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Nature of the Lamb shift in weakly anharmonic atoms: From normal-mode
splitting to quantum fluctuations

Mario F. Gely, Gary A. Steele, and Daniel Bothner
Kavli Institute of NanoScience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands

(Received 9 November 2017; published 6 November 2018)

When a two-level system (TLS) is coupled to an electromagnetic resonator, its transition frequency changes
in response to the quantum vacuum fluctuations of the electromagnetic field, a phenomenon known as the Lamb
shift. Remarkably, by replacing the TLS by a harmonic oscillator, normal-mode splitting leads to a quantitatively
similar shift, without taking quantum fluctuations into account. In a weakly anharmonic system, lying in between
the harmonic oscillator and a TLS, the origins of such shifts can be unclear. An example of this is the dispersive
shift of a transmon qubit in circuit quantum electrodynamics (QED). Although often referred to as a Lamb
shift, the dispersive shift observed in spectroscopy in circuit QED could contain a significant contribution from
normal-mode splitting that is not driven by quantum fluctuations, raising the question: how much of this shift
is quantum in origin? Here we treat normal-mode splitting separately from shifts induced by quantum vacuum
fluctuations in the Hamiltonian of a weakly anharmonic system, providing a framework for understanding the
extent to which observed frequency shifts can be attributed to quantum fluctuations.

DOI: 10.1103/PhysRevA.98.053808

I. INTRODUCTION

Quantum theory predicts that vacuum is never at rest. On
average, the electromagnetic field of vacuum has no ampli-
tude, but quantum vacuum fluctuations impose a fundamental
uncertainty in its value. This is notably captured in the ground-
state energy of a harmonic oscillator (HO) h̄ωr/2. When
an atom couples off-resonantly to an electromagnetic mode,
equivalent to a HO, the quantum vacuum fluctuations of the
mode shift the transition frequencies between states of the
atom [1]. This effect is called the Lamb shift. If the atom can
be modeled as a two-level system (TLS), this interaction is
described in the rotating wave approximation (RWA) by the
Jaynes-Cummings Hamiltonian [2]. The so-called Lamb shift
is then given by −g2/� in the dispersive regime g � |�|
where g is the coupling strength and � = ωr − ωa is the
frequency detuning between the mode (ωr ) and atom (ωa).

If one replaces the TLS with a HO, a similar effect occurs
from normal-mode splitting, where in the dispersive regime,
each oscillator acquires a frequency shift due to the presence
of the other oscillator. This similarity is not only qualitative:
in the RWA parameter regime, a classical calculation of the
normal-mode splitting of two HOs also predicts this shift to
be −g2/�. A quantum calculation for two HOs will also
give the same result: this shift for HOs is not influenced by
the presence of quantum fluctuations. Extending this further,
one can replace the TLS atom with a weakly anharmonic
oscillator, such as a transmon qubit in circuit QED. In exper-
iments in circuit QED, a shift of −g2/� was also observed,
has been attributed to being induced by vacuum fluctuations,
and is commonly referred to as the Lamb shift [3]. However,
normal-mode splitting of two HOs, which includes no effect
of quantum fluctuations, also leads to a shift of the same
size. This then raises the following question: how much of
the dispersive shift in weakly anharmonic atoms arises from

quantum fluctuations? Or equivalently, how much of this shift
persists if quantum fluctuations are neglected?

Here we derive analytical expressions for the quantum
fluctuation contribution to the dispersive shift of weakly an-
harmonic atoms. We find that for a weakly anharmonic atom
coupled dispersively to a harmonic oscillator, two distinct
shifts occur; one is a quantum effect due to vacuum fluctua-
tions, another arises from normal-mode splitting. To illustrate
the described physics, this work focuses on the transmon
qubit [4] coupled to an LC circuit. We follow the approach
of transforming the Hamiltonian to its normal-mode basis [5]
and treating anharmonicity as a perturbation. By performing
calculations analytically, we gain insight into the origin of
different frequency shifts, and reach accurate approxima-
tions of their magnitude, extending expressions previously
derived [4] to regimes of large detuning. Our expression of the
ac Stark shift decreases with the square of the frequency of a
coupled mode, which notably places strong limitations on the
coupling of low frequency mechanical elements to these type
of qubits [6].

II. WEAK ANHARMONICITY: CASE
OF THE TRANSMON QUBIT

We define a weakly anharmonic atom as a harmonic oscil-
lator with a small quartic potential

Ĥ /h̄ = ωa

(
â†â + 1

2

)
︸ ︷︷ ︸

ĤHO

− λ

12

(
â + â†)4

︸ ︷︷ ︸
Ĥanh

, (1)

where â is the annihilation operator for excitations in the
atom, ωa is the atomic frequency, and λ is the anharmonic-
ity. In the limit λ � ωa , corrections to the eigenenergies
of ĤHO due to anharmonicity are to first order equal to
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FIG. 1. The origin of different energy shifts in a weakly anharmonic atom. (a) Replacing the linear inductance of an LC oscillator with a
Josephson junction (JJ) results in a weakly anharmonic artificial atom. To first order, the energy level n is shifted proportionally to 〈n| φ̂4 |n〉,
where |n〉 is a Fock state of the harmonic system. (b) Two coupled harmonic oscillators undergo normal-mode splitting, resulting in a frequency
shift δNM. The flux traversing one of the inductances φ is then composed of the flux from both normal-mode oscillations φ = φa + φr . Replacing
an inductor with a JJ leads to the same shift as in the isolated atom χa〈φ̂4

a〉, but also to a shift due to quantum fluctuations of the coupled oscillator
χar〈φ̂2

a〉〈φ̂2
r 〉.

−(λ/12) 〈n| (â + â†)4 |n〉, with |n〉 a number state. We can
expand (â + â†)4 and only consider terms that preserve the
number of excitations n, since only they will give a nonzero
contribution to the first-order correction

Ĥanh/h̄ � −λ

2

((
â†â

)2 + â†â + 1

2

)
, (2)

leading to energy levels

En/h̄ � (ωa − λ)

(
n + 1

2

)
− λ

(
n2

2
− n

2
− 1

4

)
. (3)

If we write the transition frequencies of the atom En −
En−1 = h̄ωa − nh̄λ, the weakly anharmonic level structure
shown in Fig. 1(a) becomes apparent.

One implementation of this Hamiltonian is the transmon
qubit [4]. In addition to being described by the simple electri-
cal circuit of Fig. 1(a), this system is highly relevant in many
experimental endeavors [7], from fundamental experiments
in quantum optics [8–12], to quantum simulations [13] or
quantum computing [14–16]. It is constructed from an LC

oscillator where the inductor is replaced by the nonlinear
inductance LJ (I ) of a Josephson junction (JJ). The trans-
mon is weakly anharmonic if its zero-point fluctuations in
current are much smaller than the junctions critical current
Ic. The current I traversing the JJ when only a few excita-
tions populate the circuit is then much smaller than Ic and
LJ (I ) � LJ (1 + I 2/2I 2

c ). Intuitively, the expectation value
of the current squared 〈I 2〉, on which the inductance depends,
will increase with the number of excitations in the circuit.
So with increasing number of excitations n in the circuit,

the effective inductance of the circuit increases and the en-
ergy of each photon number state En will tend to decrease
with respect to the harmonic case. For a rigorous quan-
tum description of the system, the flux φ(t ) = ∫ t

−∞ V (t ′)dt ′,
where V is the voltage across the JJ, is a more practical
variable to use than current [17]. Note that for a linear
inductance L, the flux φ is proportional to the current I

traversing the inductor φ = LI . Using the conjugate variables
of flux and charge the Hamiltonian of Eq. (1) can be shown to
describe the transmon [4]. The anharmonicity is given by the
charging energy h̄λ = e2/2C, the atomic frequency by ωa =
1/

√
LJ C, and the flux relates to the annihilation operator

through φ̂ = φzpf(â + â†), where the zero-point fluctuations

in flux are given by φzpf =
√

h̄
√

LJ /C/2. We can recover
the intuition gained by describing the system with currents
by plotting the eigenstates in the normalized flux basis ϕ̂ =
φ̂/φzpf of the harmonic oscillator in Fig. 1(a). The fluctuations
in flux increases with the excitation number, hence the expec-
tation value of the fourth power of the flux 〈φ̂4〉 ∝ 〈Ĥanh〉 will
increase. The energy of each eigenstate will then decrease,
deviating from a harmonic level structure.

III. COUPLED HARMONIC AND
ANHARMONIC OSCILLATOR

A. Normal-mode splitting and
quantum-fluctuation-induced shifts

We now study the effect of coupling a harmonic oscillator
to the atom. When an LC oscillator is connected capacitively
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to a transmon [see Fig. 1(b)], circuit quantization [17] leads to
the Hamiltonian

Ĥ /h̄ = (ωa + λ)â†â − λ

12
(â + â†)4

+ ωrb̂
†b̂ + g(â − â†)(b̂ − b̂†). (4)

Here b̂ is the annihilation operator for photons in the res-
onator, ωr its frequency, and g is the coupling strength.
Compared to the Hamiltonian of Eq. (1), we replaced the fre-
quency ωa scaling the atomic number operator with ωa + λ.
Doing so will ensure that ωa corresponds to the frequency of
the first atomic transition, independent of the anharmonicity
λ, as proven by Eq. (3). We also omitted the ground-state
energies h̄ωr/2 and h̄(ωa + λ)/2 in this Hamiltonian; even
though vacuum fluctuations are at the origin of these omitted
terms, their presence plays no role in calculating the transition
frequencies of the system.

To describe the dispersive regime g � |�| of this inter-
action, we first move to the normal-mode basis, as described
in the Appendix. We introduce normal-mode frequencies ω̄r ,
ω̄a = ωa − δNM and operators α̂, β̂ which eliminate the cou-
pling term in Eq. (4) while preserving canonical commutation
relations

Ĥ /h̄ = (ω̄a + λ)α̂†α̂ + ω̄r β̂
†β̂

− 1

12

[
χ1/4

a (α̂ + α̂†) + χ1/4
r (β̂ + β̂†)

]4

︸ ︷︷ ︸
Ĥanh

. (5)

The operators α̂, β̂ have a linear relation to â, b̂, which deter-
mines the value of χa and χr (see the Appendix). Expanding
the anharmonicity leads to

Ĥanh/h̄ = − χa

2

(
(α̂†α̂)2 + α̂†α̂ + 1

2

)

− χr

2

(
(β̂†β̂ )2 + β̂†β̂ + 1

2

)

− 2χar

(
α̂†α̂ + 1

2

)(
β̂†β̂ + 1

2

)
, (6)

if we neglect terms which do not preserve excitation number,
irrelevant to first order in λ. This approximation is valid for
λ � |�|, |3ωa − ωr |, |ωa − 3ωr |, which notably excludes the
straddling regime [4]. The anharmonicity (or self-Kerr) of the
normal-mode-splitted atom and resonator χa and χr is related
to the ac Stark shift (or cross-Kerr) 2χar through

χar = √
χaχr . (7)

The ac Stark shift is the change in frequency one mode
acquires as a function of the number of excitations in the other.

The appearance of an ac Stark shift and the resonators
anharmonicity can be understood from the mechanism of
normal-mode splitting. When the transmon and LC oscillator
dispersively couple, the normal mode corresponding to the
LC oscillator will be composed of currents oscillating through
its inductor but also partly through the JJ. We can decompose
the current I traversing the JJ into the current corresponding
to atomic excitations Ia and resonator excitations Ir . In Eq. (5)
this appears in the terms of flux as φ = φa + φr ∝ χ

1/4
a (α̂ +

α̂†) + χ
1/4
r (β̂ + β̂†). Consequently the value of the JJ induc-

tance is not only dependent on the number of excitations
in the atom but also in the resonator. Since the frequency
of the normal-mode-splitted transmon and resonator depends
on the value of this inductance, the atomic frequency is a
function of the number of excitations in the resonator (ac
Stark effect), and the resonator frequency changes as it is
excited (the resonator acquires some anharmonicity). Even
when the resonator mode is in its ground state, vacuum current
fluctuations shift the atomic frequency. This can be verified
by the presence of 1/2 in the cross-Kerr term of Eq. (6)
which arise from commutation relations [α̂, α̂†] = [β̂, β̂†] =
1, mathematically at the origin of vacuum fluctuations.

To summarize, compared to an isolated harmonic oscillator
the energy levels of the coupled atom are shifted by: (1)
normal-mode splitting δNM, (2) its anharmonicity χa which
arises from the quantum fluctuations of its eigenstates, and
(3) the shift proportional to χar arising from the quantum
fluctuations of the resonator it is coupled to. These different
effects are depicted in Fig. 1(b). In Figs. 2(a) and 2(b) we
show how these shifts manifest in a typical experimental
setting where the detuning between the atom and resonator
is varied, without explicitly showing contribution (2). Off-
resonance, both modes are slightly shifted with respect to their
uncoupled frequencies, and our theory allows us to distinguish
the different effects which contribute to this shift.

B. Analytical expression of the shifts in the RWA

In the RWA g � |�| � �, where � = ωa + ωr , the fol-
lowing approximations hold:

ω̄a = ωa − δNM � ωa − g2

�
− λ

g2

�2
,

ω̄r � ωr + g2

�
+ λ

g2

�2
,

χa � λ

(
1 − 2

g2

�2

)
,

χr = O(g4), χar � λ
g2

�2
, (8)

valid to leading order in g and λ. The expression for the ac
Stark shift was also derived by Koch et al. [4] from pertur-
bation theory, given in the form λg2/�(� − λ). Applying
perturbation theory to the Hamiltonian of Eq. (4), however,
fails to predict the correct shift beyond the RWA and does
not make the distinction between the physical origin of the
different shifts.

Following Eqs. (8), the total shift acquired when the res-
onator is in its ground-state δωa = λ − δNM − χa − χar , is
equal to −g2/�. This shift is equal to that of a harmonic
oscillator coupled to another harmonic oscillator (here the
case λ = 0) as well as that of a TLS coupled to a har-
monic oscillator. The fact that the total shift has the same
magnitude in these three different systems can easily lead
to a confusion as to its origin. In particular since the shift
of a TLS is a purely quantum effect, whereas that of two
coupled harmonic oscillators can be quantitatively derived
from classical physics, and the weakly anharmonic system lies
somewhere in between. This confusion can now be addressed:
for a weakly anharmonic system, there is a contribution from
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FIG. 2. Fraction of the atomic energy shift due to quantum vacuum fluctuations. (a) Dressed frequency of the ground-to-first-excited state
transitions of the harmonic oscillator (black) and atom (blue) as a function of detuning � = ωr − ωa . Bare frequencies (g = 0) are shown as
dashed lines, We fixed λ/ωa = 0.01 and g/ωa = 0.02. (b) Total frequency shift δωa of the atom, decomposed into its two main components:
normal-mode splitting δNM and a shift resulting from vacuum fluctuations χar . Coupling also changes the anharmonicity χa , this results in a
small shift absorbed here in δNM. (c) The vacuum-fluctuations-induced shift χar as a fraction of the total frequency shift of the atom δωa for
increasing anharmonicity λ and fixed detuning � = ωa/4. For a TLS, all of the energy shift arises from quantum fluctuations, χar/δωa = 1. In
all panels, the dotted lines are computed from Eqs. (9), full lines correspond to a numerical diagonalization of Eq. (4). In (c), χar is computed
from numerics as half the shift resulting from adding a photon in the oscillator.

normal-mode splitting and from vacuum fluctuations which
can both be quantified, and the former is much larger than
the latter for a weakly anharmonic system. This also explains
why earlier work [3] found the Stark shift per photon to be
smaller than the Lamb shift: vacuum fluctuations was not
the only measured effect, normal-mode splitting also greatly
contributed to the measured shift. The proportion to which
the total shift is due to vacuum fluctuations, as a function of
anharmonicity, is shown in Fig. 2(c).

C. Beyond the RWA

Beyond the RWA to regimes of large detuning g � |�|
∼ � the approximate expressions of the different shifts are
given by

ω̄a � ωa − g2 2ωr

��
− 4λg2 ωrωa

�2�2
,

ω̄r � ωr + g2 2ωa

��
+ 4λg2 ω2

a

�2�2
,

χa � λ

(
1 − 4g2 ωr

(
ω2

a + ω2
r

)
ωa�2�2

)
,

χr = O(g4), χar � 4λg2 ω2
r

�2�2
. (9)

An important difference with the RWA is that the ac Stark
shift 2χar scales with ω2

r , decreasing with the frequency of a
coupled resonator as shown in Fig. 3. This notably explains
why the transmon is insensitive to low frequency charge
fluctuations as compared to the highly anharmonic Cooper
pair box. It also explains why the transmon is not adapted to
measuring individual quanta of far off-resonant systems such
as low frequency mechanical oscillators [6]. Contrary to the ac
Stark shift in the RWA, this expression cannot be derived by
applying perturbation theory to Eq. (4). The different shifts
which arise from this method and perturbation theory are

compared to two coupled harmonic oscillators and the two-
level system case in the Supplemental Material Table S1 and
Fig. S2 [18].

IV. SUMMARY AND CONCLUSIONS

In conclusion, we presented a method to separate normal-
mode splitting from the consequences of quantum fluctuations
in the Hamiltonian of a weakly anharmonic atom coupled
to a harmonic oscillator. Through our theory we reveal the
physical origin of the different energy shifts arising in such a
system. The main result is that only a small fraction of the
total frequency shift can be attributed to quantum vacuum

RWA 
(Koch et al.) 

Jaynes-Cummings

ωr/ωa

  
/ω

a
χ

a
r

g2/|Δ|

0.1 1 10

10-4

10-6

10-8

FIG. 3. Vacuum-fluctuations-induced shift χar beyond the RWA
fixing λ/ωa = 0.01 and g/ωa = 0.02. Numerical calculation (full
red line), are compared to the analytical expression of Eq. (9) (dashed
blue line) and Eq. (6) (dashed green). Resonances invalidating our
approximations are denoted by red bars.
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fluctuations, the dominant part being due to normal-mode
splitting. We prove that this small fraction can be experimen-
tally measured as half the Stark shift per photon, for example
in Ref. [3]. Extending this work to natural atoms (which are
not perfect two-level systems either) also seems promising.
Experiments in cavity QED show that the Lamb shift of
natural atoms can be 40% larger than half the Stark shift per
photon [19]. As derived in this work, this indicates that the
shift is not purely driven by quantum fluctuations. Since the
original picture of the Lamb shift is of a phenomenon driven
by quantum fluctuations, our results raise questions about the
terminology, and interpretation of, experiments in cavity and
circuit QED. In particular, should one reserve the terminology
“Lamb shift” for only the part of the dispersive shift that
arises from quantum fluctuations? In addition to addressing
this fundamental question, we expect that the expressions
derived in Eqs. (8) and (9), as well as our approach to studying
this Hamiltonian will become practical tools for experimental
efforts in circuit QED.
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APPENDIX: TRANSFORMATION
TO THE NORMAL-MODE BASIS

The Hamiltonian

Ĥ /h̄ = (ωa + λ)â†â + ωrb̂
†b̂ + g(â − â†)(b̂ − b̂†) (A1)

describes two harmonic oscillators with a linear interaction
between them. It can be compactly written as

Ĥ /h̄ = vT Hv, vT = [â, b̂, â†, b̂†],

H = 1

2

⎡
⎢⎣

0 g (ωa + λ) −g

g 0 −g ωr

(ωa + λ) −g 0 g

−g ωr g 0

⎤
⎥⎦, (A2)

omitting constant contributions. Using this notation, the
canonical commutation relations read

[v, vT ] = vvT − (vvT )T = J =
[

0 I2

−I2 0

]
, (A3)

where I2 is the 2 × 2 identity matrix. The objective of this
section is to rewrite (A1) as the Hamiltonian of two indepen-
dent harmonic oscillators, or normal modes

Ĥ /h̄ = (ω̄a + λ)α̂†α̂ + ω̄r β̂
†β̂, (A4)

which we write in compact notation as

Ĥ /h̄ = ηT �η, ηT = [α̂, β̂, α̂†, β̂†],

� = 1

2

⎡
⎢⎣

0 0 (ω̄a + λ) 0
0 0 0 ω̄r

(ω̄a + λ) 0 0 0
0 ω̄r 0 0

⎤
⎥⎦. (A5)

To do so, we need to find a matrix which maps v to a new set
of annihilation and creation operators of the normal-modes η

which should also satisfy the commutation relations (A3).
We start by noticing that the matrix �J is diagonal

�J = 1

2

⎡
⎢⎣

−(ω̄a + λ) 0 0 0
0 −ω̄r 0 0
0 0 (ω̄a + λ) 0
0 0 0 ω̄r

⎤
⎥⎦, (A6)

and we define it as the diagonal form of the matrix H J .
In other words, we can determine the value of ω̄a and ω̄r

by diagonalizing H J . An exact expression for these normal-
mode frequencies is given by

ω̄ar = 1√
2

(
(ωa + λ)2 + ω2

r

±
√[

(ωa + λ)2 − ω2
r

]2 + 16g2(ωa + λ)ωr

)1/2
.

(A7)

As we will now demonstrate, defining � in this way will
lead to operators with the correct commutation relations. We
define the matrix of eigenvectors that diagonalizes H J as
F = [w0,w1,w2,w3], such that

H J = F�J F−1. (A8)

The matrix F can be normalized in such a way that it satisfies
an important condition, it can be made symplectic

FT J F = F J FT = J . (A9)

If the eigenvectors are normalized such that wT
i wi = 1, the

operation that leads to symplecticity is

w′
0 = ±w0/

√∣∣wT
0 Jw2

∣∣,
w′

1 = ±w1/

√∣∣wT
1 Jw3

∣∣,
(A10)

w′
2 = ±w2/

√∣∣wT
0 Jw2

∣∣,
w′

3 = ±w3/

√∣∣wT
1 Jw3

∣∣,
where the + or − sign is chosen such that if we redefine F =
[w′

0,w
′
1,w

′
2,w

′
3] it is of the form

F =
[

A B
B A

]
, (A11)

and such that F = I4 in the limit g = 0. With F a symplectic
matrix, we can define η as

η = FT v (A12)

and (Proposition 1) η will respect the commutation rela-
tions (A3) while ensuring that (Proposition 2) the two Hamil-
tonians (A2) and (A5) are equivalent. Proof of these propo-
sition is provided at the end of this section. With the rela-
tion (A17), we can invert (A12) to obtain

v = −J F Jη. (A13)

Using the software Mathematica, we diagonalize H J symbol-
ically and perform the normalizations of Eqs. (A10) to obtain
F. As written in Eq. (A13), F leads to the transformation
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between the operators â, b̂ and α̂, β̂. By Taylor expanding the
resulting expressions for small values of g, we obtain

â �
(

1 − g2 2(ωa + λ)ωr

�′2�′2

)
α̂ − g

�′ β̂

− g2 ωr

(ωa + λ)

1

�′�′ α̂
† − g

�′ β̂
†,

b̂ � g

�′ α̂ +
(

1 − g2 2(ωa + λ)ωr

�′2�′2

)
β̂

− g

�′ α̂
† + g2 (ωa + λ)

ωr

1

�′�′ β̂
†. (A14)

These approximations are valid to second order in g and we
define �′ = � − λ and �′ = � + λ. Using these relations,
we can express the anharmonicity λ(â + â†)/12 as a function
of α̂ and β̂, leading to expressions for χa and χr . In the same
approximation, the eigenfrequencies write

ω̄a � ωa − 2g2ωr

�′�′ ,

ω̄r � ωr + 2g2ωa

�′�′ . (A15)

leading to the expression for the normal-mode splitting δNM.
Finally, we provide proofs for the two propositions used
above.

Proposition 1. This proof illustrates how essential it is that
F be symplectic [Eq. (A9)] to obtain the desired commutation
relations for α̂ and β̂. If F if symplectic, we find that the

vector η satisfy the canonical commutation relations written
in compact form in Eq. (A3):

[η, ηT ] = ηηT − (ηηT )T

(A12)= FT (vvT )F − FT (vvT )T F

= FT [v, vT ]F

(A3)= FT J F

(A9)= J . (A16)

Proposition 2. Multiplying Eq. (A9) with J , we find

−F J FT J = −J F J FT = −J2 = I4, (A17)

where I4 is the 4 × 4 identity matrix.
This relation allows us to introduce the matrix F into

Eq. (A2)

Ĥ /h̄ = vT Hv

(A17)= −vT H J F J FT v

(A8)= −vT F�J F−1 F︸ ︷︷ ︸
=I4

J FT v

(A8)= −vT F� J J︸︷︷︸
=−I4

FT v

= (FT v)T �(FT v), (A18)

proving that Ĥ /h̄ = ηT �η.

[1] W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947).
[2] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
[3] A. Fragner, M. Göppl, J. M. Fink, M. Baur, R. Bianchetti, P. J.

Leek, A. Blais, and A. Wallraff, Science 322, 1357 (2008).
[4] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,

J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[5] S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L.
Frunzio, M. H. Devoret, R. J. Schoelkopf, and S. M. Girvin,
Phys. Rev. Lett. 108, 240502 (2012).

[6] J. M. Pirkkalainen, S. U. Cho, J. Li, G. S. Paraoanu, P. J.
Hakonen, and M. A. Sillanpää, Nature (London) 494, 211
(2013).

[7] X. Gu, A. F. Kockum, A. Miranowicz, Y.-x. Liu, and F. Nori,
Phys. Rep. 718–719, 1 (2017).

[8] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M.
Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature (London)
445, 515 (2007).

[9] L. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret,
E. Thuneberg, S. M. Girvin, and R. J. Schoelkopf, Nat. Phys. 5,
105 (2009).

[10] S. J. Bosman, M. F. Gely, V. Singh, D. Bothner, A. Castellanos-
Gomez, and G. A. Steele, Phys. Rev. B 95, 224515 (2017).

[11] S. J. Bosman, M. F. Gely, V. Singh, A. Bruno, D. Bothner, and
G. A. Steele, npj Quantum. Inform. 3, 46 (2017).

[12] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik,
E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J.
Schoelkopf, Nature (London) 495, 205 (2013).

[13] N. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A.
Bruno, F. Luthi, D. Thoen, A. Endo, and L. DiCarlo, Nat.
Commun. 8, 1715 (2017).

[14] M. Takita, A. D. Corcoles, E. Magesan, B. Abdo, M. Brink, A.
Cross, J. M. Chow, and J. M. Gambetta, Phys. Rev. Lett. 117,
210505 (2016).

[15] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C.
White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B.
Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley,
C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N.
Cleland, and J. M. Martinis, Nature (London) 519, 66 (2015).

[16] D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen,
O.-P. Saira, and L. DiCarlo, Nat. Commun. 6, 6983
(2015).

[17] U. Vool and M. Devoret, Int. J. Circuit Theory Appl. 45, 897
(2017).

[18] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevA.98.053808 for a summary of
the different shifts with and without the RWA, and numerical
calculations on the accuracy of our approximations.

[19] M. Brune, P. Nussenzveig, F. Schmidt-Kaler, F. Bernardot, A.
Maali, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 72,
3339 (1994).

053808-6

https://doi.org/10.1103/PhysRev.72.241
https://doi.org/10.1103/PhysRev.72.241
https://doi.org/10.1103/PhysRev.72.241
https://doi.org/10.1103/PhysRev.72.241
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1126/science.1164482
https://doi.org/10.1126/science.1164482
https://doi.org/10.1126/science.1164482
https://doi.org/10.1126/science.1164482
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevLett.108.240502
https://doi.org/10.1103/PhysRevLett.108.240502
https://doi.org/10.1103/PhysRevLett.108.240502
https://doi.org/10.1103/PhysRevLett.108.240502
https://doi.org/10.1038/nature11821
https://doi.org/10.1038/nature11821
https://doi.org/10.1038/nature11821
https://doi.org/10.1038/nature11821
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nphys1154
https://doi.org/10.1038/nphys1154
https://doi.org/10.1038/nphys1154
https://doi.org/10.1038/nphys1154
https://doi.org/10.1103/PhysRevB.95.224515
https://doi.org/10.1103/PhysRevB.95.224515
https://doi.org/10.1103/PhysRevB.95.224515
https://doi.org/10.1103/PhysRevB.95.224515
https://doi.org/10.1038/s41534-017-0046-y
https://doi.org/10.1038/s41534-017-0046-y
https://doi.org/10.1038/s41534-017-0046-y
https://doi.org/10.1038/s41534-017-0046-y
https://doi.org/10.1038/nature11902
https://doi.org/10.1038/nature11902
https://doi.org/10.1038/nature11902
https://doi.org/10.1038/nature11902
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1002/cta.2359
https://doi.org/10.1002/cta.2359
https://doi.org/10.1002/cta.2359
https://doi.org/10.1002/cta.2359
http://link.aps.org/supplemental/10.1103/PhysRevA.98.053808
https://doi.org/10.1103/PhysRevLett.72.3339
https://doi.org/10.1103/PhysRevLett.72.3339
https://doi.org/10.1103/PhysRevLett.72.3339
https://doi.org/10.1103/PhysRevLett.72.3339

