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Summary

This study had a main task to investigate the use of Linear Parameter-Varying (LPV) models to approximate

nonlinear and time-varying system dynamics by interpolating multiple Linear Time-Invariant (LTI) models

through a smooth multi variable scheduling function. Furthermore, it investigates the effectiveness of

multivariate simplex B-splines as such scheduling function within a specific type of LPV models, namely

State-Space quasi-LPV (SS-qLPV) models. These B-splines offer a global approximation using local

basis functions, ensuring smooth transitions across the system’s operating range which make them a very

good candidate for such application. Additionally, the level of smoothness is determined by the continuity

conditions, which represent a parameter that can be freely selected when working with splines.

In Part I, the main research article has been constructed where an application of an SS-qLPV rep-

resentation to an Inverted Pendulum on a Cart Model (IPCM) in an open-loop setting is created. The

scheduling parameters used are the cart’s velocity and the pendulum’s angle. Multiple scheduling function

estimation methods are compared, including piecewise-constant Zero-Order Hold (ZOH), polynomial uni-

and multi-variate Ordinary Least Squares (OLS), and multivariate simplex B-splines. The findings indicate

that B-splines achieve better approximation accuracy than polynomial methods at the same polynomial

order, as shown by lower root mean squared error (RMSE) values. However, under broader simulation

conditions, LPV-ZOH can be computationally less demanding and sometimes results in lower RMSE,

despite its discontinuities at switching points, which may affect closed-loop performance.

In Part II, the literature review conducted for this study is shown in detail, that also researches the

feasibility of the approach to a highly non-linear aircraft model of the Innovative Control Effectors (ICE)

aircraft. It shows the existing research of constructing LPV model of ICE and shows the ways a multivariate

simplex B-spline function can be incorporated as a scheduling function. This review has also indicated the

gap in the current state of litertature, such that multivariate simplex splines have not been considered as a

scheduling function. A review of the literature shows that tensor-product, cubic splines, and single-variable

splines have been commonly applied. However, simplex-based triangulation offers a more efficient and

adaptive representation of the scheduling parameter space for multivariate B-spline approximations in

nonlinear systems.

In Part III, additional results from the study are explored, including a preliminary Linear Quadratic

Regulator (LQR) control scheme applied in a closed-loop setting of the LPV model of the IPCM. This section

highlights the trade-offs between different scheduling function methods and suggests further research on

optimizing simplices for enhanced performance. This topic is also addressed in Part I, where it is noted that

optimization of scheduling grid is needed for open-loop results, noting Constrained Delaunay Triangulation

(CDT) or Type I/II hypercube triangulation method as proposed techniques. As discussed in Part III, the

closed-loop performance grid of scheduling parameters differs significantly from that of the open-loop,

highlighting the need for further simplex optimization, which is recommended for future research.
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1
Introduction

In a constantly growing and evolving aerospace industry, the need for enhancing safety, efficiency,

performance and autonomy of aerospace vehicles enables the development of control architectures that

remain robust to uncertainties. In the cases where failure or damage occurs, the aircraft model radically

changes, which makes it unfeasible to use a single controller to guarantee stability and performance. This

has been realised ever since 1970, where the focus has been switched to multi-variable feedback methods,

that recognize the importance of model uncertainties which, in turn, induce limits on the control performance

[1]. Complex aerodynamic interactions in high-performance aircraft involve significant nonlinear changes

of the aerodynamic model in terms of aerodynamic forces and moments, large spectrum of speeds, and

operation at high angles of attack where stall and post-stall behaviors significantly impact their control and

stability. This enables them to operate close to their aerodynamic limits at the expense of increased control

complexity, such as a high number of control inputs vs. measured outputs, increased computational load,

and sophisticated control algorithms. When the full flight envelope is considered, a method is needed to

guarantee stability and robustness over its entirety (globally stable) and should enable multi-objective,

multiple-input multiple-output (MIMO) controller designs [2].

A well-established framework for describing dynamical systems is provided in the form of Linear Time-

Invariant (LTI) systems, which constitute a fundamental basis for control design. LTI models are extensively

researched, and while they can approximate nonlinear systems well, L.Ljung explains that as the number

of data points increases, the uncertainties in LTI systems, when estimated in Bode/Nyquist plots, converge

to zero [3]. Furthermore, the region of validity of the linear model might be exceeded with changes in the

operating conditions, resulting in poor performance [4]. Other clear shortcomings of LTI systems come

from the fact that complex nonlinear systems show position or operating condition-dependent dynamics [5],

such as is the case for high performance aircraft with sudden changes in operating conditions in typical

mission flight profiles.

One way to overcome these limitations is the use of more advanced control approaches, such as

Linear Parameter Varying (LPV) that require specifying the parameter dependence on the scheduling

variables over a wide envelope. Using LPV systems instead of LTI or Linear-Time-Varying (LTV) systems

is based on the causal knowledge of the system’s dynamics. In the LPV framework, the causal relationship

between the scheduling variables and the plant enables to customize the controller dynamics to account

for variations in the plant’s characteristics [6]. This dependency can take various forms - affine, polynomial,

rational, piece-wise etc. Choosing the appropriate structure is crucial to avoid under/over-fitting and

structural biases, that would obstruct the handling of dynamic and complex environments effectively.

As demonstrated in [2], LPV control synthesis allows a guarantee for stability and performance for all

parameter trajectories within the bounds outlined by the scheduling parameter. LPV approach models

the aircraft dynamics as a set of (LTI) systems, each corresponding to an equilibrium point (trim point).

Individual linear controllers are then designed at these operating points and interpolated based on the

current flight parameters in order to obtain a global solution. The interpolating fitting function, such as

a least-squares (LSQ) multi-variable polynomial (as in [7]), or B-splines (as in [8]) can be used, in an

improvised manner, to interpolate between these trim points in order to form a global model, which is

closely related to local-linear-modeling framework [4]. It has been shown in [8], that the B-splines structure

effectively handles piecewise polynomial parameterizations of both the LPV system and the optimization

variables, enabling more accurate modeling compared to polynomial or LSQ parametrization. Multivariate

1
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simplex splines, as indicated in [9], facilitate local model identification, in a way that they exhibit high

approximation power and allow for flexible selection of continuity order such that a smooth dependence of

the LPV systems on the scheduling function is achieve while at the same time creating a global model.

To analyze the complexities of high performing aircraft, a statically unstable, tailless and over-actuated

(with highly non-linear control effectiveness matrix) aircraft, such as the Innovative Control Effectors (ICE),

is used. It is part of a research project, which is a collaboration between the Control & Simulation (of TU

Delft Aerospace Engineering faculty) division and Lockheed-Martin Skunkworks, which aims to explore

new flight control and control allocation methodologies. What makes this project challenging is that the ICE

fighter aircraft has 13 axis-coupled control effectors, shown in Figure 3.5, that are strongly redundant, and

more importantly, also non-linearly influence each others functions. Thus the model possesses a unique

actuator configuration, with a highly non-linear control effectiveness matrix that is also more sensitive

to sources of uncertainties than conventional aircraft. The control effort required to manage all these

actuators simultaneously is very high and makes it impossible for a pilot to manage with manual control.

Additionally, the lack of a vertical tail reduces both directional stability and control authority, leading to tightly

coupled and highly nonlinear dynamics, where yaw motion is coupled with pitch. This complex coupling

necessitates that controllers account for the aircraft’s dynamics across all three axes simultaneously [10].

A way to manage control effector redundancies is to use non-linear control allocation approaches

that requires the ICE aerodynamic model to be parametrized using multivariate splines. This is due

to the assumption that conventional control allocation methods use linear relationship between control

actuator positions and control-induced forces and moments. However, this performance is insufficient

for tailless aircraft such as the ICE, as discussed in [11]. Multivariate spline approaches have already

been researched at Control & Simulation, and include a multivariate simplex B-spline aerodynamic model

[12] and a multivariate simplotope B-Spline model [13], [14] of the ICE aircraft. They provide efficient

means to fit scattered data on non-rectangular domains, as indicated in [15], which should make them

good candidates for a development of a scheduling function for a LPV system.

First, a study on the effectiveness of multi-variable LPV system, using multivariate splines as a

scheduling function, which should eventually provide robustness to the non-affine system dynamics of the

selected model has to be made. This should unravel the research gap that currently exists in this field and

is supported by relevant literature in Chapter 3. Succeeding, is the Preliminary Research Methodology

described in Chapter 4, which explains the models being used for the rest of the thesis and is subdivided

into: LPV Model Selection in 4.1, selection of spline basis function in 4.2 and the ICE aerodynamic model

in 4.3. Additionally Section 4.4, explains the example to IPCM where this methodology is demonstrated. In

Chapter 5 additional results are presented, which should support the main work done in Part I. Finally,

conclusions and are drawn in Chapter 6 and recommendations for future research in Chapter 7.

1.1. Research Objective
The main objective of this research is to investigate the connection between a robust method of nonlinear

control, which leverages the well-established Linear-Time-Invariant (LTI) system framework to solve non-

linear problems, known as the Linear Parameter Varying (LPV) method, and the potential of using global

nonlinear model identification method based on multivariate splines, as a scheduling function of the LPV

model. Multivariate simplex B-splines show potential for better performance than existing polynomial based

methods, while still using standard parameter estimation techniques in a linear regression setting.

A suitable candidate for this comparison is the application on a highly non-linear, non-conventional

aerodynamic model of Innovative Control Effectors (ICE) aircraft. Multivariate Spline formulations for the

aerodynamic model on ICE have already been created in previous work in Control & Simulation department

([12], [13], [14]), but research on connecting this model with a robust global control method such as

LPV is absent. However, to first understand the concepts of LPV models on a non-linear model and the

combination with multivariate splines as scheduling function a suitable demonstrator is needed. As shown

in Part I, the inverted pendulum on a cart model (IPCM) serves as a widely studied example due to its

nonlinear dynamics, which closely aligns with real-world control challenges and present complexity in

the application of robust control models, such as LPV, with an additional complexity coming from the

application of multivariate simplex B-splines. Researching both LPV and B-spline methodologies already

constitutes a substantial body of work, and for the purposes of this study, the IPCM provides an adequate

and representative system for analysis.
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Therefore, the main research statement reflects the goal of this thesis, which is shown below.

How can a Linear Parameter Varying (LPV) control method combined with a multivariate simplex

B-spline scheduling function address the gap in connecting robust control methods with the

complex, non-affine dynamic models?

Research Objective

To answer this question, the main research directions need to be split into smaller sub-questions in

a way that they are relevant, anchored and precise to the research study and are formulated in the next

Section.

1.2. Research Questions
The answer to the first research question leads to the development of a LPV model for non-affine dynamic

model that allows the use of a global nonlinear model identification method based on multivariate splines.

What form of LPV mathematical model is applicable to a non-affine dynamic model that can

guarantee a certain level of robustness?

Research Question 1

With the subsequent questions derived as follows:

1.1 How can the LPV model be parameterized to obtain full state predictions of the dynamics of the

non-affine model?

1.2 What model LPV structure can be used to enable the application of multivariate splines?

1.3 What validation methods should be employed to ensure that the identified LPV model meet require-

ments?

The second research question is related with the model identification of the non-linear model with

multivariate simplex splines, and how can it be combined with a global LPV model.

How does the application of multivariate splines enhance the accuracy of the LPV model in

predicting the performance of a non-affine system across varying operating regimes?

Research Question 2

With the subsequent questions derived as follows:

2.1 How do multivariate splines compare to polynomial methods in terms of root mean square error

(RMSE) in parameter estimation?

2.2 What is the impact of parameter variability over the entire operating range on the accuracy of

spline-based LPV models?

1.3. Research Approach
To answer the first research question, several steps need to be taken to develop an applicable mathematical

model for the true global LPV. They are indicated as follows:

. Starting from the non-affine dynamic model, a set of model states based on the model’s Equations of

Motion that approximate the longitudinal and lateral dynamics need to be derived.

. Based on these equations, a set of scheduling states needs to be selected, whose combination can

also constrain the operating envelope of the model.

. Explore different forms of global LPV models (e.g.,State-Space, Input/Output LPV representations)

that can be applied to the non-linear model.



. Creation of linearized rigid body models, evaluated at the set of operating points of the scheduled

parameter of the operating envelope, in order to obtain a set of LTI models of the non-linear system

that can be interpolated to form a global LPV model.

. Identify key parameters (scheduling variables, parameter grid) that influence the non-affine behavior

and consider their uncertainty in order to evaluate robustness of the LPV model. Evaluation of

whether the fidelity of the model will be affected if some parameters are relaxed.

. Specific for implementation of the ICE model: A determination of the type of control allocation that

can be implemented needs to be done. Simplifying the ICE model to longitudinal/lateral motion, with

limited inputs, as done in literature is an effective way to asses the model.

. The type of basis functions and polynomial structures for the model, to enable the comparison with

multivariate simplex splines, needs to be determined.

. The data generated will need to be split into separate identification and validation datasets, with a

specific split ratio to make sure that the validation set contains sufficient dynamics. Several model

validation methods can be employed such as analysis of model residuals and parameter co-variances

or B-coefficient bounds: p(x) = {min(ĉ),max(ĉ)}.

For the answer of the second research question, the following steps need to be determined:

. Numerical simulations using both multivariate simplex spline models and polynomial models have to

be performed and Root-Mean-Squared-Error for both methods across various operating points in the

operating envelope needs to be compared.

. To assess how perturbations in spline parameters affect the approximation error of the spline-based

LPV model, it is essential to identify and analyze key parameters such as the spline dimension,

spline degree, continuity near the spline edges and the triangulation settings in terms of number of

datapoints and size of grid.

. A trade-off needs to be conducted between these spline-specific parameters and the critical parame-

ters of the LPV model across the specified operating envelope to evaluate their impact on model

performance. Model performance should show how effectively the system’s model predicts the real

system’s behavior, focusing on model accuracy, response time and error minimization.

. Estimation of the size and type of scheduling grid spanned by the scheduling variables also needs

to be determined. By varying the scheduling parameter grid, the accuracy of the spline-based

approximation to the true LPV model, as well as the system’s response to reference inputs can be

examined.
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Multivariate B-Spline Scheduling for Linear Parameter Varying
Model

S. Angelovski∗
Delft University of Technology, 2629HS Delft, The Netherlands

Linear Parameter-Varying (LPV) models provide means to approximate complex,
nonlinear, and time-varying system dynamics using a set of Linear Time-Invariant
(LTI) models, interpolated by a scheduling function to ensure smooth transitions across
the system’s operating envelope. This study demonstrates that multivariate simplex
B-splines can serve as such function, evaluated for State-Space quasi-LPV (SS-qLPV)
models by providing a global approximation using local basis functions. The Inverted
Pendulum on a Cart Model (IPCM) is used as a demonstrator in an open-loop setting,
with an affine LPV representation based on cart velocity and pendulum angle as
scheduling parameters. Several scheduling function estimation methods: piecewise-
constant Zero-Order Hold (ZOH), polynomial uni and multi-variate Ordinary Least
Squares (OLS), and multivariate simplex B-splines are evaluated. Results indicate
that, at the same polynomial order, B-splines show higher approximation capabilities
compared to polynomial methods, as shown by the root mean squared error (RMSE)
of the residuals. However, under broader simulation conditions, LPV-ZOH can be
computationally less expensive and can achieve lower RMSE, although piecewise
constant methods have discontinuities at the switching points, which can have an
impact to closed-loop performance. The study highlights trade-offs in scheduling
function selection and suggests future research in optimizing simplices for improved
performance. Applying B-spline scheduling functions with gain scheduled controllers in
closed-loop control is the next direction for increasing control performance in complex,
high-dimensional systems.

Nomenclature
𝛼 = pendulum angular acceleration (rad/s2)
𝜆̂ = lagrange multiplier initial estimate
𝑑 = total number of valid permutations
T𝐽 = triangulation of J simplices
𝜈 = cart velocity (m/s)
𝜈𝑖 = non-degenerate vertex
Ω = pendulum angular velocity (rad/s)
𝜔𝑛 = pendulum natural frequency (s-1)
𝜌𝑖 = scheduling parameter
𝜃 = pendulum angle (rad)
𝜃00 = initial pendulum angle (rad)
𝜈̃𝑖, 𝑗 = out-of-edge vertex
𝑎 = cart’s acceleration (m/s2)
𝐴𝑚 = amplitude of input force (N)

𝑏 = friction coefficient
𝑏𝑖 = barycentric coordinates
𝐶𝑟 = continuity order
𝑑 = polynomial degree
ℎ = fixed time step (s)
𝐽 = total number of simplices
𝑙 = length of pendulum rod (m)
𝑀 = mass of cart (kg)
𝑚 = mass of pendulum bob (kg)
𝑁𝜌 = number of data points per parameter
𝑁𝑠𝑖𝑚 = number of simulations
𝑇𝑑 = discrete sampling interval (s)
𝑇𝑠𝑖𝑚 = simulation time (s)
𝑋 = cart position (m)

∗MSc Student, Control and Simulation Division, Faculty of Aerospace Engineering, Kluyverweg 1, 2629HS Delft, The Netherlands,
s.angelovski@student.tudelft.nl
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I. Introduction

Linear Parameter Varying (LPV) models have gained considerable attention in the field of control systems
over the past two decades, due to their ability to approximate nonlinear dynamics, while utilizing the

well-established framework of Linear Time-Invariant (LTI) systems. They extend the LTI framework to
systems whose dynamics depend on measurable, time-dependent parameters known as scheduling variables,
by introducing a scheduling function that interpolates the locally linearized LTI models, in order to form
a global solution to the entire operating regime [1]. This approach enables LPV models to capture the
local dynamics represented by LTI systems while adapting to changing operating conditions. If a true LPV
system exhibits smooth dependence on its scheduling parameter, its overall parameter-dependent model can
be directly reconstructed from identified local models, highlighting the importance of having a smooth and
continuous interpolation function, as noted in [2]. Since LPV models maintain convexity in the parameter
space, sparse data can make this challenging. In particular, sparse data makes it difficult to ensure smoothness,
especially when interpolating across regions with limited data points. Moreover, there is a risk of overfitting
the available data, leading to a model that becomes sensitive to small variations in the local data points,
which can result in unrealistic or unstable behavior. Searching for modeling techniques that provide smooth
dependence of the scheduling parameters, flexibility, and approximation power, the use of multivariate simplex
B-splines is examined. B-Splines, particularly piecewise polynomial splines, are used to model smooth,
non-linear relationships between scheduling variables and system parameters. They allow local control over
the operating envelope by dividing the domain into intervals (simplices) and fitting a polynomial function
within each interval. This posses the question to be answered in this paper: How can a Linear Parameter
Varying (LPV) control method combined with a multivariate simplex B-spline scheduling function address the
gap in connecting robust control methods with the complex, non-affine dynamic models?

The modeling of LPV systems using multivariate B-splines is insufficiently researched as manifested by
existing literature. In [3], tensor-product polynomial splines are used to parameterize Lyapunov functions
and reduce the infinite-dimensional parameter-dependent LMI problem to a finite-dimensional form via LMI
relaxations. However, this approach assumes that all state-space matrices depend on a single parameter
through tensor-product splines, which limits its application to systems with structured, grid-based data. For
scattered data or continuous physical systems, tensor-product splines are not well suited [4]. Cubic splines
have been applied in [5] for LPV modeling of an arm-driven inverted pendulum, with a simplification of
two dependent scheduling variables, by keeping one variable fixed. Despite improved performance for
some variables, cubic splines require nonlinear optimization and struggle with 𝐶1 discontinuities, exhibiting
similarities to Gibbs’ phenomenon of Fourier series [6]. Simplex splines, however, address discontinuities by
adjusting the triangulation density [4]. In [7] a general B-spline-based LPV modeling approach is presented
with strategies for knot optimization, which leads to reduced model complexity for univariate splines. Yet,
the extension to multivariate B-splines has the same tensor-product limitations as in [3]. Simplex-based
triangulation should enable efficient and adaptive scheduling parameter space representation of multivariate
B-spline approximations for nonlinear systems.

In terms of application, a linearized LPV model is derived and estimated using a multivariate B-spline
model, which is then applied to a case study involving a two-variable inverted pendulum on a cart. This
example demonstrates the efficacy of B-spline-based LPV modeling in capturing nonlinear system dynamics
with improved flexibility and accuracy compared to piecewise constant or polynomial least squares methods.
The inverted pendulum on a cart serves as a simplified nonlinear control problem similar to aircraft dynamic
models, making it a promising tool for future aerospace applications.

This paper is outlined as follows: The methodology is explained in Sections II and III, where a brief
theory and overview on LPV models and multivariate B-splines is provided, concluding with the explanation
of the global LPV Model and ways to approximate it using spline spaces. Section IV, shows the experiment
setup of the applied LPV model and goes in detail to estimate it using multivariate B-splines. In Section V
the results are described.
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II. Linear Parameter Varying Model Representation
Linear Parameter-Varying (LPV) systems represent a class of linear systems with state-space descriptions that
are functions of time-varying parameters. These parameters possess causal dependence on the trajectory of
their time-varying values and affect the system dynamics in a way that allows the system to capture nonlinear
behaviors or time-varying characteristics through a linear representation. The general continuous-time
state-space representation of an LPV system is shown in Equation 1[8].

𝐺 (𝜌) :


¤𝑥(𝑡) = 𝐴(𝜌)𝑥(𝑡) + 𝐵1(𝜌)𝜔(𝑡) + 𝐵2(𝜌)𝑢(𝑡)
𝑧(𝑡) = 𝐶1(𝜌)𝑥(𝑡) + 𝐷11(𝜌)𝜔(𝑡) + 𝐷12(𝜌)𝑢(𝑡)
𝑦(𝑡) = 𝐶2(𝜌)𝑥(𝑡) + 𝐷21(𝜌)𝜔(𝑡) + 𝐷22(𝜌)𝑢(𝑡)

(1)

where 𝑥(𝑡) ∈ R𝑛𝑥 , 𝑦(𝑡) ∈ R𝑛𝑝 , 𝑢(𝑡) ∈ R𝑛𝑚 , 𝑧(𝑡) ∈ R𝑛𝑧 are the state, output, input and controlled
output vectors respectively. The term 𝜔(𝑡) contains the exogenous inputs. The linear matrix functions
𝐴 ⊂ R𝑛𝑥×𝑛𝑥 , 𝐵 ⊂ R𝑛𝑥×𝑛𝜔 , 𝐶 ⊂ R𝑛𝑦×𝑛𝑥 , 𝐷 ⊂ R𝑛𝑦×𝑛𝜔 depend on the parameter space:

P :=
{
𝜌 := [𝜌1, 𝜌2, ..., 𝜌𝑘]𝑇 ∈ R𝑘 , 𝜌𝑖 ∈

[
𝜌𝑖 , 𝜌𝑖

]
∀𝑖 = 1, ..., 𝑛𝜌

}
which represents the set of 𝑘-dimensional vectors where each element 𝜌𝑖 is bounded by its respective lower 𝜌𝑖
and upper limits 𝜌𝑖 . The vector 𝜌 ∈ R𝑛𝜌 has dimension 𝑛𝜌 and consists of the measurable varying parameters
that belong to P. Depending on the type of system, the different possibilities of the varying parameters are
indicated in Table 1.

Condition Function System Type
𝜌 is constant 𝜌 = 𝑐 Linear Time-Invariant (LTI)
𝜌 has variation with time known explicitly 𝜌 = 𝜌(𝑡) Linear Time-Varying (LTV)
𝜌 varies with internal system states 𝜌 = 𝜌(𝑥(𝑡)) Quasi-Linear Parameter-Varying (qLPV)
𝜌 is an external parameter 𝜌 = 𝜌𝑒 (𝑡) Linear Parameter-Varying (LPV)

Table 1. Classification of systems based on the behavior of the varying parameter 𝜌.

A. Quasi-LPV Representation
Quasi-Linear Parameter Varying (qLPV) systems are suitable for modeling physical systems due to their
ability to closely represent the nonlinear dynamics by internal state dependent parameters. In many aerospace
applications, quasi-LPV (qLPV) models are preferred because they allow for the derivation of a linearized
structure that includes the internal state varying parameters. This reduces the complexity of the nonlinear
model and enables the application of more straightforward control strategies [9].

Selection of a qLPV model, changes the structure of the general LPV description, from Equation 1, by
first dividing the state vector 𝑥(𝑡) into scheduling 𝜁 (𝑡) and non-scheduling states𝑊 (𝑡) as shown:

𝑥(𝑡) =
[
𝜁 (𝑡) 𝑊 (𝑡)

]𝑇
Since the varying parameter trajectory (or scheduling map) 𝜌(𝑡) is endogenous rather than exogenous, 𝜔(𝑡)
in Equation 1 can be assumed to be a part of the scheduling variable vector, when written in qLPV form,
without the loss of generality, as described in [10]. An additional simplification can be made by neglecting
the controlled output 𝑧(𝑡). Since the LPV model is being analyzed in open-loop (see Figure 1), the primary
focus is on the system’s internal dynamics and outputs, making 𝑧(𝑡) not relevant to the analysis. Therefore the
general qLPV model is derrived and shown with Equation 2.
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𝐺 (𝜌(𝑥(𝑡))) :


¤𝜁 (𝑡) = 𝐴11(𝜌(𝑡))𝜁 (𝑡) + 𝐴12(𝜌(𝑡))𝑊 (𝑡) + 𝐵1(𝜌(𝑡))𝑢(𝑡)
¤𝑊 (𝑡) = 𝐴21(𝜌(𝑡))𝜁 (𝑡) + 𝐴22(𝜌(𝑡))𝑊 (𝑡) + 𝐵2(𝜌(𝑡))𝑢(𝑡)
𝑦(𝑡) = 𝐶1(𝜌(𝑡))𝜁 (𝑡) + 𝐶2(𝜌(𝑡))𝑊 (𝑡) + 𝐷 (𝜌(𝑡))𝑢(𝑡)

(2)

In Figure 1, the block diagram of qLPV model is depicted, where a feedback loop between the LPV model
and the scheduling map 𝜌(𝑡) exist in terms of the scheduled states 𝜁 (𝑡) and inputs 𝑢.

𝐺
𝑢 𝑦

𝜌(𝑡, 𝜁 , 𝑢)

𝜁, 𝑢𝜌(𝑡)

Figure 1. Block diagram illustrating the general qLPV model of a nonlinear plant 𝐺. The scheduling map
𝜌(𝑡) is determined endogenously by the scheduling states 𝜁 and the input 𝑢, with 𝜌(𝑡) = 𝜌(𝑡, 𝜁 , 𝑢) serving is
the scheduling function that defines the parameter trajectory.

The benefit of expressing Equation 2 in this way is that it is applicable to a class of nonlinear systems that
can be represented in the form given by Equations 3a - 3b. This formulation assumes that both the states
and control inputs enter the system linearly. However, this assumption can be relaxed by treating the states
and control inputs as scheduling parameters, which can then be integrated into the nonlinear terms matrix
f(𝜌(𝑡)) [10]. Additionally, this form makes a straightforward first-order linearization around the equilibrium
or off-equilibrium point, as discussed in Section IV.A.1.[

¤𝜁 (𝑡)
¤𝑊 (𝑡)

]
= 𝐴(𝜌(𝑡))

[
𝜁 (𝑡)
𝑊 (𝑡)

]
+ 𝐵(𝜌(𝑡))𝑢(𝑡) + f(𝜌(𝑡)) (3a)

𝑦(𝑡) = 𝐶 (𝜌(𝑡))
[
𝜁 (𝑡)
𝑊 (𝑡)

]
+ 𝐷 (𝜌(𝑡))𝑢(𝑡) (3b)

The resulting model provides a local approximation of the nonlinear plant’s dynamics near a particular set
of equilibrium points. To apply first-order linearization to the plant, an appropriate interpolation scheme is
also necessary. Interpolation approaches in system identification of LPV systems usually use the classical
gain-scheduling concept, where models are derived for constant scheduling trajectories and interpolated to
form a global model. These methods, often using polynomial or spline interpolation, are closely related to the
local-linear-modeling framework [1].

B. Global LPV Model
To derive a global Linear Parameter-Varying (LPV) model from a set of Linear Time-Invariant (LTI) models
that describe the system dynamics, a method is required to estimate unknown values between the given
LTI setpoints. Interpolation, a method that involves constructing a function that either passes through or
approximates the known data points, is widely used in LPV literature as the primary approach for predicting
these values (see [1], [2]). This method allows for merging individual LTI models (local model structure) and
a set of scheduling functions which combines them, in order to form the global LPV model.

4



Figure 2 illustrates an example of a 2-dimensional parameter space defined by two scheduling parameters,
forming a grid. Each point on the grid represents a local, ’frozen’ Linear Time-Invariant (LTI) model, and the
connecting curves are there to resemble the interpolation rules between these models.

P :=
{
𝜌 := [𝜌1, 𝜌2]𝑇 ∈ R2, 𝜌𝑖 ∈

[
𝜌𝑖 , 𝜌𝑖

]
∀𝑖 = 1, ..., 5

}

Local LTI Model

¤𝑥 = 𝐴(𝜌1(3), 𝜌2(4))𝑥 + 𝐵(𝜌1(3), 𝜌2(4))𝑢
𝜌1

𝜌2

Figure 2. Example of the parameter space P, created by two scheduling variables 𝜌1 and 𝜌2 where the
local LTI models of the plant are connected with interpolation rules to form a global approximation of the
scheduling space.

To interpolate between the locally derived LTI models, suitable regressor Υ, formed from the linear or
nonlinear combinations of the elements of 𝜌, needs to be fitted to the state-space matrices. This is done
usually in Affine form and is represented by Equations 4 and 5.

¤𝑥 =
(
𝐴0 +

𝑛Υ∑︁
𝑖=1

𝐴𝑖 (Υ𝑖)
)
𝑥 +

(
𝐵0 +

𝑛Υ∑︁
𝑖=1

𝐵𝑖 (Υ𝑖)
)
𝑢 (4) 𝑦 =

(
𝐶0 +

𝑛Υ∑︁
𝑖=1

𝐶𝑖 (Υ𝑖)
)
𝑥 +

(
𝐷0 +

𝑛Υ∑︁
𝑖=1

𝐷𝑖 (Υ𝑖)
)
𝑢 (5)

where the state-space matrices are represented by the transfer function:

𝐺𝑘 (𝑠) = 𝐶 (Υ(𝑘)) (𝑠𝐼 − 𝐴(Υ(𝑘)))−1 𝐵(Υ(𝑘)) + 𝐷 (Υ(𝑘))

for 𝑘 = 1 . . . 𝑁𝜌, where 𝑘 is the scheduling index of the kth identified local model. When the entries of
Equations 4 and 5, a combined matrix 𝐹 (𝛾(𝑘)) can be obtained using Equation 6.

𝐹 (Υ(𝑘)) =
[
𝐴(Υ(𝑘)) 𝐵(Υ(𝑘))
𝐶 (Υ(𝑘)) 𝐷 (Υ(𝑘))

]
, 𝑘 = 1 . . . 𝑁𝜌 (6)

Among the various possible suitable regressors, which can be linear or nonlinear combinations of 𝜌, a global
regression matrix, formed by B-spline local basis functions, is proposed. These functions are composed
of piecewise polynomials that are interconnected to ensure continuity of derivatives up to a specific order,
determined by the degree of the polynomials. The benefit of doing this is: high approximation power, the
flexibility to freely choose the spline continuity order, and the ability to fit scattered datasets on non-rectangular
domains [4]. Additionally, the spatially localized spline parameters make them suitable for interpolation
problems requiring smooth approximations. B-splines also possess the linear-in-the-parameters property,
enabling the use of least squares solvers for parameter estimation, which is explained in detail in Section IV.
The concept of simplex B-splines is explained in the next section.
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III. Preliminaries on Multivariate B-splines
In the following section, a concise overview of the theory behind simplex splines is presented, providing the
foundation for formulating a simplex B-spline model. This overview focuses on simplices and barycentric
coordinates (Sec. III.A), spline basis functions (Sec. III.B), triangulations (Sec. III.C), continuity constraints
(Sec. III.D) and general definition of spline function and spline space (Sec. III.E). These concepts are the
basis for the derivation of a spline-based scheduling function for the model described in Section IV.A. For a
more in-depth understanding of the simplex B-spline theory, refer to [11], [4], [12], and [13].

A. Simplices and Barycentric Coordinates
Multivariate simplex splines consist of B-form polynomials defined over adjacent triangular bases, known as
simplices. These simplices are geometric structures that minimally span a given set of dimensions, forming the
simplest convex shapes in the corresponding dimensional space. Mathematically, a simplex 𝑡 in n-dimensional
space is the convex hull of its 𝑛 + 1 non-degenerate vertices 𝜈, shown in Equation 7[4].

𝑡 := ⟨𝜈0, 𝜈1, ..., 𝜈𝑛⟩ ∈ R𝑛 (7)

If the set of vertices is given by V𝑡 = (𝜈0, 𝜈1, ..., 𝜈𝑛), it is important to note, that the elements within this
set are ordered based on the vertex index. Additionally, the non-degenerate property of the vertices implies
that every vertex in V𝑡 must contribute to the n-dimensional structure of the simplex [4].

The local coordinate system of the simplices 𝑡 is represented using barycentric coordinates. This includes all
points 𝑥 that are the weighted sum of the vertices 𝜈𝑖 in the setV𝑡 , where each weight 𝑏𝑖 is unique and is shown in
8. An additional property of barycentric coordinates, is that they are normalized, as provided by Equation 9[12].

𝑥 =

𝑛∑︁
𝑖=0

𝑏𝑖𝜈𝑖 (8)
𝑛∑︁
𝑖=0

𝑏𝑖 = 1 (9)

The usefulness of the normalization property of the barycentric coordinates is that it reduces the
dimensionality of the barycentric coordinate transformation by one, as any single component of 𝑏𝑖 can
be expressed in terms of the others [4]. For example, the 𝑏0 barycentric coordinate can be expressed as:
𝑏0 = 1 − ∑𝑛

𝑖=1 𝑏𝑖 .

B. Bernstein basis polynomials and the B-form of the multivariate simplex spline
Polynomials expressed in terms of barycentric coordinates, defined locally on a single simplex, are referred to
as Bernstein basis polynomials of a certain degree 𝑑, as shown in Equation 10[4].

𝐵𝑑
𝜅 (𝑏𝑡 𝑗 (𝑥)) =

𝑑!
𝜅!

(𝑏𝑡 𝑗 (𝑥)) (10)

where 𝑏𝑡 𝑗 (𝑥) (b ∈ R𝑛+1) is the barycentric coordinate of the point 𝑥 ∈ R𝑛 with respect to the 𝑛-dimensional
simplex 𝑡. The multi-index 𝜅 has the following properties: |𝜅 | = 𝜅0 + 𝜅1 + · · · + 𝜅𝑛 and 𝜅! = 𝜅0!𝜅1! . . . 𝜅𝑛!,
which allows to simplify the notation of the basis polynomials to 𝐵𝑑

𝜅 (𝑏𝑡 𝑗 (𝑥)) in Equation 10. In order for
the basis functions of simplex splines, in the form of Bernstein polynomials (b) be a Stable Local Basis, the
properties in Equations 11[4] and 12[11] must hold.∑︁

|𝜅 |=𝑑
𝐵𝑑
𝜅 (𝑏𝑡 𝑗 (𝑥)) = 1 (11) 𝐵𝑑

𝜅 (𝑏𝑡 𝑗 (𝑥)) =
{

𝑑!
𝜅! (𝑏𝑡 𝑗 (𝑥)), ∀𝑥 ∈ 𝑡
0 ∀𝑥 ∉ 𝑡

(12)

The significance of the stable local basis of Bernstein polynomials, derived by Carl de Boor in [14], lies
in the fact that any polynomial of degree 𝑑 can be uniquely represented as a linear combination of Bernstein
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basis polynomials. Consequently, any polynomial 𝑝(𝑥) of degree 𝑑 can be expressed in the B-form, as shown
in Equation 13[14].

𝑝(𝑥) =
∑︁
|𝜅 |=𝑑

𝑐
𝑡 𝑗
𝜅 𝐵

𝑑
𝜅 (𝑏𝑡 𝑗 (𝑥)) (13)

where 𝑐𝑡 𝑗𝜅 are the polynomial, or B-coefficients with 𝑏 = (𝑏0, 𝑏1 . . . 𝑏𝑛) the barycentric coordinates of 𝑥 with
respect to an 𝑛-simplex 𝑡 𝑗 . The strength of B-splines lies in the fact that each B-coefficient has a unique
spatial location, allowing the coefficients to locally control the shape of the simplex polynomial. The spatial
location in barycentric coordinates is given by Equation 14. The variable 𝜅 is the multi-index introduced
with Bernstein basis polynomials with |𝜅 | = 𝑑, and 𝑑 is the polynomial degree. The structure formed by the
B-coefficients, within a single simplex 𝑡, is referred to as B-net. For a given degree 𝑑 and dimension 𝑛, within
a single simplex 𝑡, the amount of B-coefficients can be determined using the relation that corresponds to the
total number of valid permutations 𝑑 of the multi-index 𝜅, as shown in Equation 15[14].

𝑏(𝑐𝑘) =
𝜅

𝑑
(14) 𝑑 =

(
𝑑 + 𝑛
𝑛

)
=

(𝑑 + 𝑛)!
𝑛!𝑑!

(15)

The set of basis polynomials of degree 𝑑, each defined on a individual simplex 𝑡 𝑗 is represented by a
simplex spline function, given by the per-simplex vector notation shown in Equation 16[12].

𝑝𝑡 𝑗 (𝑥) =
{
𝑐𝑡 𝑗𝐵𝑑

(
𝑏𝑡 𝑗 (𝑥)

)
, ∀𝑥 ∈ 𝑡 𝑗

0 ∀𝑥 ∉ 𝑡 𝑗
(16)

where 𝐵𝑑 (𝑏) represents the sorted vector of basis polynomials, described with barycentric coordinates 𝑏 and
is obtained by the relation shown in Equation 17a[13]. The vector 𝑐𝑡 𝑗 contains the correspondingly sorted
B-coefficents, as shown in Equation 17b.

𝐵𝑑
(
𝑏𝑡 𝑗 (𝑥)

)
=

[
𝐵𝑑
𝑑,0...0

(
𝑏𝑡 𝑗 (𝑥)

)
𝐵𝑑
𝑑−1,1...0

(
𝑏𝑡 𝑗 (𝑥)

)
· · · 𝐵𝑑

0,1...𝑑−1

(
𝑏𝑡 𝑗 (𝑥)

)
𝐵𝑑

0,0...𝑑

(
𝑏𝑡 𝑗 (𝑥)

)]
(17a)

𝑐𝑡 𝑗 =

[
𝑐
𝑡 𝑗

𝑑,0,0 𝑐
𝑡 𝑗

𝑑−1,1,0 · · · 𝑐
𝑡 𝑗

0,1,𝑑−1 𝑐
𝑡 𝑗

0,0,𝑑

]𝑇
(17b)

C. Triangulations
The approximation capability of a spline function depends on the triangulation configuration, which consists of
multiple simplices connected across all dimensions of the simplex spline. A triangulation involves partitioning
a bounded domain Ω ⊂ R𝑛 into a set of 𝐽 non-overlapping simplices, as illustrated in Equation 18[13].

T := ∪𝐽
𝑗=1𝑡 𝑗 , 𝑡𝑖 ∩ 𝑡 𝑗 ∈ {∅, 𝑡̃}, ∀𝑡𝑖 , 𝑡 𝑗 ∈ T (18)

Delaunay triangulation is a geometric method for dividing a set of points in n-dimensional space into
non-overlapping simplices, such that no point in the set lies inside the circumsphere in n-dimensions of any
simplex. The advantage of using it over other triangulation techniques is its lack of assumptions about the
configuration of the points to be triangulated, aside from requiring them to be non-degenerate [4].

D. Continuity constraints
Two simplices, 𝑡𝑖 and 𝑡 𝑗 , share a unique edge-facet, 𝑡𝑖 𝑗 , of dimension 𝑛 − 1, which is defined by the n vertices
forming the common edge between the two simplices. This is described with Equations 19a - 19c[4].

𝑡𝑖 = ⟨𝜈0, 𝜈1, ..., 𝜈𝑛−1, 𝜈̃𝑖, 𝑗⟩ (19a)
𝑡 𝑗 = ⟨𝜈0, 𝜈1, ..., 𝜈𝑛−1, 𝜈̃ 𝑗 ,𝑖⟩ (19b)
𝑡𝑖 𝑗 = 𝑡𝑖 ∩ 𝑡 𝑗 = ⟨𝜈0, 𝜈1, ..., 𝜈𝑛−1⟩ (19c)
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The vertices 𝜈̃𝑖, 𝑗 and 𝜈̃ 𝑗 ,𝑖 are not part of 𝑡𝑖 𝑗 and are named out-of-edge vertices. Each simplex contains a
single vertex that lies outside the shared edge-facet. The continuity constraints are equations that establish
relationships between the B-coefficients on either side of the edge-facet. These constraints make sure that the
model maintains a smooth surface, up to a specified order of continuity, between the polynomial segments of
the simplex spline. For general orders of continuity 𝑟 < 𝑑 between two neighboring simplices 𝑡𝑖 and 𝑡 𝑗 , the
continuity conditions are formulated using Equation 20[4].

𝑐𝑡𝑖𝜅1,...,𝜅𝑛−1,𝑚
=

∑︁
|𝛾 |=𝑚

𝑐
𝑡 𝑗

(𝜅1,...,𝜅𝑛−1,0)+𝛾𝐵
𝑚
𝛾 (𝑏𝑡𝑖 (𝜈̃𝑖, 𝑗)), 0 ≤ 𝑚 ≤ 𝑟 (20)

where 𝛾 is a multi-index with the same size as 𝜅 and the sum of 𝛾 and 𝜅 is element-wise. The relations
relating the polynomial degree 𝑑 and sum of 𝛾 and 𝜅 are shown in Equations 21a - 21b.

𝜅1 + 𝜅2 + · · · + 𝜅𝑛−1 + 𝑚 = 𝑑 (21a)
(𝜅1 + 𝜅2 + · · · + 𝜅𝑛−1) + (𝛾1 + 𝛾2 + · · · + 𝛾𝑛) = 𝑑 (21b)

The total amount of constraints per-edge in an n-dimensional triangulation of order 𝐶𝑟 is calculated using
Equation 22[4].

𝑅 =

𝑟∑︁
𝑚=0

(𝑑 − 𝑚 − 𝑛 − 1)!
(𝑛 − 1)!(𝑑 − 𝑚)! (22)

It then becomes possible to write the continuity equations for all edges 𝐸 in a set of linear equations
shown in Equation 23[12].

𝐻c = 0, 𝐻 ∈ R𝐸 ·𝑅×𝐽 ·𝑑 (23)

where 𝐻 is the Smoothness Matrix, with each row describing a single constraint between two simplices,
making 𝐻 a sparse and rank deficient matrix.

E. Spline Space
To approximate data on a triangulation, it is necessary to determine the optimal B-coefficients for each B-form
polynomial. Using Equation 18, a spline function of degree 𝑑 and continuity order 𝑟 can be defined on a
triangulation T , which consists of 𝐽 simplices, as described in Equation 24.

𝑠𝑑𝑟 (𝑥) = 𝐵 · c ∈ 𝑆𝑟𝑑 (T𝐽 ) (24)

where 𝐵 is the global regression matrix with dimension R𝑁×𝐽 ·𝑑 and c = [c𝑡 𝑗 ]𝐽
𝑗=1 ∈ R𝐽 ·𝑑×1 is the global

B-coefficient vector, consisting of the per-simplex vector of lexicographically sorted B-coefficients c𝑡 𝑗 ∈ R𝑑×1.
𝑆𝑟
𝑑
(T𝐽 ) is known as the spline space. It is defined as the space of all spline functions 𝑠𝑑𝑟 (𝑥) belonging

to the space of polynomials P𝑑 of a given degree 𝑑 and continuity order 𝐶𝑟 on a given triangulation T𝐽 ,
mathematically expressed with Equation 25[11].

𝑆𝑟𝑑 (T𝐽 ) := {𝑠 ∈ 𝐶𝑟 (T𝐽 ) : 𝑠 |𝑡 ∈ P𝑑 ,∀𝑡 ∈ T𝐽 } (25)
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IV. Application of Splines to an LPV Model
This section is presented in two parts. The first part demonstrates the practical application of the theoretical
framework established in previous chapters by implementing it on the Inverted Pendulum with Cart Model
(IPCM), as detailed in Section IV.A. This implementation deals with the creation of the scheduling function
and the parameter selection process, which are described in Section IV.A.2 together with the application
of spline-based regression, presented in Section IV.A.3. The second part lists the methodologies used for
comparative analysis. This includes a description of the Zero-Order Hold (ZOH) method (Section IV.B.1)
and Ordinary Least Squares (OLS) regression (Section IV.B.2), along with the metrics used for model quality
assessment, the details of which are provided in Section IV.B.3. These methods and metrics are applied
throughout the study to evaluate model performance.

A. Model Formulation
The IPCM is a fundamental classroom example that is interesting in the study of global nonlinear control, as
its dynamics are governed by nonlinear, dynamically coupled differential equations that exhibit an inherently
unstable equilibrium. The IPCM is widely used for modeling various control systems, serving as benchmark
for advanced techniques to stabilize and control nonlinear, unstable systems in real-world applications (see
[15] for study on applications of IPCM).

The IPCM system has two degrees of freedom: the position 𝑥 and pendulum angle 𝜃, with a free-body-
diagram depicted in Figure 3. The Equations of Motion (EoM), describing the nonlinear dynamics of this
system, are shown in Equations 26a and 26b.

(𝑀 + 𝑚) ¥𝑥 + 𝑚𝑙cos(𝜃) ¥𝜃 − 𝑚𝑙sin(𝜃) ¤𝜃2 = 𝐹 (𝑡) − 𝑏 ¤𝑥 (26a)
𝑚𝑙2 ¥𝜃 + 𝑚𝑙cos(𝜃) ¥𝑥 − 𝑚𝑔𝑙sin(𝜃) = 0 (26b)

where 𝑀 is the mass of cart, 𝑚 is the mass of the bob and 𝑙 is the length of the mass-less pendulum rod.

𝑚

𝑙

𝑀

𝑦

𝜃

𝐹 (𝑡)
𝑥

𝑏 ¤𝑥

𝑚𝑔

Figure 3. Free body diagram of the IPCM problem, depicting applied forces acting on the cart 𝐹 (𝑡) and
non-applied friction force (𝑏 ¤𝑥) from the cart’s wheels and pendulum gravity force (𝑚𝑔). There are 2 Degrees
of Freedom (DOF): cart-position 𝑥 and pendulum angle 𝜃, creating a Single-Input-Multi-Output (SIMO)
system.

From the EoM, four states can be distinguished, which provide a complete description of the system
at any given time: cart’s position (𝑥), cart velocity ( ¤𝑥 := 𝜈), pendulum’s angle (𝜃) and angular velocity
( ¤𝜃 := Ω). These four states make the state vector X, which leads to the description of the non-linear system
with Equation 27.

𝑑X
𝑑𝑡

= 𝑓 (X, 𝑢), 𝑦 = 𝑔(X) (27)
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where X ∈ R𝑛, 𝑢 ∈ R𝑟 , 𝑦 ∈ R𝑚 and 𝑓 , 𝑔 are smooth functions, with the state vector being X = [𝑥 𝜈 𝜃 Ω]T.
The derivative of the state vector is 𝑑X

𝑑𝑡
= [𝜈 𝑎 Ω 𝛼]T, and is used to describe the non-linear matrix equation

shown with Equation 28.
𝜈

𝑎

Ω

𝛼


=


𝜈

− 𝑏
𝑚𝑞
𝜈 − 𝑔 sin 2𝜃

2𝑞 + 𝑙sin𝜃
𝑞

Ω2

Ω

𝑏cos𝜃
𝑚𝑙𝑞

𝜈 + 𝑔𝐾 sin 𝜃
𝑞

− sin 2𝜃
𝑞

Ω2


+


0
1
𝑚𝑞

0
− cos𝜃

𝑚𝑙𝑞


𝐹 (𝑡) (28)

where 𝑞 = 𝑀
𝑚

+ sin2𝜃 and 𝐾 = 𝑀+𝑚
𝑚𝑙

. The dynamics of interest are fully captured by Equation 28, as the
output equation y is defined solely in terms of the system states without any feed-forward terms. Specifically,
the output is described by 𝑦 = IX + 0𝐹 (𝑡), where I is the 4x4 identity matrix and 0 is the 4x1 zero matrix.
Since the non-linear system is analyzed in an open-loop configuration, the output equations are not necessary
for the analysis.

By setting Equation 28 equal to zero, two equilibrium points can be identified: the downward position
(𝜃 = 𝜋) and the upward position (𝜃 = 0), both characterized by zero cart velocity and zero angular velocity.
Among these, the upward position corresponds to an unstable equilibrium, where the downward position is
stable. In the absence of a control force, a unperturbed pendulum will naturally return to the stable downward
position. Only at the equilibrium points, a Taylor series approximation can be used, as shown in Equation 29,
which would linearize the non-linear equations of motion, presented in Equation 28.

𝑓 (𝑥) = 𝑓 (𝑥0) +
𝑑𝑓 (𝑥0)
𝑑𝑥

(𝑥 − 𝑥0) + · · · + 1
𝑛!
𝑑𝑛 𝑓 (𝑥0)
𝑑𝑥𝑛

(𝑥 − 𝑥0)𝑛 (29)

where for a first-order linearization, all 𝑛 > 1 are treated as higher-order terms and can be neglected. At
the equilibrium points, defined as (X, 𝑢) ∈ R𝑛+𝑟 | 𝑓 (X, 𝑢) = 0, the first-order linearized expression for the
non-linear system can be derived using Equation 30.

𝑑X
𝑑𝑡

= 𝐴0ΔX0 + 𝐵0Δu0 =
𝜕 𝑓 (X0, 𝑢0)

𝜕X
(X − X0) +

𝜕 𝑓 (X0, 𝑢0)
𝜕𝑢

(𝑢 − 𝑢0) (30)

where 𝐴0 is the state-space matrix and 𝐵0 is the input matrix of the equilibrium point (X0, 𝑢0). The resulting
linearized system, in state-space form, is shown in Equation 31.

𝜈

𝑎

Ω

𝛼


=


0 1 0 0
0 − 𝑏

𝑀
−𝑚𝑔

𝑀
0

0 0 0 1
0 𝑆𝜃

𝑏
𝑀𝑙

𝑆𝜃𝑔𝐾 0



𝑥

𝜈

𝜃

Ω


+


0
1
𝑀

0
−𝑆𝜃 1

𝑀𝑙


𝐹 (𝑡) (31)

where 𝑆𝜃 = 1 signifies the pendulum being in unstable equilibrium point, and 𝑆𝜃 = −1 when the pendulum is
in the stable equilibrium point. At the two equilibrium points, the system is time-invariant, as the members of
the Jacobian matrix are constants. Describing the state-space using Equation 31 enables the application of the
well-established theoretical framework for LTI systems (see [16] and [17]) to approximate the behavior of
the nonlinear system for small deviations in initial conditions and inputs around the two equilibrium points.
However, having only two equilibrium points is a drawback, as the transient dynamics—those occurring
away from equilibrium—cannot be adequately represented by the LTI model alone due to the small-angle
approximation not being valid anymore.
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1. Off-Equilibrium Linearization
If the dynamics of the nonlinear plant are approximated near an operating point, (X0, 𝑢0) ∈ R𝑛+𝑟 , which
is not necessarily an equilibrium point, the dynamics of the non-linear system, from Equation 28, can be
reformulated into the affine form using Equation 32[18].

𝑑X
𝑑𝑡

= 𝑓 (X0, 𝑢0) +
𝜕 𝑓 (X0, 𝑢0)

𝜕X
(X − X0) +

𝜕 𝑓 (X0, 𝑢0)
𝜕𝑢

(𝑢 − 𝑢0) := 𝐴0X + 𝐵0u + 𝑑0 (32)

where 𝑑0 = 𝑓 (X0, 𝑢0) − 𝐴0𝑥0 − 𝐵0𝑢0 and represents an approximation of the function 𝑓 by its tangent plane
at the point (X0, 𝑢0), as analogized in [18]. The function 𝑓 (X0, 𝑢0) for an LTI system equates to zero, but for
an LPV system, is proportional to both the elapsed time and the derivative at the linearization point. It results
in a locally linearized system along a trajectory, meaning that the system remains in motion while its behavior
is analyzed in the vicinity of this trajectory. This approach of describing the system is part of the family of
first-principle LPV representations for physical systems, named Linearization Based Approximation Methods,
as stated in [1]. The Jacobian matrix, describing the changes of the non-linear function from Equation 28,
with respect to the each state and input are shown in Equations 33a and 33b.

𝜕 𝑓 (X0, 𝑢0)
𝜕X

=



0 1 0 0

0 − 𝑏
𝑚𝑞

−𝜈𝑏 𝑞− ¤𝑞
𝑚𝑞2 − 𝑔 𝑞 cos 2𝜃− 1

2 ¤𝑞2

𝑞2 +Ω2𝐿
𝑞 cos 𝜃− ¤𝑞 sin 𝜃

𝑞2
2Ω sin 𝜃

𝑞

0 0 0 1

0 𝑏 cos 𝜃
𝑚𝑙𝑞

−𝜈𝑏 (𝑞 sin 𝜃− ¤𝑞 cos 𝜃 )
𝑞2 + 𝑔𝐾 𝑞 cos 𝜃− ¤𝑞 sin 𝜃

𝑞2 +Ω2 𝑞 cos(2𝜃 )− 1
2 ¤𝑞2

𝑞2 −Ω sin 2𝜃
𝑞


(33a)

𝜕 𝑓 (X0, 𝑢0))
𝜕𝑢

=

[
0 1

𝑚𝑞
0 − cos 𝜃

𝑚𝑙𝑞

]𝑇
(33b)

where ¤𝑞 := 𝑑
𝑑𝜃

(
𝑀
𝑚

+ sin2𝜃
)
= 2 cos 𝜃 sin 𝜃 = sin(2𝜃). Based on the Jacobian matrix, the linearized system

does not explicitly depend on time, but it is a function of time-varying parameters, which also represent the
states of the system.

If Equation 32 is evaluated at an initial point 𝜃00 >> 𝜃eq , which is not the equilibrium point: (X0, 𝑢0) =(
[0 0 𝜃00 0]𝑇 , 0

)
, the Jacobian matrix with respect to the state and input of the non-linear model, is shown

with Equation 34.

¤X =



0 1 0 0

0 − 𝑏
𝑚𝑞0

−𝑔 𝑞0 cos(2𝜃0 )− 1
2 ¤𝑞2

0
𝑞2

0
0

0 0 0 1
0 𝑏 cos 𝜃0

𝑚𝑙𝑞0
𝑔𝐾

𝑞0 cos 𝜃0− ¤𝑞0 sin 𝜃0
𝑞2

0
0


X +


0
1

𝑚𝑞0

0
− cos 𝜃0

𝑚𝑙𝑞0


𝑢 +



0

−𝑔𝜃0
𝑞0 (sin 2𝜃0+cos 2𝜃0 )− 1

2 ¤𝑞2
0

𝑞2
0

0
𝑔𝐾𝜃0

𝑞0 (sin 𝜃0−cos 𝜃0 )+ ¤𝑞0 sin 𝜃0
𝑞2

0


(34)

Evidently, the dynamics governing the non-linear system in the Jacobian matrix are functions of two
states, namely the cart’s velocity 𝜈, and the pendulum’s angle 𝜃, even when the system initializes at only the
angle 𝜃0, while keeping the other states at zero.

2. Scheduling Parameter and Function Selection
The pendulum angle 𝜃 is a natural choice of a scheduling parameter as it directly influences both the pendulum
and cart trajectories, provided they are coupled, thereby governing the overall dynamic behavior of the system.
Additionally, as the non-linear equations, depend explicitly on trigonometric functions of 𝜃, by bounding 𝜃
within a finite range, the system’s nonlinear dynamics across the entire operating region can be captured.
When an external input force 𝐹 (𝑡) is applied to the system, the work done by this force, along with the
non-conservative frictional dissipation, 𝑏 ¤𝑥, opposing the input, influences the velocity of the cart. To model
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the nonlinear system more effectively, the inclusion of 𝜈 as a scheduling parameter allows the LPV model
to capture the system’s response to these external disturbances and the time-varying nature of the system’s
dynamics.

This allows for the representation of the scheduling vector to contain the two aforementioned parameters,
which are also internal states of the system, evaluated in a grid parameter space defined by:

P :=
𝜌 :=

[
𝜈0

𝜃0

]
∈ R2

������: 𝜈0,𝑘 = 𝜈0,min + Δ𝜈0

( ⌊
𝑘−1
𝑁𝜌

⌋ )
𝜃0,𝑘 = 𝜃0,min + Δ𝜃0

(
𝑘 − 1 − 𝑁𝜌

⌊
𝑘−1
𝑁𝜌

⌋ ) , 𝑘 = 1, . . . , 𝑁2
𝜌


where the single index 𝑘 is mapping to pairs of (𝜈0,𝑖 , 𝜃0, 𝑗) with 𝜈0,𝑖 = 𝜈0,min + (𝑖 − 1)Δ𝜈0 and 𝜃0, 𝑗 =

𝜃0,min + ( 𝑗 − 1)Δ𝜃0 using the transformation 𝑘 = (𝑖 − 1)𝑁𝜌 + 𝑗 . The vectors 𝜈0,𝑖 and 𝜃0, 𝑗 are linearly spaced
which allows for equidistant selection of scheduling parameter points drawn from a uniform distribution with
Δ𝜈0 =

𝜈0,max−𝜈0,min
𝑁𝜌−1 and Δ𝜃0 =

𝜃0,max−𝜃0,min
𝑁𝜌−1 . The number of data points per parameter is given by 𝑁𝜌. There are

𝑁𝜌 points, but only (𝑁𝜌 − 1) intervals between them and for the two- scheduling parameter grid, there are a
total of 𝑁𝜌 × 𝑁𝜌 points. The expression

⌊
𝑘−1
𝑁𝜌

⌋
is the floor function that accounts for rounding of 𝑘 to the

nearest integer that is less than or equal to 𝑘 .
Therefore, it is possible to explicitly represent the state and input space functions of the qLPV model,

since a quasi-LPV system is a linear time-varying plant whose state-space matrices are predefined functions
of parameters that depend on the state variables as shown in Equation 35.

¤X =


0 1 0 0
0 Ã22(𝜃0) Ã23(𝜈0, 𝜃0) 0
0 0 0 1
0 Ã42(𝜃0) Ã43(𝜈0, 𝜃0) 0


ΔX +


0

B̃2(𝜃0)
0

B̃4(𝜃0)


Δ𝑢 + f̃0(𝜈0, 𝜃0) (35)

whereΔX = (X − X0) andΔ𝑢 = (𝑢 − 𝑢0). This expression aligns with the form of Equation 3a, where a distinc-
tion is made between scheduled and non-scheduled states (although not ordered as 𝑥(𝑡) = [ 𝜁 (𝑡) 𝑊 (𝑡) ]𝑇 ),
and the dependence of the state and input matrices 𝐴(𝜌) and 𝐵(𝜌) on the scheduling vector is clear. Addition-
ally, the affine non-linear terms are contained within f0(𝜌), thereby completing the description of the affine
qLPV system.

Since the elements of the state and input space matrices are functions of the scheduling vector, evaluated
at the scheduling parameter grid, expressing them as linear combinations of a set of B-spline basis functions
allows for smooth interpolation across the parameter space. It also allows for continuous and differentiable
transitions between grid points. Using the formal definition of the multivariate simplex spline, as outlined in
Equation 24, the elements of these matrices can be estimated. Denoting the set of measurement points as
𝑥𝑘 := (𝜈0,𝑘 , 𝜃0,𝑘) and total number of measurments 𝑁 := 𝑁2

𝜌, the multivariate simplex B-spline 𝑠𝑑𝑟 (𝑥𝑘) ∈ R𝑁×1

can be used to estimate all of the terms in the LPV model noted in Equation 35.
A matrix that concatenates all the terms from Equation 35, named Z ∈ R𝑁×7 is created, which is evaluated

at every data point 𝑥𝑘 . It contains all the relevant system parameters from the linearized model and is later
used in the regression model, given by Equation 36.

Z =


Ã22(𝑥1) Ã42(𝑥1) Ã23(𝑥1) Ã24(𝑥1) B̃2(𝑥1) B̃4(𝑥1) f̃0(𝑥1)

...
...

...
...

...
...

...

Ã22(𝑥𝑁 ) Ã42(𝑥𝑁 ) Ã23(𝑥𝑁 ) Ã24(𝑥𝑁 ) B̃2(𝑥𝑁 ) B̃4(𝑥𝑁 ) f̃0(𝑥𝑁 )

 (36)

An example is taken for the vector Ã23(𝜈0, 𝜃0) ∈ R𝑁×1 where the estimation is achieved by representing
Ã23 with a spline 𝑠𝑑𝑟 (𝑥𝑘) over a triangulation 𝑇𝑗 consisting of 𝐽 simplices, expressed as follows:[

Ã23(𝑥𝑘)
]𝑁
𝑘=1

≈ 𝑠𝑑𝑟 (𝑥𝑘)
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where each of the terms are expressed as follows:

Ã23(𝑥𝑘) =
(
−𝜈0,𝑘𝑏

𝑞0,𝑘 − ¤𝑞0,𝑘

𝑚𝑞2
0,𝑘

− 𝑔
𝑞0,𝑘 cos 2𝜃0,𝑘 − 1

2 ¤𝑞
2
0,𝑘

𝑞2
0,𝑘

)
,

¤𝑞0,𝑘 = 2 cos 𝜃0,𝑘 sin 𝜃0,𝑘

𝑞0,𝑘 = 𝑀
𝑚

+ sin2𝜃0,𝑘

𝑠𝑑𝑟 (𝑥𝑘) = B · c =


𝐵𝑡1 0 0 0
0 𝐵𝑡2 0 0

0 0 . . . 0
0 0 0 𝐵𝑡𝐽



𝑐𝑡1

𝑐𝑡2
...

𝑐𝑡𝐽


, ∀𝑥𝑘 ∈ 𝑡 𝑗

The matrix B, is the block diagonal global matrix, which consists of each 𝐵𝑡𝐽 ∈ R𝑁 𝑗×𝑑 , the per-simplex, basis
polynomials in terms of the barycentric coordinates 𝑏𝑡 𝑗 provided by Equation 37.

𝐵𝑡𝐽 =


𝐵𝑑
𝑑,0,0

(
𝑏𝑡 𝑗 (𝑥1)

)
𝐵𝑑
𝑑−1,1,0

(
𝑏𝑡 𝑗 (𝑥1)

)
. . . 𝐵𝑑

0,1,𝑑−1

(
𝑏𝑡 𝑗 (𝑥1)

)
𝐵𝑑

0,0,𝑑

(
𝑏𝑡 𝑗 (𝑥1)

)
...

...
...

...
...

𝐵𝑑
𝑑,0,0

(
𝑏𝑡 𝑗 (𝑥𝑁 𝑗

)
)

𝐵𝑑
𝑑−1,1,0

(
𝑏𝑡 𝑗 (𝑥𝑁 𝑗

)
)

. . . 𝐵𝑑
0,1,𝑑−1

(
𝑏𝑡 𝑗 (𝑥𝑁 𝑗

)
)

𝐵𝑑
0,0,𝑑

(
𝑏𝑡 𝑗 (𝑥𝑁 𝑗

)
)


(37)

where 𝑁 𝑗 is the total number of data points 𝑥𝑘 inside the simplex 𝑗 . This estimation with a global spline is
performed for every column Z𝑁,𝑚 of the matrix Z, with columns 𝑚 = 1 . . . 7 and rows 𝑁 := 𝑁2

𝜌.

3. Linear Regression and Least Squares estimator for B-coefficients
Following from Equation 24, the global regression matrix B reformulates the standard linear regression model
such that it integrates into the full-triangulation regression matrix for all observations X ∈ R𝑁×𝐽 ·𝑑 to form
Equation 38.

Y := Xc + 𝜖 ∈ R𝑁×1 (38)

where Y is the column vector containing all observations of column Z𝑁,𝑚 of the matrix Z and 𝜖 is the
column vector containing all the residuals. This structure ensures that the regression model takes into account
the complete triangulation of the spline basis, while estimating the B-coefficient vector in n-dimensional
spaces. Since B-form polynomials are linear in the parameters, linear solvers such as the Equality Constrained
Ordinary Least Squares (ECOLS) can be used which for B-splines define the cost function using the global
parameters, with Equation 39[4].

𝐽 (c) = 1
2
(Y − Bc)𝑇 (Y − Bc) (39)

In order to enforce smoothness constraints between individual spline pieces, the constrained cost linear
regression estimator is determined using Equation 40[12].

ĉ = arg min
c

𝐽 (c), subject to H · c = 0 (40)

This relation can be solved with the Lagrange Multiplier Method, which augments the optimization problem
with the Lagrangian, as described with Equation 41.

𝐿 (c, 𝜆) = 1
2
(Y − Bc)𝑇 (Y − Bc) + 𝜆𝑇 · H · c (41)

The vector 𝜆 contains the Lagrangian Multipliers. The optimum is then found at location (𝑐, 𝜆), which is
located at the bottom of the convex multi-dimensional cost function 𝐽 (c). At this point, the partial derivatives
with respect to the B-coefficients, 𝜕𝐿

𝜕𝑐
and with respect to the Lagrange multipliers 𝜕𝐿

𝜕𝜆
, equate to zero. It then
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becomes possible to reformulate the optimization problem using the Karush-Kuhn-Tucker (KKT) matrix, as
shown in Equation 42. [

B𝑇 · B H𝑇

H 0

] [
ĉ
𝜆

]
=

[
B𝑇 · Y

0

]
(42)

If the Gram (dispersion) matrix is defined as Q = B𝑇 · B, then the KKT matrix is non-singular if Q is positive
definite on the kernel of the smoothness constraint matrix H. This means that for c ≠ 0, satisfying H · c = 0,
c𝑇 Qc > 0 must hold and the rank of Q and H must be full [12]. This ensures that no unconstrained directions
remain in which Q is singular, preventing degeneracy in the system. Furthermore, it has been proven in [4]
and [12] that the dispersion matrix Q is non-singular if every simplex in the triangulation T contains at least
𝑑 non-coplanar data points, so that 𝑁𝐽 ≥ 𝑑. This condition imposes constraints on both the volume and
configuration of the data, which is an important bound for the simulation of the IPCM.

The rank of H is full, when there are no redundant continuity conditions, however, if H is rank-deficient,
then KKT matrix is singular and a different approach is needed to solve the optimization problem, like the
Moore-Penrose pseudo inverse, which is shown in Equation 43.[

ĉ
𝜆

]
=

[
Q H𝑇

H 0

]+ [
B𝑇 · Y

0

]
=

[
C1 C2

C3 C4

] [
B𝑇 · Y

0

]
(43)

As long as Q is positive definite and on the kernel of H, an efficient, fast-converging method for solving the
KKT matrix is used as proposed in [19] and [20]. This iterative method is shown in Equations 44a and 44b.

ĉ1 =

(
2Q + 1

𝜀
H𝑇𝐻

)−1 (
2B𝑇 · Y − H𝑇 · 𝜆̂0

)
, 0 ≤ 𝜀 ≤ 1 (44a)

ĉ𝑘+1 =

(
2Q + 1

𝜀
H𝑇𝐻

)−1
(2Q · ĉ𝑘) , 0 ≤ 𝜀 ≤ 1 (44b)

where 𝜆̂0 is the initial estimate for the Lagrange multipliers. Important to note is that the convergence rate of
the iterative solver depends on the continuity order relative to the degree.

B. Model Implementation
The following Section presents the setup of four different methods used to compare the performance of
a B-spline with degree 𝑑 = 4 and continuity 𝑟 = 2 defined on a Delaunay 3 × 3 grid triangulation of T18
simplices, applied as a scheduling function of the IPCM. These methods were selected because they represent
varying levels of dependence on the scheduling parameter, particularly in terms of differentiability. The
comparison starts with the piecewise constant Zero-Order Hold (ZOH), in Section IV.B.1, which remains
constant within an interval, and continues to single and multi-variable smooth polynomial OLS estimators in
Section IV.B.2. The accuracy of the spline approximation is evaluated through residual analysis and statistical
methods described in section IV.B.3.

1. Zero-Order Hold
Using a ZOH LPV method means that a piecewise-constant behavior on the scheduling parameter 𝜌(𝑡) is
created, which results in switching between each discrete sampling interval 𝑇𝑑 . Therefore, 𝜌(𝑡), remains
constant within each interval [𝑘𝑇𝑑 , (𝑘 + 1)𝑇𝑑) and switches instantaneously at 𝑡𝑠𝑤𝑖𝑡𝑐ℎ = 𝑘𝑇𝑑 , where 𝑘 ∈ Z+.
This is illustrated with Equation 45.

𝜌 := 𝜃0 =

∞∑︁
𝑘=0

𝐻 (𝑡 − 𝑘𝑇𝑑)
(
𝜃0, 𝑗 (𝑘) − 𝜃0, 𝑗 (𝑘 − 1)

)
,

∀𝑡 ∈ [𝑘𝑇𝑑 , (𝑘 + 1)𝑇𝑑)
𝑘 ∈ Z+ (45)
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where 𝐻 (𝑡) is the Heaviside step function: 𝐻 (𝑡) =
{

1 if 𝑡 < 0
0 if 𝑡 ≥ 0

and 𝜃0, 𝑗 = 𝜃0,min + ( 𝑗 − 1)Δ𝜃0 with 𝑁𝜌

total amount of points.
Evaluating the state and input matrices from Equation 35 results in finite set of linear models (𝐴0, 𝑗 , 𝐵0, 𝑗)

corresponding to a specific point 𝜃0, 𝑗 in the parameter space P. Scheduling the models at each time step is
done by taking the minimum of the difference between the actual 𝜃 (𝑡) and parameter value 𝜃0, 𝑗 , shown by
Equation 46.

𝜃 𝑗 = arg min |𝜃 (𝑡) − 𝜃0, 𝑗 | (46)

where for each value of at 𝜃 𝑗 , (A0,B0) are retrieved and used to solve the differential equation. Additionally,
the angle 𝜃 𝑗 undergoes a de-wrapping process to ensure it remains within the interval [0 ≤ 𝜃 ≤ 2𝜋]. If the
angle falls outside this range, appropriate multiples of 2𝜋 are either added or subtracted until the angle is
confined to the interval.

2. Univariate and Multivariate Ordinary Least-Squares
For the second method, a univariate polynomial structure, with dependence on the pendulum angle as a
single scheduling parameter is constructed such that Equations 47 and 48 are used to estimate (A0,B0). The
scheduling vector takes the form:

𝜌𝑑 (𝜃0) := 𝜃𝑑0 𝑑 ∈ [0, 𝐷uni]

where 𝑑 is the maximum degree for each scheduling variable 𝜃0. The pendulum angle is chosen in this form
because, as seen in Equation 35, all matrix functions to be estimated are functions of 𝜃0.

Ã(𝜃0) =
𝐷uni∑︁
𝑑=0

A𝑑𝜌𝑑 (𝜃0) (47) B̃(𝜃0) =
𝐷uni∑︁
𝑑=0

B𝑑𝜌𝑑 (𝜃0) (48)

The term 𝐷uni is the maximum order of the univariate polynomial and 𝐴𝑑 and 𝐵𝑑 contain the unknown model
parameters. A model that best fits a sequence of 𝑁𝜌 measurements per column of the sub-matrix Zuni is
constructed and shown with Equation 49.

Zuni =


Ã23(𝜃0,1) Ã43(𝜃0,1) B̃4(𝜃0,1) f̃0(𝜃0,1)

...
...

...
...

Ã23(𝜃0,𝑁𝜌
) Ã43(𝜃0,𝑁𝜌

) B̃4(𝜃0,𝑁𝜌
) f̃0(𝜃0,𝑁𝜌

)

 (49)

The reason why Zuni is a sub-matrix containing only the Jacobian matrix terms directly connected to 𝜃 from
Equation 26b is due to the limitations of OLS as estimation method for this problem. The terms derived from
Equation 26a, which represent the cart dynamics, show dependency on the cart velocity 𝜈, which happens
because the state evolution of the pendulum angle is not isolated but dynamically influenced by the motion of
the cart, even if this influence is not explicitly represented in the mathematical form of the Jacobian terms.
The assumption of OLS is that the independent variable 𝜃 fully captures the variance needed to explain
the dependent variable, however for cross-coupled terms, which are parameters influenced by both (𝜈, 𝜃),
this assumption does not hold. Therefore the parameter estimates which are required to be unbiased and
consistent, restrict the application of univariate OLS to only these four terms in Zuni.

Continuing the example of Ã23 from Section IV.A.2, each column of Zuni can be estimated using Equation
50, where each component 𝑎23, 𝑗 is a constant global model parameter, contained in A𝑑 . Similarly, the same
notation is valid for B𝑑 with coefficients 𝑏4, 𝑗 and affine function 𝑓0, 𝑗 part of the f0 vector.
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
Ã23(𝜃0,1)
Ã23(𝜃0,2)

...

Ã23(𝜃0,𝑁𝜌
)


=


𝜌0(𝜃0,1) = 1 𝜌1(𝜃0,1) = 𝜃0,1 · · · 𝜌𝑑 (𝜃0,1) = 𝜃𝐷uni

0,1
𝜌0(𝜃0,2) = 1 𝜌0(𝜃0,2) = 𝜃0,2 · · · 𝜌𝑑 (𝜃0,2) = 𝜃𝐷uni

0,2
...

...
...

...

𝜌0(𝜃0,𝑁𝜌
) = 1 𝜌1(𝜃0,𝑁𝜌

) = 𝜃0,𝑁𝜌
· · · 𝜌𝑑 (𝜃0,𝑁𝜌

) = 𝜃𝐷uni
0,𝑁𝜌




𝑎23,0

𝑎23,1
...

𝑎23,𝑑


+


𝜖1

𝜖2
...

𝜖𝑁𝜌


(50)

This form can be represented as in Equation 38, where the regression matrix is represented by X ∈ R𝑁𝜌×𝐷 ,
with 𝐷 = 𝐷uni + 1. This formulation accounts for all the predictors, including the intercept term. To solve the
OLS problem, the cost function to minimize is similar to the one described with Equation 40, where instead of
the spline parameters, the regression matrix X is used and the expression has the form shown in Equation 51.

𝐽 (Θ) = 1
2
(Y − XΘ)𝑇 (Y − XΘ) (51) Θ̂ =

(
X𝑇 · X

)−1
· X𝑇 · Y (52)

The constant parameter vector Θ depends on which global parameter is being estimated and Θ̂ is the ordinary
least squares estimator indicated with Equation 52. When an OLS estimator is introduced, assumptions
about the residuals are made, including constant variance of residuals across all measurements together with
uncorrelated residuals, as shown in Equation 53. Additionally, a zero mean for 𝜖 , shown in Equation 54, is
required, such that best linear unbiased estimator (BLUE) is obtained.

𝐸{𝜖 · 𝜖𝑇 } = 𝜎2𝐼 (53) 𝐸{𝜖} = 0 (54)

The term 𝜎2 is the variance of the residuals, and 𝐼 is the 𝑁 × 𝑁 identity matrix. In the IPCM experiment,
noise on the scheduling parameter is not taken into account for the estimation process. Similar to many
LPV approaches, linear regression is used as an optimization tool, without using stochastic estimation that
explicitly accounts for the noise and disturbances [1]. This approach overlooks the potential impact of noise,
as a deterministic model is assumed. Additionally. since IPCM is an open-loop system, without feedback
control, noise has a lower impact when compared to model uncertainties or scheduling parameter variations.
Noise inserted into the input will propagate through the system, but without a feedback mechanism, there is
no way to correct or mitigate it, thus is not considered in the analysis.

The addition of the cart’s velocity as a variable, makes it possible to have the full estimation matrix Z of
the entire set of non-linear terms, which equals the matrix shown with Equation 36. The scheduling vector
will then take the form:

𝜌𝑖 𝑗 (𝜈0, 𝜃0) := 𝜈𝑖0𝜃
𝑗

0 𝑖 + 𝑗 = 𝑑 𝑑 ∈ [0, 𝐷multi]

where 𝑑 is the maximum degree for the possible combinations of the two scheduling parameters. The term
𝐷multi represents the order of the multivariate polynomial. The relation that is used to estimate the non-linear
function with the multivariate scheduling vector is then rewritten and shown in Equations 55 and 56.

Ã(𝜈0, 𝜃0) =
𝐷multi∑︁
𝑑=0

∑︁
𝑖+ 𝑗=𝑑

A𝑖 𝑗𝜌𝑖 𝑗 (𝜈0, 𝜃0) (55) B̃(𝜈0, 𝜃0) =
𝐷multii∑︁
𝑑=0

∑︁
𝑖+ 𝑗=𝑑

B𝑖 𝑗𝜌𝑖 𝑗 (𝜈0, 𝜃0) (56)

The terms A𝑖 𝑗 and B𝑖 𝑗 contain the constant global model parameters 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 , similar to the univariate case.
However, the regression matrix X, will now contain a slightly different form than the univariate OLS, in order
to account for the additional variable. The same definition of 𝑥𝑘 := (𝜈0,𝑘 , 𝜃0,𝑘) is used as in Section IV.A.2,
with the same defined index 𝑘 , and total amount points 𝑁 := 𝑁2

𝜌. The regression matrix is shown in Equation
57.
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X =


𝜌00(𝑥1) = 1 𝜌01(𝑥1) = 𝜃0,1 𝜌10(𝑥1) = 𝜈0,1 · · · 𝜌𝑑𝑑 (𝑥1) = 𝜈𝐷multi

0,1 𝜃
𝐷multi
0,1

𝜌00(𝑥2) = 1 𝜌01(𝑥2) = 𝜃0,2 𝜌10(𝑥2) = 𝜈0,2 · · · 𝜌𝑑𝑑 (𝑥2) = 𝜈𝐷multi
0,1 𝜃

𝐷multi
0,1

...
...

...
...

𝜌00(𝑥𝑁 ) = 1 𝜌01(𝑥𝑁 ) = 𝜃0,𝑁 𝜌10(𝑥2) = 𝜈0,𝑁 · · · 𝜌𝑑𝑑 (𝑥𝑁 ) = 𝜈𝐷multi
0,𝑁 𝜃

𝐷multi
0,𝑁


(57)

Equivalently to the univariate case, the solution of this linear regression problem comes from minimizing the
cost function shown in Equation 51 and obtaining the OLS estimator in Equation 52.

3. Model Quality
The residual analysis consists of evaluating the Root Mean Squared Error (RMSE) of the residuals, which is a
standard metric for model evaluation, or in this case, spline data fitting. Following from Equation 38, the
residuals of the spline estimation are calculated by:

𝜖 = Z𝑚 − Xĉ ∈ R𝑁×1

The RMSE of the residuals is given by Equation 58, which uses a logarithmic function due to the very
low magnitude of the RMS values for the estimated matrix functions (orders up to 10−15). However, when
validation data contains extremely small or large values, the relative RMS, 𝑅𝑀𝑆𝑟𝑒𝑙 (𝜖), is a more informative
metric, which normalizes the RMS score to the range of the validation observations.

𝑅𝑀𝑆(𝜖) =
√︃

1
𝑁

∑𝑁
𝑘=1 𝜖

2
𝑘
, log(𝑅𝑀𝑆rel(𝜖)) = log

(
𝑅𝑀𝑆 (𝜖 )

max Z𝑚−min Z𝑚

)
(58)

This metric measures how well the spline model’s predicted values match the estimated values. A lower
RMSE indicates a better fit, meaning the predictions are closer to the estimated values. On the other hand, a
higher RMSE suggests a poor fit with greater differences between predictions and estimated values.

As uncertainty is controlled by the spline basis structure, the variance of B-splines is global and
independent of the estimated function values in the matrix Z. Following from Equation 43, if the smoothness
matrix H is of full rank, and the pseudo inverse is also equal to the true inverse, the parameter covariance
matrix of ĉ can by determined by Equation 59[4].

𝐶𝑜𝑣(ĉ) = C1 (59) 𝐶𝑜𝑣(ĉ𝑂𝐿𝑆) = 𝜎2C1 (60)

The B-coefficient variances can be computed from the main diagonal as: 𝑉𝑎𝑟 (ĉ𝑞) = 𝐶𝑜𝑣(ĉ)𝑞,𝑞 ∀ 𝑞 =

1, . . . 𝐽 · 𝑑. For the univariate and multivariate OLS estimations, the parameter covariance matrix includes
the global variance of the residuals 𝜎2 as shown in Equation 60. As discussed in [4], a more useful statistical
measure for evaluating the global quality of a spline model is the logarithm of the mean variance of all
B-coefficients within a single spline function, which is computed as shown in Equation 61[4].

log(𝑉𝑎𝑟 (ĉ)) = log

(
1

T𝐽 · 𝑑

∑︁
𝑞

𝑉𝑎𝑟 (ĉ)𝑞

)
(61)

4. Simulation Setup
Following the equations of motion in Equation 28, the constant parameters used in the simulation are listed in
Table 2. To maintain a reasonable balance and responsiveness of the inverted pendulum, which starts with
a significant initial offset of 𝜃0 = 𝜋

4 , the factor 𝐾, defined as 𝐾 = 𝑀+𝑚
𝑚𝑙

, is kept at a moderate value. This
prevents the pendulum being dominated by gravity (due to 𝑔𝐾 sin 𝜃

𝑞
term) or having high responsiveness to the

cart (relative effect of the 𝑏 cos 𝜃
𝑚𝑙𝑞

term becomes stronger).
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Parameter Symbol Value Unit
Cart Mass 𝑀 5 kg
Pendulum Mass 𝑚 1 kg
Pendulum Length 𝑙 2 m
Friction coefficient 𝑏 0.1 -
Gravitational Acceleration 𝑔 9.81 m/s2

Table 2. Numerical values of constant parameters used in the simulation of the IPCM.

The response to sinusoidal input force can help visualize the tipping points and natural oscillatory behavior
of the IPCM. The applied force is provided by Equation 62, where a Heaviside function is introduced at half
the simulation time 𝑇 = 𝑇𝑠𝑖𝑚, indicated in 63. By applying a sinusoidal force at the linearized system natural
frequency 𝜔𝑛, the fundamental mode can be excited and observations can be made if the system exhibits
resonant behavior, which should show excessive displacements.

𝐹 (𝑡) = 𝐴𝑚 sin
√︂
𝑔

𝑙

(
𝑡 − 𝑇

2

)
𝐻

(
𝑡 − 𝑇

2

)
(62) 𝐻

(
𝑡 − 𝑇

2
)
=

{
0 if 𝑡 < 𝑇

2
1 if 𝑡 ≥ 𝑇

2
(63)

The term 𝜔𝑛 =

√︃
𝑔

𝑙
is the pendulum natural frequency. Additionally, a sinusoidal input force allows for better

comparison of methods than, for instance, using a step input. The sinusoidal input constrains the cart position
within bounds, avoiding the abrupt changes and large displacements caused by a step input, which can mask
the differences between methods as cart position and velocity will keep increasing.

The ordinary differential equations (ODEs) presented in Equation 28 are linearized and solved numerically
using a fourth-order Runge-Kutta method, that follows the rule:

𝑥𝑡+1 = 𝑥𝑡 +
ℎ

6
( 𝑓1 + 2 𝑓2 + 2 𝑓3 + 𝑓4)

The term 𝑥𝑡 is the state vector at time step 𝑡 and 𝑥𝑡+1 is the state vector at time step 𝑡 + 1, with the difference
between the two of ℎ = 0.01 seconds representing the fixed time step. The intermediate values are computed
as follows:

𝑓1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ), 𝑓2 = 𝑓 (𝑥𝑡 + ℎ
2 𝑓1, 𝑢𝑡 ), 𝑓3 = 𝑓 (𝑥𝑡 + ℎ

2 𝑓2, 𝑢𝑡 ), 𝑓4 = 𝑓 (𝑥𝑡 + ℎ 𝑓3, 𝑢𝑡 )

with 𝑓 (𝑥𝑡 , 𝑢𝑡 ) = 𝑓0 + 𝐴Δ𝑥 + 𝐵Δ𝑢, shown with Equation 35, the LPV function of the corresponding
abovementioned linearization methods.

V. Results & Discussion
This section presents the results of the main objective in this paper, which is to investigate the applicability
of splines as scheduling functions applied to a LPV model. First, considering the experiment setup, a
multivariate simplex B-spline has been created to estimate Z from Equation 36 with 𝑠42 (𝑥2601) ∈ R2601×1,
with a total number of datapoints 𝑥𝑘 , from 𝑁 := 𝑁2

𝜌 = 512. The data points are spread on a square grid
(𝜈, 𝜃) ∈ R2, [𝜈min, 𝜈max] × [𝜃min, 𝜃max] = [−2, 2] × [0, 2𝜋] with the triangulation and structure of continuity
indicated in Figure 4. The use of 51 points per scheduling parameter, generated by the linearly spaced vectors
(as described in Section IV.A.2) ensures that the two equilibrium LTI points at (𝜈0, 𝜃0) = (0, 𝜋) and (0, 0) are
included.
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Figure 4. Triangulation of 18 simplices on a [3 × 3] square grid with the structure of continuity 𝐶2 showing
the relations between the 270 (𝐽 · 𝑑) B-coefficients of B-spline with degree 𝑑 = 4. Circles on the edges of the
domain (black) show B-coefficients that are not part of continuity structure, while circles in gray build the
continuity structure. The B-Net of the polynomial estimating A23 is shown on the right.

For the LPV model, the requirement of continuity is at least 𝐶1, as the Jacobian matrices are being
estimated, which requires continuity at the first derivative. Furthermore, the Jacobian and Input matrices from
Equations 33a and 33b contain sines and cosines, which require higher continuity from the approximating
B-spline. This is due to the nature of the trigonometric functions, that are smooth, infinitely differentiable,
and periodic, which necessitates differentiability at the triangulation edges.

However, the cost of enforcing continuity constraints, as shown in Figure 4, by linking the splines
B-coefficients, is on the expense of the spline’s flexibility. Each increase in the desired level of continuity
decreases the number of free B-coefficients available, lowering the spline’s ability to precisely fit a given
function [4]. Therefore, the Degrees of Freedom (DOF) of the spline represent the number of B-coefficients,
ĉ, that are free to be varied to control its shape, which are constrained to lie within the null-space of H. The
basis for the null space of the smoothness constraints, Γ, is given by:

c = Γ · c̃, Γ = null(H)

where c̃ are the (free) unconstrained B-coefficients. With this relation, the spline coefficients c can be
expressed as a linear combination of basis vectors, such that the number of free parameters c̃ controlling the
spline’s shape is equal to the number of columns in Γ. For the selected continuity 𝐶2 of the selected spline
𝑠42 (𝑥𝑘), the number of DOF of the spline c̃ = 46 out of a total number of ĉ = 270 B-coefficients, obtained by
total number of simplices 𝐽 = 18 multiplied with total number of valid permutations 𝑑 = 15 calculated with
Equation 15.

Figure 5 illustrates the variance of the B-coefficients, which is notably higher at the B-coefficients that do
not belong to the continuity structure, as depicted in Figure 4. These coefficients are located at the edges
of the scheduling parameter space as depicted by the 3D representation. This is expected as the variance
of B-spline coefficients is higher at the edges because fewer basis functions overlap, resulting in increased
variance compared to the interior. It can also be observed from Figure 5 and the calculation of the mean
variance for varying spline spaces, that increasing the continuity order, at a fixed degree, leads to a decrease
in the mean variance.
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Figure 5. Variance of B-spline estimated B-coefficients shown versus the total number (𝐽 · 𝑑 = 270) of
indices (left) and over the triangulation of 18 simplices (middle). The logarithm of the mean of the global
variance per varying continuity level and degree is shown on the right.

The B-spline per estimated parameter of LPV model, given Z matrix of estimated parameters in Equation
36, is shown in Figure 6. It can be seen that a spline with a relatively low degree, 𝑠 ∈ 𝑆2

4 provides an accurate
fit to the datapoints 𝑥𝑘 generated by Z. This specific spline parametrization was selected because, through
simulation, it demonstrated best performance measured with the lowest RMSE among the tested methods for
the provided simulation time.

Figure 7 displays the log(RMSE) for four spline spaces, varying in degree and continuity, compared to
the multivariate OLS degree per estimated parameter of Z. Results have been obtained for varying simplex
grid triangulations but a T18 triangulation was chosen as the minimum triangulation exhibiting significant
differences between multivariate OLS and spline space performance across all estimated parameters. As
similarly obtained in [4] and [12], increasing spline order correlates with decreasing RMSE. Additionally,
increasing the continuity 𝐶𝑟 does decrease the approximation power, as the RMSE for increasing continuity
orders is increased, as can be observed from Figure 7. Comparing the B-spline values with those obtained
from multivariate OLS, all examined levels of continuity have higher approximation power than the OLS,
which for a polynomial approximation, means that B-splines outperform OLS methods. Similar observation,
that the selected B-spline shows better performance, can be made for the relative RMSE of the residuals for
all the polynomial methods, when compared at 𝑑 = 4 with 𝑁𝜌 = 51 points, with results shown in Table 3.

While the relative RMS provides a general measure of model quality, it does not reveal local accuracy
(per data point), which is important for regions of the dataset that might be approximated better or worse. A
small error in a region where values are near zero, can have a significant impact on estimation accuracy. To
address this, the relative model residual 𝜖𝑟𝑒𝑙 is scaled using the maximum of the model values and the model
value range around each data point as depicted in Equation 64.

𝜖𝑟𝑒𝑙 (𝜈, 𝜃) =
Z − Xĉ

max(max Z − min Z,max |Z|) (64)

This approach of calculating the 𝜖𝑟𝑒𝑙 is similar to what has been done in [21], where the term max |Z|, ensures
that if the range is too small, or even zero, the maximum absolute value is used as the scaling factor. Choosing
the maximum ensures the denominator remains nonzero, while providing a normalization factor. Similarly to
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Figure 6. Multivariate spline model with degree 4, continuity 2 on 18 simplices per estimated LPV state
space, input matrix and non-linear function terms. The grid is 3 × 3 with a total of 2601 data points with 270
(𝐽 · 𝑑) estimated B-coefficients.

Figure 6, the scaled residuals are plotted for all the estimated functions and shown in Figure 8.
Looking at the plots, several observations can be made. First, the scaled residuals indicate that the

applied B-spline, 𝑠42 (𝑥2601), approximates the estimated LPV state-space, input matrix, and nonlinear function
terms well, by observing that the magnitude of the residuals remains relatively small. Second, the scaled
residuals for the terms Ã23(𝜈0, 𝜃0), Ã43(𝜈0, 𝜃0), and f̃0(𝜈0, 𝜃0) are an order of magnitude higher than the
other estimated parameters. This is expected from the model, as these terms, according to Equation 34,
represent the most strongly coupled components that contain the primary modes of the dynamics of the
nonlinear system. For example, the coupling between the cart’s acceleration and the pendulum’s angular
motion is embedded in these terms. Additionally, they describe the potential energy of the system because
they are only terms containing the effects of gravity. These reasons also provide an explanation to the question
why single-parameter estimators, depending exclusively on 𝜃, such as zero-order hold and univariate OLS,
approximate the system to high level of accuracy, as observed in the simulation results in Figure 9.

An additional observation for the residuals per estimated parameter is that, due to the term 𝑞0, which
is itself a trigonometric function appearing in all estimated functions, they exhibit sinusoidal behavior in 𝜃.
Specifically, for angles in the range 𝜃0 ∈

(
𝜋
2 ,

3𝜋
2

)
, the system experiences the highest residual magnitude,

reflecting the greatest instability, as can be seen in Figure 8. This aligns with the physical interpretation that
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log(RMSrel(𝜖))
Method A22 A42 A23 A43 B2 B4 f0

PuniOLS / / -1.6134 -3.1549 / -3.8963 -3.2286
PmultiOLS -1.5852 -3.8963 -1.6273 -3.1545 -1.5852 -3.8963 -3.2286
𝑠 ∈ 𝑆2

4 (T18) -4.7137 -6.7188 -3.9461 -5.4953 -4.7137 -6.7188 -4.8473

Table 3. Comparison of the Root Mean Squared Error (RMSE) of the residuals per estimated parameter for a
4th degree polynomial and 𝑁𝜌 = 51 ponits.

when 𝜃0 is within this range, the tangential component of gravity (𝑚𝑔 sin 𝜃) is maximized, producing the
greatest torque and driving the strongest motion of the pendulum, due rapid conversion of potential into kinetic
energy. This, in turn, results in the strongest interaction with the cart, as the pendulum’s torque is transferred,
via the pivot point, proportional to the force acting on the cart increasing or decreasing its acceleration.

The results of the Simulation, with the setup explained in Section IV.B.4, is shown in Figure 9. The
metric used for comparison between the four LPV methods is Root Mean Square difference between the
non-linear model states and the estimated states, computed by:

RMS =

√︄
1
𝑇𝑠

(X − X̂)𝑇 (X − X̂)

where 𝑇𝑠 is the total simulation time, X is the non-linear state vector, while X̂ is the estimated LPV state
vector. It can be observed that for a fourth-degree polynomial approximator, the simplex B-spline 𝑠 ∈ 𝑆2

4 (T18)
outperforms the other three methods at 𝑥𝑘 = 51 data points per scheduling parameter. While increasing
the order of the ordinary least squares (OLS) polynomial improves estimation accuracy, the advantage of
having piecewise lower-order polynomials lies in favor of the use of the B-spline approach. As noted in [3],
increasing the number of internal knots (equivalent to triangulation of simplices in higher-dimensions) in a
B-spline representation allows for a lower polynomial order while improving approximation quality. This
results in a solution that is closer to the true optimum while maintaining a similar numerical complexity
compared to using a higher-degree polynomial and lower amount of knots.

Additionally, as expected, the addition of an external force in the open-loop simulation leads to deviations
in the cart’s position, as it perturbs the starting IPCM dynamics, which is solely due to the induced motion of
the pendulum. Since the equations of motion do not explicitly contain the cart’s position in Equation 28), as it
is obtained through the integration of velocity, any discrepancies in velocity accumulate over time, leading to
amplified deviations. This effect is particularly pronounced in open-loop simulations, where the errors are not
corrected (controlled), leading to significant variations across different methods. This trend can be observed
in Figure 7, which after 20 seconds, shows the impact of the force on the cart’s position. The numerical
RMSE values of the simulation are presented in Table 4.

It should be noted that the number of data points depends on the number of scheduling parameters being
estimated. This implies that if the number of points in the piecewise constant approach increases, the ZOH
method achieves higher estimation accuracy, yielding the lowest RMS observed (order 10−4) across a range
of simulations, varying in simulation time and number of datapoints. Notably, this holds only with a single
scheduling parameter 𝜃0. As argued earlier, the primary modes in the Jacobian matrix of the IPCM dynamical
system can be accurately estimated using only the pendulum angle, so these results are not surprising.

The main challenge of using the piecewise constant approach arises in the case if closed-loop control
is applied for the pendulum. At any 𝑡𝑠𝑤𝑖𝑡𝑐ℎ = 𝑘𝑇𝑑 , where switching occurs, discontinuities (i.e., sudden
jumps between values) are introduced. These discontinuities can significantly affect the stability of a control
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Figure 7. Logarithm of the relative Root Mean Squared Error of the residuals for all estimated functions of
the LPV model for different spline spaces with varying spline continuity and degree, over a triangulation of
18 simplices ([3 × 3] grid) compared to multivariate OLS polynomial of varying degree 𝑃𝑑 .

system, particularly in the case of a proportional-integral-derivative (PID) controller, where the derivative
component of such controller is especially sensitive to abrupt changes, potentially leading to severe instability
at the switching points. As recently observed in [22], the occurrence of chatter, which is characterized by
high-frequency oscillations in the control input due to discontinuities or constraints in the control law, further
exacerbates this issue. Specifically, the first-order actuator dynamics model fails to accurately capture the
resulting second-order actuator behavior. In contrast, B-splines perform significantly better in this regard,
as they allow for flexible selection of the spline continuity order, mitigating the adverse effects of such
discontinuities. One important consideration, as previously mentioned, is that increasing continuity comes at
price, which is reduced ability to approximate the data points.

Figure 10 presents the trajectory of the B-spline estimated scheduling parameters plotted on the simplex
grid, providing an alternative perspective on the simulation. The trajectory is divided into two distinct phases:
the first 20 seconds correspond to data points obtained only from pendulum motion (named unforced), while
the remaining 20 seconds reflect the system’s response to the applied external force (named forced data points).
Additionally, the scheduling parameters are then substituted into Equation 28, to obtain a 3D trajectory plot
of the cart acceleration and pendulum angular motion. Two things can be observed: first, as expected, the
applied force is moving the data towards the edge simplices, but due to 𝐶2 continuity of the selected spline,
this does not pose an issue, as long as the data points are within the defined scheduling parameter grid. The
second is that corner simplex pairs (𝑡1/𝑡2, 𝑡5/𝑡6, 𝑡14/𝑡15, and 𝑡17/𝑡18), either contain no data points or only
have them at the vertex edges. As shown in Figure 5, having simpices with datapoints only at the edges will
result in loss of smoothness and reduced accuracy in the interior of the said simplices, which will make them
badly defined. This indicates a need of optimizing the simplex shape, such that simplices that contain no data
are removed. Multiple methods are proposed in literature, with Type I/II hypercube triangulation method
explained in [4] or constrained Delaunay triangulation [23] among the many approaches to this problem.
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Figure 8. Scaled Relative residuals 𝜖𝑟𝑒𝑙 (𝜈, 𝜃) for a simplex B-spline 𝑠 ∈ 𝑆2
4 of the estimated LPV

state space, input matrix and non-linear function terms. In the expression, the scaling term is given by:
𝜖𝑐 = max(max Z − min Z,max |Z|).

As a final result, a variation of the initial conditions is performed, in order to see the spread of the
scheduling parameter on the simplex grid T18 which is illustrated in Figure 11. The initial state vector
X0 = [0 0 𝜃00 0]𝑇 is varied in a linear fashion within the bounds 𝜃0,lin ∈ [0.1, 1.95𝜋] and is sampled across
𝑁sim = 1000 simulations with added noise. The noise initial angle 𝜃0,noisy follows a standard Gaussian
distribution with mean 𝜇 = 0 and standard deviation 𝜎 = 1, scaled by 𝜎 = 0.05 (ensuring 99.7% of values
fall within ±3𝜎):

𝜃0,noisy = 𝜎 · 𝑍, 𝑍 ∼ N(0, 1).

The final perturbed initial values are obtained by adding the noise to the linear samples 𝜃00 = 𝜃0,lin + 𝜃0,noisy.
The pendulum angle 𝜃0 exhibits oscillations across the parameter grid in response to varying cart velocities.
While fluctuations are observed, the pendulum remains within a confined bounds of the scheduling parameter
grid, with largest swings at positive cart velocities. This motion follows a periodic trend, despite the injected
random noise. As cart velocities increase, the variation becomes grater, indicative of greater instability in
the system, but still within the confined bound. Thus, the system’s deterministic nature enables accurate
prediction of its trajectory based on initial conditions. Since the dynamics are heavily influenced by these
initial parameters, bounding the scheduling parameters within a specific range, which is derived from an
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RMS ×10−3

LPV Method 𝑋 [m] 𝜈 [m/s] 𝜃 [rad] Ω [rad/s]
Zero-Order Hold 12.45 5.04 5.45 9.18
Univariate OLS 10.17 5.40 5.98 9.83
Multivariate OLS 8.93 11.04 14.82 23.68
B-Spline 8.19 3.85 3.99 6.74

Table 4. Root Mean Square Error (RMSE) of the state vector X compared at 𝑥𝑘 = 51 datapoints per scheduling
parameter and polynomial degree 𝑑 = 4 for the polynomial estimating methods.

apriori understanding of the system dynamics, can possibly lead to the development of a robust controller.

VI. Conclusion
This paper explored the parametrization of nonlinear models using the affine quasi-Linear Parameter-Varying
(qLPV) approach, with a particular focus on the identification of an appropriate scheduling function. A
key challenge was selecting a scheduling function that ensures a smooth and accurate transition between
local Linear Time-Invariant (LTI) models while accurately estimating the underlying system behavior. The
findings demonstrate that multivariate simplex B-splines can serve as a scheduling function for State-Space
quasi-Linear Parameter-Varying (SS-qLPV) models, which are commonly used for representing nonlinear
physical systems. Their key advantage is providing a global approximation of the linearized parameter varying
model while making use of overlapping local basis functions over the entire scheduling parameter domain.

A demonstrator, Inverted Pendulum on a Cart Model (IPCM), has been used to model the nonlinear
behavior of the system in an open-loop setting. The model has been linearized to first order using an affine
LPV representation, where the cart’s velocity 𝜈 and pendulum angle 𝜃 serve as scheduling parameters to
construct a scheduling grid. Over this defined parameter grid, various methods for generating the scheduling
function have been explored, including single-variable zero-order hold (ZOH), ordinary least squares (OLS),
and multivariate OLS with B-splines.

The results show that, compared to polynomial estimation methods like multivariate OLS at the same
polynomial order, taken as 𝑑 = 4, a B-spline in the spline space 𝑠 ∈ 𝑆2

4 (T18) offers greater approximation
power, as shown by the logarithm of RSME of the residuals for the estimated functions in Figure 7. This
advantage comes from the spline continuity of derivatives 𝐶2, enabling a smoother interpolation between
local LTI models at a relatively small number of data points 𝑁𝜌 = 51 per estimated scheduling parameter.
Furthermore, a simulation was conducted over a duration of 𝑇sim = 40 seconds, with a sinusoidal input force
(at resonant frequency 𝜔𝑛 =

√︃
𝑔

𝐿
) applied at the midpoint of the simulation time. The true nonlinear model

has been integrated using the ode45 solver, while the various approximation methods were evaluated using a
4th-order Runge-Kutta integration scheme. Analysis of the root mean square error (RMS) of the simulation
results demonstrated that B-splines were better estimator than the other methods.

There are several limitations to this study that should be considered. It was observed that B-splines
offer greater accuracy under a specific set of conditions, such as the number of datapoints, total simulation
time, and the specific input force applied. However, for the majority of other cases, the Zero-Order Hold
(ZOH) method for LPV systems proves that with a single scheduling parameter 𝜃, to be computationally
less expensive and results in a lower simulation root mean square error (RMSE) across a broader range of
varying simulation conditions, including 𝑇sim and 𝑁𝜌. Nevertheless, one significant disadvantage of the ZOH
method is that it varies the scheduling parameters in a piecewise constant manner, switching at time instants
𝑡𝑠𝑤𝑖𝑡𝑐ℎ = 𝑘𝑇𝑑 , where 𝑘 is an integer. This switching introduces discontinuities in scheduling parameters,
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Figure 9. Simulation results of the nonlinear cart-pendulum model, showcasing the state vector X of the
linearized LPV model integrated using 4th order Runge-Kutta for the 4 LPV methods. The order of the
polynomial approximating methods is selected as 𝑑 = 4 and 𝑥𝑘 = 51 datapoints per scheduling parameter. A
input force, with amplitude 𝐴𝑚 = 1 is applied at 20 seconds.

which can cause abrupt changes in the system’s dynamics and negatively affect controller performance. In
closed-loop settings, these discontinuities may lead to instability or oscillations, especially in systems that
require smooth and continuous adjustments for stable control.

This work opens possibilities for further exploration of multivariate simplex B-splines as scheduling
functions for LPV systems, particularly in applications involving highly coupled aerodynamic models with
multivariate parameters in multiple dimensions. Given that simplex B-splines are inherently scalable to any
number of dimensions, they offer significant potential for modeling complex, high-dimensional aerodynamic
systems. In this experiment, a grid was employed as the scheduling parameter domain, which did not
appear to fully utilize all of the simplices, as evidenced by spread of error in the residuals. To improve
on this, it would be beneficial to optimize the simplices using Constrained Delaunay Triangulation (CDT)
or Type I/II hypercube triangulation method. A subsequent step in this research direction should focus
on applying the proposed scheduling function within a closed-loop LPV framework (e.g., Gain-scheduled
Proportional-Integral-Derivative (PID), Linear Quadratic Regulator (LQR) or Model Predictive Control (MPC)
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Figure 10. Trajectory of the B-spline estimated scheduling parameters 𝑛𝑢 and 𝜃 ploted over the simplex
grid. 3D plots of the acceleration of the cart 𝑎 and angular acceleration 𝛼 are shown on the left, with a
difference between datapoints before force application at 20 sec, and after. 2D plot over the triangulation of
T18 simplices, with the same distinction of forced/unforced data points is shown on the right.

controllers), with a primary area of investigation being the evaluation of control stability and performance
when the operational and scheduling parameter conditions are varied.
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Appendix
Additional plots regarding the simulation results are shown in this Section, such that the difference between
methods is made more visible in the first seconds of the animation. Figure 12 shows the first 4 seconds of the
simulation which equates to one full pendulum swing from the initial condition (X0, 𝑢0) =

(
[0 0 𝜋

4 0]𝑇 , 0
)
.

Figure 13 shows the first 2 seconds and Figure 14 shows the first second of the simulation run.
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Summary

The following Literature Review presents an in-depth analysis of the available literature, focusing on the

core aspects of system modeling of robust Linear Parameter Varying (LPV) systems using multivariate

scheduling functions. Its objective is to evaluate current knowledge, identify gaps, and provide a critical

assessment of the methodologies and findings of whether multivariate simplex splines can be used as

scheduling functions of state-space LPV systems, using data gathered and validated from an already

available non-affine aerodynamic model. By using multivariate simplex splines, which facilitate local model

identification and are fit scattered datasets in non-rectangular domains, the findings aim to demonstrate

whether smooth dependence of the LPV systems on the scheduling function and for a global model can be

achieved. This report also highlights the significance of these findings for ongoing research project of the

Control & Simulation division, which aims to connect robust flight control and different classes of function

approximators, such as the multivariate B-splines.

The literature review methodology involved a systematic search using SCOPUS, TU Delft Control

and Simulation Reference Database and WorldCat to gather relevant studies published in the past two

decades. This time frame was chosen because nonlinear robust control theory is a ’relatively’ new field, as

highlighted by [16] and further supported by the historical perspective provided in [17].The selected studies

were categorized according to the relevant research areas, which were identified and depicted in Figure

3.1. Key findings from the literature suggest that while methods for LPV modeling are well-researched, with

comprehensive references such as [18], [19], [20], and [21], there remains a notable gap in the application

of multivariate splines as scheduling function approximators to these models. Although a few studies,

including [8] and [22], explore splines as function approximators for LPV systems, their focus has been

primarily on Tensor-product splines. These splines, however, are limited in their ability to handle scattered

data due to their dependence on structured, grid-based input. This limitation poses a significant challenge,

particularly in flight control problems, where the system dynamics can often be approximated as continuous

physical processes.

Finally, this literature review highlights a research gap originating from the challenges in generating a

global LPV model. The complexity occurs due to the high computational demands and stability restrictions

associated with local models [23]. Moreover, because of the local nature of basis functions, the solution

systems for multivariate B-splines tend to be highly sparse. This sparsity enables the use of efficient matrix

solvers, making it feasible to approach LPV system modeling and identification with multivariate B-splines

more effectively.
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3
Literature Review

The following Chapter, includes the relevant areas of research for this thesis and gives an overview of

what work has already been carried out to the field of research. Figure 3.1 depicts the intersections

between Robust control, System Identification and literature on the ICE aircraft, to narrow down the link

between the research question and this literature review in the next Chapter. Figure 3.1 illustrates how

the literature references align within these intersections, highlighting the commonalities across different

sources. Therefore, the relevant areas of research describe the work done in Robust control (3.1) and

System Identification (3.2), while bisecting these areas into two smaller subsets: LPV Systems (Chapter

3.3) and Multivariate Splines (Section 3.3.4). Additionally, the application to ICE model is addressed with

Subsection 3.4. Finally, Section 3.5 outlines the thesis’s contribution to the body of research discussed in

the preceding sections.

Robust Control

[24],[1],[10]

[16],[17]

[25]

[3]

S
y
s
te
m

Id
e
n
ti
fi
c
a
ti
o
n

[26],[27],[28],[29]

Multivariate Splines
[30],[31],[15],[32],[9][33]

[34]

ICE Application
[35],[36],[37],[38]

LPV Systems
[39],[20],[6],[40],

[7],[41],[42],[43]

[44]

[45][46][47]

[48][49][23]

qLPV

[18]

[19],[50]

[51]

[5
2]
,[5
3]
,[5
4][55],[8]

[56],[22]
?

[13],

[57],

[12],

[14]

Figure 3.1: Venn diagram depicting the two general research directions: Robust Control and System Identification, while zooming in

on the relevant sub-fields: LPV Systems, Multivariate Splines and the application to ICE. All the literature for this paper has been

differentiated between its respective fields and intersections, which spans the entire research area of this report. The intersection in

the middle of the diagram shows the literature gap that exists when the sub-fields interact with each other.

3.1. Robust Control
One of the main areas of research for this thesis, belongs to the field of robust control, which represents a

branch of control theory that deals with the design of controllers for systems subjected to uncertainties.

These uncertainties can arise from various sources, such as modeling errors, external disturbances, or

changes in system parameters over time. This originates from the fact that the model chosen to represent

the real system is never an exact one-to-one match. The primary goal of robust control is to ensure that
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the system remains stable and satisfies performance requirements under all possible conditions, despite

these uncertainties.

As explained in [16], the period between the late 1970s to the early 2000s, robust control techniques

such as H∞, µ/Km-synthesis and Bilinear Matrix Inequality (BMI)/Linear Matrix Inequalities (LMI)/Integral

Quadratic Constraint (IQC) were established, that provided broader uncertainty regions and set-up of

robustness margins that ultimately enhanced the reliability of control systems. However, a major challenge

is that these fundamental robust control methods typically rely on precise prior assumptions about the

size and structure of uncertainties. This means they lack the ability to adapt, in real-time, when newly

acquired data contradicts these initial assumptions about uncertainty bounds [16]. Furthermore, all of

these techniques have the assumption of regarding systems of linear (usually also finite-dimensional and

time-invariant) static form [17]. A system is described as linear if it satisfies two properties: superposition

and scaling. Superposition implies that if the system’s response to input x1(t) is y1(t) and the response to
input x2(t) is y2(t), then the response to a combination ax1(t) + bx2(t) results in ay1(t) + by2(t), where a, b
are constants. Scaling corresponds to the property that if the input is multiplied by a constant factor, the

output is also multiplied by that same factor. A system is static if its output at any given time depends only

on the input at that same time. According to [24], a major stepping stone of modern control theory is the

formulation of the H∞ controller, but H∞ robust controller designs are most effectively used when applied

on uncertain linear systems [17].

G
ω z

∆

y∆u∆

K

νu

Figure 3.2: Uncertainty framework for controller synthesis of robust control systems. The plant (G), usually restricted to linear
system, can contain single (LTI) or multiple (MLTI) models, linear parameter/time-varying (LPV/LTV) models, reference models,

performance/specifications, etc. It is subjected to generalized disturbance input (w) and generalized output (z), while the Uncertainty
(∆) can depict structured or unstructured uncertain parameters, time-varying, nonlinearities or delays (encompassed into y∆) adding

to the disturbed control input (u∆) to plant G. The Controller (K), can be full order or reduced order LTI controllers of any structure

and complexity, gain scheduling, etc. that has sensor measures (ν) as input, and outputs (u) as control input to P .[58]

Alternative techniques exist, that directly address the nonlinearities to improve system performance

for tailless aircraft, such as the feedback linearization approach. However, the fundamental assumption

in this method is perfectly modeled plant dynamics and can be canceled exactly, which is not realistic

and requires a robust controller to suppress undesired behavior due to plant uncertainties [10]. Nonlinear

robust control theory offers techniques to deal with not-perfectly modeled plant than linear robust control,

but most are focused on different measures for the ”size” of an uncertainty, which have lead to different

frameworks for robust control such as H∞ method via game theory, l1, Lyapunov-based methods with
invariant sets and many more. Figure 3.2 shows the block diagram depicting the robust control system

design framework. As indicated in [25], the most common choice for the group of admissible uncertain

systems is a set of uncertainties satisfying some norm bound, however, since the plant G is restricted

to be linear, the group size has to be large enough, in order to capture the nonlinear phenomena. A

disadvantage of this approach is that it ignores available information about existing nonlinearities, and the

resulting controllers may be too conservative (especially when the nonlinearities are significant)[25].

A way to deal with the conservativity of nonlinear robust systems, while ensuring stability and perfor-

mance across all possible variations of the system parameters and, in the meanwhile, maintaining linearity

of the plant, is to use LPV methodology, whose research has peaked over the past two decades. This
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approach is particularly useful for systems where the uncertainties or nonlinearities can be captured by a

set of time-varying parameters, rather than purely random or worst-case uncertainties [24]. LPV modeled

systems have connected traditional linear control methods (LTI,MLTI,LTV) with non-linear robust control

techniques, offering a structured way to handle variations while maintaining computational traceability. In

this framework, the system dynamics are represented as a linear state-space model, with the coefficient

matrices depending on external scheduling variables. Assuming these scheduling variables remain within a

specified range, analytical results can guarantee a certain level of closed-loop performance and robustness

[41].

3.2. System Identification
The second research area for this thesis encompasses the development of methods and techniques to

build mathematical models of dynamic systems from observed data, referred to as System Identification.

Its goal is to accurately capture the behavior of a system by estimating model parameters that best fit

the measured input-output data. This involves, the so-called Identification Cycle, that can take multiple

iterations and consists of the steps, as explained in [18]:

1. Experiment design, data acquisition and manipulation, which aims to select system excitation’s

that maximize the information content of measured signals and minimize estimation errors. Data

pre-processing addresses disturbances and imperfections in measured data to ensure accurate

model estimation.

2. Model structure selection, where the representation form of the model, parametrization, type of noise

modeling are determined. Important factor is also the size of the model set including number of

parameters or order of the model.

3. Choice of Identification Criterion, where selection of the performance measure is done. The most

common measure is the Root Mean-Squared Error (RMSE) of the output prediction of the model

estimate.

4. Model Estimation, which is the algorithmic solution of the estimation problem, expressed in terms of

the selected model structure and the identification criterion.

5. Validation of the model estimate, where evaluation whether the model is sufficiently accurate for

its intended application, is performed, which involves comparing the model’s simulation results and

predicted performance against experimental data and prior knowledge.

The choice of the model structure is crucial part of system identification, as it directly influences the

maximum achievable accuracy or quality of the identified model. There are wide variety of model structures

that can be chosen to model nonlinear dynamics and a subset, distinguished by parametric and non-

parametric structures is shown in Figure 3.3. To create a sufficiently accurate models, high approximation

power and sufficient flexibility on a global model scale is needed, which can be accomplished by four of the

model structures shown in Figure 3.3: neural networks, kernel methods, polynomial models, and spline

models [9]. Multi-layer neural networks can act as universal approximators, but in practice, they do not

guarantee accurate results for reasonable dimensionalities. Achieving global and distributed approximation

may require a high number of parameters, which can be computationally expensive.[28] In a similar fashion,

kernel methods are non-parametric meaning that every significant data point is associated with a single

kernel function, making large datasets computationally intractable [9]. Polynomial models, although the

most commonly used, suffer from Runge’s phenomenon, where a polynomial approximating a continuous

function oscillates towards the ends of the function’s interval, which increases with the order. By dividing

the polynomial function in sub-domains, lower order polynomials can be used to accurately fit the data.

However this leads to discontinuities which can be a problem for model based controllers [9].

Splines are piecewise polynomial functions with a predefined continuity between their pieces that

circumvent the Runge’s phenomenon. Simplex splines have arbitrarily high approximation power on

a global model scale, which makes them an appealing candidate for LPV modelling and identification.

A new method for linear regression of multivariate data with multivariate splines, was introduced in [9],

which represents a powerful way to perform parameter estimation and system identification of complex

time-variant nonlinear systems.

LPV model structures in literature (see [18], [19], [44]), are typically categorized as either LPV Input-

Output (LPV-IO) or LPV State-Space (LPV-SS). LPV-IO models originate from the input-output (IO)
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Model Structures

Non-Parametric

Kernel

Models

Parametric

Polynomial

Polynomial Splines

Univariate

Splines

Multivariate

Splines

Tensor Product

Splines

Simplex

Splines

Thin Plate

Splines

Simple Polynomials

Univariate

Polynomials

Multivariate
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Non-Polynomial
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Radial

Basis Feed-forward

Fuzzy

Models

Figure 3.3: Classification of examples of relevant model structures for parameter estimation classified based on the type of estimating

function.[59]

representation of the data-generating system within the LTI prediction-error framework. Approaches to

model LPV-IO structures are primarily based on discrete-time models with static dependence, focusing

on single-input single-output (SISO) scenarios. These methods can be categorized into four main ap-

proaches: Interpolation, Linear Regression, Set Membership, and Nonlinear Optimization. Interpolation

approaches rely on the classical gain-scheduling concept, using ”frozen” models that are interpolated,

either by polynomial or spline basis functions. Linear Regression methods use auto-regressive models

with exogenous inputs (ARX) and employ linear parameterization techniques for coefficient estimation. Set

Membership approaches deal with deterministic noise by calculating a feasible set of parameter values

that satisfy the data with a bounded error. Lastly, Nonlinear Optimization methods enhance the estimation

of coefficients by minimizing prediction errors through nonlinear parametrization, sometimes incorporating

neural networks or separable least-squares strategies for improved accuracy.

LPV-SS model structures are similar to the state-space representation of LTI models and are ac-

companied with “innovation” type of noise model. LPV-SS methods identify systems using state-space

representations with parameter-varying matrices, making them suitable for MIMO systems and LPV control

applications. Identification methods for LPV-SS includeGradient Methods, which estimate matrices via non-

linear optimization and Global Subspace Approaches that handle uncertainties and large datasets through

Linear Matrix Inequalities (LMI) and subspace identification. These two methods induce a significant

computational load, which makes them limited for large scale systems [18].

Full-Measurement Methods use simplifying estimation to linear regression with measurable states and

Multiple-Model Methods, which interpolate between LTI models. For Full-Measurement approach, an

assumption is made that the state of the LPV-SS model is measurable and with linear dependence, which

reduces the estimation problem to linear regression, often using least-squares.[18] Other techniques like

Set-Membership and while Observer-Based Grey-Box Techniques utilize adaptive observers to estimate

parameters of known nonlinear models and convert them to LPV-SS forms.

A new interpolation method for LPV system identification was proposed in [49], which allows the use

of local models in any form (state-space, transfer function, etc.) without requiring coherence, making it

suitable for fixed working points or slow transitions, but requiring real-time interpolation at each time instant.

This means that even if the scheduling value has been interpolated before, it must be recalculated as local

model outputs change over time. Drawbacks of this method is that it does not analyze the behavior of the

local model or the underlying LPV model, which is never explicitly constructed.

3.2.1. Linear Regression
LPV models make use of LTI system theory and as indicated in literature, mainly focuses on Autoregressive

Exogenous Input (ARX) models where coefficients are functions of the varying parameters, allowing the
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estimation to remain linear-in-the-parameters. However, an important benefit of using simplex splines is

that they also use this property, as explained in [31].

This property is defined by a function p(x,Θ), consisting of Θ, a vector of the parameters and x, which
is the state vector. For a function to be linear-in-the-parameters, Equation 3.1 must hold. This allows to

rewrite Equation 3.1 as a multiplication of a parameter vector Θ and linear regression matrix function X(x)
equaling the expression p(x,Θ) = X(x)Θ.

∂p(x,Θ)

∂Θ
= f(x) (3.1)

The advantage of such property is the fact that optimization problems for linear-in-the-parameter models

can be solved using simple linear solvers, which in general are easier to implement and have a lower

computational complexity [59]. Using the widely used structure, a polynomial regression matrix, the linear

regression model has the form shown with Equation 3.2[59].

Y =


1 xi(1) . . . xni (1) . . . xni (1)x

m
j (1) . . . xMk (1)

...
...

...
...

...
...

...
...

1 xi(N) . . . xni (N) . . . xni (N)xmj (N) . . . xMk (N)

Θ+ ε (3.2)

where M is the order/degree of the estimating polynomial and xi, xj , xk are the regressor terms that

represent the input dimensions, with total number of data points N .

It then becomes possible to derive the linear regression estimator Θ̂ with Equation 3.3[59], where J is a

cost function.
Θ̂ = argmin J (Y − p(x,Θ)) = argmin J(ε) (3.3)

The parameter estimation problem becomes a determination of the values for Θ that in some way

minimizes the modeling error. The most widely used parameter estimation methods for identifying aerody-

namic models are least squares and maximum likelihood methods in order to estimate the parameters of a

polynomial regression model [29].

The least-squares (LSQ) method is a special case of the prediction-error identification method that

uses the convex quadratic cost function, shown in Equation 3.4[59].

J(x,Θ) = εT ε =
(
Y −X(x)Θ

)T (
Y −X(x)Θ

)
(3.4)

3.2.2. Least Squares Criterion

The Least Squares estimator is the solution to the optimization problem Θ̂ = argmin εTε. The unique

feature of this criterion, developed from the linear parametrization and the quadratic criterion, is that it is

a quadratic function which can be minimized analytically, provided that
(
X

T
(x) ·X(x)

)
is invertible. A

necessary condition for the residual ε of the least squares estimator is to be unbiased, which is only the
case for the residual to be zero mean (E{ε} = 0). Another property, only valid for Ordinary Least Squares
(OLS) estimators (Θ̂OLS), is that the residual posses a constant variance for all the measurements and

is uncorrelated (E{εεT} = σ2I, where σ is the noise standard deviation and I the identity matrix). For a
non-constant variance, Weighted Least Squares (WLS) estimator (Θ̂WLS) can be used, where the residuals

are ε =
√
Wν, where W is a constant noise scaling matrix and ν is a white noise residual. For a least

squares estimator that allows correlated residuals (E{εεT} = Σ, where Σ the residual covariance matrix

which can be used as a non-diagonal weighting matrix), generalized least squares (GLS) estimator (Θ̂GLS)

can be used. These LS estimators are summarized with Equations 3.5a - 3.5c[59].

Θ̂OLS =
(
X

T
(x) ·X(x)

)−1

·XT
(x) · Y (3.5a)

Θ̂WLS =
(
X

T
(x) ·W−1 ·X(x)

)−1

·XT
(x) ·W−1 · Y (3.5b)

Θ̂GLS =
(
X

T
(x) · Σ−1 ·X(x)

)−1

·XT
(x) · Σ−1 · Y (3.5c)
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3.2.3. Multivariate B-Spline Functions
The accuracy of ordinary polynomials in approximating nonlinear behavior is limited by their degree, as

capturing highly nonlinear dynamics together with local irregularities would require a very high-order

polynomial. Splines consist of multiple polynomials defined over adjacent triangular bases, known as

simplices, which offer a higher approximation power than ordinary (global) polynomials [57]. A Comparison

of the 4 different types of multivariate splines (Tensor, Thin plate, Polyhedral and Simplex) with respect to

generality in all dimensions, handling scattered data and offering a simple and efficient implementation has

already been done in the work of C.C.de Visser (see [9], [31]). The primary advantage of the multivariate

simplex spline, in comparison to other multivariate approximation methods, has been determined to be the

ability to approximate scattered multi-dimensional data over non-rectangular domains using polynomials.

The usefulness of the unique properties of these polynomials makes them extremely good approximating

functions when used inside a framework for system identification [9].

Any polynomial p(x) of degree d can be written in the B-form as shown in Equation 3.6[32].

p(x) =
∑
|κ|=d

ctjκ B
d
κ(btj (x)) (3.6)

where c
tj
κ are the polynomial, or B-coefficients with b = (b0, b1 . . . bn) the barycentric coordinates of x

with respect to an n-simplex tj . The definition of these polynomials is done localy on simplices tj , each
n-simplex having n+ 1 non-degenerate vertices ν. The local coordinate system, in the form of barycentric

coordinates contains all points x that are the sum of unique weights b which are multiplied with the vertices
ν. Additionally, barycentric coordinates are normalized. This is depicted in Equation 3.7[60].

x =

n∑
i=0

biνi 3
n∑

i=0

bi = 1 (3.7)

The Bernstein basis polynomial Bd
κ(btj (x)) is given by Equation 3.8

[60].

Bd
κ(btj (x)) =

d!

κ!
(btj (x)) (3.8)

where btj (x) (b ∈ Rn+1) is the barycentric coordinate of the point x ∈ Rn with respect to the n-dimensional
simplex t. The multi-index κ has the following properties: |κ| = κ0 + κ1 + · · ·+ κn and κ! = κ0!κ1! . . . κn!,
which allows to simplify the notation of the basis polynomials to Bd

κ(btj (x)) in Equation 3.8. In order for
b to be a Stable Local Basis, the basis functions are only locally active and zero everywhere else, and

stable only if the relation
∑

|κ|=dB
d
κ(btj (x)) = 1, is true. Thus it is possible to form the per-simplex vector

notation of Equation 3.6, shown with Equation 3.9[31].

ptj (x) =

{
ctjBd

(
btj (x)

)
, ∀x ∈ tj

0 ∀x /∈ tj
(3.9)

The B-coefficients locally control the shape of the simplex polynomial and have a unique spatial location

within each simplex. The structure formed by these coefficients within a simplex is known as the B-net [9].

The total number of B-coefficients for a given degree d and dimension n can be calculated using Equation
3.10[60].

d̂ =

(
d+ n

n

)
=

(d+ n)!

n!d!
(3.10)

The approximation power of a spline function is determined by the triangulation configuration, which

refers to many simplices joined together across all simplex spline dimensions. A triangulation is the

partitioning of a bounded domain Ω ⊂ Rn into a set of J non-overlapping simplices, as shown in Equation

3.11[30].
T := ∪J

j=1tj , ti ∩ tj ∈ {∅, t̃}, ∀ti, tj ∈ T (3.11)

Solving a scattered data approximation problem on a triangulation involves finding the optimal B coefficients

for each B-form polynomial. Using Equation 3.11, it is possible to define a spline function of degree d and
continuity order r on a triangulation T , consisting of J simplices with Equation 3.12[60], without the need to

specify individual spline functions.
sdr(x) = B · c ∈ Sr

d(TJ) (3.12)

where Sr
d(TJ) is known as the spline space. B is the global regression matrix with B = RN×J·d̂ and c is

the global B-coefficient vector.
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Continuity constraints

Given the local nature of Bernstein polynomials, continuity equations are introduced to ensure the model has

a smooth surface up to a specified order. For general orders of continuity r < d between two neighbouring
simplices t1 and t2, the continuity conditions are formulated using Equation 3.13

[33]. These conditions

include all continuity orders up to r, meaning that second-order continuity also implies first-order and

zeroth-order continuity [13].

ct2m,κ1,...,κn
=
∑

|γ|=m

ct1(0,κ1,...,κn)+γB
m
γ (bt1(ν̃)) (3.13)

where γ is a multi-index with the same size as κ and the sum of γ and κ is element-wise. It is assumed
that ν̃ is out-of-edge vertex of simplex t2. The total amount of smoothness constraints per-edge in an
n-dimensional triangulation of order Cr is calculated using Equation 3.14[34].

R =

r∑
m=0

(d−m− n− 1)!

(n− 1)!(d−m)!
(3.14)

It then becomes possible to write the continuity equations for all edges E in a set of linear equations shown

in Equation 3.15[34].
Hc = 0, H ∈ RE·R×J·d̂ (3.15)

where H is the Smoothness Matrix, with each row describing a single constraint between two simplices,

making H a sparse and rank deficient matrix.

B-Form Polynomials and Linear Regression

Using the per-simplex representation from Equation 3.9 it becomes possible to reformulate the Linear

regression model, depicted in Equation 3.2, using the substitution of the polynomial regressor matrix (X)

with per-simplex regression matrix Btj and coefficient vector θ with per-simplex B-coefficient vector c
tj ,

which is depicted in Equation 3.16[60].

Y =


Bd

d,0,0

(
btj (x(1))

)
Bd

d−1,1,0

(
btj (x(1))

)
. . . Bd

0,1,d−1

(
btj (x(1))

)
Bd

0,0,d

(
btj (x(1))

)
...

...
...

...
...

Bd
d,0,0

(
btj (x(M))

)
Bd

d−1,1,0

(
btj (x(M))

)
. . . Bd

0,1,d−1

(
btj (x(M))

)
Bd

0,0,d

(
btj (x(M))

)
 ctj + ε

(3.16)

Indicating a spline function using the spline space formulation in Equation 3.12, a global linear regression

structure for B-form polynomials can also be derived, which is depicted with Equation 3.17[60].

Y =


Bt1 0 0 0

0 Bt2 0 0

0 0
. . . 0

0 0 0 BtJ



ct1
ct2
...

ctJ

+ ε (3.17)

Since B-form polynomials are linear in the parameters, it is possible to postulate the OLS cost function

using the global parameters, shown in Equation 3.17 with Equation 3.18[60].

J(c) =
1

2
(Y −Bc)T (Y −Bc) (3.18)

In order to enforse smoothness constraints between individual spline pieces, the constrained cost linear

regression estimator is determined using Equation 3.19[60].

ĉ = argmin J(c) = argmin

[
1

2
(Y −Bc)T (Y −Bc)

]
, subject to H · c = 0 (3.19)

This relation can be solved with different methods, one of which is the Lagrange Multiplier Method. This

method, augments the optimization problem with the Lagrangian: L(c, λ) = 1
2 (Y −Bc)T (Y −Bc)+λT ·H ·c,

where λ is a vector of Lagrangian Multipliers. The optimum is then found at location (c, λ), which means
that the partial derivatives ∂L

∂c and ∂L
∂λ , at this point, equate to zero. After some mathematical manipulation,

the Lagrangian method results in Equality constrained OLS (ECOLS) or Equality constrained GLS (ECGLS)

B-coefficients estimators showed in Equations 3.20a[60] and 3.20b[60].

ĉECOLS =
(
BT ·B

)−1 ·BT · Y (3.20a)

ĉECGLS =
(
BT · Σ−1 ·B

)−1 ·BT · Σ−1 · Y (3.20b)
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3.3. Linear Parameter Varying Systems
In a general description, LPV systems constitute a class of linear systems characterized by state-space

descriptions that are functions of time-varying parameters. The LPV framework includes systems in

which the controller is constrained to a linear configuration, with state-space entries that are causally

dependent on the past trajectory of the time-varying parameters. The general continuous-time state-space

representation of an LPV system is shown in Equation 3.21[20].

G(ρ) :


ẋ(t) = A(ρ)x(t) +B1(ρ)ω(t) +B2(ρ)u(t)

z(t) = C1(ρ)x(t) +D11(ρ)ω(t) +D12(ρ)u(t)

y(t) = C2(ρ)x(t) +D21(ρ)ω(t) +D22(ρ)u(t)

(3.21)

where A ⊂ Rnx×nx , B ⊂ Rnx×nω , C ⊂ Rny×nx , D ⊂ Rny×nω are linear matrix functions that depend on

the parameter space P :=
{
ρ := [ρ1, ρ2, ..., ρ

T
k ] ∈ Rk, ρi ∈

[
ρi, ρi

]
∀i = 1, ..., np

}
. x(t) ∈ Rnx , y(t) ∈ Rnp ,

u(t) ∈ Rnm , z(t) ∈ Rnz are are the state, output, input, controlled output vectors respectively. ω(t)
contains the exogenous inputs. The general relation shown in Equation 3.21, can be subdivided into a

representation depending on the different cases of the scheduling function ρ: when ρ = constant, the

system is represented as LTI. ρ = ρ(t) where the variation of ρ with respect to time is explicitly known, the
system is represented as LTV, or ρ(t) is external parameter, then the system is LPV. ρ = ρ(x(t)) is the
quasi-LPV (qLPV) representation, where x(t) is the internal state vector of the system.

LPV control problems usually involve solving an infinite number of LMIs due to the parameter space.

Some approaches to reduce the problem to a finite set include polytopic, grid-based, and Linear Fractional

Transformation (LFT) approaches. The most used is the polytopic approach with the restriction to a limited

number of scheduling parameters because the number of vertices increases exponentially with the number

of parameters, making the approach less feasible as the system complexity grows [20]. However, most

control synthesis problems cannot be expressed in the form of a Linear Matrix Inequality (LMI). Instead,

they are often represented in a more general non-convex form known as a Bilinear Matrix Inequality (BMI),

for which no complete or efficient methods to find global solutions are currently available [42].

3.3.1. Quasi-LPV (qLPV) form
The pure form of LPV shown with Equation 3.21, does not suit most flight control problems, which require the

use of a quasi-LPV (qLPV) model, as the scheduling variables are measured states where the parameter

can vary as a function of states, inputs or outputs and not just considered as exogenous inputs [20]. For

qLPV systems, the internal state vector x(t), can be split into scheduling states ζ(t) ∈ FP , where FP
denotes the set of all piecewise continuous functions mapping R+ (time) into P with a finite number of

discontinuities in any interval and non-scheduling statesW (t) [6]. Thus x(t) = [ζ(t)W (t)]T. This division
makes it possible to rewrite the qLPV into the form provided in Equation 3.22.

G(ρ(t)) :


ζ̇(t) = A11(ρ(t))ζ(t) +A12(ρ(t))W (t) +B1(ρ(t))u(t)

Ẇ (t) = A21(ρ(t))ζ(t) +A22(ρ(t))W (t) +B2(ρ(t))u(t)

y(t) = C1(ρ(t))ζ(t) + C2(ρ(t))W (t) +D(ρ(t))u(t)

(3.22)

Comparing Equation 3.21 with Equation 3.22, the exogenous inputs ω(t) can be assumed to be a

part of the scheduling variable vector ρ(t) = [ζ(t) ω(t)]T, when written in qLPV form, without the loss of

generality [6]. The system dynamics are linear with respect to the inputs and other states, and there are

inputs to regulate the scheduling variables to arbitrary equilibrium values. However, practical application

requires numerical testing across a grid of scheduling variables within the defined operating envelope and

the analytical results are only strictly valid within the defined limits of the scheduling variables and their

rates of change [41].

Another advantage of qLPV form of the nonlinear model is that global stability can be proven represented

as a convex LMI optimization problem, by supposing there exists a positive definite matrix P such that

Equation 3.23 is valid. Then, the system is globally stable over the operating envelope P.[50]

A(ζ(t))TP + PA(ζ(t)) < 0, ∀ζ(t) ∈ P. (3.23)

Equation 3.23 is obtained by supposing that the system is described by a state-space representation given

by ẋ(t) = A(ζ)x(t), where x(t) = [ζ(t)W (t)]T with parameters within the set P. Then, the main goal is
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to find some Lyapunov function V (x), defined as V (x) = xTPx. For the system to be globally stable, the

time derivative of V (x(t)) along the trajectories of the system must be negative definite.[44] Thus, the

time derivative of the Lyapunov function V (x(t)) is given by Equation 3.24. To ensure global stability,
V̇ (x) < 0 ∀x(t) 6= 0, ζ(t) ∈ P .

V̇ (x(t)) =
d

dt
(x(t)TPx(t)) = x(t)T

(
A(ζ(t))TP + PA(ζ(t))

)
x(t) (3.24)

In practical applications, the LMI constraints in Equation 3.23 are evaluated at all grid points within the

envelope P and choosing a Lypunov function that satisfies the conditions of V (x(t)) is non-trivial. As a
result, the ”frozen” dynamics (fixing the scheduling states ζ at a specific value, to analyze the system as

LTI) at a fixed parameter are crucial in determining both local and global stability of the original nonlinear

dynamics.

Theoretical qLPV Modeling

The available literature on qLPV systems identifies two primary approaches for their theoretical derivation

(see [6], [19], and [18]). Starting from the most common method, the Linearization based approach, which

uses a family of LTI systems at different points within the operational envelope and relies on first-order

Taylor Series approximations around a single or multiple equilibrium points. The other two methods

are a part of a larger group of Substitution Based Transformation Methods, which involves inserting the

scheduling parameters as a function of the total state vector x : x(t) = [ζ(t) ω(t)]T and inputs u using
some selector functions Sx and Su of the components of (x,u) used for the substitution, creating the vector
ρ = [Sxx Suu]

T [18].

Linearization Based Methods The advantage of writing 3.22 in such form, is that, it is applicable to

a class of non-linear systems that can be written as the form shown in Equations 3.25a - 3.25b. The

assumptions made using this form is that the states and the control inputs must enter the system linearly,

but this can be relaxed if they are considered as scheduling parameters and added to the nonlinear terms

matrix K(ρ(t)) [6]. This form can be easily first-order linearized with respect to the equilibrium/trim point

using the relations indicated in Equation 3.26a and 3.26b.[
ζ̇(t)

Ẇ (t)

]
= A(ρ(t))

[
ζ(t)

W (t)

]
+B(ρ(t))u(t) +K(ρ(t)) (3.25a)

y(t) = C(ρ(t))

[
ζ(t)

W (t)

]
+D(ρ(t))u(t) (3.25b)

The resulting model serves as a local approximation of the nonlinear plant’s dynamics around a specific

set of equilibrium points. Applying a Jacobian linearization to the plant also requires an appropriate

interpolation scheme that should be applied to both the state-space matrices of the system and the

equilibrium curve [19]. It is possible to obtain the state-space matrix of the linearized system by first

considering the difference of the function for the scheduled states fζ and function evaluated at the trim
point (ζ0,W0, u0) with Equation 3.26a. The same is performed for the non-scheduled function fW at the

trim point shown in Equation 3.26b.

fζ(ζ,W, u) ≈ fζ(ζ0,W0, u0) +
∂fζ
∂ζ

(ζ − ζ0) +
∂fζ
∂W

(W −W0) +
∂fζ
∂u

(u− u0) (3.26a)

fW (ζ,W, u) ≈ fW (ζ,W, u)|ζ0,W0,u0
+
∂fW
∂ζ

(ζ − ζ0) +
∂fW
∂W

(W −W0) +
∂fW
∂u

(u− u0) (3.26b)

Using the expressions derived in Equations 3.26a and 3.26b, we can rewrite the linearization in

state-space form, which satisfies the qLPV form, using Equation 3.27[6].[
δ̇ζ

δ̇W

]
=

[
∂fζ
∂ζ

∂fζ
∂W

∂fW
∂ζ

∂fW
∂W

][
δζ

δW

]
+

[
∂fζ
∂u
∂fW
∂u

]
δu (3.27)

where δζ = ζ− ζ0, δW =W −W0 and δu = u−u0 while the matrix containing the partial derivatives with
respect to ζ andW is equivalent to A11(ρ(t)) · · ·A22(ρ(t)) and the vector containing the partial derivatives
with respect to u is equivalent to B1(ρ(t)) · · ·B2(ρ(t)) in Equation 3.22.
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The disadvantages of Jacobian linearization stem from the fact that it is a first-order method, which for

large control inputs, diverges from the non-linear model. This would also mean that the region in which the

LTI approximations are valid for the nonlinear model is very limited when a small number of equilibrium

points is considered. The linearization in the equilibrium points is a serious restriction that may lead to

poor transient performance as the approximation requires slowly varying scheduling parameters [18]. For

the application of flight control, the longitudinal and lateral dynamics would require fast varying parameters.

Also, having considered a large operating envelope, the use of an LTI model, at each equilibrium point, for

the desired dynamics could lead to a large mismatch between the reference system and the actual system,

resulting in large uncertainties that could even cause control effector saturation, and consequently loss of

stability or degraded performance [43].

A linearization method called Multiple Linearizations around a Single Equilibrium Point as indicated

in [18], that solves the problem of the poor transient performance of the general Jacobian linearization.

It makes it possible to use multiple linearizations in the vicinity of a single equilibrium point. Then the

resulting local models can be interpolated to obtain a global LPV model. Regardless of how well it copes

with transients, its principal disadvantage is that it cannot handle nonlinear models with multiple equilibria.

Other methods exist, such as the Linearization along a known trajectory, where trajectory of the scheduled

variables (ρ) is pre-defined, but these problems resemble LTV rather than LPV systems and evidently if ρ is
far off the pre-defined trajectory, performance reduces. Another linearization method namedOff-Equilibrium

Linearization around a Set of Operating Points, looks at the Jacobian linearization of Equation 3.25a where

not all points are considered as equilibrium points. Then, K(ρ(t)) will contain a function f(pi) of all the
non-equilibrium points (pi), which is interpolated in the same way as in the previous linearization methods.
The remainder terms are considered as disturbances, additional inputs or they are locally eliminated to

form a global LPV model. This enables to obtain models that improve on the transient dynamics of the

LPV approximation.

Substitution Based Transformation Methods Several ad-hoc substitution approaches exist, such

as Substitution by Virtual Scheduling, which fails to provide a general estimation procedure and has the

disadvantage of increasing system order drastically increases the number of scheduling parameters. It is

also only applicable to non-linear systems that do not use an approximation of plant dynamics. Velocity-

Based Scheduling Technique looks at a linear system considering all the operating points of a non-linear

system. A partially differentiable nonlinear function f̂(ζ(t)), appears in Equation 3.25a, constricting the
solution set to signals that are differentiable. It is then possible to mask the differentiation of the scheduled

state vector ζ(t) and the control input u(t) into new variables ζ̃(t) = dζ(t)
dt and ũ = du(t

dt such that the

behavior of the resulting quasi-LPV system is different. This however, can lead to amplification of noise

when the control input u is differentiated, making identification difficult, which limits practical use.

The State-transformation Method involves state transformation using differentiable functions of non-

scheduling states, where control inputs are used to eliminate nonlinear terms that are independent of the

scheduling parameters. This formulation necessitates that the dimension of the scheduling states vector

nζ must equal the dimension of the input vector nu, in order to be able to rewrite Equation 3.25a to qLPV

form [6]. Defining the trim functions, where the left-hand side of Equation 3.25a is [ζ̇(t) Ẇ (t)]T = 0, and
assuming there exist continuously differentiable functionsWeq(ρ) and ueq(ρ) such that for every ρ ∈ FP

the system is in steady state [6]. This is presented in Equation 3.28[19], where Ẇeq(ρ) =
∂Weq(ρ)

∂ρ ζ̇ and

U = u− ueq(ρ).[
ζ̇

Ẇ − Ẇeq(ρ)

]
=

[
0 A12(ρ)

0 A22(ρ)− ∂Weq(ρ)
∂ζ |ρA12

][
ζ

W −Weq(ρ)

]
+

[
B1(ρ)

B2(ρ)− ∂Weq(ρ)
∂ζ |ρB1(ρ)

]
U (3.28)

Writing the system in such form, as in Equation 3.28, is limited to the specific class of non-linear state

space models (Equation 3.25a) and there is no constructive procedure to find the continuously differentiable

functionsWeq(ρ) and ueq(ρ) over the non-trim region.

The next approach, known as Function Substitution, has the advantage of ensuring that the solution

to the nonlinear dynamics is satisfied at all grid points [50]. In this method, the system represented by

Equation 3.25a is replaced with an unknown matrix function, F , such that the approximation remains

accurate for every trajectory. F has a linear combination of scheduling parameter-dependent functions and
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the scheduling vector. Using a substitution of coordinates around a chosen equilibrium point (ζeq,Weq, ueq),
Equation 3.29a is obtained. Looking only at the scheduled states ρ(t) = ζ(t), along with the transformation
coordinates, Equation 3.29b is created, where the contents of the function F are shown in Equation 3.29c.

ζ̃ = ζ − ζeq, W̃ =W −Weq, Ũ = u− ueq (3.29a)[ ˙̃
ζ(t)
˙̃
W (t)

]
= A(ρ(t))

[
ζ̃(t)

W̃ (t)

]
+B(ρ(t))Ũ(t) + F(ρ(t)) (3.29b)

F(ρ(t)) = A(ρ(t))

[
ζeq(t)

Weq(t)

]
+B(ρ(t))ueq(t) +K(ρ(t)) (3.29c)

The main goal of this method is to reformulate F into an qLPV problem that can minimize the variations

of each matrix element over the entire operating envelope. It is achieved by considering F to be formed by

an Unknown matrix function E(ρ(t)), with ei being the i-th row vecor (i = 1...n) of the matrix E(ρ(t)) as
presented with Equation 3.30.

F(ρ(t)) = E(ρ(t))ζ̃(t) =
[
e1(ρ(t)) . . . en(ρ(t)

]T
ζ̃(t) (3.30)

This function can capture terms in the nonlinear system that are non-affine in the non-scheduling states

and control inputs and are not just purely functions of the scheduling vector. This decomposition is carried

out through a minimization procedure, which leads to a series of numerical optimisation problems [19].

Thus the final qLPV model is written as shown in Equation 3.31a where the reformulated state matrix AF
is shown in Equation 3.31b and 0̄ is the n× nW zero matrix.[ ˙̃

ζ(t)
˙̃
W (t)

]
= AF (ρ(t))

[
ζ̃(t)

W̃ (t)

]
+B(ρ(t))Ũ(t) (3.31a)

AF (ρ(t)) = A(ρ(t)) + [E|0̄] (3.31b)

The solution Equation 3.31a closely matches that of the nonlinear dynamics because the equality

constraint in Equation 3.30 is satisfied at all grid points. A disadvantage of this method is its strong depen-

dence on the reference point; different reference points can lead to different representations. Additionally,

the model may fail to capture the local stability of the original nonlinear model at other equilibrium points

[50].

Empirical qLPV Modeling

Empirical modeling involves developing models based on experimental data, as opposed to theoretical

models explained above. The available literature on empirical modeling of qLPV systems identifies two

primary approaches that differ mainly in the frequency of experimental runs: global and local. Global

approaches collect input/output data, including parameter variations, in a single experimental run, leading

to the direct derivation of an LPV model in one step. In contrast, local approaches conduct multiple

experiments at fixed parameter values, resulting in several LTI models that need to be interpolated to form

the complete LPV representation of the system [19]. Advantages of local approach is to use well-established

LTI framework, but lack global stability and performance.

3.3.2. Interpolation of Local Models
Interpolation approaches in system identification utilize the classical gain-scheduling concept, where

models are derived for constant scheduling trajectories and interpolated to form a global model. These

methods, often using polynomial or spline interpolation, are closely related to the local-linear-modeling

framework and they leverage the LTI prediction-error framework to estimate the frozen dynamics of LPV

systems, even in closed-loop settings.[18] If the true LPV system demonstrates a smooth dependence on

the scheduling parameter ρ, the overall parameter-dependent model can be directly reconstructed from
the identified local models [19].

A very common approach to interpolation in literature (see [19]) is based on using already determined

set of LTI models, Nθ and directly fitting suitable regressors γ (linear or non-linear combinations of θ),
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formed from the scheduling parameter θ ∈ Rnρ to the state-space matrices. This is usually in Affine form

and is represented by Equations 3.32a and 3.32b.

ẋ =

(
A0 +

nγ∑
i=1

Ai(γi)

)
x+

(
B0 +

nγ∑
i=1

Bi(γi)

)
u (3.32a)

y =

(
C0 +

nγ∑
i=1

Ci(γi)

)
x+

(
D0 +

nγ∑
i=1

Di(γi)

)
u (3.32b)

where the state-space matrices are represented by transfer function:

Gk(s) = C (γ(k)) (sI −A(γ(k)))
−1
B(γ(k)) +D (γ(k)), for k = 1 . . . Nθ, where k is the scheduling index of

the kth identified local model. When the entries of Equations 3.32a and 3.32b, a combined matrix F (γ(k))
can be obtained using Equation 3.33.

F (γ(k)) =

[
A(γ(k)) B(γ(k))

C(γ(k)) D(γ(k))

]
, k = 1 . . . Nθ (3.33)

The polynomial interpolation of the elements of the matrix F can be performed by solving a least

squares problem of the linear regression form provided by Equation 3.2, where Y contains the elements

fij of F . Matrix X would contain the regressor terms γ and Θ would contain the polynomial coefficients.

To express the fitting error, RMSE as a a standard metric for performance measure (identification criterion)

is computed using Equation 3.34[19].

RMSE =
||Y −XΘ̂||2

||Y ||2
(3.34)

Two pitfalls have been identified for interpolation applicable directly to state-space matrices. First, state

transformations used to align the LPV representation with favorable interpolation forms, like cannonical form,

can introduce dynamic dependencies not captured by local LTI snapshots, leading to substantial errors

during interpolation. Furthermore, while polynomials are straightforward and efficient, the least squares

(LSQ) method typically utilizes all available degrees of freedom, resulting in models that are nonsparse

and frequently overly complex [8]. Second, in black-box approaches, the independent identification of

local models results in incoherent state bases, reducing the performance of the interpolated LPV model in

regions not covered by the data set.[23]

The first pitfall can be minimized by using a different interpolation form. This research proposes B-

splines, which are local basis functions that consist of piecewise polynomials. The segments are connected

such that their derivatives are continuous up to a specific order, which is determined by the degree of the

polynomials [32]. These functions are advantageous due to their computational simplicity and the flexibility

to achieve the desired level of smoothness [26]. Due to these properties, B-splines have been used in

interpolation problems, where efficient and smooth approximations are needed. Another very important

benefit, that differentiates B-splines with other model structures, such as non-polynomial Neural Networks,

is that they posses the linear-in-the-parameters property. This means that Least squares solvers, with

estimators shown in Equation 3.5a, can be used.

The second pitfall can be avoided if the aerodynamic model chosen possesses information about the

relationships between variables, constraints on model behavior, or explicit equations representing system

dynamics, making the model ’grey-box’. The ICE aircraft posseses a 6-DOF aerodynamic mathematical

model, explained in [37], which contains these relationships, thus it can avoid incoherent state bases due

to data set unavailability.

3.3.3. Discrete Time LPV Systems
In the LPV modeling framework, continuous-time (CT) LPV models are crucial for guiding model structure

selection in system identification. However, while CT models are commonly used in LPV control synthesis,

existing LPV identification methods are predominantly designed for discrete-time (DT). This necessitates the

efficient discretization of CT models for practical implementation in the system identification processes [18].

The emphasis is on LPV-SS models with static dependence (memoryless) on the scheduling parameter,
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as this distinguishes them from LPV-IO models in cases such as Affine parameter dependence. The affine

assumption in commonly used in LPV systems since it simplifies the modeling and mathematical analysis by

providing a linear relationship between parameters and scheduling variables. This assumption preserves

convexity, making control synthesis more straightforward through convex optimization techniques.[44]

Additionally, affine models often offer a good balance between accuracy and complexity in practical

applications.

Equations 3.35a and 3.35b depict the DT LPV-SS form, with this affine assumption (LPV-A). A(ρd) is
a sum of constant matrices Ai multiplied by time-varying scheduling parameter ρd,i at time step k. In a
similar fashion, the same is done with the SS matrices B(ρd),C(ρd) and D(ρd). By definition, yd, ud, ρd
are the sampled signals of the CT signals y(t), u(t), ρ(t) with sampling period Td > 0. The scheduling
parameter ρd(k), is a vector with s being the the scheduling dimension.

xd(k + 1) =

(
A0 +

s∑
i=1

Ai(ρd,i)(k)

)
xd(k) +

(
B0 +

s∑
i=1

Bi(ρd,i)(k)

)
ud(k) (3.35a)

yd(k) =

(
C0 +

s∑
i=1

Ci(ρd,i)(k)

)
xd(k) +

(
D0 +

s∑
i=1

Di(ρd,i)(k)

)
ud(k) (3.35b)

The affine parameter dependence, can be immediately generalised to a polynomial parameter dependence.

If the system matrix A and output matrix C are set to be constant, resulting in A = A0 and C = C0, while

B and D can vary, then Equations 3.35a and 3.35b exhibit Input-affine (LPV-IA) parameter dependence.

A discrete-time form of the the general LPV CT form shown in Equation 3.21, is known as LPV Linear

Fractional Transformation (LPV-LFT) form and is represented in Equations 3.36a-3.36c[19].

xd(k + 1) = Axd(k) +B0wd(k) +B1ud(k) (3.36a)

zd(k) = C0xd(k) +D00wd(k) +D01ud(k) (3.36b)

yd(k) = C1xd(k) +D10wd(k) +D11ud(k) (3.36c)

where wd(k) = diag (ρr1(k)Ir1 . . . ρrs(k)Irs) zd(k), r = r1 . . . rs, w, z ∈ Rr. The benefit of these discrete-

time representations are that affine and linear transformation techniques are related to each other by

denoting the composition of the system matrices, using LPV-IA state-space system, as shown in Equation

3.37[19].

M(ρd(k)) =

[
A B(ρd(k))

C D(ρd(k))

]
=M0 +M1ρd,1(k) + · · ·+Mrρd,r(k) (3.37)

whereM(ρ(k)) is expressed by means of rank decomposition, shown in Equation 3.38. The derived form
of the system matrices matches the specific case of a linear fractional transformation characterized by

D00 = 0 thereby allowing the transformation between these two representations.

M(ρ(k)) =M0 + [U1 . . . Us] · diag (ρr1(k)Ir1 . . . ρrs(k)Irs) ·
[
V T
1 . . . V T

s

]T
(3.38)

One major drawback of the LPV-LFT is the significant time and effort required to develop formal LFT

models. The impact of LFT discretization on the validation of results is also not fully understood, which

can introduce uncertainties in the outcomes [51].

Zero-Order Hold

In the existing literature on LPV discretization, nearly all approaches are based on an isolated framework,

typically assuming an ideal Zero-Order Hold (ZOH) setting [48]. Multiple approaches have been introduced

for discretizing CT systems with the goal of preserving the CT input-output behavior under a zero-order-

hold setting, shown in Figure 3.4, where the variation of free CT signals is limited to piecewise-constant.

Some of these approaches: Complete, Euler forward, and Trapezoidal methods, which were developed

for the discretization of LPV-SS representations by extending concepts from the linear time-invariant

(LTI) framework. Alternative approaches are Polynomial and Multi-step formulas like the Runge-Kutta,

Adams-Moulton, or the Adams-Bashforth type. Polynomial methods achieve better approximation of the

complete case, but at the expense of increasing complexity. For multi-step approaches, zero-order hold

(ZOH) discretization with a fixed step size, data is available only at past and present sampling instances,

limiting the applicability of Adams-Moulton. Additionally, as the input function can only be evaluated at



3.3. Linear Parameter Varying Systems 53

integer multiples of the sampling period, single-rate system realization is necessary, so Runge-Kutta cannot

be used. Adams-Bashforth family satisfies these constraints, but posses slower convergence (nth-order)

and has smaller stability radius (than Trapezoidal method for example).[18]

The Zero-Order Hold assumption states that if we consider a CT system plant G, with input-output
partition (ud(k),yd(k)) and a scheduling signal ρd(k), where u(t) and ρ(t) are CT signals generated by an

ideal ZOH and y(t) is sampled in a perfectly synchronized manner with sampling period or discretization
time-step Td where Td > 0. The ZOH and the output sampling instrument have infinite resolution (no

quantization error) and zero processing time [48].

G
ZOH

u(t)ud(k)

Sampling

y(t) yd(k)

ZOH

ρ(t)

ρd(k)

Figure 3.4: Zero-order hold discretization of a general continuous-time LPV system (LPV-ZOH) with plant G, Continuous-time inputs

u(t), scheduling signal ρ(t) and outputs y(t) and their discrete counterparts: Discrete-time inputs ud(k), scheduling signal ρd(k)
and sampled output yd(k) [48].

Based on the ZOH setting assumption, the relations in Equations 3.39a-3.39c[18] are derived, for each

k ∈ Z, which results in the constraint that u(t) and y(t) can only change at the end of each sampling

interval.

u(t) = ud(k) ∀t ∈ [kTd, (k + 1)Td), (3.39a)

ρ(t) = ρd(k) ∀t ∈ [kTd, (k + 1)Td), (3.39b)

yd(k) = y(kTd) (3.39c)

Using this assumption imposes a piecewise-constant behavior on the scheduling parameter ρc, which
may originate from external disturbances (general LPV) or be a function of the states of the plant G (qLPV),

and may not be fully influenced by the digitally controlled actuators. While restricting these variables during

the sampling period is necessary for deriving a DT description of the system, relaxing this assumption

to allow more complex signal trajectories, such as first-order (piece-wise linear) or second-order holds

(2nd-order polynomial), can yield a more accurate DT representation. Though it may result in highly

complicated discretization rules that are likely to end up with non-causal scheduling dependence.[48]

A basic property of LPV-ZOH is that due to the assumed ideal hold devices, at the beginning of each

sample interval a switching effect occurs, shown with Equations 3.40a and 3.40b.

u(t) =
∞∑

k=−∞

H(t− kTd) (ud(k)− ud(k − 1)) , (3.40a)

ρ(t) =

∞∑
k=−∞

H(t− kTd) (ρd(k)− ρd(k − 1)) , (3.40b)

where H(t) is the Heaviside step function, shown in Equation 3.41.

H(t) =

{
1 if t < 0

0 if t ≥ 0
(3.41)

It is assumed that the switching effects are smooth and no dynamics are introduced with switching ρd.

The Complete Method of LPV-SS discretization entails solving an Ordinary Differential Equation (ODE),

with the assumption that ρd and ud are constant signals inside each sampling interval kTd, which results in
Equations 3.42a and 3.42b.
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xd(k + 1) = eA(ρd)Tdxd(k) +A−1(ρd)
(
eA(ρd)Td − I

)
B(ρd)ud(k) (3.42a)

yd(k) = C(ρd)xd(k) +D(ρdud(k) (3.42b)

where ρd = ρ(kTd) and A(ρd) is invertible. Looking at the term eA(ρd)Td , it becomes evident that this

method introduces a non-linear relationship in ρd, as A(ρd) is non-static. It makes the method be generally
disfavoured as identification and control-synthesis procedures are often based on the assumption of linear,

polynomial, or rational (static) dependence on ρ(t) [48].

To avoid the appearance of the term eA(ρ(kTd))Td , we can use the Euler’s method, by using first order

approximation: eA(ρd)Td ≈ I +A(ρ(kTd))Td, which transforms Equation 3.42a into Equation 3.43.

xd(k + 1) = xd(k) + TdA(ρ(kTd))xd(k) + TdB(ρ(kTd))ud(k) (3.43)

This approximation leads to a good representation of the original behaviour while being less complex in

the coefficient dependence.

A commonly used technique in LTI identification is the Trapezoidal rule, which can also be applied for

ZOH systems as shown in Equation 3.44.

xd(k + 1) ≈ xd(k) +
Td
2

(f(x, u, ρ)(kTd) + f(x, u, ρ)((k + 1)Td)) (3.44)

where f(x, u, ρ)(τ) is defined using Equation 3.45.∫ (k+1)Td

kTd

f(x, u, ρ)(τ)dτ =

∫ (k+1)Td

kTd

A(ρ(kTd))x(τ) +B(ρ(kTd))u(kTd)dτ (3.45)

Compared to methods like rectangular, which may simplify dependencies, or Adams-Bashforth that

reduces discretization error, the trapezoidal method maintains a good compromise between complexity and

accuracy. It provides a large stability radius and fast convergence, which can simplify model parametrization

and controller design, especially if the important considerations are maintaining DT model quality and

computational efficiency [18].

3.3.4. Multivariate Splines and LPV framework
The available literature on the modeling of LPV systems with multivariate splines is very limited. In [22], a

LPV synthesis problem has been made numerically tractable by parameterizing the Lyapunov function and

applying LMI relaxations, which reduce the infinite-dimensional parameter dependant LMI problem to a

finite set of constraints and optimization variables. This is performed by using multivariate splines in the

form of tensor product polynomial splines. The main limiting assumption is that all state-space system

matrices in the continuous-time LPV system depend on the parameter-dependent variable α of the LMI

problem through a tensor product polynomial spline. This assumption is very specific for problems that can

express this dependence, but cannot be directly applied to the majority of continuous physical systems.

Tensor product splines are inherently unsuitable for fitting scattered data due to their reliance on structured,

grid-based input. While this limitation is not problematic for the application in this paper, where data can

be arranged on a rectangular grid, it becomes a significant issue when modeling measurements from

continuous physical systems, which are inherently scattered [9].

As investigated in [55], a cubic spline is used on a arm-driven inverted pendulum model identification

of MIMO input-output LPV models, with polynomial dependance in closed-loop setting using separable

least squares estimator. The simplification made in this paper, is that the scheduling variable is a previous

sample of the angular position φ1, which is the main source of the nonlinearity of the plant. Furthermore,
a cubic spline function applied to two variables φ1 and φ2, shows better performance only for φ1, when
compared to the LPV polynomial model, while for φ2, performance is matched to the LPV model. However,

the disadvantage of using cubic spline functions was indicated to be that they are non-linear in their

parameters, therefore non-linear optimization techniques have to be used [55]. Furthermore, cubic splines

are generally not well-suited for approximating functions with C1 discontinuities, such as step functions,

as they tend to produce inaccurate approximations in the vicinity of the discontinuity and suffer from the

Gibbs’ phenomenon of splines [61]. Simplex splines, are capable of effectively modeling discontinuities in

two ways. Either by locally increasing the density of the triangulation where discontinuities are present, or

by aligning the triangulation so that areas of discontinuity coincide with the edges of the simplices [9].
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In contrast to [22], the relationship between B-splines and LPV system models discussed in [8] offers a

more general representation, focusing on identification and modelling that can be applied to any state-space

LPV model. The paper also proposes strategies for selecting the optimal number and placement of knots,

as the number of B-splines is directly proportional to the number of knots partitioning the domain over

which the spline is defined. The numerical validation of the proposed methods showed a reduction in

model complexity only on slight expense of the model accuracy. However, this is performed for univariate

B-splines, and the extension to multiple scheduling parameters leads to tensor-product polynomial splines,

which suffer the same drawbacks as in [22].

3.4. Innovative Control Effectors Aircraft
The final area of research focuses on the application of the methodologies discussed in preceding sections,

by application to a non-affine, high-dimensional flight control problem. Such a candidate is the Lockheed

Martin’s ICE program, which was started in 1993 and split in two phases. The first phase, detailed in [35],

focused on the conceptual design and analytical assessment of two baseline aircraft configurations with

innovative control effectors. The second phase, described in [36], aimed to collect empirical data to develop

accurate aerodynamic models at high Reynolds numbers, create control effector models, and analyze

their interactions. The primary objective of the ICE study was to identify and quantify the aerodynamics

and performance of various low-observable, tailless aircraft configurations featuring control effectors that

have either never been applied to aircraft before or, at the very least, have not been used in combination

with each other.[57] For the purpose of this paper, the land-based ICE model is used, which is depicted in

Figure 3.5.

2× AMT

2× iLEF

2× oLEF

2× SSD

2× ELE

TV (P&Y)

PF

Figure 3.5: Depiction of the land-based version of ICE aircraft and its 13 control surfaces labeled as: AMT - All-Moving Tips, iLEF -

inboard Leading Edge Flap, oLEF - outboard Leading Edge Flap, SSD - Spoiler Slot Deflector, ELE - Elevons, TV (P&Y) - Thrust

Vectoring (Pitch & Yaw) and PF - Pitch Flaps.[37]

Lockheed Martin provided a full 6-DOF aerodynamic model based on wind tunnel tests conducted during

the ICE research program in [37]. The model comprises of total force and moment coefficient build-up

equations, in multiple axes, incorporating contributions from the bare airframe, isolated control effectors,

interaction effects between control effectors, and dynamic derivatives.The conventional control effectors

include elevons and pitch flaps, while the innovative or unconventional effectors comprise all-moving

wingtips, as well as pitch and yaw thrust vectoring. Many of the 13 control surfaces generate moments

along multiple axes to account for the loss of directional control induced by lack of vertical tail. The position

of both conventional and innovative control effectors can also be seen in Figure 3.5. An overview of the

deflection ranges of all of the control effectors is provided in [37] and show in Table 3.1.

It is evident from the number of control effectors listed in Table 3.1 that the system is over-actuated,

necessitating the use of control allocation methods to distribute commands among the available actuators.

One of the key advantages of an over-actuated system is the ability to utilize multiple effectors to achieve

performance across all of its control axes. However, due to the coupling effects and the aerodynamic

interactions between these effectors, the control effectiveness becomes highly nonlinear. The original ICE

model presented in [37] employs linear interpolation for the majority of force and moment aerodynamic

coefficients, with the exception of those depending on the Elevons (δLEL, δREL) and the Spoiler-Slot

Deflectors (δLSSD, δRSSD), which are interpolated using cubic splines. This interpolation scheme was

later modified in [12] by implementing a zeroth-order continuous (C0) multivariate simplex B-spline model.

While this method offers certain advantages, one of its drawbacks is the presence of discontinuities at the
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Control Location Notation Positive Position Rate Primary

Effector Deflection Limits Limits Effect

[deg] [deg/s] on Axis

All Moving Tips
left δLAMT

TED [0, 60] 150 Roll & Yaw
right δRAMT

Inboard Leading left δLILEF
LED [0, 40] 40 Pitch & Roll

Edge Flaps right δRILEF

Outboard Leading left δLOLEF
LED [−40, 40] 40 Pitch & Roll

Edge Flaps right δROLEF

Spoiler-Slot left δLSSD
TEU [0, 60] 150 Pitch & Roll

Deflectors right δRSSD

Elevons
left δLEL

TED [−30, 30] 150 All axes
right δREL

Multi-Axis pitch δPTV q̇ > 0
[−15, 15] 150 Pitch & Yaw

Thrust Vectoring lateral δLTV ṗ > 0

Pitch Flaps δPF TED [−30, 30] 150 Pitch

Table 3.1: Overview of all 13 ICE Control Effectors indicating the positive deflection per set (Trailing Edge (TE) or Leading Edge (LE)

Up (U) or Down (D) including the positive pitch thrust vectoring defined as TED, positive yaw thrust vectoring TE left deflection), the

rate limits and the primary effect of the effector on the ICE axis. Note that for thrust vectoring the effect of δPTV , δLTV on Pitch &

Yaw axes is dependant on the trim thrust setting.

edges of neighboring simplices when taking derivatives, as noted in [14]. This led to the development of

an Incremental Nonlinear Control Allocation (INCA) method, which leverages the Control Effectiveness

Jacobian to account for control effector interactions. This approach, detailed in [11], not only exploits these

interactions but also addresses both actuator position and rate constraints, significantly improving ICE

control allocation performance. Further improving the spline model, in [13], a first order (C1) continuous

multivariate simplotope B-Spline model was constructed, estimated using a distributed approach. As a

continuation to the work of [13], the method of multivariate simplotope B-Spline model is further extended to

an online setting after modeling of a structural failure of ICE to demonstrate adaptive control, as explained

in [14].

3.4.1. Control Allocation
A control allocator solves and underdetermined system of Equations, such that it determines u(t) in
f [u(t)] = ν(t), which i a function that maps the true control input u(t) to a virtual control input ν(t). When

m > k from u(t) ∈ Rk and ν(t) ∈ Rm, system is overactuated. For linear cases, the relation described with

Equation 3.46[62].
ν(t) = B(x)u(t) (3.46)

where B(x) ∈ Rk×m is the control effectiveness matrix, depending on state x. The true control input is
limited by position constraint: umin ≤ u(t) ≤ umax and rate constraint: u̇min ≤ u̇(t) ≤ u̇max. when m > k
is true, the control effectiveness matrix is non-square and cannot be inverted as in the case shown in

Equation 3.47, where m = k.
u(t) = B(x)−1ν(t) (3.47)

A number of methods exist to solve the control allocation problem when m > k. To limit the scope of
the thesis, distinction is made to use methods that produce unique solution through optimization, named

Optimization Based Control Allocation and not use methods that use geometric reasoning or Dynamic

Control Allocation, that takes into account the actuator bandwidth (DynCA) when solving the problem. The

optimization control allocation tries to find the best solution of Equation 3.46 and in the cases where no

solution exists, it will generate control input, that approximates the solution of Equation 3.46 as close as

possible according to the norm used [62].
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The most commonly used norm for obtaining a solution for the control allocation problem is l2, which is
shown with Equation 3.48[62].

||u||2 =

(
m∑
i=1

|ui|2
) 1

2

(3.48)

where m is the total number of actuators and i is the index of the actuator. The optimal control input is
found in two steps indicated by Equations 3.49a[62] and 3.49b[62].

Ω = argmin
umin≤u(t)≤umax

u̇min≤u̇(t)≤u̇max

||Wν(Bu− ν)||2 (3.49a)

u = argmin
u∈Ω

||Wu(u− ud)||2 (3.49b)

whereWu is the weighting matrix for the actuators,Wν is the weighting matrix for the virtual controls and ud
is the preferred steady state actuator deflection. In cases where Ω set is empty, the method determines the

set of solutions, that minimizes the norm of the weighted difference between the virtual control input and the

produced moments. The second step, as outlined in Equation 3.49b, refines the solution set from the first

step by selecting the optimal solution based on the weighted difference between the desired steady-state

actuator deflections and the actual control input [62]. For Wν = Wu = I, where I is the identity matrix,
ud = 0 as the steady state deflection and no constraints on the actuators, Equation 3.50[62], is derived.

u = B+ν = BT
(
BBT

)−1
ν (3.50)

where B+ is the pseudo-inverse of the control effectiveness matrix. The Weighted Pseudo Inverse (WPI)

can be derived from Equation 3.49a, by reducing the problem to min
u

||e||2 subject to Bu = ν. With

e =Wu(u− ud). When B has full rank, the solution is given by Equations 3.51a - 3.51b[62].

u = (I −GB)ud +Gν (3.51a)

G = W−1
u

(
BW−1

u

)+
(3.51b)

Solving the over-actuated problem by pseudo-inverse control allocation can be done with standard linear

algebra techniques. However, the assumption of unconstrained actuators, which for the ICE, have limits

in rate and position, as seen in Table 3.1, will not hold. Inputs will be generated that can be beyond the

capabilities of the actuators, making the solutions infeasible. A common method to avoid these solutions,

which saturate the actuators beyond their limits, is to weigh each control input u with the inverse of its
maximum value, usingWu [62]. Thus, the Cascaded Generalized Inverse (CGI) can be used, which tries

to use the remaining free actuators to compensate for the saturated actuators. It provides two solutions to

the problem with Equations 3.52a and 3.52b.

u1 = (I −G1B)ud +G1ν (3.52a)

u2 = (I −G2B2)ud +G2(ν −Bu1)ν (3.52b)

where G1 solved with Equation 3.51b and a new control effectivness matrix B2 is computed that includes

only the columns of the non-saturated actuators. And the process is repeated until a feasible solution is

found. CGI is straightforward to implement and is generally an efficient method for constrained control

allocation problems.

3.4.2. LPV framework applied to ICE model
The available literature on LPV application to ICE spans two papers ([63] and [52]) and dates back more

than two decades ago, where advancements in LPV control methods and computing power were somewhat

limited.

The first paper, [63], presents a comparison between two control methods: Dynamic Inversion (DI) and

LPV control using parameter-dependent Lyapunov functions. These methods were selected due to their

shared reliance on aerodynamic models of the aircraft, applied either on-board in real time (DI) or off-line

(LPV). In the LPV control approach, a parameter-dependent Lyapunov function is computed off-line. To

ensure the efficiency of the system, this function must be kept as simple and compact as possible, as both

the size of the off-line optimization problem and the computational demands of on-line problem. In this
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paper, linear rigid body models are obtained by linearizing the equations of motion at 89 flight conditions

across the flight envelope. A polynomial least squares scheduling function is employed to derive an LPV

model for two parameters, specifically Mach number and altitude, ρ = f(M,h). This approach is applied
to the ICE five-state linear model utilizing aerodynamic data obtained from wind-tunnel experiments. The

longitudinal dynamics were approximated using Equation 3.53a and the lateral dynamics with 3.53b[
α̇

q̇

]
=

[
Zα(ρ) 1

Mα(ρ) Mq(ρ)

][
α

q

]
+
∑
i

[
Zui

(ρ)

Mui
(ρ)

]
ui (3.53a) β̇

ṗ

ṙ

 =

Yβ(ρ) Yp(ρ) Yr(ρ)

Lβ(ρ) Lp(ρ) Lr(ρ)

Nβ(ρ) Np(ρ) Nr(ρ)


 β

p

r

+
∑
i

 Yui
(ρ)

Lui
(ρ)

Nui
(ρ)

ui (3.53b)

In each design, the physical control surface deflections, ui, are replaced by generalized control or moment
commands, dy. Control synthesis is then conducted using these generalized inputs, after which the

resulting control laws will be integrated with a simplified control allocation scheme, which in turn translates

the generalized control commands into individual surface deflections. A pseudo-inverse of the control

effectiveness matrix was used for simplicity since the focus was not control allocation, using Equation.

This technique can be useful to limit the dimensionality of this work, due to the large amount of 13 surface

control actuators available to ICE, as in [63], the control input has been generalized and implemented in

the control law, given by Equations 3.54a - 3.54c, where Ac(ρ), Bc(ρ), Cc(ρ) are solutions to a set of LMI’s.

ẋc = Ac(ρ)xc +Bc(ρ)

[
ωc(xi − y) + ωcfcy

c

x

]
, (3.54a)

ẋi = −ωcfi(y − yc), (3.54b)

dy = Cc(ρ)xc (3.54c)

In [52], Barker and Ballas demonstrated that when an aircraft is trimmed for straight and level flight,

the longitudinal and lateral-directional axes are effectively decoupled when the linear model is truncated

to a sixth-order model composed of short period, roll, Dutch roll, and spiral modes. The control design

methodology they employed closely resembles the standardH∞ control design approach. Both longitudinal

and lateral-directional LPV control laws were synthesized by minimizing the L2 performance measure γ
while adhering to a set of linear matrix inequalities. In this paper the Linear Models for longitudinal dynamics,

shown in Equation 3.55a and the lateral dynamics shown in Equation 3.55b, differ in the application of the

generalized moment commands qcmd, pcmd and rcmd than in [63].[
α̇

q̇

]
=

[
Zα 1

Mα Mq

][
α

q

]
+

[
0

qcmd

]
(3.55a)


β̇

ṗ

ṙ

φ̇

 =


Yβ Yp Yr Yφ

Lβ Lp Lr Lφ

Nβ Np Nr Nφ

0 1 tan(θt) 0



β

p

r

φ

+


0

pcmd

rcmd

0

 (3.55b)

The parameter space, in which the LPVmodel is valid is made gridded in this paper where the constraints are

only solved at the gridpoints. Similarly to [63], control allocation via a pseudo-inverse of the B-matrix (B+)

to generate specific control surface commands from generalized moment commands is done: δ = B+B∗δ∗,
by using a control selector.

The difficulty in applying LPV models to highly non-linear flight control systems using spline-based

interpolation is outlined in [64]. In this work, a 6-DOF aerodynamic model is stabilized using a gain

scheduled controller composed of 25 LQR controllers. This approach results in steady-state errors in the

longitudinal dynamics, considering only two variables: forward and downward velocity. These errors occur

because the control area does not consist of a sequence of equilibrium points across the analyzed flight

envelope and extra scheduling parameters need to be considered. Adding a variable such as pitch angle

in the gain scheduling, could help the controller design and stability radius, as recommended in the report.
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3.5. Contribution of thesis to body of knowledge
Based on the conducted literature review, research and scientific work on the application of multivariate

splines, which are a class of approximating functions, as scheduling parameter functions in the context of

global LPV system identification problems is limited. Moreover, the application of multivariate B-splines in

LPV modeling had been largely unexplored in existing literature, while simplex splines contain intriguing

properties such as the ability to fit scattered datasets in non-rectangular domains. As demonstrated in

the previous section, although B-splines provide smooth approximation capabilities, their flexibility can

be limited when applied to general LPV or qLPV model. This limitation comes from the need for careful

triangulation construction and tuning, which can be computationally intensive and susceptible to numerical

issues.

The application of a LPV model, approximated using multivariate splines, to ICE aircraft has yet

to be undertaken. ICE aircraft feature unconventional control surfaces and configurations, leading to

highly nonlinear, coupled, and rapidly varying dynamics that pose significant challenges for accurate

modeling. The control effectors in ICE aircraft often necessitate basis functions capable of addressing high-

dimensional parameter spaces and abrupt shifts in dynamics. This requirement can be computationally

intensive. The body of knowledge at the Control and Simulation department of TU Delft’s Aerospace

Engineering faculty, which has a defined research direction in the development of multivariate spline

models for highly non-affine aircraft dynamics, will be enriched by the proposed work. This research

contributes to the ongoing efforts to develop robust models for the ICE framework, with a particular focus

on coping with highly transient and dynamic changes, which are characteristic of modern aircraft behavior.

The research conducted in this thesis aims to evaluate the capacity of multivariate B-splines to achieve

accurate approximations of the LPV model constructed for the highly non-affine models.

3.6. Concluding Remarks on Literature review
This literature review has examined the state-of-the-art in robust flight control by integrating it with the mod-

eling of LPV systems, thereby bridging the gap between well-established local-linear modeling frameworks

and non-linear systems. One promising direction identified is the use of multivariate simplex splines as

a scheduling function for LPV systems, which, despite its potential, has received limited attention in the

existing literature. The main objective would be to investigate the possibility of LPV model synthesis on a

highly non-linear aircraft platform by using multivariate splines as a scheduling function. This would be

an approach to LPV modeling that prioritizes the identification of an LPV system rather than closed-loop

control, shifting the focus to system identification of nonlinear system descriptions.

Through an analysis of various theoretical and methodological frameworks, including Jacobian lineariza-

tion for quasi-LPV systems around trim points and the incorporation of spline basis functions, it becomes

evident that high levels of accuracy can be achieved when approximating with piecewise continuous

functions, provided that the model’s application supports such an approach. This work will investigate a

highly non-affine overactuated ICE model that can be trimmed to obtain linearized state-space models, thus

offering a suitable choice for scheduling parameters that are functions of the states, effectively transforming

it into a quasi-LPV system. One of the main difficulties would be that the control input vector is u ∈ R13,

thus control allocation methods need to be applied. Although the literature demonstrates the use of spline

basis functions to improve continuity and accuracy, and LPV controllers have been designed for ICE, there

is currently no connection between these two approaches. This work aims to connect the two concepts by

integrating spline-based methods with LPV system design for non-linear dynamical models, one of which

is a highly non-affine aerodynamic model such as the ICE.
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Preliminary Work

The following Chapter presents the selection of methodologies as a basis for the research conducted in

this project based on the rigorous literature review performed in Chapter 3. It describes the proposed

models for a global LPV system in Section 4.1, using system identification model structures, such as the

multivariate simplex B-spline in Section 4.2 and their application to an non-affine aerodynamic model of

the ICE aircraft in Section 4.3. Finally, this Chapter concludes with LPV model synthesis of cart-pendulum

system in Section 4.4.

4.1. Linear Parameter Varying Model Selection
The selection of LPV model structure for the non-affine ICE aircraft depends on the measured data provided

by wind tunnel tests performed in [37], which define the fundamental laws governing the ICE behavior that

we aim to represent within the LPV framework. As shown in [37], it is possible to linearize the system across

several operating/equilibrium points by creating a trim routine using MATLAB’s constrained optimization

function, fmincon, which minimizes the sum of the squared control effector deflections, also depicted by

Equaton 3.48. By adjusting the initial aircraft velocities to match the desired freestream velocity, it drives

both the linear and rotational accelerations to zero, resulting in a collection of local LTI descriptions that

can be interpolated to form a global approximation of ICE. This allows for the linearization-based LPV

modeling approcah that tries to approximate the non-linear system in a LPV state-space form.

The trim maps for each control effector were generated over a flight envelope that spanned altitudes

from 0 to 50,000 feet in increments of 10,000 feet, and Mach numbers from 0.1 to 2.2 in increments of 0.1,

as indicated in [37]. Since the LTI systems will be derived based on these two parameters, it is logical

to select them as the scheduling variables, as it was done in [63] and [52]. Furthermore, the scheduling

variables are not free parameters, or external disturbances of the aircraft, as do constitute the states of

ICE (with some mathematical manipulation), thus the system becomes quasi-LPV with the form shown in

Equation 3.22.

By defining the equilibrium points pi = Col(xi, ui) ∈ X× U, i ∈ In1 , it is possible to work with an LPV
description of the the ICE model in the form of Equations 4.1a and 4.1b[18].

d

dt
x̃ =

n∑
i=1

gi(p)Aix̃+

n∑
i=1

gi(p)(p)Biu−
n∑

i=1

gi(p)(Aixi +Biui) (4.1a)

ỹ =

n∑
i=1

gi(p)Cix̃+

n∑
i=1

gi(p)Diũ−
n∑

i=1

gi(p) (Cixi +Diui − G(pi)) (4.1b)

where gi is a set of normalized interpolation scheduling functions gi : P → [0, 1], with
∑n

i=1 gi(p) = 1 ∀p ∈ P
and gi(pi) = 1 ∀i ∈ In1 .

In order to make sure that the LPV model shown in Equations 4.1a and 4.1b is in state-space form,

n = 1, so the system is linearized in only one point. In such case G1 = 1. Then by redefining the state as
x̃ = x− x1 and the input as ũ = u− u1 and the output as ỹ = y − G1 an LTI-SS approximation is created.

The selection of linearization points {pi}ni=1 may initially suggest an equidistant distribution over the space

X × U . However, due to the dynamic variations of the ICE nonlinear system, a non-equidistant selection
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with denser sampling in certain regions of X × U may result in significantly improved approximations, as

noted in [18]. The states x ∈ R12, output y ∈ R25 and input vectors u ∈ R13 obtained from the model in

[37] contain the variables shown in Equations 4.2a-4.2c.

x =
[
xe ye ze ub vb wb ϕ θ ψ p q r

]
(4.2a)

y =
[
xe ye ze ub vb wb Ax Ay Az p q r ṗ q̇ ṙ ue ve we M

]
(4.2b)

u =
[
δLAMT δRAMT δLILEF δRIBLEF δLOLEF δROLEF δLSSD δRSSD δLEL δREL δTV δPF

]
(4.2c)

where the throttle control surfaces δPTV and δLTV are subject to the constraint as shown with Equation 4.3.√
δ2PTV + δ2LTV ≤ δTVmax (4.3)

4.2. Spline Basis Function
To apply the LPV system described in Equations 4.1a and 4.1b, the interpolating scheduling function neds

to have the property gi : P → [0, 1], with
∑n

i=1 gi(p) = 1 ∀p ∈ P and gi(pi) = 1 ∀i ∈ In1 . As mentioned in
Section 3.2.3, multivariate polynomial simplex B-splines can be used, as their barycentric coordinates are

normalized in the way required by Equations 4.1a and 4.1b. The accuracy of using these type of splines

can be determined, while the multivariate polynomial used can have a similar basis structure, as in [63],

and is shown in Equation 4.4.

p(M,h,Θ) = Θ0 +Θ1,0M +Θ0,1h+Θ2,0M
2 +Θ1,1Mh+Θ0,2h

2 + · · · =
Mmulti∑
d=0

∑
n+m=d

Θn,mM
nhm (4.4)

whereM is the Mach number, and h is the altitude in feet. The methodology followed in this research is
already outlined in Subsection 3.2.3.

4.3. Innovative Control Effectors Aerodynamic Model
The aerodynamic model of ICE as described in [37], outputs dimensionless coefficients that are built-up

from contributions of the dimensionless coefficients. The X-axis is in the symmetry plane of the aircraft

and points forward, the Z-axis also lies in the symmetry plane and points downward. The Y -axis is directed
to the right, perpendicular to the symmetry plane, completing the right-handed orthogonal axis-system.

Each of these axes, has a respective moment, named L,M,N . The multi-axis thrust vectoring model is

added additionally to the force and moment equation, by projecting the thrust vector T and thrust moment

τ onto the body frame with ln being the moment arm fixed at 18.75 ft, in [37]. The Equations of Motion for

all six degrees of freedom, are then derived using Equation 4.5.

X = −CAq̃ + T cos(δPTV) cos(δLTV) (4.5)

Y = CY q̃ + T cos(δPTV) sin(δLTV) (4.6)

Z = −CN q̃ − T sin(δPTV) cos(δLTV) (4.7)

L = Clq̃b (4.8)

M = Cmq̃c̄− T ln sin(δPTV) cos(δLTV) (4.9)

N = Cnq̃b− T ln cos(δPTV) sin(δLTV) (4.10)

where q̃ = 1
2ρV

2 (with true airspeed V [ft/s], local air density ρ in [slug/ft3] and total wing surface area

S in [ft2] describes the dynamic pressure in the aerodynamic reference frame. b is the wing span and
c̄ is the mean aerodynamic chord in [ft]. To illustrate the complexity of the aerodynamic model, each

dimensionless coefficients of the forces and moments in the six degrees of freedom, consist of between

17-19 sub-coefficients as indicated in [37]. The dimensionless moment coefficients are shown in Equations

4.11 - 4.13.
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Cl = Cl1(α,M) + Cl2(α, β,M) + Cl3(α,M, δLEL, δLSSD)− Cl4(α,M, δREL, δRSSD)− Cl5(α, β, δLILEF)

+ Cl6(α, β, δRILEF)− Cl7(α, β,M, δLILEF, δLOLEF) + Cl8(α, β,M, δRILEF, δROLEF) + Cl9(α, δLOLEF, δLAMT)

− Cl10(α, δROLEF, δRAMT) + Cl11(α, δLAMT, δLEL)− Cl12(α, δRAMT, δREL) + Cl13(α,M, δPF, δLSSD, δRSSD)

+ Cl14(α, β, δLAMT)− Cl15(α, β, δRAMT) + Cl16(α, β, δLSSD)− Cl17(α, β, δRSSD) +
pb

2V
Cl18(α,M)

+
rb

2V
Cl19(α,M) (4.11)

Cm = Cm1
(α,M) + Cm2

(α, β,M) + Cm3
(α,M, δLEL, δLSSD) + Cm4

(α,M, δREL, δRSSD) + Cm5
(α, β, δLILEF)

+ Cm6
(α, β, δRILEF) + Cm7

(α, β,M, δLILEF, δLOLEF) + Cm8
(α, β,M, δRILEF, δROLEF)

+ Cm9
(α, δLOLEF, δLAMT) + Cm10

(α, δROLEF, δRAMT) + Cm11
(α, δLAMT, δLEL) + Cm12

(α, δRAMT, δREL)

+ Cm13(α,M, δPF, δLSSD, δRSSD) + Cm14(α, β, δLAMT) + Cm15(α, β, δRAMT) + Cm16(α, β, δLSSD)

+ Cm17(α, β, δRSSD) +
qc̄

2V
Cm18(α,M) (4.12)

Cn = Cn1(α,M) + Cn2(α, β,M) + Cn3(α,M, δLEL, δLSSD)− Cn4(α,M, δREL, δRSSD)− Cn5(α, β, δLILEF)

+ Cn6(α, β, δRILEF)− Cn7(α, β,M, δLILEF, δLOLEF) + Cn8(α, β,M, δRILEF, δROLEF) + Cn9(α, δLOLEF, δLAMT)

− Cn10(α, δROLEF, δRAMT) + Cn11(α, δLAMT, δLEL)− Cn12(α, δRAMT, δREL) + Cn13(α,M, δPF, δLSSD, δRSSD)

+ Cn14(α, β, δLAMT)− Cl15(α, β, δRAMT) + Cn16(α, β, δLSSD)− Cn17(α, β, δRSSD) +
pb

2V
Cn18(α,M)

+
rb

2V
Cn19(α,M) (4.13)

The dimensionless force coefficients are shown in Equations 4.14 - 4.16.

CA = CA1
(α,M) + CA2

(α, β,M) + CA3
(α,M, δLEL, δLSSD) + CA4

(α,M, δREL, δRSSD) + CA5
(α, β, δLILEF)

+ CA6
(α, β, δRILEF) + CA7

(α, β,M, δLILEF, δLOLEF) + CA8
(α, β,M, δRILEF, δROLEF) + CA9

(α, δLOLEF, δLAMT)

+ CA10
(α, δROLEF, δRAMT) + CA11

(α, δLAMT, δLEL) + CA12
(α, δRAMT, δREL) + CA13

(α,M, δPF, δLSSD, δRSSD)

+ CA14
(α, β, δLAMT) + CA15

(α, β, δRAMT) + CA16
(α, β, δLSSD) + CA17

(α, β, δRSSD) (4.14)

CY = CY1
(α,M) + CY2

(α, β,M) + CY3
(α,M, δLEL, δLSSD)− CY4

(α,M, δREL, δRSSD)− CY5
(α, β, δLILEF)

+ CY6
(α, β, δRILEF)− CY7

(α, β,M, δLILEF, δLOLEF) + CY8
(α, β,M, δRILEF, δROLEF)

+ CY9
(α, δLOLEF, δLAMT) + CY10

(α, δROLEF, δRAMT) + CY11
(α, δLAMT, δLEL)− CY12

(α, δRAMT, δREL)

+ CY13(α,M, δPF, δLSSD, δRSSD) + CY14(α, β, δLAMT)− CY15(α, β, δRAMT) + CY16(α, β, δLSSD)

− Cm17(α, β, δRSSD) (4.15)

CN = CN1(α,M) + CN2(α, β,M) + CN3(α,M, δLEL, δLSSD) + CN4(α,M, δREL, δRSSD) + CN5(α, β, δLILEF)

+ Cn6(α, β, δRILEF) + CN7(α, β,M, δLILEF, δLOLEF) + CN8(α, β,M, δRILEF, δROLEF) + CN9(α, δLOLEF, δLAMT)

+ CN10(α, δROLEF, δRAMT) + CN11(α, δLAMT, δLEL) + CN12(α, δRAMT, δREL) + CN13(α,M, δPF, δLSSD, δRSSD)

+ CN14(α, β, δLAMT) + CN15(α, β, δRAMT) + CN16(α, β, δLSSD) + CN17(α, β, δRSSD) +
qc̄

2V
CN18(α,M)

(4.16)

The dynamics of the leading edge flaps are provided by the ICE model, and are represented by the

transfer function HLE in Equaton 4.17a. All other effectors use the dynamics shown with the transfer

function (H) in Equation 4.17b.

HLE = (18)(100)
(s+18)(s+100) (4.17a)

H = (40)(100)
(s+40)(s+100) (4.17b)
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4.3.1. Linear Control Allocation (LCA)
Following from the literature review in Subsection 4.3/LPV framework applied to ICE model, a commonly

used method for control allocation of ICE assumes of affine functions of the inputs, such that a linear input

dynamics are applied and shown in Equation 4.18.

ν = h(x) +Blin(x)u (4.18)

where h(x) consists of the aerodynamic forces and moments of ICE aircraft where all control effectors

are trimmed. Blin(x) is the linear control effectiveness matrix that provides the contributions of the control
effectors. In order for the inputs to be decoupled, the interactions between the 13 effectors are neglected,

such that an affine aerodynamic model is obtained using Equations 4.19a - 4.19c.

Cl = Cl,α(α,M) + Cl,β(α, β,M) +
pb

2V
Cl,p(α,M) +

rb

2V
Cl,r(α,M) +

13∑
i=1

(
∂Cl

∂ui
ui

)
(4.19a)

Cm = Cm,α(α,M) + Cm,β(α, β,M) +
qc

2V
Cm,q(α,M) +

13∑
i=1

(
∂Cm

∂ui
ui

)
(4.19b)

Cn = Cn,α(α,M) + Cn,β(α, β,M) +
pb

2V
Cn,p(α,M) +

rb

2V
Cn,r(α,M) +

13∑
i=1

(
∂Cn

∂ui
ui

)
(4.19c)

where Cl,α, Cl,β , Cm,α, Cm,β , Cn,α, Cn,β are dimensionless nonlinear moments generated by the main

aerodynamic frame. All the other p, q, r dependant terms, are rotational rate moment coefficients.

To solve Equation 4.18, the methods described in Subsection 3.4.1, using the pseudo-inverse of the

control effectiveness matrix, can be employed. Equation 3.51a can be then written in the LCA form of

Equation 4.20.
u = (I −GlinBlin)ud +Glin(ν − h(x)) (4.20)

4.4. LPV Model Synthesis: Cart-Pendulum System
In order to investigate the applicability of LPV to non-linear systems and utilize the methods discussed

in this Chapetr, the following Section deals with a control example, the inverted pendulum on top of cart,

whose Free-Body-Diagram is shown in Figure 4.1. The example of the inverted pendulum is chosen, as it

represents a classical problem within the domains of dynamics and control theory, serving as a benchmark

of various control methodologies [65]. As it represents an underactuated mechanical system (UMS), there

are two independent parameters, namely, the cart’s position x and the pendulum angle θ, which, in total,
define 4 states of the system. The decomposition of forces and angle, for the problem considered is

indicated in Figure 4.1, where the forces acting on the cart are input force (F ) and friction force (bẋ), while
the force due to gravity (mg) is exerted on the pendulum. Additionally, the constant parameters, mass
of cart (M ), mass of the bob (m) and length (l) of the mass-less pendulum rod, are also shown. Lastly,

the direction of the two independent parameters, angle of pendulum θ and position of cart x with respect
to the coordinate system xy are also noted. In the following Section, first the derivation of the governing
Equations of Motion is described (sub-Section 4.4.1). Then, the derivation of the state-space model and

application of the LPV identification model is presented with sub-Section 4.4.2.

4.4.1. Non-linear Equations of Motion
Since this problem depicts a dynamical system, whose time-dependent motion can be described as a

relation to any chosen coordinate system to describe the position of the object (Lagrangian Mechanics),

the first point of derivation is the kinematic constraints that relate the mass of the pendulum with the

coordinate system indicated in Figure 4.1. The location of the pendulum’s mass m with respect to the x

and y-coordinates, defined in Figure 4.1, is expressed using Equation 4.21.

xp = x+ lsin(θ); yp = lcos(θ) (4.21)

Defining the Lagrangian (L) as the difference between the total Kinetic Energy: T = 1
2

∑N
i miv

2
i of the

system and the Potential energy: V = mgy, specifically L = T − V , the kinematic relations can be related
as shown in Equation 4.22.
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m

l

M

y
θ

F (t)

x
bẋ

mg

Figure 4.1: Free body diagram of inverted pendulum on top of a cart, showing forces acting on the cart in red and forces acting on

the pendulum in blue.

L =
1

2
Mẋ2 +

1

2
m(ẋ2p + ẏ2p)−mgyp

L =
1

2
(M +m)ẋ2 +

1

2
ml2θ̇2 +mlcos(θ)ẋθ̇ −mglcos(θ)

(4.22)

Next, the Euler–Lagrange equation is formulated, shown in Equation 4.23, where q represents the
complete and independent set of generalized coordinates which, in this example, represent the two

independent parameters (degrees of freedom) q1 = x and q2 = θ.

d

dt

(
∂L

∂q̇i

)
−
(
∂L

∂qi

)
= Qi (4.23)

On the right-hand side of Equation 4.23, the term Qi represents the magnitude of the generalized force,

associated with the virtual deflection of the system, obtained by the virtual work applied to the system by the

non-constraint forces. The term Qi is derived in Equation 4.24b from Equation 4.24a, as the dot product of

the external force with the deflection component and additional component accounting for the contribution

of the disipative friction force (bẋ in Figure 4.1). This force that is non-conservative in nature (does not
depend only on position of the object, has zero potential and results in loss of energy), by definition, is not

part of the Lagrangian formulation. However, with the use of Rayleigh’s Dissipation Function, it is possible

to account for friction, as explained in [66], and is shown in Equation 4.24b.

δW =

N−k∑
i=1

 N∑
j=1

Fj
∂xj
∂qi

 δqi (4.24a)

Qi =
δW

δqi
=

N∑
j=1

Fj
∂xj
∂qi

−
N∑
i=1

bi(q, t)q̇i (4.24b)

Equation 4.24b, results in the forces exerted on the cart, Q1 = Qx = F (t)− bẋ and no external forces
or moments on the pendulum bob, Q2 = Qθ = 0.

Applying Equation 4.23 to the first independent variable - position x, Equation 4.25a is obtained.

Furthermore, applying Equation 4.23 to the second variable - angle θ, Equation 4.25b is derived.

(M +m)ẍ+mlcos(θ)θ̈ −mlsin(θ)θ̇2 = F (t)− bẋ (4.25a)

ml2θ̈ +mlcos(θ)ẍ−mglsin(θ) = 0 (4.25b)

From these governing equations, it becomes clear that four states can be defined to provide a complete

description of the system at any given time. These are the cart’s position (x) and velocity (ẋ) and pendulum’s
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angle (θ) and angular velocity (θ̇) and constitute the state vector (x). Equation 4.26 indicates the notation
of the state variables and state variable derivatives used throughout the example.

X =


x

ẋ

θ

θ̇

⇒


X1

X2

X3

X4

 dX

dt
=


ẋ

ẍ

θ̇

θ̈

⇒


Ẋ1

Ẋ2

Ẋ3

Ẋ4

 (4.26)

With this notation it becomes possible to represent the physical system in a state-space representation,

where a mathematical model of it is presented as a set of input u, output y and state variables x related by
first-order differential equations only.

dX

dt
= f(X) + b(X)u (4.27)

The contents of Equation 4.27 are shown in Equations 4.28a and 4.28b.

dX

dt
=


X2

− b
M+msin2(X3)

X2 − gsin(2X3)

2
(
M
m +sin2(X3)

) + lsin(X3)
M
m +sin2(X3)

X2
4

X4
bcos(X3)

Ml+mlsin2(X3)
X2 +

g(M+m)sin(X3)
Ml+mlsin2(X3)

− sin(2X3)

2
(
M
m +sin2(X3)

)X2
4

+


0
1

M+msin2(X3)

0

− cos(X3)
Ml+mlsin2(X3)

F (t) (4.28a)

y =


X1 0 0 0

0 X2 0 0

0 0 X3 0

0 0 0 X4

+


0

0

0

0

F (t) (4.28b)

Note that the friction force has been moved to the left-hand-side of Equation 4.25a, as it dissipates the

energy of the velocity ẋ2. Therefore, the input u comprises only of the force F (t). By equating Equation
4.28a to zero, it becomes possible to identify two equilibrium points: the downward position (X3 = π) and
the upward position (X3 = 0), both of which are characterized by zero cart and angular velocities. Among
these, the upward position represents an unstable equilibrium, while the downward position is stable.

Therefore, unless a control force is applied, a disturbed pendulum will invariably return to the stable position.

At these two equilibrium points, the system in 4.28a can be linearized to obtain an LTI representation at

equilibrium by assuming small angle approximation, where cos(X3) ≈ 1 and sin(X3) ≈ X3 and neglecting

higher order derivatives like X2
4 . This is illustrated in Equation 4.29.

Ẋ1

Ẋ2

Ẋ3

Ẋ4

 =


0 1 0 0

0 − b
M − gm

M 0

0 0 0 1

0 Sθ
b

Ml Sθ
g(M+m)

Ml 0



X1

X2

X3

X4

+


0
1
M

0

−Sθ
1
Ml

F (t) (4.29)

where Sθ = 1 signifies the pendulum being in unstable equilibrium point, and Sθ = −1 when the pendulum
is in the stable equilibrium point. In [67], a similar cart-pendulum problem has been investigated, while

using LPV-LFT approach and focusing on a single varying parameter, the angle θ. The simplification made
was that the control input u included the Force F (t) and the nonlinear termmlsin(θ)θ̇2 from Equation 4.25a.

This simplifies the problem to make a reduced LFT-LPV state space form to perform H∞ control. Since

in this example, focus is put on modeling of the full dynamics of the pendulum-cart system, mlsin(θ)θ̇2

remains part of the state-space matrix. This in turn has consequences on the numerical complexity of the

derivatives of the state space matrix with respect to the scheduled states, as seen in the next Section.

4.4.2. LPV Representation
For this example, the Jacobian linearization method is used to illustrate the applicability of LPV on this

Single-Input-Multi-Output (SIMO) system which will be estimated with a multivariable polynomial model

structure. Applying Equations 3.26a and 3.26b on the non-linear model presented with Equation 4.28a

results in a qLPV model, as the scheduling variable is selected to be the pendulum angle θ or X3 and the
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cart’s velocity ẋ or X2, which represent internal states of the system. The scheduling angle X3 is a row

vector of evenly spaced points [0 ≤ X3 ≤ 2π] rad, while the velocity is evenly spaced [0 ≤ X2 ≤ 4] m/s.
The reason for using velocity instead of position is that position is not coupled with angle, as the non-linear

unforced state matrix f(x) in 4.28a contains no dependence on the state X1.

The Jacobian Linearization form of the nonlinear equation in Equation 4.28a, is using the form shown

in Equation 3.27, where instead of using an equilibrium point, the state vector is perturbed by X̃ which is

given by X̃ = X −X0, where the initial state vector is given by: X0 = [0 0 π
4 0]T. No perturbation in input

is assumed, such that Ũ = u. This resembles the Off-Equilibrium approach mentioned in the Linearization

Based Methods of Section 3.3.1. The first order derivatives of Equation 3.27 are shown in Equations 4.30 -

4.35, where as an example A23 = ∂f2(X)
∂X3

with f2(X) is the second row of the non-linear unforced state

matrix in Equation 4.28a and so forth.

A11 = 0, A12 = 1, A13 = 0, A14 = 0, A21 = 0, (4.30)

A31 = 0, A32 = 0, A33 = 0, A34 = 1, A41 = 0, (4.31)

A22 = − b

mq
, A24 =

2 sin(X3)

q
X4, A42 =

b cos(X3)

mlq
,A44 = −sin(2X3)

q
X4, (4.32)

A23 =
b sin(2X3)

mq2
X2 −

g

q

[
sin(X3) + cos2(X3) +

sin
2(2X3)

2q

]
+
l cos(X3)

q

[
1− 2 sin2(X3)

q

]
X2

4 , (4.33)

A43 = −b sin(X3)

mlq

[
1 + 2

cos2(X3)

q

]
X2 +

cg cos(X3)

q

[
1− 2 sin2(X3)

q

]
+

+
1

q

[
sin

2(X3)− cos2(X3) +
sin

2(2X3)

2q

]
X2

4 , (4.34)

B2 =
1

mq
, B4 = −cos(X3)

mlq
. (4.35)

where q = M
m + sin

2(X3) and c =
M+m
ml . As explained in [18], the Equations for A23 and A43 now contain

a separate term which is a function of the scheduled state. Knowing the trajectory of the angle, equidistant

selection of scheduling parameter points in the space X×U for the problem considered is possible, as there

are no dense regions caused by dynamical changes. At the equilibrium points mentioned in Subsection

4.4.1, Equations 4.30 - 4.35 will simplify into Equation 4.29.

In this example, three distinct methods have been developed to interpolate the local models generated

by Equations 4.30 to 4.35 at each scheduled point, ultimately constructing a global LPV model for the

problem. The first two methods, ZOH and univariate polynomial parametric dependency use a single

scheduling variable, while the last one, multivariate polynomial uses two scheduling variables. The

performance of these methods is subsequently evaluated using the Root Mean Squared Error (RMSE)

criterion for comparison.

The first approach employs a Zero-Order Hold (ZOH) method, as explained in Subsection 3.3.3/Zero

Order Hold. In this method, the angle values θZOH are substituted into the equations from Equations 4.30

to 4.35 in place of the state variable X3. This substitution allows for the comparison of LPV models at

each angle θ with the solution of the non-linear first-order differential equation described by Equation

4.28a. The method aims to identify the θIDX value of the Linear Time-Invariant (LTI) system that is closest

to the scheduling parameter θZOH in relation to the state X3, while considering all available LTI systems

that span Nθ number of scheduling points. This process conforms to the condition specified in Equation

4.36. Additionally, the method incorporates both the first-order Euler integration method, as outlined in

Equation 3.43, and the second-order Trapezoidal method presented in Equation 3.44 to solve the non-linear

first-order differential equation effectively.

θIDX = argmin
j

|θZOH(j)−X3| (4.36)

where j = 1 . . . Nt, with Nt being the length of the simulation time vector t, which is discretized in time
steps, Td. Prior to solving the differential equation, the angle θZOH undergoes a de-wrapping process to
ensure it remains within the interval [0 ≤ θ ≤ 2π]. If the angle falls outside this range, appropriate multiples
of 2π are either added or subtracted until the angle is confined to the interval.
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In the second method, a univariate polynomial structure with dependance on the angle x = θ, as a
single scheduling parameter is devised and and shown with Equation 4.37.

p(x,Θ) = Θ0 +Θ1x+Θ2x
2 + · · ·+Θdx

d =

Muni∑
d=0

Θdx
d (4.37)

whereMuni is the order of the univariate polynomial and Θ0, . . .Θd are the unknown model parameters. A

linear regression model that best fits a sequence of Nθ measurements Yuni is constructed, that consists
of only the terms varying with the pendulum angle and creates the data to estimate the LPV scheduling

functions for the true LPV model. This is presented with Equation 4.38

Yuni =

[
∂f2(X)

∂X3

∂f4(X)

∂X3

∂b4(X)

∂X3
f(X0)

]
(4.38)

where fi(X), bi(X) are the ith-rows of the non-linear matrices shown with Equation 4.27. The evalu-

ation of the non-linear function f, at the initial vector X0 equates to approximating the following term:

f(X0) ≈ g(M+m)sin(X3)
Ml+mlsin2(X3)

. Using Ordinary Least Squares estimator, as shown in Equation 3.5a, the estimated

parameters of the global state-space LPV model become as depicted in Equation 4.39.

dx

dt
=


0 1 0 0

0 − b
mq p(X3, Θ̂OLS)

2 sin(X3)
q

0 0 0 1

0 b cos(X3)
mlq p(X3, Θ̂OLS)

− sin(2X3)
q



X1

X2

X3

X4

+


0
1

mq

0

p(X3, Θ̂OLS)

F (t) (4.39)

To serve a good point of comparison, Equation 4.39 is solved by the means of Euler and Trapezoidal

integration. To perform Euler integration, first the difference between the perturbed state vector and the

initial state vector is taken, with: X̃ = X −X0, where X0 needs to be updated, with every point along the

trajectory of the angle θ. Therefore Equation 4.39, is solved by the expression in Equation 4.40.

X(k + 1) = X(k) + h
(
f(X0) +A(p(X3, Θ̂OLS))X̃(k) +B(p(X3, Θ̂OLS))Ũ

)
(4.40)

where h is the step of the time vector T (k + 1) = T (k) + h. The Trapezoid rule, has an additional step
when compared with the Euler method, which is shown in Equation 4.41.

X(k + 1) = X(k) +
h

2

(
f(X0) +A(p(X3, Θ̂OLS))X̃(k) +B(p(X3, Θ̂OLS))Ũ

+ f(X0) +A(p(X3, Θ̂OLS))X̃(k + 1) +B(p(X3, Θ̂OLS))Ũ
)

(4.41)

For the final method, a multivariate polynomial structure is constructed that depends on two variables,

the pendulum angle x = θ, and cart’s velocity y = ẋ, represented in Equation 4.42.

p(x, y,Θ) = Θ0 +Θ1,0x+Θ0,1y +Θ2,0x
2 +Θ1,1xy +Θ0,2y

2 + · · · =
Mmulti∑
d=0

∑
n+m=d

Θn,mx
nym (4.42)

whereMmulti is the order of the multivariate polynomial. A linear regression model that best fits a grid of

Nθ ×Nẋ measurements Ymulti is constructed, expanded to include all coupled terms and consists of the

structure shown in Equation 4.43.

Ymulti =

[
∂f2(X)

∂X2

∂f2(X)

∂X3

∂f4(X)

∂X2

∂f4(X)

∂X3

∂b2(X)

∂X2

∂b4(X)

∂X3
f(X0)

]
(4.43)

Same as in the previous method, the OLS estimator leads to a global state-space LPV model as shown

in Equation 4.44.

dx

dt
=


0 1 0 0

0 p(X3, X2, Θ̂OLS) p(X3, X2, Θ̂OLS)
2 sin(X3)

q

0 0 0 1

0 p(X3, X2, Θ̂OLS) p(X3, X2, Θ̂OLS)
− sin(2X3)

q



X1

X2

X3

X4

+


0

p(X3, X2, Θ̂OLS)

0

p(X3, X2, Θ̂OLS)

F (t) (4.44)
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By applying Equations 4.40 and 4.41,in a similar manner, it is noted that the state-matrix A is now defined

as a function of the multivariate polynomial A(p(X3, X2, Θ̂OLS)). Similarly, the input matrix B, is expressed
as B(p(X3, X2, Θ̂OLS)). As a result, it is possible to derive a solution to the first-order differential LPV

state-space system.

4.4.3. Results Analysis and Discussion
With the three methods and two numerical integration schemes per method, explained in the preceding

section, it becomes possible to do a simulation in MATLAB and compare the accuracy with the identification

criterion Root Mean Squared Error, which has a formula written in Equation 3.34. To run the simulation,

the constant terms are indicated in Table 4.1.

Parameter Symbol Value Unit

Cart Mass M 1 kg

Pendulum Mass m 0.3 kg

Pendulum Length l 2 m

Friction coefficient b 0.1 -

Gravitational Acceleration g 9.81 m/s2

Integration time step h 0.01 s

Simulation end time Tend 10 s

Table 4.1: Constant parameters used in the simulation for the cart-pendulum system.

To integrate the non-linear differential equation in Equation 4.28a, MATLAB’s ode45 function is em-

ployed, which utilizes a six-stage, fifth-order Runge-Kutta method. A unit step force, F (t), is applied as
control input, at the midpoint of the simulation duration and is shown in Equation 4.45.

F (t) = u

(
t− Tend

2

)
, where u =

{
1 t ≥ Tend

2

0 t < Tend

2

(4.45)

This timing is chosen because, during the first half of the simulation, the pendulum completes a full period

of oscillation, allowing the system’s behavior under the influence of the pendulum alone to be observed.

All states, X1 through X4, are tracked, as outlined in the output matrix of Equation 4.28b and a plot of the

different methods can be seen in Figure 4.2.

Looking through the results of Figure 4.2, several points can be noted. First, the linear integration on

the ZOH-based LPV model is not accurate, which is expected as the approximation error is O(h), meaning
the error scales linearly with the step size. If the step size is not sufficiently small, the accumulated error

grows, making the integration inaccurate, which can be seen across all states, especially when the step

input force is applied. The Trapezoid integration of the ZOH-based LPV model for the same number of 10

local LTI models for scheduling, shows an order of magnitude better approximation.

Furthermore, a high order polynomial for OLS estimation is needed, as the complexity of the original

functions it tries to estimate have highly-nonlinear terms like cos(X3) · sin2(X3) · X2
4 in Equation 4.33,

necessitating the use of additional polynomial terms to capture the system behaviour. This is a result from

energy exchange between kinetic and potential energy that leads to non-linear oscillations which are not

purely sinusoidal and contain harmonic content that can only be approximated by including higher-order

polynomial terms. Using low-order polynomials will result in underfitting, which can be noticed in the

grid-based search in Figures 4.4 and 4.5, where the RMSE at low orders is almost an order of magnitude

higher. However, the use of high order polynomials comes with caveats such as overfitting and high

sensitivity particularly near the boundaries of the data range, due to Runge’s phenomenon. This is again

evident in Figures 4.4 and 4.5, for a high degree (>15) of polynomial at low number of operating points, the

RMSE is becomes an order magnitude higher accross all states.
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Figure 4.2: Simulation results of the nonlinear cart-pendulum model are presented, showcasing four states: the position (X1) and

velocity (X2) of the cart, along with the angle (X3) and angular velocity (X4) of the pendulum, which are displayed in sub-plots. The

comparison criteria are two integration techniques, Euler and Trapezoidal, applied to three different methods: Zero-Order Hold (ZOH),

Univariate Ordinary Least Squares (Univariate OLS), and Multivariate Ordinary Least Squares (Multivariate OLS). The univariate

polynomial order, Muni, is set to 10, while the multivariate polynomial order, Mmulti, is 12. The ZOH-based LPV model employs 10

local LTI models for scheduling. A total of 200 operating points were used to estimate the scheduling functions for both univariate

and multivariate methods. A unit step force input is applied at Tend/2 seconds.

Notably, as illustrated in Figure 4.2, the absence of the state X1, which represents the cart’s position in

the nonlinear equation given by Equation 4.28a, results in the worst performance of the OLS estimation

for this state. State X1 is simply an single integral of state X2 and this observation holds true regardless

of whether univariate or multivariate estimation methods are employed. Consequently, the inclusion of

additional higher-order polynomial terms in the linear parameter varying (LPV) model becomes necessary.

However, it is important to note that these terms may not necessarily improve the estimation of the other

states X2 −X4. Furthermore, a comparison between the fixed-step methods, such as the Euler (O(h))
and Trapezoid integration (O(h2)) schemes, and the adaptively adjusted step size of Runge-Kutta method
(O(h4)) implemented in ode45, could explain the discrepancies in the accuracy of integrating state X1

between the OLS models and the true nonlinear system, particularly following the application of a unit step

force F (t).
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The estimated coefficients for a Univariate OLS polynomial function that approximates the true LPV

model are shown in Table 4.2.

Estimated Data

OLS Coefficient
∂f2(X)
∂X3

∂f4(X)
∂X3

∂b4(X)
∂X3

f(X0)

Θ̂0 -1.4782 7.4905 -0.5056 0.4790

Θ̂1 -36.9794 -28.1000 0.1511 -3.6781

Θ̂2 206.6224 140.1369 -0.4562 44.9137

Θ̂3 -425.6707 -323.3804 1.9959 -84.1929

Θ̂4 455.8488 370.3904 -2.6399 72.9152

Θ̂5 -281.2179 -236.7066 1.7969 -33.8207

Θ̂6 104.5742 89.7759 -0.7074 8.6757

Θ̂7 -23.7765 -20.6608 0.1666 -1.1683

Θ̂8 3.2333 2.8321 -0.0232 0.0606

Θ̂9 -0.2416 -0.2127 0.0018 0.0021

Θ̂10 0.0076 0.0067 -0.0001 -0.0003

Table 4.2: Values of the OLS coefficients for the Univariate polynomial model of optimal degree Muni = 10.

The estimated coefficients for a Multivariate OLS polynomial function that approximates the true LPV

model are shown in Table 4.3.

Estimated Data

OLS Coefficient
∂f2(X)
∂X2

∂f2(X)
∂X3

∂f4(X)
∂X2

∂f4(X)
∂X3

∂b2(X)
∂X2

∂b4(X)
∂X3

f(X0)

Θ̂0 -0.1003 0.0498 -3.8009 5.6681 1.0025 -0.4975 -0.2949

Θ̂1 0.0102 0.0096 31.8217 26.4702 -0.1015 -0.0963 11.1464

Θ̂2 -0.0520 -0.1154 -230.2747 -209.4157 0.5195 1.1539 -31.7190

Θ̂3 0.2715 0.2396 741.4889 616.7749 -2.7146 -2.3961 77.9388

Θ̂4 -0.4907 -0.3750 -1211.1928 -980.6990 4.9068 3.7501 -101.6452

Θ̂5 0.4826 0.3789 1152.0274 931.4441 -4.8256 -3.7886 70.8451

Θ̂6 -0.2950 -0.2423 -686.8030 -558.5423 2.9497 2.4231 -26.0722

Θ̂7 0.1172 0.0997 266.4737 218.2358 -1.1716 -0.9972 3.8428

Θ̂8 -0.0306 -0.0267 -68.2472 -56.2540 0.3063 0.2670 0.5671

Θ̂9 0.0052 0.0046 11.4429 9.4838 -0.0523 -0.0462 -0.3411

Θ̂10 -0.0006 -0.0005 -1.2082 -1.0059 0.0056 0.0050 0.0603

Θ̂11 0.0000 0.0000 0.0729 0.0609 -0.0003 -0.0003 -0.0050

Θ̂12 -0.0000 -0.0000 -0.0019 -0.0016 0.0000 0.0000 0.0002

Table 4.3: Values of the OLS coefficients for the Multivariate polynomial model of optimal degree Mmulti = 12.

Upon examining Figure 4.3, which presents a comparison of absolute errors exclusively for the Trapezoid

integration scheme, which is more accurate than the Euler method, it is evident that the univariate ordinary

least squares (OLS) estimation results in significantly large accumulated errors, particularly for the cart

states X1 and X2. This observation aligns with expectations, as the polynomial estimation is constructed

based on the scheduling variable θ, as shown in Equation 4.37. Estimating the cart’s velocity using a
polynomial derived solely from the pendulum’s angle fails to account for the coupled dynamics, given

that the pendulum’s swing introduces transient effects that influence the cart’s motion. Furthermore, this

approach neglects the damping effect that opposes the applied force, which is further evidenced by the

significant increase in accumulated error for X1 following the application of the input force.
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A noteworthy observation is that a uniform distribution of the scheduling parameter X2 is a weaker

approximator of the velocity of the cart than the uniformly distributed X3 approximating the pendulum

angle, even with the input force applied. One possible reason, is that there are no dissipating forces to

the gravity force modeled that act on the pendulum bob (Qθ = 0), so that there is less uncertainty in the
pendulum’s motion.
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Figure 4.3: Absolute error of the nonlinear cart-pendulum model is presented, showcasing the error per state: the position (E(X1))
and velocity (E(X2)) errors of the cart, along with the angle (E(X3)) and angular velocity (E(X4)) errors of the pendulum, which are
displayed in sub-plots. The criteria for comparison are the more accurate Trapezoid integration schemes applied to three different

methods: Zero-Order Hold (ZOH), Univariate Ordinary Least Squares (Univariate OLS), and Multivariate Ordinary Least Squares

(Multivariate OLS). The univariate polynomial order, Muni, is set to 10, while the multivariate polynomial order, Mmulti, is 12. The

ZOH-based LPV model employs 10 local LTI models for scheduling. A total of 200 operating points were used to estimate the

scheduling functions for both univariate and multivariate methods. A unit step force input is applied at Tend/2 seconds.

Table 4.4 presents the RSME calculated, using Equation 3.34 of the three methods presented, each

per the integration technique used. It can be immediately noted that Euler and Trapezoid integration for the

OLS methods yield almost identical results. This could be due to the step size h of 0.01 being too large, or
too low end time Tend which will come at a cost of drastically increasing the computing time. Furthermore,
a different set of initial conditions and constant parameters from Table 4.1, the approximation with the two
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integration techniques could yield a bigger difference, but experimenting with that would not be the purpose

of this example. However, results do indicate that approximating the true LPV system with the multivariate

OLS model in Equation 4.44 for the selected parameters and conditions are better when compared to

univariate OLS or ZOH method.

Root Mean Squared Error

Method Integration X1 [m] X2 [m/s] X3 [rad] X4 [rad/s]

Zero-Order Hold
Euler 0.0098716 0.027609 0.049658 0.060807

Trapezoid 0.00451 0.0094404 0.0075498 0.013083

Univariate OLS
Euler 0.033502 0.01296 0.0025429 0.0032284

Trapezoid 0.033535 0.012966 0.0025507 0.0032558

Multivariate OLS
Euler 0.0020799 0.0024805 0.0016867 0.0024838

Trapezoid 0.0020643 0.0024397 0.0016603 0.0024417

Table 4.4: Root Mean Square Error (RMSE) of the four states: the position (X1) and velocity (X2) of the cart, along with the angle

(X3) and angular velocity (X4) of the pendulum. The comparison criteria are two integration techniques, Euler and Trapezoidal,

applied to three different methods: Zero-Order Hold (ZOH), Univariate Ordinary Least Squares (Univariate OLS), and Multivariate

Ordinary Least Squares (Multivariate OLS).

The optimal estimating polynomial orders and optimal number of operating points selected for approx-

imating the true LPV model, was determined by a grid-based search, spanning Npts ×Muni/multi, where

Muni/multi is the order of the univariate or multivariate polynomial respectively. The criteria for optimization

was the minimum RMSE value. These grid-based searches are depicted in Figure 4.4 for the univariate

case and Figure 4.5 for the multivariate case. It can be seen that there is less confidence in finding an

optimal value for the minimum RSME, when approximating the X1 and X2 states in contrast to states X3

and X4. As mentioned previously, this is the factor for increasing the number of polynomial terms, thus

increasing the order, which leads to higher computational times. It is clearly evident, that for the univariate

case the lowest RMSE for states X1 and X2 is at the edges of the grid, which was expected given the

limitation of this method. However, changing the grid to an increased number of operating points > 300
or increased order of the polynomial > 15, does not improve performance and perhaps a different basis
function is needed, which will be the focus of the subsequent work.
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Figure 4.4: Minimum RMSE (indicated by the red dot) for the univariate polynomial approximation using the Trapezoidal Rule, shown

across the four states of the cart-pendulum system. The results are displayed over a grid with varying polynomial orders (1:1:15) and

total number of points (20:20:300).
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Figure 4.5: Minimum RMSE (indicated by the red dot) for the multivariate polynomial approximation using the Trapezoidal Rule,

shown across the four states of the cart-pendulum system. The results are displayed over a grid with varying polynomial orders

(1:1:15) and total number of points (20:20:300).
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5
Supplementary Findings

In this Chapter additional results that have been obtained throughout the thesis work and support the

scientific paper in Chapter 2 are presented. Starting with the discussion of the discontinuities for the

piecewise constant method ZOH in Section 5.1, following the supplementary estimation results that support

Section 2.5, for univariate and multivariate OLS in Section 5.2 for the same simulation conditions. Plots of

comparing B-splines with the other polynomial methods are outlined in 5.3 and different triangulations in

5.4. Finally, an LQR controller is applied to the B-Spline LPV Model in Section 5.5.

5.1. Discontinuities of Zero-Order Hold
The first additional result for the ZOH method is checking discontinuities in ZOH due to the switching

nature of ZOH. This has been explained in the Results and Discussion section of the scientific paper in

Section 2.5. Compared to Multivariate OLS and B-spline in Figure 5.1, which show a smooth f ′′(x) over 10
seconds, ZOH can cause instability in PID control due to switching. Abrupt changes lead to large, erratic

outputs from the derivative term. A smooth error curve minimizes the effect of noise, leading to more stable

control action. From Figure 5.1, it can be concluded that polynomial estimated methods show smoothness

in the EOM approximation compared to the ZOH when using Nρ = 51 points.
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Figure 5.1: Comparison of the derivatives of velocity and angular rotation between ZOH and the polynomial methods for the IPCM.

Additionally, the switching time between the constant values of the scheduling parameters in LTI systems for ZOH method is shown

in the left plot.

The regions where scheduling parameters are switched are shown in Figure 5.1, with Tswitch repre-

75
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senting the switch time of an LTI model. This switch time is determined by substituting a subsequent value

of the scheduling parameter, θ0. It can be observed that there are regions that coincide with the values of
θ0 contained in the plot of the trajectory with simplices t3/t4 and t15/t16 in Figure 10 of Section 2.5.

It is possible to check if increasing the number of scheduling points has an effect on the smoothness of

the f ′′(x) of the IPCM, by looking at Figure 5.2. It can be seen that at around 1000 points, the smoothness
is almost matching the smoothness of the polynomial curves, however, the polynomial derivatives in Figure

5.2 are at 51 points, which shows the advantage of polynomial estimators.
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Figure 5.2: Comparison of the derivatives of velocity and angular rotation for increasing amount of scheduling points.

The computational cost of ZOH can be considered linear, O(N) withN being the total number of param-

eters of a model using Matrix Vector multiplication (MVM): A · x→ O(N2), x ∈ RN×N [68]. Additionally,

the ZOH algorithm performs each operation in constant discrete time, as each value is simply a lookup of

the LTI system, obtained with a particular scheduling parameter data point. On the other hand, B-splines

and OLS methods use matrix inverse operations A−1 → O(N3), x ∈ RN×N , which is more expensive

operation. However, as mentioned in [68], parameter estimators based on linear-in-the-parameter model

structures, such as B-splines and OLS, have significantly lower computational complexity than those

based on nonlinear-in-the-parameter model structure. Thus, while a ZOH scheduling approach might

be more cost-effective in terms of performing mathematical operations, it does require more data points

(LTI models) to get an increased level of smoothness, presenting a disadvantage when compared to

interpolation methods like B-splines. A careful trade-off needs to be made when choosing ZOH as a coarse

discretization may lead to loss of estimation accuracy of the non-linear system, while a fine discretization

increases computational cost and complexity.

5.2. Additional OLS Results
.

Similarly to Figure 5 in the scientific paper in Section 2.5, the univariate OLS model that estimates

the linearized LPV model function values of Zuni is shown in Figure 5.3. These plots provide foundational

context for the presentation and analysis of the preceding calculated simulation results presented in the

scientific paper. Since the comparison of different polynomial methods in the scientific paper was conducted

using the same polynomial degree (d = 4), the estimation over Nρ = 51 is presented to illustrate why the
univariate OLS estimation achieves a low RMSE value.

Figure 5.4 illustrates the multivariate ordinary least squares (OLS) estimation for the same parameters
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Figure 5.3: Estimation of Zuni with univariate OLS of 4th degree Duni over Nρ = 51 data points.

examined previously. Observed data points are depicted in red, while the OLS estimation is visualized as

a surface. This surface represents the estimated polynomial, approximating a grid of points, analogous

to the B-spline model, due to the two-parameter estimation process resulting in a three-dimensional

representation. The 4th-degree polynomial model exhibits a difference in OLS estimation capability

between function matrix coefficients. Looking at the figure, the state space matrix coefficients associated

with the cart’s acceleration (Ã22, Ã23, and B̃2) demonstrate lower estimation capability compared to those

associated with the pendulum’s angular acceleration (Ã42,
˜̃
A43, B̃4).

Figure 5.4: Residuals of Z with multivariate OLS of 4th degree Dmulti over Nρ ×Nρ = 51× 51 data points.

The observed differences in coefficient magnitudes reflect the distinct functional forms of the cart’s

and pendulum’s motions. The cart’s acceleration, resembles a near-quadratic relationship and can be

adequately captured by the low order 4th degree polynomial. However, the pendulum’s angular acceleration,
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characterized by sinusoidal dynamics due to its oscillatory nature, requires higher degree polynomial to

effectively model its periodic behavior.

Figure 5.5: Estimation of Z with multivariate OLS of 4th degree Dmulti over Nρ ×Nρ = 51× 51 data points.

Figure 5.5 also supports this claim, as, similar to the spline residuals using Equation 64 in Section 2.5,

it shows for the multivariable OLS that the highest magnitudes come from residuals for estimating Ã23 and

Ã43. However, the distribution of the residuals does show a difference for some of the estimated values, as

they are not mostly focused in the center of the scheduling parameter grid, as seen in the B-spline residual

analysis. This is most likely due to a worse approximation, than B-spline, at d = 4 of the estimated values

(Ã22, Ã23, and B̃2) as seen in Figure 5.4.

5.3. Comparing Polynomial Methods with Multivariate B-Spline
A more informative comparison is achieved by examining a cross-section of the surface plots with Nρ = 51
data points, enabling a graphical comparison of all polynomial estimators. The approximation capabilities

of the simplex B-spline with a lower degree are illustrated in Figure 5.6, where it can be seen that for all

estimated vectors in Z, the spline matches the data better that the OLS approximates at the provided

degree, for the same amount of data-points.

Figure 5.7 shows a comparison of all the proposed scheduling functions, in which the number of points

is varied with respect to the polynomial order. The plot is generated for a simulation with Tsim = 40 and
compared with the logarithm of the RMSE obtained. The values are derived from a 4th-order Runge-Kutta

integration. Several observations can be made. At d = 4 and Nρ = 51, the B-spline values are at a

minimum and equivalent to those in Table 4 in Section 2.5. It can also be observed that for this simulation

time, after d = 5, the B-spline maintains stable, low RMSE values for all approximating states. While it is

true that the Multivariate OLS at d = 5 has a lower minimum than the B-spline, this is not the case for all

states. For X1, the position of the cart, the integrated value, the RMSE of multi-variate OLS is an order

higher than that of the B-spline. Additionally, the ZOH constant lines are also plotted, where it can be seen

that the minimum RMSE values at the selected simulation time are obtained at Nρ = 61 points. Similarly
to the OLS, at this simulation condition, the integration of the cart’s position at this number of data points is

lower than that of the B-spline.Finally, at Nρ = 11, it can be seen that B-splines require a sufficient number
of control points for the degree of the spline to ensure that the recursion and basis function calculations

are valid. This is also discussed in Section 2.4, where every simplex in the triangulation T contains at

least d̂ non-coplanar data points, meaning that NJ ≥ d̂. As the simulation for B-spline is run on [3 × 3]
triangulation of T18 simplices and from Equation 3.10, the condition d ≤ 5 needs to be met.

The results of the 40-second simulation of the IPCM, in which a sinusoidal input force is applied halfway
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Figure 5.6: Comparison of the polynomial methods approximating the vectors in the Z matrix with degree d = 4 and Nρ = 51 data
points. The spline is in the spline space s ∈ S2

4(T18).

through the simulation, are presented in Table 5.1. Notably, for the Euler method, the B-Spline does not

produce any values, as is clearly illustrated in Figure 5.9. As discussed in Section 4.4.3, the fixed-step Euler

method (O(h)) exhibits limited accuracy due to the significant local truncation errors that accumulate over
time, which results in a diverging behavior in the pendulum angle θ. This divergence leads to θ exceeding
its bounded range (0, 2π), thereby preventing the B-Spline from providing any further estimations beyond

this point. It’s crucial to recognize that the linear relationship established by OLS methods is derived solely

from the observed data within the given range. When the range is exceeded, OLS methods extrapolate

and assume that the observed linear pattern will persist indefinitely, which is often not the case. This

deviation from the true model can lead to substantial inaccuracies in predictions, as demonstrated in Figure

5.9.

Root Mean Squared Error (RMSE)

Method Integration X1 [m] X2 [m/s] X3 [rad] X4 [rad/s]

Zero-Order Hold

Euler 0.013245 0.014824 0.039464 0.061496

Trapezoid 0.012481 0.0050362 0.0054411 0.0091621

RK4 0.012448 0.0050429 0.0054526 0.0091818

Univariate OLS

Euler 0.021792 0.0098787 0.048841 0.039315

Trapezoid 0.010166 0.0053941 0.0059723 0.0098187

RK4 0.010166 0.0053986 0.0059774 0.0098274

Multivariate OLS

Euler 0.033002 0.013107 0.041182 0.053949

Trapezoid 0.0089243 0.01104 0.014815 0.023669

RK4 0.008925 0.011043 0.014821 0.023679

B-Spline

Euler / / / /

Trapezoid 0.0081887 0.003853 0.0039988 0.006755

RK4 0.0081884 0.0038474 0.003992 0.006744

Table 5.1: Root Mean Square Error (RMSE) of the estimated states: the position (X1) and velocity (X2) of the cart, along with the

angle (X3) and angular velocity (X4) of the pendulum. The comparison criteria are three integration techniques: Euler, Trapezoidal,

and RK4, applied to four different methods: Zero-Order Hold (ZOH), Univariate Ordinary Least Squares (Univariate OLS), Multivariate

Ordinary Least Squares (Multivariate OLS), and B-Spline. Tsim is 40 seconds.
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Figure 5.7: Comparison of all the methods based estimation methods in terms of the logarithm of RMSE for a simulation with

Tsim = 40 seconds. B-spline has [3 × 3] triangulation of T18 simplices. Each line represents a fixed number of scheduling data
points Nρ.

In contrast, the Trapezoidal method (O(h2)) and Runge-Kutta methods (e.g., RK4, O(h4)) provide
higher-order accuracy and reduces this truncation error which also improves stability of the numerical

simulation evident from Figure 5.9. It should be noted, that the difference between Trapezoidal and Runge-

Kutta 4th order methods is negligible when comparing them. A sufficiently small step size (h = 0.001)
minimizes the error in the lower-order Trapezoidal method, making the higher-order accuracy of RK4 of

lower impact.

Figure 5.8 shows the absolute error |ε| of the four states for the 3 integration methods. A lower absolute

error indicates that the estimator closely follows the true model, suggesting it is accurate. Consistently

high error implies a poor match between the estimator and the true model, possibly due to incorrect model

assumptions or parameters. It can be seen that indeed B-spline s42(x2601) belonging to the spline space
S2
4(T18) shows a consistently lower error amongst the polynomial OLS estimators and the constant ZOH,

thus confirming a better model fit.

Additionally, the results illustrate the limited numerical accuracy of the Euler integration method,

evidenced by the unbounded growth in the integration of the pendulum angle. This is not observed for the

higher-order accuracy integration methods.

5.4. Analysis of B-spline Triangulation, Residuals and Variance
This Section presents a graphical analysis of the rationale for using a 3 × 3 grid for the triangulation of
B-splines. Additionally, it illustrates the relative root mean square error RMS(ε) of the residuals to support
the validity of this approach. As shown, for simplex grids smaller than T18, the polynomial OLS values

closely approximate the B-spline values. This observation implies that for a spline space Sd
r , even at higher

degrees, the difference between the OLS and B-spline estimators is negligible.

The first notable divergence between polynomial approximation and B-splines for this problem appears

for simplex grids larger than T18 and for B-spline orders greater than d = 3, as depicted in Figure 7 of
Section 2.5. However, while the root mean square error (RMSE) decreases for grids exceeding T18, the
difference between the OLS estimator and the B-spline estimator remains remains at least 2 orders of

magnitude lower on a logarithmic scale.
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Figure 5.8: Absolute errors of the simulation results comparing the methods with the non-linear system plotted over the 3 integration

methods with Tsim = 40 seconds. Number of points Nρ = 51 and d = 4 for polynomial methods. B-spline has [3× 3] triangulation
of T18 simplices.

Figure 5.9: Simulation results comparing the methods with the non-linear system plotted over the 3 integration methods with

Tsim = 40 seconds. Number of pointsNρ = 51 and d = 4 for polynomial methods. B-spline has [3×3] triangulation of T18 simplices.
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Figure 5.10: Logarithm of the relative Root Mean Squared Error of the residuals for all estimated functions of the LPV model for

different spline spaces with varying spline continuity and degree, over a triangulation of T2 simplices ([1 × 1] grid) compared to
multivariate OLS polynomial of varying degree Pd.

Figure 5.11: Logarithm of the relative Root Mean Squared Error of the residuals for all estimated functions of the LPV model for

different spline spaces with varying spline continuity and degree, over a triangulation of T8 simplices ([2 × 2] grid) compared to
multivariate OLS polynomial of varying degree Pd.
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Figure 5.12: Logarithm of the relative Root Mean Squared Error of the residuals for all estimated functions of the LPV model for

different spline spaces with varying spline continuity and degree, over a triangulation of T32 simplices ([4× 4] grid) compared to
multivariate OLS polynomial of varying degree Pd.

Figure 5.13: Logarithm of the relative Root Mean Squared Error of the residuals for all estimated functions of the LPV model for

different spline spaces with varying spline continuity and degree, over a triangulation of T72 simplices ([6× 6] grid) compared to
multivariate OLS polynomial of varying degree Pd.
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Comparing the logarithm of the mean of the variance of B-coefficients log (V ar(ĉ), between the

multivariate OLS and the B-spline s42(x2601) belonging to the splne space S
2
4(T18) for d = 4 and different

triangulations can be observed in Figures 5.14 - 5.17. The variance of the multivariate OLS has been

computed with Equation 5.1.

log
(
V ar(θ̂OLS)

)
= log

(
σ2

k
tr(P )

)
(5.1)

where σ2 is the variance of the residual estimated with σ2 ≈ σ̂2 = εT ε
n−k , with n number of measurements

and k number of regressor terms. P is the parameter covariance matrix and the trace of P is given by:

tr(P ) =
∑k

i=1 p11 + p22 . . . pkk. The variance of the B-coefficients is computed using Equation 5.2.

log (V ar(ĉ)) = log
(

1

TJ · d̂

∑
q

V ar(ĉ)q

)
(5.2)

It can be seen that the mean of the variance of OLS estimates is typically lower than that of ECOLS

due to the difference in model flexibility. OLS freely adjusts the coefficients to minimize the residual,

resulting in a more uniform and often lower variance across the estimated parameters. In contrast,

ECOLS imposes additional restrictions on the coefficients, such as smoothness or boundary conditions

(ĉ = argmin J(c), subject to H · c = 0 constraint), which effectively reduce the model’s flexibility, by

limiting the degrees of freedom available for parameter estimation, often leading to increased variance

for the coefficients that remain free. As a result, the average variance across all coefficients tends to be

higher in constrained OLS compared to the unconstrained case across parameters.

Figure 5.14: Logarithm of the mean of the Variance of the residuals for all estimated functions of the LPV model for different spline

spaces with varying spline continuity and degree, over a triangulation of T2 simplices ([1× 1] grid) compared to multivariate OLS
polynomial of varying degree Pd.

It should be noted that, given the global approximation of the spline space and the absence of noise or

regularization, the mean of the variance per estimated parameter log (V ar(ĉ), remains the same. This is
because the variance is calculated based on the global B-coefficients, which depend solely on the fixed

structure of the spline basis including the degree of the spline and the simplex construction (TJ · d̂), which
are the same for all estimated parameters in Z. It does however change based in continuity as observed in

the Figures 5.14 - 5.17.
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Figure 5.15: Logarithm of the mean of the Variance of the residuals for all estimated functions of the LPV model for different spline

spaces with varying spline continuity and degree, over a triangulation of T8 simplices ([2× 2] grid) compared to multivariate OLS
polynomial of varying degree Pd.

Figure 5.16: Logarithm of the mean of the Variance of the residuals for all estimated functions of the LPV model for different spline

spaces with varying spline continuity and degree, over a triangulation of T32 simplices ([4× 4] grid) compared to multivariate OLS
polynomial of varying degree Pd.
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Figure 5.17: Logarithm of the mean of the Variance of the residuals for all estimated functions of the LPV model for different spline

spaces with varying spline continuity and degree, over a triangulation of T72 simplices ([6× 6] grid) compared to multivariate OLS
polynomial of varying degree Pd.

5.5. Linear Quadratic Controller Application to B-Spline LPV Model
This section describes a basic application of an Linear Quadratic Regulator (LQR) controller to the B-spline

LPV model defined that was done in order to see if the IPCM leads to a stabilized solution (pendulum

remains upward), when starting with initial vector X0 = [0 0 π
4 0]T and comparing to the non-linear model.

LQR was chosen as unlike PID, which considers error between plant output and setpoint that can lead to

instabilities as discussed for ZOH in Section 5.1, LQR focuses on minimizing state deviations and control

effort based on a continuous state-space model, ensuring smoother and more stable control even in the

presence of discontinuities. Since the non-linear system is represented by interpolating LTI models to form

an LPV model, which is readily available, LQR presents a good choice as it assumes full access to the

state vector and provides full state feedback. Additionally, in [64], attempt has been made to combine

LQR and splines, which did result in steady-state errors in the dynamics of the model approximated.

The quadratic performance index over an infinite period of time, is calculated using Equation 5.3[69].

Jlqr =

∫ +∞

0

(
X(τ)TQx(τ) + u(τ)TRu(τ)

)
dτ (5.3)

where Q = QT ≥ 0 and R = RT > 0 with Q ∈ Rnx×nx and R ∈ Rnu×nu . By minimizing J , the optimal cost
is found by:

Jmin = X̃T
0 PX̃0

where matrix P is the solution of the Algebraic Riccati Equation and X̃0 is the position of the IPCM where

the pendulum is inverted, meaning X̃0 = [0 0 0 0]T in Figure 4.1.

In order for the B-spline LPV model to give finite results, the simplex grid needs to be adjusted such

that the motion of the pendulum is captured which will exceed the previous grid. This means that the

data points are spread on a square grid (ν, θ) ∈ R2, [νmin, νmax]× [θmin, θmax] = [−2, 7]× [−π, 2π]. The LQR
simulation with ZOH was first run to determine these grid maximum and minimum values, indicating the

motion over the 40-second simulation period.
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The closed loop dynamics of the B-spline model are approximated by Equation 5.4

Ẋ = f̃0(X0, u0) +




0 1 0 0

0 Ã22(ρ0) Ã23(ρ0) 0

0 0 0 1

0 Ã42(ρ0) Ã43(ρ0) 0

−K(ρ0)


0

B̃2(ρ0)

0

B̃4(ρ0)


 (X− X̃0) (5.4)

where K(ρ0) = R−1B̃(ρ0))
TP is the optimal state feedback gain and is obtained by invoking the lqr

MATLAB script. The state is then integrated using Runge-Kutta 4th order integration method. The LPV

state space Ã(ρ0) and B̃(ρ0) are scheduled using the B-spline s
4
2(x2601) belonging to the spline space

S2
4(T18).
To verify the effectiveness of the method, the weights R and Q are chosen as follows: Since the input u

is scalar, R = 1, as initially suggested in [69]. The weightQ is selected by assigning non-zero values only to

the states that need to be regulated (scheduled states ζ = [ν θ] of the LPVmodel), while the remaining states
are assigned zero or a very small value. Since the scheduling states for the LPV model were cart velocity ν
and pendulum angle θ the matrix Q = diag(Q11, Q22, Q33, Q44) results in Q = diag(0.001, 100, 100, 0.001).

Values of 100 are taken for the scheduled states to get a faster convergence to X̃0. To obtain an optimal

value of the weighting matrix Q a sweep of Qii is needed such that an analalysis of the performance of the

closed loop system is examined. This analysis is in terms of settling time, overshoot/undershoot, control

amplitude and rate, gain-phase-delay margins and other control parameters suggested in [69], which were

not taken into account in this research.
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Figure 5.18: Simulation results comparing the LPV B-spline method with the nonlinear system implemented with an LQR controller.

The state vector X of the IPCM is plotted over the simulation time Tsim = 40 seconds. A force is applied at Tsim/2 with an amplitude
of Am = 1, and the LQR gain is also plotted. The LPV B-spline is given by s42 ∈ S2

4(T18), which has a [3× 3] grid of (ν, θ) ∈ R2 with

[νmin, νmax]× [θmin, θmax] = [−2, 7]× [−π, 2π].
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Using the same settings of the simulation as in Section 4. Simulation Setup of Chapter 2.4, the results

are shown in Figure 5.18. It can be seen that a very coarse estimation of the weighting matrix Q and R, the
inverted pendulum has both scheduling parameters stabilized within ≈ 5 seconds, while the force applied

at 20 seconds with Am = 1 has no significant effect on the ability of IPCM to maintain the setpoint X̃0.

Figure 5.19 shows the trajectory of the pendulum and how it spans over the scheduling parameter

grid. The acceleration of the cart is plotted as it gives a better description of how the trajectory of IPCM

is evolving. It can be seen that a force with amplitude Am = 1 has no significant effect on scheduling
parameter grid. Another notable effect is that the LPV model and the non-linear model do differ in terms

of position of the IPCM over the entire simulation, which comes from the fact that position is not actively

controlled.

Figure 5.19: Simulation results comparing the LPV B-spline method with the nonlinear system implemented with an LQR controller.

The two scheduling states (ν, θ) of the IPCM are plotted over the simulation time Tsim = 40 seconds, including a visualization of the
IPCM and the path taken during the simulation. A force is applied at Tsim/2 with an amplitude of Am = 1, which is also plotted. The
grid of scheduling parameters is shown, with the full data points differentiated as unforced (pink) and forced (black). Additionally, the

acceleration of the cart is plotted over the grid, creating a 3D trajectory. The LPV B-spline is given by s42 ∈ S2
4(T18), which has a

[3× 3] grid of (ν, θ) ∈ R2 with [νmin, νmax]× [θmin, θmax] = [−2, 7]× [−π, 2π].

As a final result, to see the effect of the force on stability of the IPCM, the amplitude is changed to

Am = 10 and applied immediately to observe the effect and shown in Figure 5.20. Seemingly infinite

energy oscillations, that do not subside over time, can be observed around the set point indicating that the

controller becomes marginally stable over the simulation time, where the closed-loop poles seem to be on

the imaginary axis. An explanation could be that the sinusoidal input of Am = 10 excites an eigenmode of
the system, which causes resonant oscillations (likely due to the natural frequency of the pendulum of

ωn =
√

g
L )) that cannot be stabilized by the LQR controller.



Figure 5.20: Simulation results comparing the LPV B-spline method with the nonlinear system implemented with an LQR controller.

The two scheduling states (ν, θ) of the IPCM are plotted over the simulation time Tsim = 40 seconds, including a visualization of the
IPCM and the path taken during the simulation. A force is applied immediately with an amplitude of Am = 10, which is also plotted.
The grid of scheduling parameters is shown, with the full data points differentiated as unforced (pink) and forced (black). Additionally,

the acceleration of the cart is plotted over the grid, creating a 3D trajectory. The LPV B-spline is given by s42 ∈ S2
4(T18), which has a

[3× 3] grid of (ν, θ) ∈ R2 with [νmin, νmax]× [θmin, θmax] = [−2, 7]× [−π, 2π].
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6
Conclusion

6.1. Closing Remarks
The following research has investigated the possibility of Multivariate simplex B-splines offering a viable

basis for constructing scheduling functions that can globally approximate a specific type of Linear Parameter-

Varying models, which are frequently used for analysis of nonlinear physical systems. The research

objective has been defined as and repeated below for convenience.

How can a Linear Parameter Varying (LPV) control method combined with a multivariate simplex

B-spline scheduling function address the gap in connecting robust control methods with the

complex, non-affine dynamic models?

Research Objective

The results of the investigation demonstrate that multivariate simplex B-splines, deduced by their

ability to offer a global approximation through the use of local basis functions across the entire scheduling

parameter domain, are well-suited to provide a smooth scheduling function for affine quasi-Linear Parameter

varying (qLPV) models. By constraining the range of scheduling variables or bounds of the parameter

variations, robustness can be achieved, by making sure the scheduling function remains finite, single-valued

and continuous (well-behaved) under different operating conditions.

Additionally, when compared to Ordinary Least Squares polynomial methods, such as multivariate OLS,

multivariate B-splines, utilizing Constrained OLS estimation for the B-coefficient estimation, yield better

estimations of the non-linear model differential equations. This is attributed to the piecewise nature of the

polynomials, which are interconnected in such a way as to maintain the continuity of derivatives up to a

specified order, determined by the polynomial degree, thereby offering more accurate solution. The results

obtained include careful tuning of the spline and simulation parameters (e.g number of simplices, continuity

order, number of datapoints, simulation time, input force), which do require optimization. The obtained

model for a spline s42(x2601) belonging to the splne space S
2
4(T18) is done in this manner, where several

criteria for optimum model have been analyzed such as: variance of B-coefficients (V ar(ĉ)), logarithm of

the mean variance of all B-coefficients within a single spline function (log (V ar(ĉ))), logarithm of the relative

RMSrel(ε) of residuals, RMS of the difference between the non-linear model states and the estimated

states and number of (free) unconstrained B-coefficients c̃. As discussed in [9], care must be taken when

choosing the continuity order as each increase in the level of continuity, decreases the number of free

B-coefficients available, which lowers the B-spline ability to fit a given function.

Applying the methodology to a Inverted-Pendulum on a Cart discrete model in open-loop, allows for

a well-defined bounded set of scheduling parameters, namely cart velocity ν0 and pendulum angle θ0,
which shows potential to approximate the entire motion and allows for a robust controller to be applied.

One limitation that has emerged in the context of the non-linear model, which is linearized using an affine

state-space qLPV (quasi-Linear Parameter-Varying) model, is the reliance on the piecewise constant

Zero-Order-Hold (ZOH) method with a single scheduling parameter. While this approach demonstrates low

root mean square (RMS) errors across a broad range of scheduling parameter data points, it suffers from

a significant drawback. Specifically, piecewise constant methods introduce discontinuities at the points
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where the scheduling parameter switches from one value to another. These discontinuities can complicate

the implementation of a robust controller, as they affect the system stability and performance near the

transition points.

6.2. Research Questions
The research questions posed in Section 1.2 are repeated below for convenience.

What form of LPV mathematical model is applicable to a non-affine dynamic model that can

guarantee a certain level of robustness?

Research Question 1

1.1 How can the LPV model be parameterized to obtain full state predictions of the dynamics of the

non-affine model?

When modeling non-affine dynamic systems, the Jacobian linearized Linear Parameter-Varying (LPV)

model offers a mathematical description by utilizing first-order differentiation which is a computationally

efficient approach. This efficiency arises from its affine representation, which depends on a limited number

of scheduling parameters, simplifying nonlinear dynamics into a series of linear problems reducing the

computational complexity. This type of modeling is particularly advantageous for systems characterized

by nonlinearities that evolve as a function of operating conditions by local first-order linearization of the

nonlinear system dynamics around an operating point (Off-Equilibrium Linearization) that varies with

system parameters, creating a quasi-LPV model. To obtain full state predictions, at each point of the

scheduling parameter, LTI models have been derived where the affine terms have been contained into f0
as described by Equation 3a from 2.2. Simulation results in Figure 9 have shown that this approach allows

for a full state-space description of the dynamic states of the model.

1.2 What model LPV structure can be used to enable the application of multivariate splines?

The combination of multivariate splines with affine Jacobian linearized quasi-LPV (qLPV) models offers

a powerful approach for modeling nonlinear systems, particularly when the system’s behavior depends on

scheduling parameters that change smoothly across operating conditions and are already contained in the

system’s internal states. While the Jacobian linearized qLPV model captures local dynamics accurately by

providing a state-space description around a specific operating point, multivariate B-splines approximate the

global domain through a global sparse regression matrix B ∈ RJ·d̂×1 of scheduling parameters, while also

having the property of being linear in the parameters. This approach significantly reduces the computational

complexity of parameter estimation, as models that are linear in the parameters require less computational

effort compared to nonlinear parameter estimators.

1.3 What validation methods should be employed to ensure that the identified LPV model meet require-

ments?

Model quality analysis has been performed using several key B-spline metrics such as the logarithm of

the relative RMS(ε) of the residuals and logarithm of the mean variance of all B-coefficients ĉ, V ar(ĉ).
The first metric gives a measure of how well the spline model’s predicted values match the estimated qLPV

model values. The second shows the uncertainty governed by the basis structures, by computing the

the variance of B-splines which is global and independent of the estimated function values. The variance

surfaces (Figure 5 of Section 2.5) of the B coefficients serve as means to identify specific regions of the

model where local estimator failures occur such as insufficient local data coverage or conditioning, or the

presence of incorrect model structures.

Results show that for a [3× 3] grid of T18 triangulation, as seen in Figures 5.10 - 5.13, log(RMS(ε))
starts showing a significant difference in approximation power compared to polynomial OLS. In terms of

low mean variance log (V ar(ĉ)), the selected continuity C2 shows B-coefficients that are well-conditioned

and only show increased value at the edges of the scheduling parameter domain, as seen by Figure 5 of

Section 2.5.
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How does the application of multivariate splines enhance the accuracy of the LPV model in

predicting the performance of a non-affine system across varying operating regimes?

Research Question 2

2.1 How do multivariate splines compare to polynomial methods in terms of root mean square error

(RMSE) in parameter estimation?

As observed by the RMSE of the results obtained in Table 4 of Section 2.5, the multivariate simplex

B-spline s42(x2601) ∈ S2
4(T18) outperforms the polynomial OLS estimators. Furthermore looking at

Figures 5.10 - 5.13, at changing spline spaces with continuity degree and number of simplices, it

can be seen that for degree higher than d =, continuity greater than C1 and triangulations of more

than T8 for a grid larger than [2× 2], the relative RMS(ε) shows that B-spline estimate LPV model

far better estimation capability than polynomial OLS of the qLPV functions.

2.2 What is the impact of parameter variability over the entire operating range on the accuracy of

spline-based LPV models?

A variation of initial conditions is performed, in order to see the spread of the two scheduling parameters,

cart velocity ν and pendulum angle θ on the simplex grid T18. The initial pendulum angle θ0 has been
varied by adding noise following a standard Gaussian distribution (µ = 0, σ = 1). It was determined that the
pendulum remains within confined bounds of the scheduling parameter grid, even when larger pendulum

swings result from the application of the input force. As the parameter space is bounded in the triangulation

(see Figure 11 of Section 2.5), the multivariate simplex B-spline s42(x2601) ∈ S2
4(T18), can still accurately

estimate the qLPV model.



7
Recommendations

This chapter provides a brief overview of the primary recommendations for the future continuation of this

research project.

Rec 1

Figure 3.1 from the Literature review has indicated the application of multivariate splines to a highly

non-affine aerodynamic model of the ICE aircraft has not yet been performed. Given that simplex B-

splines are scalable to any number of dimensions, they offer significant potential for modeling complex,

high-dimensional aerodynamic systems, this is the next step that needs to be performed. A selection of

scheduling parameters needs to be taken into account, due to the fact that in the literature of the ICE, it has

been shown, that parameters like Mach number, altitude or pitch angle offer good choice for scheduling,

as the ICE equations of motion can be linearized at a fixed value of these parameters across the flight

envelope. A brief methodology of how to achieve this is shown next.

Section 4.3 already describes the EOM’s including all the aerodynamic coefficients differentiated

per contribution of the control effectors. At the set of trim points, these equations can be linearized

and several assumptions can be made. The perturbations from the trim state are assumed to be small,

such that the aircraft is in steady-state flight, with forces and moments balanced at the trim condition.

Aerodynamic coefficients are considered linear with respect to small changes in flight variables, and

higher-order nonlinear effects are neglected. Additionally, the system is assumed to be statically stable,

with weak coupling between longitudinal and lateral-directional motions, and the environmental conditions

are constant. Care must be taken with the control surface deflections, which constitute a vector of 13

axis-coupled control inputs u ∈ R13 as shown in Equation 4.2c. By linearizing the system, control surface

deflections and their rates can be assumed to vary linearly with control inputs and simplifications with

the control allocation scheme as shown in [63] and [52] can be made. It enables using a linear control

allocation, in order to obtain a valid LPV model. Time-varying inputs can be neglected. As shown in [63],

replacing the physical control surface deflections ui with a generalized control or moment command vector
δ∗ is a smart way to be able to approximate the non-linear dynamics.

The next step would be to apply multivariate simplex B-splines to the linearized aircraft model by first

discretizing the input space into a simplex grid, ensuring that the variables are bounded while the control

inputs remain within the limits of the linearization, preserving its validity even in the presence of small

perturbations. One way of doing this is by using a control selector matrix that will transform the generalized

control or moment command vector δ∗ = [qcmd pcmd rcmd]
T , into the surface deflections by u = B+B∗δ∗,

where u is shown in Equation 4.2c. Once the scheduling map is created, the piecewise polynomial functions
can be used to interpolate between each trim point, creating the model. If the dimensionless moment

coefficient Cl from Equation 4.19a in affine form is taken as example, the approximation of the Linear

Control Allocation of ICE can be represented as:

Cl(α, β, p, r, δi) ≈ p(b(α, β, p, r, δi))

with b(α, β, p, r, δi) being the barycentric coordinates system of the B-spline, while Cl(α, β, p, r, δi) is a
function of the physical counterparts. The barycentric coordinate transformation is the given by:

b(α, β, p, r, δi) = At

[
α β p r δi

]T
+ k
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where At and k are dependent on the selected simplex geometries, as shown in [60]. As researched in
[70], a transformation matrix Λ can be derived such that a translation between physical coefficients and

B-coefficients can be performed, due to Λ being invertible. Writing the resulting spline function in physical

coefficients can be done with Equation 7.1[60].

p(x) = Bd(b(x)) · Λ−1 · ĉp (7.1)

where ĉp are the physical coefficients projected to P-coefficient space with Γp = null(H · Λ−1). With this

relation polynomial model structures for the aerodynamic forces and moments can be related to multivariate

spline polynomials in barycentric coordinates.

The main concerns with this approach would include the risk of oversimplification when approximating

highly nonlinear behaviors, leading to inaccuracies in the model for large perturbations, extreme flight

conditions or errors if the grid resolution is insufficient. Additionally, the Linear Control Allocation strategy

is computationally efficient but may lead to substantial allocation errors in the nonlinear regions of the flight

envelope, as noted in [70].

Rec 2

A subsequent step in this research direction should focus on applying the proposed scheduling function

within a closed-loop LPV framework (e.g., Gain-scheduled Proportional-Integral-Derivative (PID), Linear

Quadratic Regulator (LQR) or even Model Predictive Control (MPC) controllers), with a primary area of

investigation being the evaluation of control stability and performance under varying operational conditions.

In Section 5.5, LQR controller has been applied to the demonstrator where it can be seen that a single LQR

controller can keep the pendulum inverted of the IPCM. It turned out that the main difficulty with controlling

the LPV model is estimating the affine term of the function f̃0, where in the case analyzed was not done,

as it would cause instability and divergence of the controller. The LPV estimation of the state-space A(ρ)
and input space matrices B(ρ), on the other hand, do yield a LQR controller that can bring the angle

and velocity to the required setpoint. Eventhough they can be brought to the required setpoint, the LQR

controller shown is not an optimal controller and further performance analysis of the closed loop system

in terms of settling time, over/undershoot, control amplitude, rate, gain-phase-delay margins needs to

be done. This can be performed by sweeping the weight matrices Q and R between a particular range

that would balance performance and robustness, as explained in [69]. Higher diagonal values of Q would

increase performance, while higher diagonal values of R would make the controller more robust.

As analyzed in [64], when applying LPV models to highly non-linear flight control systems, gain

scheduled LQR controllers have shown to be needed as the control area did not consist of a sequence

of equilibrium points across the analyzed flight envelope. Therefore, this approach requires scheduling

parameters each possessing a separate controller. As described in this work, due to significant changes in

aerodynamic parameters, the resulting shifts in aircraft dynamics can cause a flight mode that is stable

and well-damped in one condition to become unstable or insufficiently damped in another [64]. This is also

expected if such controller is implemented for ICE, as the control inputs are coupled, which means that

any small deflection would lead to rapid changes in the dynamics and closed-loop performance. Thus a

future improvement would require for the design of a optimal gain-scheduled controller that can cope with

varying changes of dynamics over the entire operating envelope.

Rec 3

In this experiment, a grid was employed as the scheduling parameter domain, which did not appear to fully

utilize all of the simplices, as seen from the highest error in the residuals. To improve on this, it would be

beneficial to optimize the simplices using Constrained Delaunay Triangulation (CDT) or Type I/II hypercube

triangulation method. If looking at Section 5.5, specifically Figure 5.20, for the LQR implementation, it

can be seen that when a controller is implemented, the variation of the velocity component is much grater

compared to the pendulum angle, thus necessitating an adjustment in grid size. For the bi-variate parameter

case, a Constrained Delaunay Triangulation that refines adaptively using curvature-based error estimation,

where control points are placed in regions of high curvature while keeping a coarser representation in flatter

regions can be used. If higher-dimensional scalability is required, Type I/II hypercube triangulation method

should be better as it decomposes an n-dimensional hypercube into simplices that can be structurally
connected in multiple dimensions. Using either of these techniques, will allow for grid refinement that can

improve the LPV B-spline estimation by minimizing the residual error.
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