
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Solving convex optimization problems
on FPGA using OpenCL

Martijn Berkers Q&CECEMS202002

Abstract

The application of accelerators in HPC applications has seen enormous growth in the last
decade. In the field of HPC demands on throughput are steadily growing. Not all of the algo
rithms used have a clear HW architecture which performs the best. Our work explores the
performance of different HW architectures in solving a convex optimization problem. These
algorithms are a sequence of dependent operations making it an interesting usecase be
cause parallelism is not easily found. Our work focuses on a usecase of an on machine
computational model present in ASML, we explore the acceleration of a quadratic program
ming ActiveSet algorithm on dedicated hardware. There are libraries available to do this on
both the CPU and GPU, while nothing is available for the FPGA. Our work focuses on filling
this gap by implementing the algorithm using a highlevel abstraction parallel programming
language in order to ease development for FPGA accelerators. We use the Intel FPGA SDK
for OpenCL framework to evaluate the performance tradeoffs involved with FPGA acceler
ation and compare the performance to both the CPU and GPU using library functions. To fit
FPGA architecture the algorithm is converted to a dataflow algorithm to enable streaming
of data between kernels. The implementation leverages the features introduced in the Intel
FPGA SDK for OpenCL framework to stream data using onchip lowlatency communica
tion between kernels. We demonstrate that such a complicated algorithm can efficiently be
implemented using the OpenCL framework. Our implementation achieves competitive per
formance compared to optimized library function on both the CPU and GPU. The OpenCL
framework allows for easy design space exploration. We have explored different optimiza
tion strategies. The execution time of the final FPGA implementation is 3.5x and 1.2x longer
than the CPU and GPU respectively in double precision floatingpoint. If the accuracy of the
FPGA implementation is reduced to single precision there is a speedup of 2.2x in execution
time compared to the double precision variant. Higher throughput can be achieved by dupli
cating the implementation. With the current size of the algorithm, two additional copies are
possible. A handcrafted implementation could further improve the FPGA performance by
manually managing local memory structures and reusing processing elements. However,
significantly fewer lines of code are required, and a significant reduction in development time
is achieved by using the OpenCL framework compared to traditional hardware description
languages.

Solving convex optimization problems on
FPGA using OpenCL

by

M. D. Berkers
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday February 27, 2020 at 1:00 PM.

Student number: 4223438
Project duration: May 10, 2019 – February 27, 2020
Thesis committee: Dr. ir. Z. AlArs, TU Delft, supervisor

Dr. ir T. G. R. M. van Leuken, TU Delft
Ir. S. C. van der Vlugt, ASML, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This thesis is the final product of my work at ASML over the last 9 months, titled ”Solving convex
optimization problems on FPGA using OpenCL”.

I would like to thank many people that were involved in or contributed to this work. First, Steven van der
Vlugt for his supervision. He always provided valuable insights and a listening ear whenever I needed
it. His help shaping the story has helped immensely. Second, Zaid AlArs for always questioning the
work to see that no stones were left unturned. Third, John Wagensveld for his guidance and remarks
to provide a new perspective. Last but not least, Lennart Noordsij for his continued support as a friend
and colleague. His help by reviewing documents and being there to bounce ideas around has been
invaluable.

I would like to thank my friends and family. This work would not have been possible without their
support. They provided me with the opportunity to take my mind of work whenever I needed it.

I would also like to thank ASML for providing me with this opportunity and a great place to work. My
time at ASML has not only been educational but also fun. Mostly because of the great colleagues who
were always there to enjoy a coffee with. Especially Vivek Jaiswal, his company and jokes helped me
feel at home.

M. D. Berkers
Delft, February 2020

iii

Contents

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1
1.1 Context . 2
1.2 Industrial use case: Convex optimization algorithm . 2
1.3 Synopsis . 3

2 Background 5
2.1 Compute platforms . 5
2.2 Accelerator offloading . 6
2.3 GPU . 6
2.4 FPGA . 7

2.4.1 CLB . 7
2.4.2 DSP . 7
2.4.3 Memory . 9
2.4.4 Partial reconfiguration . 9

2.5 OpenCL . 9
2.5.1 Platform model . 9
2.5.2 Memory model . 10
2.5.3 Execution model . 10
2.5.4 Programming model . 10
2.5.5 Parallel programming. 10

2.6 OpenCL SDK for FPGA . 11
2.6.1 BSP . 11
2.6.2 OpenCL SDK flow . 11
2.6.3 NDRange programming model . 11
2.6.4 Single WorkItem . 12
2.6.5 Memory . 12
2.6.6 Channels and pipes . 12
2.6.7 Programmability . 13

2.7 Linear algebra in qpAS . 13
2.7.1 BLAS . 13
2.7.2 LAPACK. 14

3 Related work 15
3.1 FPGA vs GPU . 15
3.2 OpenCL on FPGA . 16

3.2.1 Performance . 16
3.2.2 Alternatives . 16

3.3 BLAS and LAPACK on FPGA . 17
3.3.1 BLAS . 17
3.3.2 LAPACK. 17

4 Quadratic programming ActiveSet 19
4.1 Optimization problems . 19

4.1.1 Quadratic programming . 21
4.1.2 ActiveSet . 21
4.1.3 The critical path. 21

v

4.2 Profiling . 21
4.3 Characteristics . 24

4.3.1 Dynamic ranges . 25
4.3.2 Sequential execution . 25
4.3.3 Variable iterations of control loop . 28
4.3.4 Data representation . 28

4.4 Alternative solutions . 29
4.4.1 CPU . 29
4.4.2 GPU . 29
4.4.3 FPGA . 30

4.5 Chosen solution . 30

5 Implementation 33
5.1 Overview . 33

5.1.1 Autorun and enqueued kernels . 33
5.1.2 Channels . 34

5.2 Memory interface . 35
5.3 Compute kernels . 35

5.3.1 Cholesky factorization . 35
5.3.2 Forward substitution . 36
5.3.3 Backward substitution . 37
5.3.4 Matrixvector multiplication 𝐴𝑑𝑥 . 38
5.3.5 Control computations. 38

5.4 Host code . 40

6 Results and evaluation 41
6.1 Experimental setup . 41
6.2 FPGA results . 42

6.2.1 Effect of unrolling loops . 42
6.2.2 Double vs single precision floatingpoint data types 44
6.2.3 Profiling the FPGA implementation . 45
6.2.4 Further optimizations . 45

6.3 Comparison FPGA, GPU and CPU . 46
6.4 Evaluation. 47

7 Conclusion 49
7.1 Research questions . 49
7.2 General remarks . 50
7.3 Future work . 51

A All FPGA configurations 53

Bibliography 55

vi

List of Figures

2.1 Compute platforms in terms of flexibility and efficiency [7] 5
2.2 Arria10 structure with DSP, Memory and CLB highlighted [21]. 7
2.3 Arria10 ALM structure [21]. 8
2.4 Intel Stratix 10 DSP unit in single precision mode [24]. 8
2.5 The OpenCL platform model . 9
2.6 The OpenCL memory model . 10
2.7 OpenCL design components, userdefined kernel pipelines in the middle, and the BSP

provides the external memory controllers [22] . 11
2.8 Instruction scheduling for two different pipeline depths, one version unrolls the acc op

eration computing both [0] and [1] in one clock cycle . 12

4.1 Average execution time in ms per iteration for usecase (a) on CPU 22
4.2 Average execution time in ms per iteration for usecase (b) on CPU 22
4.3 Call graph of qpAS with a low number of iterations, usecase (a) 23
4.4 Call graph of qpAS with a high number of iterations, usecase (b) 23
4.5 Execution time of function cholapp for each iteration with total iteration time and differ

ence plotted . 24
4.6 Rightlooking column based Cholesky factorization . 27
4.7 Triangular linear equation solver 𝐴𝑥 = 𝑏, where 𝐴 and 𝑏 are known. 28

5.1 Diagram of the qpAS implementation using OpenCL kernels 34

6.1 Impact of unrolling single computational kernels for usecase(a) 43
6.2 Design space exploration of the execution time against unrolling combinations sorted on

𝐴𝑑𝑥 unroll factor for usecase (a), legend: [unroll back sub, unroll 𝐵𝐵T] 43
6.3 Single vs double precision execution time on FPGA, legend: [unroll backsub, unroll 𝐵𝐵T,

unroll 𝐴𝑑𝑥] . 45
6.4 Execution + transfer time of the three hardware platforms for usecase (a) 47

vii

List of Tables

2.1 Resources available on the Intel Arria10 GX 1150 [20] 8

4.1 The setup used for profiling, all cores enabled . 22

6.1 The setup used for OpenCL FPGA tests . 41
6.2 The setup used for GPU tests . 41
6.3 Input data specifications for usecase (a) . 42
6.4 Execution time, frequency and area of different unroll configurations for usecase (a) . . 44
6.5 Area and frequency of single vs double precision configurations 44

A.1 Execution time, frequency and area of different unroll configurations for usecase (a) . . 53

ix

Abbreviations
ALM Adaptive Logic Module

API Application Program Interface

ASIC Application Specific Integrated Circuit

AVX Advanced Vector eXtensions

BLAS Basic Linear Algebra Subprograms

BRAM Block RAM

BSP Board Support Package

CLB Configurable Logic Block

COTS Commercial OffTheShelf

CPU Central Processing Unit

CU Compute Unit

CXL Compute eXpress Link

DDR Double Data Rate

DMA Direct Memory Access

DRAM Dynamic RandomAccess Memory

DSP Digital Signal Processor

DUV Deep UltraViolet

EUV Extreme UltraViolet

FA FullAdder

FF FlipFlop

FIFO First In First Out

FLOPS/s FLoatingpoint OPerationS per second

FPGA FieldProgrammable Gate Array

GCC GNU Compiler Collection

GEMM GEneral MatrixMatrix product

GEMV GEneral MatrixVector product

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HDL Hardware Description Language

HLL HighLevel Language

xi

HLS HighLevel Synthesis

HPC High Performance Computing

IC Integrated Circuit

II Initiation Interval

ILP Instruction Level Parallelism

IoT Internet of Things

IP Intellectual Property

LAPACK Linear Algebra PACKage

LUT LookUp Table

MAC MultiplyACcumulate

MIMD Multiple Instruction Multiple Data

MKL Math Kernel Library

OpenCL Open Computing Language

PE Processing Element

PoC Proof of Concept

PR Partial Reconfiguration

qpAS quadratic programming ActiveSet

RAM RandomAccess Memory

RTL RegisterTransfer Level

SIMD Single Instruction Multiple Data

SoC System on Chip

SPD Symmetric Positive Definite

SPMD Single Program Multiple Data

VHDL Very High Speed Integrated Circuit Hardware Description Language

xii

1
Introduction

With Moore’s law [38] coming to an end, there is a pressing need to find an alternative to simply adding
more transistors to the traditional Central Processing Unit (CPU), especially in High Performance
Computing (HPC) applications. The increased transistor scaling is not the only challenge. The power
wall, a consequence of Dennard scaling [9] is another limitation in traditional CPU architectures shifting
the focus from single core performance to multicore design. Dedicated hardware architectures such
as the Graphics Processing Unit (GPU) and FieldProgrammable Gate Array (FPGA) in collabo
ration with the existing CPU infrastructure are being adopted into HPC clusters. Largely because of
the accumulation of data and increased complexity of new applications in the field of HPC. The GPU
is interesting because of the massive number of cores and high memory bandwidth, and the FPGA
because of the power efficiency and runtime reconfigurability. Cloud computing services such as Ama
zon Web Services [1], Microsoft Azure [37] and Nimbix [41] are already offering customers FPGA and
GPU instances to accelerate their applications that need high connectivity or throughput.

A common trend in the field of HPC is that the data size and complexity of the algorithm are growing
faster than the computation power provided by traditional architectures. One solution is to increase
the number of CPUs creating a cluster of nodes. This introduces additional communication overhead
to handle the division of work. Moreover, cooling the heat produced by these machines is starting to
become a problem, requiring more efficient solutions than just adding more nodes. A single accelerator
might achieve the same performance as multiple CPU nodes. Depending on the application a GPU
can exploit the data parallelism and Instruction Level Parallelism (ILP) of applications. This takes
advantage of the high number of cores and memory bandwidth available on the GPU. For the FPGA
properties which can be used to get performance are harder to define. Having high ILP that could
allow the FPGA to create deep pipelines to achieve a high throughput. Another option is adding more
Compute Units (CUs) to exploit data parallelism, this uses additional resources to achieve higher
throughput.

If the decision is made to use an accelerator, the application still has to be ported to that specific
hardware architecture. Using the GPU as an accelerator is not trivial, to properly take advantage of the
architectural properties, experience and knowledge is needed. The interfaces that can be used on the
GPU are Open Computing Language (OpenCL) and CUDA (NVIDIA only) [43]. Optimized custom
GPU implementations require training and experience to develop. As the number of people with this
knowledge is limited, alternative methods which include optimized libraries are required. This is even
more relevant for an FPGA accelerator, where the standard programming languages are Hardware
Description Languages (HDLs), mainly Very High Speed Integrated Circuit Hardware Description
Language (VHDL) and Verilog. A completely different programming model is used by HDLs compared
to more traditional languages such as C and FORTRAN. To bridge the gap between hardware and
software, HighLevel Synthesis (HLS) and HighLevel Language (HLL) tools translate a highlevel
language to an HDL are increasingly supported by the largest FPGA manufacturers. Programming
languages such as C and C++ can now be used to program FPGAs [58]. Additionally, acceleration
frameworks such as OpenCL are now supported by both Xilinx [57] and Intel [19].

1

1.1. Context
ASML is world leader in highend photolithography machines. They are used by large Integrated Cir
cuit (IC) manufacturers to keep up with the increasing demand of ICs in domains such as smartphones,
servers, storage, Internet of Things (IoT) and automotive [33]. ASML provides chip manufacturers
such as TSMC, Samsung, Toshiba and Intel with machines that have to provide a steady production for
1525 years. With the new generations of the Deep UltraViolet (DUV) and Extreme UltraViolet (EUV)
machines the overlay and critical dimension requirements keep increasing to allow for even smaller and
more efficient ICs [36].

Metrology computational models adjust the machine for exposing the wafers, taking into account
the imperfections and deviations between each exposure. To allow for even smaller transistors these
models foresee a growth in data and complexity. This increases the computational requirements while
at the same time timebudgets are tightened to increase wafer throughput. Alternative solutions to
the classical CPU could prove important in dealing with future computational challenges. In the field
of HPC there are three main options when choosing Commercial OffTheShelf (COTS) hardware:
CPU, GPU and FPGA. The CPU is usually favored, because of ease of programmability and portability,
but lacks in terms of raw FLoatingpoint OPerationS per second (FLOPS/s) and memory bandwidth
for massively parallel applications. Because of this there is increased interest in the GPU and FPGA
to offload applications from the CPU to a better suited architecture. One of the requirements within
as using accelerators becomes increasingly popular is that software developers have be able to take
advantage of this acceleration. Because of this, using highlevel languages such as C, C++, OpenCL
and CUDA and HLS tools provide a middle ground between hardware and software. Knowledge about
the architecture is still needed, but development is faster and porting an application to a new platform is
easier. This study was proposed to research the use of an FPGA accelerator for HPC applications. For
the GPU one such study was already conducted within ASML by Bamakhrama et al. [2], where they
show that GPU acceleration could provides a solution to the increasing computational requirements of
a model used in EUV lithography.

This thesis aims to broaden the knowledge within ASML on using the FPGA as an accelerator and
provide insights in the tradeoffs inferred by the chosen framework.

1.2. Industrial use case: Convex optimization algorithm
Many computational models used at ASML use linear solvers to find the correct solution from a large
solution space. Our usecase focuses on a Convex optimization problem, the optimal solution is found
using the quadratic programming ActiveSet (qpAS) algorithm. It computes an optimal step in the
feasible region, this means that the algorithm can be stopped at any point. The solution at that time
will be feasible within the boundaries, even if all the requirements are not satisfied. The algorithm
keeps taking steps until the solution that satisfies all conditions is found. There is no indication of how
many iterations are required before the optimal solution is found. The mathematical operations in the
iterative region include matrixvector multiplication, matrix multiplication, Cholesky factorization and
forward/backward substitution. The input data size for these operations changes between iterations
because the ActiveSet method is used, where constraints are added or removed each iteration.

An FPGA is considered a suitable candidate to accelerate the algorithm because it offers more
parallelism than a CPU and at the same time handles sequential execution more efficiently than a
GPU. Generally, FPGAs are better suited for regular execution by creating a compute pipeline. There
are multiple entrylevels for implementing an application on the FPGA. From lowlevel, working on
connecting gates and registers to highlevel, where Ccode can be used.

Typically software engineers implement these computational models in highlevel languages that
run on the machine. The scope of this thesis is to get a better picture of what tools such as HLS
and OpenCL for FPGA are capable of. For this study the OpenCL SDK for FPGA [19] framework was
chosen as the entrypoint. Intel advertises that this framework allows software developers to accelerate
applications on FPGA.

The main research goal of this thesis is to investigate the feasibility of using FPGA accelerators with
OpenCL as the abstraction level, as well as the performance tradeoffs on the FPGAthe qpAS model
using this highlevel abstraction. To achieve this goal we define several research questions.

• What parts of the algorithm are candidates for acceleration?

2

• Can the algorithm be implemented on the FPGA using a high abstraction approach?

• What are the performance tradeoffs on the FPGA using the OpenCL framework by Intel?

• What is the performance of the FPGA compared to a CPU and GPU using COTS libraries?

To answer these questions we will first profile and analyze the algorithm. Because the CPU is the
default deployment hardware, that is what we use for profiling and reference. After the bottlenecks
and hot spots are identified, we will propose several hardware and platform based solutions which aim
to solve bottlenecks and execute hot spots in parallel. The scope of this thesis is using a highlevel
abstraction to accelerate linear algebra algorithms using the FPGA. To draw a fair conclusion about the
benefits of an FPGA with this highlevel approach, it is compared to a CPU and GPU implementation.
A basic comparison between the CPU, GPU and FPGA in terms of performance executing hot spots
and the capabilities of dealing with bottlenecks will provide the input for this conclusion. The high
level abstraction chosen for the FPGA is the OpenCL SDK for FPGA framework by Intel [19]. For the
GPU and CPU, CUDA and MKL with COTS libraries are used. The goal is not to get the an optimized
implementation on the FPGA, but use an approach that software developers can use. With the results
the performance and deployment tradeoffs between the FPGA and GPU when offloading the qpAS
algorithm using a highlevel abstraction are evaluated.

1.3. Synopsis
The thesis is structured as follows: in Chapter 2 the necessary background information is provided
about hardware architectures, OpenCL, OpenCL SDK for FPGA and the algorithm. In Chapter 3 the
related work is evaluated about using accelerators with highlevel languages for linear algebra HPC
applications. There wewill discuss how our research differs from existing work. In Chapter 4 we analyze
the algorithm and propose solutions. In Chapter 5 the solution according to the scope is implemented.
In Chapter 6 the results of the implemented solution are evaluated and compared against the current
implementation. In Chapter 7 the thesis results are concluded and recommendations are made for
further work on the algorithm and deployment strategies.

3

2
Background

In this chapter all the relevant background information is given. In Section 2.1 to 2.4 the compute
platforms are explained. In Section 2.5 the programming framework OpenCL is explained and its use
to target different hardware architectures are highlighted and compared. The FPGA manufacturers
each have their own platforms using their own tooling. In Section 2.6 the OpenCL SDK for FPGA is
highlighted. Finally, in Section 2.7 information about the routines that are used for the project is given.

2.1. Compute platforms
There are three main compute platforms available: CPU, GPU, FPGA. Where the FPGA is least used
in terms of HPC applications. With the recent acquisition of Altera by Intel and continued research
by Xilinx, there is renewed interest in using the FPGA as an accelerator. As seen in Figure 2.1, the
CPU provides flexibility more than the other two. Traditionally most of the computing was done on
one or multiple CPUs. The FPGA has also been around for a long time, but as this usually involved
programming on a low abstraction using HDLs, it would take a long time to design each function on
an FPGA. This was one of the main reasons it was not commonly used in HPC applications, where
flexibility and performance are the requirements. In recent times GPUs emerged as an alternative.
While they were not created for scientific computations, this naturally flowed from the design, which
has a high number of cores optimized for integer or floatingpoint arithmetic.

Figure 2.1: Compute platforms in terms of flexibility and efficiency [7]

5

2.2. Accelerator offloading
If either the FPGA or GPU is used to compute a specific portion or whole algorithm we can consider
this device an accelerator. Applications and routines can be offloaded to this device to reduce the load
on the host or improve performance in execution time or throughput. There are several considerations
to make while offloading tasks to an accelerator. Data is present on a host device and has to be moved
to the accelerator when it is needed for computation. The program also has to be transferred or pro
grammed onto the device, depending on whether it is hardware configured (FPGA) or programmable
(GPU). These steps take time, and can be considered overhead compared to a CPU only implemen
tation. In [55] the authors use Partial Reconfiguration (PR) compute kernels on FPGA to explore
offloading computationally hard routines to an accelerator. They use a Microblaze [59] core in combi
nation with a FPU or Basic Linear Algebra Subprograms (BLAS) tile. They determine a point where
the improvement in computation time becomes more than the overhead incurred by transferring the
data. They conclude that routines that contain more than 100,000 operations are worth moving to an
accelerator. This means that small input data structures will not be worth offloading to an accelerator.
Not only computational applications can benefit from an accelerator. In [27] the authors use FPGAs for
cloudcomputing applications like Memcached and achieve a speedup of up to 32 compared with CPU.
The benefit for cloudcomputing applications is energy consumption, an FPGA is more energy efficient.
In data centers where these applications normally run, reducing power while keeping performance is
commercially interesting.

The interconnect between the host and device plays a role when offloading routines or applica
tions. How important that role is depends on the application, when the data size that is send over the
link is small it will not play an important role in performance. The authors of [11] evaluate the use of
FPGAs to accelerate inmemory database systems. One of the bottlenecks identified in this paper is
the bandwidth between the host system and accelerator. There are two ways of solving this problem,
reducing the data or increasing the throughput. NVIDIA already has NVLINK that provides a higher
throughput between their GPUs and compatible devices. Another option is updating the PCIe link to a
newer version, where throughput doubles each generation. There are layers possible on top of PCIe
such as the Compute eXpress Link (CXL) that provides memory coherency between host and device
memory.

One benefit of using an FPGA as accelerator compared to GPU is the flexibility in interFPGA and
network capabilities. It is possible to directly transfer data via Ethernet or InfiniBand into the FPGA
fabric [29]. Using these links provides lowlatency high bandwidth datasharing between the FPGA
and other network attached devices. In [12] the authors show that scalability of a multiFPGA system
using Ethernet is a viable option. On a 40 Gbit/s link they achieve a throughput of 29.77 Gbit/s with a
latency of 950 ns.

2.3. GPU
A GPU is a type of integrated circuit originally made for image processing in computer and consoles.
Because the number of pixels in a screen is large it usually features a higher number of cores than a
CPU but these cores also have lower performance and are less capable. GPUs are designed for vector
instructions and thus well suited for linear algebra workloads.

GPUs come in two varieties, integrated GPUs that are contained in a dedicated part on a CPU
with lower core count but shared memory, commonly found in laptops and mobile phones. The other
variety is the GPU card that fits onto the motherboard of a host CPU or as a separate acceleration card.
Certain operations that are well suited for the GPU are then offloaded to the GPU via interconnect. It is
precisely this interconnect that is a limiting factor in the use of GPUs for acceleration. The interconnect
between Host and GPU using a traditional PCIe link is currently orders of magnitude smaller than the
bandwidth between CPU and memory. The overhead incurred by transferring over this link can be
larger than the gain in execution time.

There are solutions to the transfer overhead problem, e.g. adding more devices and/or links to
split the transfer. An alternative approach is compressing the data before sending it to the acceler
ator. These are not solutions that work in all cases, therefore GPU manufacturers are searching for
alternative methods of achieving higher bandwidth interconnect as mentioned above.

6

2.4. FPGA
The FPGA is an integrated circuit that does not have a defined architecture. The functionality can be
configured to meet the requirements of the user. Traditionally the configuration of an FPGA was done
through RegisterTransfer Level (RTL) descriptions and converting the HDL to RTL using synthesis
tools. The synthesis and routing tools are provided by the FPGA manufacturer because each FPGA
type will create a different RTL implementation and bitstream. This programming file configures the
logic and routing on the FPGA to match the functionality of the RTL description. An FPGA consists
of several parts that will briefly be explained in the following sections. These parts are connected by
programmable logic. In Figure 2.2 a basic FPGA structure is seen. As reference FPGA, the total
resources available on an Arria10 GX 1150 are given in Table 2.1.

Figure 2.2: Arria10 structure with DSP, Memory and CLB highlighted [21].

2.4.1. CLB
A Configurable Logic Block (CLB) (also called Adaptive Logic Module (ALM) for Intel FPGAs) is
a basic building block that creates the logic operations and local storage that make up a large part of
the FPGA. They can contain LookUp Tables (LUTs), Adders and registers. The contents of a CLB
depend on the manufacturer and product line. The Intel Arria10 FPGA [21] contains eight inputs for the
LUTs, four programmable registers and two FullAdders (FAs), the layout can be seen in Figure 2.3.
The logic operations in these blocks mainly concern fixedpoint or integer operations.

2.4.2. DSP
To improve the throughput and latency of variableprecision operations in modern FPGA architectures
there are dedicated Digital Signal Processor (DSP) blocks available next to the programmable logic
to reduce the number of CLBs needed for DSP suitable operations. The latest product families from

7

Table 2.1: Resources available on the Intel Arria10 GX 1150 [20]

Resources Available
Logic elements (K) 1,150
System logic elements (K) 1,506
ALMs 427,200
Registers 1,708,800
M20K blocks 2,713
M20K memory (Mb) 53
MLAB memory (Mb) 12.7
DSPs (floatingpoint) 1,518
DSPs 18x19 (fixedpoint) 3,036
Peak fixedpoint performance (GMACS) 3,340
Peak floatingpoint performance GFLOPS/s 1,366

Figure 2.3: Arria10 ALM structure [21].

Figure 2.4: Intel Stratix 10 DSP unit in single precision mode [24].

Intel and Xilinx support single precision floatingpoint operations [18]. There is currently no hardened
double precision support, multiplication is implemented using four DSP blocks instead of one and a
increased number of registers and ALMs. The implementation of a single precision configured DSP on
an Intel Stratix 10 FPGA is shown in Figure 2.4.

8

Figure 2.5: The OpenCL platform model

2.4.3. Memory
An FPGA has several types of memory. The first and smallest are registers, these are located within
the CLBs. The access time of a register is a single clock cycle and the storage capacity is 1 bit.
Modern FPGAs have millions of FlipFlops (FFs), i.g. 1.7 million are available on an Arria10 as seen
in Table 2.1. The total storage size is still only in the order of hundreds of kBs. These registers are
used as buffers between operations and pipeline stages. Larger local memory on FPGAs consists of
CLBs configured as memory or Block RAM (BRAM), usually called M20K blocks that store 20 kilo bits.
The total storage capacity is in the order of tens of Mbits, in the Arria10 only 53 Mbits of M20K memory
is available. The advantage of registers compared to BRAM is that the latency is lower and every bit
has an output port. BRAM only provides a few read/write ports. FPGA boards can also have external
memory like Double Data Rate (DDR) or High Bandwidth Memory (HBM), this increases the total
storage to GBs but has a 150x longer latency and uses resources on the FPGA.

2.4.4. Partial reconfiguration
The PR feature allows for flexibility while programming the device, while normally the whole FPGA
has to be configured. PR allows only part of the FPGA to be configured while leaving the rest of
the configuration intact. This allows small parts to be exchanged thus reducing the time needed for
reconfiguration.

2.5. OpenCL
The OpenCL framework allows the user to execute programs across multiple devices using the same
code. It is written in C with has bindings for C++ and provides an API to control and execute on the
devices. Supported devices include CPU, GPU and FPGA.

2.5.1. Platform model
The model consists of a host machine that has one or more OpenCL compatible devices connected
through interconnect. As seen in Figure 2.5 each compute device has a specified number of CUs which
made up of Processing Elements (PEs). All PEs within a CU execute a stream of instructions in a
Single Instruction Multiple Data (SIMD) or Single Program Multiple Data (SPMD) fashion. The
sequence executed by a CU is called a workgroup and the set of instructions that are in turn sent to a
specific PE is called a workitem.

9

Figure 2.6: The OpenCL memory model

2.5.2. Memory model
All memory operations in OpenCL are explicit but do abstract away from manually transferring data.
In Figure 2.6 an overview of the memory model is shown. The host program explicitly has to copy
buffers from the host to a device, seen as context in this image. There it goes to global memory which
is accessible by all workgroups. When a GPU or FPGA is used, this global memory is generally
some form of DDR or HBM with a much higher bandwidth than the interconnect between host and
device. Each workgroup has local memory, shared between all workitems and each workitem has
its own private memory for intermediate results. When the kernels have finished running, the host has
to explicitly copy the result back from context global memory to the host.

2.5.3. Execution model
OpenCL programs executions are always divided in at least two parts, the host program and the ker
nel(s). The host program manages of the device, transports the data and controls the execution of all
enqueued kernels. Each kernel instance is called a workitem, which are part of workgroups. Work
items in a group will execute concurrently on the PEs of a CU.

2.5.4. Programming model
There are two programming models that are used by OpenCL, data parallel and task parallel. In the
data parallel model a sequence of instruction is executed on multiple elements of a memory object
because in that case the operations are independent. The data parallel model is what people think
of when GPU accelerators are considered because of the high number of cores to execute the same
instruction on different data. For the task parallel programming model, tasks or kernels are completely
independent, this means they can be computed out of order and even on a different devices.

2.5.5. Parallel programming
It is also possible to use HLS tools in combination standard parallel programming techniques such as
OpenMP and Pthreads [5]. A logical choice to further extend ease of programming is the OpenCL
framework. Because of the portability and functionality, both Xilinx and Intel (previously Altera) have
added OpenCL support to their acceleration platforms. Xilinx has SDAccel [57], an integrated develop
ment environment for targeting their Accelerator cards. Intel has the Intel FPGA SDK for OpenCL [19]
which supports all the latest Intel FPGAs. Both tools have already been used for various purposes,
there has been great interest in FPGA acceleration from the financial and database markets. Mainly

10

because of their high throughput and low energy consumption [49] [53] [52].

2.6. OpenCL SDK for FPGA
OpenCL SDK for FPGA by Intel is a development environment that enables software developers to
target heterogeneous platforms to accelerate their applications. It uses the programming and execution
models provided by the OpenCL standard to create an LLVM project based intermediate representation
of kernels which in turn is converted into Verilog which is then synthesized to a specific FPGA. The
SDK provides the user with hostside and runtime environment in combination with an API to use the
communicate with and transfer data to the FPGA as an accelerator.

2.6.1. BSP
Each acceleration board that uses an FPGA by Intel that supports OpenCL needs a Board Support
Package (BSP). This is provided by the board manufacturer. The BSP is the basis of running OpenCL,
it provides the environment of communication with the outside and control logic to launch and program
kernels. The BSP provides all memory and communication controllers between kernels, the host and
on board memory. The BSP does take up a static portion of the available resources of an FPGA, this
depends on howmany features the BSP provides. If the board has network ports the BSP is responsible
to provide an interface between the OpenCL kernels and the physical connection. In Figure 2.7 we can
see the division between user provided kernels and the BSP, everything in light blue is part of the kernel
implementation. The darker blue is the BSP that communicates with the kernels, host and on board
memory.

Figure 2.7: OpenCL design components, userdefined kernel pipelines in the middle, and the BSP provides the external
memory controllers [22]

2.6.2. OpenCL SDK flow
Like all FPGA development, runtime compilation of bitstreams is not possible because of the synthesis
and place and route effort needed. The OpenCL code in a “.cl” kernel has to be compiled to an LLVM
intermediate representation, which is then converted to Verilog. From which the normal HLS flow is
followed to create an FPGA bitstream (.aocx). The FPGA is programmed through the host program,
when a function call is made to the kernel within that bitstream.

2.6.3. NDRange programming model
The NDRange programming model divides the work into workitems belonging to workgroups. For
example, with vector addition each output vector index will be a workitem. There are several ways
to get performance from the NDRange model on FPGA. Because each workitem is independent of
other items. A pipeline can be created where depending on the Initiation Interval (II) the pipeline
can be started for each workitem. It is also possible to use SIMD operations, this means widening

11

the pipeline i.e. adding identical PE for each stage. This uses more logic and memory but requires
the same amount of control. Another option is to use more CUs and give each CU workitems. This
method of partitioning parallelism increases both the control and arithmetic resource usage.

2.6.4. Single WorkItem
The other programming model available in the SDK is the single workitem. In this model the entire
kernel is executed by a single NDRange workitem. The way performance is obtained is unrolling and
pipelining loops. A deep pipeline with an II of one, means that each clock cycle a new iteration of the
loop is started, thus optimizing the throughput. The effect of this pipeline parallelism is demonstrated in
Figure 2.8. It demonstrates how each stage introduces operational parallelism, in this example 2 CUs
are required to reduce the II from 4 to 1 clock cycle. Unrolling the loop around acc compresses the
two MultiplyACcumulate (MAC) operations to a single cycle if they are independent. This does not
reduce the II rather it reduces the latency of an iteration from 4 to 3 in the example shown in Figure 2.8.
In single workitem kernels, if there are dependencies across iterations of a loop, the pipeline will either
have to stall or execute sequentially. The compiler does this in order to avoid these executing the
operations outoforder, at the cost of reduced performance.

read
acc[0]+=read

acc[0]+=
acc[1]+=

acc[1]+=

read acc[0]+= acc[1]+=

read write readacc[0]+= acc[1]+=acc[1]+= acc[0]+= write

write
write

write

1 2 3 4 5 6 7 8
stage 1

stage 1
stage 2
stage 3

cycle

read
read

read

write
write

write

stage 1
stage 2
stage 3

acc+=acc+=
acc+=acc+=

acc+=acc+=

4

1

1

II

Figure 2.8: Instruction scheduling for two different pipeline depths, one version unrolls the acc operation computing both [0]
and [1] in one clock cycle

2.6.5. Memory
When OpenCL global memory is used, the BSP will communicate with the external memory on the
board which in our case is DDR3 memory and could be HBM on a highend board. When caching is
enabled in the kernel, then this will generally be implemented as private memory in First In First Outs
(FIFOs) or registers to temporarily store loaded data. This private memory is not accessible by other
PEs in the CU. When local memory is used it can either use registers or BRAM depending on the size
and access pattern. Constant memory is implemented using BRAM with a fixed size, controlled with
flags on compilation.

2.6.6. Channels and pipes
A feature specific to the Intel OpenCL FPGA toolkit is the addition of channels. A channel allows for
interkernel, kernelhost and kernelIO communication. Channels provides onchip high bandwidth low
latency interconnect between kernels. This allows users to only use globalmemory for reading input
and writing output to avoid spending time waiting on the memory interface. A channel is implemented
as a FIFO buffer between kernels, the depth of this buffer can be specified by the user. This allows
one kernel to push data in a streaming fashion to a different kernel, even if the other channel is not
consuming it right away. If the kernel receiving the data is an autorun kernel, it does not have to be
scheduled by the host program. It will automatically read from channel and execute its functionality.
This saves hostdevice communication time, as no input from the host is needed to kickstart the com
putation. Traditional OpenCL pipes are supported and result in the same hardware, but not advised
in the case where compatibility between SDKs is not a requirement as the OpenCL 2.0 specifications
require a write must always occur before a read which conflicts with the concurrent behavior of the
FPGA.

12

2.6.7. Programmability
One of the main purposes of adding an even higher abstraction layer on top of HLS was to bring FPGAs
even closer to software programmers [30]. The OpenCL SDK for FPGAs most prominent feature is the
deeply pipelined architecture created from the Ccode with OpenCL directives. A new feature added
by Intel is the concept of channels, as described above. This is a big improvement over using global
memory to communicate between kernels [54]. As noted in [6] there are still challenges for OpenCL
to overcome when it comes to programmability. A Ccode based application has to be adapted for
compatibility with OpenCL. This requires defining clear interfaces to global memory and implementing
compute functions as separate kernels. The first RTL level synthesis report will give hints where the
design can be improved by pointing out bottlenecks. With knowledge about optimizing the OpenCL
code specifically for FPGAs, the user will have to optimize the design by adding pragmas to unroll loops
andmanagingmemory accesses [63]. This means using the portability of OpenCLwill not automatically
give acceptable performance on FPGA. The OpenCL framework is designed to divide work across CUs,
not to implement complex control flows of managing hardware kernels. Advanced usage is possible,
i.g. manual partitioning of data in local memory or inferring shiftregisters is possible, but requires in
depth knowledge about FPGA design, which is not something all software developers have. To take
full advantage of an FPGA it is often required to move to fixedpoint data representations. Fixedpoint
is possible in the OpenCL framework but still requires manually converting between different lengths.
The compiler will when signals are always zero and not implement the logic, so it is not real arbitrary
precision. Another feature of the SDK is an OpenCL library, which can be created from OpenCL or RTL.
That way, programmers can make function calls to optimized IPblocks created by hardware engineers,
thus using custom RTL while using OpenCL as API.

2.7. Linear algebra in qpAS
The algorithm of our industrial usecase is a linear algebra optimization problem. In this section the
necessary background about the linear algebra operations is given. First, the routines from the BLAS
library are explained. Second, the routines in the qpAS algorithm from the Linear Algebra PACKage
(LAPACK) library are introduced. Third, we use arithmetic intensity as floatingpoint operations divided
by the number of loads and stores using global memory. The arithmetic intensity is a way to provide
information about the ratio between work and transfers [56]. For each routine used in the algorithm,
the arithmetic intensity is calculated to see where adding additional compute units or a larger memory
link could improve execution time.

2.7.1. BLAS
BLAS is not a library itself, only a specification aimed to provide portability between platforms and
implementations. Originally it was developed in FORTRAN, this was the programming standard for
numerical and scientific computations. The reference BLAS library is still being developed. While
FORTRAN is still the default language, there is increased compatibility and integration into C and C++
languages as this is a more generally used standard. The BLAS specification prescribes a set of
routines that together form the backbone of all linear algebra operations. They are divided into three
levels, based on their computational complexity.

Level 1: Operations that have a complexity following 𝒪(𝑛). One widely used routine is the dot
product. This calculated the sum of a pointwise multiplication between two vectors. In Equation 2.1 a
dot product is computed where a and b are vectors in ℝ𝑛. When double precision floatingpoint data
type is used the arithmetic intensity of the dot product is: 2𝑛−1

(2𝑛+1)8 [17].

a ⋅ b = abT (2.1)

Level 2: These operations have a complexity scaling with 𝒪(𝑛2). GEneral MatrixVector product
(GEMV) is one of the most used BLAS level 2 operations. In Equation 2.2 where matrix A ∈ ℝ𝑚×𝑛 is
multiplied with vector x ∈ ℝ𝑛 the specification is given as prescribed by BLAS. The arithmetic intensity
of GEMV when 𝛼 and 𝛽 are 1 and 0 respectively (as is commonly used): 2𝑚𝑛−𝑚

8(𝑚𝑛+2𝑛) .
Another BLAS level 2 routine used in our algorithm solves a system of linear equations using an

upper or lower triangular matrix. In BLAS level 2, TRSM solves this system for a single output vector.
There is also a routine to solve for multiple vectors in level 3. In Equation 2.3 a system is solved with 𝐴 ∈

13

ℝ𝑛×𝑛 and 𝑥, 𝑏 ∈ ℝ𝑛. It scales according to 𝒪(𝑛2) but is data dependent which makes parallel execution
more difficult. The arithmetic intensity of a forward or backward substitution (the naive algorithm used)
is: 𝑛2

4(𝑛2+5𝑛)
y ← 𝛼Ax+ 𝛽y (2.2)

Ax = 𝛼b solve for x (2.3)

Level 3: Is the highest level of BLAS, operations scale with the computational complexity of 𝒪(𝑛3).
GEneral MatrixMatrix product (GEMM) is the best known BLAS operation in this category where
two matrices A ∈ ℝ𝑚×𝑘 is multiplied with B ∈ ℝ𝑘×𝑛 resulting in matrix C ∈ ℝ𝑚×𝑛. The general version
as provided by the BLAS specification is given in Equation 2.4. In the general case 𝛼 and 𝛽 are taken
to be 1 and 0 respectively. In that case the arithmetic intensity of GEMM using double precision is as
follows: 2𝑚𝑛𝑘−𝑚𝑛

8(𝑘(𝑚+𝑛)+𝑚𝑛) .
C ← 𝛼AB+ 𝛽C (2.4)

2.7.2. LAPACK
Where BLAS specifies basic operations LAPACK contains more complex routines for solving systems
of linear equations, leastsquares solutions, eigenvalue problems, singular value problems and multiple
methods of matrix factorization. The routines in LAPACK call BLAS functions for the basic operations
that are used. Taking advantage of SIMD in BLAS is straightforward as the output elements are cal
culated independently. This is not the case in LAPACK, there most routines are sequential in nature
because of the data dependencies in the algorithms.

The two main LAPACK routines used in the qpAS algorithm are TRTRS and POTRF. Where TRTRS
is a triangular solver that is just a wrapper around the BLAS routine TRSM or TRSV depending on
whether it solvers one or more vectors, the LAPACK call adds singularity checks. POTRF is the sub
routine that computes the Cholesky factorization of a matrix A as given in Equation 2.5. There are two
options for factorization, a lower triangle or an upper triangle. In Equation 2.5 the factorization is used
to compute the lower triangular L of A. Both A and L are square matrices with A,L ∈ ℝ𝑛×𝑛. Cholesky
factorization only works for input matrices that are real and Symmetric Positive Definite (SPD). The
arithmetic intensity of the factorization is: 𝑛3

12(𝑛2+𝑛)

A = LLT calculate L (2.5)

14

3
Related work

In this chapter, we present the current stateoftheart solutions and research relevant for our work.
First, we will explore the differences between FPGA and GPU that are related to linear algebra and
floatingpoint performance. Because of the scope, we focus on the use of FPGA accelerators for
offloading various applications. Second, we will explore what work has already been done on the topic
of offloading HPC tasks to the FPGA, with and without a highlevel abstraction. Third, the current
stateoftheart implementations on the FPGA to compute routines in the BLAS and LAPACK library
are evaluated to see what we can build on in our research and what is not yet present.

3.1. FPGA vs GPU
The main difference between the GPU and FPGA is of that FPGAs are dynamic and GPUs are static.
Where an FPGA can adapt the number of cores and capabilities of a core to the application a GPU has
a static number of cores which far outnumbers the cores possible on an FPGA. GPUs were increasingly
adopted in the last 10 years by HPC application programmers because of the need for more memory
bandwidth and higher FLOPS/s [40]. It has already been a topic of interest for longer, but it became
increasingly feasible by improvements in the GPU architecture. In current architectures, GPUs offer half
the throughput for double precision compared to single precision. For FPGAs it has mostly been fixed
point precision signal processing [10] where speedups of tens to hundreds were achieved between
CPU and FPGA. This depends on the algorithm and dramatic improvements are seen for compute
bound algorithms compared to low speedups for I/O bound. Another field where FPGAs are common
is control based algorithmswhere deterministic behavior is a requirement [60]. They present a controller
that includes fixedpoint arithmetic and meets their high requirements by using the parallel capabilities
of an FPGA. There have been several studies comparing FPGA and GPU to CPU. Additionally, there
is research into what kind of algorithms do well on which platform. In [4] they conclude that FPGAs are
well suited for data streaming and pipelined algorithms or applications that require lowlevel operations
not supported by highlevel languages. They also conclude that the GPU is well equipped to handle
applications with little data dependencies that can be computed in parallel. In [28] the authors present
a comparison between the platforms for typical HPC routines from the BLAS library. They compare
the performance of a BLAS level 2 routine in double precision floatingpoint. Where FPGA is the most
energy efficient, but achieves lower performance in terms of execution time than the CPU. The input
data sizes are relatively small to properly take advantage of the GPU. Since then, manufacturers of
GPUs have improved the floatingpoint performance. We expect these results to look significantly
different taking this into account. The common trend among research is that when the workload or
datasize is large enough and the operations use floatingpoint data, GPUs with their high number of
cores will outperform the other platforms. Given that the problem can be split in a large number of
workitems to be divided among all processing units. Where the GPU wins in terms of throughput, an
FPGA can win in energy efficiency.

15

3.2. OpenCL on FPGA
The concept of HLS is old, but the use has become increasingly popular [39]. HLS was proposed to
speedup development by using highlevel languages to generate RTL. But it is still made for program
mers with intricate knowledge about the underlying fabric. In the following sections we discuss the
performance of HLS based implementations and alternative solutions.

3.2.1. Performance
There have been various studies into the performance of OpenCL SDK for FPGA using HPC applica
tions and benchmarks. One example of such a study explores the performance of the SmithWaterman
algorithm on FPGA using the OpenCL SDK from Intel [16]. Their implementation does not use central
control, instead there is explicit synchronization by using autorun kernels. This allows kernels to work
independently. Their PEs achieve high utilization by using the channel concept introduced by Intel. In
HPC the most common datatypes used are from the IEEE754 [18] floatingpoint standard. For this
reason both Intel and Xilinx have added hardened floatingpoint support to their latest FPGAs. This
only supports single precision, double precision is still not fully supported. In [26] the authors found that
there is still a high penalty in performance using double precision on FPGA. The benchmark used was
more than five times slower on FPGA than on CPU. For single precision, the performance was only
two to three times slower. In [31] the authors explore the performance of single precision floatingpoint
operations using the hardened support provided by the DSPs present on the Arria10 product family.
One of the benchmarks they use is a matrix multiplication using OpenCL. Using 82.5% of the DSPs,
they manage to get a around 730 GFLOPS/s. The authors of [25] found that the performance of an
application that simulates a nuclear reactor, which is a floatingpoint intensive kernel was 4.5x and 6.4x
lower than GPU and CPU, respectively. The conclusion they draw is that when energy consumption
is a metric, using the FPGA can be beneficial. There are applications where FPGA can deliver com
petitive or better performance than a GPU and CPU. In [48] the authors compare an OpenCL FPGA
implementation of a 3D FFT to a CPU, a GPU and an FPGA implementation. The OpenCLHDL imple
mentation has a faster execution time for smaller work sizes (FFT window size of 163, 323 and 643).
These window sizes might work well for FPGA, but are small enough that efficiently using the massively
parallel GPU will be difficult. There is already less difference between GPU and FPGA when going from
size 32 to 64, the expectation is that when sizes grow the GPU will beat the FPGA.

Intel is not the only one with an OpenCL FPGA interface to use heterogeneous hardware platforms.
The pocl (Portable OpenCL) project allows for portability between devices. In [15] the pocl framework
is used as an interface to program a VLIW architecture. The authors add their optimized cores to the
framework, allowing developers to use those cores transparently to optimize the execution time of their
application with minimal effort.

3.2.2. Alternatives
Directly writing OpenCL kernels is not the only option, as shown in [34], where the authors create a
framework to translate Ccode with OpenACC [44] directives to OpenCL. This code can then be used
in the Intel SDK for FPGA. This decreases the effort needed by programmers to port their application
to OpenCL. In the generated OpenCL implementation, optimizations are still needed to get decent per
formance. There are also options that do not use OpenCL as an intermediate step. In [3] a hybrid
solution is generated where a soft processor works together with a HLS based accelerator. There
have been studies on the performance of LegUp compared to other ctovhdl compilers [39], and to
the Intel OpenCL SDK for FPGA [46]. The conclusion of these studies is that the Intel OpenCL SDK
optimized implementation performs the best for the chosen applications. An often used approach in
image processing applications is using custom softcore processors to perform signal processing appli
cations [14]. In this paper, streaming data between cores and from the memory interface is used to get
efficient compute cores that handle SIMD based program flows. Kernel development is not the only as
pect involved when moving to an accelerator. If multiple data representations and languages are used
serialization of data is often required which reduces the benefit of using an accelerator. Frameworks
such as Fletcher add the functionality from Apache Arrow to efficiently stream data to an accelerator
with less effort [45].

16

3.3. BLAS and LAPACK on FPGA
A requirement in this work is to use COTS components, the same holds for the computational libraries.
For this reason the BLAS and LAPACK are chosen. Several studies into the performance of offloading
BLAS and LAPACK routines to FPGA exist. In this section we try to determine the potential of FPGA
in this context, and identify the gaps.

3.3.1. BLAS
The study presented in [28] was one of the first to compare performance of the BLAS routine gaxpy
on different platforms. gaxpy is a BLAS level2 routine, of which the compute complexity is 𝒪(𝑛2).
As GPUs specialize in exploiting massive parallelism they only outperform the other platforms for a
large enough problem sizes. This study predates the hardened single precision support in the FPGA
DSP blocks. For the BLAS level3 routine SGEMM, this support increased single precision GFLOPS/s
performance by 3.9x from the Stratix V to an Arria10 [51]. In [47], an FPGAbased accelerator matrix
multiplication is presented. While their method is old, it highlights that level3 operations benefit more
from acceleration than level 2 and 1 because of the instructionlevel parallelism (ILP) and datalevel
parallelism (DLP). Even though there was no hardened single precision support at that time, double
precision GEMM on FPGA still achieved 60% more performance compared to a highend CPU at that
time.

In the last decade GPUs, with their massive parallelism are the goto for ILP and DLP applica
tions [40]. This is also the case for double precision data types, in recent architectures NVIDIA and
AMD both achieve a double precision GFLOPS/s throughput of 50% compared to single precision.
There are operations for which FPGAs are competitive. In [62] the authors present an image recogni
tion algorithm where the FPGA achieves similar execution time and outperforms the GPU in terms of
energy efficiency. In [48] the authors present an FPGA implementation of a 3DFFT that is faster than
the CPU and GPU for their chosen sizes. Other Algorithms that fit FPGAs well are sequential and have
dependent operations such as FIRfilters [31].

While there are no fully capable OpenCL BLAS or LAPACK libraries available, there is continuous
work creating them. In [35] the authors present a small subset of the BLAS library that is compatible with
the Intel OpenCL capable FPGAs. They use tiling and channels to create parallel streamed processing
elements. Their results show that the CPU using COTS libraries is still faster in terms of execution time
but the FPGA is more power efficient.

A common trend in the mentioned studies is that they highlight the energy efficiency of the FPGA
compared to the CPU and GPU. In many of the studies the FPGA can be more energy efficient at
the cost of execution time or throughput. Most of the previous studies explore the performance of
one or more routines, but there few studies that evaluate a complete algorithm in the domain of linear
algebra. The difference between comparing single routine execution to a complete algorithm is the
use of data streaming between compute kernels. Throughput in terms of GFLOPS/s is not the best
indicator of performance. In our case latency is more important than throughput. Each call of the
algorithm computes corrections to improve machine performance. The worstcase execution time is
critical as there is a strict deadline on the input of the corrections.

3.3.2. LAPACK
There have been several studies that research the offloading of LAPACK routines to hardware accel
erators. In [13] the GPU performance of the Cholesky decomposition is compared to the CPU perfor
mance for both single precision and double precision. For small matrix sizes, the CPU performance is
still competitive. When the size grows the GPU will outperform the CPU. Even when the transfer of data
is included in the comparison. In 2010 Yang compared the performance of then stateoftheart FPGA,
GPU and CPU implementations [61]. In 2010 GPUs where just starting to gain traction as accelerators
and still performs better than both CPU and FPGA. A more recent paper by Intel has shown significant
improvement for the QRdecomposition [32]. Langhammer and Pasca achieved 744.2 GFLOPS/s for a
512 sized single precision input matrix. This implementation efficiently uses the hardened floatingpoint
support of the Intel FPGA families. When double precision is used, we expect at least a factor 4 lower
performance as these operations use 4x as many DSPs in addition to increased ALM and register us
age. These numbers are still no match for a comparable GPU implementation [13] and for small sizes
on a CPU. These studies show that the FPGA will not win in terms of throughput for single routines,

17

but might for a complete algorithm if the features of the FPGA can be used correctly.

18

4
Quadratic programming ActiveSet

In this chapter the qpAS algorithm used in our usecase is explained. The most important metric in our
case it is the execution time of the algorithm. To get a better idea which parts have the most influence
on the execution, we profile the reference CPU implementation. With the critical parts identified, we
try to understand which properties cause it to scale in complexity leading to a long execution time.
These characteristics of the algorithm can then be used to get an idea about what options there are
to speed up the algorithm. Although we include the three major hardware platforms (the CPU, GPU
and FPGA), the implementation will be an OpenCL based FPGA implementation in accordance with
the requirements.

First, we start with an explanation about the set of algorithms the qpAS algorithm belongs to, as it is
an optimization problem. Second, we profile the implementation as presented in the usecase, which
uses Intel Math Kernel Library (MKL) routines on CPU. Third, the mathematical and computational
characteristics are discussed, each with the hardware deployment in mind. Fourth, Each of the hard
ware platforms is discussed as a candidate to deploy parts of the algorithm or the complete algorithm.
Last, we talk about the bottlenecks our implementation focuses to solve using the OpenCL abstraction
on the FPGA.

4.1. Optimization problems
The quadratic programming ActiveSet algorithm is a special case of quadratic programming which is
a set of programs that solve quadratic problems. The algorithm tries to minimize the input to find a
solution that satisfies the constraints. The quadratic problem is given in Equation 4.1 [42]. Where 𝐺 is
a symmetric 𝑛 × 𝑛 matrix, 𝜀 and 𝐼 are finite set of indices and 𝑐,𝑥 and 𝑎𝑖 , 𝑖 ∈ 𝜀 ∪ 𝐼 are vectors in ℝ𝑛.

min
𝑥

𝑞(𝑥) =12𝑥
𝑇𝐺𝑥 + 𝑥𝑇𝑐

subject to 𝑎𝑇𝑖 𝑥 = 𝑏𝑖 , 𝑖 ∈ 𝜀
𝑎𝑇𝑖 𝑥 ≥ 𝑏𝑖 , 𝑖 ∈ 𝐼

(4.1)

Our algorithm is an adapted version of the general case, where we have upper boundary and lower
boundary constraints. The pseudocode of this algorithm is shown in Algorithm 1. In the next sections
we will discuss how the algorithm works and what is important to focus on while profiling and we define
the critical path.

qpAS is an iterative optimization method, in our case we have to minimize 𝐴𝑥 within the provided
boundary conditions.

min
𝑥
1
2𝑥

𝑇𝐻𝑥 + 𝑓𝑇𝑥 subject to 𝑙𝑏𝐴 ≤ 𝐴𝑥 ≤ 𝑢𝑏𝐴 (4.2)

In Equation 4.2 the mathematical representation of the problem is given, with 𝐻 ∈ ℝ𝑛×𝑛 (SPD dense
matrix). Vector 𝑓 ∈ ℝ𝑛 and matrix 𝐴 ∈ ℝ𝑚×𝑛 model the constrains, where 𝑛 is the size of the original
Hessian matrix 𝐻. Vectors 𝑙𝑏𝐴 and 𝑢𝑏𝐴 represent the lower and upper bounds, both of them have 𝑚
elements. The algorithm aims to find a vector 𝑥 ∈ ℝ𝑛 that satisfies the requirements in Equation 4.2.

19

Algorithm 1: A highlevel overview of the qpAS algorithm.
Input: 𝐻 ∈ ℝ𝑛×𝑛; 𝐴 ∈ ℝ𝑚×𝑛; 𝑓, 𝑥0 ∈ ℝ𝑛; 𝑢𝑏, 𝑙𝑏 ∈ ℝ𝑚
Result: 𝑥

1 𝑥0 feasible;
2 𝑎𝑥 ∶= 𝐴𝑥0;
3 for 𝑖 = 0, ..., 𝑛 − 1 do
4 if |𝑢𝑏𝑖 − (𝑎𝑥)𝑖| < 𝜖 then
5 𝑊𝑖 = 1;
6 else if |𝑙𝑏𝑖 − (𝑎𝑥)𝑖| < 𝜖 then
7 𝑊𝑖 = −1;
8 else
9 𝑊𝑖 = 0;

10 iter = 0;
11 while iter < maxiter do

12 solve (𝐻 𝐴𝑇𝑎𝑠
𝐴𝑎𝑠 0)(

𝑥𝑛𝑒𝑤
𝜆) = (𝑓𝑏𝑎𝑠);

13 Δ𝑥 = 𝑥𝑛𝑒𝑤 − 𝑥𝑜𝑙𝑑;
14 if (‖Δ𝑥‖ < 𝑡𝑜𝑙) then
15 𝜆𝑢 = 𝜆1∶𝑛𝑢 ;
16 𝜆𝑙 = −𝜆𝑛𝑢+1∶𝑒𝑛𝑑;
17 if 𝜆𝑢 ≥ 0 and 𝜆𝑙 ≥ 0 then
18 converged;
19 𝑥 = 𝑥𝑛𝑒𝑤;
20 else
21 deactivate constraints;
22 else
23 find blocking constraint 𝑎𝑑𝑥 ∶= 𝐴Δ𝑥;
24 𝑢𝑖 ∶=

𝑎𝑑𝑥𝑖
|𝑢𝑏𝑖−(𝐴𝑥𝑜𝑙𝑑)𝑖|

;

25 𝑙𝑖 ∶=
𝑎𝑑𝑥𝑖

|(𝐴𝑥𝑜𝑙𝑑)𝑖−𝑙𝑏𝑖|
;

26 argmax𝑗∈{1,...,𝑚}⧵𝐴𝑆{𝑙𝑗 , 𝑢𝑗};
27 determine the corresponding step length 𝑠;
28 𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝑠Δ𝑥;
29 update working set𝑊𝑖 including a check for linear dependency;
30 iter = iter + 1;

20

4.1.1. Quadratic programming
Any quadratic problem can be shown to have a solution or else show the problem is infeasible. Because
we know there is a solution, the computation required is finite. The effort needed to get the solution is
heavily dependent on the Hessian matrix 𝐻 and constraints 𝑢𝑏𝐴 and 𝑙𝑏𝐴 [42]. In our case the matrix
𝐻 is SPD, this means that the problem is strictly convex. Having an SPD matrix allows us to use the
Cholesky factorization instead of a more general factorization method like the QRfactorization. This
reduces the computational complexity of the algorithm but imposes the SPD requirement on the input
data.

4.1.2. ActiveSet
An important aspect of the algorithm is that it works on an ActiveSet. It keeps track of a working
set 𝑊 consisting of active constraints, which is a subset of 𝑢𝑏𝐴 and 𝑙𝑏𝐴. The reason ActiveSet is
used is that when the problem is large, including the whole solution space requires significantly more
effort. Another property of the ActiveSet method is the stability, at any point during the algorithm,
the intermediate solution is in the feasible region. During each iteration of the algorithm, The 𝑙2 norm
(vector norm) of the output vector 𝑑𝑥 is checked if it lies within the required tolerance. If this condition
is met, there is still a possibility that the solution does not satisfies all conditions. For this we check
if all Lagrangian multipliers (𝜆𝑢 and 𝜆𝑙) are positive. If there are still negative multipliers one of the
corresponding constraints can be dropped from the ActiveSet.

Tracking the working set𝑊𝑖 where 𝑖 includes all active constraints is important to retrieve the correct
vectors 𝐴𝑇𝑖 that together form the active set 𝐴𝑎𝑠. The number of constraints present in the ActiveSet
𝑊𝑖 strongly impacts the execution time required for calculating the Lagrangian multipliers.

4.1.3. The critical path
In our application we consider the critical path to be the loop on line 11 in Algorithm 1. The operations
needed before this loop can be precomputed to reduce their impact on the critical path. The critical
path only depends on the operations within this loop. Because the goal is to meet a given deadline, we
should focus on accelerating these operations. Some of the operations now present within the loop do
not change across iterations. As such, they could be moved outside of the loop to further reduce the
work necessary in the critical path. Such optimization are platform independent and will work for any
kind of implementation. Regardless, they are still important to take into consideration when choosing
a hardware platform as they impact the compute and memory requirements differently.

4.2. Profiling
To get a better understanding what parts of the algorithm impact execution time we profile the reference
implementation on a CPU. As the algorithm runs for a unknown number of iterations until the solution
is converges To get a clearer picture of the behavior, we look at the time each iteration takes instead of
the complete algorithm. This way, we can see if there is scaling of the execution time with the number
of iterations. We run the algorithm for two data sets because the number of iterations needed to find
the solution depends on the start vector and the constraints. The first usecase will have a low number
of maximum iterations (30) which from here on will be identified as usecase (a), the other will have
a high number of maximum iterations (180) which is identified as usecase (b). These data sets are
chosen because the variation in execution time of a single iteration is mainly caused by the number of
elements present in the ActiveSet.

Each iteration, a check is performed on the new solution which determines if it satisfies the require
ments. This means that the algorithm can converge to a solution faster than the specified number of
maximum iterations. This maximum exists to limit the execution time of the algorithm, to prevent ex
ceeding the deadline. If this maximum is reached, the solution found at that iteration is used, even if
the solution is not yet converged.

The CPU implementation used for profiling is Ccode based, using the MKL library provided by In
tel [23]. The configuration of the profiling system is outlined in Table 4.1. It uses function calls to an
optimized BLAS and LAPACK library provided by Intel that contains routines for Cholesky factoriza
tion, triangular solving and matrix multiplication. To profile the general behavior and execution time
of iterations, CPU timers are used. These are accurate in the order of 𝜇𝑠 which is enough for our
use. For a more in depth call graph profiling of the application, the callgrind tool present in valgrind is

21

Table 4.1: The setup used for profiling, all cores enabled

Item Value

CPU Intel Xeon Gold 6226 (single socket/ 12 cores)
DRAM 384 GiB DDR4 2666 ECC

OS RHEL 8 (64bit)
Compiler GCC 4.8.5

MKL Intel MKL 2019 update 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

0.05

0.1

0.15

Iteration number

Ex
ec
ut
io
n
tim

e
(m
s)

Figure 4.1: Average execution time in ms per iteration for usecase (a) on CPU

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

Iteration number

Ex
ec
ut
io
n
tim

e
(m
s)

Figure 4.2: Average execution time in ms per iteration for usecase (b) on CPU

used [50]. Some optimizations discussed in the previous sections and not shown in Algorithm 1 are
already present in the reference implementation.

There are small differences in input data for the two cases. Usecase (a) has a lower maximum
number of iterations but has more constraints 𝑚 ≈ 3000, where usecase (b) only has 𝑚 ≈ 700. This
impacts most of the control decisions and the 𝐴𝑑𝑥 matrixvector multiplication. Other operations such
as the Cholesky factorization and the substitutions are dependent on the number of elements in the
ActiveSet. Size 𝑛 of input matrix 𝐻 is similar between the usecases (≈ 200) and thus has no impact.
In Figure 4.1 and 4.2 the execution time for both usecases is plotted against the iteration number. It
can be seen that there is a correlation between the iteration and the execution time. This is more visible
for usecase (b) as it has a higher maximum number of iterations. Another thing to notice is that the
first iteration takes significantly more time than any subsequent operations. This is likely caused by the

22

Figure 4.3: Call graph of qpAS with a low number of iterations, usecase (a)

Figure 4.4: Call graph of qpAS with a high number of iterations, usecase (b)

first use of buffers and mkl library calls and computations repeat across iterations.
For usecase (b) after the 65th iteration there is a stagnation in the increasing execution time. Before

this point constraints were mostly added. After, it is a combination of adding and removing constraints
from the set. The execution path for adding or removing a constraint is not the same, in the case where
a constraint is added, the 𝐴𝑑𝑥 matrixvector multiplication is needed. This operation is not required
when a constraint is removed from the ActiveSet, in that case the factorization is updated to subtract
the influence of the constraint from the set. This causes the zigzag behavior in the execution time as
skipping the matrixvector multiplication reduces the iteration time. Some operations in the algorithm
happen before the norm of 𝑑𝑥 is checked and are executed each iteration. This static part consists
of the Cholesky factorization, the forward and backward substitution. The steady decline in execution
time is caused by an overall decrease in the number of constraints present in the ActiveSet.

To get a more indepth explanation where this increase in execution time originates, the callgrind
tool from valgrind is used [50]. The call graph of usecase (a) given in Figure 4.3 provides insight into
the call behavior when only a low number iterations are performed. In this case the triangular solver
(TRTRS) is called for the full size 𝑛 of𝐻multiple times. Because there are only a few constraints present
in the ActiveSet for this use case the dcholapp function causes only a small portion of the execution
time. This changes for usecase (b) seen in Figure 4.4, where the dcholapp function internally does
more work. This consists of matrixmatrix multiplication (GEMM) over all vectors 𝐴𝑊 in the workingset
and factorization (POTRF) of the resulting matrix. As expected, this takes increasingly more time when
the number of constraints in the set grows. For both usecases a significant portion of calls are made
to copy operations, these are used to create new data structures like 𝐿 and copy parts of 𝐴 to 𝐴𝑊.

The callgrind tool only looks at the calls of functions which can give a warped view of the division in
execution time. To get insights about the difference in execution time between an iteration as a whole
and only the cholapp function more measurements are needed. For this we add CPU timers around
the while loop to measure the time it takes to perform an iteration of the loop. Additionally, a CPU
timer is added around the cholapp function to measure time spent within this call. The results of these
measurements can be seen in Figure 4.5. There is a correlation between the execution time of the
cholapp function and the total time spent in an iteration. The cholapp function is the largest contributor
to the increase in execution time. The substitutions on the ActiveSet in the rest of the iteration cause
the growth in the other part.

23

0 20 40 60 80 100 120 140 160 1800

0.1

0.2

0.3

0.4

0.5

0.6

iteration number

Ex
ec
ut
io
n
tim

e
(m
s)

Complete iteration
Cholapp
Difference

Figure 4.5: Execution time of function cholapp for each iteration with total iteration time and difference plotted

Bottlenecks In this section we talk about bottlenecks in the algorithm and reference implementation.
First, we we talk about the algorithm bottlenecks. In specific, what steps are necessary to execute
steps of the algorithm in parallel. After, we discuss the implementation bottlenecks that are currently
present in the reference design.

The growth in execution time is mainly caused by the growth of the ActiveSet. The other part,
which is generally static static across iterations consists of mostly control operations which are all
vector updates, comparisons and the matrixvector multiplication. It is beneficial to also reduce the
static part of the algorithm, but it will not solve the growth in execution time caused by the Active
Set. As discussed in the previous section, the function that grows fastest with the ActiveSet is the
cholappend. It computes the Cholesky factorization of the ActiveSet with the new constraint. In the
current implementation, it computes a matrix multiplication of 𝑛𝑎𝑠 vectors of 𝑛 size. Afterward, the
resulting matrix is factorized in full, even though only one row from the input is changed. The two
operations both scale with 𝒪(𝑛3𝑎𝑠) if computed in full. The forward and backward substitutions have to
wait for this factorization to finish before the new 𝑥 vector can be determined.

The arithmetic intensity of the Cholesky factorization is given in Equation 4.3 scales with 𝒪(𝑛3).
As the ActiveSet increases, the computational complexity grows more than the required memory ac
cesses. Solutions that improve the execution time of the factorization should provide compute over
bandwidth. The arithmetic intensity does not provide an insight into local memory usage. Factoriza
tion is a sequential algorithm because of data dependencies, with some intermediate steps that can
be executed in parallel. Because of this data dependency, it is important have fast floatingpoint com
pute units. The matrixmultiplication does not have data dependencies and can therefore be executed
completely in parallel.

The major bottlenecks from the CPU implementation to focus on are: the Cholesky factorization
and the matrixmultiplications. The control operations are static across iterations and contribute little to
the overall execution time if a large number of iterations are needed. In the CPU implementation the
substitutions account for a small portion of the execution time, this might different on other hardware
platforms as these are also sequential operations.

Arithmetic intensity =
𝑛3
3

8(𝑛2+𝑛)
2

→ 𝐼 = 𝑛3
12(𝑛2 + 𝑛) (4.3)

4.3. Characteristics
From the profiling and analysis we identify four main performance characteristics of the qpAS algorithm.
Each of these four aspects is discussed separately in the next sections. With these characteristics, we

24

aim to identify the best implementation and deployment strategy, which will help during the implemen
tation of the algorithm on FPGA using OpenCL.

4.3.1. Dynamic ranges
Not all data structures in the algorithm remain constant in size across iterations. As this is an ActiveSet
algorithm, all arrays that depend on the size of the set will change by at least one column or row each
iteration. The structures that have a dynamic size are: 𝐴𝑎𝑠 ∈ ℝ𝑛𝑎𝑠×𝑛𝑎𝑠 , 𝜆 ∈ ℝ𝑛𝑎𝑠 and 𝑏𝑎𝑠 ∈ ℝ𝑛𝑎𝑠 where
𝑛𝑎𝑠 is the number of constraints in the ActiveSet and where 𝑛𝑙 and 𝑛𝑢 are the number of lower and
upper bounds in the ActiveSet respectively. If a naive implementation of the algorithm is executed,
the linear system solver first has to factorize 𝐻 with 𝐴𝑎𝑠 added. The size of 𝐴𝑎𝑠 is 𝑛𝑎𝑠 vectors of size
𝑛. The total size of the factorization is then 𝑛𝑡𝑜𝑡 = 𝑛+𝑛𝑎𝑠. The combined computational complexity of
the factorization and solving the total system is:

𝑛3𝑡𝑜𝑡/3 + 2(2𝑛2𝑡𝑜𝑡) (4.4)

The factorization of 𝐻 is constant across iterations. The operation can be computed once outside
of the loop and reused multiple times, removing it from the critical path. Using this method reduces the
size of the factorization to only 𝑛𝑙+𝑛𝑢. These are added to the precomputed factorization and combined
with the factorization from the ActiveSet to give the lower triangular matrix 𝐿 [42]. This means that only
𝑛3𝑎𝑠/3+2(2𝑛2𝑡𝑜𝑡) operations are needed compared to the total system. The complexity still scales cubic
with a reduced in size of 𝑛 compared to computing the complete factorization and solving which takes
the number of operations mentioned in Equation 4.4. This has little impact for the initial constraints. As
more constraints are added, the execution time of the algorithm is still dominated by the factorization.
Further optimizations for the Cholesky factorization are possible. As only one constraint is added or
removed per iteration, it is redundant to perform the complete factorization. For adding a constraint,
only one new row has to be computed and added to 𝐿, if it is added at the bottom, the other rows of 𝐿
stay the same. Calculating this last row still takes effort, but it scales quadratic instead of cubic. When
a row is removed, only the rows beneath it need an update to subtract the effect of the deleted row.

Dealing with constantly changing data sizes is easy to manage on CPU. Loops that depend on
variables are easily scheduled, and memory structures can be combined with little effort. Parallel
libraries such as OpenMP or MKL are not impact in performance if the size changes each iteration.
There is enough capacity on the CPU to allocate the largest possible size in memory and only use
what is needed.

However, on architectures designed for SIMD operation the impact of the dynamic data structures
can be severe. A GPU favors deterministic control flows. Dependent loops and changing input sizes
can cause warp divergence, which in turn impacts the performance. A different problem arises when
considering the FPGA architecture. On a FPGA, the buffers and local RandomAccess Memory
(RAM) blocks are statically determined at design time. Memory blocks have to be allocated large
enough to suit the maximum needs of the algorithm. If the a full matrix of size 𝑛𝑡𝑜𝑡 × 𝑛𝑡𝑜𝑡 resides in
local memory this will occupy a significant part of the RAM blocks. Modern FPGAs have can have in
the order of hundreds Mbits of local memory. Storing input data and intermediate results local memory
is preferred, as the access latency involved with accessing global memory is significantly larger. When
data does not fit into the local memory structures, global memory can be used. Most FPGA accelerator
boards have offchip DDR memory or HBM available large enough to fit all of our data. Loading and
saving to/from global memory causes a transfer overhead, this increased access latency can stall
pipelines and slow down execution.

The chosen solution should be able to handle the largest size that is caused by the maximum
number of constraints present in the ActiveSet. Either in offchip memory or in local memory, the data
load/store latency will impact performance if memory access patterns are not taken care of. If global
memory is used, the load/stores should be made nonblocking to the pipeline thus avoiding stalling the
pipeline. Efficiently handling the changing sizes and increased complexity of the factorization and the
subsequent substitutions is required. The solution needs to reduce the work by only adding the new
data to both the factorization and forward substitution.

4.3.2. Sequential execution
Several parts of the algorithm are sequential because they depend on data from previous operations.
In this section, the consequences of this sequential behavior on acceleration of the algorithm are dis

25

cussed. We start with the sequential behavior within operations. First, Cholesky factorization is dis
cussed and different implementations are analyzed. Second, triangular solvers and its properties for
parallel execution are evaluated. Last, we look at the sequential behavior across operations and the
impact thereof.

Cholesky factorization The Cholesky factorization has data dependencies that cause sequential
behavior. If we look at the pseudocode provided in Algorithm 2, both 𝐿𝑖𝑗 and 𝐿𝑖𝑖 depend on previously
calculated values of 𝐿.

Algorithm 2: Naive Cholesky factorization
Data: 𝐴 ∈ ℝ𝑛×𝑛
Result: 𝐿 ∈ ℝ𝑛×𝑛

1 for 𝑖 = 0 to 𝑛 − 1 do
2 for 𝑗 = 0 to 𝑖 − 1 do
3 𝐿𝑖𝑗 ← (𝐴𝑖𝑗 − ∑

𝑗−1
𝑘=0 𝐿𝑗𝑘𝐿𝑖𝑘)/𝐿𝑗𝑗

4 end

5 𝐿𝑖𝑖 ← √𝐴𝑖𝑖 − ∑
𝑖−1
𝑘=0 𝐿2𝑖𝑘

6 end

There are two main ways to execute the factorization: row based or column based. The conse
quences of choosing either impacts the memory access pattern. An often used version in parallel
architectures is the rightlooking column based algorithm. Within this category there are two versions,
one where the original matrix 𝐴 is updated, another is shown in Algorithm 2 and uses a running sum
in the inner loop. The matrix update version is given in Algorithm 3, this implementation both read and
writes to matrix 𝐴 concurrently. If 𝐴 resides in global memory as it would in a GPU, this can cause
problems because the operations have to be executed in the right order. This rightlooking column
based method is often used within parallel architectures because the inner loops can be fully unrolled.
For instance, the 𝑗 loop multiplies a constant 1/𝐿𝑖𝑖 with a vector 𝐴𝑗𝑖 that can be done all in the same
cycle. The inner loops are dependent on the enclosing loop, cause it to wait for the inner loop to finish
before continuing.

Parallelism can also be achieved by using a blocked algorithm. Instead of computing the full fac
torization in one go, the problem is divided into block to change vector operations to the corresponding
matrix operations. This adds overhead as corrections on the blocks are required, but allows for parallel
architectures to divide the work across compute units. There is still sequential behavior in the blocked
algorithm but on a inter block scale, not within a block. Switching to a blocked algorithm will change
memory access patterns, more read operations are necessary than with a nonblocked algorithm as
data is duplicated to multiple compute units. In Figure 4.6 the rightlooking column based algorithm
with a running sum is visualized, the reads for the sum are light gray, and the output writes are dark
blue.

Algorithm 3: Rightlooking column based Cholesky factorization
Data: 𝐴 ∈ ℝ𝑛×𝑛
Result: 𝐿 ∈ ℝ𝑛×𝑛

1 for 𝑖 = 0 to 𝑛 − 1 do
2 𝐿𝑖𝑖 ← √𝐴𝑖𝑖;
3 for 𝑗 = 𝑖 + 1 to 𝑛 − 1 do
4 𝐿𝑗𝑖 ← 𝐴𝑗𝑖/𝐿𝑖𝑖;
5 for 𝑘 = 𝑖 + 1 to 𝑗 do
6 𝐴𝑗𝑘 ← 𝐴𝑗𝑘 − 𝐿𝑗𝑖𝐿𝑘𝑖;
7 end
8 end
9 end

26

Read-only

Read-write

Read-only

Read-write

Figure 4.6: Rightlooking column based Cholesky factorization

Triangular solver The triangular solver is used while performing a backward or forward substitution
where 𝐴 is the triangular matrix produced by the factorization. 𝐴 with 𝐴𝑥 = 𝑏 where 𝐴 ∈ ℝ𝑛×𝑛 and
𝑥, 𝑏 ∈ ℝ𝑛. 𝑥 is defined as a function of 𝐴 and 𝑏:

𝑥0 = 𝑏0/𝑎00
𝑥1 = (𝑏1 − 𝑎10𝑥0)/𝑎11
𝑥2 = (𝑏2 − 𝑎20𝑥0 − 𝑎21𝑥1)/𝑎22
⋮

𝑥𝑖 = (𝑏𝑖 −
𝑖

∑
𝑘=1

𝑎𝑖𝑘𝑥𝑘)/𝑎𝑖𝑖

(4.5)

Notice that each new element of vector 𝑥 depends on all previous elements. This is a data dependency
that limits parallel implementation. A simplified implementation of the triangular solver is given in Algo
rithm 4. Where we have a running sum on 𝑏 where the correction of previous 𝑥𝑖 multiplied with vector
𝐴𝑖 is subtracted. This operation can be executed in parallel as there are no dependencies.

A fully unrolled implementation of Algorithm 4 where each element of 𝑏 has a dedicated accumulator
requires a large number of PEs. It performs a MAC operation for each row of 𝐴, as the first row only
requires a single accumulation subsequent additions are wasted. Depending on the size, the number
of PEs required be a large. In our case, 𝑛 − 1 ≈ 200 PEs would be required, this is a small number
for a GPU but not at all small for FPGA. The minimum number of sequential operations needed for this
algorithm is 2𝑛 − 1 because of the dependency between each diagonal element and the previous row.
To achieve this we would need the maximum number of PEs (𝑛) which would see an average utilization
of 50%.

Algorithm 4: Column parallel forward substitution
Data: 𝐴 ∈ ℝ𝑛×𝑛 where 𝐴0 is column 0 of 𝐴, 𝑏 ∈ ℝ𝑛
Result: 𝑥 ∈ ℝ𝑛

1 for 𝑖 = 0 to 𝑛 − 1 do
2 𝑥𝑖 = 𝑏𝑖/𝐴𝑖𝑖;
3 𝑏 = 𝑏 − 𝑥𝑖𝐴𝑖;
4 end

There is little difference between the backward and forward substitution, only the 𝐿matrix is mirrored
in the diagonal to give 𝑈 used in the back substitution. If flip the 𝑈 matrix and input vector we can use
the exact same method as in the forward substitution. This allows us to only keep one copy of 𝐿 in

27

memory by changing the access pattern, instead of storing both 𝐿 and 𝑈 separately. This would only
be beneficial if 𝐿 is kept in local memory instead of global. In most cases the forward substitution is
immediately followed by a backward substitution when solving linear systems using factorization. The
operations can be made equivalent by flipping the input 𝐿 instead of using 𝑈 allowing us to use same
PEs. The back substitution has to wait until the forward substitution finishes. As the triangular solvers
are sequential and block pipelining as mentioned above, it will have significant impact on the critical
path. It is necessary to exploit parallelism where possible, trading in resources for faster execution.

Inter operation sequence Most of the operations in qpAS shown in Algorithm 1 have data depen
dencies on prior steps. For instance, the forward substitution depends on the Cholesky factorization.
In turn, the backward substitution uses the output of the forward substitution as input. The overall oper
ation should be executed in sequence, but input data can become available before the whole operation
is done. If compute pipelines are correctly defined then the following operation can already start. For
instance, if a column based method as given in Algorithm 3 is used to compute the lower triangular 𝐿.
Each new column can be passed to a column based triangular solver as given in Algorithm 4. Thus
creating a interroutine pipeline of results, where the output can immediately be used for subsequent
operations.

Figure 4.7: Triangular linear equation solver 𝐴𝑥 = 𝑏, where 𝐴 and 𝑏 are known.

4.3.3. Variable iterations of control loop
As discussed in previous sections, the optimization problem checks at the end of each iteration if the
current solution satisfies the requirements. If all requirements are satisfied, the solution is returned. If
the solution does not satisfy the requirements and the maximum number of iterations is not yet reached
a new iteration will start. The maximum number of iterations exists to limit the execution time of the
algorithm.

Having a variable bound on loops complicates the unrolling of loops and pipelining. Not knowing
how many times a loop can be unrolled limits parallel implementation and introduces control logic
making loops sequential. Because our Algorithm uses an ActiveSet method, these variable bounds
are present in almost every step. In Algorithm 3, the loop bounds depend on other loop variables that
are dependent on the matrix size 𝑛. This size is not constant, and changes based on the size of the
ActiveSet. It is possible to get predictable bounds by always using the maximum, but this depends on
the implementation if it will be beneficial. For an FPGA this would create more PE which are scarce,
making this expensive option.

4.3.4. Data representation
The data representation used is in the algorithm is double precision floatingpoint. The reason for
this is that most work on optimization algorithms is done in MATLAB, which uses double precision by
default. A good practice when using FPGA accelerators is changing the data type to a fixedpoint
representation or single precision floatingpoint. This is largely because there is still no hardened
support for double precision operations in modern FPGAs architectures in contrast to single precision
and implementing this in logic is costly in resources. This means that if FPGAs are considered, double
precision implementations get less relative performance compared to a GPU or CPU.

28

The accuracy of the input and output of the algorithm is not the only parameter involved in switching
from double to single precision. For the Cholesky factorization there is a risk that a matrix becomes
singular when moving from double to single precision [8]. In our case the input Hessian matrix 𝐻
becomes singular in single precision therefore the factorization of this 𝐻 gives a wrong result. If we take
the double precision factorization 𝐿 of 𝐻, it can be converted to single precision because the operation
is not part of the critical path. This single precision version of 𝐿 lest the algorithm produce the same
results while lowering the precision. Each change of 𝐻 and input 𝑥 influences the singularity, as such it
does not work for all cases, which is why double precision is commonly used. An alternative to floating
point, especially for FPGA is moving to a fixedpoint representation that meets the requirements given
by Demmel [8]. This would greatly improve the possibilities for FPGAs as the floatingpoint throughput
is bounded by the number of DSP available. However, the maximum throughput in FLOPS/s of modern
FPGAs is still low compared to GPUs.

It is possible to use a mixedprecision implementation of the algorithm where only the necessary
parts like the factorization use double precision, and the other operations with less requirements use
single precision. However, the impact on the algorithm accuracy of such optimizations is unclear and
therefore out of scope for this thesis.

4.4. Alternative solutions
This section aims to determine what hardware platform is best suited to offload parts or the complete
qpAS algorithm. From Chapter 1 we know the platform chosen for the implementation is already set
by the scope of the thesis. It is still important to highlight how the algorithm would map to different
platforms. First, the CPU is evaluated for its flexibility and no offloading penalty. Second, the GPU
is considered with its high number of cores and floatingpoint capabilities. Last, the FPGA is chosen
because of its dataflow approach.

4.4.1. CPU
Currently, the CPU is the default deployment platform because of the effort required to rewrite algo
rithms to different languages and platforms. If the current CPU is not capable of meeting the require
ments, the algorithm could still be offloaded to a dedicated CPU that offers more cores or a higher
clock frequency. This section will cover the aspect of the qpAS algorithm that are well suited for CPU
execution compared to the other platforms.

There are several properties of the algorithm that would suit the CPU over other options. Sequential
execution is something that comes naturally to the CPU architecture, with its high clock frequency and
dedicated floatingpoint arithmetic units to deliver maximum singlethread performance. Because of the
sequential behavior in the algorithm this clock frequency plays a significant role in overall performance.
A CPU is clocked 510 times higher than most FPGA designs and 24 times compared to most GPUs.
This frequency does come at the cost of having a lower number of cores available, this is why GPUs
are more suited for massively parallel problems. Our usecase is hybrid in that some parts can be done
in parallel and others still need to wait for previous results. This causes a tradeoff between allowing
the algorithm to run in parallel and lowering the execution time of a single computation.

If we loop at the algorithm optimizations that are currently not used in the CPU implementation most
try to reduce the number of compute operations required by introducing a more difficult control flow.
Reducing the factorization to only add a single row requires reading and writing to existing memory
structures with nonregular patterns which the CPU can do without effort.

4.4.2. GPU
Offloading to a separate board to take advantage of the characteristics makes sense when the compu
tation time is long enough to notice the benefits. In our usecase the deadlines are short (in the order
of 2040 ms). Interconnect bandwidth requirements are low because each run of the algorithm reuses
parts of the data. If only the mathematical operations are changed from a CPU call to a GPU library
function. The required data transfers happen in the critical path as the subsequent operations are not
independent. It is possible to move the complete algorithm to a GPU, but as there is control logic and
sequential operations, the occupancy of the high number of cores would be low.

29

4.4.3. FPGA
An increasingly popular solution for offloading the processing of sensor data in industrial applications
is FPGAs. The latency of each compute part of the algorithm is known which makes execution time,
apart from memory accesses and PCIe transfers, deterministic. This is useful for our usecase as
the deadlines are short and cannot be exceeded. Where a GPU has lower efficiency because data
parallelism is not present, the FPGA can create a deep pipeline from the sequential algorithm to achieve
parallelism and get a higher throughput.

As noted before, the datatype used in an FPGA is of great importance. Fixedpoint representations
are mapped the best, with single precision floatingpoint doing well if there is hardened support. In our
case the algorithm uses double precision. If it cannot be changed to use fixedpoint or single precision
the FPGA will have a hard time competing with other solutions that do have double precision support.
There are intermediates possible. For instance, the input could still be double precision but the kernels
convert the data to fixed or single precision. This requires in depth knowledge of the input data and
clear requirements of the precision on output data. Even then, singularities because of the precision
cannot be completely avoided.

When moving data from host to device, there is always a penalty. This would have to be small
enough to allow for speedup of the algorithm, and not just slowing it down. The main problem is the
control decisions, if only a small part of the algorithm is offloaded. The FPGA would have to wait on
the decision of the host, before it could execute the next iteration. Ideally there should be speculative
execution of the next iteration but with this type of algorithm that is not trivial. Fortunately, the data
movement needed between the host and device across iterations is not large. Low memory bandwidth
of an FPGA is thus not a problem. However, latency is an important factor to take into account.

Each iteration does perform the same steps in sequence. Once the kernels support efficient meth
ods of dealing with the growth in the ActiveSet it becomes important to manage the dataflow between
the kernels. Because of the channels feature added by Intel which provides high throughput low la
tency interconnect between kernels. It becomes simple to have wide and deep channels between the
kernels to prevent stalls in the production and consumption of data. This data streaming is an important
feature in the OpenCL framework as it improves throughput and removes the need for explicit control.

4.5. Chosen solution
The scope of this thesis was part of the assignment received from ASML, in which the use of FPGA
accelerators using a highlevel abstraction was specified. There is potential in using an FPGA based
accelerator if an optimized implementation can be achieved and data types are adjusted. An optimized
FPGA can definitely not compete with a equally optimized CPU implementation if double precision
floatingpoint is used.

The FPGA architecture offers benefits when pipeline parallelism can exploited and data is streamed
between kernels to ensure the occupancy in each kernel is optimized. Another benefit is the size of
local memory in combination with little changes of the input data between iterations and even across
calls. This means data can be kept in local memory reducing the communication requirements be
tween kernels and offchip RAM. The alternative to an FPGA solution would be improving the CPU
implementation to take advantage of more cores and to apply algorithm specific optimizations.

From Chapter 1 we note the following requirements on the FPGA solution:

• Highlevel abstraction such as OpenCL

• Leverage the features of FPGA without intricate knowledge about the underlying hardware

It should use a high abstraction level, something an algorithm developer without knowledge about
FPGAs could use. We evaluate the performance achieved of using algorithm and architecture based
optimizations.

There are two options for offloading the algorithm: implement the complete algorithm or only the
intensive parts. First we start with implementing the hotspots, if the complete algorithm is offloaded
these are necessary anyway. The hotspots that we start with are: refactorization of the lower triangular
matrix (cholapp) and the triangular solvers. Cholapp because it is identified as the largest growing factor
across iterations, and the triangular solver because it is a significant portion of the static execution time
present in each iteration. The next extension would be the matrixvector multiplication 𝐴𝑑𝑥, this runs
well on CPU and GPU but may impact the FPGA more. This depends on the size of both the 𝐴 matrix

30

and 𝑑𝑥, if they are large enough, the FPGA needs to use a significant portion of the resources. This is
in contrast with both the CPU and GPU that either have a large number of cores or vector instructions
(AVX) available.

The goal is to achieve a speedup for the hotspots to get a faster algorithm execution time. The
power consumption and resource usage can be sacrificed to achieve a faster design. In Chapter 5 the
implementation of the solution is presented and evaluated.

31

5
Implementation

In this chapter we introduce our solution to offload the qpAS algorithm to FPGA using the OpenCL
framework. We divide the solution into five parts:

1. Memory Interface
2. Cholesky factorization
3. Substitution
4. Matrixvector multiplication of 𝐴𝑑𝑥
5. Control logic

The implementation focuses on usecase (a) from Section 4.2 as a starting point. In our implementation
we only consider adding constraints for the test as this causes the highest execution time. Efficient
downdate and correction methods can be used to reduce the work required for removing a constraint.
Additionally, The 𝐴𝑑𝑥 matrixvector multiplication is not required when removing a constraint.

First, we start with an overview of how the parts mentioned above fit together and what data from
global memory is needed. Second, we elaborate on the flow of the algorithm and data within the FPGA.
Last, we look at the computational kernels that are fed the data and compute the results.

5.1. Overview
In this section we provide an overview of how the compute kernels fit together and what data commu
nication is required between them. This is important to understand how parts fit together and how to
balance them in terms of resources and latency. A block diagram of the system is shown in Figure
5.1. Some algorithm based optimizations are already applied to this implementation. Determining the
factorization of Hessian 𝐻 and 𝐴𝑎𝑠 is already split to reduce the work of the factorization. Additionally, 𝐿
is precomputed using the upper Cholesky factorization of the Hessian 𝐻. 𝐵 is precomputed by solving
the linear system of equations 𝐿\𝐵 = 𝐴. Using 𝐵 and 𝐿 a more efficient refactorization is done by only
adding or removing one line each iteration. Another algorithm optimization used in our implementation
is in the forward substitution. The first 𝑛 values of the vector 𝑦 are precomputed and present in global
memory. The forward substitution is only computed for each new line of 𝐿. The backward substitution
completely changes upon each iteration and will be fully computed.

5.1.1. Autorun and enqueued kernels
There are two types of kernels in the system, enqueued kernels which are queued from the host side
and autorun kernels which start to run as soon as the device is configured. In Figure 5.1 we see that
only the read kernels and the controller are enqueued, the others are autorun kernels. As soon as
an autorun kernel finishes executing, it will start from the beginning. These kernels wait until data
is present in their channels to immediately start processing when it arrives. As soon as the kernel
produces a result, it is pushed to the output channel. The next autorun kernel waiting on the input can
then read from that channel to create a stream of data. When the result of the back substitution is done
it is passed to the controller, which initiates the control logic and starts a new iteration.

33

Enqueued kernel

FactorizationGEMV BB’

Forward line b

Forward line L

Controller

idx constraint

Lact

Bnew Backward

y ∙ Bnew

y
ypre

L reader

G
lo

b
al

 M
em

or
y

y reader

B reader

ubA & lbA reader

ypre

Add/rm

xnew

GEMV AdxA reader

xresult

A

Lpre

Autorun kernel

Bnew

Bnew

bact

Uact

s

Adx

Figure 5.1: Diagram of the qpAS implementation using OpenCL kernels

5.1.2. Channels
Channels provide direct communication between kernels, and are the only method autorun kernels
have to communicate. There are two different types of channel operations: blocking or nonblocking.
The difference is that for a blocking read or write the pipeline will stall until the operation is complete,
while the nonblocking has a return value that indicates whether the operation was successful or not.
To ensure data is sent in the correct order, it makes sense to always choose a blocking version. This
way an autorun kernel will block until data is received. We can define the depth of channels, this allows
the user to push data into the channel without it blocking if the data is not read immediately. If a channel
is full, the kernel that is writing to the channel will block until space is available. This is not a problem
for the kernels that read from memory, as their only job is pushing data into the channel, if they are
blocked no functionality is lost.

In our implementation we use explicit synchronization to control the autorun kernels. The kernel
reads and writes are designed in such a way that the operations always happen in the correct order. We
ensure that all required input data is first read, only then will the autorun kernel perform its operations.
This design in combination with deep channels ensure that pipelines are not blocked.

Kernel pipelines might stall when a compute kernel, such as the factorization kernel produces data
faster than the kernel that reads from the channel consumes it. Making sure that pipelines are not
blocked requires fine tuning the number of PEs of each kernel. It is important to create a balance
between consuming and producing. To mitigate some of the impact of unbalanced kernels deeper
channel can be used to buffer the data.

There is an option in the SDK from Intel to have vectorized channels, in which independent channels
are created that each can be written and read at the same time without blocking the others. This is
especially useful when unrolling loops in which there is a channel read, each CU can get their own
channel to allow for concurrent reads. A risk of using blocking channels is that the kernels can deadlock
if a readwrite loop is created by the compiler. In this situation a kernel is blocked writing to a channel,
while the subsequent kernel is blocked on a different channel. This is an unrecoverable situation,
requiring the user to reconfigure the FPGA. Our implementation makes sure pipelines are not blocked
as described above.

34

5.2. Memory interface
An important aspect of the implementation is handling memory, where data is stored and when data
is retrieved from global memory. There are matrices that only have to be loaded once per run of
the algorithm. These are the static matrix 𝐿 of Hessian 𝐻 and the precomputed result of the forward
substitution 𝑦_𝑝𝑟𝑒. For the matrix 𝐵 used in 𝐵 ∗ 𝐵T only the vectors in the ActiveSet 𝐵𝑤 are needed.
As the active set can increase or decrease each time a new vector is retrieved from global memory it is
pushed to the channels connected to multiple kernels. The indexes of the ActiveSet are passed by the
controller to the read kernels using similar channels which have a depth of 1. The read kernel of the
𝐴 matrix has to provide new data for the 𝐴𝑑𝑥 matrixvector multiplication kernel which receives 𝑑𝑥 in a
streaming fashion. If 𝐴 is of size 𝑚×𝑛, each new element 𝑑𝑥[𝑖] needs 𝑚 values of corresponding with
index 𝑖 = 𝐴[0..𝑚 − 1][𝑖]. The output 𝐴𝑑𝑥 is only valid after all 𝑛 values of 𝑑𝑥 are processed, stopping
us from further streaming the solution to the controller.

To decrease the continuous load on the global memory for kernels that read in a repeated pattern a
cache is created by the SDK. This only happens for kernels where the data does not change in global
memory while it is executing. This decreases access time for pushing data in the channels and allows
for prefetching as the access pattern is known upfront.

After each iteration the controller checks 𝑥𝑛𝑒𝑤 to see if the found solution satisfies the requirements.
If this is the case, 𝑥𝑛𝑒𝑤 is written to global memory and the solution can be transferred back to the host.

5.3. Compute kernels
In the following five sections the main computational kernels are presented. Not all the blocks as
shown in Figure 5.1 are separately mentioned. However, all kernels are included in the section of the
computation they contribute to. Each kernel is different from the CPU model, some kernels are made
to allow streaming data while others use parallel execution. The memory and kernel communication
interfaces, which are mainly channel reads and writes, are explicitly highlighted.

5.3.1. Cholesky factorization
This kernel replaces the cholappend functionality from the CPU implementation used in Section 4.2.
The 𝐵𝐵T and line factorization kernel as shown in Figure 5.1 together perform this operation. The old
cholappend function had two purposes: to determine the input of the Cholesky factorization by multi
plying 𝐵𝑎𝑠𝐵T𝑎𝑠 and computes the lower triangular matrix of that result using the Cholesky factorization.

Algorithm 5: Matrixvector multiplication 𝐵𝐵T kernel implementation highlevel
Input: 𝐵𝑛𝑒𝑤
Data: 𝐵𝑎𝑠 ∈ ℝ𝑀𝐴𝑋_𝐼𝑇𝐸𝑅×𝑀𝐴𝑋_𝐼𝑇𝐸𝑅
Result: (𝐵𝐵T)𝑛𝑒𝑤

1 𝑛_𝑎𝑠 = read_channel𝑛_𝑎𝑠;
2 ⃗acc = 0;
3 for 𝑖 = 0 to 𝑛 do
4 𝐵𝑛𝑒𝑤 =read_channel𝐵𝑛𝑒𝑤 ;

5 col𝑖(𝐵𝑎𝑠) = (
col𝑖(𝐵𝑎𝑠)
𝐵𝑛𝑒𝑤);

6 ⃗acc += col𝑖(𝐵𝑎𝑠) ⋅ 𝐵𝑛𝑒𝑤;
7 end
8 write_channel𝐵𝐵T(⃗acc);

The pseudocode of an OpenCL implementation of updating the matrix multiplication 𝐵𝐵T is pre
sented in Algorithm 5. As every iteration only a single vector is added to 𝐵𝑎𝑠 compared to redoing a
complete matrixmatrix multiplication, this operation can be substituted by adding the result of a matrix
vector multiplication as a new row to the previous result. When a new row is added, the dot product
of the new vector with itself and all others in the set is computed. Each new row thus means one
more dot product is required, resulting in a triangular shaped matrix. Traditionally a matrix multiplica
tion produces a square matrix. Using only the triangular matrix still works because the result of 𝐵𝐵T is

35

symmetric by definition. In this case the lower triangular contains all necessary information. Similarly
to most other autorun kernels execution is blocked until data is present in the channel that provides
information about the size of the ActiveSet 𝑛_𝑎𝑠. This information is used to add constraints to the
set, provide information to the read kernels to fetch the new vector and push that data to the compute
kernel. On line 4 the new vector of 𝐵𝑎𝑠 is read from the channel and written to a local copy. The new
row of 𝐵𝐵T is calculated by performing a dot product between the new vector with all other vectors in
the set including itself. As these products are independent, multiple CUs can be added to compute
the products in parallel. With the OpenCL unroll pragma the 𝑎𝑐𝑐 vector operation can easily be fully
unrolled. CUs are added each position in the acc vector, for all accumulators not used by the ActiveSet
empty products are produced and thus ignored. Unrolling here removes the loop normally introduced
when doing vector operations with a single CU. With the unrolling, no nested loops are present and the
II is reduced to 1. Each cycle a value of 𝐵𝑛𝑒𝑤 is read and fed into the compute pipeline.

Algorithm 6: Factorize line
Input: 𝐵𝑛𝑒𝑤
Data: 𝐿 ∈ ℝ𝑀𝐴𝑋_𝐼𝑇𝐸𝑅×𝑀𝐴𝑋_𝐼𝑇𝐸𝑅
Result: (𝐵𝐵T)𝑛𝑒𝑤

1 𝑛_𝑎𝑠 = read_channel𝑛_𝑎𝑠;
2 sum = 0;
3 for 𝑖 = 0 to 𝑛_𝑎𝑠 − 1 do
4 𝐵𝐵T = read_channel𝐵𝐵T ;
5 acc = 0;
6 for 𝑗 = 0 to 𝑖 do
7 acc −= 𝐿𝑛_𝑎𝑠,𝑗𝐿𝑖𝑗;
8 end
9 𝐿𝑛_𝑎𝑠,𝑖 = (𝐵𝐵T + acc)/𝐿𝑖𝑖;
10 sum += 𝐿2𝑛_𝑎𝑠,𝑖;
11 write_channel𝐿𝑎𝑠 (𝐿𝑛_𝑎𝑠,𝑖);
12 end
13 𝐵𝐵T = read_channel𝐵𝐵T ;
14 𝐿𝑛_𝑎𝑠,𝑛_𝑎𝑠 = √𝐵𝐵T − sum;
15 write_channel𝐿𝑎𝑠 (𝐿𝑛_𝑎𝑠);

The OpenCL kernel that adds a row to the lower triangular is functionally described in Algorithm 6.
There are two main loops in this kernel, each with an accumulator. It is the sum of all squares of
𝐿 except for the last value, which is the diagonal. The accumulator acc is used to compute all non
diagonal values of 𝐿, this loop runs from 𝑗 = 0 to the current column 𝑗 = 𝑖. This complicates adding
more compute units as the loop bounds are not consistent. Unrolling to the maximum like in the 𝐵𝐵T
kernel is not a possibility, the data outside of the loop is not always empty and thus will have impact.
Instead, it is important to ensure the II is one to still get good performance. The inner loop only contains
a MAC operation, if the compiler recognizes that before the loop the accumulator is set to zero, the
compiler will implement an efficient MAC unit which has an II of one. The for loop over a column cannot
be pipelined, as there is a data dependency between computing a value on line 9 and reading it again
on line 7. Each time a new value is computed, it is directly pushed to the output channel to subsequent
autorun kernels.

5.3.2. Forward substitution
The forward substitution also consists of two kernels: the ”Forward line b” kernel computes the dot
product of the static solution 𝑦_𝑝𝑟𝑒 and 𝐵𝑛𝑒𝑤 while ”Forward line L” determines a solution based on the
dot product and ActiveSet factorization. These kernels are split to keep the pipelines simple, when a
new index of the ActiveSet is known, the B reader kernels will push that data into the ”forward line b”
kernel which computes the dot product and passes the result to the ”Forward line L” kernel. Although
the kernels could be combined, we have chosen to create two separate kernels to ease unrolling and
pipelining.

36

Algorithm 7: Dot product of 𝑦_𝑝𝑟𝑒 and 𝐵𝑛𝑒𝑤 kernel functionality
Input: 𝑦_𝑝𝑟𝑒, 𝐵𝑛𝑒𝑤
Data: 𝑦_𝑝𝑟𝑒 ∈ ℝ𝑛
Result: 𝑑𝑜𝑡(𝑦𝑏)

1 for 𝑖 = 0 to 𝑛 do
2 𝑦_𝑝𝑟𝑒 = read_channel𝑦_𝑝𝑟𝑒;
3 end
4 while iter < MAX_ITER do
5 acc = 0;
6 for 𝑖 = 0 to 𝑛 do
7 acc += 𝑦_𝑝𝑟𝑒𝑖⋅ read_channel𝐵𝑛𝑒𝑤 ;
8 end
9 write_channelyb_sum(acc);
10 𝑖𝑡𝑒𝑟++;
11 end

The autorun kernel described in Algorithm 7 does not actually run multiple times. Instead, it has
an internal while loop that simulates the same behavior. This choice was made in order to allow the
kernel to only read the data in y_pre once over multiple iterations. Another option would be using a
tokenbased system as seen for x0 in Algorithm 10. This would create more control signals from the
controller, as this information is in addition to the currently used signals. With this implementation, when
data is presented on the 𝑦_𝑝𝑟𝑒 channel it can be read into local memory, even before the controller
itself is enqueued. The kernel functionality is very basic, it only computes the dot product between the
static vector 𝑦_𝑝𝑟𝑒 and dynamic 𝐵𝑛𝑒𝑤 which arrives in a streaming manner from the B reader kernel.
After all 𝑛 elements of 𝐵𝑛𝑒𝑤 are processed it will push the data to the output channel.

Algorithm 8: Forward substitution of ActiveSet part kernel functionality
Input: bound, yb_sum, 𝑛_𝑎𝑠
Data: sol ∈ ℝ𝑀𝐴𝑋_𝐼𝑇𝐸𝑅
Result: 𝑦_𝑎𝑠

1 𝑛_𝑎𝑠 = read_channel𝑛_𝑎𝑠;
2 bound = read_channelbound;
3 yb_sum = read_channelyb_sum;
4 acc = 0;
5 for 𝑖 = 0 to 𝑛_𝑎𝑠 − 1 do
6 acc += sol𝑖⋅read_channel𝐿𝑎𝑠 ;
7 end
8 sol𝑛_𝑎𝑠 = −(bound+ acc+ yb_sum)/read_channel𝐿𝑎𝑠 ;
9 write_channel𝑦_𝑎𝑠(sol𝑛_𝑎𝑠);

The part of the forward substitution that uses the lower triangular of the ActiveSet is explained
in Algorithm 8. This kernel has multiple input channels that provide the necessary data. Like other
kernels, 𝑛_𝑎𝑠 is read first as this is the kickoff signal from the controller. Afterwards the new part of
the 𝑏 vector is read from the bound channel, which contains a value from either 𝑢𝑏𝐴 or 𝑙𝑏𝐴 according
to the new index of the ActiveSet. The partial sum output of Algorithm 7 is added to the dot product
of the ActiveSet 𝐿 and previously computed solutions. One new solution is calculated each time the
kernel runs, alternatively a solution can be removed and subsequent values can be updated.

5.3.3. Backward substitution
The backward substitution kernel given in Algorithm 9 breaks the streaming behavior flow from the
previous kernels. It first has to aggregate all input data before it can start. Large local memory buffers
are present to store 𝐿 and 𝐵𝑎𝑠 which are relatively large. The number of block RAMs used to save these
data sets is relevant when unrolling compute loops as more data is read each cycle. If more read ports

37

are required to feed data into the PEs, partitioning of data is necessary. An option is to use double
pointers, sized to the next power of two, which allows us to select clear bits on which the memory
should be partitioned. For example, if the unroll factor is 32 and the data structure is 𝐿 ∈ R256×256, then
32 concurrent accesses are required on the last 5 address bits of the second pointer. With an attribute
the compiler can be instructed to bank the memory structure on those bits, which allows us to read the
correct 32 addresses from separate blocks in one cycle.

The data that remains static across iterations is read from channels before entering the while loop
as to not repeat this each iteration. As the ActiveSet grows, at the beginning of an iteration a new
vector is added to the active set, accompanied by a new row in the factorization and a new solution
from the forward substitution. From the methods discussed in Section 4.3.2 the column based method
is chosen to ease exploiting parallelism. At the beginning of each column a new solution is computed
and then multiplied with all other values in that column and added to their respective partial sums.

Adding more CUs to partial sums is a tradeoff between resource usage and gain in throughput.
Using more DSPs is not a limiting factor, because at most only 20% are utilized. However, creating
enough read ports on local memory structures 𝐵 and 𝐿 to feed the DSPs with the required data is
limiting unrolling further. Each RAM block can have several read ports, overall if all three for loops that
compute partial sums are fully enrolled around 300 RAM blocks are needed to provide the read ports
required. The resource impact is not the only aspect affected, additional the increased routing also
influences the clock frequency. This lowers the performance of the critical sequential parts in other
kernels, as all kernels are in the same clock domain. Adding CUs using pragmas requires powers of
two but in the case of fully enrolled loops it can deviate from those powers. The OpenCL compiler tries
to pipeline as much as possible, so even if loops are executed sequentially they do not reuse CUs
from previous loops. It is thus not possible to use reuse parts from the loop on line 18 in the loop on
line 28.

When a new element of the solution is calculated it is directly pushed to the output channel that
is connected to the controller and 𝐴𝑑𝑥 matrixvector multiplier. This creates a situation where it is
important to create a balanced implementation. If data is produced by the backward substitution faster
than 𝐴𝑑𝑥 consumes it, the additional resources are wasted as they have little to no impact on the
execution time.

5.3.4. Matrixvector multiplication 𝐴𝑑𝑥
The last compute kernel is the 𝐴𝑑𝑥 matrixvector multiplication. Contrary to the other kernels no in
formation about the ActiveSet is needed. It computes the product of matrix 𝐴 ∈ ℝ𝑚×𝑛 and 𝑑𝑥 ∈ ℝ𝑛,
where 𝑑𝑥 is the difference between 𝑥_𝑜𝑙𝑑 and 𝑥_𝑛𝑒𝑤. 𝑥_𝑛𝑒𝑤 is streamed from the backward substi
tution, the moment a new value of 𝑥_𝑛𝑒𝑤 is present in the channel the partial sum is updated for all
𝑚 output values. With 𝑚 = 2940, it is too large to fully unroll because the current target device only
contains 1518 DSPs. However, partially unrolling the computation with powers of 2 is possible. The
unrolling should increase the throughput to match rate of the input from the back substitution. As the
number of cycles between new input data determined by the back substitution, the latency of the loop
containing the channel read of 𝑑𝑥 should complete in the same time as the backward substitution.

In this kernel the matrix 𝐴 is not stored in local memory, since in some testcases storing 𝐴 would
require around 50% of the available BRAMs. Instead, we chose to have a read kernel that fills deep
channels with the required data from 𝐴 such that a channel read will never stall the pipeline. Whenmore
CUs are added more channels are also added to provide the parallel reads. This shifts the problem of
RAM usage from the compute kernel to the read kernel. Because the compiler notices a regular access
pattern as the 𝐴 matrix is always read in the same manner, it performs burst reads from global memory
to build a local cache. Doing this prevents the compute kernel from running stalling on the channel
reads from 𝐴. Another benefit of this split is that the buffers can already be filled with data before the
backward substitution is done. As the depth is chosen to the maximum number that corresponds to
the size of a single RAM block, which can store 20 kilo bits.

5.3.5. Control computations
Next to the main compute kernels there are some other computations present in the algorithm, these
are mostly BLAS level1 operations such as multiplying a vector with a scalar or checking for a minimum
or a maximum in a vector. These operations require relatively little compute, and can be processed
in a pipelined as the data arrives from both the back substitution and the matrixvector multiplication.

38

Algorithm 9: Backward substitution kernel functionality
Input: 𝑦_𝑎𝑠, 𝑦_𝑝𝑟𝑒, 𝐵_𝑛𝑒𝑤, 𝐿, 𝐿_𝑎𝑠, 𝑛_𝑎𝑠
Data: 𝑦_𝑝𝑟𝑒 ∈ ℝ𝑛, 𝑦_𝑎𝑠 ∈ ℝ𝑀𝐴𝑋_𝐼𝑇𝐸𝑅, 𝐿𝑎𝑠 ∈ ℝ𝑀𝐴𝑋_𝐼𝑇𝐸𝑅×𝑀𝐴𝑋_𝐼𝑇𝐸𝑅
Data: 𝐿 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑀𝐴𝑋_𝐼𝑇𝐸𝑅×𝑛
Result: 𝑥

1 𝑛_𝑎𝑠 = read_channel𝑛_𝑎𝑠;
2 for 𝑖 = 0 to 𝑛 do
3 for 𝑗 = 0 to 𝑛 do
4 𝐿𝑖𝑗 = read_channel𝐿;
5 end
6 𝑦_𝑝𝑟𝑒𝑖 = read_channel𝑦_𝑝𝑟𝑒;
7 end
8 while iter < MAX_ITER do
9 partial_𝑎𝑠 = 0;
10 partial = 0;
11 for 𝑖 = 0 to 𝑛 do
12 𝐵𝑛_𝑎𝑠,𝑖 = read_channel𝐵_𝑛𝑒𝑤;
13 end
14 for 𝑖 = 0 to 𝑛_𝑎𝑠 do
15 𝐿𝑛_𝑎𝑠,𝑖 = read_channel𝐿𝑎𝑠 ;
16 end
17 𝑦_𝑎𝑠𝑛_𝑎𝑠 = read_channel𝑦_𝑎𝑠;
18 for 𝑖 = 0 to 𝑛_𝑎𝑠 do
19 sol = (𝑦_𝑎𝑠𝑖 + partial_𝑎𝑠𝑖)/𝐿_𝑎𝑠𝑖𝑖;
20 write_channel𝑥(sol);
21 for 𝑗 = 0 to 𝑛_𝑎𝑠 do
22 partial_𝑎𝑠𝑗 += 𝐿_𝑎𝑠𝑖𝑗sol;
23 end
24 for 𝑗 = 0 to 𝑛 do
25 partial𝑗 += 𝐵𝑖𝑗sol;
26 end
27 end
28 for 𝑖 = 0 to 𝑛 do
29 sol = (𝑦_𝑝𝑟𝑒𝑖 − partial𝑖)/𝐿𝑖𝑖;
30 write_channel𝑥(sol);
31 for 𝑗 = 𝑖 + 1 to 𝑛 do
32 partial𝑗 += 𝐿𝑗𝑖sol;
33 end
34 end
35 end

39

Algorithm 10: Matrixvector multiplication 𝐴𝑑𝑥 kernel functionality
Input: 𝑠, 𝑥, 𝐴
Data: partial ∈ ℝ𝑚, 𝑥_𝑜𝑙𝑑 ∈ ℝ𝑛
Result: 𝐴𝑑𝑥

1 partial = 0;
2 if read_channel𝑖𝑛𝑖𝑡_𝑥_𝑜𝑙𝑑 then
3 x_old = 0
4 end
5 𝑠 = read_channel𝑠;
6 for 𝑖 = 0 to 𝑛 do
7 𝑑𝑥 = read_channel𝑥 −𝑥_𝑜𝑙𝑑𝑖;
8 𝑥_𝑜𝑙𝑑𝑖 += 𝑠 ⋅ 𝑑𝑥;
9 for 𝑗 = 0 to 𝑚 do
10 partial𝑗 += 𝑑𝑥⋅ read_channel𝐴;
11 end
12 end
13 write_channel𝐴𝑑𝑥(partial);

This pipelining can hide the effect on the overall execution time. The control operations required are
described in Algorithm 1 from line 1421 and 2429. When a new index is determined it is sent to the
𝐵 reader and the compute kernels receive the new value of 𝑛_𝑎𝑠 as a start signal for the new iteration.

5.4. Host code
The host machine manages the FPGA by configuring the kernels using PR and transfers the input data
to the FPGA and reads back the result. The host will transfer newly measured input data to the global
memory on the FPGA board, and then enqueues the controller to start the algorithm. Our usecase
studies the execution time of a single run of the algorithm, thus simplifying the host code as the kernels
are only enqueued once. There are some remarks when reading or writing from the host to the FPGA.
The PCIe card allows users to make Direct Memory Access (DMA) reads and writes, reducing the
time necessary. A precondition for DMA operations is a 64 byte alignment on the host side memory
structures. All the read kernels are executed in separate command queues for concurrent execution.
The controller is enqueued last, as to ensure that all read kernels are ready to read from their channels.
Once the controller reaches the maximum allowed iterations or finishes executing, the host copies the
data back from the board with a DMA read. The time it takes for kernels to start and transfer data
should be included in the accelerator usecase to make a fair comparison between the deployment
strategies.

40

6
Results and evaluation

In this chapter we evaluate our implementation and compare it to the reference CPU design and to GPU
library calls. First, we present the test environment, the data used, the test setups and evaluate the
impact of input data. Second, we present measurements done on the FPGA OpenCL implementation.
These results are an in depth analysis of optimization techniques without a comparison to alternative
hardware platforms. Third, we compare the performance of the CPU to the GPU and the FPGA. Last,
we evaluate the achieved performance, identify possible improvements of the FPGA implementation
and evaluate if some optimizations done can also be applied the other hardware platforms.

6.1. Experimental setup
In total there are three experimental setups used to represent the different hardware platforms. The
CPU system used for profiling the reference implementation is described in Table 4.1. The system that
has an FPGA accelerator PCIe board is given in Table 6.1. Lastly, the system equipped with a GPU is
specified in Table 6.2.

Table 6.1: The setup used for OpenCL FPGA tests

Item Value
CPU Intel Xeon E51620v2 (4 cores 8 threads @ 3.7 GHz)
RAM 32 GiB DDR3 1866 ECC
OS RHEL 7 (64bit)

Compiler GCC 4.8.5
FPGA SDK Intel FPGA SDK for OpenCL 19.1

FPGA Intel Arria10 GX 1150 devkit
Interconnect PCIe 3.0 8x (8 GB/s)

Table 6.2: The setup used for GPU tests

Item Value

CPU Intel(R) Xeon(R) Gold 6134 (8 cores 16 threads @ 3.2 GHz)
RAM 192 GiB DDR4 2666 ECC
OS RHEL 7 (64bit)

Compiler GCC 4.8.5
CUDA 10.1
GPU NVIDIA(R) V100 SXM2

Interconnect PCIe 3.0 16x (16 GB/s)

The input data of the testcase is the same as usecase (a) in Section 4.2. The sizes of the input
data and whether the data remains static or changes across iterations are given in Table 6.3. This

41

usecase has a relatively low number of iterations but a large 𝐴𝑑𝑥 matrixvector multiplication. In order
to compare the FPGA and GPU implementations to the CPU implementation, data transfers to and
from the FPGA or GPU are presented separately. Execution time is measured on the hostside, CPU
timers are used to measure the GPU and FPGA function calls. All execution time measurements are
averaged over 15 runs to reduce the effect of outliers. In the CPU case MKL functions are called
for the 𝐵𝐵T, Cholesky, Substitution and 𝐴𝑑𝑥. These functions are also present in the cuBLAS library
provided by NVIDIA for their GPUs. The OpenCL FPGA implementation is different, as it does not use
library functions, but instead uses our custom implementation. Most of the optimizations present in the
FPGA implementation are not portable to library calls and are therefore not present in the CPU and
GPU implementations. These optimizations can be implemented in custom calls or code for the other
platforms, which could improve their performance.

Table 6.3: Input data specifications for usecase (a)

Input data Size static/dynamic

A 2940 × 215 static
B 2940 × 215 static
ubA 2940 dynamic
lbA 2940 dynamic
L 215 × 215 static
x0 215 dynamic
y_pre 215 dynamic

All the presented FPGA results are using single precision floatingpoint data types unless specified
differently. This choice was made to take advantage of the hardened floatingpoint support for singles
present in the FPGA architecture. The CPU and GPU results use double precision floatingpoint data
types as this is default in the reference implementation. The FPGA produces the same output in double
and single precision. This raises the question if double precision is actually necessary for the dynamic
parts of the algorithm. As mentioned in Chapter 4, the Cholesky factorization of 𝐻 does not work in
single precision for data sets that become singular after conversion [8]. If the precomputed factorization
of 𝐻 is converted to single precision, it can be used to get a correct result from the algorithm for our
usecase.

6.2. FPGA results
In this section results of the OpenCL FPGA implementation are presented. We apply multiple optimiza
tions. We start with accelerating the main bottleneck after which we move on to smaller optimizations.

As mentioned in the previous section, the matrixvector multiplication of 𝐴 and 𝑑𝑥 is significantly
large in our usecase. In Figure 6.1 the execution time is shown for all cases where none or only one
of the kernels includes unrolling. The execution time decreases by a factor 10 when CUs are added to
𝐴𝑑𝑥. With only one CU for 𝐴𝑑𝑥 the kernel cannot process the incoming data fast enough and therefore
it dominates the execution time. With 32 CUs added there is already a 10x speedup of the overall
execution time. To see the impact of adding CUs to other kernels, measurements where only one CU
is given to 𝐴𝑑𝑥 are ignored.

6.2.1. Effect of unrolling loops
In the OpenCL for FPGA framework, loops can be unrolled to add compute units at the cost of additional
hardware. In the qpAS algorithm there are three kernels that are candidates for unrolling as they have
independent operations suitable for parallel execution. Usually, fully unrolling loops has limited benefit
as the compiler can generate significantly more hardware to gain a single cycle. The other option is to
partially unroll loops to find a tradeoff between resources and performance. Partial unroll factors have
to be powers of two in the Intel OpenCL SDK. Four different unroll factors are used for 𝐴𝑑𝑥: 16, 32, 64
and 128. Larger would not make sense as 𝑛 is smaller than 256. Unroll factors lower than 16 are not
included as these would only give marginal benefit while introducing unrolling overhead. Most loops
that can be unrolled have 𝑛 as their upper bound. In our usecase 𝑛 = 215, so loops unrolled with factor
32 require 7 iterations as 7×32 = 224 ≥ 215 is sufficient. Unrolling can cause the latency or II of a loop

42

None Back 𝐵𝐵T 𝐴𝑑𝑥
0

20

40

Unrolled by factor 32

Ex
ec
ut
io
n
tim

e
(m
s)

FPGA execution time (ms) of single kernel unrolls

Figure 6.1: Impact of unrolling single computational kernels for usecase(a)

16 32 64 128
0

1

2

3

4

5

6

7

𝐴𝑑𝑥 unroll factor

Ex
ec
ut
io
n
tim

e
(m
s)

FPGA execution time (ms)

[1, 1] [1, 32] [16, 32] [32, 1] [32, 32] [64, 32]

Figure 6.2: Design space exploration of the execution time against unrolling combinations sorted on 𝐴𝑑𝑥 unroll factor for
usecase (a), legend: [unroll back sub, unroll 𝐵𝐵T]

to change, this depends on the operations present in the loop. The benefit of unrolling in those cases
can be less than expected, because adding twice the number of CUs can bring less than two times
the throughput. In this case more effort is required to change the structure of the operations to avoid
dependencies and lower the II to one for the inner loops. In Figure 6.2 the execution time for different
unroll factors of 𝐴𝑑𝑥 are shown, the colors of the bars represent different unrolling combinations of the
back substitution and the 𝐵𝐵T matrixvector multiplication.

Once the main bottleneck 𝐴𝑑𝑥 matrixvector multiplication is solved, the balance of kernels comes
into play. For 16 𝐴𝑑𝑥 CUs unrolling 𝐵𝐵T improves performance while unrolling the back substitution has
almost no impact. In this case, backward substitution kernel is still producing faster than 𝐴𝑑𝑥 consumes
the data. Evidence of this is found when looking at the results of unrolling 𝐴𝑑𝑥 by factor 32: when CUs
are added to the back substitution, 𝐴𝑑𝑥 consumes data fast enough to drop the overall execution time.
There is limiting factor that prevents the algorithm from going any faster even if more CUs are added
to the kernels currently being unrolled. This behavior is explored in Table 6.4, where multiple baseline
unroll configurations are evaluated in execution time, frequency and resources. In this table it can be
seen that adding more CUs to the back substitution beyond 16 does not benefit the execution time in
any of the configurations. This difference is caused by a lower operating frequency for a high unroll
factor of the back substitution. Currently, the backward substitution kernel stalls after reading the static

43

data, until all the input data is received. To further increase the speed of the implementation, the kernels
that feed the back substitution should produce their results earlier. Either the factorization or the forward
substitution is currently stalling the pipeline, stopping the algorithm from speeding up further.

Other interesting behavior seen in Figure 6.2 is the increase in execution time when unrolling 𝐴𝑑𝑥
by 128. If we look at the entry in Table 6.4 we observe that this lower execution time is accompanied
by a decrease in operating frequency. The [32,32,32] configuration runs at 250 MHz which is almost
60 MHz higher than the 193.2 MHz of configuration [32,32,128]. We suspect that the increased RAM
usage and constraints on local data decreases the operating frequency if not managed correctly. A full
table containing all area and frequency specifications can be found in Appendix A.

The lowest execution time is achieved with the [16,32,64] configuration, which is clocked at 260.4
MHz. This speedup compared to the other low times can be attributed to a combination of the operating
frequency and a higher throughput of Adx.

Table 6.4: Execution time, frequency and area of different unroll configurations for usecase (a)

back 𝐵𝐵T 𝐴𝑑𝑥 Exec(ms) Freq(MHz) %LUT %FF %RAM %MLAB %DSP
1 1 1 41.6 252.3 14.2 13.0 24.9 2.9 2.2
1 32 1 40.7 255.7 14.3 13.2 24.9 2.8 4.2
32 1 1 42.2 250 15.0 15.1 26.6 3.1 8.3
1 1 32 43.5 268.2 14.9 13.8 31.5 3.7 4.2
16 32 32 3.04 258.5 11.9 15.6 31.4 3.8 10.3
32 32 32 3.14 250 16.0 16.8 35.6 3.9 12.4
64 32 32 3.13 250 16.4 17.7 35.6 4.2 16.6
16 32 64 2.96 260.4 16.3 16.5 39.3 4.2 12.4
32 32 128 3.89 193.2 18.0 19.2 52.3 8.0 18.7

6.2.2. Double vs single precision floatingpoint data types
The reference data type used for the algorithm is double precision floatingpoint. The execution time of
the algorithm on FPGA using double precision is 2.2 times longer compared to single precision. This
difference is caused by an increase in latency and II of compute loops as double precision operations
such as addition and multiplication take more cycles compared to single precision. For double precision
operations multiple DSPs are chained together to provide the functionality, registers are used to buffer
data between steps to not impact the clock frequency. Because of these registers multiple clock cycles
are required before new data can enter the PE, which in turn can stall the pipeline and lower the II.
Single precision operations only use one DSP and allow data to enter the PE every cycle, lowering
the II of loops containing these instructions. Each CU uses one DSP in single precision and requires
at least 4 DSPs for double precision, and this is excluding additional LUT and FF usage. Table 6.5
shows that limiting factor when adding CUs is not the number of DSPs or RAM available, rather it is
the increased LUT usage. The double precision implementation performs reasonably well compared
to the single precision implementation. Because latency of double precision operations is longer it
impacts the loop latency and II of compute loops. Pipelining in and between the kernels hides parts of
the latency allowing the double precision implementation to achieve only a 2.2 times slower execution
time. The double precision implementation is currently using all the LUTs on the FPGA stopping any
further optimizations. While for the single precision implementation there are still resources to continue
optimizing.

Table 6.5: Area and frequency of single vs double precision configurations

sp/dp back 𝐵𝐵T 𝐴𝑑𝑥 Freq(MHz) % LUTs % FFs % RAMs % MLABs % DSPs
sp 1 1 1 252.3 14.2 13.0 24.9 2.9 2.2
sp 32 1 16 251.7 15.3 15.6 27.6 3.4 9.3
sp 16 32 32 258.5 11.9 15.6 31.4 3.8 10.3
dp 1 1 1 256.3 23.7 16.7 35.2 4.6 6.5
dp 32 1 16 223.5 83.3 40.0 40.6 13.1 35.0
dp 16 32 32 221.9 91.6 43.1 50.8 13.7 38.9

44

0 5 10 15 20 25 30 35 40 45 50

si
ng
le

do
ub
le

41.55

48.82

5.41

7.1

3.04

6.51

Execution time (ms)

da
ta
re
pr
es
en
ta
tio
n

Single vs double precision execution time (ms)

[1, 1, 1] [32, 1, 16] [16, 32, 32]

Figure 6.3: Single vs double precision execution time on FPGA, legend: [unroll backsub, unroll 𝐵𝐵T, unroll 𝐴𝑑𝑥]

6.2.3. Profiling the FPGA implementation
The Intel OpenCL SDK for FPGA is relatively new, the profiling tools are not yet mature. It does not
manage to capture the complexity introduced by autorun kernels and channels. The compiler offers fast
initial profiling by analyzing the OpenCL code before synthesis. The generated static report indicates
how loops are scheduled and where the compiler could not unroll or pipeline kernels. Additionally,
the user can see the estimated resources and memory structures used for all variables. With the
information about the II and latency of loops, the user can already do some optimizations creating a
fast design cycle.

Each bottleneck that arises can have many different solutions and causes. An alternative to the
static reports from the SDK is to manually profile the application by adding counters and performance
measurement signals to the kernels. This method is regularly used in traditional HDL and HLS lan
guages to find bottlenecks in the system. In OpenCL kernels it becomes a complicated process to
manually add counters, as there is no concept of a clock in a kernel and execution is sequential. To
add these signals kernels have to be rewritten, this in turn changes the behavior and make the infor
mation less valuable. Instead, the ”profile” flag of the compiler can be used and will add performance
counters to the kernel. This adds significant overhead, Intel discourages using the profiler for kernels
that run for less than 20ms. To analyze the data generated by these counters, the dynamic profiler
provided by Intel can be used. This profiler provides information about the throughput and occupancy
of memory and channels. It reports stall percentages about how many cycles are spend stalling the
pipeline. These reports are straightforward for enqueued kernels as they have a well defined start and
end. Autorun kernels start as soon as the device is programmed and stall on channel reads until data
is present. Getting an accurate profile of autorun kernels is complicated, the host can request the data
and reset the counters before and after execution of the controller. This improves the accuracy but be
cause the algorithm is sequential kernels will have to wait most of the time until their inputs are ready.
Viewing the exact interaction between kernels in the dynamic profiler is currently not feasible.

6.2.4. Further optimizations
There is still room in the implementation to improve, not just by solving pipeline stalls or adding more
compute units. Making sure that all memory structures are correctly banked to the right number of read
ports can further increase the frequency. Allowing us to extend the current unrolling without causing
the frequency to drop.

The compiler currently chooses MLAB memory for small data structures that require multiple read
ports. MLABs require a significant number ALMs while the ports might go unused because of regular
access pattern. Manually banking all local memory structures to M20K blocks reduces the stress on
routing and allows us implements only the required number of read ports.

The implementation is limited by the boundaries of the OpenCL framework, which might not be the
best tool for this algorithm. As operations repeatedly use the same kind of operations, such as adding a
constant to a vector. It makes sense to create a compute kernel for that specific operation. This kernel

45

is then fed from a multitude of kernels that use that computation. Currently, reusing on this level is not
feasible, it is possible but at the cost of the expressiveness OpenCL provides.

6.3. Comparison FPGA, GPU and CPU
To find the best deployment strategy for the qpAS algorithm we compare our results on the FPGA
to a comparable GPU and CPU. The reference implementation on CPU includes all of the necessary
control operations and functionality whereas the results on FPGA andGPU focusmainly on the compute
kernels. In Figure 6.4 we can see the execution time of all platforms for double precision floatingpoint
and single precision for the FPGA. For both precisions we choose the fastest configuration. For single
precision the [16,32,64] configuration is the fastest and for double precision the [16,32,32] configuration
is the fastest. For double precision further increasing the unrolling factors is not possible, as the FPGA
is already full.

The CPU performs best, regardless of the data representation, mostly due to the higher clock fre
quency that speeds up sequential execution compared to the 15x and 3x lower operation frequency
of FPGA and GPU respectively. There are optimizations present in the FPGA implementation that
can also be applied to the CPU version, but the library calls used are optimized by Intel for their sys
tems. Most of the optimizations are not compatible with library calls, the operations used by these
optimizations cannot be implemented using only general functions such as matrix multiplication. The
accelerators use a separate memory system, as such the input data is sent from the host memory to
the device through a PCIe link. From Table 6.3 only the dynamic data is included for the comparison,
as the other data can be transferred outside of the critical path. In Figure 6.4 the transfer time required
from the dynamic part is included for the FPGA. If DMA is used, transferring the static part takes 1.482
ms, while the dynamic part only takes 0.056 ms both for single precision data types. Double precision
uses twice the number of bytes, this corresponds with the increase in transfer time of the dynamic part
which grows to 0.111 ms. The static part does not fit in the aligned memory of host device, and is
transferred without using DMA. This takes around 160 ms.

The lower execution time does not mean the FPGA implementation is not usable, the CPU and GPU
both behave differently when multiple programs run in parallel. The best FPGA implementation does
not use 100% of the resources yet, so multiple copies still fit on a single FPGA. Separate pipelines with
dedicated interfaces to global memory can be used to make sure there are no dependencies between
the copies. Assuming that the operating frequency can stay the same there is no performance loss with
multiple copies of the algorithm running concurrently. On the CPU and GPU it is also possible to queue
two copies of the algorithm, but as there is resource contention on the CPU it is not guaranteed that the
execution time would remain the same. The MKL library functions use Advanced Vector eXtensions
(AVX)2 or AVX512 operations which can decrease the clock frequency. The lower frequency can
impact the other copies, thus reducing the execution time. On theGPU the possibility of runningmultiple
copies of the algorithm depends on the number of cores used by a single instance of the algorithm. In
our usecase we use COTS libraries, the user has no control over howmany cores and what block sizes
are used. Guarantees in execution time can therefore not be made without testing over a multitude of
data sets to ensure that deadlines are met.

46

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

FPGA

CPU

GPU

6.62

5.41

1.92

3.01

Execution time (ms)

Comparison of hardware platforms

double precision single precision

Figure 6.4: Execution + transfer time of the three hardware platforms for usecase (a)

6.4. Evaluation
The goal of this thesis is to explore the feasibility of deploying linear algebra algorithms on hardware
accelerators using highlevel languages. The results prove that with considerable effort it is possible
to get competitive performance with an FPGA compared to a CPU or GPU implementation with COTS
vendor optimized libraries. Separating read kernels and autorun compute kernels allows the user to
create a self controlled system that requires little input from a host system to produce results. Using
the FPGA to offload functions in the same way as using COTS libraries on a GPU will not deliver the
same performance, as data streaming between functions is not possible. Converting the algorithm
from sequential library calls to a custom kernel streaming implementation requires indepth knowledge
of the mathematics and underlying architecture.

In all three implementations there is still room for improvement. A significant optimization in the
FPGA implementation is the use of rank1 updates, which removes the need to compute full matrix
matrix or matrixvector operations. However, COTS libraries do no provide the rank1 update function
ality. Therefore this optimization was not used in the CPU and GPU implementations. Currently, the
COTS libraries do not contain efficient rank1 update functions, always requiring full matrixmatrix or
matrixvector operations which can be reduced by efficiently processing the ActiveSet. Using multiple
cores on a highend CPU provides the best performance without suffering from additional overhead
such as launching applications and data transfers associated with using accelerators.

The data representation used in the reference implementation is not required for this particular use
case, more effort is needed to evaluate if all cases can use either mixedprecision or single precision.
Using lower precision representations would increase the performance on both the CPU and GPU.
For the OpenCL implementation there is still room to introduce more data streaming and reduce local
memory requirements. This requires balanced kernels, each kernel must produce data at the same
speed or faster than consumers can use it to prevent blocking the critical path. Even when an effi
cient implementation is achieved, the operation frequency of an FPGA is considerably lower than the
frequency of a CPU.

47

7
Conclusion

In this thesis we explored acceleration of a linear algebra algorithm using OpenCL on an FPGA. The
goal of the thesis was to get a better understanding of the OpenCL framework on FPGA and measure
the performance for linear algebra usecases which are regularly used in the computational models. In
this chapter we answer our research questions and discuss possible future work on the subject.

7.1. Research questions
In this section we answer the questions proposed in the Introduction:
What parts of the algorithm are candidates for acceleration?
QpAS is an iterative algorithm that becomes more computationally complex as the problem grows
in difficulty. In our analysis we found four major contributors to the execution time. The first is the
Cholesky factorization over the ActiveSet, which grows with each iteration of the algorithm. This growth
is identified as the main bottleneck in the current CPU implementation. The second and third are the
forward and backward substitution, these are simple but generally sequential operations making an
impact on the execution time. The fourth is a relatively large matrixvector multiplication that is in the
critical path.
Can the algorithm be implemented on the FPGA using a high abstraction approach?
Using the OpenCL SDK for FPGA framework by Intel reduces the complexity of the development. Large
algorithms that have a sequence of steps with a defined execution order can easily be implemented.
However, a different mindset is required compared to developing for the CPU or GPU. Instead of split
ting functions into kernels and implementing each part individually, a more dataflow oriented approach
is required. The algorithm has to be converted to a streaming implementation before the development
is started. Using the traditional approach of: kernel by kernel execution will not give performance on
the FPGA.

A dataflow algorithm can be easily implemented using the features introduced by theOpenCL frame
work. Data can be streamed through channels that provide high bandwidth low latency interconnect
between kernels. This data is then consumed by data triggered, explicitly synchronized autorun ker
nels. They will run as soon as data is available without instructions from a centralized controller. When
all kernels in the pipeline consume and produce at the same rate, this approach generally has a high
occupancy and thus high throughput.

The traditional approach of optimizing the kernels as black boxes and then calling those in suc
cession, which is a common method to accelerate applications on the GPU and CPU, will not speed
up the application on an FPGA. Developers have to adopt a dataflow oriented algorithm structure to
match the underlying architecture. To implement an algorithm efficiently using streaming, experience
and knowledge about FPGAs is required.
What are the performance tradeoffs on the FPGA using the OpenCL framework by Intel?
Once an FPGA implementation is achieved, the next step is to optimize. One of the options is to unroll
loops to add PEs to steps that are currently taking a long time. Only loops that have static bounds
and perform independent operations can be unrolled. The new PEs increase the demands on the local
memory structure. For large data structures, it is important to partition the data to provide the correct

49

port to the PEs. A regular access pattern eases the partitioning and implements only the required
number of read ports. As the number of read ports on local memory (M20K blocks and MLABs) is
limited, unrolling large loops that use data in local memory can be costly. It is important to only select the
compute loops that are currently forming a bottleneck, and apply unrolling to increase the throughput.
The DSP and logic usage will scale with the unroll factor. Additionally, the memory usage follows the
same trend as each PE will require read ports. Partial unrolling factors can be used to limit the area
usage for large loops.

Autorun kernels and channels are used to create a streaming based implementation of the algorithm.
One of the restrictions on autorun kernels is that they cannot have a global memory interface. Channels
are the only type of communication permitted. The default strategy is to have a read kernel constantly
push data into channels connected to the autorun kernels. If the autorun kernel reads from a channel in
an unrolled loop, it makes sense to duplicate the channel because parallel channels allow the autorun
kernel to read more data in a single cycle at the cost of channel resources. Channels can have a
configurable depth to buffer data if the consumer is not ready, but at some point the buffer is full. This is
normal for read kernels as their only job is to provide data to an autorun kernel. If a channel connects
two autorun kernels that are not balanced in throughput then one of the kernels will stall. This balance
can be created by adding compute units to the lower throughput kernel or to reduce the resources used
by the higher throughput kernel. It can be difficult to create this balance, as accurate profiling of the
throughput is necessary.

Linear algebra algorithms typically use floatingpoint data representations. Using double precision
is possible on the FPGA but drastically increases the resource usage. To get an efficient and high
throughput implementation it is necessary to convert the algorithm to single precision. If double preci
sion is absolutely required, moving to FPGA is not worth the effort.
What is the performance of the qpAS algorithm on the FPGA compared to a CPU and GPU using
COTS libraries?
In this thesis we compare our FPGA implementation to a CPU and GPU implementation that both use
COTS library functions. For the FPGA and GPU implementations we measure the execution time of the
computational kernels and the required data transfer time. TheCPU implementation also includes some
additional control operations that have little impact on the execution time but are in the critical path. The
algorithm based optimizations such as the rank1 updates for the factorization and efficiently handling
the ActiveSet are not present in the CPU and GPU implementations. Our final FPGA implementation
does use the aforementioned optimizations.

The execution time of the final FPGA implementation is 3.5x and 1.2x longer than the CPU and GPU
respectively if double precision floatingpoint is used. If the precision of the FPGA implementation is
reduced to single precision there is a speedup of 2.2x in execution time compared to double precision
on the FPGA.

Our implementation is not optimal yet. Currently, the factorization and substitutions are still blocking
speeding up the implementation further. Profiling the implementation to find the current bottlenecks and
mitigating those to further balance the implementation will improve the performance. A handcrafted
version of our implementation taking into account all the algorithm based optimizations could achieve
even better results at the cost of flexibility and more development time. This implementation is out
of scope for our thesis, which is limited to using a high abstraction level approach to implement the
algorithm.

7.2. General remarks
During our work implementing the qpAS algorithm we recognize the benefits of using OpenCL kernels.
Significantly less effort is required compared to hardware description languages to get to a working
implementation. Most of the development time was spent on improving the performance by introducing
streaming and unrolling loops.

The algorithm used determines the feasibility and performance of an OpenCL FPGA implemen
tation. Not all algorithms are equally suitable to implement using a dataflow based approach. Most
optimizations that proved valuable in reducing the computational complexity of our algorithm are not
FPGA specific and could also be applied on the CPU and GPU. Additional effort spent on trying to ac
celerate a specific implementation must first focus on determining if the algorithm itself can be further
optimized before considering alternative deployment platforms.

50

We believe that if a qpAS algorithm optimized implementation is created for all the considered
hardware platforms the CPU will still achieve the best performance. The FPGA is expected to come
in second because of the significantly lower clock frequency. The GPU is expected to benefit the
least from the proposed algorithm specific optimizations as computational operations are exchanged
for control and irregular execution.

7.3. Future work
The OpenCL framework for FPGA is a promising tool that allows developers with knowledge about
the architecture to efficiently implement kernels with all required memory interfaces. The performance
depends on the metrics used in the comparison. Purely looking at execution time of the algorithm on
FPGA does not tell the whole story. Aspects that can be explored further include using the FPGA to
compute multiple copies of the algorithm at the same time. The area usage of the final implementation
in single precision allows us to fit at least 3 copies on the same FPGA. By duplicating the compute
engines, the FPGA might have an advantage over the other platforms. Because each engine has its
own datapath, there is limited influence on the rest of the FPGA in contrast to the CPU and GPU.

Further investigations are required on the effect of input size of the data, and the number of itera
tions required before the algorithm converges. Tradeoffs between the number of PEs for each kernel
can look differently depending on these sizes. There could be combinations of size and maximum
number of iterations that benefits the FPGA more than other platforms, such as a smaller matrixvector
multiplication.

A common strategy when moving to FPGA offloading is changing the datatype from floatingpoint
to fixedpoint. The DSPs can do floatingpoint computations, but are often at the cost of clock cycles
and a lower operating frequency. If we can move from a floatingpoint based algorithm to fixedpoint
then the FPGA will be a better fit. The datapath can be reduced to exactly the size required instead of
32 or 64bit. The accuracy requirements of the output and input of the algorithm are unclear for our
usecase. More research is required on the effect of reduced accuracy in the algorithm to allow the
usage of fixedpoint.

51

A
All FPGA configurations

In Table A.1 the execution time, operating frequency and area usage for all different unrolling configu
rations for the proposed implementation are given for reference. Most execution times can already be
found in Figure 6.2.

Table A.1: Execution time, frequency and area of different unroll configurations for usecase (a)

sp/dp back 𝐵𝐵T Adx Exec(ms) Freq(MHz) %LUT %FF %RAM %MLAB %DSP
sp 1 1 1 41.6 252.3 14.2 13.0 24.9 2.9 2.2
sp 1 32 1 40.7 255.7 14.3 13.2 24.9 2.8 4.2
sp 32 1 1 42.2 250 15.0 15.1 26.6 3.1 8.3
sp 32 32 1 43.5 238.6 15.2 15.9 28.9 3.1 10.3
sp 64 1 1 43.3 241.7 15.8 17.0 28.9 3.8 12.5
sp 1 1 16 5.44 255.2 14.6 13.5 27.4 3.2 3.2
sp 1 32 16 5.09 252.3 14.6 13.8 27.4 3.1 5.2
sp 16 32 16 4.94 255.2 15.1 15.2 27.3 3.3 9.2
sp 32 1 16 5.41 251.7 15.3 15.6 27.6 3.4 9.3
sp 32 32 16 4.96 253.5 15.4 15.9 29.1 3.4 11.3
sp 1 1 32 43.5 268.2 14.9 13.8 31.5 3.7 4.2
sp 1 32 32 4.43 248.3 15.0 14.1 31.5 3.7 6.3
sp 16 32 32 3.04 258.5 11.9 15.6 31.4 3.8 10.3
sp 32 1 32 3.56 248.3 15.7 15.9 31.8 4.0 10.3
sp 32 32 32 3.14 250 16.0 16.8 35.6 3.9 12.4
sp 64 32 32 3.13 250 16.4 17.7 35.6 4.2 16.6
sp 1 1 64 4.88 244.1 15.8 14.5 37.2 5.0 6.5
sp 1 32 64 4.42 248.3 15.8 15.0 37.0 5.3 8.4
sp 16 32 64 2.96 260.4 16.3 16.5 39.3 4.2 12.4
sp 32 1 64 3.71 229.2 16.5 16.8 37.3 5.6 12.5
sp 32 32 64 3.24 235.8 16.6 17.2 38.7 5.5 14.5
sp 64 32 64 3.34 228.1 17.1 18.6 41.0 5.8 18.7
sp 1 1 128 5.81 202.7 17.1 16.7 50.6 7.8 10.5
sp 1 32 128 5.67 191.3 17.2 17.1 50.6 7.8 12.6
sp 16 32 128 3.59 211.8 17.7 18.5 50.5 7.9 16.6
sp 32 1 128 4.09 204.9 17.9 18.8 50.9 8.1 16.7
sp 32 32 128 3.9 193.2 18.0 19.2 52.3 8.0 18.7
dp 1 1 1 48.82 256.3 23.7 16.7 35.2 4.6 6.5
dp 32 1 16 7.10 223.5 83.3 40.0 40.6 13.1 35.0
dp 16 32 32 6.51 221.9 91.6 43.1 50.8 13.7 38.9

53

Bibliography
[1] Amazon AWS. EC2 F1 Instances, Sep 2019. URL https://aws.amazon.com/ec2/

instancetypes/f1.

[2] Mohamed A. Bamakhrama, Alejandro Arrizabalaga, Frank Overman, JeanPaul Smeets, Kornel
van der Sommen, Remko van der Vossen, and John Wagensveld. GPU acceleration of realtime
control loops. CoRR, abs/1902.08018, 2019. URL http://arxiv.org/abs/1902.08018.

[3] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz Cza
jkowski, Stephen Brown, and Jason Anderson. Legup: An opensource highlevel synthesis tool
for fpgabased processor/accelerator systems. ACM Transactions on Embedded Computing Sys
tems (TECS), 13, Sep 2013. doi: 10.1145/2514740.

[4] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach. Accelerating computeintensive applications
with gpus and fpgas. In 2008 Symposium on Application Specific Processors, pages 101–107,
Jun 2008. doi: 10.1109/SASP.2008.4570793.

[5] J. Choi, S. Brown, and J. Anderson. From software threads to parallel hardware in highlevel
synthesis for fpgas. In 2013 International Conference on FieldProgrammable Technology (FPT),
pages 270–277, Dec 2013. doi: 10.1109/FPT.2013.6718365.

[6] J. Cong, Z. Fang, M. Huang, P. Wei, D. Wu, and C. H. Yu. Customizable computing—from single
chip to datacenters. Proceedings of the IEEE, 107(1):185–203, Jan 2019. ISSN 00189219. doi:
10.1109/JPROC.2018.2876372.

[7] Dell EMC. The importance of hardware raising all boats, 2018. URL https:
//education.dellemc.com/content/dam/dellemc/documents/enus/2018KS_
BrantThe_Importance_of_Hardware_Raising_All_Boats.pdf.

[8] James Demmel. On floating point errors in cholesky. Technical report, Courant Institute, 1989.

[9] R. H. Dennard, F. H. Gaensslen, HwaNien Yu, V. L. Rideout, E. Bassous, and A. R. Leblanc.
Design of ionimplanted mosfet’s with very small physical dimensions. Proceedings of the IEEE,
87(4):668–678, Apr 1999. ISSN 00189219. doi: 10.1109/JPROC.1999.752522.

[10] B. A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross, and M. Chawathe. Accelerated image
processing on fpgas. IEEE Transactions on Image Processing, 12(12):1543–1551, Dec 2003.
ISSN 10577149. doi: 10.1109/TIP.2003.819226.

[11] Jian Fang, Yvo T. B. Mulder, Jan Hidders, Jinho Lee, and H. Peter Hofstee. Inmemory database
acceleration on fpgas: a survey. The VLDB Journal, Oct 2019. ISSN 0949877X. doi: 10.1007/
s0077801900581w. URL https://doi.org/10.1007/s0077801900581w.

[12] N. Fujita, R. Kobayashi, Y. Yamaguchi, and T. Boku. Parallel processing on fpga combining
computation and communication in opencl programming. In 2019 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 479–488, May 2019. doi:
10.1109/IPDPSW.2019.00089.

[13] Azzam Haidar, Ahmad Abdelfatah, Stanimire Tomov, and Jack Dongarra. Highperformance
cholesky factorization for gpuonly execution. In Proceedings of the General Purpose GPUs,
GPGPU10, pages 42–52, New York, NY, USA, 2017. ACM. ISBN 9781450349154. doi:
10.1145/3038228.3038237. URL http://doi.acm.org/10.1145/3038228.3038237.

55

https://aws.amazon.com/ec2/instance-types/f1
https://aws.amazon.com/ec2/instance-types/f1
http://arxiv.org/abs/1902.08018
https://education.dellemc.com/content/dam/dell-emc/documents/en-us/2018KS_Brant-The_Importance_of_Hardware_Raising_All_Boats.pdf
https://education.dellemc.com/content/dam/dell-emc/documents/en-us/2018KS_Brant-The_Importance_of_Hardware_Raising_All_Boats.pdf
https://education.dellemc.com/content/dam/dell-emc/documents/en-us/2018KS_Brant-The_Importance_of_Hardware_Raising_All_Boats.pdf
https://doi.org/10.1007/s00778-019-00581-w
http://doi.acm.org/10.1145/3038228.3038237

[14] Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid AlArs. Vliwbased fpga computation
fabric with streaming memory hierarchy for medical imaging applications. In Applied Reconfig
urable Computing, pages 36–43, Cham, 2017. Springer International Publishing. ISBN 9783
319562582.

[15] Joost Hoozemans, Jeroen Straten, Timo Viitanen, Aleksi Tervo, Jiri Kadlec, and Zaid AlArs. Al
marvi execution platform: Heterogeneous video processing soc platform on fpga. J. Signal Pro
cess. Syst., 91(1):61–73, Jan 2019. ISSN 19398018. doi: 10.1007/s1126501814241. URL
https://doi.org/10.1007/s1126501814241.

[16] E. Houtgast, V. Sima, and Z. AlArs. High performance streaming smithwaterman implemen
tation with implicit synchronization on intel fpga using opencl. In 2017 IEEE 17th Interna
tional Conference on Bioinformatics and Bioengineering (BIBE), pages 492–496, Oct 2017. doi:
10.1109/BIBE.2017.0006.

[17] R. Hunger. Floating point operations in matrixvector calculus. Technical Report May, Technische
Universität München, October 2005.

[18] IEEE. IEEE Standard for FloatingPoint Arithmetic. IEEE Std 7542019 (Revision of IEEE 754
2008), pages 1–84, Jul 2019. doi: 10.1109/IEEESTD.2019.8766229.

[19] Intel Corporation. Intel fpga sdk for opencl, Aug 2019. URL https://www.intel.com/
content/www/us/en/software/programmable/sdkforopencl/overview.html.

[20] Intel Corporation. Intel Arria 10 Product Table, Nov 2019. URL https://www.
intel.co.uk/content/dam/www/programmable/us/en/pdfs/literature/pt/
arria10producttable.pdf.

[21] Intel Corporation. Intel arria 10 core fabric and general purpose i/os handbook, Aug 2019.
URL https://www.intel.com/content/www/us/en/programmable/documentation/
sam1403483633377.html.

[22] Intel Corporation. Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide, Sep 2019.
URL https://www.intel.com/content/www/us/en/programmable/documentation/
mwh1391807516407.html.

[23] Intel Corporation. Intel Math Kernel Library, Nov 2019. URL https://software.intel.com/
enus/mkl.

[24] Intel Corporation. Intel Hyperflex FPGA Architecture, Nov 2019. URL https://www.intel.
com/content/www/us/en/products/programmable/fpga/stratix10/features.
html.

[25] Zheming Jin and Hal Finkel. Evaluating floatingpoint intensive applications on opencl FPGA
platforms: A case study on the simplemoc kernel. In 2018 International Conference on ReCon
Figurable Computing and FPGAs, ReConFig 2018, Cancun, Mexico, December 35, 2018, pages
1–6, 2018. doi: 10.1109/RECONFIG.2018.8641693. URL https://doi.org/10.1109/
RECONFIG.2018.8641693.

[26] Zheming Jin, Hal Finkel, Kazutomo Yoshii, and Franck Cappello. Evaluation of a floatingpoint
intensive kernel on fpga. In EuroPar 2017: Parallel Processing Workshops, pages 664–675,
Cham, 2018. Springer International Publishing. ISBN 9783319751788.

[27] C. Kachris and D. Soudris. A survey on reconfigurable accelerators for cloud computing. In 2016
26th International Conference on Field Programmable Logic and Applications (FPL), pages 1–10,
Aug 2016. doi: 10.1109/FPL.2016.7577381.

[28] S. Kestur, J. D. Davis, and O. Williams. Blas comparison on fpga, cpu and gpu. In 2010 IEEE
Computer Society Annual Symposium on VLSI, pages 288–293, Jul 2010. doi: 10.1109/ISVLSI.
2010.84.

56

https://doi.org/10.1007/s11265-018-1424-1
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.co.uk/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
https://www.intel.co.uk/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
https://www.intel.co.uk/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/sam1403483633377.html
https://www.intel.com/content/www/us/en/programmable/documentation/sam1403483633377.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10/features.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10/features.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10/features.html
https://doi.org/10.1109/RECONFIG.2018.8641693
https://doi.org/10.1109/RECONFIG.2018.8641693

[29] Ryohei Kobayashi, Yuma Oobata, Norihisa Fujita, Yoshiki Yamaguchi, and Taisuke Boku. Opencl
ready high speed fpga network for reconfigurable high performance computing. In Proceedings
of the International Conference on High Performance Computing in AsiaPacific Region, HPC
Asia 2018, pages 192–201, New York, NY, USA, 2018. ACM. ISBN 9781450353724. doi:
10.1145/3149457.3149479. URL http://doi.acm.org/10.1145/3149457.3149479.

[30] K. Krommydas, A. E. Helal, A. Verma, and W. Feng. Bridging the performanceprogrammability
gap for fpgas via opencl: A case study with opendwarfs. In 2016 IEEE 24th Annual International
Symposium on FieldProgrammable Custom Computing Machines (FCCM), pages 198–198, May
2016. doi: 10.1109/FCCM.2016.56.

[31] Martin Langhammer and Bogdan Pasca. Floatingpoint dsp block architecture for fpgas. In Pro
ceedings of the 2015 ACM/SIGDA International Symposium on FieldProgrammable Gate Arrays,
FPGA ’15, pages 117–125, New York, NY, USA, 2015. ACM. ISBN 9781450333153. doi:
10.1145/2684746.2689071. URL http://doi.acm.org/10.1145/2684746.2689071.

[32] Martin Langhammer and Bogdan Pasca. Highperformance qr decomposition for fpgas. In Pro
ceedings of the 2018 ACM/SIGDA International Symposium on FieldProgrammable Gate Arrays,
FPGA ’18, pages 183–188, New York, NY, USA, 2018. ACM. ISBN 9781450356145. doi:
10.1145/3174243.3174273. URL http://doi.acm.org/10.1145/3174243.3174273.

[33] Laurence Goasduff. Gartner Says 5.8 Billion Enterprise and Au
tomotive IoT Endpoints Will Be in Use in 2020 , Aug 2019.
URL https://www.gartner.com/en/newsroom/pressreleases/
20190829gartnersays58billionenterpriseandautomotiveio.

[34] S. Lee, J. Kim, and J. S. Vetter. Openacc to fpga: A framework for directivebased high
performance reconfigurable computing. In 2016 IEEE International Parallel and Distributed Pro
cessing Symposium (IPDPS), pages 544–554, May 2016. doi: 10.1109/IPDPS.2016.28.

[35] Tiziano De Matteis, Johannes de Fine Licht, and Torsten Hoefler. FBLAS: streaming linear algebra
on FPGA. CoRR, abs/1907.07929, 2019. URL http://arxiv.org/abs/1907.07929.

[36] Henry Megens. An introduction to photolithography: Overlay, 2007. URL https:
//staticwww.asml.com/doclib/productandservices/images/asml_overlay_
images_fall07.pdf. Last accessed on: April 29, 2019.

[37] Microsoft Azure. What are fieldprogrammable gate arrays (FPGA) and how to deploy,
Sep 2019. URL https://docs.microsoft.com/enus/azure/machinelearning/
service/howtodeployfpgawebservice.

[38] G. E. Moore. Cramming more components onto integrated circuits, reprinted from electronics,
volume 38, number 8, april 19, 1965, pp.114 ff. IEEE SolidState Circuits Society Newsletter, 11
(3):33–35, Sep 2006. ISSN 10984232. doi: 10.1109/NSSC.2006.4785860.

[39] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi,
J. Anderson, and K. Bertels. A survey and evaluation of fpga highlevel synthesis tools. IEEE
Transactions on ComputerAided Design of Integrated Circuits and Systems, 35(10):1591–1604,
Oct 2016. ISSN 02780070. doi: 10.1109/TCAD.2015.2513673.

[40] J. Nickolls and W. J. Dally. The gpu computing era. IEEE Micro, 30(2):56–69, Mar 2010. ISSN
02721732. doi: 10.1109/MM.2010.41.

[41] Nimbix, Inc. Accelerate your workflows with Xilinx Alveo™ Accelerator Cards in the Cloud, Sep
2019. URL https://www.nimbix.net/alveo/.

[42] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer New York, 2006. ISBN 9780387303031. URL https://books.
google.com/books?id=eNlPAAAAMAAJ.

[43] NVIDIA Corporation. CUDA, Sep 2019. URL https://developer.nvidia.com/
cudatoolkit.

57

http://doi.acm.org/10.1145/3149457.3149479
http://doi.acm.org/10.1145/2684746.2689071
http://doi.acm.org/10.1145/3174243.3174273
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
http://arxiv.org/abs/1907.07929
https://staticwww.asml.com/doclib/productandservices/images/asml_overlay_images_fall07.pdf
https://staticwww.asml.com/doclib/productandservices/images/asml_overlay_images_fall07.pdf
https://staticwww.asml.com/doclib/productandservices/images/asml_overlay_images_fall07.pdf
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-fpga-web-service
https://www.nimbix.net/alveo/
https://books.google.com/books?id=eNlPAAAAMAAJ
https://books.google.com/books?id=eNlPAAAAMAAJ
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

[44] OpenACCstandard.org. OpenACC, Aug 2019. URL https://www.openacc.org/.

[45] J. Peltenburg, J. van Straten, L. Wijtemans, L. van Leeuwen, Z. AlArs, and P. Hofstee. Fletcher: A
framework to efficiently integrate fpga accelerators with apache arrow. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), pages 270–277, Sep 2019. doi:
10.1109/FPL.2019.00051.

[46] A. Podobas, H. R. Zohouri, N. Maruyama, and S. Matsuoka. Evaluating highlevel design strate
gies on fpgas for highperformance computing. In 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–4, Sep 2017. doi: 10.23919/FPL.2017.
8056760.

[47] Sébastien Rousseaux, Damien Hubaux, Pierre Guisset, and JeanDidier Legat. A high perfor
mance fpgabased accelerator for blas library implementation. In Reconfigurable Systems Sum
mer Institute 2007, 2007.

[48] Ahmed Sanaullah and Martin C. Herbordt. Fpga hpc using opencl: Case study in 3d fft. In
Proceedings of the 9th International Symposium on HighlyEfficient Accelerators and Reconfig
urable Technologies, HEART 2018, pages 7:1–7:6, New York, NY, USA, 2018. ACM. ISBN 978
1450365420. doi: 10.1145/3241793.3241800. URL http://doi.acm.org/10.1145/
3241793.3241800.

[49] Christian de Schryver. FPGA Based Accelerators for Financial Applications. Springer Publishing
Company, Incorporated, 1st edition, 2015. ISBN 9783319154060.

[50] Valgrind Developers. Callgrind a callgraph generating cache and branch prediction profiler, Nov
2019. URL http://valgrind.org/docs/manual/clmanual.html.

[51] Amulya Vishwanath. Enabling highperformance floatingpoint designs.
White paper, Intel Corporation, 2016. URL https://www.intel.
com/content/dam/www/programmable/us/en/pdfs/literature/wp/
wp01267fpgasenablehighperformancefloatingpoint.pdf.

[52] Z. Wang, B. He, and W. Zhang. A study of data partitioning on openclbased fpgas. In 2015 25th
International Conference on Field Programmable Logic and Applications (FPL), pages 1–8, Sep
2015. doi: 10.1109/FPL.2015.7293941.

[53] Z. Wang, J. Paul, H. Y. Cheah, B. He, andW. Zhang. Relational query processing on openclbased
fpgas. In 2016 26th International Conference on Field Programmable Logic and Applications
(FPL), pages 1–10, Aug 2016. doi: 10.1109/FPL.2016.7577329.

[54] Z. Wang, J. Paul, B. He, andW. Zhang. Multikernel data partitioning with channel on openclbased
fpgas. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(6):1906–1918, Jun
2017. ISSN 10638210. doi: 10.1109/TVLSI.2017.2653818.

[55] Raymond J. Weber, Brock J. LaMeres, and Justin A. Hogan. Realtime , dynamic hardware ac
celerators for blas computation. In International Journal on Recent and InNovation Trends in
Computing and Communication, 2017.

[56] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual perfor
mance model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009. ISSN 0001
0782. doi: 10.1145/1498765.1498785. URL http://doi.acm.org/10.1145/1498765.
1498785.

[57] Xilinx Inc. SDAccel, Aug 2019. URL https://www.xilinx.com/products/
designtools/softwarezone/sdaccel.html.

[58] Xilinx Inc. Vivado HighLevel Synthesis, Sep 2019. URL https://www.xilinx.com/
products/designtools/vivado/integration/esldesign.html.

[59] Xilinx Inc. MicroBlaze Soft Processor Core, Aug 2019. URL https://www.xilinx.com/
products/designtools/microblaze.html.

58

https://www.openacc.org/
http://doi.acm.org/10.1145/3241793.3241800
http://doi.acm.org/10.1145/3241793.3241800
http://valgrind.org/docs/manual/cl-manual.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01267-fpgas-enable-high-performance-floating-point.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01267-fpgas-enable-high-performance-floating-point.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01267-fpgas-enable-high-performance-floating-point.pdf
http://doi.acm.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/design-tools/microblaze.html

[60] F. Xu, H. Chen, X. Gong, and Q. Mei. Fast nonlinear model predictive control on fpga using particle
swarm optimization. IEEE Transactions on Industrial Electronics, 63(1):310–321, Jan 2016. ISSN
15579948. doi: 10.1109/TIE.2015.2464171.

[61] Depeng Yang, Junqing Sun, JunKu Lee, Getao Liang, David D. Jenkins, Gregory D. Peterson,
and Husheng Li. Performance comparison of cholesky decomposition on gpus and fpgas. In
Application Accelerators in High Performance Computing, 2010 Symposium, Papers, 2010.

[62] M. Yih, J. M. Ota, J. D. Owens, and P. MuyanOzcelik. Fpga versus gpu for speedlimitsign
recognition. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC),
pages 843–850, Nov 2018. doi: 10.1109/ITSC.2018.8569462.

[63] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka. Evaluating and optimizing
opencl kernels for high performance computing with fpgas. In SC ’16: Proceedings of the Inter
national Conference for High Performance Computing, Networking, Storage and Analysis, pages
409–420, Nov 2016. doi: 10.1109/SC.2016.34.

59

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Context
	Industrial use case: Convex optimization algorithm
	Synopsis

	Background
	Compute platforms
	Accelerator offloading
	GPU
	FPGA
	*CLB
	DSP
	Memory
	Partial reconfiguration

	OpenCL
	Platform model
	Memory model
	Execution model
	Programming model
	Parallel programming

	OpenCL SDK for FPGA
	*BSP
	OpenCL SDK flow
	NDRange programming model
	Single Work-Item
	Memory
	Channels and pipes
	Programmability

	Linear algebra in qpAS
	BLAS
	LAPACK

	Related work
	FPGA vs GPU
	OpenCL on FPGA
	Performance
	Alternatives

	BLAS and LAPACK on FPGA
	BLAS
	LAPACK

	Quadratic programming Active-Set
	Optimization problems
	Quadratic programming
	Active-Set
	The critical path

	Profiling
	Characteristics
	Dynamic ranges
	Sequential execution
	Variable iterations of control loop
	Data representation

	Alternative solutions
	CPU
	GPU
	FPGA

	Chosen solution

	Implementation
	Overview
	Autorun and enqueued kernels
	Channels

	Memory interface
	Compute kernels
	Cholesky factorization
	Forward substitution
	Backward substitution
	Matrix-vector multiplication Adx
	Control computations

	Host code

	Results and evaluation
	Experimental setup
	FPGA results
	Effect of unrolling loops
	Double vs single precision floating-point data types
	Profiling the FPGA implementation
	Further optimizations

	Comparison FPGA, GPU and CPU
	Evaluation

	Conclusion
	Research questions
	General remarks
	Future work

	All FPGA configurations
	Bibliography

