identifiers. This ap-
proach allowed for linking pre and post-tutorial responses
without compromising confidentiality. No identifiable infor-
mation was collected, and all data were securely stored in
password-protected systems accessible only to the researcher.
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Informed Consent

Participants were fully informed about the study’s purpose,
their rights, and how their data would be used. They were
provided with a detailed consent form outlining the goals of
the study, procedures, and data usage. They were informed of
their right to withdraw at any stage without penalty. Partici-
pation was entirely voluntary.

Reproducibility

The methodology was thoroughly documented, including the
design and structure of the survey, tutorials, and assessment.
This detailed documentation ensures that the study can be
replicated under similar conditions, promoting transparency
and reproducibility.

Avoiding Bias

In order to avoid influences of personal relationships in the
outcome, participants were recruited from a pool of individu-
als unknown to the researcher, and no direct contact was made
during or after participation. Recruitment was conducted via
neutral methods, such as visiting faculty areas and distribut-
ing online links.

Psychological Well-being

The assessments and surveys were designed to be straightfor-
ward and non-intimidating. Participants were informed that
their performance would not be judged or shared and only
the aggregated results would be used, ensuring a relaxed and
supportive environment.

4.2 Contributions

Many materials prepared for the research were created col-
laboratively with two other co-researchers: Junwon Yoon and
Oisin Hageman. These researchers conducted similar re-
searches on different faculties, and the initial survey, tuto-
rials, and final assessment were formulated in collaboration
and shared. The final results were shared, but the processing
and analyses were done individually.

Use of Generative Artificial Intelligence

Throughout the scope of the research, generative Al ChatGPT
was used in areas where the efficiency could be improved.
It was used for a more professional sentence structuring in
writing tutorials and the report and to check for any spelling
or grammar mistakes, but not for generating contents. It was
also used to obtain support in finding the suitable libraries for
data analysis and learning how to use them. The prompts used
for these can be found in Appendix B. In addition, automated
writing and proofreading Al Writefull was also used in writ-
ing report for checking spelling and grammar mistakes. Any
areas in the research that require originality and creativity,
such as generating ideas for methodology, writing the report,
and analyzing the results, were done manually without any
support from artificial intelligence.

S Results and Analyses

In this section, the results of the experiments are presented.
The analysis covers four sub-questions, and each is addressed
using relevant statistical tests and descriptive methods. The
figures included in this section can also be found in Appendix
C in a larger scale.

5.1 Sub-question 1: Initial Mathematics Scores
Comparison

The descriptive statistics for the initial mathematics scores

of both groups are summarized in Table 1, and visualized in

the scatterplot in Figurel. The comparison between the two

groups is further illustrated in the boxplot in Figure 2.

Group | Mean | Standard Deviation
1D 35.10 28.38
CS 43.08 16.04

Table 1: Descriptive Statistics for Initial Mathematics Scores

Initial Math Test Scores - ID Students
o ID Students

Initial Math Test Scores - CS Students
CS Students

80 80

60 60

Initial Math Score (%)
Initial Math Score (%)

40 . 40
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Figure 1: Scatterplot of Initial Mathematics Scores, Sorted by
Scores
Boxplot: Prior Math Knowledge Scores
K I

Weighted Scores (%)

: 1

ID Students

CS students

Figure 2: Boxplot of Initial Mathematics Scores

In addition, the total counts of previous mathematics-
related courses or activities for both faculty students are
recorded. These can be found in Table 2.

To compare the initial mathematics scores between ID and
CS students, a Mann-Whitney U test was conducted. The
results of the Mann-Whitney U test yielded a U-statistic of
53.00 and a p-value of 0.4730. The p-value greater than con-
ventional threshold p-value 0.05 suggests that there was no
statistically significant difference in the initial mathematics
scores between ID and CS students. [16]



Group | Count
1D 12
CS 28

Table 2: Number of Mathematics-Related Courses or Activities

5.2 Sub-question 2: Correlation Analysis

The correlation between the initial mathematics scores and
performance on three topics was assessed for all students.
These results were visualized on scatterplots, which can be
found in Figures 3, 4, and 5, to find patterns between the two
factors. The results of the Pearson correlation analysis are
presented in Table 3.

Initial Math Scores vs ML Pipelines
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Figure 3: Scatterplot of Initial Mathematics Score to ML Pipeline
Scores

Initial Math Scores vs Bayes Rule
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Figure 4: Scatterplot of Initial Mathematics Score to Bayes’ Rule
Scores

From the analysis, it was found that there is a strong,
statistically significant positive correlation between the ini-
tial mathematics scores and performance on the Bayes’ Rule
topic with the value of r greater than 0.5 and p significantly
smaller than 0.05. In contrast, there was no significant corre-

Initial Math Scores vs Perceptrons
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Figure 5: Scatterplot of Initial Mathematics Score to Perceptrons
Scores

Topic Pearson Coefficient (r) | P-value
ML Pipelines 0.10 0.6422
Bayes’ Rule 0.64 0.0010
Perceptrons 0.03 0.8869

Table 3: Correlation Analysis between Initial Scores and Topic Per-
formance

lation with either the ML Pipelines (r = 0.10, p = 0.6422) or
Perceptrons (r = 0.03, p = 0.8869) topics. [20]

5.3 Sub-question 3: Faculty Performance on ML
Topics

The performance of faculty members in learning the three ML

topics was assessed using the Kruskal-Wallis H test. First,

the results of each topic for both faculty students are summa-

rized in Table 4, and visualized in Figure 6.

Group | ML Pipelines | Bayes’ Rule Perceptrons

Mean Std | Mean Std | Mean Std
1D 81.20 16.73 | 47.80 31.47 | 60.00 21.08
CS 80.15 19.88 | 65.69 19.04 | 70.23 15.81

Table 4: Performance on each Topics by Different Faculties

The results of analyzing scores for each topic using
Kruskal-Wallis H test are summarized in Table 5.

Topic H-statistic | P-value
ML Pipelines 0.01 0.9217
Bayes Rule 1.62 0.2026
Perceptrons 1.79 0.1807

Table 5: Faculty Performance on ML Topics

The results of the Kruskal-Wallis H test showed no signifi-
cant differences in faculty performance for any of the topics.
The p-values for all topics (ML Pipelines: p =0.9217, Bayes’
Rule: p =0.2026, Perceptrons: p = 0.1807) were all above the
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Figure 6: Performance on each Topics by Different Faculties

conventional threshold of 0.05, suggesting that faculty perfor-
mance did not significantly vary across the different topics.
[18]

5.4 Sub-question 4: Qualitative Patterns

Using thematic approaches, the qualitative responses from the
final assessments were analyzed. Students from both faculties
reported “Easy” on ML pipelines, "Difficult” on Bayes’ Rule,
and “Moderate” to ’Difficult” on the test. The only topic that
differed was perceptrons; ID students mostly reported “Diffi-
cult”, whereas CS students mostly reported "Moderate”. Both
faculties reported ML pipelines to be the easiest due to being
“fundamental” and “straightforward”. For the hardest topic,
CS students had an even division between Bayes’ Rule and
Perceptrons. On the other hand, 80% of ID students reported
Bayes’ Rule for this question. Students identified similar re-
sources helpful from the tutorial: the items that were the most
frequent were real life examples and diagrams. When asked
how they would teach the material to their peers, ID students
suggested videos, lectures, interactive examples, and proto-
typing demo with relevant topics. CS students also suggested
videos, lectures, and tutorials, but they also suggested pro-
gramming demo with relevant topics.

6 Interpretation and Discussion

This section interprets the results of the study, relating them
to the research questions and sub-questions. The discussion
includes a synthesis of findings, comparisons with prior liter-
ature, identification of limitations, and a cohesive response to
the overarching research question.

6.1 Interpretation

While CS students had significantly more previous mathe-
matics related courses or activities than ID students, the re-
sults of the Mann-Whitney U test indicated no statistically
significant difference between the groups. This could be be-
cause the chosen topics are usually not taught extensively in
high school level mathematics, and students in both faculties
had little experience with them. However, the high number of
STEM-related courses taken by CS students, which was more
than twice that of ID students, implies that there could be a
discrepancy in mathematics proficiency that was not captured

by the survey. There was a clear division of the questions that
most students answered correctly to the ones answered incor-
rectly; this suggests the possibility of easy questions being
too easy and hard questions being too hard, leading the test
being less representative than expected.

Pearson correlation analysis revealed a strong positive cor-
relation between initial mathematics scores and Bayes’ Rule
performance, but no significant correlation for ML pipelines
or perceptrons. The correlation for Bayes’ Rule is consistent
with expectations, as understanding Bayes’ Rule inherently
involves applying probability theory, which requires strong
mathematical reasoning. On the other hand, perceptrons, de-
spite being foundational in machine learning, involve con-
cepts such as linear separability and weight updates, which
require mathematical intuition but are often taught with a vi-
sual and procedural manner. In the final assessment, most
students answered questions asking about theories of percep-
trons and simple output calculation correct. However, it was
also found that the question about weight update was mostly
answered incorrectly. This could imply the lack of higher
mathematical explanation the tutorial had, or the possibility
that a passive learning method, such as a tutorial, might not
be adequate for teaching such a topic that requires algorith-
mic thinking. [22]

The Kruskal-Wallis H test found no statistically significant
differences between ID and CS students across the three ML
topics. This finding aligns with the first paragraph’s observa-
tion that there were no significant differences in initial math-
ematics scores between the groups. It may indicate that the
tutorials were effective in providing a level playing field, mit-
igating the potential impact of differences in STEM-related
educational backgrounds. Additionally, the accessibility of
the ML pipelines topic and the structured nature of the tuto-
rials may have contributed to reducing disparities. However,
the lack of faculty-specific differences could also suggest that
factors other than mathematics proficiency, such as motiva-
tion, learning preferences, or instructional design, played a
significant role in determining performance outcomes.

Students from both faculties found ML pipelines the eas-
iest topic and Bayes’ Rule the most challenging. However,
perceptrons were perceived as “difficult” by most ID students,
while CS students found them “moderate”. This could be due
to the topic requiring more algorithmic thinking during the
learning phase, which is a skill that CS students are taught
more often. Both groups valued real-life examples and di-
agrams as effective learning tools but diverged in teaching
recommendations, with ID students favoring interactive and
prototype-based learning and CS students emphasizing pro-
gramming demos. This could be due to their previous learn-
ing practices, which makes them comfortable and efficient in
acquiring new skills and knowledge.

6.2 Comparison with Prior Studies

The findings of this study align and diverge from previous re-
search in machine learning education. The most interesting
finding that diverged from prior research was that there were
no notable differences in level of mathematics proficiency be-
tween ID and CS students. This can imply the importance
of students’ different ways of understanding a topic, as sug-



gested by Sulmont et al., rather than the prior mathematics or
STEM knowledge.

Valuable insights could also be gained from comparing the
findings with those of previous research. Sulmont et al. ob-
served that higher-order cognitive tasks, such as designing
and comparing models, pose significant challenges for non-
majors. This is consistent with the difficulties faced by ID
students in topics such as Bayes’ Rule and perceptrons, which
demand algorithmic reasoning and mathematical understand-
ing. Similarly, Cheong emphasized the importance of struc-
tured pathways for non-CS learners, highlighting the role of
scaffolding in reducing cognitive load. This study’s findings
support this view, as no significant faculty differences were
observed in the ML pipelines topic, which was presented
through well-structured tutorials. Additionally, Banadaki’s
work underscored the value of visual and interactive meth-
ods for non-STEM learners, aligning with the preferences of
ID students for diagrams, real-life examples, and prototype-
based teaching approaches. Lastly, Tokuta et al. advocated
for educational frameworks tailored to non-CS audiences. ID
students performing better on less math-intensive topics sug-
gests that interdisciplinary teaching strategies can effectively
bridge the gap between technical and design-oriented learn-
ers.

6.3 Limitations

While this study offers valuable insights into ML education
for students from diverse academic backgrounds, it has sev-
eral limitations. First, the small sample size, consisting of
only 10 ID and 13 CS students, limits the generalizability of
the findings and raises concerns about statistical power. Sec-
ond, the scope of the study was restricted to three ML topics,
which may not fully capture the range of concepts required
for a comprehensive understanding of ML. Expanding the
topic scope could provide a more holistic analysis of learning
outcomes. Third, despite efforts to standardize the tutorial
content, variations in the design and emphasis of each topic
may have inadvertently influenced the results. Moreover, the
foundational focus of the tutorials, necessitated by the short
time available for learning, constrained the ability to assess
higher-level cognitive outcomes. Finally, the reliance on self-
reported data for prior mathematics experiences introduces
potential inaccuracies, which may have affected the analysis
of initial proficiency levels. Not having participants in a con-
trolled environment for the initial survey and assessment also
could have introduce external variables that could affect the
data.

6.4 Answering the Research Question

The findings suggest that prior mathematics knowledge plays
a significant role in learning math-intensive ML topics, such
as Bayes’ Rule, but has minimal influence on less math-
relevant topics, such as ML pipelines. While CS students per-
formed slightly better overall, especially on Bayes’ Rule, ID
students demonstrated comparable proficiency on less math-
intensive topics, indicating the potential for interdisciplinary
teaching approaches to bridge gaps. Challenges faced by each
faculty highlight their distinct strengths and weaknesses, un-
derscoring the need for tailored teaching strategies that align

with their respective skillsets.

7 Conclusion and Future Work

7.1 Conclusion

This study explored the differences in learning outcomes
between industrial design (ID) and computer science (CS)
students when introduced to foundational machine learning
(ML) topics, focusing on the influence of prior mathematics
knowledge. By conducting structured tutorials and assess-
ments, the research provided insights into how diverse aca-
demic backgrounds shape the learning experience.

The findings revealed that while prior mathematics profi-
ciency significantly impacts performance on math-intensive
ML topics such as Bayes’ Rule, it has less influence on
less math-relevant topics like ML pipelines. CS students
generally performed better on quantitative topics, consis-
tent with their stronger mathematical backgrounds. How-
ever, ID students demonstrated comparable proficiency on
less mathematics-intensive topics, highlighting their adapt-
ability and potential to learn ML through interdisciplinary
approaches. Qualitative responses also underscored the value
of interactive and visual teaching methods, particularly for
ID students, who emphasized creativity and practical appli-
cation.

By integrating these findings, this study contributes to a
deeper understanding of how faculty-specific skillsets and
prior knowledge influence ML learning outcomes. It high-
lights the importance of designing tailored instructional
strategies that accommodate diverse learner needs, paving the
way for more inclusive and effective educational practices.

7.2 Future Work

While this research sheds light on key aspects of ML educa-
tion for diverse faculties, several avenues for further explo-
ration remain. For the future work, increasing the number
of participants and including students from additional disci-
plines could provide more generalizable results and uncover
broader trends. Because the participants in this study only
had two weeks to learn the contents, the contents in the tuto-
rial had to be limited and more advanced topics could not be
included. Exploring a wider range of ML concepts may also
provide deeper insights into how different faculties approach
complex topics, and tracking student performance over a
longer period could allow for a more valid comparison on
the learning outcomes of different faculties, and students of
different mathematics proficiencies. Moreover, it could also
reveal how interdisciplinary approaches influence sustained
learning and application of ML concepts. Lastly, in order to
provide actionable insights for educators, designing and test-
ing teaching methods specifically adapted for non-STEM stu-
dents such as interactive games or hands-on projects could be
useful.
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Appendix
A Constructive Alignment
A.1 Machine Learning Pipeline
Intended Learning Objectives:
* Understand the general machine learning pipeline
— addressed in Chapter 1
» Explain the purpose of training, test and validation sets

— addressed in Chapter 3.1, 3.2, 4.1, and 4.2
— assessed in question 3

e Compare the performance of a model trained on differ-
ent dataset splits

— addressed in Chapter 3.3 and 4.3
— assessed in questions 4 and 7

* Identify overfitting and underfitting of a machine learn-
ing model

— addressed in Chapter 2
— assessed in questions 5 and 6

A.2 Bayes’ Rule
Intended Learning Objectives:
* Apply Bayes’ rule to solve probability problems
— addressed in Chapter 1

* Understand the relationship between prior, likelihood,
and posterior probabilities

— addressed in Chapter 1 and 2
— assessed in question 8§

* Calculate conditional probabilities in real-world scenar-
ios

— addressed in Chapter 1 and 2
— assessed in questions 10, 11, and 12

* Evaluate decisions with Bayesian reasoning

— addressed in Chapter 3
— assessed in question 9

A.3 Perceptrons
Intended Learning Objectives:

* Understand the pipeline of training artificial neural net-
works

— addressed in Chapter 1, 2.2, and 3.1
— assessed in questions 14 and 17
* Calculate the output of a single perceptron

— addressed in Chapter 2.1
— assessed in question 15

* Explain the advantages/disadvantages of neural net-
works

— addressed in Chapter 3.2
— assessed in questions 13 and 16



B Prompts used for Generative Al

For checking grammars and spellings and
reformulating sentences to an appropriate style

Prompt: ”Can you check grammar and spellings and refor-
mulate the sentence below so that it becomes appropriate for
an academic report? [Input sentence]”

This prompt was used in several places in the report and in
the tutorial.

Example prompt: ”Can you check grammar and spellings
and reformulate the sentence below so that it becomes ap-
propriate for an academic report? Machine learning (ML) is
becoming a crucial technology of modern society, giving life
to various gadgets from selfdriving cars to voice assisstants”

Output: “Machine learning (ML) has emerged as a key
component of contemporary technology, enabling applica-
tions ranging from self-driving automobiles to voice assis-
tants.”

For finding an appropriate Python library to
perform Mann-Whitney U Test and learning how to
use it

Prompt: I am trying to perform Mann-Whitney U test to
compare test scores of two different student groups. Can you
suggest me an appropriate python library to do this, with ex-
planation on how to use it?”

For finding an appropriate Python library to
perform Pearson Correlation Analysis and learning
how to use it

Prompt: I want to use pearson correlation analysis for find-
ing the correlation between initial test scores to test results
of 3 different topics, finding coefficients for each topic. Can
you suggest me an appropriate python library to do this, with
explanation on how to use it?”

For finding an appropriate Python library to
perform Kruskal-Wallis H Test and learning how to
use it

Prompt: I am trying to perform Kruskal-Wallis H Test to
compare three different test scores of two different student
groups, making three different analysis. Can you suggest me
an appropriate python library to do this, with explanation on
how to use it?”



C Figures in Results and Analyses
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