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Summary

The complex mechanical behaviour of timber makes it hard to predict the failure modes in connections
made of timber in Finite Element Models (FEM). The combination of various failure modes (brittle and
ductile) , anisotropic behaviour, contact of steel elements and large deformations that can occur in a tim-
ber joint challenges the use of FEM. To this date no widely used approach is available for the modelling of
timber connections. This knowledge gap impedes the use of large timber connections for high rise build-
ings in seismic regions like New Zealand. For tall seismic resilient structures a profound understanding
of the various failure modes of a connection is needed to guarantee a safe design. In this thesis a new
model approach with the use of cohesive elements to simulate cracking is investigated for the prediction
of the mechanical behaviour of connections. An embedment test simulation is a logical step towards this
connection model.

Timber can be characterised by its strong longitudinal fibres and the lignin that forms the bonding
between the fibres. This anisotropic structure of the material results in a strong and stiff parallel and
a weaker perpendicular behaviour of the material. Timber reacts ductile to compression loading and
brittle in tension and shear loading. A typical crushing action of the timber (with micro cracking and
densification of the timber) occurs when the maximum compression parallel to the grain stress is reached.

The specific manufacturing process of Laminated Veneer Lumber (LVL) reduces the inhomogeneous
character of timber. This improves the strength and the predictability of the material. The cracks that
occur in tension and shear can cause four different brittle failure modes in a dowelled connection (row
shear, group tear out, failure of the net cross section and tensile splitting). A brittle failure mode can be
prevented when minimum end or edge distances and spacing between fasteners are satisfied. In that case
a ductile failure is expected with plastic deformation of the dowel and crushing of the timber underneath
the dowel.

FEM is a powerful tool that is able to solve complex partial differential equation problems. Its basis
lies in the linear formulation of small elements that are linked by coinciding nodal degrees of freedom to
form a structure. The linear formulation has limited validity and a failure criteria is needed to define
the onset of nonlinear behaviour. Multiple nonlinear approaches are available to accurately simulate the
complex behaviour of timber in connections. The most promising approach is the use of cohesive elements
at the locations where cracks are expected. The anisotropic nature of wood makes the prediction of crack
locations in connections possible. The cohesive elements have a damage formulation to simulate strength
and stiffness loss after the material strength is reached. This softening model hinders the solution pro-
cedure and therefore special solution techniques (e.g. line search, automatic stabilization and viscous
regularization) are employed.

A first model is made to simulate the embedment behaviour in LVL. In the embedment tests conducted
by Franke and Quenneville [18] a steel dowel is pushed in a timber block with a pre-drilled hole. In the
translation of this test to an accurate FEM model three nonlinear phenomena are simulated (cracking,
crushing in compression and contact). The cracking behaviour in tension and shear is modelled with
cohesive elements with a damage formulation. These cracks are inserted at the location of potential crack
growth. The remaining timber has a trilinear isotropic plastic hardening formulation to accurately pre-
dict the deformations in the LVL under compression loading. The last nonlinear phenomena is contact
between the steel and the timber. This is simulated as ”hard” contact in normal direction and frictional
contact in tangential direction.

The implicit solver encountered difficulties in converging due to contact alterations (chatter) and the
softening behaviour in the cohesive elements. The automatic time incrementation algorithm reduced the
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increment size to overcome these difficulties. The analysis resulted in a load displacement curve that had
good agreement with the experimental curve. A parameter study proved that the small difference can be
related to the natural variation of material properties.

The approach of the embedment FEM was implemented in a more complex connection model. The
connection tests conducted by Ottenhaus et al. [37] that is simulated consists of 4 dowels that connect two
outer LVL blocks with an inner steel plate. The spacing was chosen in such a way that a ductile failure
mode was expected with brittle failure modes at large deformations. In the connection model plasticity
in the steel dowels, the size of the specimens and the inclusion of tension parallel cracks increased the
complexity of the model. This increased the convergence difficulties and the analysis ceased (at 0.43 mm)
before the maximum load was reached .

A study was made to improve the stability of the numerical solution procedure. The impact of chang-
ing the formulations of cohesive elements, contact and the solution procedure on the convergence is tested.
The viscous regularization and the initial dummy stiffness of the cohesive elements had the most influence
on the convergence. With increased viscous regularization (µv = 0.1) the implicit solver becomes more
stable and computes more displacement increments (up to 6.91 mm). However, viscous regularization in-
troduces artificial forces that significantly decreased the damage evolution. This prevented the formation
of brittle failure mechanism.

By reducing the initial dummy stiffness of the cohesive elements (down to 2 times the timber element
stiffness) the convergence improved significantly. With this initial cohesive stiffness the global softening
behaviour (up to 10.08 mm) and failure development that are observed in the experiments could be simu-
lated. The failure development consisted of the formation of plastic hinges in the dowels, tensile splitting
and finally row shear failure that completely removed the supporting action of the timber under the dowels.

The decrease of cohesive element stiffness has impact on the effective stiffness of the adjacent timber
elements and decreases the accuracy of the model. The model needs to be improved to make the predictions
of the brittle failure development more accurate. With arc-length control, an explicit solver or the
sequential linear analysis method the convergence might be increased, without the accuracy loss that is
attributed to cohesive stiffness decrease. Further research is needed to improve this connection model
approach.
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Nomenclature

∆λ Load increment

∆a Displacement increment

∆l Arc-length increment

δ Strain in cohesive elements

λ̇ Plastic flow

γ Shear strain

µf Friction coefficient

µv Viscosity parameter

ν Poisson’s ratio

‖ Parallel to the grain

⊥ Perpendicular to the grain

φ Failure criterion

σ Normal stress

σyield Yield stress

τ Shear stress

ε Normal strain

εy Ultimate yield strain parameter

ALLCD Artificial energy attributed to viscous regularization

ALLIE Total strain energy

ALLSD Artificial energy attributed to automatic stabilization

c Damping factor

C0 Distance with zero contact pressure

D Damage parameter

d Dowel diameter

Dv Viscous stiffness Degradation

E Young’s Modulus

Ecohesive Young’s modulus of the cohesive elements

Etimber Young’s modulus of the timber elements

f Force vector
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fc Compression strength parallel to the grain

ft Tension strength

Fv Viscous forces

fh,0,u Embedment strength

Fmean Mean maximum force

fs Shear strength

G Shear modulus

Gf Fracture energy

h Distance between contact surfaces

K Stiffness matrix

kcohesive Stiffness of cohesive elements

kef Effective stiffness

ktimber Stiffness of timber elements

L Longitudinal

l Length

M∗ Artificial mass matrix

My,p Plastic moment capacity

n Number of fasteners in a row

nef Effective number of fasteners

P Contact pressure

P0 Pressure at zero contact distance

R Radial

T Tangential

T0 Initial thickness of the cohesive elements

tn Normal traction on cohesive element plane

ts Shear traction on cohesive element plane

u Displacement vector

v Nodal velocities vector
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Acronyms

CCS Compact shear specimen

CLT Cross laminated timber

COV Coefficient of variation

DoF Degree of freedom

EYM European yield model

FE Finite element

FEM Finite element method

Glulam Glue laminated timber

LVL Laminated veneer lumber

SDI Severe discontinuous iteration

SENB Single end notch beam

SLA Sequential Linear Analysis

UMAT User-defined material model

XFEM Extended finite element method

VI



Contents

Preface I

Summary II

Nomenclature IV

Acronyms VI

Contents VII

List of Figures X

List of Tables XIV

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Timber properties 7
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Timber crushing behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Laminated Veneer Lumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Connection failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Ductile connection failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Brittle connection failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Modelling Techniques for Timber behaviour 19
3.1 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Linear elastic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Failure criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Nonlinear behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Foundation zone model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Cumulative damage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.4 Cohesive elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.5 Extended Finite Element Method (XFEM) . . . . . . . . . . . . . . . . . . . . . . 27
3.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

VII



3.4.1 Numerical solution schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Viscous regularization and automatic stabilization . . . . . . . . . . . . . . . . . . 31
3.4.3 Linesearch technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Embedment modelling in Laminated Veneer Lumber 33
4.1 Embedment test set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 ABAQUS embedment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Schematisation, Loading, Boundary conditions and Mesh . . . . . . . . . . . . . . 35
4.2.2 Contact model for the interaction between parts . . . . . . . . . . . . . . . . . . . 37
4.2.3 Trilinear plasticity model for LVL compression behaviour . . . . . . . . . . . . . . 38
4.2.4 Cohesive elements for LVL brittle behaviour . . . . . . . . . . . . . . . . . . . . . . 39
4.2.5 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Finite element results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Parameter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Limitations and possible improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Connection modelling in Laminated Veneer Lumber 51
5.1 Connection test set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Analytical predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 ABAQUS connection model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Mechanical models, Boundary conditions and mesh . . . . . . . . . . . . . . . . . . 54
5.3.2 Plastic calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.3 Cohesive elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Improving computational stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.1 Cohesive element improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.2 Contact formulation improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.3 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Conclusions of stability study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Finite element results with a relatively low stiffness of the cohesive elements . . . . . . . . 71
5.7 Limitations and Possible improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Conclusions and Recommendations 76
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 79

A Calibration of yield strain parameter (εy) of the trilinear plastic hardening model 83

B Artificial and total strain energy comparison of the embedment model 84

C Influence of the shear crack location on the FEM results of the embedment model 85

D Influence of the Poisson’s ratio on the FE-results of the embedment model 86

E Stress contour and cohesive damage plots at various increments in the embedment
analysis 87

F Comparison of the 2D plane stress and 3D embedment model 93

G Results of the parameter study of the embedment model 94

VIII



H Ductile failure calculation of the connection in LVL 97

I Results of the connection FE-model with various viscous energies. Energy compar-
ison and damage evolution 99

J Computation of the effective stiffness in the element and cohesive element combination101

K Damage initiation and propagation of the FE-analysis with various cohesive stiffness103

L Stress contour plots of the FE-analysis with low cohesive stiffness 106

IX



List of Figures

Figure 1.1.1 Comparison of CO2 emissions for a 7.3 m beam made of different
materials, supporting an unfactored load of 14.4 kN/m [52] . . . . . . 1

Figure 1.1.2 Innovative engineered wood products and construction make timber
high rise possible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2.1 Full size Test of a 7 storey building made of CLT [12] . . . . . . . . . . 3
Figure 1.3.1 Embedment test set-up in timber [44] . . . . . . . . . . . . . . . . . . . . 4
Figure 1.5.1 Flow diagram of the different steps in this thesis . . . . . . . . . . . . . 5

Figure 2.2.1 The three material directions in wood (Longitudinal, Radial and
Tangential)[22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2.2 Material behaviour of Picea Abies in various direction and loading[48] 9
Figure 2.2.3 Result of biaxial tests on spruce loaded in normal directions [48] . . . 10
Figure 2.2.4 Distortion of longitudinal fibres around rays and resin channels [9] . 10
Figure 2.2.5 Chrushing behaviour and plastic approximation (in red) (adjusted

from [9]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2.2.6 microscopic image of fibres buckling under compressive loading [10] . 12
Figure 2.3.1 Production process of Laminated Veneer Lumber [11] . . . . . . . . . . 13
Figure 2.4.1 Dowel connection with fastener spacing (a1, a2), end distance (a3) and

edge distance (a4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2.4.2 Ductile failure modes [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 2.4.3 Crack modes of fracture mechanics [35]. Mode 1 is a tension crack.

Mode 2 and 3 are shear cracks . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2.4.4 Possible brittle failure modes in timber connections (adjusted from

[42]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.1.1 Two cubic elements with shared nodes . . . . . . . . . . . . . . . . . . . 19
Figure 3.1.2 The shapefunctions for a 2 node bar element [57] . . . . . . . . . . . . . 20
Figure 3.2.1 Various types of failure surfaces . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3.2.2 Biaxial test results and quadratic failure surface [48] . . . . . . . . . . 22
Figure 3.3.1 Plasticity stress-strain relation with (a) hardening effects and (b)

Bauchinger effect [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 3.3.2 Foundation Zone model [27] . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 3.3.3 Stress strain relation in cumulative damage model . . . . . . . . . . . . 26
Figure 3.3.4 Crack opening with interface elements [6] . . . . . . . . . . . . . . . . . 27
Figure 3.3.5 Fracture modes in Fracture mechanics[41] . . . . . . . . . . . . . . . . . 28
Figure 3.4.1 Explicit and implicit solution schemes [50] . . . . . . . . . . . . . . . . . 30
Figure 3.4.2 Divergence of the load control method at a peak load [50] . . . . . . . 31

Figure 4.1.1 Photo of a test specimen during the test (a) and Test set-up with
variables (b)[18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

X



Figure 4.1.2 Typical test result of embedment tests with various dowel diameters
[18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4.2.1 Quarter of embedment model with cohesive element planes in red.
Dimensions in mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.2.2 Mesh discretization of the embedment test in ABAQUS . . . . . . . . 37
Figure 4.2.3 Hard contact model with penalty enforcement. Adjusted from [3] . . 38
Figure 4.2.4 Trilinear Model adjusted from [15] . . . . . . . . . . . . . . . . . . . . . . 39
Figure 4.2.5 Contour plot of the shear stress distribution of a plastic analysis with

the location of the cohesive elements as a black dashed line . . . . . . 40
Figure 4.4.1 Load displacement curve of FEM calculation with interesting time

increments (dots) and typical load displacement curve of the experi-
mental results with distribution [18] . . . . . . . . . . . . . . . . . . . . 44

Figure 4.4.2 FE-Results: Principal stress directions at time step 0.141 (a), 0.307
(b), 0.650 (c) and 1.000 (d). The steel is removed and only 1 element
in thickness direction is displayed to improve the visibility of the results 45

Figure 4.4.3 Contour plot of longitudinal normal stress (a) and deformed element
mesh in contact zone (b) (deformations are magnified with a factor
of 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.5.1 Upper and lower bound FE-results based on maximum and minimum
parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 5.1.1 Set-up for connection tests and specimens dimensions[37] . . . . . . . 52
Figure 5.1.2 Load displacement curves of the monotonic tests on ductile connec-

tions [37] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 5.1.3 Snapshot of the connection test recording at first cracking (a) and

ultimate failure (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 5.3.1 Connection model with dimensions in mm. Cohesive element planes

are displayed in red (a). Finite element mesh in ABAQUS (b) . . . . 55
Figure 5.3.2 FE-results of the plastic analysis: Deformed shape at 8 mm tensile

displacement of the timber block with a contour plot of the longi-
tudinal normal stress (a) and the dowels with a contour plot of the
plastic strain (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.3.3 Comparison of the plastic model with the experimental data . . . . . 56
Figure 5.4.1 Load displacement curves of FE-results with various viscosity values

and experimental test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 5.4.2 FE-results with various cohesive element stiffness . . . . . . . . . . . . 61
Figure 5.4.3 Stiffness degradation model with direct stiffness decrease after the

material strength is reached . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 5.4.4 FEM-results with direct stiffness degradation and linear stiffness degra-

dation model for the cohesive behaviour . . . . . . . . . . . . . . . . . . 63
Figure 5.4.5 Stick-slip, stick and exponential contact formulation . . . . . . . . . . . 64
Figure 5.4.6 FE-results of the Stick-slip, stick and exponential contact formulation 65
Figure 5.4.7 FE-results with various mesh densities in the contact zone and a

typical connection test result . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 5.4.8 Arc-Length Method iteration procedure. With ∆λ the load increment

and ∆a the displacement increment . . . . . . . . . . . . . . . . . . . . . 67
Figure 5.4.9 Saw tooth approximation of the softening behaviour in concrete frac-

ture [47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

XI



Figure 5.6.1 Load displacement curve of the FE-result and the experimental tests
on connections in LVL. Interesting point on this curve are marked
with a circle and corresponding displacement in mm . . . . . . . . . . 71

Figure 5.6.2 Vector plot of the principle stresses in the connection model on a
deformed mesh at 0.63 mm (a), 2.38 mm (b), 2.74 mm (c), 7.21
mm (d) and 10.08 mm (e) displacement of the timber. For visibility
purposes only one layer of elements is presented . . . . . . . . . . . . . 72

Figure 5.6.3 Plastic strain plot of the steel dowels on a deformed mesh at 0.63
mm (a), 2.38 mm (b), 2.74 mm (c), 7.21 mm (d) and 10.08 mm (e)
displacement of the timber. The deformations are multiplied with a
factor 3 to improve visibility . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.6.4 Contour plot of the damage evolution in the cohesive elements of the
connection model on a deformed mesh at 0.63 mm (a), 2.38 mm (b),
2.74 mm (c), 7.21 mm (d) and 10.08 mm (e) displacement of the timber 74

Figure A.0.1 Calibration of the yield strain εy parameter of the trilinear model . 83

Figure B.0.1 Comparison of the fictitious energies from automatic stabilization
(ALLSD) and viscous regularization (ALLCD) to the total strain en-
ergy (ALLIE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure D.0.1 The influence of various Poisson’s ratios on the FE-results . . . . . . . 86

Figure E.0.1 Load-displacement curve the FEM calculation and experimental tests
on embedment in LVL with interesting points marked with circles and
time increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure E.0.2 FE-results: longitudinal normal stress at various time increments of
the embedment model. Only the timber is shown . . . . . . . . . . . . 88

Figure E.0.3 FE-results: longitudinal shear stress at various time increments of
the embedment model. Only the timber is shown . . . . . . . . . . . . 89

Figure E.0.4 FE-results: damage variable in the cohesive elements at various time
increments of the embedment analysis. Only the cohesive elements
are shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure E.0.5 FE-results: Normal stress in the thickness direction in the cohesive
elements at various time increments of the embedment analysis. Only
the cohesive elements are shown . . . . . . . . . . . . . . . . . . . . . . . 91

Figure E.0.6 FE-results: Shear stress in the cohesive elements at various time
increments of the embedment analysis. Only the cohesive elements
are shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure F.0.1 Load displacement curve of the 3D embedment model, a plain stress
2D model and the experimental results of the embedment behaviour 93

Figure I.0.1 FE-results: Damage plots at 0.83 mm of analysis with viscosity pa-
rameter µv = 0.0001 (a), 0.001 (b), 0.01 (c) and 0.1 (d) . . . . . . . . 100

Figure J.0.1 Combination of 3D continuum element and cohesive element (a) and
simplified spring models of that combination (b) . . . . . . . . . . . . . 101

Figure K.0.1 FE-results with various cohesive element stiffness . . . . . . . . . . . . 103

XII



Figure K.0.2 Damage initiation of the FE-analysis with various cohesive Young’s
Moduli: at 0.275 mm for Ecohesive = 4700N/mm2 (a), at 0.474

mm for Ecohesive = 470N/mm2 (b), at 0.473 mm for Ecohesive =

47N/mm2 (c), at 0.481 mm for Ecohesive = 4.7N/mm2 (d) and at

0.567 mm for Ecohesive = 0.47N/mm2 (e) . . . . . . . . . . . . . . . . 104
Figure K.0.3 Damage propagation at 0.81mm displacement of the FE-analysis with

various cohesive Young’s Moduli: Ecohesive = 4700N/mm2 (a),

Ecohesive = 470N/mm2 (b), Ecohesive = 47N/mm2 (c), Ecohesive =

4.7N/mm2 (d) and Ecohesive = 0.47N/mm2 (e) . . . . . . . . . . . . 105

Figure L.0.1 Load displacement curve of the FE-result and the experimental tests
on connections in LVL. Interesting point on this curve are marked
with a circle and corresponding displacement in mm . . . . . . . . . . 106

Figure L.0.2 FE-results: longitudinal normal stress at displacement increment 0.63
mm (a), 2.38 mm (b), 2.74 mm (c), 7.21 mm (d) and 10.08 mm (e)
of the connection model. Only the timber is shown . . . . . . . . . . . 108

Figure L.0.3 FE-results: longitudinal shear stress at displacement increment 0.63
mm (a), 2.38 mm (b), 2.74 mm (c), 7.21 mm (d) and 10.08 mm (e)
of the connection model. Only the timber is shown . . . . . . . . . . . 109

Figure L.0.4 FE-results: longitudinal shear stress at displacement increment 0.63
mm (a), 2.38 mm (b), 2.74 mm (c), 7.21 mm (d) and 10.08 mm (e)
of the connection model. Only the timber is shown . . . . . . . . . . . 111

XIII



List of Tables

Table 2.3.1 Characteristic strengths of LVL by manufacturer and brand, com-
pared with sawn timber and glulam [11] . . . . . . . . . . . . . . . . . . 13

Table 2.4.1 Minimum values of dowel spacing and edge and end distances for
bolts (Eurocode 5 [1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 3.3.1 Summary of different approaches to nonlinear behaviour . . . . . . . . 29

Table 4.3.1 Used input parameters in the numerical embedment model . . . . . . 43
Table 4.5.1 Average, upper bound and lower bound values of the parameters used

in the parameter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 5.1.1 Dimensions of the ductile connection test specimens . . . . . . . . . . . 52
Table 5.3.1 Used input parameters in the numerical embedment model . . . . . . 57
Table 5.4.1 Ratio between the artificial and total strain energy in the cohesive

elements resulting from a FE-analysis with varying viscosity . . . . . 59
Table 5.4.2 Displacement at the last converged increment of FE-calculations and

stiffness reduction factor with various cohesive element stiffness . . . 60
Table 5.4.3 Influence of the Time incrementation and implicit solution scheme on

the Displacement at the last converged increment of FE-calculations 66
Table 5.5.1 Summary of different adjustments that improved convergence and

their disadvantages on the results . . . . . . . . . . . . . . . . . . . . . . . 69
Table 5.5.2 Summary of different model adjustments that were used to change

convergence and their final converged increment . . . . . . . . . . . . . 70

XIV



1
Introduction

1.1 Background

In the recent years the use of timber in high rise building gains in popularity. This material has inter-
esting benefits like low density, easy construction, aesthetic value and a sustainable character. The latter
advantages give timber a large advantage over other construction materials in futuristic use. Unlike steel
and reinforced concrete, timber is renewable and its production has relatively low carbon emissions. The
use of beams made out of glue laminated timber for instance, can reduce the carbon dioxide emissions
with 79% compared to reinforced concrete beams or 85% compared to steel beams [52] (Figure-1.1.1).

Figure 1.1.1: Comparison of CO2 emissions for a 7.3 m beam made of different materials,
supporting an unfactored load of 14.4 kN/m [52]

The development of engineered wood products like Glue Laminated Timber (Glulam), Laminated
Veneer Lumber (LVL) and Cross Laminated Timber (CLT) makes large wood panels and girders possible.
This allows designers to build higher and faster. It even makes high rise buildings made out of timber
possible. But what about fire safety? Mass timber components like Glulam, CLT and LVL have slow and
predictable charring rates [8] which can be used to establish high fire safety levels.

Because of its many benefits, timber proves to be an interesting alternative for the more common
designs in reinforced concrete and steel. The applicability of timber in high rise buildings is demonstrated
in projects like the timber frame tower complex in Bordeaux, Australian 5 King building and Norwegian
TREET (Figure-1.1.2). The last one is currently the tallest timber building with 14 storeys [25]. This
record will soon be broken by other buildings that are currently being built like the Brock Commons
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Chapter 1. Introduction

Student Residence with 18 storeys [21].

This trend also continues towards regions with earthquakes like New Zealand. The designs of the
aforementioned buildings are governed by wind loading and are not designed to withstand extreme seismic
forces. Timber relies solely on its connections for its ductile behaviour, with the timber itself prone to
brittle failure. In seismic loading, the ductile connections ’protect’ the attached brittle members by
yielding at a lower load level. This is called the capacity based design concept [20].

Tower complex by Jean Paul
Viguier. Will be built in Bor-
deaux, France [34]

5 King building. Will be built
in Brisbane, Australia [14]

TREET building. Current
highest timber building located
in Bergen, Norway [36]

Figure 1.1.2: Innovative engineered wood products and construction make timber high rise
possible

To establish an earthquake proof design, a precise understanding of the behaviour and failure of timber
connections is important. It is paramount to know at what load level a joint fails and whether it occurs
in a brittle or a ductile fashion. The required connections of a tall timber building (TTB) like TREET
are huge. The seismic performance of those connections is beyond the scope of current design codes.
Fundamental research needs to be done to fill this knowledge gap.

1.2 Problem definition

A traditional way to gain more knowledge about connections is experimental testing. It gives hard evi-
dence of the capacities and failure loads. The SOFIE project [12] is an example of such a testing program.
It was aimed to enhance the applicability of CLT in multi-storey buildings subjected to seismic loading.
The research project included a full size test of a 7-storey building on a shake table (Figure-1.2.1). The
solely use of empirical testing has a couple of disadvantages. First of all it is very costly. The set-up of
the Sofie test program required a high budget and time for building and preparation. A full scale test
gives only information in the places where sensors are applied and it is hard to determine the stress and
eventual failure development.
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1.3. Approach

An alternative method is to use experimental tests as a basis for numerical calculation of stresses and
strains in timber connections. This has some important advantages over the empirical testing approach.
Once the models are developed and validated, it is easy to analyse variations in loading conditions and
material dimensions in a parameter study. The numerical models also give a better understanding of the
mechanical phenomena that occur during the tests.

Even complete structures can be calculated with FEM. Those numerical models can be loaded by a
virtual earthquake to simulate the forces in extreme conditions. The results can give a profound under-
standing of the force flow and the way a component or structure fails. This reduces the need for expensive
full size testing. It is also possible to estimate the behaviour of old buildings with numerical models.
In Groningen for instance, retrofitting of old buildings subjected to seismic loading is done using FEM
software.

Figure 1.2.1: Full size Test of a 7 storey building made of CLT [12]
.

Unfortunately, the unique mechanical properties of wood make it difficult to implement in a FEM
model. Especially the brittle failure behaviour in tension and shear is hard to model. Timber behaves
highly anisotropic, heterogeneous and has different failure behaviour for tension, shear and compression
occurring at the same time. Moreover, the contact interaction between steel and timber and the three
dimensional nature in connections increase the complexity even further. Wood researchers have struggled
with the modelling of wood in FEM software for decades. So far there is no easy and widely used model
available for timber connections.

1.3 Approach

The increasing computation power of computers and the enhanced capabilities of commercial FE software
like ABAQUS, can be utilised to tackle this challenge. A first step would be to model the simple connection
between a steel dowel in an embedment test. In this test a steel dowel is pressed on top of a timber block
with a hole that is predrilled to match the dowel diameter (Figure-1.3.1).
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Figure 1.3.1: Embedment test set-up in timber [44]

The knowledge that is gained with the embedment model can be extended to larger and more com-
plicated connections. This model includes dowel bending, bigger dimensions and more crack possibilities.
This can lead to numerical problems that need to be resolved.

The goal of this thesis is to find a stable numerical approach that is able to simulate the complex
behaviour of dowelled connections in LVL.

1.4 Research objectives

The main research question is:

What is a numerical stable approach to simulate the complex behaviour of dowelled connections in
Laminated Veneer Lumber?

A number of steps need to be taken, to be able to tackle this question:

• Determination of the important mechanical properties of wood.

• Investigation in modelling techniques that can be used to implement the properties of wood in a
model.

• Construction of an embedment model that simulates the behaviour observed in tests.

• Implementing the embedment behaviour in a connection model.

1.5 Structure of the thesis

Each of the steps is discussed in a different chapter of this thesis. Chapter 2 explains the difficult me-
chanical properties of timber in its various directions. The various numerical models that can be used
to simulate the behaviour of wood are discussed in chapter 3. In the end of that chapter the choice of
modelling technique is made and explained. Chapter 4 elaborates on the embedment tests that have been
done and how the test configuration is translated into a model. The results and a parametric study on
the model can be found at the end of that chapter. The research program of Canterbury University in
LVL connections is explained in Chapter 5. It also explains how these tests are modelled.
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1.5. Structure of the thesis

The body of the thesis can be split into a literature review and a modelling part. This is illustrated
in the flow diagram presented in Figure-1.5.1.

Figure 1.5.1: Flow diagram of the different steps in this thesis
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2
Timber properties

2.1 Background

The behaviour of structural timber is very complex. It is necessary to have a closer look at the material
wood to have a better understanding of its performance. Timber is a natural building material with a very
inhomogeneous character. Because of the various factors that can influence the growth of trees, a large
variety of timber cells within a tree can be observed. This has a direct effect on mechanical properties
like strength and stiffness. To reduce the natural variation, the various parts of the tree are graded in
different strength classes. This makes the use of wood in structural elements more efficient. But even
after the strength grading process, a wide distribution of strength and other properties remains.

Structural size timber also contains natural defects that form in the growth phase of the trees. These
defects include: knots, checks, reaction wood, splits and deviations of the wood fibres. The strength
properties are reduced by those flaws and this has to be addressed when modelling a structure. The
material strength however, is commonly determined by experiments on flawless ’clear’ specimens. The
strength variation of these samples is smaller and the results from these material tests often overestimate
the strength of structural size timber. In current standards a size factor is considered to deal with this
effect.
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2.2 Structural properties

The anatomy makes wood also highly anisotropic. Wood is characterised by the strong wood fibres made
of cellulose and hemicellulose. The lignin in the cell walls acts as a glue to keep the fibres together. This
configuration is often compared with a bundle of straws. In the direction of the fibres there is a relatively
high strength and stiffness. But if the bundle is loaded in a perpendicular direction, the strength and
stiffness are only a fraction of the longitudinal counterparts. This behaviour is comparable to the matrix
behaviour that is found in orthotropic fibre composites. In those materials there is also a favourable
loading direction along the fibres with a much softer perpendicular material direction.

Figure 2.2.1: The three material directions in wood (Longitudinal, Radial and
Tangential)[22]

Three different directions can be distinguished in the wood material, which are illustrated in Figure-
2.2.1. A longitudinal direction (L) parallel to the fibre orientation, a radial (R) direction running from the
inside to the outside of the wood log and a tangential (T) direction which coincides with the direction of
the growth rings. Each direction has its own specific material properties, although transverse anisotropic
behaviour is commonly assumed in literature. In that case, the timber is assumed to have a longitudinal
direction parallel to the grain (‖) and the plane made up of the tangential and radial direction are merged
to a perpendicular to the grain direction (⊥). The differences between the properties in radial and
tangential direction are neglected, because they are small compared to the prevalent difference with the
longitudinal direction.

In order to understand the behaviour of wood in both directions, the load slip curves from various
uniaxial tests in literature [48] can be reviewed. Figure-2.2.2 gives the typical behaviour in tension and
compression of spruce in different loading situations.
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2.2. Structural properties

Load slip curve of Picea abies tension parallel to
grain direction

Load slip curve of Picea Abies tension perpendic-
ular to grain direction

Load slip curve of Picea Abies compression paral-
lel to grain direction

Load slip curve of Picea Abies compression per-
pendicular to grain direction

Figure 2.2.2: Material behaviour of Picea Abies in various direction and loading[48]

It can be observed from these figures that timber fails in a brittle way when loaded in tension. The
global behaviour is ductile when loaded in compression. There is even strain hardening behaviour in
the compression perpendicular to the grain direction. This perpendicular hardening can be linked to
densification of the material [38]. However, this effect only occurs after a substantial strain of about
20%. When testing compression parallel to the grain, a shear band formation can be observed [40]. This
phenomenon is explained in section 2.2.1. The graphs also demonstrate that the parallel direction is much
stronger and stiffer compared with the perpendicular direction for both tension and compression loading.
The aforementioned straw model explains that difference. According to design tables, the compression
strength parallel to the grain is of an order 8 higher and the modulus of elasticity is a factor 30 times
higher than the one in the perpendicular direction [51].

Shear crack failure is also a very brittle phenomenon and has a preferred failure plane in the direction
of the annual rings [48]. A huge scatter in test results for spruce (e.g. 3.3 MPa to 11.3 MPa [48])
demonstrates how difficult it is to purely test the shear strength of timber.

Test results also reveal an interaction between stresses in different directions. If a specimen is loaded
in both the parallel and perpendicular direction the strength is lower than the strength observed in an
uniaxial loading test [48] (Figure-2.2.3). This stress interaction is most visible in the 2nd quadrant of the
figure.
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Figure 2.2.3: Result of biaxial tests on spruce loaded in normal directions [48]

2.2.1 Timber crushing behaviour

When timber regions are loaded by compression in longitudinal direction the material densifies and small
cracks form in the fibre direction. This phenomenon is called crushing. The shear band formation in
uniaxial compression tests, helps to explain the crushing of timber. The shear band formation is described
by Poulsen [40]. The existence of radial directed rays and resin channels in timber causes misalignment
in the fibres (Figure-2.2.4).

Figure 2.2.4: Distortion of longitudinal fibres around rays and resin channels [9]

When these sections are loaded in compression, a longitudinal shear stress and tension perpendicular
to the grain develops at the fibre boundary. These stresses reach a limit load and cracks start to form.
The cracks start to propagate in longitudinal direction and the lateral support of the fibre deteriorates.
The unsupported fibres will buckle locally and densification of the timber occurs in the affected region. In
uniaxial compression tests the crack formation continues until the fibres deform laterally in a macroscopic
mechanism: a shear band is formed. The compressive strength reduces in this process, until a lock up
angle is reached. At that stage rotation of the fibre is no longer the softest mode to deform and the kink
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band starts to expand into the adjacent material.

Figure 2.2.5: Chrushing behaviour and plastic approximation (in red) (adjusted from [9])

The global behaviour relates close to yielding in steel, since there is a distinct plateau and the de-
formation is irreversible. All the phases of kinking in a compression test are presented in Figure-2.2.5.
The plastic approximation that can be used to describe the mechanical properties is added in red. The
crushing occurs locally as the weakest link initiates the kinking and the load drop prevents other regions
from crushing.

In connections, the crushing is initiated in the region with the highest compressive stresses. This area
is located directly underneath the dowel. Since the affected volume is much smaller in a loaded connection,
there is no formation of a kink band. The fibre buckling and cracking occurs in timber connections as
observed by Brandon et al. [10]. They studied the wood fibres in an embedment test under a microscope
before and after 40% of the embedment strength was applied. Figure-2.2.6 illustrates the fibre buckling
that occurred in the timber under the dowel.
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Figure 2.2.6: microscopic image of fibres buckling under compressive loading [10]

2.3 Laminated Veneer Lumber

One of the major developments in timber construction is the use of glue to laminate sawn timber together.
With this technique, dimensions can be increased significantly and a more efficient use of material is
possible. This resulted in the development and fabrication of Engineered Wood Products (EWP’s).
There are many EWP’s available on the market. This research focusses on LVL. It has a high potential
in high rise building, because of its superior mechanical properties. The University of Canterbury did
experimental tests on this material. The results are used to calibrate FEM analyses.

The production process of LVL (Figure-2.3.1) ensures a highly uniform material compared with the
heterogeneous wood it originates from. Veneers are peeled off a rotating log, strength graded and then
glued together. The product is pressed together and cut into the right sizes. In this process the natural
defects of wood are randomly distributed over the wood product. This reduces the variability considerably.
E.g. the modulus of elasticity of LVL lies within a band of 10% of the target value whereas a deviation
of 40% can be expected in sawn timber [11].
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2.4. Connection failure

Figure 2.3.1: Production process of Laminated Veneer Lumber [11]

The large scatter of defects also gives higher strength properties (Table-2.3.1). Weak links in sawn
timber (local defects) have lower impact on the strength properties. Especially the tensile strength parallel
to the grain is increased by this effect. The longitudinal tensile strength is 5 times higher than the strength
of sawn timber from the same forest [11]. Some manufacturers place veneers with higher strength in the
outer layer to enhance the bending capacity of planks loaded out of plane. The superior strength of LVL,
compared with sawn timber, makes it also very useful as a beam, truss or column.

Table 2.3.1: Characteristic strengths of LVL by manufacturer and brand, compared with
sawn timber and glulam [11]

2.4 Connection failure

Structural timber elements are mainly jointed with steel fasteners (nails, dowels, screws, etc.). Numerous
experimental studies have been done to estimate the ultimate failure loads and corresponding failure
mechanism of those connections. The failure modes of dowelled connections can be divided in two groups:
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ductile failures and brittle failures. In current Eurocode 5 [1] ductile failures are preferred, because they
warn users with excessive deformations. The equations of Johansen [29] are used to accurately predict
those failures. Brittle failures are avoided by making use of proper fastener spacing, end distance and
edge distances. The distances a1 and a2, a3 and a4 respectively are given in Figure-2.4.1.

Figure 2.4.1: Dowel connection with fastener spacing (a1, a2), end distance (a3) and edge
distance (a4)

2.4.1 Ductile connection failure

In the ductile failure modes of Johansen, two parameters are needed to obtain a failure load: the plastic
moment capacity of the fastener and the ductile compressive failure strength of timber. The former is
reached when the bending moment causes yield stresses in the full cross section of the fastener. The latter
is the embedment strength of the timber under the dowel. At that stress level, the timber is assumed to
deform plastically and crushing of the timber around the fastener occurs.
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2.4. Connection failure

Figure 2.4.2: Ductile failure modes [1]

The calculation procedure of Eurocode 5 [1] is based on the Johansen equations [29]. For a dowelled
connection with a steel plate in between two timber members 3 different failure modes are given in the
Eurocode (Figure-2.4.2). Depending on the embedment strength of the timber members and the plastic
moment capacity of the dowel, one of the three failure modes gives the ultimate failure strength. This is
the one with the lowest capacity according to the equations of Johansen.

If multiple dowels are placed in a row in the direction of the force, they influence each other. Experi-
ments of Jorissen [30] revealed that the maximum capacity of multiple fasteners connections is less than
the sum of the capacity of the individual dowel-timber connections. He found that the decreasing strength
per fastener is caused by the occurrence of tension perpendicular to the grain cracks. Every additional
fastener causes an increase in tension perpendicular to the grain of the first fastener. This causes small
cracks to form and a decrease of supporting strength. The fastener spacing (a1 in Figure-2.4.1) is an
important parameter to determine the influence of fasteners on each other.

Eurocode 5 [1] describes the use of an effective number of fasteners (nef ) in connections with multiple
dowels. For each row the effective amount of dowels is calculated as:

nef = n0,9 4

√
a1

13d
(2.1)

Based on the fastener spacing (a1) relative to the dowel diameter (d) the effective amount of fasteners is
reduced. The formula used in the Eurocode is based on the work of Jorissen [30].

2.4.2 Brittle connection failure

In the Eurocode brittle failure mechanisms are avoided by setting regulations for fastener spacing and
edge and end distances. Table-2.4.1 for instance, gives an example of minimum spatial requirements for
bolted connections in the Eurocode. If those spatial requirements are not followed, the risk of brittle
failure is too large.
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Table 2.4.1: Minimum values of dowel spacing and edge and end distances for bolts (Eu-
rocode 5 [1])

Before brittle failure occurs, cracks form and propagate. Cracks can form when either the tensile
strength or the shear strength is reached. In fracture mechanics those cracks are labelled mode 1 and
mode 2 and 3 cracks respectively 1 (Figure-2.4.3)

Figure 2.4.3: Crack modes of fracture mechanics [35]. Mode 1 is a tension crack. Mode 2
and 3 are shear cracks

Because of the anisotropic behaviour of wood, there are three types of cracks that are likely to occur
in timber:

• Tension perpendicular to the grain cracks: the tensile strength in perpendicular direction is exceeded.
The timber fibres split and a crack in longitudinal direction develops. This is regarded as a mode 1
failure in fracture mechanics.

• Tension parallel to the grain cracks: the tensile strength in parallel direction is exceeded. The timber
fibres break and a crack in transverse direction occurs. This is also a mode 1 failure in fracture
mechanics.

1These fracture modes are unrelated to the ductile failure modes of the Eurocode
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2.4. Connection failure

• Longitudinal shear cracks: the longitudinal shear strength is reached and cracks develop along the
grain direction. The timber slides across this crack surface. This crack is a mode 2 failure in fracture
mechanics.

A brittle failure occurs when cracks form a mechanism. The motion of a part of the timber can no
longer be prevented resulting in an abrupt failure. Quenneville [42] describes the four different brittle
failures that can occur in timber connections. The failure modes (row shear, group tear out, failure of
the reduced cross section and tensile splitting) are pictured in Figure-2.4.4.

(a) Row shear: Failure dominated by longitudinal shear cracks starting from the fasteners. This failure
mode is triggered in connections with small end distance.

(b) Group tear out: Combination of longitudinal shear cracks and cracks caused by tension parallel to
the grain. A connection with a dense fastener pattern is prone to fail with group tear out.

(c) Failure of the reduced cross section: Stress concentrations near fasteners causes tension parallel to
the grain cracks. These cracks run in transverse direction. Small edge distances trigger this failure
mode.

(d) Tensile splitting: Tension perpendicular to the grain causes a crack that runs in longitudinal direc-
tion. A small end distance or dowel spacing in load direction can cause this failure mode.

Figure 2.4.4: Possible brittle failure modes in timber connections (adjusted from [42])

Due to local variations in wood specimens, combinations of brittle failure modes can also be observed
in tests. The distinct cracking patterns have a clear predefined location. This feature can be useful when
modelling a connection failure.
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3
Modelling Techniques for Timber behaviour

Engineers are faced with challenging design questions. They have to use models to simplify the reality
in order to make calculations possible. For problems involving heat transfer, fluid dynamics, electromag-
netic potential and structural mechanics, the use of models is essential. In those fields typically a boundary
value problem of a partial differential equation (PDE) needs to be solved. Each specific situation requires
a different set of boundary conditions which can be inserted in those PDEs. The mathematical formu-
lation that follows often lacks a clean analytical solution and therefore a numerical solution technique is
utilized. FEM is a powerful numerical tool that can help to solve difficult design challenges.

This chapter introduces how FEM works and how timber can be modelled using FEM. The unique
behaviour that is described in the previous chapter forms a basis for the material model. The complex
nonlinear response of the material is an important feature of that model and can be included in various
ways. The different techniques are explained and a choice for the nonlinear behaviour of the timber model
is made in this chapter. The chapter concludes with a description of the solution procedure that FEM
uses to solve nonlinear problems and how this procedure can be improved.

3.1 Finite Element Method

The use of FEM to compute structural behaviour is nowadays widespread in the engineering world. Since
the introduction of this method many improvements in the applicability and availability have been made.
In FEM a complex problem is subdivided in small elements, which is called a mesh. The small elements
have a simple stress formulation and are assembled to calculate the global behaviour of the model.

Figure 3.1.1: Two cubic elements with shared nodes
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The elements are coupled by the use of coinciding nodes at the boundaries of the elements (Figure-
3.1.1). In these nodes the primary unknown variables are the same for both elements. In structural
analysis the displacements of the nodes are the unknowns that need to be calculated. When the displace-
ment field is known, the strains and the stresses can be computed.

The partial differential equation in structural problems is given by:

∇ · σ + b = 0 (3.1)

This is an equilibrium equation that states that the change of stresses (σ) in every direction is equal to
the external stresses (b) that act on that body. The constitutive relation between stresses and strains
is needed to calculate the deformations of the material. This relation couples the six stress components
(σ11, σ22, σ33, τ12, τ13, τ23) with the strain components (ε11, ε22, ε33, γ12, γ13, γ23). The constitutive
relation needs to be established by means of material testing. The displacements can be computed from
the strains by employing kinematic equations. The kinematic equations follow from infinitesimal small
element considerations. The three sets of equations (equilibrium, constitutive and kinematic) are used to
link the forces that act on a material to the deformations at the element boundaries.

FEM uses the Galerkin method to discretize the equations in the nodes [57]. This method transfers
the strong form of the differential equation to a weak formulation that approximates the equation. In
the weak form, equilibrium between external forces and internal forces is no longer valid for every ma-
terial point. This condition is reduced to equilibrium at element level. The error that is made in the
approximation is proportional to the element size. In the limit where the element size approaches zero,
the solution is equal to the solution from the strong form.

The Galerkin method uses shape functions for the discretization. The value of a material point is
calculated from the nodal values and the position relative to the element nodes. Figure-3.1.2 gives the
shape functions of a simple 2 node bar element. The shape functions become more complex when an
element consists of more nodes.

Figure 3.1.2: The shapefunctions for a 2 node bar element [57]

The discretization in an element results in a linear system of equations given as:

Ku = f (3.2)

Where u denotes the nodal degrees of freedom vector, f is the nodal force vector and K is the local
stiffness matrix. Distributed loads are transferred into equivalent nodal forces and inserted in the force
vector. The local stiffness matrix is derived with the Galerkin method. It gives the relation between the
nodal displacements and the external forces.

In the global stiffness matrix all the contributions of the local stiffness matrices are assembled to obtain
a set of linear equations. Boundary conditions need to be applied to solve this system of equations. The
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3.2. Linear elastic behaviour

most common types of boundary conditions are Dirichlet (essential) and Neumann (natural) boundary
conditions [57]. The former type of boundary conditions sets a value of a specific nodal degree of freedom
while the latter is used to insert forces in the system. The size of the system of equations is often very
large and need to be solved with computer software. ABAQUS is a powerful software tool that can be
used to set up and calculate the global system of equations. It also has a post processor that helps to
visualise the result of an analysis [3]. When the set of equations is solved, the nodal displacements in the
element mesh are known. From this displacement field, the other unknowns like strain and stress can be
computed.

3.2 Linear elastic behaviour

An important feature of FEM is the constitutive relation between stresses and strains. The simplest
model for structural material behaviour is linear elasticity. The strains are linear proportional to the
stresses that act on the material. In one dimensional problems this relation is given by Hooke’s Law:

σ = E ∗ ε (3.3)

With σ the stress, ε the strain and E the Young’s Modulus, a material constant that defines the
relation between the stresses and strains. In three-dimensional problems, a constitutive matrix links the
stress vector with the strain vector [3]:

ε = D−1 ∗ σ, with D−1 =



1/E1 −ν21/E2 −ν31/E3 0 0 0
−ν12/E1 1/E2 −ν32/E3 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0
0 0 0 0 1/G13 0
0 0 0 0 0 1/G23

 (3.4)

In this matrix different Young’s moduli (Ei), Shear moduli (Gij) and Poisson ratios (νij) can be in-
serted to simulate the anisotropic behaviour of timber. Transverse anisotropic behaviour can be modelled
by making the values for the second and third direction identical: (E2 = E3, ν12 = ν13 and G12 = G13).

The first region of the load displacement curve of material tests can be modelled using this linear
elastic behaviour. The next phase consists of nonlinear behaviour which uses a different constitutive
relation. A threshold level has to be defined to separate the linear and nonlinear modelling. There are
various failure criteria available to set that boundary. These are explained in the next section.

3.2.1 Failure criteria

The linear elastic constitutive relation has a limited valid region. Figure-2.2.2 of the previous chapter
for instance gives a clear image of the nonlinear behaviour that occurs in material tests of timber. The
nonlinear behaviour starts at a specific stress level. This level needs to be inserted in the finite element
model. In FEM software a failure boundary is set dependent on the strength in the different directions.
This failure surface does not represent an actual physical failure, but merely the transition from linear
to non-linear behaviour. This boundary is defined in the 6 dimensional stress space of the elements.
The stress directions are σ11, σ22, σ33, τ12, τ13 and τ23. The material strength values in various regions of
the stress space have to be included in the failure criterion. The stress interactions are important for
this definition. The 3 most general descriptions of the failure surface (Linear, Quadratic and Block) are
visualised in Figure-3.2.1.
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Chapter 3. Modelling Techniques for Timber behaviour

Figure 3.2.1: Various types of failure surfaces

The block surface expression neglects all failure interaction between stresses in the normal directions
and the linear failure surface assumes a linear interaction relation between the failure strength in two
principle directions. The quadratic formulation forms a smooth boundary and has the best agreement
with biaxial test results as can be seen in Figure-3.2.2. It also induces more numerical stability, because
the slope of the surface is continuous. The quadratic formulation is still relatively easy to implement,
hence it is the most popular formulation.

Figure 3.2.2: Biaxial test results and quadratic failure surface [48]

The most widely known quadratic failure surface is the von Mises criterion [56]. This criterion describes
the isotropic failure of materials with an unidirectional yield stress, like steel. This criterion forms the
basis of more advanced criteria. This yield surface was altered by Hill [24] to accommodate for different
strength in the principal directions. His failure formulation is:

F (σ22 − σ33)2 +G(σ33 − σ11)2 +H(σ11 − σ22)2 + 2L(σ23)
2 + 2M(σ31)

2 + 2N(σ12)
2 = 1 (3.5)
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3.3. Nonlinear behaviour

Where the variables F, G, H, L, M and N are strength and interaction parameters. The nonlinear
behaviour starts when the summation of all contributions equals one.

Hoffman [26] added linear terms to this equation to distinguish between tension and compression
strength. By including linear terms, the failure surface can be shifted to the proper location in the stress
space. The Tsai and Wu criterion [53] makes use of additional coupling terms to get a closer match with
experimental data. However, these coupling terms do not have a mechanical background and are very
hard to determine [48].

Another approach is the use of multi-surface criteria for each quadrant of the stress space. This ap-
proach has the nice feature of making a distinction between different types of failures. The interaction
between shear and compression can be modelled independent from the shear-tension failure criterion. A
drawback is the need for additional formulation of the different failure surfaces and the numerical diffi-
culties in the transition zones.

Finally there is also piecewise formulation of failure modes. In that case each failure mode is described
by a separate failure surface and the correct failure surface needs to be assigned to the used stress combina-
tion. Although this formulation has the most physical meaning, the implementation of the various failure
criteria is difficult. Sandhaas [48] managed to produce an user defined material subroutine (UMAT) in
which 8 different failure criteria of wood were taken into account to establish the onset of damage evolution.

The Hashin criteria [23] is a piecewise quadratic formulation of failure modes commonly used in fi-
bre reinforced composites. It consists of a tension and a compression failure criterion for both the fibre
direction and the (transverse) matrix direction. The tensile failure modes depend on both the tensile
stress and the longitudinal shear stress while the compression failure is described in two different ways.
The compression in longitudinal direction causes the fibres to buckle at the maximum compressive stress.
In transverse direction the failure criterion is more complex because the failure plane is not known in
advance. This criterion introduces shear stresses and strengths to approximate the failure.

The similarities between timber and fibre reinforced composites make the Hashin criteria interesting.
Timber also has one strong axis along the fibre and the direction perpendicular to the grain can be
modelled as the weaker matrix direction. One drawback of the Hashin failure criteria is the complex
implementation.

3.3 Nonlinear behaviour

In timber connections the post-elastic description after the material strength is reached is also important.
The nonlinear behaviour consists of ductile failure in compression and brittle failure in tension and shear
(Section 2.2). There are various options to describe this nonlinear behaviour of timber. Five different
approaches are discussed in this section. All of them are a variation of the linear elastic formulation.

3.3.1 Plasticity

One of the most important concepts in ductile material behaviour is plasticity. In this model plastic
deformation occurs when the yield stress or yield surface in 3D is reached. Below the yield surface the
behaviour is linear. The mathematical description of this material model has three ingredients: A yield
surface, a flow rule and a hardening law. The yield surface is the failure criterion of plasticity. It defines
where plastic behaviour initiates. A stress state outside the yield surface is not allowed in the plastic
model. When the stress state reaches the yield surface, plastic flow starts. The Kuhn-Tucker format
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Chapter 3. Modelling Techniques for Timber behaviour

formulates this condition [50]:

λ̇φ = 0 (3.6)

Elastic state:φ < 0 → λ̇ = 0 (3.7)

Plastic state:φ = 0 , λ̇ > 0 (3.8)

with φ ≤ 0 and λ̇ ≥ 0 (3.9)

With φ the failure criterion and λ̇ the plastic flow which is the derivative of the plastic strain. The
Prager consistency condition [50] states that during plastic flow the derivative of the failure criterion (φ̇)
is equal to zero. This condition is used to define the flow rule.

The yield limit can be described by one of the failure criteria explained in the previous section. In
more advanced computations a hardening law is used to update the yield surface after plastic flow has
occurred. The yield surface can be enlarged to account for isotropic hardening or shifted in kinematic
hardening. The former describes the yield strength increase after initial yielding occurred (Figure-3.3.1a).
Kinematic hardening is used in situations with cyclic loading where Bauchinger effects are important. In
that case the yield surface is not expanded but shifted in the hardening direction (Figure-3.3.1b).

(a) (b)

Figure 3.3.1: Plasticity stress-strain relation with (a) hardening effects and (b) Bauchinger
effect [39]

In numerical methods the plastic model is implemented with a return-mapping algorithm [50]. This
algorithm uses the plastic flow rule and the failure criterion to calculate the increase of the plastic strain
and to bring the stress state back to the yield surface. The plastic strain is stored as a history parameter.
This is a parameter that is both related to the current stress state and the stress history during the analysis.

In plastic models locking of elements can decrease accuracy of the results. The kinematics of the
elements cannot be modelled with the material formulation which leads to an overly stiff response. The
use of reduced integration is a remedy for this locking effect. The plastic model is not capable of modelling
softening/ brittle behaviour, therefore a combination with other material models is needed to capture all
material behaviour of timber.

3.3.2 Foundation zone model

The foundation zone model is a linear approach that is used specifically for connection behaviour in
timber. Hong [27] described the use of a foundation zone model in three dimensions as illustrated in
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Figure-3.3.2. In this model a certain area under the loaded dowel is assumed to support the dowel.
Because of the high nonlinear effects that affect the supporting zone, the material strength and stiffness
in this region are reduced. The model makes use of plasticity laws to model the crushing behaviour. This
enforces redistribution of the stresses over the supporting wood around the foundation zone.

Figure 3.3.2: Foundation Zone model [27]

Although the implementation in FEM software is straightforward, the calibration of the material
degradation and the size of the foundation zone requires large effort. The validity of the model is limited
to the tested species. It needs to be proven with additional tests if extrapolation of the values towards other
dimensions is possible. Another disadvantage is the empirical background of this modelling technique.
There is hardly any physical explanation for the formulas used for the size of the foundation zone and
the amount of material degradation. They are currently established using extensive parameter analysis
[31]. The foundation zone model is incapable to model post peak behaviour. Only the elastic and ductile
behaviour can be modelled, cracking of the wood for brittle failure is not possible. Hong [27] suggested
to use Weibull’s weakest link theory to predict the peak load for brittle failure.

3.3.3 Cumulative damage model

Another approach is the use of cumulative damage in the elements to simulate the different failure mech-
anisms in timber. This approach uses stiffness degradation to include nonlinear behaviour. As the failure
surface is reached, the damage parameter increases to simulate progressive strength degradation. The
formula that is used to describe the relation between displacements and forces is:

(1−D)Ku = f (3.10)

With D the damage parameter that deteriorates the stiffness. The failure surface shrinks with the
same damage parameter (1 − D). A damage evolution law is computed from the fracture energy (Gf )
to keep track of the strength degradation. This value can be determined with material tests. A lower
fracture energy resembles a more brittle material behaviour. Plastic behaviour is modelled by setting the
fracture energy to infinite. However, the damage model only stores the damage parameter and not the
plastic deformation. The unloading occurs with the secant stiffness as can be seen in Figure-3.3.3. The
deformation is purely elastic and fully unloading results in a zero deformation state. A drawback of the
damage model is that it is prone to mesh dependency. A solution for this problem is to make the fracture
energy dependent on the mesh size. With the inclusion of a characteristic length in the formulation of
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the fracture energy, the mesh dependency can be minimised [3]. The negative slope of the model causes
negative eigenvalues of the stiffness matrix. This is another challenge for the damage model.

Figure 3.3.3: Stress strain relation in cumulative damage model

Damage mechanics is usually combined with yield models to include plastic deformation. Xu et al.
[58] used damage theory in combination with yielding to model a timber to steel connection. They used
the FEM program MSC.MARC in which a Hoffman failure criterion was used to model material failure.
After the failure criterion was reached, the stiffness was reduced to a lower value to simulate damage.
The same test data was used by Khelifa et al. [32] to evaluate their user defined subroutine in ABAQUS.
This subroutine includes cumulative damage, plastic yielding and hardening of the material. The Hill
criterion was used to define the onset of nonlinear behaviour. A good agreement was found between their
numerical analysis and the test made by Xu et al.

Sandhaas [48] developed a user defined subroutine in ABAQUS purely based on cumulative damage
mechanics. A distinction was made between the damage evolutions in the three axes of timber elements.
Each direction had a separate damage parameter. A total of 8 failure criteria were used to define the onset
of nonlinear behaviour in tension (brittle) and compression (perfect-plastic). Although this subroutine
can model the material behaviour of timber properly, numerical issues like spurious energy modes limit
the use for structural models.

3.3.4 Cohesive elements

Cohesive or interface elements are unique elements that can be used to model cracks in predefined loca-
tions. The elements have a very small thickness and are commonly used to simulate the delamination of
glued layers. The softening formulation is similar to the damage model of continuum elements. However,
the small thickness is used to simplify the formulation. The stresses are defined as tractions along the
boundary of the element and membrane stresses are not taken into account. The strains are replaced
by actual displacements of the crack surfaces. The relation between crack opening and tractions can be
determined experimentally.

A threshold value can be set after which degradation starts. This threshold can be a single strength
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value for each fracture mode or a combination if mixed mode fracture is modelled. A complex yield surface
is not needed for this formulation. An element is completely removed when its damage parameter reaches
unity in all material points. At that stage no interaction between the adjacent continuum elements is left.
This is illustrated in Figure-3.3.4. The fastest strength degradation occurs in the elements close to the
crack tip. In this way a crack propagation can be modelled.

Figure 3.3.4: Crack opening with interface elements [6]

Ardalany et al. [6] used cohesive elements to simulate crack initiation and propagation in LVL beams
with openings. A linear damage evolution law was used to model the separation of the interface elements
in the cracked region. Good agreement was found between the experiments and the numerical simulations.
They used viscous regularization to improve convergence. This is described further in section 3.4.2.

A disadvantage of this technique is that the crack locations need to be predefined. Fortunately, the
possible crack locations in a dowelled connection are predictable in timber (Section 2.4.2). The cohesive
elements can be inserted in the areas associated with row shear, tensile splitting, block tear out or failure
of the net cross section. The anisotropic nature of timber is in this case useful since it gives a preferred
crack location. The cohesive elements do not suffer from mesh dependency in the softening behaviour.
For the ductile material behaviour a separate material model should be used. Plasticity characteristics
obtained from embedment tests can be used to model the behaviour of the regular continuum elements
in the uncracked zones.

3.3.5 Extended Finite Element Method (XFEM)

A drawback of using cohesive elements is the need of predefined crack locations. It would be more elegant
if the crack starts in an arbitrary point in an element mesh and to have a crack path which is not fixed,
but determined by the stress state. An upcoming technique is XFEM which can provide such an element
formulation. The normal shape functions used in FEM are enriched with discontinuity factors to model
cracks in the elements. A major advantage of this method is that it does not need a re-meshing algorithm
to cope with arbitrarily formed cracks. This reduces the need for computational resources compared with
conventional approaches for crack initiation and propagation.

The use of XFEM in timber literature is limited and mostly used in cases in which tensile cracking
is the dominant failure. Qiu et al. [41] used XFEM to model crack propagation in cambered beams
where tension perpendicular to the grain initiated cracking. The wood was modelled as elastic extended
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finite elements with crack initiation and propagation criteria based on compact tension specimen tests.
XFEM uses fracture mechanics to calculate the formation and the propagation of cracks. Three fracture
modes (Figure-3.3.5) are distinguished which are caused by longitudinal tension, longitudinal shear and
transverse shear stresses respectively. Cracks are initiated as one of these stresses reaches a critical value.

Figure 3.3.5: Fracture modes in Fracture mechanics[41]
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3.3.6 Conclusion

Four different models for the nonlinear behaviour of wood have been explained. In order to choose the
most suitable approach, the different advantages and disadvantages are summarised in Table-3.3.1.

Table 3.3.1: Summary of different approaches to nonlinear behaviour

Foundation model

Advantages Disadvantages

- Easy implementation in FE software - Empirical approach based on parametric analysis
- Formulas to calculate degradation available - Limit validity of degradation parameters and

foundation zone size
- Numerical problems are unlikely to occur - Post peak behaviour (cracking) cannot be simu-

lated

Damage model combined with Plasticity

Advantages Disadvantages

- Strong relation with uni-axial material behaviour - Complex user defined subroutine is needed
- Capability of connection modelling described in
literature

- Numerical issues (mesh dependency, spurious
modes, convergence difficulties) dominate numer-
ical model
- Complex definition of failure criteria is needed

Cohesive elements

Advantages Disadvantages

- Relatively easy to implement in FEM software - The compressive behaviour needs to be modelled
in a different material model

- No complex failure criteria needed - Predefined crack locations are needed
- High correlation between modelling and ob-
served failure modes

- Material softening makes convergence difficult

- No mesh dependency in softening behaviour

Extended Finite Element Method

Advantages Disadvantages

- Predefined crack locations are not needed - Material softening makes convergence difficult
- The cracks can develop in an arbitrary direction
based on the stress state

- Relatively new technology which requires pioneer
work for anisotropic behaviour
- Combination of discrete crack formation and
plasticity requires complex failure criteria defini-
tion

In this study, the nonlinear behaviour of connections will be modelled using cohesive elements. They
are relatively easy to implement in FEM software and are capable of simulating post-peak behaviour.
Another advantage is the high correlation between the modelled crack surfaces and the brittle failure
modes in timber connections. This can be very helpful in visualising the results. It can be argued that a
more complex model with arbitrary formed cracks (XFEM) gives a more accurate crack pattern. However,
the anisotropic behaviour of wood makes it possible to predict the locations of the possible cracks in a
simple connection. Therefore the use of the more manageable cohesive model is justified.
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3.4 Solution procedure

3.4.1 Numerical solution schemes

In linear analyses the solution procedure is straightforward. The global stiffness matrix is inverted and
the displacement field can be found with the operation:

u = K−1f (3.11)

In nonlinear formulations this simple approach is no longer valid as equilibrium conditions are not satisfied.
The solution can be found by either an explicit or an implicit solution scheme (Figure-3.4.1). The explicit
scheme divides the applied load in small increments. In each increment the behaviour is assumed to be
linear. The error that is made in this approximation of a curved load path is proportional to the increment
size. The errors need to be sufficiently small as they will accumulate in the analysis. A small stable time
increment size ensures that errors do not grow exponentially during the analysis.

Figure 3.4.1: Explicit and implicit solution schemes [50]

The implicit solution scheme checks if the solution to a load increment leads to an equilibrium state.
The external forces are compared with the internal forces, which are related to material straining. An
iterative procedure ensures equilibrium of these forces is met within a predefined tolerance. The Newton-
Raphson iteration scheme is a powerful tool that uses limited number of iterations to get to a converged
solution. It updates the stiffness matrix after each iteration and computes the new stress state based on
the difference between internal and external forces. In large systems the computation and inversion of the
stiffness matrix make up a major part of the computation time. It can be more efficient to use the Quasi
Newton-Raphson or the Modified Newton-Raphson iteration scheme. The former uses the same linear
stiffness matrix throughout the analysis. The latter updates the stiffness matrix only at the beginning of
a load increment and not in every iteration. These techniques are most efficient when nonlinear effects
have a minor contribution to the global behaviour.

The implicit solution scheme can be affected by convergence difficulties. Especially sudden stiffness
changes or a negative stiffness increase the number of iterations and can also cause a solution to diverge
from the equilibrium path. One way to facilitate the solution process is to use a displacement controlled
analysis [50]. One or more displacements are growing with increments and that causes a stress develop-
ment in the model. The nodal forces at the location of the predefined displacement can be computed from
these stresses, which in turn can be summed to calculate the external forces. The displacement control
method is more robust than the load control method. The load is increased with this latter option and

30



3.4. Solution procedure

causes divergence at (local) peak loads (Figure-3.4.2).

A third option is arc-length control. This method makes incremental steps along the path of a load
displacement curve. It is especially useful in unstable problems where snap-back behaviour can occur.

Figure 3.4.2: Divergence of the load control method at a peak load [50]

3.4.2 Viscous regularization and automatic stabilization

Even with the displacement control method, the sudden stiffness changes that form in a nonlinear analysis
with softening behaviour or contact changes can cause severe convergence issues. In the ABAQUS manual
it is suggested [3] to make use of viscous regularization to overcome these problems. It ensures a positive
tangent stiffness for sufficiently small time increments [3]. It involves using viscous stiffness degradation
Dv that helps the degradation process:

Ḋv =
1

µv
(D −Dv) (3.12)

With viscosity parameter (µv) that determines the magnitude of viscous regularization. The viscous
regularization does not have a physical meaning, but is purely included to enhance the numerical perfor-
mance of the FEM algorithm. The regularization introduces artificial strain energy which deteriorate the
accuracy of the model. Choosing an appropriate viscosity parameter is a trade-off between accuracy and
convergence ability.

It is also suggested in the manual to use automatic stabilization for problems with local instabilities.
This is definitely the case in connections where cracks and crushing behaviour act very locally. Automatic
stabilization has a similar effect as viscous regularization. This method includes artificial damping to aid
convergence of a numerical model. It adds viscous forces to the equilibrium equation. Those forces have
the form:

Fv = cM∗v (3.13)

31



Chapter 3. Modelling Techniques for Timber behaviour

In this equation M∗ is an artificial mass matrix with unit density, c is a damping factor and v is the
vector of nodal velocities [3]. The damping factor needs to be sufficiently small to ensure an accurate
result. ABAQUS calculates the artificial energy for both the viscous regularization and the automatic
stabilization. These values need to be sufficiently small compared to the strain energy in the system.

3.4.3 Linesearch technique

Another technique that helps convergence is the linesearch algorithm. A limit of the Newton-Raphson
method is the small radius of convergence [50]. This is the region in which a displacement or load step
needs to be taken to get convergence. The linesearch technique enlarges this radius by scaling the dis-
placement vector to a point along the search direction where the potential energy is the lowest.

These explained techniques are implemented in the embedment and connection models that are de-
scribed in the next chapters.
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4
Embedment modelling in Laminated Veneer

Lumber

This chapter explains how an embedment test on LVL was modelled in the FEM software ABAQUS.
The test set-up used in the LVL embedment study by Franke and Quenneville [18] is discussed and the
characteristics are transferred to a numerical model. The nonlinear behaviour in the model originates
from three different sources: the contact between the steel and the timber, the plastic crushing behaviour
in the timber and the brittle cracking in the timber that is modelled using cohesive elements. Each source
of nonlinearity is explained in a separate section. The convergence issues that arise from these factors were
mitigated using the specific solution techniques explained in the previous chapter. The input parameters
originate from material tests on LVL. This chapter concludes with a parameter study on these properties
to determine the effects on the general solution of the FE-model.

4.1 Embedment test set-up

Franke and Quenneville [18] conducted extensive tests on the embedment behaviour of sawn timber and
LVL made of radiata pine. The embedment tests were executed according to the international standard:
ASTM D 5764-97a [13] as a half hole test (Figure-4.1.1a). It involves pushing a steel dowel into a timber
specimen. The dowel is loaded along the full length to avoid bending effects. Franke and Quenneville [18]
studied the embedment behaviour of various dowel diameters and load to grain angles (Figure-4.1.1b) to
obtain a clear view of the embedment behaviour of radiate pine LVL.
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(a) (b)

Figure 4.1.1: Photo of a test specimen during the test (a) and Test set-up with variables
(b)[18]

The embedment tests with a 20 mm diameter dowel loaded in the grain direction was most interesting
to use for the numerical model, as the connection tests were also performed with steel dowels of the same
diameter. The timber block had a height of 115 mm, a width of 200 mm and a thickness of 45 mm. The
specimens were loaded in displacement control. Franke and Quenneville [18] found a mean embedment
strength of 40.4 N/mm2 with a coefficient of variation (COV) of 5.9%. The embedment strength was
calculated as the maximum applied load divided by a rectangular supporting surface (dowel diameter *
specimen thickness) underneath the dowel. They reported an average density of the used LVL of 587
kg/m3. A typical load displacement curve 1 of the 20 mm embedment test and other diameters is pre-
sented in Figure-4.1.2. Franke and Quenneville [18] also conducted tests on smaller specimens. They
observed tensile splitting as a result of the smaller end distance. In the larger specimens this splitting
was postponed.

1The figure presents the load in the embedment tests. The embedment stress can be calculated by dividing the load by
the dowel diameter * specimen thickness
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Figure 4.1.2: Typical test result of embedment tests with various dowel diameters [18]

4.2 ABAQUS embedment model

4.2.1 Schematisation, Loading, Boundary conditions and Mesh

The test set-up is modelled in ABAQUS 6.14-1. The model consists of three parts: the dowel, the timber
block and a steel plate to model the support at the base. The contact interaction between all parts is
described in section 4.2.2. Symmetry is used to reduce the size of the model to only a quarter of the test
(Figure-4.2.1). Appropriate boundary conditions are implemented to accommodate the symmetry at the
symmetry planes. The steel plate is fixed at its lower surface in all translational and rotational degree of
freedom. The remaining boundaries of the model are free to translate or rotate. The displacement of the
top surface of the dowel is coupled with a reference point. This reference point is loaded up to 3 mm to
displace the nodes of the dowel surface with an equal magnitude. At 3 mm displacement, the strength
plateau is reached in the embedment tests.
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Figure 4.2.1: Quarter of embedment model with cohesive element planes in red. Dimensions
in mm

The timber is modelled with 8-noded hexahedron continuum elements with reduced integration and
enhanced hourglass control (C3D8R in ABAQUS [3]). These elements are described with an anisotropic
linear elastic formulation. A plasticity law with hardening is used to simulate the crushing behaviour.
This hardening rule is further described in section 4.2.3. Cohesive elements are inserted at the locations
where vertical cracks are expected. The use of cohesive elements, location and corresponding damage
model are explained in section 4.2.4. The displacement is imposed on the top surface of the dowel and
is increased in a nonlinear analysis. The sweep mesh algorithm is used to obtain a gradient in density in
the mesh (Figure-4.2.2). The contact region has a mesh size of 1 mm while the other boundaries have
a mesh size of 10 mm. Three elements in thickness direction are sufficient to describe the displacement
field, as there is no bending of the dowel in that direction. An equal vertical displacement over the cross
section is expected. The steel dowel is modelled with 288 continuum elements which have a total of 368
nodes. The timber block consists of 186 Cohesive elements and 789 continuum elements. A total of 1444
nodes are used in the timber block. The total number of degrees of freedom (DoF) in the system is 4890.
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Figure 4.2.2: Mesh discretization of the embedment test in ABAQUS

4.2.2 Contact model for the interaction between parts

The contact interaction between the steel dowel and the supporting timber and between the timber block
and steel bottom is modelled using the general contact algorithm of ABAQUS [3]. General contact is
based on a master-slave formulation of contact pairs in which the slave surface cannot penetrate the mas-
ter surface. The dowel is assigned as master as it is stiffer than timber. A contact smoothing technique
is employed to improve the contact between the curved surfaces. The general contact interaction auto-
matically chooses a surface-to-surface contact formulation with finite sliding between the surfaces. This
formulation gives the most accurate contact stresses. An initial step of limited displacement is introduced
to initiate contact between the parts. The steel dowel is supported by an elastic foundation with a small
stiffness to aid contact initiation. This is a combination of spring elements attached to the lower surface
of the steel dowel. These springs resist the vertical rigid body translation of the dowel before it touches
the timber block.

The contact property assignment module in ABAQUS sets a relation for the stresses in normal and
tangential direction. There is a hard contact formulation between the pressure and overclosure in normal
direction. This ensures that there can be no penetration of the master surface, while there are no contact
forces when there is a gap between the surfaces. A penalty stiffness is used to make the transition
between both regions smoother (Figure-4.2.3). The tangential response is based on Coulomb friction.
The maximum shear stress that can be reached is formulated as:

τmax = µf ∗ σn (4.1)

With τmax the maximum shear stress, σn the normal stress and µf the friction coefficient that determines
the ratio between them. The µf value for steel to timber can be tested experimentally. The shear stress
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in a contact pair is limited to the shear strength 6 N/mm2. This limit is adopted from the embedment
modelling in timber of Schoenmakers [49]. The shear strength in LT-direction for Radiata pine LVL is
unknown, therefore the shear strength of LVL in longitudinal direction is used instead. The shear stress
that can be carried in transverse direction of a contact pair is limited to both the maximum shear stress
(τmax based on the normal stress) and the strength value in shear (6 N/mm2). The contact ”slides” as a
value higher than this limits is reached.

Figure 4.2.3: Hard contact model with penalty enforcement. Adjusted from [3]

4.2.3 Trilinear plasticity model for LVL compression behaviour

The mechanical behaviour of LVL in compression can be approximated using a plastic material model
(Section 2.2.1). The three dimensional failure surface of Von Mises is used in the analysis. The failure
surface formulation is [3]:

1√
2

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6σxy2 + 6σyz2 + 6σzx2 = σyield (4.2)

A simple bilinear elastic-plastic relation in which the yield stress (σyield) is kept constant, results in
an overly stiff response of timber ([48], [28], [15]). The Young’s Modulus is experimentally determined in
bending tests in which the strain of the material is limited. In an embedment test however, there is high
material strain in the timber located under the dowel. This changes the compressive characteristics of
timber. Therefore the trilinear model from Dias et al. [15] is adopted to get a more accurate prediction
of the deformations. In this model the timber starts to yield at a low load level (16 % of the yield stress)
and a strain hardening rule is added to provide strength increase until the full yield strength is reached.
This nonlinear effect is attributed to initial rough contact near the dowel and strain densification effects
in the timber underneath the dowel. Dias et al. found that this densification effect is high for softwoods
and low for hardwoods. This is not surprising since hardwoods are denser than softwoods prior to loading
and densification is limited

The trilinear model (Figure-4.2.4) is calibrated with the ultimate yield strain parameter (εy). This
value determines the hardening branch after the first yielding point is reached. A curve fitting procedure
is used to determine that value for LVL. A yield strain of 2% in the material model provided the closest
fit to the experimental curves in the linear branch (Appendix A).
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4.2. ABAQUS embedment model

Figure 4.2.4: Trilinear Model adjusted from [15]

4.2.4 Cohesive elements for LVL brittle behaviour

The cohesive elements are a unique feature of the model. These elements concentrate the brittle behaviour
of timber in the locations where cracks are expected. In a half hole embedment test only three cracks are
possible. One splitting crack directly underneath the dowel and two longitudinal shear cracks close to the
edge of the timber hole (row shear and tensile splitting as illustrated in Figure-2.4.4). The formulation
of the cracks is set in a traction separation model and is composed of three features.

• Elastic response: Before the strength of the material is reached, an elastic traction-separation
formulation with a dummy stiffness is used to link the stresses with the displacements on both sides
of the cohesive element. The formulation is given as:

τ = E ∗ δ (4.3)

with δ =
u

T0
(4.4)

With τ the vector containing the tractions (1 normal and 2 shear tractions) that act on the cohesive
element, E the initial dummy stiffness of the cohesive elements, δ the strain in the cohesive elements,
u the displacement vector containing the relative nodal displacements and T0 the initial thickness
of the element (0.001 mm). . According to Turon et al. [54] the stiffness needs to be increased to
limit the effect of the cohesive layer on the global behaviour. The Young’s modulus in the cohesive
elements are therefore a factor 10 times higher than the surrounding material. In most FEM models
the relation is given between tractions and deformations2. For an element thickness of 0.001 and
Young’s modulus 10 ∗ Etimber this relation is given by:

u =
τ ∗ Ecohesive

T0
= 10000Etimber ∗ τ (4.5)

Which is a factor 10 times higher than the stiffness suggestion by Rots and Hendriks [46] (with a
characteristic length of 1 mm for the timber elements).

2Instead of the tractions (τ) to strain (δ) relation

39



Chapter 4. Embedment modelling in Laminated Veneer Lumber

• Damage initiation: The strength of the material is used to define the onset of damage evolution.
The cohesive elements need a strength parameter for all the three fracture modes in which they can
crack. A quadratic failure criterion is implemented to include stress interaction between tension
and both shear directions. The formulation is:{〈tn〉

ft

}2
+
{ ts1
fs1

}2
+
{ ts2
fs2

}2
= 1 (4.6)

With 〈tn〉, ts1 and ts2 the tractions in normal and both shear directions and ft, fs1 and fs2 the
strength in respectively the normal tensile, the longitudinal shear and perpendicular shear direction.

• Damage propagation: The fracture energy for every mode (Gf ) is used to describe the propa-
gation of the crack. It describes the degradation of the inserted dummy stiffness in the cohesive
elements. With this parameter an ultimate displacement can be calculated. When the ultimate
displacement is reached (damage=1), the cohesive element loses all stiffness and the element is
deleted.

The cohesive elements are of type COH3D8 [3], which is a 8-node cubical element. These elements are
assigned to a small slice of 0.001 mm thickness in the predefined locations of the timber block. Because of
symmetry the fracture energy of the tension crack is halved. The location of the shear crack is deduced
from a plastic analysis. Figure-4.2.5 shows a contour plot of the shear stress distribution at the end
of the analysis. It can be observed that the shear stress is highest at the contact surface between the
dowel and the hole edge in the timber. These shear stresses develop in lateral direction. The shear crack
is inserted at a distance of 9 mm from the centre of the timber hole as a vertical plane. This ensures
that the cohesive elements pass through the maximum shear stress location. Appendix C shows the load
displacement curves of FEM analyses with different shear crack locations. The crack is modelled with
cohesive elements in a vertical plane since the strong longitudinal fibres prevent a crack from propagating
in lateral direction.

Figure 4.2.5: Contour plot of the shear stress distribution of a plastic analysis with the
location of the cohesive elements as a black dashed line
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4.2. ABAQUS embedment model

4.2.5 Solution procedure

The results are obtained with ABAQUS/standard: an implicit solver with full Newton-Raphson iteration.
The direct solver uses the sparsity of the stiffness matrix and finds the exact solution to the system of
linear equations in an iteration. The automatic time incrementation [3] is used with an initial increment
of 0.001 of the total step. This algorithm reduces the time increment when the solution diverges or when
the rate of convergence is very slow. The increment size is increased when convergence is reached within
a few iterations. This algorithm is controlled by user defined control parameters. The control parameters
of a discontinuous analysis are adopted from the ABAQUS manual [3].

The convergence is improved with the use of linesearch, automatic stabilization and viscous regular-
ization (Section 3.4). Ardalany [6] found that a value of 1 ∗ 10−4 for viscous regularization yielded the
best results for his cohesive element model in timber beams. A damping factor of 5 ∗ 10−5 and a viscos-
ity parameter of 5 ∗ 10−5 are used in this analysis as both contributions introduce artificial forces that
can influence the results. The strain energy resulting from these techniques is computed by ABAQUS.
The fictitious energies are sufficiently low (≈ 0.05 %) compared with the total energy of the system in
Appendix B.
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4.3 Input parameters

The input parameters have a major influence on the outcomes of the model. The inhomogeneous nature
of the material wood causes a large scatter in test results. In the parameter study described in section
4.5 the influence of this scatter is quantified. The mean values that are used in the model are extracted
from experimental tests and other models in literature:

Franke and Quenneville [19] found a mean value of 45.2 MPa for the compression strength parallel
to the grain (fc). The COV of their experimental work was not reported. They tested 20 specimens of
radiata pine LVL with a mean density of 574.5 kg/m3. After the peak load a distinct load drop was
observed with a shear band formation. This shear band formation does not develop on a large scale in
the embedment test. The rounded value of 45 MPa was used as the yield strength of the timber.

Ardalany et al. [5] conducted dogbone tension tests on radiata pine LVL to obtain the tension strength
perpendicular to the grain (ft). They tested 57 specimens with a mean value of 2.021 MPa and a COV
of 37%. A value of 2.0 MPa was used in the cohesive elements as an initiation criteria for tension per-
pendicular to the grain failure (mode 1).

For mode 2 failure, the shear strength is needed. Ardalany [7] used a value of 6.2 MPa for his cohesive
element model in radiata pine LVL. This value closely matches the shear strength in the fracture test of
Franke and Quenneville [19]. Franke and Quenneville did not report this value in their paper. A value
for the shear strength along fibres and across the fibres (fs1 and fs2) of 6 MPa is adopted in the cohesive
elements.

Franke and Quenneville [17] determined the fracture energy of sawn radiata pine and radiata pine
LVL. The fracture energy is defined as ”the energy needed to create new crack surfaces”3 [48]. Franke
and Quenneville tested different crack systems in both radial and tangential directions. The fracture ener-
gies in the T-L cracks are used since these crack systems match the crack plane in embedment specimens.
They conducted 20 single end notched beam specimens (SENB) tests to determine an average fracture
energy of 1200 N/m in mode 1 (Gf,1). A COV of 25.4 % was reported for this value. They tested the
fracture energy in mode 2 by using compact shear specimens (CSS). A study of 20 specimens resulted
in an average value of 5200 N/m (Gf,2) with a COV of 26.1 %. The average densities were 613 and 607
kg/m3 for the SENB and CSS tests, respectively. Those values are higher than the density of the timber
used in the embedment test. This results in a small overestimation of the fracture energies.

The stiffness parameters (Young’s moduli and Shear Modulus) were adopted from Franke and Quen-
neville [16]. They used these values in a numerical model to determine the failure of a timber connection
loaded perpendicular to the grain. The values were E‖ = 10280 MPa , E⊥ = 470 MPa , G12 = G13 =
410 MPa and G23 = 50 MPa .

The Poisson’s ratios (ν) are hard to determine experimentally and they are known to degrade when a
specimen is loaded up to a failure load [48]. A Poisson’s ratio of 0.4 is used in every direction. Sensitivity
analyses of the Poisson ratio on the embedment model results (Appendix D) conclude that the influence
of Poisson’s ratios on the results is negligible.

A Young’s modulus of 210000 N/mm is used for the steel elements to represent the elastic response
of the dowel.

3The unit of fracture energy is N/mm which originates from Nmm/mm2
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The friction coefficient (µf ) between wood and steel was determined by Koubek and Dedicova [33].
They found values ranging between 0.1 and 0.7 depending on the roughness of the surfaces. The test
standard does not mention recommendations for the surface roughness of the steel and timber, therefore
a value for friction of 0.4 is used. The extreme values are examined in the parameter analysis in section 4.5.

Table-4.3.1 displays all used parameters in the analysis.

Table 4.3.1: Used input parameters in the numerical embedment model

Material property Value

LVL Timber elements

fc Longitudinal compression strength 45 MPa
E‖ Young’s modulus parallel to grain 10280 MPa

E⊥ Young’s modulus perpendicular to grain 470 MPa
G12 and G13 Longitudinal shear modulus 410 MPa
G23 Rolling shear modulus 50 MPa
ν Poisson’s Ratio 0.4

Cohesive elements

En Young’s modulus in cohesive normal direction 4700 MPa
Et1 Young’s modulus in cohesive 1st tangential direction 4100 MPa
Et2 Young’s modulus in cohesive 2nd tangential direction 500 MPa
ft Perpendicular tension strength 2.0 MPa
fs1 and fs2 Shear strength 6.0 MPa
Gf1 Fracture energy in mode 1 1200 N/m
Gf2 Fracture energy in mode 2 5200 N/m

Steel dowel elements

E Unidirectional Young’s modulus of steel 210000 MPa
µf Friction coefficient between steel and timber 0.4

4.4 Finite element results

The load-displacement is presented in Figure-4.4.1. This curve is shifted by a small displacement to
counteract the initial contact interaction in the dowel-timber interface. The typical load displacement
curve of the embedment tests [18] (Section 4.1) is added to the graph for comparison. A 95% upper
bound and 5% lower bound are added to the experimental curves to give an insight of the distribution of
the experimental results. These boundaries are calculated from the COV of the experimental tests. The
load displacement curve slightly overestimates the embedment behaviour observed in tests. There are
four interesting points marked in the figure that give an insight in the stress development in the timber.
The stress distribution at those points (end of the time increments) for both the timber and the cohesive
elements are presented in Appendix E. The most interesting plots are the principal stress direction plots
(Figure-4.4.2). It can be observed that initially the dowel was supported axially by the timber directly
under the dowel and there was substantial load spreading to the side member. When the shear crack
cohesive elements degraded this latter supporting action was reduced.
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Figure 4.4.1: Load displacement curve of FEM calculation with interesting time increments
(dots) and typical load displacement curve of the experimental results with distribution [18]

44



4.4. Finite element results

(a) (b)

(c) (d)

Figure 4.4.2: FE-Results: Principal stress directions at time step 0.141 (a), 0.307 (b), 0.650
(c) and 1.000 (d). The steel is removed and only 1 element in thickness direction is displayed
to improve the visibility of the results
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Figure-4.4.3 shows a contour plot of the stress distribution in longitudinal direction (σ11) at a displace-
ment of 3 mm of the dowel. One can clearly observe that the region underneath the dowel is fully yielding
(σ11 > 45N/mm2). In the remaining part a moment is formed as a result of the horizontal pressure of the
dowel. The tension cracks in mode 1 are opening, which is most visible directly underneath the dowel.
The cohesive elements for shear in mode 2 are also degrading which causes a displacement jump between
the adjacent elements. The degradation of the cohesive elements is presented in Appendix E.

(a) (b)

Figure 4.4.3: Contour plot of longitudinal normal stress (a) and deformed element mesh in
contact zone (b) (deformations are magnified with a factor of 5)

The complex non-linear models caused convergence difficulties in the implicit analysis. This resulted
in a relatively long computation time for a model of 4890 DoF’s. It took 2 CPU’s 8 hours to complete
the 9924 increments that were needed to obtain the load-displacement curve up to 3 mm displacement.
The time increments were reduced by the automatic time integration scheme to a minimum value of
1.5 ∗ 10−5 of the total unit time step. The majority of the cutbacks were caused by local divergence of
the solution. Stiffness changes in contact or cohesive elements are the reason for these local divergence.
A converged solution was found in a successive attempt with a smaller increment size. Another reason
for the automatic time incrementation to decrease the increment size was contact chatter. This is caused
by a contact surface pair that changes their state in consecutive iteration in a repetitive pattern. This
numerical phenomenon was more severe in the connection model and is described in section 5.4.2. The
output file contains numerous warnings for negative eigenvalues. These are caused by the softening be-
haviour in the cohesive elements.

To verify the validity of the FE-results a 2D model with plane stress elements is analysed (Appendix
F). The 2D model has a slightly softer behaviour as there is no load spreading in the third direction. The
crack and stress development of both models is similar.
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4.5 Parameter analysis

The influence of various parameters on the results of the embedment model was investigated in a pa-
rameter study. A total of six parameters were investigated. The characteristic values were deduced from
the COV found in the material tests. An estimated COV was used when the variance is missing. For
the friction coefficient the extreme values found in literature were used to obtain a realistic upper and
lower bound. Table-4.5.1 presents the parameters with the average values and the extremes. Stiffness pa-
rameters are excluded from this study as the stiffness is calibrated in the plastic hardening material model.

Table 4.5.1: Average, upper bound and lower bound values of the parameters used in the
parameter analysis

Input Parameter Average value COV(%) Upper bound Lower bound

Friction µf 0.4 - 0.7 0.1

Fracture energy in tension (N/mm) 1.2 25.4 1.7 0.7

Fracture energy in shear (N/mm) 5.2 26.1 7.4 3.0

Compressive yield strength (N/mm2) 45 51 41.3 48.7

Tensile strength perpendicular to the
grain (N/mm2)

2.0 37 2.6 1.4

Shear strength (N/mm2) 6.0 202 8.0 4.0

The input parameters for the shear crack (fracture energy in shear and shear strength) and the com-
pression strength had the most effect on the load displacement curve. These values determine the stress
distribution in the timber block. The shear crack determines the lateral spreading of the forces and the
compression strength determines the maximum axial support stress underneath the dowel (Section 4.4).
The influence curves of all the parameters included in this study are displayed in Appendix G.

It can be observed from this appendix that a calculation with a lower value of the shear fracture
energy had a closer match than a calculation that uses the average value. The choice for a lower fracture
energy in shear is supported by the lower density of the embedment test specimens. The density of LVL
in the embedment tests (587kg/m3) was lower than the density of the specimens used for the CSS tests to
obtain the fracture energy in shear (607kg/m3). A reduction in density decreases the fracture properties.
However, the difference in density is not substantial (≈ 3%) which is not enough to drastically change the
fracture properties. A curve-fitting procedure could result in an optimal choice for the fracture energy
in shear. The value for the fracture energy is not altered to keep the relation with the physical material
property that is observed in the CSS tests.

Two ultimate cases are analysed to compute the range of the FE-results. The lower bound solution
uses all minimum values and the upper bound solution uses the maximum values for the input parameters.
Figure-4.5.1 presents the range of the FE-results using the extreme values. The typical experimental curve
from the embedment test are within this range.

1The crushing failure is ductile and redistribution of forces is possible. A relatively low COV is used.
2The brittle characteristics of this failure give a relatively high COV as the weakest link determines the failure initiation
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Figure 4.5.1: Upper and lower bound FE-results based on maximum and minimum param-
eter values

4.6 Limitations and possible improvements

The result with the described approach had close agreement with the experimental embedment test re-
sults. A clear view of the crack initiation and propagation was obtained, which explains the mechanical
behaviour of the loaded LVL specimens. There are however some limitations of the used approach that
can be improved. The model approach described in this chapter was only validated for the specific ex-
perimental test set-up of the 20 mm dowel test of Franke and Quenneville [18] loaded in the direction of
the grain. It is interesting to investigate the behaviour of embedment tests of different dowel sizes and
angles to the grain. The moisture content was not reported in their paper and not taken into account
in the determination of the input parameters of the model either. The moisture content has significant
impact on the strength variables.

The model with the mean input values overestimated the load displacement curve at the maximum
load (Figure-4.4.1). This overshoot in the load displacement curve can be related to compression softening
behaviour in the crushed timber. This effect is similar to the kinking phenomenon (Section 2.2.1), but it
occurred on a smaller scale. Implementation of the peak stress compression model of Dias et al. [15] could
improve the behaviour on the cost of convergence speed. As the implicit solver encounters difficulties of
convergence with the cohesive softening, this peak stress model was not implemented.

The model approach includes the Von Mises yield surface to evaluate if an element is yielding. This
criterion does not differentiate between tension and compression along the parallel or perpendicular direc-
tion. This was a simplification of the actual material behaviour which can be justified since the behaviour
is mostly governed by axial compression in the embedment specimens.

A Hill yield surface (Section 3.2.1) can be implemented to model plastic yielding of the timber in per-
pendicular direction at a low load level. The Hill failure surface can be inserted with the plastic potential
function in ABAQUS [3]. However this failure surface introduces tension yielding in the perpendicular
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direction at a low load level. The Hoffman yield surface can be inserted to avoid this problem. However,
a user-defined material model (UMAT) has to be programmed to implement this yield surface, as the
Hoffman yield surface is not a standard option in ABAQUS [3].

There is also no direct influence of the longitudinal compressive stresses on the formation and propa-
gation of the cracks. The stress interaction as described in section 2.2 between longitudinal compression
and perpendicular tension cannot be modelled with cohesive elements as there are only tractions modelled
in the normal plane.

The shear crack location in the model was set at the boundary of the hole in the timber. It can be
observed in the results of the analysis (Appendix E) that this was not the location of maximum shear
stress at the contact surface. The determination of the crack location (Section 4.2.4) was approximated
and not exact. Further research should be done to determine the exact crack location and crack path and
to investigate the influence of the location of the cracks or even multiple shear cracks in that region. The
use of XFEM may result in a more accurate prediction of the shear cracks, but this is still a relatively
new modelling technique and the implementation in timber research could be difficult.
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5
Connection modelling in Laminated Veneer

Lumber

This chapter explains how a connection test in LVL is modelled in FEM software ABAQUS. The
connection tests of Ottenhaus et al. [37] are explained and translated into a FE-model. A nonlinear anal-
ysis is conducted to model the contact interaction between the timber and the dowel with plastic hinges.
The results are compared with analytical formulas. The cohesive elements introduce more complexity
to the model and the implicit solver fails to converge during the analysis. A solution to this problem
was searched in the cohesive element, contact and solution procedure formulation. It was found that a
reduction of the initial dummy stiffness of the cohesive elements improved the convergence substantially.

5.1 Connection test set-up

Ottenhaus et al. [37] conducted experimental tests on connections in LVL and CLT made of radiata pine.
The test set-up is presented in Figure-5.1.1. The top connection is designed to be significantly stronger
and stiffer than the bottom connection [37]. The failure occurs in the weaker bottom connection. Similar
connections are being used as hold-downs or column-beam joints in multi-story buildings [37]. In the
monotonic tests the top connection was pulled upward in a displacement controlled manner. The spacing
of the dowels in the bottom connection was altered to investigate the various failure modes that occur in a
connection. The dimensions of the spacing for the ductile connection set-up are presented in Table-5.1.1.
The dowels had the same diameter (20mm) as used in the embedment tests in the previous chapter. The
mean density of the material was 591 kg/m3, similar to the density of the LVL used in the embedment
tests.
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Figure 5.1.1: Set-up for connection tests and specimens dimensions[37]

Table 5.1.1: Dimensions of the ductile connection test specimens

Horizontal dowel spacing a1 100mm/5d

Vertical dowel spacing a2 60mm/3d

End distance a3 100mm/5d

Edge distance a4 90mm/4.5d

The load-displacement curves of 5 monotonic tests on the ductile connection layout are presented
in Figure-5.1.2. The maximum load (Fmean = 197kN) is reached at a displacement of around 3 mm.
Figure-5.1.3 shows the crack sequence in one of the specimen. First a splitting crack occurs under the
right dowels. The ultimate failure is a combination of tensile splitting and row shear cracks with signifi-
cant dowel bending [37]. There is a glue line in the outer veneer layer that looks like a horizontal crack.
This glue line has minor effect on the global behaviour of the connection.
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Figure 5.1.2: Load displacement curves of the monotonic tests on ductile connections [37]

(a) (b)

Figure 5.1.3: Snapshot of the connection test recording at first cracking (a) and ultimate
failure (b)

53



Chapter 5. Connection modelling in Laminated Veneer Lumber

5.2 Analytical predictions

The strength of the connection can be predicted by the formulas in Eurocode 5 [1]. They provide a
calculation method to estimate the failure load for three ductile failure mechanisms. A calculation of the
failure load of each mode is provided in Appendix H. The governing failure mode includes two plastic
hinges in the steel dowel. One at each side of the steel plate. The failure load calculation (including
the effective number of fasteners per row) results in a load of 172 kN for the connection. This is a safe
underestimation of the real failure load. The failure load without the use of the effective number of
fasteners (nef ) is equal to 234 kN.

Ottenhaus et al. [37] estimated the failure loads of the brittle failure modes row shear and group tear
out. Their calculations were based on the work of Quenneville and Morris [43]. Row shear failure was
predicted at a load level of 235 kN and group tear out at 306 kN.

These calculations give a prediction of the failure mode development that matches the experimental
tests. First a ductile failure mode forms with two plastic hinges in the steel dowel. Splitting underneath the
dowel occurs as the tensile stress perpendicular to the grain reaches a critical value1. As the deformations
grow, the shear capacity declines and row shear failure starts to develop.

5.3 ABAQUS connection model

5.3.1 Mechanical models, Boundary conditions and mesh

The connection model in ABAQUS 6.14.1 is very similar to the embedment model. It consist of four
parts: two dowels, a steel plate and the timber block with the cohesive crack layers. Symmetry is used
to reduce the model to a quarter of its original size (Figure-5.3.1a). Appropriate boundary conditions
are applied to the symmetry surfaces. The steel plate is fixed at the bottom nodes and the tension load
is applied at the top nodes of the timber block in an identical fashion as in the embedment model. An
equation constraint links the displacement of a reference point with the top surface. The reference point
is loaded with an incremental displacement up to 8 mm.

1nef is introduced to include strength loss due to this tensile splitting
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(a) (b)

Figure 5.3.1: Connection model with dimensions in mm. Cohesive element planes are
displayed in red (a). Finite element mesh in ABAQUS (b)

The element types, contact interaction, trilinear model, damage formulation in the cohesive elements
and solution procedure were adopted from the embedment model. The formulation of the steel elements
was altered. A yield stress of 336 N/mm2 [37] was included to simulate the formation of a plastic hinge
in the dowels. The mesh consists of C3D8R elements for the steel plate, dowels and the timber block.
The cohesive elements are of type COH3D8 [3] and inserted in the crack locations. The mesh size is
gradual increasing from 2 mm at the dowel-timber interface to 15 mm at the boundaries (Figure 5.3.1b).
In thickness direction the mesh is divided in two parts. In the vicinity of the steel plate there is a finer
mesh to accurately simulate the plastic bending of the dowel. The remaining part has a mesh size of 5
mm. The connection is divided in a total of 16767 elements.

5.3.2 Plastic calculation

In the connection model the dowels are able to bend in length direction. This bending of the dowels may
lead to difficult contact establishment between the dowels and the timber. Therefore a plastic analysis
without the cohesive elements is performed. The timber block is modelled as cubic elements with a
trilinear plastic hardening formulation (Section 4.2.3). The analysis results in the development of the
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same ductile failure mode as calculated in section 5.2 (Figure-5.3.2). There was large deformation of the
timber underneath the dowel where timber crushing behaviour is observed.

(a) (b)

Figure 5.3.2: FE-results of the plastic analysis: Deformed shape at 8 mm tensile displace-
ment of the timber block with a contour plot of the longitudinal normal stress (a) and the
dowels with a contour plot of the plastic strain (b)

The load displacement curve of the plastic calculation forms an upper-bound solution for the connec-
tion model (Figure-5.3.3). The load reached a higher value than the analytical prediction as there were
no shear and tensile cracks modelled. These cracks will reduce the dowel embedment as can be seen in
the previous chapter.

Figure 5.3.3: Comparison of the plastic model with the experimental data
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5.3.3 Cohesive elements

Cohesive elements are inserted in the model to simulate the brittle failure modes that can develop. A
total of 4 global cohesive element planes are inserted in the model to include all brittle failure modes
(Figure-5.3.1a). These failure planes allow the development of row shear, group tear out, tensile splitting
and failure of the net cross section as described in section 2.4.2. A new material property definition needs
to be included for the horizontal cracks failing in tension parallel to grain. The characteristic tensile
strength value of 33 N/mm2 is adopted from the strength predictions of Ottenhaus et al. [37]. The frac-
ture energy is not experimentally tested for this crack mode, but it is estimated to be significantly higher
than the fracture energy in perpendicular direction. Therefore the value of 60 N/mm found for tension
parallel to grain failure in spruce [48] is adopted in this model. Table-5.3.1 displays all used parameters
in the connection model.

Table 5.3.1: Used input parameters in the numerical embedment model

Material property Value

LVL timber elements

fc Longitudinal compression strength 45 MPa
E‖ Young’s modulus parallel 10280 MPa

E⊥ Young’s modulus perpendicular 470 MPa
G12 and G13 Longitudinal shear modulus 410 MPa
G23 Rolling shear modulus 50 MPa
ν Poisson’s Ratio 0.4

Cohesive elements for vertical crack formation

En Young’s modulus in cohesive normal direction 4700 MPa
Et1 Young’s modulus in cohesive 1st tangential direction 4100 MPa
Et2 Young’s modulus in cohesive 2nd tangential direction 500 MPa
ft Perpendicular tension strength 2.0 MPa
fs1 and fs2 Shear strength 6.0 MPa
Gf1 Fracture energy in mode 1 1200 N/m
Gf2 Fracture energy in mode 2 5200 N/m

Cohesive elements for horizontal crack formation

En Young’s modulus in cohesive normal direction 102800 MPa
Et1 Young’s modulus in cohesive 1st tangential direction 4100 MPa
Et2 Young’s modulus in cohesive 2nd tangential direction 4100 MPa
ft Parallel tension strength 33 MPa
Gf1 Fracture energy in mode 1 60000 N/m

Steel dowel elements

E Unidirectional Young’s modulus 210000 MPa
σy,steel Yield strength 336 MPa
µf Friction coefficient between steel and timber 0.4

The brittle failure modes reduce the load carrying capacity of the connection and create global soften-
ing behaviour with negative eigenvalues of the stiffness matrix. This can cause singularity of the stiffness
matrix and convergence issues in the analysis.
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5.4 Improving computational stability

An analysis with all cohesive element planes ceased to converge at 0.43 mm displacement. At that
point the implicit solver could not find equilibrium as the solution was diverging. The automatic time
step algorithm reduced the time increment multiple times until the minimum time step of 1 ∗ 10−10

was reached. The divergence is caused by the negative tangent in the cohesive elements. The contact
interaction caused discontinuous behaviour that also retards convergence. An improvement of the stability
and the convergence speed is needed to reach the maximum strength of the connection in the analysis and
to model the global softening behaviour that succeeds this maximum load. An improvement of the model
is searched for in three regions: The cohesive element model, the contact formulation and the solution
procedure.

5.4.1 Cohesive element improvements

The damage model in the cohesive elements causes negative eigenvalues of the stiffness matrix. This can
result in a singular stiffness matrix and divergence of the implicit solution procedure. Four aspects of the
cohesive elements are changed to improve convergence.

Firstly the complexity of the model is reduced by removing the horizontal cohesive elements which
simulate tension parallel to the grain cracks. This excludes the formation of the failure modes group
tear out and failure of the net cross section. The connection tests reveal that the connection fails at
a combination of row shear and tensile splitting perpendicular to the grain. Therefore the horizontal
cohesive element planes can be omitted in the model. The strength of 33 MPa is reached in the cohe-
sive layer, however the propagation of these cracks is very slow as the fracture energy is of a higher order
of magnitude (60 N/mm versus 5.2 N/mm for the shear cracks or 1.2 N/mm for the tension parallel cracks).

The second aspect is the viscosity parameter. It is known that the use of viscous regularization im-
proves convergence in softening behaviour. However, the viscous forces that are inserted decrease the
accuracy of the solution. In the embedment model, a viscosity value of 5 ∗ 10−5 caused a fictitious en-
ergy of 0.05% of the total energy. It is investigated if a higher value can increase convergence without
compromising the accuracy significantly. The value of the viscosity parameter is gradually increased to
improve the convergence. The load displacement curves with various viscosity values are presented in
Figure-5.4.1. One can clearly observe that a higher viscosity value postpones the moment where the
solver fails to converge. This point is marked with an ”X” in the figure.
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Figure 5.4.1: Load displacement curves of FE-results with various viscosity values and
experimental test

The viscous regularization decreases the accuracy. A good indicator of accuracy loss is the ratio
between artificial strain and total strain. These energies are computed by ABAQUS during the analysis.
Appendix I shows the development of the total strain energy and artificial strain energy of all analysis with
various viscous parameters. Table-5.4.1 presents the ratios between the artificial strain energy (ALLCD)
and the total strain energy (ALLIE) in the cohesive elements at the last converged increment. This ratio
determines which fraction of the cohesive behaviour is governed by artificial viscosity. A viscosity above
0.0001 leads to inaccurate results, therefore this value is adopted in further modelling. This conclusion is
also supported by the damage plots in the cohesive elements at 0.81 mm, which are presented in Appendix
I. These plots reveal that a higher viscous regularization factor results in a lower damage in the cohesive
elements. It also prevents the development of a brittle failure mechanism and softening behaviour.

Table 5.4.1: Ratio between the artificial and total strain energy in the cohesive elements
resulting from a FE-analysis with varying viscosity

Viscosity parameter µv 0.0001 0.001 0.01 0.1

Displacement in last converged increment (mm) 0.81 1.15 2.01 6.91

Ratio ALLCD/ALLIE (%) 3.3 17.1 55.3 60.5

A next step is to investigate how the initial dummy stiffness of the cohesive elements influences con-
vergence. The initial stiffness of the cohesive elements need to be higher than the stiffness in the timber
elements to reduce the influence of the cohesive element stiffness on the behaviour of the adjacent elements.

To quantify this influence a simple model of two springs is used. The combination of 3D timber
elements and cohesive elements can be regarded as a system of springs in series. The effective stiffness
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kef is defined as the stiffness for the combination of both springs. It is derived in Appendix J that the
effective stiffness can be approximated by:

kef =
1

1 +
kelement

kcohesive

∗ kelement =
1

1 +
E2/l

Ecohesive/T0

∗ kelement (5.1)

With E2 the Young’s modulus of the timber elements in perpendicular direction, l the length of an
timber element, T0 the thickness of the cohesive layer and Ecohesive the initial Young’s modulus of the
cohesive elements in the normal direction.

The effective stiffness should be approximately equal to the element stiffness. Therefore the term
ktimber

kcohesive
should be sufficiently small. In the contact zone the timber elements have a length of 2 mm and

a Young’s modulus of 470 N/mm2 in the perpendicular direction. The cohesive element thickness is 0.001
mm. If the effective stiffness is higher than 0.99 times the element stiffness (1 % error), the minimum
Young’s modulus in the cohesive elements can be calculated:

1

1 +
E2/l

Ecohesive/T0

= 0.99→ Ecoh =
470 ∗ 0.001

2

0.99

1− 0.99
= 23.3N/mm2 (5.2)

In the previous analyses the initial Young’s modulus of the cohesive elements was a factor 10 times
higher than the Young’s modulus of the timber. This results in a stiffness error of 0.005%. The Young’s
modulus is reduced from 10 to 0.001 times the Young’s modulus of the timber elements in perpendicular
direction. The convergence improved as the initial dummy stiffness of the cohesive elements decreased
(Table-5.4.2). At the same time the accuracy of the continuum element stiffness is reduced (last column of
Table-5.4.2). The damage plots at damage initiation and evolution (Appendix K) reveal that the analysis
with the stiffest cohesive elements (Ecohesive = 4700N/mm2) initiated in the second element row while
the remaining analyses had a crack initiation in the first element. They also show that the displacement
increment at which damage evolution in the cohesive element starts is different with the various stiffness
values. The analysis with the stiffest cohesive elements had a damage initiation at 0.275 mm, while the
other analyses had damage initiation around 0.5 mm displacement. These results suggests that the high
initial dummy stiffness of the cohesive elements introduces stress oscillations as found by Rots [45].

Table 5.4.2: Displacement at the last converged increment of FE-calculations and stiffness
reduction factor with various cohesive element stiffness

Relative value of the
Young’s modulus of the
cohesive elements

Absolute value of
the Young’s modulus
(N/mm2)

Displacement at last con-
verged increment (mm)

Ratio
kef

ktimber

10 ∗ Etimber 4700 0.81 0.99995

Etimber 470 1.36 0.9995

0.1 ∗ Etimber 47 1.41 0.995

0.01 ∗ Etimber 4.7 5.86 0.952

0.001 ∗ Etimber 0.47 10.08 0.667

The improvement of the convergence is attributed to the lower stiffness transition between the initial
linear and the softening branch of the damage model. All analyses resulted in an identical load dis-
placement curve, except for the lower two Young’s moduli. These analyses managed to compute global
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softening behaviour of the connection (Figure-5.4.2). It can be observed that the initial part of these
curves is identical to the analyses with the stiffer cohesive elements even though the effective stiffness of
the timber elements is reduced.

The Young’s modulus of the timber (470 N/mm2) is adopted for the Young’s modulus in the co-
hesive elements in further research to improve convergence. This avoids any stress oscillations in the
cohesive elements and improves the convergence significantly. This Young’s modulus results in a dummy

stiffness (
Ecohesive

T0
) which is 2000 times higher than the timber element stiffness (

E2

l
). This is close to

the suggested ratio of 1000 by Rots and Hendriks [46] and has insignificant (0.05%) impact on the accuracy.

Figure 5.4.2: FE-results with various cohesive element stiffness

A final attempt to improve convergence is made similar to the approach Xu et al.[58] used in their
timber joint model. They avoided a negative stiffness in the damage model by decreasing the stiffness
directly to a smaller value after a material strength is reached. This damage model is illustrated in
Figure-5.4.3.
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Figure 5.4.3: Stiffness degradation model with direct stiffness decrease after the material
strength is reached

The tabular damage evolution law in ABAQUS is used to implement this material model. In the
analysis the stiffness of the cohesive elements is degraded to 1% of the stiffness of the surrounding timber
when the strength is reached. The analysis converged up to a higher displacement (Figure-5.4.4) with
this model. However the model reacts much stiffer since degradation stops at D = 99% instead of 100 %.
Furthermore, the fictitious energy associated with viscous regularization increased to 5.5% of the total
energy of the cohesive elements. Both factors decrease the accuracy of the model.
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Figure 5.4.4: FEM-results with direct stiffness degradation and linear stiffness degradation
model for the cohesive behaviour

The stiffness degradation behaviour in this model cannot be linked with material tests. A calibration
procedure for the amount of stiffness degradation at the material strength needs to be executed to obtain
a better matching model. The stiffness drop needs to be increased to approach the real behaviour of the
cracks. This direct stiffness drop model is also prone to mesh dependency. As the mesh becomes finer
the stress peak increases and the strength is reached at an earlier stage. Since the stiffness is drastically
reduced at that point it has a major influence on the behaviour and can trigger adjacent elements to fail
as well (zipper action). In the softening damage model the stiffness degrades at a steady pace and no
mesh dependency occurs.

5.4.2 Contact formulation improvements

One of the numerical issues that is observed in the output files of the previous analyses is contact chattering
(Section 4.4). Contact chattering is a numerical phenomenon in which the status of a contact pair changes
in a repetitive manner in consecutive iterations [3]. This results in a large amount of severe discontinuous
iterations (SDI’s) within an increment before an equilibrium state is reached. In SDI’s one or more
elements change their contact status. ABAQUS iterates until the force errors associated with severe
discontinuities are below a set tolerance [3]. There are three contact states in ABAQUS depending on
the stress state in the contact formulation:

• Open: when there is a gap between the elements, the status is open and there is no contact pressure
or shear forces.

• Closed-sticking: when the elements come in contact, there is a linear relation between the normal
stress and the maximum shear stress that is defined by Coulomb friction:

τmax = σ ∗ µf (5.3)
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• Closed-slipping: If the shear stress is higher than the maximum τmax or a limit value (shear strength
in the embedment model), the state changes to closed-slipping. In this case the shear stress is kept
constant and the contact pair starts sliding.

To reduce contact chatter the shear strength limit is excluded from the model. In this way the
discontinuous transition between sticking and slipping is reduced as only the τmax limit is used. In a
subsequent analysis the contact relation is set to exponential. This improves the transition from open
to closed contact, but introduces artificial contact stress prior to the actual contact. The exponential
contact formulation in ABAQUS is given as [3]:

P =
10

Exp(1)− 1

(( h

0.05
+ 1
)(
Exp(

h

0.05
+ 1)

)
− 1

)
for : h > −0.05 (5.4)

With P the contact pressure and h the distance between the contact surfaces. The model can be altered by
changing the values 10 and 0.05. These parameters respectively define the pressure at zero distance (P0)
and distance at which the pressure is equal to zero (C0). The three contact formulations (stick-slip, stick
and exponential) are illustrated in Figure-5.4.5. The shear stress is used in this figure since it illustrates
the transition between sticking and slipping of the stick-slip model.

Figure 5.4.5: Stick-slip, stick and exponential contact formulation

The stick contact model increased the convergence issues. More SDI’s were needed and the analy-
sis stopped at 1.03 mm displacement. The exponential contact formulation reduced contact chattering
significantly. This resulted in an analysis that continued until 1.81 mm displacement (Figure-5.4.6). An
exponential contact formulation improves the convergence significantly. However this model introduces
artificial high contact stresses before surfaces come in contact. This explains the stiffer response of the
model. The stick contact model deteriorates convergence. This is caused by the stiff response in tangential
direction. It is suggested in the ABAQUS convergence Guideline to ”eliminate friction in contact unless
it is absolutely necessary” [2] as friction can cause severe convergence problems. An analysis without
tangential friction behaviour was performed. However, this analysis stopped prematurely as the dowels
were able to rotate around their length axis. This rigid body motion caused divergence of the solution.
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Figure 5.4.6: FE-results of the Stick-slip, stick and exponential contact formulation

The mesh density around the contact surfaces is changed to investigate the influence of the mesh size
on convergence. A finer mesh gives a more accurate description of the displacement field and contact
stresses. However it requires more iterations to get a converged solution in all the elements. The element
sizes are halved in the fine mesh and doubled in the coarse mesh. The number of elements is increased
from 16767 (Figure-5.3.1b) to 61831 elements in the fine mesh and decreased to 4504 elements in the
coarse mesh.

Figure 5.4.7: FE-results with various mesh densities in the contact zone and a typical
connection test result
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Figure-5.4.7 presents the results of the analyses. The finer mesh analysis ceased to converge at a
displacement of 1.09 mm, the medium mesh at 1.36 mm and 2.36 mm for the coarse mesh. The load
displacement curves show that the mesh refinery had limited impact on the result of the analysis and no
mesh-dependency is present. The medium size mesh had sufficient mesh density to accurately predict the
behaviour. An increase of mesh density enlarges the global stiffness matrix and the amount of cohesive
elements in which damage occurs. This results in more stiffness changes and more iterations are needed
to obtain a converged solution to a displacement increment. As the number of iterations increases the
chance for the Newton-Raphson algorithm to encounter a (near) singular stiffness matrix also increases.
This caused a reduction in the convergence of the finer mesh. The coarser mesh improved the convergence
as less iterations were needed.

5.4.3 Solution procedure

The analyses in the previous sections are calculated using the implicit Full Newton-Raphson scheme
with automatic time integration and displacement controlled loading. In this section different solution
techniques are investigated and additional techniques that are potentially able to solve the convergence
problem are described.

Apart from the automatic time incrementation ABAQUS offers a fixed time incrementation with an
additional option to accept non-converged increments after a set amount of iterations. With this solver
setting the solver might leap over small local instabilities in the load-displacement curve. A fixed time
increment of 0.0001 of the total loading is used with the option to accept non-converged increments. With
this setting the solver calculated the stresses up to 0.77 mm displacement when calculation ceased due to
contact chattering.

The Quasi Newton-Raphson algorithm modifies the stiffness matrix less frequent than the Full Newton-
Raphson algorithm. The stiffness matrix is updated in every new increment and not every new iteration.
For both the automatic and the fixed time incrementation the use of the Quasi Newton-Raphson method
increased the convergence slightly (Table-5.4.3). The Quasi Newton-Raphson algorithm performed better
as it computes the stiffness matrix less often and therefore the chance of obtaining a negative or singular
stiffness matrix is lower.

Table 5.4.3: Influence of the Time incrementation and implicit solution scheme on the
Displacement at the last converged increment of FE-calculations

Time incrementation Automatic Automatic Fixed (0.0001) Fixed (0.0001)
Newton-Raphson algorithm Full Quasi Full Quasi

Displacement at last converged
increment (mm)

1.36 1.56 0.77 0.78

Alternative solution procedures available for FEM analyses could improve convergence or solve the
convergence issues completely. The arc-length control loading, explicit solution and sequential linear anal-
ysis (SLA) are promising techniques to obtain a solution.

The arc-length control method is more sophisticated than the displacement control method. It is
commonly used for buckling analysis in which snap-back behaviour is expected. This solution strategy
draws a circle around the current stress state and uses the intersection of the load displacement path
tangent with that circle to compute both the displacement and the load increment (Figure-5.4.8) [55].
The radius is fixed in each increment (∆l) and sets a relation between the displacement and load increment.
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This method might be able to model the cracking behaviour if small length increments are used. A more
advanced arc-length method is the ’Indirect Displacement control’ method [4]. In this method only a
selection of nodal displacements is accounted for in arc-length iterations. This may be useful for local
snap-back behaviour that occurs in the crack formation in LVL connections. The path tangent in the
arc-length method intersects the circle at two points. This is a major drawback of the arc-length methods
as the correct point needs to be chosen. A robust algorithm that works for all applications is yet to be
found [55].

Figure 5.4.8: Arc-Length Method iteration procedure. With ∆λ the load increment and ∆a
the displacement increment

The explicit algorithm (Section 3.4) does not check equilibrium conditions at the end of each incre-
ment. No iterations are made to converge to the load displacement curve. Instead very small time steps
needs to be used in an explicit analysis to prevent diverging from the true equilibrium path. The small
time increments will increase the computation time significantly and accuracy of the solution should be
carefully monitored.

The SLA model is proposed by Rots [47] to model the fracture behaviour of concrete. The tensile
softening material behaviour is approximated by a saw-tooth diagram. The analysis consist solely of
linear elastic increments. A unit load is applied to compute the critical material point in the structure2.
A load factor is applied to reach the material strength in the critical point. The global displacement
is computed for the Load displacement curve. The increment concludes with a stiffness and strength
degradation according to the saw-tooth approximation (Figure-5.4.9). This process is repeated until
the complete load displacement curve is obtained. The SLA model can be used to simulate softening
damage in the cohesive elements. This model removes the need for convergence iterations as it is a linear
procedure. Further research is needed to find a way to combine the SLA procedure with the nonlinear
plastic behaviour of the dowel and contact between dowels and timber.

2The point where the stresses are closest to the material strength
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Figure 5.4.9: Saw tooth approximation of the softening behaviour in concrete fracture [47]
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5.5 Conclusions of stability study

A plastic calculation without the cohesive elements is able to reproduce the ductile failure mode that is
governing in the Eurocode. This plastic calculation forms an upper-bound solution to the load displace-
ment curve of the experiments. The cohesive elements need to be inserted in the model to simulate the
brittle behaviour of timber in shear and tension and to include the brittle failure modes that can occur in
a connection. With the inclusion of cohesive elements the implicit solution procedure ceased to converge
before the maximum load was reached. There are multiple ways to improve convergence, however these
techniques often impact the accuracy of the results in a negative way. Table-5.5.1 summarises the tech-
niques that are investigated in three aspects of the model: cohesive elements, contact formulation and
solution technique. The second column summarises the disadvantages of the employed techniques.

Table 5.5.1: Summary of different adjustments that improved convergence and their disad-
vantages on the results

Cohesive element formulation

Adjustment Disadvantage

Removal of cohesive elements that simulate ten-
sion parallel to grain cracks

Brittle failure modes group tear out and failure of
the net cross section cannot be modelled

Increase of the viscosity regularization parameter
(µv)

Additional viscous forces that can govern the be-
haviour of the cohesive elements

Reduction of the initial dummy stiffness of the
cohesive elements

Influences the stiffness of adjacent elements

Direct stiffness degradation to 1% when the
strength is reached

No relation of softening behaviour to actual ma-
terial tests. Calibration procedure is needed.

Contact formulation

Adjustment Disadvantage

Exponential contact formulation Inaccurate contact stresses prior to actual contact

Removal of maximum shear stress in contact for-
mulation (stick model)

Reduced convergence

Coarser mesh in contact region Increasing error in displacement approximation

Solution procedure

Adjustment Disadvantage

Fixed time incrementation Reduced convergence

Quasi Newton-Raphson iteration Increases the amount of iterations

The viscosity parameter and initial dummy stiffness of the cohesive elements have the most effect
on the convergence. With a low dummy stiffness (kcohesive = 2 ∗ E2/length) the global softening can
be modelled. The stress and damage evolution of this model is presented in the next section. The low
stiffness of the cohesive elements decreases the accuracy of the solution. Further research is needed to
quantify the error that is made with this low dummy stiffness more exact.
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The convergence improvements can be quantified by looking at which displacement increment the
implicit solver ceased to converge. Table-5.5.2 summarises the results from the various techniques that
are tested.

Table 5.5.2: Summary of different model adjustments that were used to change convergence
and their final converged increment

Cohesive element formulation

Adjustment Specification Last converged
increment

Removal of cohesive elements that
simulate tension parallel to grain cracks

With tension parallel cracks 0.43 mm
Without tension parallel cracks 0.81 mm

Increase of the viscosity regularization
parameter (µv)

0.0001 (Initial value) 0.81 mm
0.001 1.15 mm
0.01 2.01 mm
0.1 6.91 mm

Reduction of the initial dummy stiffness
of the cohesive elements

20000 E/l (Initial value) 0.81 mm
2000 E/l 1.36 mm
200 E/l 1.41 mm
20 E/l 5.86 mm
2 E/l 10.08 mm

Direct stiffness degradation to 1% when
the strength is reached

Linear softening model (Initial) 1.36 mm
Direct brittle model 2.08 mm

Contact formulation

Adjustment Specification Last converged
increment

Contact formulation
Stick-slip (initial) 1.36 mm
No maximum shear stress 1.03 mm
Exponential contact formulation 2.08 mm

Mesh alteration in contact region
Fine mesh 1.09 mm
Medium mesh (Initial) 1.36 mm
Coarse mesh 2.36 mm

Solution procedure

Time incrementation Newton-Raphson iteration Last converged
increment

Fixed time incrementation (0.0001)
Full Newton-Raphson 0.77 mm
Quasi Newton-Raphson 0.78 mm

Automatic time incrementation
Full Newton-Raphson (Initial) 1.36 mm
Quasi Newton-Raphson 1.56 mm
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5.6 Finite element results with a relatively low stiffness of the cohesive
elements

The FEM analysis with a Young’s modulus in the cohesive elements of 0.47N/mm2 was able to simulate
global softening behaviour in the connection (Figure-5.6.1). It is clear that the maximum load in the
FEM calculation (199kN) is close to the ultimate load observed in the experimental tests. The ultimate
displacement is underestimated in the FE results. Five interesting points are marked that illustrate the
stress and damage development in the connection. These points can be labelled as elastic response,
maximum load, tensile splitting, point before failure mode development and point after failure mode
development.

Figure 5.6.1: Load displacement curve of the FE-result and the experimental tests on con-
nections in LVL. Interesting point on this curve are marked with a circle and corresponding
displacement in mm

Figure-5.6.2 shows the development of the principle stresses in the connection. A slice of timber
elements close to the steel plate is presented to get a clear view of the principle stresses. These plots
show that the pressure of the dowels on the timber is spread out and transferred to an axial tensile stress
in the timber. This spreading causes tensile loading perpendicular to the grain underneath the dowel.
The maximum load is reached just before tensile splitting occurs underneath the lower dowel. The timber
below the upper dowel is splitting before the final failure modes is formed. This is a row shear failure mode
that completely removes the supporting action of the timber under the dowel. This failure development
in the LVL block is clearly visible in the damage evolution plots (Figure-5.6.4).
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(a) (b) (c)

(d) (e)

Figure 5.6.2: Vector plot of the principle stresses in the connection model on a deformed
mesh at 0.63 mm (a), 2.38 mm (b), 2.74 mm (c), 7.21 mm (d) and 10.08 mm (e) displacement
of the timber. For visibility purposes only one layer of elements is presented

The steel dowel is deforming in a similar fashion as the steel in the plastic FEM calculation. The
observed plastic deformations match the analytical predictions made in section 5.2. Figure-5.6.3 shows
the deformations of the dowel and the plasticity that occurs at the various time increments. The plastic
hinges reach an angle of 7.5 degrees in the last converged increment (10.08mm).
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(a) (b) (c)

(d) (e)

Figure 5.6.3: Plastic strain plot of the steel dowels on a deformed mesh at 0.63 mm (a),
2.38 mm (b), 2.74 mm (c), 7.21 mm (d) and 10.08 mm (e) displacement of the timber. The
deformations are multiplied with a factor 3 to improve visibility
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(a) (b) (c)

(d) (e)

Figure 5.6.4: Contour plot of the damage evolution in the cohesive elements of the connec-
tion model on a deformed mesh at 0.63 mm (a), 2.38 mm (b), 2.74 mm (c), 7.21 mm (d)
and 10.08 mm (e) displacement of the timber
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5.7 Limitations and Possible improvements

The results of the FE-analysis with a low initial dummy stiffness of the cohesive elements showed a clear
softening behaviour of the connection. The failure mode that is observed in the FE calculations matches
the predictions of analytical formulas and the experiments. The softening behaviour cannot be simulated
with the higher stiffness as suggested by Rots and Hendriks [46] (Section 5.4.1). They suggest a ratio
of 1000 between the element and cohesive stiffness while the softening load-displacement curves were
calculated using a ratio of 2. This lower stiffness did impact the accuracy of the results. As the effective
stiffness of the solid elements is reduced in perpendicular to the grain direction, the stresses are lower as
well. This results in a postponed crack initiation as presented in Appendix J.

The exclusion of tension parallel to the grain cracks prevents the formation of the brittle failure modes
failure of the net cross section and group tear out. Therefore this approach is not capable of predicting
those failure modes in different connection lay-outs. It would be interesting to investigate whether the
use of a low cohesive stiffness is also able to converge when those cracks are inserted in the model.

The connection model is based on the embedment model approach. The same drawbacks that are
mentioned in section 4.6 apply on the connection model as well. In that section it was mentioned that
the determination of the crack locations is not exact. It can be deduced from the perpendicular to the
grain stress and the longitudinal shear stress plots in Appendix L that cracks are also expected above the
upper dowels in the post-cracking stage. These cracks are also observed in the experiments conducted by
Ottenhaus et al. [37]. It is interesting to observe what influence cohesive layers in these locations can
have on the results of the FEM calculation. XFEM would automatically model the formation of these
cracks, but this is still a relatively new modelling technique.

The material model for the solid LVL elements has the same isotropic trilinear plastic hardening model
as used in the embedment test. The Von Mises yield surface that is incorporated in this model accom-
modates plastic yielding of the timber in longitudinal tension loading. The actual behaviour of timber in
longitudinal tension loading is brittle and cracking occurs. The implementation of tension parallel to the
grain cracks can be used to model those cracks.

The influence of the material input parameters is not known in this connection model. A parameter
study will be very useful to obtain an understanding of the most dominant parameters. Based on the
principle stress plots it can be predicted that the influence of the tensile perpendicular to the grain cracks
parameters are higher in the connection model than in the embedment model. The longitudinal shear
cracks determine the ultimate failure. The shear strength and fracture energy in those cohesive layers
will have a major influence on the ultimate displacement.
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6.1 Conclusions

An approach that uses cohesive elements to simulate brittle cracking in LVL in tension and shear and
a trilinear isotropic plastic hardening model for LVL in compression was able to simulate the complex
behaviour (contact, anisotropic, brittle and ductile failures modes) that occurs in a dowelled connection
of LVL. The initial dummy stiffness of the cohesive elements was lowered (down to 2 times the adjacent
element stiffness) to obtain a stable convergence of the implicit solver. With this adjustment the large
deformations (up to 10.08 mm) of the connection tests could be modelled. The observed failure mode
development in the connection FEM analysis had good agreement with the failure mode observed in the
connection experiments conducted by Ottenhaus et al. [37]. Conclusions can be drawn from both the
research on the embedment and the connection modelling. The result of both models are addressed sep-
arately.

The used finite element model for the embedment behaviour is based on the embedment test program
of Franke and Qeunneville [18] on Radiata Pine LVL. Their experiments involved pushing a steel dowel
of diameter 20 mm into a timber block with a matching pre-drilled hole. The timber was loaded in a
displacement controlled way in the longitudinal direction.

The timber in the embedment model in ABAQUS FEM software had an anisotropic linear elastic
formulation with a Von Mises yield criterion to simulate the onset of plastic behaviour. The trilinear
isotropic plastic hardening formulation was adopted from Dias et al. [15] to accurately simulate the
deformations in the timber. Cohesive element layers were implemented at the locations where cracks
are expected in the embedment block (centric tensile crack underneath the dowel and shear crack close
to the edge of the hole). A damage formulation was implemented to model the strength and stiffness
degradation in the cohesive elements. A ”hard” contact formulation between the steel and the timber
in normal direction was implemented with a Coulomb frictional formulation with maximum shear stress
in tangential direction. The strength values of the material and the fracture energies in the cracks were
obtained from studies in literature.

The implicit solver had difficulties in finding convergence. This is mainly caused by the stiffness
changes in contact surfaces and the softening damage in the cohesive elements. A contact alteration
(chatter) phenomenon was also observed in the output files of the analysis that resulted in numerical
difficulties. The automatic time incrementation algorithm reduced the increment size to overcome these
issues. The load displacement curve that resulted from the FEM calculation is a slight overestimation of
the experimental tests. This overestimation can be linked to the natural variation of timber properties or
the crushing phenomenon that causes softening behaviour in timber in compression.
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6.1. Conclusions

A sensitivity study of the input parameters revealed that the strength and fracture energy in the shear
cohesive layer and the longitudinal compression strength are the most important parameters. The prin-
ciple stress plots support this conclusion. These plots reveal that initially the steel dowel is supported by
both the timber directly underneath the dowel and the remaining timber at the sides. This latter support
action is caused by load spreading. As the shear crack is established the load spreading is interrupted
and the dowel is mainly supported by the timber underneath the dowel. The compression strength of the
material determines the capacity after the shear crack is formed.

The finite element model for the connection behaviour is based on the experimental tests conducted
by Ottenhaus et al. [37] on Radiata Pine LVL connections. The tested LVL joints consisted of 4 dowels
of 20 mm diameter that connected two outer LVL blocks with an inner steel plate. The timber was pulled
upward with displacement control. The specimens ultimately failed as a result of both tensile splitting
and row shear failures of the timber around the dowels with substantial dowel bending.

The approach of the embedment FEM is used in the construction of the connection model. The co-
hesive elements are inserted at the locations where cracks are possible. These locations are determined
from the theoretical brittle failure modes in connections found in literature. The plasticity in the steel
dowels, the size of the specimens and the inclusion of tension parallel cracks increased the complexity of
the model. This increased the convergence difficulties and the analysis ceased to converge at 0.43 mm
displacement before the maximum load was reached.

A study was made to improve the stability of the solution procedure. The impact of changing the
formulations of cohesive elements, contact and the solution procedure on the convergence is tested. The
displacement increment at which the FEM analysis ceased to converged gives an indication of the con-
vergence performance. This value is monitored throughout the stability study. Most of the attempts did
improve convergence but had a negative effect on the accuracy of the solution:

• The removal of cohesive elements that simulate tension parallel to the grain cracks reduced the
complexity and increased the convergence. A displacement of 0.82 mm could be reached. However,
without these cohesive element planes the formation of the brittle failure modes group tear out and
failure of the net cross section is impossible in the model.

• The increase of viscous regularization parameter µv (from 0.0001 up to 0.1) increased convergence
significantly. With µv = 0.1 a displacement of 6.91 mm could be reached. However, the addi-
tional artificial forces related to viscous regularization reduced damage formation significantly. This
prevented the formation of a global brittle failure mode in the connection.

• The initial dummy stiffness of the cohesive elements had major impact on the convergence. The
global softening behaviour could be computed (up to 10.08 mm displacement when a cohesive
stiffness of just twice the element stiffness was used. This adjustment does however impact the
accuracy of the adjacent element stiffness. Rots and Hendrix [46] suggested to use an initial dummy
stiffness of 1000 times the adjacent element stiffness to avoid accuracy loss. The use of a lower value
did postpone damage initiation in the cohesive elements but did not have major impact on the load
displacement curve. Stress oscillations were observed when a ratio of 20000 between the element
stiffnesses was used.

• A direct stiffness degradation to 1% of the original stiffness is implemented as a damage evolution
law after the material strength in the cohesive elements was reached. This approach increased the
convergence and the final displacement increased from 1.36 mm1 to 2.08 mm. The direct stiffness

1A stiffness ratio of 2000 was adopted to avoid stress oscillations. This increased the 0.82 mm to 1.36 mm displacement
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Chapter 6. Conclusions and Recommendations

degradation significantly increased the stiffness of the response as well as elements were not fully
degrading to zero stiffness. Another disadvantage of this approach is that it cannot be related to
the material property fracture energy.

• A contact stick model was implemented to reduce contact fluctuations (chatter) in the model. In
this contact model the max shear stress in the tangential direction of a contact pair is removed to
reduce contact state changes. This did however increased the convergence issues and the analysis
stopped at 1.08 mm displacement.

• An exponential contact formulation facilitated the transition between no contact (open) and contact
(closed). The convergence improved and the last converged increment increased from 1.36 mm to
1.81 mm. However, the response became stiffer with the exponential contact formulation as initial
contact stresses are modelled prior to actual contact.

• A doubling of the mesh density decreased the convergence (1.09 mm) while halving the mesh density
increased the convergence performance (2.36 mm). This effect can be attributed to the amount of
elements that encounter softening behaviour. The chance of obtaining a (near) singular stiffness
matrix increases as the amount of elements increases.

• The fixed time incrementation was inferior to the automatic time incrementation. With both the
Full Newton-Raphson and the Quasi Newton-Raphson algorithm a fixed time incrementation (0.77
mm and 0.78 mm, resp.) had a worse convergence than the automatic time incrementation (1.36 mm
and 1.56 mm for respectively the Full and Quasi Newton Raphson algorithm). The Quasi Newton-
Raphson method has better convergence performance than the Full Newton-Raphson Method. This
is attributed to the smaller amount of stiffness matrix computations needed in the Quasi Newton-
Raphson method. This can cause the implicit solver to overshoot the local peaks caused by nonlinear
behaviour.

6.2 Recommendations

This study has shown that the use of cohesive elements to simulate the complex behaviour of embedment
and connections in LVL is possible. Even the brittle failure mode development of a connection was mod-
elled. However the used approach is not perfect and there are still particular components of the models
that can be improved.

The von Mises yield criterion in the LVL elements does not differentiate between perpendicular and
parallel loading. The yielding in compression perpendicular to the grain can be simulated if a Hill or
Hoffman yield criterion is inserted instead. The peak stress model of Dias et al. [15] for longitudinal
compression can improve the accuracy of the solution. Further research can determine how this model
can be correlated to material tests and what influence this model has on the convergence.

The connection analyses show that convergence issues become dominant as the complexity increases.
Further research in the use of SLA, the Arc-length control or the explicit solver is needed to resolve the
convergence issues. If a more robust solution technique is implemented there is no need to lose accuracy
by removing the tension parallel cracks or to lower the stiffness of the cohesive elements to get a converged
solution.

A parameter study for the connection model can be conducted to obtain more knowledge about the
global behaviour and which parameters are important. It can be studied what parameters determine the
failure mode and maximum load level.
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[4] DIANA Finite Element Analysis. DIANA-10.1 User’s Manual - Analysis Procedires. DIANA Finite
Element Analysis, 2017.

[5] M. Ardalany, B. Deam, M. Fragiacomo, and K.I. Crews. Tension perpendicular to grain strength of
wood, laminated veneer lumber (lvl) and cross-banded lvl (lcl-c). In 21st Australian Conference on
the Mechanics of Structures and Materials, pages 891–896, 2010.

[6] Manoochehr Ardalany, Massimo Fragiacomo, and Peter Moss. Modeling of laminated veneer lumber
beams with holes using cohesive elements. Journal of Structutral Engineering, 2015.

[7] Manoochehr Ardalany, Massimo Fragiacomo, and Peter Moss. Modeling of laminated veneer lumber
beams with holes using cohesive elements. Journal of Structural Engineering, pages 1–13, January
2016.

[8] David Barber and Robert Gerard. Summary of the fire protection foundation report - fire safety
challenges of tall wood buildings. Fire Science Reviews, pages 1–15, 2015.

[9] L. Benabou. Predictions of compressive strength and kink band orientation for wood species. Me-
chanics of Materials, pages 335–343, 2010.
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A
Calibration of yield strain parameter (εy) of the

trilinear plastic hardening model

To obtain a value for the yield strain in the trilinear model [15] a calibration has been executed to
obtain the best fit to the experimental curve. A yield strain of 0.02% resulted in an accurate description
of the curve around 40-80% of the maximum load in the embedment experiments (Figure-A.0.1).

Figure A.0.1: Calibration of the yield strain εy parameter of the trilinear model
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B
Artificial and total strain energy comparison of

the embedment model

To estimate the consequences of automatic stabilization and viscous regularization on the behaviour.
Figure-B.0.1 demonstrates that the introduced techniques have an influence of 0.5 % on the total energy.
A stabilization factor of 5 ∗ 10−5 and a viscosity parameter of 5 ∗ 10−5 are used in this analysis.

Figure B.0.1: Comparison of the fictitious energies from automatic stabilization (ALLSD)
and viscous regularization (ALLCD) to the total strain energy (ALLIE)
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C
Influence of the shear crack location on the FEM

results of the embedment model

The location of the shear crack in the embedment model is varied to observe the influence of the
location of the cohesive elements on the FEM results. A mesh with a shear crack located at exactly 10
mm gave problems in the mesh creation. A crack at 10.5 mm is inserted instead (figure below).
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D
Influence of the Poisson’s ratio on the FE-results

of the embedment model

The figure below proves that the influence of the Poisson’s ratio on the FE-results is small and therefore
negligible.

Figure D.0.1: The influence of various Poisson’s ratios on the FE-results
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E
Stress contour and cohesive damage plots at

various increments in the embedment analysis

The load displacement curve of the embedment analysis is given in the figure below. Four points
are marked in various regions of this curve: the initial elastic response, a local kink in the displacement
curve, the maximum load and final displacement. The stress distribution in the timber and damage in the
cohesive layers is plotted in those points to get a better understanding of the development of the stress
distribution.

Figure E.0.1: Load-displacement curve the FEM calculation and experimental tests on
embedment in LVL with interesting points marked with circles and time increment
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Appendix E. Stress contour and cohesive damage plots at various increments in the embedment analysis

The first plots show the development of the normal stresses in longitudinal direction (σ11) at the four
time increments.

Figure E.0.2: FE-results: longitudinal normal stress at various time increments of the
embedment model. Only the timber is shown
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The next plots show the development of the longitudinal shear (σ12) at the four time increments.

Figure E.0.3: FE-results: longitudinal shear stress at various time increments of the em-
bedment model. Only the timber is shown
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Appendix E. Stress contour and cohesive damage plots at various increments in the embedment analysis

The next plots show the development of the cohesive damage variable (D) at the four time increments.

Figure E.0.4: FE-results: damage variable in the cohesive elements at various time incre-
ments of the embedment analysis. Only the cohesive elements are shown
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The next plots show the development of the normal stress in thickness direction of the cohesive
elements (σ33) at the four time increments.

Figure E.0.5: FE-results: Normal stress in the thickness direction in the cohesive elements
at various time increments of the embedment analysis. Only the cohesive elements are
shown
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Appendix E. Stress contour and cohesive damage plots at various increments in the embedment analysis

The final plots show the development of the shear stress in the cohesive elements (σ13) at the four
time increments.

Figure E.0.6: FE-results: Shear stress in the cohesive elements at various time increments
of the embedment analysis. Only the cohesive elements are shown
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F
Comparison of the 2D plane stress and 3D

embedment model

The figure below compares the 2D plane stress and the 3D embedment model with the experimental
test results. The 2D plane stress model gives an lower bound solution to the 3D model.

Figure F.0.1: Load displacement curve of the 3D embedment model, a plain stress 2D model
and the experimental results of the embedment behaviour
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G
Results of the parameter study of the embedment

model

The figures below present the influence of various parameters on the results of the FEM calculation
of the embedment model
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Appendix G. Results of the parameter study of the embedment model
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H
Ductile failure calculation of the connection in

LVL

The calculation of the ductile failure loads in Eurocode 5 [1] is based on two strength parameters.
These are the plastic moment capacity of the dowel(My,p) and the embedment strength of the LVL block
(fh,0,u). The plastic moment capacity is calculated from the yield strength and the dowel diameter:

My,p =
d3

6
σy,mean =

203

6
∗ 336 = 448000Nmm (H.1)

The embedment strength was determined by Franke and Quenneville [18] to be 40.4 N/mm2. The
ductile failure modes can be calculated with these strength parameters and the dimensions of the connec-
tion. The thickness of the timber was 56.5 mm on each side. The failure strength of the 3 ductile failure
modes per fastener is:

FEYM,V = 2 ∗ t1 ∗ d ∗ fh,0,u = 91.3kN (H.2)

FEYM,V I = 2 ∗ fh,0,u ∗ t1 ∗ d ∗

(√
2 +

4 ∗My,p

fh,0,u ∗ d ∗ t21
− 1

)
= 58.6kN (H.3)

FEYM,V II = 2 ∗ 2, 3 ∗
√
My,p ∗ fh,0,u ∗ d = 87.5kN (H.4)

Failure mode VI is governing for this connection. To calculate the total resistance of the connection
an effective number of dowels per fastener row needs to be calculated. The effective number is equal to:

nef = n0.9 4

√
a1

13d
= 20.9

4

√
100

13 ∗ 20
= 1, 47 (H.5)
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Appendix H. Ductile failure calculation of the connection in LVL

The total ductile failure load is equal to:

Ffail,ductile = FEYM,V I ∗ nef ∗ nrows = 58.6 ∗ 1.47 ∗ 2 = 172kN (H.6)

This value is a conservative prediction of the failure load. If nef is neglected a load level of 4 * 58.6 =
234 kN can be reached.
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I
Results of the connection FE-model with various
viscous energies. Energy comparison and damage

evolution

Comparison of the fictitious strain energy and total strain energy

The plots below shows the artificial strain energy associated with viscous regularization (ALLCD) and
the total strain energy (ALLIE) in the cohesive elements. These values give an indication of the part of
the cohesive behaviour that is governed by the viscous regularization. The viscosity parameter (µv) is
varied between 0.0001 and 0.1.

These graphs are used to calculate the ALLCD/ALLIE values in Table-5.4.1.
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Appendix I. Results of the connection FE-model with various viscous energies. Energy comparison and
damage evolution

Damage evolution in the cohesive elements

The figures below show that the damage in the cohesive elements is lower when a higher viscosity
parameter is used. The figures present the damage at 0.83mm (the displacement at last converged
increment of the FE-analysis with µv = 0.0001). The underestimation of the damage in the cohesive layer
has an important influence on the results.

(a) (b)

(c) (d)

Figure I.0.1: FE-results: Damage plots at 0.83 mm of analysis with viscosity parameter µv
= 0.0001 (a), 0.001 (b), 0.01 (c) and 0.1 (d)
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J
Computation of the effective stiffness in the
element and cohesive element combination

The combination of a cohesive element can be considered as a combination of a two spring elements
in series. This is illustrated in the figure below. The stiffness of both springs can be calculated with the
finite element formulations of both element types.

(a) (b)

Figure J.0.1: Combination of 3D continuum element and cohesive element (a) and simplified
spring models of that combination (b)

Continuum element stiffness
In this computation the it is assumed that the Poisson’s ratios are small and the stiffness in one direction
can be regarded as a one-dimensional bar problem. The length of the continuum element is 2 mm. The
three main equations are:

Kinematic equation u = ε ∗ length (J.1)

Constitutive equation σ = E2 ∗ ε (J.2)

Equilibrium equation σ =
F

A
(J.3)

With u the displacement, ε the strain in the element, σ the stress on the element, E2 the inserted
Young’s modulus of the timber in perpendicular direction and F the force and A the surface area. These
formulas can be combined to compute a representative stiffness for the continuum element.
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Appendix J. Computation of the effective stiffness in the element and cohesive element combination

F =
A ∗ E2

length
∗ u or F = Kelement ∗ u (J.4)

withKelement =
A ∗ E2

length
(J.5)

Cohesive element stiffness
The stiffness of the cohesive elements can be computed in a similar way. The length is replaced by the
thickness of the element T0 which is 0.001 mm in the models. The Young’s modulus Ecohesive is a variable
that influences convergence.

F =
A ∗ Ecohesive

T0
∗ u or F = Kcohesive ∗ u (J.6)

withKcohesive =
A ∗ Ecohesive

T0
(J.7)

Effective stiffness
Two general equations can be deduced from the spring models in Figure-J.0.1:

Utotal = Uelement + Ucohesive =
F

Kelement
+

F

Kcohesive
(J.8)

Utotal =
F

Keffective
(J.9)

These formulations can be combined to obtain an expression for the effective stiffness:

F

Keffective
=

F

Kelement
+

F

Kcohesive
(J.10)

Keffective =
1

1

Kelement
+

1

Kcohesive

∗ Kelement

Kelement
(J.11)

Keffective = Kelement ∗
1

1 +
Kelement

Kcohesive

(J.12)

In the ideal case the effective stiffness and the last term equals unity (Kcohesive >> Kelement). The
expression for the stiffness of both cohesive and continuum elements can be inserted in the last equation
to obtain an expression for the reduction factor in terms of Young’s moduli and dimension parameters:

φreduction =
1

1 +
Kelement

Kcohesive

=
1

1 +
E2/length

Ecohesive/T0

(J.13)

With this expression it is possible to compute the theoretical stiffness reduction with various cohesive
stiffness values. This reduction gives an indication of the error that is made. The values of Table-5.4.2 in
section 5.4.1 are computed using the expression for the reduction factor in the last equation.
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K
Damage initiation and propagation of the
FE-analysis with various cohesive stiffness

The FE-analysis with various initial cohesive stiffness resulted in the load displacement curves pre-
sented in the figure below (same as Figure-5.4.2). In this analyses the damage initiated and propagated.
In the figures below various displacement increments are selected to present the initiation of damage in
the cohesive elements. The increment at which first damage was encountered is selected.

Figure K.0.1: FE-results with various cohesive element stiffness
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Appendix K. Damage initiation and propagation of the FE-analysis with various cohesive stiffness

(a) (b)

(c) (d)

(e)

Figure K.0.2: Damage initiation of the FE-analysis with various cohesive Young’s Moduli:
at 0.275 mm for Ecohesive = 4700N/mm2 (a), at 0.474 mm for Ecohesive = 470N/mm2

(b), at 0.473 mm for Ecohesive = 47N/mm2 (c), at 0.481 mm for Ecohesive = 4.7N/mm2

(d) and at 0.567 mm for Ecohesive = 0.47N/mm2 (e)

The analysis with the highest Young’s modulus for the cohesive elements had damage initiation in the
inner shear crack plane in the second element row while the other analysis had a damage initiation in the
outer shear crack plane in the first element row.

The next figures present the damage of the cohesive layers at 0.81 mm displacement, the last converged
displacement increment of the analysis with Ecohesive = 4700N/mm2. It can be observed that a lower
cohesive stiffness results in lower damage in the cohesive elements.
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(a) (b) (c)

(d) (e)

Figure K.0.3: Damage propagation at 0.81mm displacement of the FE-analysis with various
cohesive Young’s Moduli: Ecohesive = 4700N/mm2 (a), Ecohesive = 470N/mm2 (b),

Ecohesive = 47N/mm2 (c), Ecohesive = 4.7N/mm2 (d) and Ecohesive = 0.47N/mm2

(e)
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L
Stress contour plots of the FE-analysis with low

cohesive stiffness

The load displacement curve of the connection model with a low cohesive stiffness is given in the figure
below. Five points are marked in this curve: the elastic response, the maximum load, tensile splitting,
point before failure mode development and point after failure mode development.

Figure L.0.1: Load displacement curve of the FE-result and the experimental tests on con-
nections in LVL. Interesting point on this curve are marked with a circle and corresponding
displacement in mm

The following plots show the development of longitudinal normal stress (σ11) in the marked time
increments.
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(a) (b)

(c) (d)
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Appendix L. Stress contour plots of the FE-analysis with low cohesive stiffness

(e)

Figure L.0.2: FE-results: longitudinal normal stress at displacement increment 0.63 mm
(a), 2.38 mm (b), 2.74 mm (c), 7.21 mm (d) and 10.08 mm (e) of the connection model.
Only the timber is shown

The following plots show the development of longitudinal shear stress (σ12) in the marked time incre-
ments.

(a) (b)

108



(c) (d)

(e)

Figure L.0.3: FE-results: longitudinal shear stress at displacement increment 0.63 mm (a),
2.38 mm (b), 2.74 mm (c), 7.21 mm (d) and 10.08 mm (e) of the connection model. Only
the timber is shown

109



Appendix L. Stress contour plots of the FE-analysis with low cohesive stiffness

The following plots show the development of perpendicular normal stress (σ22) in the marked time
increments.

(a) (b)

(c) (d)
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(e)

Figure L.0.4: FE-results: longitudinal shear stress at displacement increment 0.63 mm (a),
2.38 mm (b), 2.74 mm (c), 7.21 mm (d) and 10.08 mm (e) of the connection model. Only
the timber is shown
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