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Abstract15

Distributing water optimally is a complex problem that many farmers face yearly, es-16

pecially in times of drought. In this work, we propose optimization-based feedback con-17

trol to improve crop yield and water productivity in agriculture irrigation for a planta-18

tion consisting of multiple fields. The interaction between soil, water, crop (sugarcane19

in this work), and the atmosphere is characterized by an agro-hydrological model using20

the crop water productivity modeling software AquaCrop-OS. To optimally distribute21

water over the fields, we propose a two-level optimal control approach. In this approach,22

the seasonal irrigation planner determines the optimal allocation of water over the fields23

for the entire growth season to maximize the crop yield, by considering an approxima-24

tion of the crop productivity function. In addition, the model predictive controller takes25

care of the daily regulation of the soil moisture, respecting the water distribution decided26

on by the seasonal planner. To reduce the computational complexity of the daily con-27

troller, a mixed-logic dynamical model is identified based on the AquaCrop-OS model.28

This dynamical model incorporates saturation dynamics explicitly to improve model qual-29

ity. To further improve performance, we create an evapotranspiration model by consid-30

ering the expected development of the crop over the season using remote-sensing-based31

measurements of the canopy cover. The performance of the two-level approach is eval-32

uated through a closed-loop simulation in AquaCrop-OS of a real sugarcane plantation33

in Mozambique. Our optimal control approach boosts water productivity by up to 30%34

compared to local heuristics and can respect water use constraints that arise in times35

of drought.36

1 Introduction37

Global water demands are projected to increase by 20% to 30% by 2050 compared38

to 2010 levels, due to population growth and emerging economies (Burek et al., 2016).39

Agriculture is the largest global consumer of the available water resources, accounting40

for 69% of annual water withdrawals (Water Energy Nexus: Excerpt from the World En-41

ergy Outlook 2016 , 2016). Therefore, a pivotal step in addressing the alarming water-42

scarcity problem is improving irrigation efficiency in agriculture. Conventionally, irriga-43

tion operates under open-loop conditions, making use of heuristics or empirical data. These44

traditional approaches miss out on real-time feedback information from the fields, such45

as evapotranspiration rates and soil moisture measurements. As a result, open-loop ir-46

rigation methods are often unable to irrigate with precision, leading to overirrigation.47

With increasing interest to achieve precision irrigation, Model Predictive Control48

(MPC) has been explored in the past decade as an optimal feedback control method. In49

MPC, the evolution of a system (e.g., the crop field) is predicted using a model, subject50

to the control inputs (e.g., amount and timing of irrigation). These control inputs are51

then optimized with respect to the desired trajectory of the system states that would52

optimize some performance (e.g., maximize crop yield or minimize water use). The con-53

trol inputs corresponding to the first time step are implemented and for the next time54

step the optimization procedure is repeated using newly obtained measurements and state55

estimates. Park et al. (2009) used MPC to maintain the soil moisture and salt levels of56

a field below a desired threshold. McCarthy et al. (2014) divided a heterogeneous field57

in zones based on spatial and temporal differences, and used MPC to optimize irriga-58

tion. An MPC framework was developed in Saleem et al. (2013) using a water balance59

model for real-time irrigation scheduling to minimize the root zone soil moisture deficit60

and the amount of irrigation. Delgoda et al. (2016) identified a linear model based on61

the crop water productivity model AquaCrop using a water balance and used MPC to62

minimize the root zone soil moisture deficit, with a limit on the water supply. Mao et63

al. (2018) approximated a nonlinear agro-hydrological model with a linear parameter vary-64

ing model and used MPC to maintain the soil moisture within a desired target zone.65
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The typical objective of the aforementioned studies is to maintain the soil mois-66

ture of a single field at a desired set-point or within a target zone using hourly or daily67

time steps. However, the aforementioned methods do not relate water stress to yield, which68

is the main performance indicator for any crop in the real setting. Furthermore, water69

use should also be considered over the entire growth season (a priori preferably because70

farmers need to be able to plan ahead), not just from day to day as water resources are71

often limited and droughts are becoming increasingly common. This issue has been ad-72

dressed in feedforward approaches (e.g., Dudley et al. (1971); Protopapas and Georgakakos73

(1990); Wardlaw and Barnes (1999); Georgiou and Papamichail (2008)) that schedule74

irrigation over entire growth seasons. However, the main shortcoming of these later meth-75

ods is that they miss out on real-time feedback information from the fields to help de-76

cide where and when to allocate the water. Recently, to optimize water allocation on both77

a daily and seasonal temporal scale, Nahar et al. (2019) have proposed a hierarchical feed-78

back approach to maximize yield over an entire growth season. A top-level scheduler cal-79

culates a target soil moisture value for each remaining day in the growth season for a80

single field and a lower-level controller follows the target soil moisture. Then, the pro-81

posed closed-loop scheduling approach is compared to open-loop scheduling over a full82

season (by crop yield and water consumption). However, the authors were unable to show83

significant difference between the two approaches.84

In this paper, unlike in the papers discussed above, we consider the more general85

problem of optimal soil moisture control of multiple fields (e.g., a plantation) for a full86

growth season. Here we consider allocating water optimally over the growth season with87

daily irrigation control for multiple fields, while considering water availability changes88

throughout the season. This adds complexity to the control problem, as operational con-89

straints need to be included (such as a limited number of fields that can be irrigated in90

a day) and trade-offs need to be made between irrigation and crop yield of the differ-91

ent fields. Furthermore, the growth stages of the fields can be different, as often not all92

fields can be planted and harvested at the same time. We propose a novel two-level feed-93

back control approach for the water distribution of an entire plantation, in order to im-94

prove the water use efficiency and yield. A process schematic of the proposed two-level95

control approach is depicted in Figure 1. The seasonal irrigation planner determines the96

optimal distribution of irrigation water over the fields and growth stages of the crop for97

the entire growth season, in order to maximize the crop yield under scarce water con-98

ditions. We could also maximize economic return from the water. However, in this work99

we consider a plantation that has the same crop on all fields and so maximizing yield100

is the same as maximizing economic return. The daily irrigation controller uses MPC101

to regulate a target soil moisture zone subject to the (seasonal) irrigation constraints set102

by the seasonal irrigation planner and operational constraints. In our framework, we ap-103

ply MPC in a receding horizon implementation, where the input sequence that yields an104

optimal predicted output while simultaneously satisfying all the constraints is computed105

using predicted weather conditions. Receding horizon control accomplishes feedback against106

uncertain disturbances by applying only part of the computed input sequence (here for107

one day) and then updating the system states using new information (e.g., deviations108

in temperature and precipitation) and recomputing the next optimal sequence a day later.109

As the prediction horizon slides along, this process of state updates using measurements,110

prediction and control optimization is repeated. This process is generally inherently ro-111

bust to a small amount of uncertainty (Mayne et al., 2000), and good closed-loop per-112

formance can be expected in this application if the water availability and plant water113

demand do not change drastically. To validate our method we model a real sugarcane114

plantation from Mozambique in AquaCrop-OS (Foster et al., 2017) (the Food and Agri-115

culture Organization of the United Nations (FAO) standard for simulating the crop yield116

response when water is a key limiting factor in crop production) and evaluate the per-117

formance of our two-level optimization algorithm using closed-loop simulations in AquaCrop-OS.118

This paper is organized as follows:119
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Water resource availability
Crop and field information

Historic weather data

Rainfall forecast

Season irrigation
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Seasonal level
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controller (MPC)

Daily operational constraints
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D
aily level

Figure 1. Process diagram for the proposed two-level optimization approach for precision ir-
rigation. The seasonal irrigation planner first calculates the water amount that each field can use
during each growth stage; the daily model predictive controller then regulates the soil moisture
using irrigation control while respecting the water amount that the seasonal irrigation planner
imposed. Note that if the water availability changes during the season the seasonal irrigation
planner can reevaluate the water distribution.

In Section 2, we model the: (1) agro-hydrological system using a simple water balance120

from literature which we expand on by including a novel mixed-logic saturation model,121

(2) evapotranspiration process by assimilating case study specific crop growth data and122

atmospheric parameters, (3) effect of water stress on crop growth using piecewise linear123

approximations of a crop yield model for sugarcane. We complete the section with an124

exposition of the complete optimization problem and our proposed two-level optimiza-125

tion method that is used to solve it. In Section 3, our proposed models are identified and126

validated on an AquaCrop-OS simulation model of a real sugarcane plantation in Mozam-127

bique. In Section 4, we evaluate the performance of our two-level optimization method128

by conducting three closed-loop simulations using AquaCrop-OS involving (1) the effect129

of decreasing water use on crop yield, (2) comparing the water productivity of our pro-130

posed approach with the plantation’s approach of irrigation every 3-4 days to field ca-131

pacity, (3) assessment of the performance of our proposed approach under water scarcity.132

Section 5 summarizes some conclusions and further research required to realize an im-133

plementation of the proposed approach in the real irrigation system.134

2 Modeling and Optimal Control135

The objective of precision irrigation is to maximize the yield and water efficiency136

by irrigating the fields with an adequate amount of water at the most suitable time in-137

stants. Therefore, the crop yield is maximized by minimizing the amount of water stress138

the crop is exposed to. This water stress occurs when not enough water is available in139

the root zone of the soil for the crop to absorb with its roots. Therefore, in order to min-140

imize the water stress, a model of the agro-hydrological system is needed that charac-141

terizes the interaction between soil moisture, the crop and the atmosphere. Furthermore,142
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the effect of the water stress on the yield needs to be quantified per growth stage, such143

that irrigation is prioritized in the water sensitive stages. This is achieved by consider-144

ing a simplification of the yield prediction function proposed in Raes et al. (2006). Fi-145

nally, the irrigation of the fields is constrained by operational limitations, such as wa-146

ter availability or availability of human operators and/or machinery such as sprinklers.147

2.1 Agro-hydrological modeling148

Here we consider a plantation with multiple fields, where each field j is character-
ized by a field-specific agro-hydrological dynamical system. A schematic of this agro-hydrological
model for a single field is shown in Figure 2, together with water fluxes at the bound-
aries of the root zone. In the agro-hydrological system, water transportation takes place
by means of rainfall, drainage, evaporation, transpiration, and irrigation. Here, soil ho-
mogeneity for each individual field is assumed, i.e. a field is modeled using a single soil
layer, and a simplified water balance approach (M. Jensen et al., 1971; Delgoda et al.,
2016) is used for irrigation control. This simplified water balance approach is selected
over more complex modeling approaches like those of (Mao et al., 2018) for computa-
tional feasibility reasons, as the complexity of the scheduling problem will grow expo-
nentially with the number of fields in the later. Furthermore, the system will operate us-
ing a daily time step, for which the dynamics are more easily captured in a simple wa-
ter balance. A crop experiences water stress when the potential energy of the soil wa-
ter limits the availability of water extraction by the plants roots, i.e. the Total Available
Water (TAW) in Figure 2 drops below the water stress threshold. This water stress thresh-
old depends on the crop type and the evaporation power of the atmosphere. The water
stress is expressed by the Root Zone Depletion (RZD) (Allen et al., 1998), which is the
combined amount of rain and irrigation needed to bring the soil moisture content of the
root zone back to field capacity. A negative RZD indicates excess water, which will be
drained away from the field over time. Let the variable D represent the RZD of a field;
then its dynamics can be given as (Allen et al., 1998):

D(k) = D(k − 1) + E∗(k)− Pe(k)− I(k) +G(k) +R(k), (1)

where D(k) is the RZD at the end of day k, E∗(k) is the total crop evapotranspiration149

for the day, Pe(k) the effective rainfall (i.e. the rainfall reaching the soil after intercep-150

tion by the canopy), I(k) the irrigation depth, G(k) the deep percolation (drainage), R(k)151

the runoff, and k the time step in days. The groundwater tables of the fields we consider152

here are low; therefore, the contribution of capillary rise is considered negligible. Note153

that for notational convenience, we omit the field index j from the equations here. Fur-154

thermore, the variables from Eq. (1) are all expressed in millimeters by normalizing over155

the surface area.156

2.1.1 A mixed-logic saturation model157

The RZD is, as the name implies, dependent on the root zone depth (Zr) of the
plant during its growth:

D(k) = Zr(k) · (θFC − θ(k)), (2)

where θFC is the volumetric soil water content at field capacity and θ(k) the soil water158

content at end of day k, expressed in mm3/mm3. Following heavy rain or irrigation, the159

RZD might exceed the field capacity (D(k) < 0). Depending on the hydrological pa-160

rameters of the soil this excess water will drain over multiple days (Raes et al., 2006, 2018).161

However, for reasons of simplicity, we assume all fields are well drained and that the soil162

moisture content is back to field capacity at the end of the first day of free drainage. Note163

that for soils that are not well drained the deep percolating of the excess water may take164

longer than one day. However, we assume that for the majority of the days that the fields165

are operated the soils are unsaturated. Furthermore, in a closed-loop system with fre-166
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wilting point

field capacity
saturation

water stress threshold
TAW

RAW

irrigation

rainfall
evapotranspiration
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capillary 
rise

deep
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RZD

Figure 2. Basic water balance model (adapted from Allen et al. (1998, Figure 43)), RAW and
TAW stand for readily and total available water to the plant, respectively. The RZD indicates
the required water amount to bring the soil moisture content back to field capacity.

quent measurements the soil moisture estimation errors introduced by this saturation167

modeling error are small.168

When the soil becomes saturated it cannot hold any more water and the remain-169

ing irrigation or rainfall can be considered as surface runoff. However, any excess wa-170

ter is assumed drained in one day, so saturation never occurs and R(k) = 0,∀k. Con-171

sequently, we rewrite Eq. (1) to obtain the following agro-hydrological model:172

D(k) =
{

0 if D(k − 1) + E∗(k)− Pe(k)− I(k) ≤ 0,
D(k − 1) + E∗(k)− Pe(k)− I(k) otherwise.

(3)

The conditionally switched depletion dynamics in Eq. (3) can be converted into a set of173

linear dynamic equations and linear inequalities involving real and integer variables called174

a Mixed-Logic Dynamical (MLD) model (Bemporad & Morari, 1999).175

2.1.2 Remote sensing data based evapotranspiration model176

Evapotranspiration is the largest contributor to consumptive water use by crops177

in the agro-hydrological cycle. Therefore, it is the main driver for irrigation and it should178

be estimated accurately to achieve precision irrigation. Using the Pennman–Monteith179

method (Allen et al., 1998) or the Priestley–Taylor equation (Priestley & Taylor, 1972),180

a reference evapotranspiration can be calculated that can then be adjusted with growth181

stage dependent coefficients for each crop type to estimate the actual evapotranspira-182

tion of a crop. In recent years, the application of remote-sensing data for agricultural183

decision making has been researched extensively (e.g., Estes et al. (1978); Champagne184

et al. (2010); Mulla (2013); Martens et al. (2017)). A particularly promising remote-sensing185

based vegetation index is the Normalized Difference Vegetation Index (NDVI), which mea-186

sures reflectance of the near-infrared and red range of the light spectrum. Vegetation can187

be particularly well measured using NDVI as plants contain varying amounts of chloro-188

phyll that reflect the light in a distinct way. As a result, NDVI is strongly correlated with189

physiological processes like evapotranspiration (Trout et al., 2008; Kamble et al., 2013)190

and biomass (Goswami et al., 2015). In Zhang et al. (2015), evaporation for sugarcane191
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in Hawaii is estimated using NDVI measurements. The NDVI values are used to esti-192

mate the canopy cover using linear regression and subsequently the canopy cover is used193

to estimate evapotranspiration using another set of linear regression models. This mo-194

tivates using NDVI directly to obtain estimates of the crop evapotranspiration.195

For scheduling irrigation, we propose a new approach to model evapotranspiration196

that uses NDVI data as a surrogate for canopy size (as directly measuring canopy size197

for a large-scale plantation is infeasible) to indicate the expected progress of crop growth198

in a typical growth season. The evapotranspiration is partitioned into (soil) evaporation199

and transpiration. The evaporation largely depends on the area of the soil covered by200

the canopy, i.e., when the canopy size increases a smaller fraction of the soil is exposed201

to the sun and the evaporation will decrease. Conversely, when the canopy size increases202

the transpiration will increase as a larger canopy will generally consume more water. There-203

fore, an NDVI-based canopy size curve estimate can be used as a measure of the increas-204

ing transpiration levels over the season and also the corresponding fraction of water lost205

as evaporation, which decreases over the season. Creating an estimate of this expected206

crop growth in a growth season requires an NDVI dataset, weather data, and planting207

and harvest dates from at least one past growth season of the fields. However, the growth208

of a crop depends heavily on the crop varieties, water stress, application of fertilizer, and209

soil type. Therefore, for a plantation, we assume that the group of fields used in the method210

grow the same crop with similar characteristics; this method can be repeated for each211

group of fields in a plantation to obtain accurate evapotranspiration estimates. In ap-212

plications where small holder farmers are involved, this assumption may not be true and213

evapotranspiration models for each crop type could be aggregated.214

The first step of the method is to model the effect of seasonal air temperature changes
on the different growth seasons. By incorporating the evolution of temperature over time
we correct for the effect of temperature on the crop development over the growing cy-
cle. This is necessary because the planting and harvest dates describing each growth sea-
son can be different for each field, often due to logistical reasons, such as number of har-
vesting/planting machines available, human operator availability, and water availabil-
ity. Using the planting date and air temperature data, the NDVI data points are linked
to heat units, expressed in Growing Degree Days (GDD), to describe crop development
(in ◦C day−1). In this approach, the time required to reach a particular growth stage
is expressed in Cumulative Growing Degree Days (CGDD) instead of number of days.
Here we use the method from (McMaster & Wilhelm, 1997), a popular approach from
among many methods, where both maximum and minimum temperatures are bounded
before calculating the CGDD:

GDD(k) = Tavg(k)− Tbase, (4)

where the base temperature Tbase is the lower bound below which crop development halts.215

The average temperature Tavg is calculated using:216

Tavg(k) = T ∗max(k) + T ∗min(k)
2 , (5)

T ∗max(k) =


Tupper if Tmax(k) ≥ Tupper,

Tbase if Tmax(k) ≤ Tbase,

Tmax(k) otherwise,
(6)

T ∗min(k) =


Tupper if Tmin(k) ≥ Tupper,

Tbase if Tmin(k) ≤ Tbase,

Tmin(k) otherwise,
(7)

where Tmax(k) and Tmin(k) are the maximum and minimum air temperature, respectively,217

and T ∗max(k) and T ∗min(k) are the maximum and minimum air temperature adjusted for218

the upper and lower thresholds that limit crop development. The upper threshold tem-219
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perature Tupper indicates the upper bound on air temperature above which crop devel-220

opment no longer increases and Tbase is the temperature below which growth does not221

progress.222

The second step, involves fitting a curve, fNDVI, through the NDVI–CGDD points223

of all growth seasons of all fields that represents the expected evolution of the crop size224

over the season. Note that the type of curve appropriate to use depends on the quality225

and quantity of the data. The obtained curve describes the expected canopy size over226

the growth season as a function of the amount of ‘warmth’ that the crops have experi-227

enced since planting.228

As a final step, evapotranspiration is split into an evaporation and a transpiration
part. The evolution of both the transpiration and evaporation is described by the evo-
lution of the canopy size captured by our NDVI-based curve. However, with an increase
in the canopy size the transpiration increases and the evaporation decreases. Let k̊ (a
new counter) denote the CGDD of the crop at the end of day k:

k̊ =
k∑

κ=k0

GDD(κ), (8)

where k0 is the planting day of the field. Then, the evolution of the evaporation, fevap,
can be described as a function of the curve fNDVI:

fevap(̊k) = fmax
NDVI − fNDVI(̊k). (9)

where
fmax

NDVI = max
k̊

(fNDVI(̊k)). (10)

Consequently, the evaporation contribution to the evapotranspiration is assumed to be
negligible when the canopy is fully grown. If this is not the case, a value higher than fmax

transp
can be chosen to increase the value of fevap(̊k) in full grown canopy conditions. For the
transpiration we can directly use the NDVI-based growth curve. Finally, the curves de-
scribing the evolution of the transpiration and evaporation over the growth season are
used to estimate the evapotranspiration (Ê) of the crop over the growth season:

Ê(̊k) = α1fNDVI(̊k) · Eref (̊k)︸ ︷︷ ︸
transpiration

+α2fevap(̊k)Eref (̊k)︸ ︷︷ ︸
evaporation

+α3k̊, (11)

where α1,α2, and α3 are coefficients that are estimated through linear least-squares us-229

ing the historic data of the reference evapotranspiration Eref (̊k). Furthermore, the lin-230

ear term α3k̊ corrects for the linear dynamics in evapotranspiration as a function of the231

season, which is not captured by the transpiration and evaporation curves. Note that232

temperature predictions are needed to estimate k̊, which then allows to predict future233

evapotranspiration values using Eq. (11). Furthermore, the reference evapotranspiration234

Eref (̊k) is the same for all fields, as we assume the fields are located in the same geograph-235

ically small (i.e. same climate) area.236

2.2 Crop yield model237

2.2.1 Defining water stress238

The amount of water available to the crop is the difference between the permanent
wilting point (minimal amount of soil water required for the plant not to wilt) and the
field capacity. However, when the soil water content drops below the water stress thresh-
old (see Figure 2), the roots cannot uptake water quickly enough to respond to the wa-
ter demand and the crop starts experiencing stress. Furthermore, the deeper the roots
the bigger the soil column from which the plant can draw water. Therefore, the point
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at which the crop starts experiencing water stress can be expressed as a function of the
effective rooting depth:

p(θFC − θWP)Zr(k), (12)

where p ∈ [0, 1] is the fraction of the total available water below which the crop expe-
riences water stress, θFC is the soil moisture content as a fraction of the field capacity,
and θWP is the soil moisture content as a fraction of the wilting point. The roots are ini-
tially established at a small depth when the crops are first planted and gradually grow
to the maximum depth. However, if the soil becomes too wet (D(k) < 0) the crop also
starts experiencing water stress, due to anaerobic conditions and water logging. There-
fore, we define the target zone in which the crop experiences no water stress as

0 ≤ D(k) ≤ p(θFC − θWP)Zr(k). (13)

The lower bound is enforced by the assumed rapid drainage, that is D(k) ≥ 0 ∀k. To239

track the violation Dv(k) of the upper bound of the target zone, a performance constraint240

is introduced:241

Dv(k) =
{

0 if D(k − 1) + E∗(k)− Pe(k)− I(k) ≤ 0,
D(k − 1) + E∗(k)− Pe(k)− I(k)− ε(k) otherwise,

(14)

where ε(k) ∈ [0, p(θFC − θWP)Zr(k)] is a virtual state with the same bounds as D(k)242

in Eq. (13). Note that when D(k) does not violate the target zone, we have ε(k) = D(k),243

resulting in Dv(k) = 0. This is true because we are solving a linear problem. Then, by244

penalizing the value of Dv(k), the violation of the upper bound of the target zone is min-245

imized.246

2.2.2 Modeling the effect of water stress on yield247

The effect of violating the target soil water content, i.e. water stress, on the yield
depends on both the reduction in the evapotranspiration (i.e. the level of water deficit)
and the growth stage. As in the literature and standard Food and Agriculture Organ-
ization of the United Nations (FAO) approaches (Steduto et al., 2012), we model the re-
sponse of yield to water stress using sensitivity indices λ` for each growth stage `. These
sensitivity indices, together with the potential water use Wp,` and actual water use Wa,`
specify the effect of water stress on yield decline in each growth stage (Doorenbos & Kas-
sam, 1979):

1−
(Ya

Yp

)
`

= λ`

(
1− Wa,`

Wp,`

)
, (15)

where
(
Ya
Yp

)
`

is the relative yield, the left-hand side is the relative decrease in yield, and(
1− Wa,`

Wp,`

)
denotes the fraction of reduction in water available to the crop in growth stage

` compared to the potential water use, i.e. is the total crop water use without stress or
other limiting factors. This Wp,` value can be estimated using the evapotranspiration
estimate derived in Section 2.1.2:

Ŵp,` =
∑
k∈K`

Ê(̊k), (16)

where K` is a subset of days in the growth season during which the crop is in growth stage
` ∈ {1, . . . , Ngs}, where Ngs denotes the number of growth stages. Assuming optimal
agronomic practice, the actual water use is equal to the potential water use when the
soil moisture is in the target zone. However, when the tolerable depletion exceeds the
threshold (Dv(k) > 0) the crop experiences water stress and the actual water use is di-
minished:

Wa,` =
∑
k∈K`

E∗(̊k). (17)
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The effect of RZD on E∗(̊k) can be modeled by introducing a water stress factor Ks(̊k)
(Allen et al., 1998):

E∗(̊k) = Ks(̊k)Ê(̊k), (18)
where

Ks(̊k) =
{

1− Dv (̊k)
(1−p)·(θFC−θWP)Zr (̊k) if 0 < Dv(̊k) ≤ (1− p) · (θFC − θWP)Zr(̊k),

0 otherwise.
(19)

We assume that under feedback control the soil moisture content will not be allowed to
drop below the wilting point; therefore, the water stress factor can be reduced to:

Ks(̊k) = 1− Dv (̊k)
(1− p) · (θFC − θWP)Zr(̊k)

. (20)

Next, by substituting Eqs. (16)–(20) in Eq. (15) we can express the yield as a function
of the root zone water dynamics:

1−
(Ya

Yp

)
`

= λ`

∑
k∈K`

(
Dv (̊k)

(1−p)·(θFC−θWP)Zr (̊k) Ê(̊k)
)

∑
k∈K`

Ê(̊k)
. (21)

Over the growth season, the sequence of relative yield decreases in each stage are mul-
tiplied to compute the overall yield decrease (J. Jensen, 1968; Hanks, 1974). This how-
ever results in a high-order (i.e. order equal to number of growth stages) nonlinear func-
tion with multiplicative terms between all variables. Therefore, the overall yield is of-
ten approximated using a first-order (i.e. additive) compounding function (Stewart et
al., 1977; Bras & Cordova, 1981), which we use for the MPC controller as the multiplica-
tive approach is not computationally feasible. Although the additive approach is used
to formulate our yield maximizing objective functions, the performance of the MPC con-
trollers are tested using the multiplicative formula in closed-loop simulations with AquaCrop-
OS. Note that for the seasonal irrigation planner, the multiplicative compounding func-
tion is approximated by a piecewise function, see Section 2.3. Consequently, the perfor-
mance criterion of the MPC controller is expressed as:

(
1− Ya

Yp

)
≈

N∑̀
`=1

(
1−

(Ya

Yp

)
`

)
=

N∑̀
`=1

λ`

∑
k∈K`

(
Dv (̊k)

(1−p)·(θFC−θWP)Zr (̊k) Ê(̊k)
)

∑
k∈K`

Ê(̊k)
. (22)

The only variable in Eq. (22) that we can manipulate is Dv(k) by controlling the amount
of irrigation. The other variables can all be calculated or predicted before each optimiza-
tion iteration of the MPC problem. Therefore, the water stress cost (Jws) to minimize
in order to maximize the yield can be expressed as:

Jws =
N∑̀
`=1

( λ`∑
k∈K`

Ê(̊k)

∑
k∈K`

w`(̊k)Dv(̊k)
)
, (23)

where w`(̊k) is the weight on water stress in growth stage `:

w`(̊k) = Ê(̊k)
(1− p) · (θFC − θWP)Zr(̊k)

. (24)

The evapotranspiration of each growth stage can be predicted a priori for the entire growth248

season using historic data, predictions of the temperature, and Eq. (11). Furthermore,249

estimates of the crop sensitivity indices can be obtained from literature (see Allen et al.250

(1998)) or can be estimated using a crop model analysis. Moreover, estimates of the root251

depth can be obtained from field measurements or literature. Therefore, the weights w`252

can be calculated a priori for the current growth season. Moreover, note that the frame-253

work presented in this work is flexible in choosing sensitivity indices: any number of growth254

stages can be defined.255
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The crop yield will be maximized over a finite prediction horizon with length Np
using a rolling horizon approach (Camacho & Bordons, 1995), i.e. MPC. For computa-
tional reasons, the prediction horizon will likely not cover the entire growth season. There-
fore, we rewrite Eq. (23) to:

Jws =
N∑̀
`=1

( λ`∑
k∈K`

Ê(̊k)

∑
k∈Kp

`

w`(̊k)Dv(̊k)
)
, (25)

where Kp
` is a subset of days in the prediction horizon during which the crop is in growth256

stage ` ∈ {1, . . . , Ngs}.257

2.3 Optimal irrigation allocation over growth stages258

Anticipating droughts, local water authorities often limit the amount of water that259

each farmer can use for irrigation in the upcoming growth season or year. However, how260

to allocate this water over the fields and the growth stages to maximize profit or yield261

is non-trivial. The allocation does not only depend on maximization of the yield, but also262

costs such as the fixed costs of planting (or not planting), costs of fertilizer use, and costs263

of required machinery for irrigation. However, all these costs can simply be included as264

objectives in the optimization problem, emphasizing the generality of our modeling ap-265

proach. For the purpose of this work, we only consider the allocation of the available wa-266

ter over all fields to maximize the yield, such that no crops die. This optimal water al-267

location optimization is performed by the seasonal irrigation planner, before the growth268

season starts, as the management of the plantation will have to plan ahead the alloca-269

tion of other resources such as machines and labor. Although the water availability through-270

out the season could change, in this work we assume that the water availability is known271

before and will not change (as it is agreed upon in the yearly contract with the local wa-272

ter authority). However, in our formulation we keep track of how much water was ap-273

plied in past growth stages of each of the fields and their current progress in the season.274

Therefore, the seasonal irrigation planner can be used to redistribute the water through-275

out the season given the new water availability constraints. To model the effect of wa-276

ter deficit and stress on yield as accurately as possible, the multiplicative compounding277

function is used to plan water allocation for a growth season.278

Let F denote the set of fields and let Ŵp,`,j be the estimate of the potential wa-
ter use in growth stage ` of field j ∈ F . Then, the total yield Ytot of a plantation for
a growth season is described by the summation of crop yields computed by the multi-
plicative compounding function:

Ytot =
∑
j∈F

AjYp

N∏̀
`=1

(
1− λ`

(
1− Wa,`,j

Ŵp,`,j

))
, (26)

where Aj is the surface area of field j, Yp the potential yield per area (which is assumed
the same for each field), and Wa,`,j is the actual water use of field j in growth stage `.
Furthermore, the total water use over the growth season is

Wtot =
∑
j∈F

Aj

N∑̀
`=1

Wa,`,j . (27)

Then, if the plantation is assigned an amount of water Wmax for the growth season, the
optimal water allocation problem can be defined as

max
Wa,`,j

Ytot (28a)

s.t. Wtot ≤Wmax (28b)
Wa,`,j ≥ T`Ŵp,`,j , (28c)
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where T` ∈ [0, 1] is the minimum relative water use of each growth stage below which279

the crop suffers terminal moisture stress and dies (Yp = 0). Note that the optimiza-280

tion problem is nonlinear and non-convex, due to the multiplicative compounding func-281

tion. Furthermore, the constraint Wmax ≥
∑
j∈F Aj

∑N`

`=1 T`Ŵp,`,j needs to be satisfied282

for the problem to be feasible.283

A crop kite is a tool that visualizes the space of possible yields and actual water284

uses when considering the effect the temporal distribution of water use has on the yield285

(Smilovic et al., 2016). The solutions to the optimization problem from Eq. (28) define286

the upper bound of the crop kite, see Figure 3. The crop is essentially a convex set that287

indicates how much effect the temporal water use distribution can have on the yield. For288

example, when only 70% of the potential water use is available the resulting yield can289

be anywhere from 22% to 55% of the potential yield, depending on how the water is al-290

located across the growth stages in the growth season.291
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Figure 3. In green the crop kite of sugarcane, using crop sensitivity values from Table 1 and
T` = 0.5, ∀`. The red crosses and lines represent a piecewise affine approximation of the upper
bound of the crop kite using Eq. (32).

The optimization problem from Eq. (28) is non-convex and the difficulty of solv-
ing it scales exponentially with the number of fields. Therefore, we approximate it to ren-
der our seasonal irrigation planner computationally feasible. First, consider the alter-
native problem formulation in which we have to allocate water to one growth stage ` un-
til Wa,` = Wp,`, then where to allocate the remaining water to another growth stage,
and so on. This alternative optimization problem is a scheduling problem: What is the
best order of growth stages to allocate the available water to in order to maximize the yield?
To answer this question, consider the contribution values c` of each growth stage ` per
water unit to the yield:

c` =
λ`
(
1− T`

)
Ŵp,` − T`Ŵp,`

= λ`

Ŵp,`
. (29)

The ranking of the c` values determines the solution to our alternative problem: each
growth stage receives the minimum required amount of irrigation for the crop not to die
(feasibility requirement for a solution to this problem), then the growth stage with high-
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est contribution c` receives water up to potential water use (or however much water is
available), then the remaining water is allocated to the growth stage with second high-
est contribution value, and so on. Let L̄i be the set of growth stages with a contribu-
tion value ci or higher and Li be the set of growth stages with a contribution value lower
than ci, where i ∈ {1, . . . , Ngs}. Then, the upper bound of the crop kite is approximated
by a set P of points (one for each growth stage). Each of the points P (Wi, Yi) ∈ P con-
sists of a relative yield coordinate (Yi) and a relative water use coordinate (Wi):

Yi =
∏
`∈Li

(
1− λ`(1− T`)

)
, (30)

Wi =
∑
`∈Li

T`Ŵp,` +
∑
`∈L̄i

Ŵp,`∑Ngs
`=1 Ŵp,`

. (31)

These points can be calculated a priori for each growth season and are connected with
straight lines (as we increase water use for one growth stage at a time) to form a piece-
wise affine approximation of the upper bound of the crop kite:

Ya

Yp
≈



Wa
Ŵp
−W1

W2−W1
· (Y2 − Y1) + Y1 if W1 ≤ Wa

Ŵp
< W2,

Wa
Ŵp
−W2

W3−W2
· (Y3 − Y2) + Y2 if W2 ≤ Wa

Ŵp
< W3,

...
...

Wa
Ŵp
−WNgs

1−WNgs
· (1− YNgs) + YNgs if WNgs ≤ Wa

Ŵp
≤ 1,

0 otherwise.

(32)

This piecewise affine approximation of the upper bound of the crop kite can be calcu-
lated for all fields using the potential water use predictions. Furthermore, by using bi-
nary variables to model the switching behavior, Eq. (32) can be converted to an MLD
system following the method of Bemporad and Morari (1999). Then, denote by Ŷa,j =
Aj

(
Ya
Yp

)
j

the expected yield of field j using the MLD reformulation of Eq. (32). Con-
sequently, the nonlinear, non-convex optimization problem from Eq. (28) can be reduced
to an Mixed-Integer Linear Programming (MILP) problem:

max
Wa,j

∑
j∈F

Ŷa,j (33a)

s.t.
∑
j∈F

AjWa,j ≤Wmax (33b)

Wa,j ≥
Ngs∑
`=1

T`Ŵp,`, (33c)

which can be efficiently solved using state-of-the-art MILP solvers such as CPLEX or292

Gurobi. The solution can then be used to constrain the water use of each growth stage293

for each field, in order to maximize the total yield with the available water.294

To illustrate the performance of the piecewise approximation, the upper bound is295

approximated for the crop kite depicted in Figure 3, see the red curve and crosses. Be-296

cause of the non-linearity of the multiplicative compounding function the contribution297

values actually change as water is allocated to growth stages. However, in the approx-298

imation we assumed fixed contribution values (i.e. average contribution per unit of wa-299

ter). This assumption introduces errors when the contribution values are similar, as then300

the available water should be divided between the competing growth stages for optimal-301

ity. This is actually the case for the third and fourth growth stages of the example in302

Figure 3. Here, the contribution values of the third and fourth growth stage are 0.2026303

and 0.2208, respectively. However, the approximation is still good in this case, as the es-304

timation error is small. As a future improvement the water could be split between growth305
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stages that have similar contribution values to reduce the error, for example: if the con-306

tribution values are within a tolerance of 0.05 the remaining water is divided half-half307

between the two growth stages.308

2.4 Operational constraints309

The feasibility of the calculated daily irrigation schedules depends on the local op-310

erational constraints of the plantation. These constraints can be divided in two groups:311

• Resource constraints: These constraints indicate a limitation in the availability312

of certain resources required for irrigation, e.g., availability of human operators313

or sprinklers. Another example that often constrains the irrigation of the fields,314

is the maximum amount of water that can be used for irrigation over a growth sea-315

son or year. This amount is often decided on by local water authorities or the gov-316

ernment in anticipation of droughts.317

• Hydraulic infrastructure constraints: These constraints define the bounds of the318

daily amount of irrigation. The pumps, channels, and gates conveying water to319

the fields have a limited capacity. Note that the hydraulic dynamics of water con-320

veyance and the operating of pumps, valves, and gates is not part of this work and321

will require further research.322

Any type of resource and hydraulic infrastructure constraints can be included in the frame-323

work presented in our work. However, for illustrational purposes, we only consider two324

resource constraints and one hydraulic infrastructure constraint. The resource constraints325

are the maximum number of fields that can be irrigated in a day and the maximum ir-326

rigation water use of the entire season calculated using the approach from Section 2.3.327

The hydraulic infrastructure constraint defines an upper bound on the daily amount of328

irrigation that is determined by the maximum gate flow through the inlet to the fields.329

2.4.1 Maximum number of fields scheduled for irrigation330

Depending on the water delivery capacity of the hydraulic infrastructure and the
daily availability of the aforementioned resources a certain maximum number of fields
can be irrigated in a working day. Let δj(k) be the binary decision variable that indi-
cates whether to irrigate a plot j ∈ F at day k. Moreover, let I∗j (k) be the desired amount
of irrigation. Then, the following mixed-integer linear inequalities (Bemporad & Morari,
1999) will satisfy [δj(k) = 0]⇒ [Ij(k) = 0], [δj(k) = 1]⇒ [Ij(k) = I∗j (k)]:

Ij(k) ≤Mjδj(k) (34a)
Ij(k) ≥ mjδj(k) (34b)
Ij(k) ≤ I∗j (k)−mj(1− δj(k)) (34c)
Ij(k) ≥ I∗j (k)−Mj(1− δj(k)), (34d)

where331

Mj , max
k∈{1,Np}

I∗j (k) (35)

mj , min
k∈{1,Np}

I∗j (k). (36)

It is assumed that the number of fields that can be irrigated on day k of the prediction
horizon, Nf(k), is known a priori at each optimization iteration. Thus, to respect the max-
imum number of fields to irrigate the constraint∑

j∈F
δj(k) ≤ Nf(k), ∀k ∈ {1, . . . , Np}, (37)

is sufficient.332
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2.4.2 Restricting water use over growth seasons333

The seasonal irrigation planner solves the optimization problem from Eq. (33) to
determine the maximum water use Wa,`,j for each growth stage ` for each field j. This
amount can then be used to constrain the water use for each growth stage of each field.
However, the prediction horizon may not extend to the entire growth stage. In that case,
the daily irrigation controller cannot oversee the consequences of using too much water
at the start of the growth season. Therefore, the following constraint is used for the wa-
ter use of field j in growth stage ` in the prediction horizon:

∑
k∈Kp

`,j

(
Ij(k)

)
≤
(
Wa,`,j −Wprev,`,j

)
·

∣∣∣Kp
`,j

∣∣∣
N remain
`,j

, (38)

where Wprev,`,j is the amount of water that has previously been applied to the field in334

growth stage `, Kp
`,j is the set of days that field j is in growth stage ` in the prediction335

horizon, and N remain
`,j is the number of remaining days that field j will be in growth stage336

`. At the start of each optimization iteration the value of Wprev,`,j is updated with the337

irrigation from the previous day(s). In case there is a lot of precipitation at the start of338

the growth stage, the amount irrigated will be small and Wprev,`,j will remain relatively339

small. As a result, more water is available for the rest of the season. Furthermore, if the340

water availability changes in the season, the seasonal irrigation planner can optimize Eq.341

(33) again given the new situation and the previously applied water amounts, to obtain342

a new water distribution schedule for the future growth stages of all fields.343

2.5 Operational Optimization problem formulation344

In the daily irrigation control, minimizing the water stress cost defined in Eq. (25)
results in a minimization of the violation Dv(k) for all fields over the prediction horizon.
As a result, Eq. (14) can be rewritten into:

Dv(k) ≥ D(k − 1) + E∗(k)− Pe(k)− I(k)− ε(k) (39)
Dv(k) ≥ 0. (40)

As the optimization problem is linear, the minimization of Dv(k) implicitly also mini-
mizes D(k); consequently, Eq. (3) can be rewritten as:

D(k) ≥ D(k − 1) + E∗(k)− Pe(k)− I(k), (41)
D(k) ≥ 0. (42)

Reformulation of the two state update equations (Eq. (3) and Eq. (14)) into four linear
inequalities eliminates the need to model their switching behavior using binary variables,
reducing the computational burden significantly. However, the optimization problem is
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still an MILP problem, due to the operational irrigation constraints:

min
I(k)

J = (1− β)Jws + βJirr, (43a)

s.t. Jws =
∑
j∈F

N∑̀
`=1

( λ`∑
k∈K`,j

ÊT(̊k)

∑
k∈K`,Np,j

w`,j (̊k)Dv,j(̊k)
)
, (43b)

Jirr =
∑
j∈F

Np∑
k=1

γ(k)Ij(k), (43c)

D(k) ≥ D(k − 1) + E∗(k)−Pe(k)− I(k), ∀k ∈ {1, Np}, (43d)
Dv(k) ≥ D(k − 1) + E∗(k)−Pe(k)− I(k)− ε(k), ∀k ∈ {1, . . . , Np}, (43e)

0 ≤ ε(k) ≤ p(θFC − θWP)Zr(k), ∀k ∈ {1, . . . , Np}, (43f)
D(k) ≥ 0, ∀k ∈ {1, . . . , Np}, (43g)

Dv(k) ≥ 0, ∀k ∈ {1, . . . , Np}, (43h)
the operational irrigation constraints in Eqs. (34)–(37),
and the water availability constraint from Eq. (38),

where β ∈ [0, 1] is a weight factor indicating the relative importance of water use min-345

imization with respect to water stress minimization and γ(k) > 0 is a weight factor in-346

dicating the relative importance of irrigating earlier or later in the prediction horizon.347

Furthermore, Dv,j(k) is the RZD upper bound violation on field j. Note that the bold348

symbols (e.g., D(k)) denote vectors containing the respective variables for each field in349

the plantation. The formulated MILP problem can be efficiently solved using state-of-350

the-art MILP solvers such as CPLEX or Gurobi.351

3 Model Identification and Validation352

The control approach proposed in our work will be evaluated on a simulation of353

a specific furrow-irrigated area of the Xinavane Sugar Estates (Tongaat Hulett) in Xi-354

navane, Mozambique (see Figure 4). The sugarcane plantation is competing with the wa-
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Figure 4. In (a) the geographical location of the study area is depicted. In (b) the layout of
the fields subject in this work is depicted. A pumping station pumps water out of the river into
a system of concrete canals from which the water is conveyed into earth canals by opening gates.
From the earth canals (that are adjacent to the fields) the water is siphoned into the furrows of
the fields.

355
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ter needs of a rapidly urbanizing population downstream, increasing agricultural and in-356

dustrial water uses under the stresses of climate change (Gelcer et al., 2018). Further-357

more, storing water is not possible and the large-scale plantations consist of multiple clus-358

ters of fields, which each have their own (downstream) pumping stations that draw wa-359

ter form the same river; therefore, Tongaat Hulett has the objective to use as little pos-360

sible as water while maximizing yield. The selected area has a size of approximately 420361

ha divided over 24 plot served by a network of open canals. Each plot consists of 2-4 fields,362

adding up to 79 fields in the selected area. There is an upstream gate and canal present363

for each of the fields, so they can be irrigated separately. The fields are currently irri-364

gated every 3-4 days by human operators, the net irrigation requirement is approximately365

1650 mm per year, and the average precipitation in the area is approximately 650 mm366

per year. Through a network of open canals each field is provided water by an upstream367

gate with a maximum capacity of 60 liters per second. This maximum flow to the field368

together with the 8 hour working day of the operators, constrain the maximum amount369

of irrigation that can be applied to each plot. Each of the fields considered in this work370

is modeled as an agro-hydrological system in AquaCrop-OS, using soil and crop param-371

eters that are representative of the in-field situation in Xinavane (and that are taken the372

same for each field). Note that lateral dynamics are not included in the modeling ap-373

proach: so fields have no effect on adjacent fields. Furthermore, the rainfall and temper-374

ature is assumed equivalent for each field, as the fields are located in the same geograph-375

ically small (same weather) area. Note that the application efficiency of furrow irriga-376

tion is incorporated in the identification process of the water balance model used in the377

daily irrigation controller; therefore, our method is not restricted to a specific infield ir-378

rigation strategy as we can account for the different application efficiencies in the MPC379

model. The complete set of parameters of the soil, the crop, and the field management380

settings used for modeling the fields can be found in the supplementary material.381

3.1 Data for agro-hydrological modeling382

For each field in the case study area, the recorded planting and harvest dates from383

2013-2017 were used. Furthermore, from conversations with local operators and man-384

agement the local irrigation practice can be summarized as follows:385

• After initially planting the sugarcane (or shoots in case of ratooning), the (dry)386

field is irrigated to field capacity to promote the germination, this initial irriga-387

tion cycle can take up to 3 days.388

• Next, over the course of the growth season the field is irrigated to field capacity389

with an irrigation frequency of once every 4 days.390

• Finally, when the sugarcane has matured, the field is harvested and after approx-391

imately one week the field is replanted and the next growth season commences.392

Unfortunately, accurate and sufficiently detailed data on local irrigation records and soil393

moisture measurements were not available. Therefore, using the aforementioned irriga-394

tion practice, real historic growth season weather data, and the calibrated soil and crop395

parameters (e.g., canopy decline/growth coefficients, soil evaporation coefficients and soil396

composition, see the supplementary material), the growth seasons are recreated using sim-397

ulations in AquaCrop-OS. The resulting data set of 316 growth seasons spread over 5398

years and 79 fields can then be used for identification of the proposed model. This data399

set consists of evapotranspiration data, canopy cover data, soil moisture data, rooting400

depth data, and yield data.401

3.2 Identifying and validating the evapotranspiration model402

The evapotranspiration model (see Eq. (11)) uses an estimate of the size of the canopy403

cover as a function of thermal time (in the form of an NDVI-CGDD curve, see Eqs. (9)404
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and (11)) to fit the coefficients α1, α2 and α3 using the evapotranspiration dataset gen-405

erated in AquaCrop-OS. However, AquaCrop-OS does not generate NDVI data; instead406

canopy cover data is directly used to estimate the size of the canopy cover as a function407

of the thermal time. The average evolution of the canopy cover over thermal time is es-408

timated using a random half of the generated canopy cover data set. During each growth409

season the evolution of the canopy cover will be slightly different, due to different atmo-410

spheric conditions. To obtain a smooth curve that best describes the average canopy cover411

development, we use the following procedure:412

• Divide the canopy cover data points into Ng groups, based on evenly spaced sec-413

tions of the thermal time. This number of groups depends on the density of the414

data: the more data points the more groups can be used.415

• For each group calculate the average thermal time and the average size of the canopy416

cover; this is a new data point. Therefore, the number of groups should be cho-417

sen such that the distance between the new data points is minimized, while still418

obtaining a smooth curve.419

• Finally, draw a curve through the new averaged data points. We use a Piecewise420

Cubic Hermite Interpolating Polynomial (PCHIP) (Fritsch & Butland, 1984) that421

interpolates the data locally using a cubic function. Note that quadratic or lin-422

ear interpolation can also be used. In this case, cubic interpolation was chosen as423

a compromise between number of coefficients and accuracy of the fit.424

The resulting size of the canopy cover when using Ng = 100 is depicted in Figure 5.425

In Figure 5 (a), the raw datapoints of the size of the canopy cover as a function of ther-426

mal time are depicted, that are obtained by simulating local practice of irrigating to full427

capacity every 4 days. Note the enlarged box illustrating the (tight) spread of the data.428

In Figure 5 (b) the resulting PCHIP curve is plotted that connects the decimated data429

points. The curve is smooth without any sudden jumps.430

Next, the canopy cover PCHIP approximation, temperature data, and reference
evapotranspiration data from the identification half of the data set are use to estimate
the model coefficients from Eq. (11) using linear least-squares. The model coefficients
are determined as [α1,α2,α3] = [−3.2677·10−4, 1.1247, 0.8918] with an Root Mean Square
Error (RMSE) of 0.55 mm and a Variance Accounted For (VAF) of 93.58%. Furthermore,
in Figure 5 (c) the spread of the modeling error as a function of the thermal time for the
validation set is depicted. Here, the modeling error (ME) is defined as:

ME(k) = Ê(k)− E∗(k)
E∗(k) · 100%. (44)

The evapotranspiration model performs best when the canopy cover reaches its maxi-431

mum size. Conversely, when the size of the canopy cover is low and when the crop starts432

to age the contribution of the evaporation to the overall evapotranspiration is high. The433

evaporation dynamics are not well captured as wetting events are not included in the434

modeling. However, the model is still able to provide estimates for the evapotranspira-435

tion within a 25% error margin for over 75% of the growth season. Furthermore, sug-436

arcane is relatively insensitive to water stress in the last growth stage (Doorenbos & Kas-437

sam, 1979; Robertson & Donaldson, 1998); therefore, modeling errors in this growth stage438

will likely not have a large influence on the controller’s performance.439

We note that the spread of the canopy cover data points is rather small and un-440

realistic in Figure 5a. To illustrate that the proposed method also works in the real-world,441

we have also constructed an NDVI–CGDD curve using real NDVI data for the Xinavane442

area, which is shown in the supporting material for this manuscript.443
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Figure 5. In (a) the canopy cover data points are depicted. In (b) the decimated data points
(triangles) and the resulting PCHIP curve are shown. In (c) the modeling errors of the evapo-
transpiration model are depicted as a function of the thermal time.
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4 Simulation Results and Discussion444

To evaluate the performance of the proposed feedback control scheme, we conduct445

closed-loop simulations with the complex crop-water productivity model AquaCrop-OS.446

Although our control model uses a simple water balance (see Eq. (1)) with only a non-447

zero drainage term when the soil becomes saturated (see Eq. (3)), the AquaCrop-OS model448

does include more complex dynamics; for example filtration is modeled using spatial dis-449

cretization of the soil layer(s) (Raes et al., 2009). The sufficiency of a simple control model450

is shown in the closed-loop performance of three complex system simulations on AquaCrop-451

OS in Sections 4.2-4.4. In the first simulation, we investigate the effect of decreasing the452

water availability on the yield, when using the proposed control scheme. In the second453

simulation, a comparison is made between the performance of the local irrigation approach454

and the proposed MPC approach in terms of water productivity and yield. In the last455

simulation, the water saving capabilities of the MPC approach are compared with that456

of the local irrigation approach by constraining the amount of irrigation for each growth457

season.458

4.1 Simulation settings459

The goal of the simulations is to investigate the maximum (theoretical) benefit that460

can be achieved by using an optimal control approach. Therefore, no stochastics are added461

to the simulations and perfect root zone soil moisture measurements for all fields are as-462

sumed to be available at the start of each day. In the preseason, the soil moisture mea-463

surements that the daily irrigation controller receives are at an depth of 30 cm, the depth464

at which the roots initially establish after planting. Furthermore, a perfect forecast of465

the evapotranspiration, temperature, rainfall, and planting and harvest dates is assumed466

to be available to the daily irrigation controller. Conversely, the controller imitating the467

local irrigation practice has information on the exact amount of irrigation required to468

irrigate to field capacity and applies this to the field, provided it does not violate the max-469

imum amount of irrigation. To that end, each field is provided water by an upstream gate470

with a maximum capacity of 60 liters/second. This maximum flow to the field together471

with the 8 hour working day of the operators, constrain the maximum amount of irri-472

gation that can be applied to each field. The sensitivity indices and growth stage def-473

initions that the two-level approach uses are listed in Table 1. The sensitivity indices are474

derived from (Moutonnet, 2002), the growth stage lengths in number of days are retrieved475

from the provided example files for sugarcane in AquaCrop-OS, and the thermal times476

are calculated using Eq. (4) with a base temperature and maximum temperature of 12◦477

and 32◦ Celsius, respectively, and historic data from Xinavane.478

Table 1. Growth stage definitions used for simulations.

Growth stage Length (days) Length (CGDD) λ`

Establishment 7 82 0.4a

Tillering 53 618 1.2a

Yield formation 270 3151 1.2a

Ripening 35 408 0.1b

a These values are taken from Moutonnet (2002).
b This value is taken from Doorenbos and Kassam (1979).

All simulations start on the 30th of May 2013, 7 days before the first field is planted479

and end on the 31st of December 2017. In this period, all fields will have had four full480

growth seasons. The relative cost of irrigation to water stress is set to β = 10−7, a value481

small enough to ensure the controller irrigates whenever necessary to avoid violating the482
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RZD upper bound and big enough to provide an incentive to not waste water. Moreover,483

irrigation should be delayed if it is not directly required to avoid violating the defined484

soil moisture bounds. To provide this information to the daily MPC controller, we pe-485

nalize irrigation at the end of the prediction with γ(Np) = 1 and with γ(1) = 2 (see486

Eq. (43c)) at the beginning of the horizon and linearly interpolate the cost between the487

two. Finally, the fraction of the available water at which the crop starts to experience488

stress is set to p = 25%.489

An important remark is that the daily MPC controller can irrigate in the fields in490

the preseason, if necessary. However, no costs are included in the optimization problem491

to penalize soil moisture deficits in the preseason; therefore, if the controller decides to492

irrigate a field in the preseason it is only in anticipation of a soil moisture threshold vi-493

olation after the field has been planted. Furthermore, as mentioned above irrigation is494

delayed unless necessary to avoid violating the RZD bounds. Therefore, the daily irri-495

gation controller will only irrigate in the preseason if the field is too dry before plant-496

ing or when the daily irrigation controller is constrained by an irrigation frequency (which497

is the case in simulations 2 and 3 in Section 4.3 and Section 4.4, respectively). Note that498

if the daily irrigation controller applies irrigation in the preseason the used water is added499

to the total water use in the upcoming season in all simulations.500

4.2 Simulation 1: Effect of decreasing water availability on yield501

The effect of water stress on yield (summarized in yield sensitivity indices) is of-502

ten based on open-loop predictions and regression methods. Therefore, in this first sim-503

ulation we investigate the effects of restricting water use on closed-loop results. First,504

we establish the potential water use when using full (optimal) irrigation: each of the fields505

can be irrigated daily, only limited by the maximum amount of water that can be pro-506

vided by the upstream gate and the length of a working day. Ideally, the prediction hori-507

zon covers the whole growth season; however limited by the available memory on the com-508

puter used for simulations we set the length of the prediction horizon to Np = 100 days509

(as large as possible). As the irrigation frequency is not bounded for this simulation, the510

constraints from Eq. (34) are relaxed (removing all integer variables from the optimiza-511

tion problem) and the problem is reduced to a continuous linear programming problem.512

The results indicate, for each field, how much water is required in each growth stage for513

maximum yield. Then, for a fraction of this potential water use we calculate the opti-514

mal water allocation for each growth season of each individual field using Eq. (32). These515

amounts are then used to constrain the water use in each growth stage of each field. The516

result is an approximation of the upper bound of the crop kite (from Figure 3), see the517

beeswarm plot in Figure 6 (a). The yield declines progressively as the water is increas-518

ingly restricted. In Figure 6 (b), the rainfall and evapotranspiration data is depicted for519

each of the seasons. The low amount of rainfall in season 3 explains the rapid yield de-520

cline when reducing actual water use: the decrease in amount of irrigation is a larger pro-521

portion of the total seasonal water in dry seasons than rainy seasons. The reason that522

season 1 maintains a higher yield under water stress than the other seasons is that the523

soil moisture is initialized at field capacity for all fields. Therefore, a buffer of water is524

retained in the soil below the crop’s roots, which is tapped into as the root depth increases.525

After the first season, this extra water source can be depleted.526

4.3 Simulation 2: MPC vs. local irrigation practice527

In this second simulation, we compare the performance of the proposed MPC ap-528

proach with that of the irrigation practice described in Section 3.1. In this local irriga-529

tion practice of Mozambique, the fields are irrigated every four days. Constraints are added530

on the number of fields that can be irrigated each day (Eq. (37)) to ensure the daily MPC531

controller does not irrigate more frequently than the local practice. Furthermore, both532
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Figure 6. In (a) the effect of decreasing water use on the yield is depicted in beeswarm plots;
for each restricted water use on the horizontal axis a collection of points is depicted that rep-
resent the relative yields of each field in the seasons. This figure shows the reduction in yield
we can expect when water use is reduced under different atmospheric conditions. To clarify the
spread of the results the potential evapotranspiration is plotted against the rainfall in (b).
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the MPC and the local irrigation approach have no maximum water use constraint in533

this simulation.534

The optimization problem that is repeatedly solved by the daily MPC controller535

at each time step in simulations 2 and 3 belong to the class of mixed-integer linear pro-536

grams (MILPs), which we solve using Gurobi (v8.1.1) (Gurobi Optimization, 2015) ac-537

cessed via its MATLAB interface. Although Gurobi can find solutions with arbitrarily538

small optimality gaps to the globally optimal solution, the computational effort (mea-539

sured in CPU time) can become too large based on problem size and the prescribed op-540

timality gap. To complete our simulations to ‘near’ optimality within a reasonable time541

frame, we set the prediction horizon length to Np = 60 days and set the relative op-542

timality gap tolerance to 1%. To account for pathological cases we limit the maximum543

computation time to 3600 seconds. This prediction horizon is still large enough to cover544

the first two growth stages completely (7 and 53 days, respectively).545

In Figure 7, we show the amount of water used for irrigation in all four seasons against546

the final attained yields for all fields. For all fields, the MPC controller uses less water547

while producing an equal or higher yield than the local irrigation practice. The amount548

of water that the MPC controller can save with respect to the local practice seems to549

be proportional to the amount of rainfall in a season. This is especially noticeable in Fig-550

ure 7 (c), where the difference in water use is small and the season was relatively dry (see551

Figure 6 (b)).552
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Figure 7. A comparison of the water productivity of the MPC controller and the local ir-
rigation practice for each of the four growth seasons. In (a), (b), (c), and (d) the results of,
respectively, season 1, 2, 3, and 4 are shown.

4.4 Simulation 3: Irrigation under water scarcity553

To illustrate the water saving capabilities of our MPC approach over the local ap-554

proach of simply irrigating every few days (described in Section 3.1), we now consider555

a simulation scenario in which available water volume is limited. As opposed to the first556
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simulation, we limit the total available water volume of all the fields combined to 80%557

of the potential total water use (established by the results from the first simulation). There-558

fore, in this simulation we solve the optimization problem from Eq. (33) for all fields at559

once (for one growth season at a time). The result is a maximum water volume per growth560

stage per field for a single growth season, such that the overall crop yield of that sea-561

son is maximized. These maximum water volumes are then converted to irrigation depths562

using the surface areas of the fields. Finally, the irrigation depth per season per field is563

constrained using the inequality constraint from Eq. (38). Note that, similarly to the sec-564

ond simulation, the irrigation frequency is limited by imposing constraints on the num-565

ber of fields that can be irrigated in a day.566

When the real plantation in Xinavane faces drought, the local staff reduces the ir-567

rigation frequency in an attempt to reduce the water use. The workers always irrigate568

the fields to field capacity, in order to minimize the number of revisits to each field. We569

compare the water use of the local irrigation practice with an irrigation frequency of 4,570

5, 6, and 7 days with that of the MPC controller. The results are listed in Table 2. Only571

the MPC controller is able to meet the water volume constraints; the local approach uses572

too much water in all of the seasons for all the irrigation frequencies. Note that even though573

the MPC controller irrigates in the preseason the total amount of irrigation for the sea-574

son is not exceeded.575

Table 2. Actual water use (×106 m3) of all fields combined for each season. Note that in the
MPC results the preseason amounts of irrigation are added to the total water use of the subse-
quent season.

Season 1 Season 2 Season 3 Season 4
Constrained water volume 2.98 3.65 4.88 3.46
Local practice, 4 day irrigation frequency 5.16 5.64 6.38 5.47
Local practice, 5 day irrigation frequency 4.97 5.39 6.15 5.27
Local practice, 6 day irrigation frequency 4.74 5.18 5.83 4.85
Local practice, 7 day irrigation frequency 4.56 4.94 5.43 4.40
MPC, 4 day irrigation frequency 2.80∗ 3.58∗ 4.75∗ 3.39∗
∗ Feasible seasons.

5 Conclusions and Future Research576

The optimization problem of allocating water over multiple fields of a plantation577

in order to maximize the seasonal yield or profit is highly complex, as we have to con-578

sider many factors, such as different crop stages, restrictions on seasonal water volume,579

available machinery (e.g. sprinklers), and human operators. In this work, we propose a580

methodology to reduce this complex problem into two separate optimal control problems,581

which are solved using a two-level structure consisting of a seasonal irrigation planner582

and a daily MPC irrigation controller. The seasonal irrigation planner considers the al-583

location of the available water of the upcoming growth season over the crop stages of each584

field, such that the overall yield is maximized. For the optimization of this water allo-585

cation, we assume that within a crop stage the allocated water is distributed perfectly586

temporally and spatially such that the water stress is minimized. This minimization of587

the daily water stress is realized by an MPC controller that decides on the daily irriga-588

tion amounts of each field, such that the water stress is minimized for all fields, while589

not exceeding the total water amounts that were allocated for each field by the seasonal590

irrigation planner. Although the realized precipitation and temperature in the season591

may be different from those of the optimal plan proposed by the seasonal irrigation sched-592
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uler, the MPC controller receives daily measurements and consequently updates it’s pol-593

icy accordingly to correct for the deviations from the optimal plan.594

For the seasonal irrigation planner we describe the total expected yield over mul-595

tiple fields by the summation of crop yields computed by the multiplicative compound-596

ing yield function from (Raes et al., 2006). As this function is highly nonlinear and non-597

convex, the difficulty to find optimal solutions scales exponentially with the number of598

fields. Therefore, we approximate it using an alternative problem formulation. The re-599

sult is an efficient formulation of the seasonal irrigation planner that determines the op-600

timal water distribution over the fields to maximize the overall yield, subject to local op-601

erational constraints such as restrictions on seasonal water volume or fertilizer amounts.602

The MPC controller minimizes the daily water stress by scheduling irrigation such603

that the soil moisture of the fields is regulated within a water-stress-free zone. This re-604

quires a model of the interaction between the soil, the atmosphere, and the crop. A sim-605

ple water balance model is created for which the saturation dynamics are modeled ex-606

plicitly using conditionally switched depletion dynamics. Furthermore, evapotranspira-607

tion is predicted using a linear model based on remote-sensing measurements of the canopy608

cover, temperature data, and evaporation and transpiration data obtained from closed-609

loop simulations in AquaCrop-OS. The effect of water stress on the crop yield is included610

in the cost function of the daily irrigation controller using an additive crop production611

function. This provides the daily controller with information on which fields have pri-612

ority in receiving water. The two-level approach presented can handle resource and hy-613

draulic infrastructure constraints. Therefore, the approach is generic as it is not restricted614

to a specific irrigation method, crop, soil type, or local environment.615

The performance of our two-level approach is evaluated on three closed-loop sim-616

ulations in AquaCrop-OS of a sugarcane plantation (from Tongaat Hulett) located in Xi-617

navane, Mozambique. The parameters in AquaCrop-OS are set to match the parame-618

ters of the real plantation. Then, using the local standard irrigation practice (irrigate619

each field every few days) from the Xinavane sugarcane plantation the growth seasons620

from 2013 till 2017 are recreated. This data set is then used to identify the water bal-621

ance model parameters and evapotranspiration model parameters. The goal of the sim-622

ulations is to investigate the maximum (theoretical) benefit that can be achieved using623

our optimal control approach.624

In the first simulation, we study the effect of water scarcity on the season yield un-625

der our proposed two-level approach. The results give an indication of the decline of yield626

as a function of water availability that can be expected. This can be useful information627

for decision makers to decide on the water distribution of upcoming seasons. In the sec-628

ond simulation, the water productivity of the proposed two-level approach is compared629

to a simple heuristic of irrigating the fields to field capacity every four days. Our two-630

level approach achieves the same seasonal yield as the local irrigation practice, while us-631

ing up to 30% less water. In the third simulation, the total water use is restricted to 80%632

of the potential water use and the capabilities of the local irrigation practice and our op-633

timal control approach in producing feasible irrigation schedules are tested. Our control634

approach is able to satisfy the water use constraint while maximizing the water produc-635

tivity. The local approach of irrigation every few days to field capacity was not able to636

constrain seasonal water use to a feasible amount.637

A next step towards implementation of closed-loop algorithms such as the one pro-638

posed in our paper, is creating reliable observers for soil moisture. Such an observer could639

be designed by combining in situ and satellite remote-sensing data approaches to cre-640

ate soil moisture measurements, which can then be incorporated into the control loop.641

Furthermore, our future work will explore stochastic MPC methods for hedging land,642

water (and labor) allocation against uncertainty in water availability within the proposed643

framework. Another step to take for implementation is to evaluate the effect of the un-644
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certainty of rainfall. However, under sparse rainfall events the effect of the rainfall un-645

certainty on the performance will likely be minimal as the controller can change the ir-646

rigation schedules following a measurement after a rainfall event has occurred. Nonethe-647

less, the effect that uncertainty of rainfall has on irrigation control will need to be re-648

searched more in depth to render our approach feasible for a broader range of climates.649

Acronyms650

CGDD Cumulative Growing Degree Days651

FAO Food and Agriculture Organization of the United Nations652

GDD Growing Degree Days653

MLD Mixed-Logic Dynamical654

MPC Model Predictive Control655

MILP Mixed-Integer Linear Programming656

NDVI Normalized Difference Vegetation Index657

PCHIP Piecewise Cubic Hermite Interpolating Polynomial658

RMSE Root Mean Square Error659

RZD Root Zone Depletion660

TAW Total Available Water661

VAF Variance Accounted For662
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