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Abstract

Ischemic stroke, a leading cause of death and disability worldwide, occurs when a blood vessel is occluded
by a thrombus. Current therapies for ischemic stroke, include Intravenous thrombolysis (IVT) and Endovascular
thrombectomy (EVT). EVT relies on a Thrombolysis in Cerebral Infarction (TICI) score for assessing treatment
effectiveness. This score, based on the visual evaluation of medical images by physicians, suffers from inter- and
intra-observer variability, as it is influenced by the individual rater’s judgment. Digital Subtraction Angiography
(DSA) imaging is commonly utilized both before therapy to identify the occluded vessel and after therapy to
evaluate the treatment outcome. Accurate vessel correspondence before and after treatment is crucial for a reliable
assessment. To enhance current evaluation methods and address this challenging task, we propose two automated
approaches for determining vessel correspondence in pre- and post-EVT DSA imaging. The proposed methods
utilize graphical representations of the cerebral vascular network and distinct matching procedures. We refer to the
methods as registration-based vessel matching (RB-VM) and graph based vessel matching (GB-VM). The methods
were evaluated using manually annotated data with the RB-VM and GB-VM methods achieving a recall of 82.7%
(78.2; 85.7) and 51.3% (47.4; 54.4) respectively. This work marks a significant step towards automatic stroke therapy
assessment and showcases the potential benefits of graph based algorithms for this task, paving the way for more
reliable and objective treatment assessments.

ABBREVIATIONS

EVT Endovascular Thrombectomy
TICI Thrombolysis in Cerebral Infarction
DSA Digital Subtraction Angiography
GM Graph Matching
MinIP Minimum Intensity Projection

I. INTRODUCTION

STroke is considered a major contributor to death and
disability worldwide. Mortality following an acute

stroke was nearly 10% preceding the use of modern ther-
apy procedures such as Intravenous Thrombolysis (IVT)
and Endovascular Thrombectomy (EVT) [1]. Despite the
development of new advanced methods, stroke remains
the second leading cause of death and the third leading
cause of death and disability combined globally. In 2019,
ischemic stroke was recorded to account for 62.4% of
all cases [2, 3, 4]. Notably, this type of stroke is known
to cause neurological death and long-term disability,
which in turn places significant health and economic
burdens on society [4]. This highlights the importance
of developing effective therapy procedures, as well as
effective techniques to evaluate their success.

The current EVT therapy assessment procedures in-
clude visual evaluation of medical images by physi-

cians and the use of revascularization scores known as
Thrombolysis in Cerebral Infarction (TICI). Specifically,
TICI scores are commonly used as a technical outcome
measure following EVT procedures, and their different
levels define the extent of brain reperfusion [5, 6]. There
have been multiple TICI versions due to the variability
in the different scale definitions with the latest being
eTICI [6] and autoTICI [5]. The autoTICI score aimed
to improve several limitations of existing TICI scores.
An important drawback of the TICI scores is inter- and
intra-observer variation since the scoring is subject to
various factors such as the rater. Similarly to autoTICI,
we aim to mitigate the shortcomings of the currently used
TICI scores and propose an alternative way to assess the
outcome of EVT procedures.

During ischemic stroke treatment, a thrombus, also
known as a blood clot, which causes vessel blockage
is removed from the affected vessel. Digital Subtraction
Angiography (DSA) imaging is commonly performed
prior to the treatment to identify the blocked vessel and
following treatment to assess the outcome. DSA provides
a means of visualizing blood flow dynamics and changes
in vasculature appearance over time making it optimal
for the treatment evaluation. A substantial factor when
determining the treatment outcome quality is identifying
vessels that appear and disappear after the treatment.
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Fig. 1. Pipeline of the proposed registration-based (RB-VM) and graph-based (GB-VM) vessel matching. (A) Minimum Intensity Projections
(MinIP) extracted from pre and post-EVT DSA sequences. (B) Registration of the MinIP images using the Scale-Invariant Feature
Transformation (SIFT) [7] method. (C) Arterial segmentations of pre and post-EVT DSA sequences using the Temporal UNet segmentation
model used in [8]. (D) Centerline extraction or skeletonization of the generated segmentations. (E) Graph generation using the segmentation
skeletons, including multiple simplification layers and node and edge feature extraction. The left and right images correspond to the initial
and final simplified graph respectively. The red circles and black lines represent the vertices and edges of the graphs respectively. (F1) Node
correspondence between the generated graphs. Graph nodes represent bifurcation or vessel connection points. (F2) Segmentation matches
produced where the red and blue segments represent the matched and unmatched segments respectively.

This information helps physicians ascertain if the therapy
was successful.

To address this challenging task, we aimed to develop
a graph based matching algorithm that detects vessel
correspondences between pre and post-EVT DSA imag-
ing. Graph matching (GM) is a classic and long studied
computational problem that aims to find an optimal
correspondence (matching) between vertices in two or
more graphs. It has been applied successfully across
various fields and areas including but not limited to,
pattern recognition, computer vision, bio-informatics and
social networks [9, 10, 11].

We hypothesized that a graphical representation of
the brain vasculature combined with graph matching
could provide additional insight regarding the vessel
correspondence. Graph structures can naturally represent
a multitude of real world data and brain vasculature can
be considered, as vessels appear to be a collection of
trees. Recent studies focusing on vessel analysis and
visualization support this notion. They also note how
graphical representation of medical structures could be

beneficial [12, 13, 14, 15, 16, 17]. Rist et al. [18] make
use of vessel graph representation to achieve vessel la-
beling in stroke patients for specific main arteries present
in the Circle of Willis. Moriconi et al. [19] employ
graph matching on brain vessels for vascular network
alignment or registration. Yao et al. [20] utilize graph
matching to identify the aorta and pulmonary artery and
achieve segmentation. Riffaud et al. [21] apply graph
matching to abdominal aortic segmentations for branch
detection and artery identification.

Recent developments in deep learning have introduced
alternative ways to solve graph based problems. Namely,
Graph Neural Networks (GNNs) are a type of neu-
ral network specifically designed to deal with graph
representations. In the realm of vessel related medical
imaging, multiple works utilize these new developments
for vessel classification [15], bifurcation detection [22]
and artery semantic labelling [23, 24, 25]. These works
share a similar notion of extracting visual descriptors
or node features from a Convolutional Neural Network
(CNN) used previously for vessel segmentation. The
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Fig. 2. Pre and post MinIP pairs extracted from input DSA series. They present Anterior-Posterior (AP) (A-B) and Lateral (C-D) orientations.

use of these visual descriptors is well established and
has been used frequently and successfully in computer
vision, as is demonstrated in the well known SuperGlue
[26] model.

With all previous work in mind, we developed and
assessed two main methods of determining vessel cor-
respondence in pre and post-EVT DSA imaging. For
the remainder of this work we shall refer to them as
registration-based vessel matching (RB-VM) and graph
based vessel matching (GB-VM). These methods aim to
produce correspondences automatically by employing a
graphical representation of the cerebral vascular network
and matching procedures as outlined in Figure 1. To
the best of our knowledge, this is the first attempt
to calculating correspondence between complete brain
vascular networks.

This work is structured as follows. Section II outlines
the methodologies employed to achieve our goal and
Section III provides insight on the data used and data
preprocessing. Section IV contains the results and perfor-
mance evaluation of the developed methods. Lastly, Sec-
tion V and Section VI conclude this work by discussing
the findings, limitations of the methods and possible
future developments.

II. METHODS

A. Problem Definition

We are given DSA imaging of patients that have
undergone an EVT procedure following a stroke in-
cident, both before and after the procedure. The goal
is to determine correspondence between the pre and
post-intervention vessels. This allows the comparison
of vessels with no correspondence. These include pre-
intervention vessels which may have disappeared due
to new occlusions, and post-intervention vessels which
signify areas that have been recanalized. The compar-
isons can provide additional insight on the success of
the procedure.

B. Initial Registration

The RB-VM and GB-VM methods use nearly identical
processes until the final matching stage. First, an initial
registration method was used based on the assumption
that better aligned inputs would benefit the matchings.
The registration was performed using Minimum Intensity
Projection (MinIP) images extracted from the pre and
post DSA series illustrated in Figure 2. It consists of
three steps. First, keypoints with their respective scale-
invariant feature descriptors are calculated according to
the SIFT method proposed by Lowe et al. [7]. Fol-
lowing the keypoint localization and feature descriptor
calculations, a match between keypoints is determined
using the Euclidean distance (ED) between their feature
descriptors. The validity of matched points is determined
using a ratio between the closest and second closest
Euclidean distances as described by Lowe et al. [7].
Lastly, the matched keypoints are used to calculate a
transformation (homography) matrix which is used to
perform a perspective transformation on the post-EVT
image. The calculation of the transformation matrix uti-
lizes the Random Sample Consensus (RANSAC) method
to detect outliers in the matches and discard them [27].

Following the transformation of the post-EVT image,
the quality of the registration, in other words the align-
ment between the pre-post images, is evaluated using the
Mutual Information (MI) score. MI is described by the
following equation:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

p(x, y) : Joint Probability Mass Function

p(x) : Marginal Probability Mass Function of X

p(y) : Marginal Probability Mass Function of Y

In this case, the probability mass functions are cal-
culated by creating a bi-dimensional histogram of the
images and converting the bin counts to probability
values. We opted for this to deal with cases where the
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Fig. 3. Example registration of pre and post MinIP DSA series. (A-B) Pre-Post EVT MinIP images. (C) Registered post-EVT image.
(D) Registered post-EVT image overlayed on the pre-EVT image. Gray areas are interpreted as overlapping structures and white areas as
non-overlapping.

registration did not improve alignment. The alignment
was considered improved if the MI was increased after
transformation. Otherwise, the initial unregistered im-
ages were used.

C. Segmentation

Vascular segmentation of the DSA series was an
essential step in developing our methods. The Temporal
UNet model proposed by Su et al. [8] was used to extract
venous and arterial segmentations. In more detail, the
model takes DSA series inputs and produces venous and
arterial segmentation masks. The segmentation model
architecture is provided in Figure 5 and an example
of arterial segmentations can be seen in Figure 4. The
produced methods only made use of the arterial segmen-
tations. This choice was based on the clinical importance
of the vessels. MinIP based vessel segmentations, via a
traditional UNet model, produced several segmentations
with dense vessels which made them quite hard to
distinguish as can be seen in the Appendix A, Figure 12.
The use of MinIP segmentations or the combination of
arteries and veins greatly complicates the subsequent
steps and served as an additional factor for the choice of
arterial segmentations.

D. Centerline Extraction

Centerlines are the basis for creating the graphs. In
order to create the centerlines we applied skeletonization,
also known as thinning, to the vessel segmentations. An
illustration of said centerlines can be seen in Figure 4.
Multiple skeletonization techniques exist. We chose to
use the method proposed by Lee et al. [28], based on
a visual evaluation of the produced skeletons as it pro-
duced comparatively few erroneous branch point exten-
sions. The centerline extraction procedure also produces
the Eucliden Distance Transform (EDT) matrix which

Fig. 4. Illustration of anterior-posterior (AP) (A) and lateral (B)
segmentations along with their skeletonizations displayed as red one
pixel wide lines.

contains the distances to the nearest boundary pixel for
every segmented pixel. Its functionality is highlighted in
Sections II-E and II-G.

Algorithm 1 Graph Generation
Input: Centerlines, EDT

1: Create vertices located at centerline points
2: Add coordinates and radius attributes to vertices
3: Connect neighboring vertices via edges
4: Apply class 1, 2 and isolated segment filters
5: Perform Graph Feature Extraction (Section II-E2)
6: Perform major graph simplification (Section II-E2)
7: Apply class 1+ and 2+ filters

Output: Simplified graph with vertex and edge features

E. Graph Generation

The graph generation process was greatly inspired by
the work of Bumgarner et al. [12]. Below we first discuss
the graph generation and simplification, after which we
examine the graph feature extraction.
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Fig. 5. Network architecture for artery–vein segmentation in DSA series proposed by Su et al. [8]. The features maps used in the first type
of main feature extraction are extracted from the final up-convolution layer of the model and are highlighted in the figure.

1) Graph Generation and Simplification The initial
full graph consists of vertices located at each centerline
point extracted from the centerline extraction step. Every
vertex is assigned two attributes; coordinates and radius.
The radius attribute is determined during the centerline
extraction process via the EDT. EDT refers to calculating
the Euclidean distance (ED) from the centerline point to
the center of the nearest non-vessel neighbor point in the
segmented mask.

Following the vertex creation, an 8-neighborhood area
is scanned to determine the node connectivity and edges
connecting neighboring vertices are generated. Loops
and multiedges are then removed to prevent duplicate
edges. It is essential to mention that vertices are char-
acterized as bifurcation or connection points if they
have more than 2 connecting neighbors. This notion is
used throughout the graph simplification process. For
the remainder of this work, we will refer to them as
bifurcation points.

This initial generated graph results in a vertex count
in the thousands. Such a large number of vertices would
render the GB-VM method infeasible. Therefore, mul-
tiple simplification steps were taken. First, class 1 and
2 filters, as described by Bumgarner et al. [12], were
utilized. The purpose of these filters was to eliminate
clusters, also known as cliques, of bifurcation points.
Specifically, the class 1 filter targets maximal cliques
with 3 or 4 bifurcation points, whereas class 2 targets
clusters between 5 and 50 bifurcation points. Next, iso-
lated vessel segments were identified and removed based
on a predefined length. The mentioned simplification

steps allowed us distinguish between bifurcation points,
endpoints and vessel segment points by the vertex degree
count nd, which was nd > 2 , nd = 1 and nd = 2
respectively.

The next simplifications are applied after the processes
mentioned in Section II-E2, but are outlined here to
maintain consistency. They are separate as these simpli-
fications were designed to simplify the graphs following
the significant reduction mentioned in Section II-E2.
Adding to the already extensive work of Bumgarner et al.
[12], we devised two additional simplification processes.
We refer to them as class 1+ and class 2+ filters. Class
1+ simplifies bifurcation point clusters if the distance be-
tween their nodes is under a defined threshold. Class 2+
complements this by targeting and simplifying segments
formed by bifurcation nodes whose distance between
nodes falls under a certain threshold. The thresholds for
both filters were determined empirically. When vertices
are merged, we assign the average coordinates and radius
as the new vertex features. The external edges connected
to the vertices prior to simplification are connected to
the new vertex and maintain their original features. In
the case of duplicate external connections, the segment
with the largest length is kept. Examples of class 1+ and
2+ filters are provided in Figure 6. These two filters are
used iteratively until no further simplifications can be
performed.

2) Graph Feature Extraction The extraction of fea-
tures from the graphs was performed after the first
simplification steps proposed by Bumgarner et al. [12].
Vessel segments were identified by filtering out all non-
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Fig. 6. Class 1+ and 2+ filters. (A)-(C) correspond to the graphs
before being filtered while (B)-(D) represent the filtered graphs. (A)-
(B) and (C)-(D) depict the class 1+ and class 2+ filters respectively.
The blue circles denote the targeted points while the red lines
connected to them represent their respective edges which are then
removed. The nodes are combined and form new nodes shown in
yellow, maintaining the original external edges.

vessel segment points (i.e. nd ̸= 2) and then sorting
through the remaining individual components. For each
identified segment, the mean, minimum, maximum, and
standard deviation of the segment radius were calculated.
Next, the segment length was calculated using a smooth
path constructed through B-splines. The length was
approximated using ED calculations between a defined
number of points along the spline identified using the
Cox-De Boor algorithm. The use of B-splines prevented
irregular paths that did not reflect the vessel shape
accurately and produced more reliable length measures
[12]. Finally, tortuosity measurements were computed by
finding the arc-cord ratio of the segment, which was
calculated by dividing the segment length by the ED
between the start and end points. Tortuosity was used as
a measure reflecting the bending of the vessel segment.

With the identification of segments and their end-
points, the graph underwent a major reduction. After the
reduction, only the bifurcation nodes were maintained
along with the edges connecting them, as these are of
primary interest. The extracted vessel segment features
were added as edge attributes. The significance of the
graph size reduction can be seen in Figure 7 as the node
count is reduced from thousands to hundreds.

F. Feature Extraction

In order to determine corresponding nodes, feature
values are used in the matching process. There are
two types of features: image-based (i.e. independent of

Fig. 7. Examples of original (A) and simplified (B) graphs where
vertices are represented by red circles and edges as black lines
connecting them.

the graph), and graph-based (i.e. representing intrinsic
properties of nodes and edges). As such, this section
focuses on the image-based features and we refer to the
graph-based in Section II-E. We have experimented with
two types of feature extraction methods.

1) UNet Feature Maps. The UNet based feature
extraction method is directly related to the segmentation
model. In more detail, 64 feature maps are extracted
from the final up-convolution layer of the segmentation
model as displayed in Figure 5. This extraction layer was
chosen based on the hypothesis that the GB-VM methods
would benefit from feature maps that make use of both
high and low level features. This is a defining property
of features generated by the contracting and expansive
UNet architecture paired with the use of skip connec-
tions. The feature maps of the post-EVT imaging were
transformed using the calculated transformation matrix
mentioned in Section II-B. Visualization of a feature
map for a DSA sequence is provided in Appendix A,
Figure 13.

2) Leung-Malik (LM) Filter Bank Feature Maps.
This feature extraction method utilizes Leung-Malik
filter banks [29] to generate and extract the required
features. The LM set is a multi scale, multi orienta-
tion filter bank with 48 filters. It consists of first and
second derivatives of Gaussians at 6 orientations and 3
scales making a total of 36; 8 Laplacian of Gaussian
(LOG) filters; and 4 Gaussians. The filters occur at the
basic scales σ = [

√
2, 2, 2

√
2, 4]. The first and second

derivative filters occur at the first three scales with an
elongation factor of 3 (i.e. σx = σ and σy = 3σx). The
Gaussians occur at the four basic scales while the 8 LOG
filters occur at σ and 3σ. The filter bank and a generated
feature map are shown in Appendix A, Figure 14 and
Figure 15 respectively.
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G. RB-VM Approach

The RB-VM vessel correspondence utilizes the ma-
jority of processes seen in Figure 1 with some distinc-
tions. The registration, segmentation and skeletonization
processes are applied as described in their respective
sections. The graph creation is nearly identical. However,
only the initial group of simplifications mentioned in
Section II-E1 were applied. Namely, class 1 and 2 filters
and isolated segment removal. Next, vessel identification
was performed as described in Section II-E2. This was
then used in tandem with the previously calculated
skeletons and segmentations to create a labeled mask of
all segments in the graphs. Specifically, centerline pixels
were labeled based on the segment they were a part of
resulting in a labeled skeleton. The watershed algorithm
[30] was then applied, utilizing the labeled skeletons, the
EDT, and the arterial segmentations. Example labeled
segmentations are provided in Figure 8.

Fig. 8. Labeled vessel segmentation mask. (A)-(B) depict the
pre-post labeled segmentation masks respectively. Each segment is
characterized by a different color.

The correspondence was then calculated in two steps.
First, a pixel-wise method utilizing the segmentations
was used. Segmented pixels present in both pre and post
procedure segmentations were considered to be matched.
The matching procedure is performed scanning a 7 × 7
square region of interest centered at the corresponding
pixel in the other image, and assigning the closest
segmented pixel if any were present. This allows close
neighbouring matches and was performed on all seg-
mented pixels in the pre EVT image. Lastly, to attain the
final vessel correspondence, the labeled segment masks
and the matched segmented pixels were combined. A
vessel segment was considered to have a corresponding
vessel in the other image when the number of matched
segmented pixels exceeded the non-segmented ones. An

additional figure (Figure 16) providing further clarifica-
tion of the proposed procedures is given in Appendix A.

H. GB-VM Approaches

The GB-VM approaches are shown in Figure 1.
We implemented three different versions that differ in
how they apply feature matching. These are GB-VM-
Patched (GB-VM-P), GB-VM-Single-Scale (GB-VM-
SS) and GB-VM-Multi-Scale (GB-VM-MS).

These methods are inspired by the GM combinatorial
problem. GM is a computational problem that aims to
find an optimal correspondence between vertices in two
or more graphs. This can be achieved by maximizing
their node and edge affinities. In this case, the vertices
represent the vessel bifurcations or connection points.
One way to achieve this correspondence is through
feature matching. This approach is demonstrated in the
well known SuperGlue [26] model which served as a
form of inspiration. Feature matching refers to finding
correspondences between pairs of vertices by taking into
account the affinity of their respective feature vectors
fG1

i ,∀i ∈ G1 and fG2

j ,∀i ∈ G2, where G1, G2 represent
the pre-post graphs respectively.

In order to determine correspondence between pre-
post graph vertices we considered the vertex-to-vertex
affinities. A vertex-to-vertex correspondence can be rep-
resented by an assignment matrix M ∈ {0, 1}n1×n2

where n1 and n2 represent the number of pre-post graph
nodes respectively. As described by Sarlin et al. [26], the
assignment matrix M can be obtained by computing a
similarity matrix S ∈ ℜn1×n2 for all possible matches
and maximizing the total score

∑
i,j Si,jMi,j under the

constraints that MT 1n1
≤ 1n2

and M1n2
= 1n1

. This
formulation is analogous to solving a linear assignment
problem. The vertex-wise similarity is computed using
the inner product as described by the equation:

Si,j =< fG1

i , fG2

j >,∀(i, j) ∈ G1 ×G2 (2)

where < ., . > denotes the inner product, and G1, G2

represent the pre-post graphs respectively.
The linear assignment problem discussed above can

be solved successfully using the Hungarian algorithm.
Classically used for bipartite graph matching [26], the
algorithm iteratively normalizes rows and columns of the
similarity matrix S until a solution is reached.

The matching procedure followed by these approaches
was as follows. Vertex feature vectors were created
utilizing the UNet or LM feature maps (See Section II-F)
and a defined neighborhood size. The feature vectors
contained 64 and 48 features for UNet and LM-Filter
Bank feature maps respectively. A defined neighborhood
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was used to combine feature map responses from a wider
area rather than the sole pixel/vertex of interest. The hy-
pothesis was that this would improve the descriptiveness
of vertex features by considering neighboring responses.
The extracted vertex features were then combined with
the graph vertex attributes (described in Section II-E1),
namely, the vertex coordinates and radius. These steps
resulted in a feature vector, with a length dependent
on the features used, for each vertex in the examined
pre-post graphs. Combinations of the feature map and
graph generated features were experimented with to
determine their importance. Next, using the computed
feature vectors, the vertex-wise similarity matrix S is
calculated. The Hungarian algorithm provided by the
Pygmtools library (version 0.5.2) [31] was then applied
to obtain a doubly-stochastic assignment matrix. The
Hungarian algorithm was originally designed to work
with square matrices. As such, S was padded in the
case where n1 ̸= n2. The resulting assignment matrix
M was used draw the matching nodes as can be seen in
Figure 11.

To reduce cluttering, matched vertices were connected
if the ED between them was under a threshold. It offers
similar functionality to a filter, where unlikely or outlier
matches are filtered out. This assumption is only valid
in the case where the initial registration is successful or
if the vessels are well aligned prior to the registration.
Otherwise, true matches may exceed the threshold and
be filtered out resulting in a misleading visualization.

The three approaches,GB-VM-P, GB-VM-SS and GB-
VM-MS, are mainly distinguished by how the feature
matching is performed. In more detail, GB-VM-SS used
the so called single-scale graphs which were the pre-post
graphs created via the graph generation step. GB-VM-
MS divided the graphs into multiple subgraphs based
on different vessel radii scales followed by an iterative
matching procedure. A radius scale refers to a range of
radii (e.g. between 3 and 5) where included vertices
and their edges generate new subgraphs. Lastly, GB-
VM-P, as the name suggests, split the original seg-
mentation images into patches, allowing for a more
localized approach. The patch size was set to 128× 128
which split the original 512 × 512 segmentations into
16 patches. In the case of GB-VM-MS and GB-VM-P
the complete matching was achieved iteratively by com-
bining the intermediate matches. For the GM-VM-MS
method, intermediate matches refer to matches obtained
on the different scale graphs. On the other hand, for
the GM-VM-P method intermediate matches are matches
obtained from individual patches.

III. DATA

In this work, we used a subset of the MR CLEAN
Registry [32] dataset for developing and evaluating the
proposed methods. The MR CLEAN Registry is a multi-
center registry which contains patients residing in the
Netherlands that suffered acute ischemic stroke and
underwent EVT between March 2014 and December
2018 [32]. The DSA series included in the registry con-
tain anterior–posterior (AP) or lateral views (Figure 2)
and were acquired using various imaging systems (e.g.,
Philips, GE, and Siemens). Specifically, our original
dataset included the first 50 patients present in the MR
CLEAN Registry (Part 1 & 2). These were extracted
from a larger dataset of 2000 patients including patients
with pre- and post-EVT DSA series. Given the use of
the segmentation pipeline presented by Su et al. [8], a
similar data selection and preprocessing procedure was
followed.

A. Data Selection

First, DSA series missing time information were
excluded. The final number of patients following the
selection process was 47 with a total number of 164
DSA series.

B. Data Preprocessing

The DSA series had varying lengths and were short-
ened to a maximum of 20 frames. Moreover, we linearly
resampled the temporal resolution of the series to 1
fps and normalized the intensity values to be in the
range of [0,255]. Following these steps, MinIP images
were extracted from the selected and processed DSA
series. Two additional preprocessing steps preceded the
registration of MinIP images. First, the extracted MinIP
images contained text about imaging attributes near the
corners of the image. This text was removed using
contouring followed by masking of the areas. Moreover,
a number of images contained black borders at given
boundaries which were also removed. These steps were
taken to prevent the registration being affected by these
artifacts as it was greatly affected if not applied, as
demonstrated in Appendix A, Figure 17 and Figure 18.

C. Data Annotation

The annotations used for evaluating both proposed
methods were created by the authors using a web-based
graph matching annotation tool built in-house available
at: GM Annotation Tool. The images used to create
annotations consisted of corresponding patches including
the arterial segmentations along with their respective

https://github.com/maberrospi/GM-Annotation-Tool
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skeletons. As visualized in Figure 9, the annotations
result in a list of bifurcation or vessel connection points
between corresponding pre and post-EVT DSA arterial
segmentation patches. The complete interface of the
annotation tool is provided in Appendix A, Figure 19.

Fig. 9. Annotations used as ground truth for evaluating the proposed
methods. The images correspond to the pre (A) and post-EVT
(B) patches respectively. The patched images include the arterial
segmentations with their respective skeletons. The matching points in
the two images have identical colors and mark bifurcation or vessel
connection points that exist before and after the intervention.

During the generation of these annotations, the dataset
was further refined. Initially, 2 random patches were
extracted per patient orientation (AP or Lateral) to in-
crease variability. The patches were randomly sampled
from the 16 128 × 128 patches generated from the
original segmentations. The total number of patches
extracted was 328 which translates to 164 pairs of pre-
post patches. The number of pairs is equal to the number
of DSA series used. Upon visual inspection of the
collected patches, multiple patches were either replaced
or the entire DSA series was discarded. The patches
were judged based on the criteria mentioned in Table I.
Patches were replaced when identification of matching
bifurcations was too challenging. On the other hand,
DSA series were discarded when registration failed and
the initial alignment was subpar. In addition, they were
discarded when the segmentation quality was insufficient
or when the registration failed but was undetected by the
MI score. The cases where DSA series were discarded
due to bad registration are considered failures of the
RB-VM method. The series discarded due to the rest
of the criteria are considered failures for both the RB-
VM and GB-VM methods. Finally, the evaluation dataset
consisted of 35 patients with a total of 119 DSA series
and 238 patches or 119 pairs.

IV. EXPERIMENTS AND RESULTS

The proposed GB-VM methods depend on several pa-
rameters. These include the feature maps used (UNet or
LM Filter Bank), the neighborhood size used to extract

features from the feature maps, the combination of vertex
features used and lastly the type of normalization applied
to the features. All method performances were assessed,
with additional experiments exploring the impact of the
parameters mentioned above on the GB-VM methods.
All performances are reported in Table III.

A. Evaluation Metrics

The methods were assessed using the manually anno-
tated correspondences mentioned in Section III. They are
evaluated in terms of their sensitivity (Recall) defined by
the following:

Sensitivity(Recall) =
TP

TP + FN
(3)

where TP and FN are True Positive and False Negative
respectively. The meaning of TP and FN were different
depending on the method. In the context of the RB-
VM method, a TP match was considered when a pair of
matching annotated points were present in the matched
segments identified by the method. FN matches were all
the annotated points that were not part of an identified
matched segment. On the other hand, in the case of
GB-VM methods, a TP exists when a pair of annotated
points is correctly matched and is FN otherwise. The
annotations create a point (pixel) correspondence, which
is likely not exactly reproduced by the GB-VM methods.
We therefore consider matches by the method that are
in a neighbourhood around the annotations and evaluate
the vertices present in that neighborhood. If no vertices
are present, the annotation is overlooked. We do not
consider False Positive (FP) and True Negative (TN)
metrics. Given that our annotations were incomplete
and imperfect, when considering the number of vertices
present in the graphs, these values would not offer any
meaningful insights.

95% confidence intervals were calculated for the recall
metric via bootstrap resampling of the evaluation data.
Specifically, random samples were selected with replace-
ment from the annotated patches 20 times and the recall
metric was calculated for these sets. The 95% confidence

TABLE I
Series removal criteria during annotations.

Criteria (# of removals)

Bad SIFT registration and bad initial alignment (9)

Challenging identification of matching bifurcations (3)

Bad SIFT registration undetected by MI score (7)

Faulty text or border removal (1)

Segmentation of insufficient quality (7)
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TABLE II
Resulting metrics for all initial experiments. The optimal parameters are used for every subsequent experiment except the case of feature

normalization where the features used are only LM features. Bold values indicate the best performing parameter per experiment and
underlined values indicate the best performing method.

Experiment
GB-VM Patched
(GB-VM-P)

GB-VM Single-
Scale (GB-VM-
SS)

GB-VM Multi-
Scale (GB-VM-
MS)

3 (8-neighboring pixels) 46.3 42.3 45.6
5 (24-neighboring pixels) 47.4 41.1 43.0
7 (48-neighboring pixels) 46.2 36.7 40.9
9 (80-neighboring pixels) 44.7 34.5 39.3
LM Features 47.4 42.3 45.6
LM Features + Coordinates 51.5 43.3 40.3
LM Features + Radius 47.3 42.3 45.3
LM Features + Coordinates + Radius 51.5 43.4 40.6
None 47.4 42.3 45.6
Z-score Standardization (Instance) 47.1 41.4 45.3
Min-Max Normalization (Instance) 43.1 35.2 34.9
Z-score Standardization (Distribution) 46.1 40.0 43.3
Min-Max Normalization (Distribution) 39.6 29.4 30.3

Parameter Recall (%)

# Neighbors

Features Used

Feature Normalization

intervals were computed using the percentile method by
finding the 2.5th and 97.5th percentile of the calculated
values. The performance of the algorithms given varying
parameters was considered significantly different when
their recall metrics did not coincide within their 95%
confidence intervals.

Additionally, the computational efficiency of methods
was recorded. The time was calculated as the average
time required to produce matchings per patient over all
the data used during the evaluations.

Regarding the GB-VM approaches, initial experiments
were performed to assess their performance. These ex-
periments report on the recall metric calculated on the
evaluation dataset without the use of bootstrap resam-
pling and 95% confidence intervals, to limit the com-
putational time needed to a feasible amount. As shown
in the initial results supplied in Table II, the GB-VM-P
method outperformed both GB-VM-SS and GB-VM-MS
and was thus selected for subsequent evaluations.

B. Implementation

The proposed methods have multiple parameters
which are outlined in this section.

For the registration, we utilized the SIFT, homography
matrix calculation and perspective transformation im-
plementations provided by the OpenCV library (version
4.8.1) [33]. RANSAC was used during the homography
matrix calculation with a reprojection threshold of 5 and
maximum iterations set to 2000 (default).

The skeletonization and watershed algorithm imple-
mentations provided by the scikit-image package (ver-

sion 0.22.0) [34] were used for centerline extraction and
to create the labeled arterial segmentations.

During the feature extraction using the LM filter
banks, the feature maps were calculated by applying the
filters on the MinIP image. To achieve this, both the
MinIP images and the filters were transformed to the
frequency domain. Next, Fast Fourier Transform (FFT)
was used to get the frequency response followed by the
Inverse FFT (IFFT) to convert our data back to the spatial
domain. This approach was preferred compared to the
spatial convolution alternative as the execution time was
reduced by a factor of ≃ 40.

The graph generation process was performed using an
isolated vessel segment filter length of 10, class 1+ vertex
distance threshold of 10 and class 2+ distance threshold
of 4. The length in this case refers to the number of
pixels or vertices that make up the segment and distance
refers to the maximum pixel distance between vertices.

Four radii scales were used when experimenting with
the GB-VM-MS method [(0-2), (2-3), (3-4), 4]. Each
scale refers to vessels having a minimum and maximum
radius (e.g. (min=0-max=2)).

Lastly, for the visualization of the GB-VM methods,
the ED threshold used when plotting matched vertices
was set to 15 (≃ 10 pixels)

C. RB-VM Results

The performance of the RB-VM method is shown at
the top of Table III. The calculated recall was 82.7%
(78.2; 85.7).
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TABLE III
Resulting metrics for all experiments. The recall is given with its 95% confidence intervals. Bold values indicate the best performing

parameter per experiment.

Method Experiment Parameter Recall (%)

RB-VM - - 82.7 (78.2; 85.7)a

Temporal UNet 9.7 (7.3; 11.7)
LM Filter Bank 47.5 (43.4; 51.0)
3 (8-neighboring pixels) 46.2 (42.7; 49.3)
5 (24-neighboring pixels) 47.5 (43.4; 51.0)
7 (48-neighboring pixels) 45.8 (41.8; 49.7)
9 (80-neighboring pixels) 44.4 (39.8; 47.3)
LM Features 47.5 (43.4; 51.0)
LM Features + Coordinates 51.3 (47.4; 54.3)
LM Features + Radius 47.3 (43.3; 50.1)
LM Features + Coordinates + Radius 51.3 (47.4; 54.3)
None 47.5 (43.4; 51.0)
Z-score Standardization (Instance) 47.4 (42.2; 51.4)
Min-Max Normalization (Instance) 43.5 (38.2; 48.0)
Z-score Standardization (Distribution) 46.3 (42.0; 49.9)
Min-Max Normalization (Distribution) 40.1 (34.5; 45.6)

GB-VM
Patched (GB-VM-P)

Feature map

# Neighbors

Features used

Feature Normalization

a Metric is computed different to the rest, and a direct quantitative comparison can not be made.

D. Experiment 1: Feature Maps

The performance using both UNet and LM filter bank
feature maps was compared to identify the best approach.
The recall results are presented in Table III. The other
parameters were set to the following values. We set the
neighborhood size to 5, used only the features extracted
from the feature maps, and did not apply any feature
normalization.

The performance was significantly improved when us-
ing the LM filter bank features compared to the Temporal
UNet features with a recall of 47.5% (43.4;51.0) and
9.7% (7.3;11.7) respectively. Considering the results, the
remaining experiments were performed using the LM
filter bank feature maps.

In terms of computational efficiency, UNet and LM
filter bank feature maps took on average 7.2s and 1.7s
respectively. The GB-VM-P method computation time
was determined on an individual patch basis which was
not representative of a complete patient. To account for
this, we provide an expected time per patient of 4.4s.
This was calculated based on the assumption that 12
out of 16 total patches include vessels on average. The
patches with no vessels present were not processed.

E. Experiment 2: Number of Neighbors

To investigate the effect of different size neighbor-
hoods used during feature extraction, four neighborhood

sizes were explored; 3, 5, 7, 9. The sizes refer to the size
(in pixels) of the square ROI from which the features
were sampled and their performance is displayed in
Table III. Similarly to the first experiment, we only
used the LM features and did not apply any feature
normalization.

While the different neighborhoods do not have a statis-
tically significant performance difference, on average the
neighborhood size of 5 performed slightly better than the
rest with a recall of 47.5% (43.4; 51.0). Consequently, a
neighborhood of 5 was selected as the optimal choice.

Computational efficiency is similar to the one men-
tioned in Section IV-D with a slight increase of ≈ 1s as
the neighborhood size increases.

F. Experiment 3: Features used

In order to gain insight into the added value of the
graph-extracted features for the matching, combinations
of all features were considered. We use a neighborhood
size of 5. The neighborhood size was chosen based on
the optimal value determined from Experiment 2. Feature
normalization was not applied to maintain consistency
across the experiments. However, additional insightful
experiments regarding its effect with relation to the fea-
tures used are provided in Appendix B. The performance
measures are presented in Table III.
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The metrics suggest that the inclusion of the coor-
dinates as features improve the average performance.
However, the results for LM features and LM features
plus coordinates are comparable, as the metrics fall
within each other’s 95% confidence interval. Similarly,
the inclusion of coordinate features outperforms the
radius features with recalls of 51.3% (47.4 ; 54.3) and
47.3% (43.3; 50.1) respectively but is not statistically
significant. It is noteworthy that, the inclusion of radius
features leads to slightly reduced performance compared
to only using the LM features. When both coordinates
and radius features are included the results are identical
to solely including the coordinates.

G. Experiment 4: Feature Normalization

The effect of feature normalization was tested by
normalizing the features using two different approaches:
Z-score standardization and min-max normalization. The
type of normalization was further divided into instance
and distribution based. Instance based refers to cal-
culating the normalization parameters (mean, standard
deviation, minimum, maximum) per instance, whereas
distribution based indicates a calculation using the en-
tire dataset. For these experiments the optimal choice
from experiment 2 (neighborhood size of 5) was used.
Moreover, solely the LM features were used. Additional
experiments exploring the effect of normalization with
regards to the features used are provided in Appendix B.

Interestingly, significant mean differences can be seen
between the non-normalized and min-max distribution
based normalization performance with 47.5% (43.4;
51.0) and 40.1% (34.5; 45.6) respectively, but their
performance is comparable according to the 95% con-
fidence intervals. The instance based min-max normal-
ization’s performance is also substantially reduced but
is not statistically significant. On the other hand, z-
score normalization’s performance is comparable to the
non-normalized with the distribution based only slightly
lacking with a recall of 46.3% (42.0; 49.9). It is no-
ticeable that the instance based normalization’s average
performance is improved compared to the distribution
based.

V. DISCUSSION

In this section, we briefly discuss the methods used
to find correspondences, their limitations and possible
future research.

A. General

Determining the success of interventional procedures
following ischemic stroke is a critical step in the therapy

of patients. The current assessment procedures rely on
visual evaluation of medical imaging and are accom-
panied by several shortcomings such as intra-observer
variability. To overcome the limitations, we proposed
two automated methods which aim to identify ves-
sel correspondences between pre-post procedure DSA
imaging. The methods are able to produce informative
visualizations and may assist clinicians in making well-
informed decisions.

The RB-VM methods resulted in a recall of 82.7%
(78.2; 85.7) and no parameter experimentation was per-
formed. The best performing GB-VM method was GB-
VM-P with the best performing experiment achieving a
recall of 51.3% (47.4; 54.3).

Notably, the performance was substantially improved
when using LM features instead of Temporal UNet
features. We hypothesize that this was due to the in-
herent nature of the features and what their original
purpose was. Since they were extracted from a layer of
a deep learning segmentation model, it is likely that the
feature maps were steered towards identifying vascular
segments. While this was ideal for the segmentation
model, the extracted features were likely not descriptive
enough for the task at hand. On the other hand, the
features generated from the LM filter banks seem to
be more distinctive and allow for increased bifurcation
matchings and improved performance.

In terms of neighborhood size, for the GB-VM-P
method the optimal was found to be 5. This indicates that
while taking more neighboring pixels into account when
calculating the features was beneficial, including too
many neighbors was counter-productive. One possible
interpretation could be that adding too many neighbors
leads to more generalized features and decreases the
descriptiveness of individual points.

It is noteworthy that the inclusion of radius features
slightly reduces the performance of GB-VM methods.
However, it is not statistically significant. A possible
explanation, is the radial difference between matching
vertices caused from imaging, segmentation and skele-
tonization discrepancies. To elaborate, the contrast flow
may differ between pre-post EVT imaging. As a result,
matching vessels may appear to have different diameters.
In addition, segmentation and skeletonization errors may
also influence vessel diameters. Therefore, this could
be an indication that the inclusion of radius features
is not optimal. In addition, we observe that when both
coordinates and radius features are included the results
are identical to solely including the coordinates. This can
be considered evidence of the greater coordinate features
influence on the final outcome.

With regards to the feature normalization experiments,
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Fig. 10. Example results from the RB-VM method. The first row depict the pre- and post-EVT masked arterial matches. The second row
depicts the matched vessels on the original MinIP DSA images. Corresponding vessels are shown in red and missing or new vessels are
displayed in blue.

Fig. 11. Example results from the GB-VM-P method. Matches on AP (A-B) and lateral (C-D) orientations displayed on the arterial
segmentations (A & C) and on the MinIPs (B & D). Left and right images are pre and post EVT respectively.
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we notice improved average performance with the use
of instance based normalization compared to distribution
based. A possible explanation for this could be a kind of
bias correction per instance. By bias correction we refer
to correcting differences in the mean of feature values.

The additional experiments exploring the effect of nor-
malization with relation to the features used (Table IV)
suggest that z-score normalization tends to outperform
min-max normalization in both instance and distribution
based cases. Additionally, when combining LM features
and coordinates or radius, z-score normalization im-
proves both GB-VM-SS and MS methods but has little
effect on the GB-VM-P method.

A notable limitation of the RB-VM method is its
dependence on the quality of the registration. If not
successful, the performance is expected to reduce sig-
nificantly since the method is primarily based on the
spatial location of the vessels. The GB-VM methods
were developed as a means to combat this limitation and
allow vessel matching regardless of the vessel positions.

Furthermore, the GB-VM methods produce a match-
ing between points in the pre-post EVT imaging but
they lack in creating a visual vessel identification similar
to the RB-VM method. The GB-VM methods could
be enhanced by generating matching vessels using a
heuristic approach that considers sets of paired vessel
endpoints. Such an approach could also give rise to an
alternative evaluation method more suited to the RB-
VM method, allowing for a more fitting and reliable
comparison.

Moreover, we hypothesized that the MI score would
be sufficient to detect unsuccessful registrations. How-
ever, during the visual evaluation performed during the
annotation process, multiple cases were detected where
the MI score failed. A potential cause for this could be
significant projection distortions reflecting the non-ideal
transformation matrix. These distortions might cause
misleading MI scores. One way to mitigate this limitation
could be to include an additional measure, such as a
maximum projection threshold, resembling a two-factor
evaluation of the registration quality. Alternatively, a
more direct approach would be to let clinicians assess
the registration and only then consider the final results.

It is important to mention that while registration
is included in the pipeline of GB-VM methods, it is
not actually necessary. It was utilized in our case as
the evaluation data was generated using the registered
images and annotating badly registered patches would
be extremely difficult. In addition, we hypothesized that
registered images paired with the use of coordinate
features could elevate matching performance. However,
when the coordinate features are not used, registration

is not necessary. In this case, the feature matching is
independent of the spatial location of vertices. This
property is a significant distinction between the RB-VM
and GB-VM methods. Conversely, the matched points
can be used to register pre-post images, similarly to
how the SIFT registration is performed. The ability to
register images based on matching bifurcations or vessel
connections may pave the way to improved vascular
brain imaging registration that is unaffected by additional
artifacts. Such a procedure could simultaneously register
the images and provide insight into new, missing and
matched vascular segments.

B. Limitations

With respect to the RB-VM evaluation, it is important
to acknowledge the performance inflation compared to
the GB-VM methods. The results might be overestimated
since the testing data was originally created to evaluate
the GB-VM method and later adapted for both. While
the GB-VM methods require an exact match between
points, the RB-VM evaluation considers a greater area
which greatly increases the chances of correct matches.
This design choice did not allow for a valid comparison
between the RB- and GB-VM methods.

In relation to GB-VM methods, we note that the per-
formance increase when using coordinate features might
be biased and may require a successful registration prior
to the calculation. As such, we suggest the coordinate
features only be used when successful registration is
performed beforehand.

C. Future Research

A multitude of ways could be used to enhance our
work. First we focus on potential ways to improve the
current work and then we explore alternative methods to
solve the problem.

With regards to the RB-VM method, we chose a regis-
tration technique using SIFT as a baseline. Evaluating the
performance of the registration was outside the scope of
our research. However, empirically, the registration tends
to fail occasionally. This is demonstrated by the number
of data excluded during the annotation process discussed
in Section III. We propose that alternative registration
methods with increased robustness and accuracy can
benefit and improve this method.

Furthermore, the points used as vertices are not only
bifurcation points but also vessel connection points cre-
ated by projections from the original X-Ray imaging.
The algorithms could benefit from a bifurcation detection
algorithm [16, 21, 22]. That could potentially simplify
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the problem by removing unwanted vertices and there-
fore improve matching performance. Similarly, including
the segment pruning proposed by Bumgarner et al. [12]
in the graph generation process can remove additional
vertices (and edges) simplifying the problem further.

Additionally, in the case of feature extraction via LM
filter banks, the features are not scale or rotationally
invariant. While the filters include multiple scales and
orientations, the extracted features are not inherently
invariant. An alternative would be to use a different
feature extraction method, such as Schmid or Maximum
Response (MRS4) filter banks, which generate rotational
and/or scale invariant features [35].

In addition, different ways to calculate the similarity
of feature vectors could be used. In our experiments, we
focused on using the inner product. Even though the in-
ner product provides a quantitative measure of similarity
the methods may benefit from different measures. Al-
ternatively, cosine similarity or feature vector euclidean
distances are plausible choices. Cosine similarity is the
inner product normalized by the vectors’ L2 norms and
has been used widely in natural language processing
applications [36]. This type of similarity focuses on the
angular alignment of vectors whereas the inner product
also takes their magnitude into account.

Moreover, graph connectivity and structure could play
vital roles in identifying matching vessels. The structural
information can be considered if modern techniques
such as GNNs are used. In more detail, GNNs can
integrate structural information via their message passing
capabilities. In short, message passing is a technique that
iteratively aggregates features from connected vertices.
As a result, the features of individual vertices are influ-
enced by their neighbors introducing additional structural
information. This can be done in both supervised and
unsupervised ways. One example could be to use the
GraphSAGE [37] model with an unsupervised loss func-
tion. With a sufficient amount of good quality ground
truth data, supervised learning techniques that learn how
to produce the assignment matrix could also be used [38,
39, 40, 41]. Importantly, acquiring good quality ground
truth data is very expensive time-wise and in the case
of vessel segments may even be considered impractical.
Wang et al. [42] proposed achieving a matching us-
ing discrepancy minimization between traditional graph
matching techniques and a trainable model. Utilizing
such a technique could be something worth exploring
further for our current application.

VI. CONCLUSIONS

In this study, we explored two approaches that detect
vessel correspondences between pre and post-EVT DSA

imaging. Our goal was to enhance the current post
procedural assessment following ischemic stroke therapy.
It marks a significant step towards stroke therapy assess-
ment with minimized inter- and intra-observer variation.
The RB-VM method achieved a recall of 82.7% (78.2;
85.7) followed by the best performing GB-VM method
with 51.3% (47.4; 54.3). Our methods serve as examples
of how graph based algorithms can be utilized for stroke
therapy evaluation and should be explored further.
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APPENDIX A
SUPPORTING FIGURES

Fig. 12. MinIP segmentations generated from the classic UNet model [8]. (A)-(B) depict the anterior–posterior (AP) and Lateral views
respectively.

Fig. 13. 64 Extracted feature maps from the final layer of the Temporal UNet model [8].
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Fig. 14. 48 filters generated by the Leung-Malik Filter Bank. Starting from the top left moving right, the first 36 filters are the first and
second derivatives of Gaussian filters, the next 4 are the Gaussian filters and the remaining 8 are the Laplacian of Gaussian filters, all with
their respective orientations and scales.

Fig. 15. 48 Extracted feature maps using the Leung-Malik Filters. The individual images match the individual filters provided in Figure 14.

Fig. 16. Illustration of calculating matching segment using RB-VM. The left segment represents the segmentation of the original vessel
segment being tested. The red and blue sections depict the matched and non-matched segmented pixels respectively. The right vessel segment
depicts a matched vessel segment given that the number of matched segmented pixels exceeds the non-matched ones.
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Fig. 17. Keypoint pairs detected via the SIFT algorithm on the MinIP pre-post images before the removal of unwanted text and borders. The
circles point to multiple occurrences of text being matched. This prevented the calculation of a good transformation matrix and therefore a
good registration.

Fig. 18. SIFT transformation before the removal of unwanted text and borders from MinIP images.
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Fig. 19. Graph Matching Annotation Tool Interface used for generating the required annotations for quantitative evaluation of the proposed
methods.
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APPENDIX B
ADDITIONAL RESULTS

The additional comparisons present in this section provide insight in the different GB-VM methods performance
as well as alternative permutations of parameters and their influence on each other. The recall metric is calculated
using the evaluation dataset. Table IV looks at the effect of feature normalization based on the features used. The
optimal neighborhood parameters calculated in Table II are used for all additional experiments.

TABLE IV
Experiments comparing the effect of feature normalization based on the features used. Bold values indicate the best performing parameter

per experiment and underlined values indicate the best performing method.

Features Used Feature Normalization GB-VM Patched
(GB-VM-P)

GB-VM Single-
Scale (GB-VM-
SS)

GB-VM Multi-
Scale (GB-VM-
MS)

None 47.4 42.3 45.6
Z-score Standardization (Instance) 47.1 41.4 45.3
Min-Max Normalization (Instance) 43.1 35.2 34.9
Z-score Standardization (Distribution) 46.1 40.0 43.3
Min-Max Normalization (Distribution) 39.6 29.4 30.3
None 51.5 43.3 40.3
Z-score Standardization (Instance) 50.4 47.7 49.5
Min-Max Normalization (Instance) 47.3 43.6 41.3
Z-score Standardization (Distribution) 46.9 46.2 49.4
Min-Max Normalization (Distribution) 42.1 41.4 40.3
None 47.3 42.3 45.3
Z-score Standardization (Instance) 47.3 42.9 45.9
Min-Max Normalization (Instance) 43.9 35.5 35.5
Z-score Standardization (Distribution) 46.0 43.8 45.3
Min-Max Normalization (Distribution) 40.1 30.1 30.2
None 51.5 43.4 40.6
Z-score Standardization (Instance) 51.2 47.9 48.7
Min-Max Normalization (Instance) 48.5 44.7 43.1
Z-score Standardization (Distribution) 47.2 45.9 49.1
Min-Max Normalization (Distribution) 43.0 41.6 40.4

Parameters Recall (%)

LM Features

LM Features + Coordinates

LM Features + Radius

LM Features + Coordinates + Radius
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(a) GB-VM-Single-Scale (SS) (b) GB-VM-Multi-Scale (MS)

(c) GB-VM-Patched (P)

Fig. 20. Performance metric (Recall) line plots depicting the interaction of features used and type of normalization. The graphs are generated
from the experiments presented in Table IV.
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Table V, reports on the results when coordinates are always normalized between 0-1 using min-max normalization.
Minimum and maximum values were decided based on the image shape. The normalization was performed to bring
all feature values to similar scales and prevent specific features from having an increased effect. The coordinates
had a uniform distribution based on the image shape. Therefore, min-max normalization was considered a good fit.
The recall metric is calculated using the evaluation dataset.

TABLE V
Experiments comparing the effect of feature normalization based on the features used. The coordinates are always normalized using

min-max normalization. Bold values indicate the best performing parameter combination per depending on the features used and
underlined values indicate the best performing method.

Features Used Feature Normalization GB-VM Patched
(GB-VM-P)

GB-VM Single-
Scale (GB-VM-
SS)

GB-VM Multi-
Scale (GB-VM-
MS)

None 47.4 42.3 45.6
Z-score Standardization (Instance) 47.1 41.4 45.3
Min-Max Normalization (Instance) 43.1 35.2 34.9
Z-score Standardization (Distribution) 46.1 40.0 43.3
Min-Max Normalization (Distribution) 39.6 29.4 30.3
None 47.4 42.3 45.6
Z-score Standardization (Instance) 47.2 42.6 45.4
Min-Max Normalization (Instance) 47.3 43.6 41.3
Z-score Standardization (Distribution) 46.2 45.1 43.5
Min-Max Normalization (Distribution) 47.1 41.6 40.4
None 47.3 42.3 45.3
Z-score Standardization (Instance) 47.3 42.9 45.9
Min-Max Normalization (Instance) 43.9 35.5 35.5
Z-score Standardization (Distribution) 46.0 43.8 45.3
Min-Max Normalization (Distribution) 40.1 30.1 30.2
None 47.3 42.3 45.3
Z-score Standardization (Instance) 48.2 42.9 46.1
Min-Max Normalization (Instance) 48.5 44.7 43.1
Z-score Standardization (Distribution) 46.2 45.2 45.6
Min-Max Normalization (Distribution) 47.6 41.6 40.4

Parameters Recall (%)

LM Features

LM Features + Coordinates

LM Features + Radius

LM Features + Coordinates + Radius
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(a) GB-VM-Patched (P) (b) GB-VM-Single-Scale (SS)

(c) GB-VM-Multi-Scale (MS)

Fig. 21. Performance metric (Recall) line plots depicting the interaction of features used and type of normalization. The graphs are generated
from the experiments presented in Table V.
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Abstract—This review explores the utilization of graph match-
ing (GM) methodologies in the realm of medical imaging, out-
lining the foundational concepts, methodological classifications,
variant implementations, and potential future trajectories. GM
refers to the problem of finding node correspondence between
graphs through maximizing node and edge similarities. The
survey encompasses diverse inexact GM approaches, categorizing
them into discrete methods, relaxation and replacement tech-
niques, deep learning methodologies, and miscellaneous strate-
gies. Discrete methods, such as tree search algorithms and Monte
Carlo approaches, are computationally intensive yet proficient in
certain medical imaging tasks. Conversely, relaxation techniques,
including spectral and continuous relaxations, offer computa-
tional efficiency but may lack robustness. Deep learning methods,
particularly Graph Neural Networks (GNNs), exhibit promise in
enhancing GM efficacy, although their application in medical
imaging is in its infancy. The review underlines the integral
role of GM in medical imaging, leveraging graph representations
of anatomical structures for diagnosis, procedural enhancement
and post-procedural evaluation. Anticipating the evolution of
GM with the integration of deep learning techniques, the review
envisions improved performance and expanded applicability in
medical imaging domains.

Index Terms—Graph matching, correspondence, medical imag-
ing.

I. INTRODUCTION

GRaph matching (GM) is a classic and long studied com-
putational problem that aims to find an optimal corre-

spondence (matching) between vertices in two or more graphs.
This can be achieved by maximizing their respective node
and edge affinities. This problem has been studied extensively
over the years for several reasons. Firstly, it has applications
in many different fields and areas including but not limited
to, pattern recognition, computer vision, bio-informatics and
social networks [1, 2, 3]. Graph structures can naturally
represent a multitude of real world data such as chemical
compositions, transportation networks, social networks and
medical structures such as brain connectomes and vessels.
Medical imaging is a field that can benefit substantially from
the graphical representation of structures and use of graph
matching. This applies especially in situations where a com-
parison of data acquired at different time-points can provide
important insights, helping with diagnosis or procedure follow-
up. An example to illustrate such a case is the scenario where
an informative intra-patient follow-up of liver tumors can be
achieved by applying vascular matching [4]. Moreover, GM
has had continuous ongoing research due to its vast range of
applications. It has an NP-hard nature, as it can generally be
formulated as a quadratic assignment problem (QAP), which

is considered one of the hardest combinatorial optimization
problems in existence [1, 2, 5, 6].

This survey does not aim to provide a complete overview of
graph matching techniques. Instead, it aims to complement the
vast pool of surveys on this subject, focusing on recently devel-
oped techniques, and more specifically, ones related to medical
imaging. We focus on this field as the surveys combining graph
matching techniques and medical imaging are scarce and in
need of further exploration. For more extensive information on
graph matching techniques the reader is referred to [1, 3, 7, 8,
9, 10, 11]. In this work, we intend to give an overview of the
main GM methodologies encountered in the field of medical
imaging and briefly explain a number of different approaches.

The GM problem can be classified in two well defined
families as defined by many other works: exact and inexact
matching. The first one is based on finding a strict cor-
respondence or in other words a bijection of two graphs.
For this bijection to be possible, the two graphs must have
the same number of vertices. On the other hand, inexact
matching accounts for differences between the graphs and the
problem is relaxed, allowing an error-tolerant solution. The
latter approach aligns best with real-world problems, since
a matching between dissimilar graphs is usually addressed
[1]. This can easily be demonstrated when considering the
dissimilarities in medical imaging, which can be caused by
different imaging modalities or conditions and/or interventions
[3]. For instance, consider the case of vascular imaging pre and
post an endovascular thrombectomy (EVT) intervention. The
number of vertices, traditionally defined as vessel bifurcation
and endpoints, as well as the structure of the two graphs will
clearly differ. In detail, vessels following an occlusion are
not visible in pre-EVT imaging but are visible in post-EVT
imaging, if the procedure is successful. Due to these inherent
differences in structure,topology and node count present in
scenarios where graphs are extracted and utilized in medical
imaging applications, this papers focus is on inexact graph
matching techniques and directs the reader to [11, 12] for more
information on exact graph matching.

The databases used for this study were Google Scholar and
PubMed using a series of search strings. Namely, the following
have been used in both databases, in unison or in several com-
binations, (graph matching) AND (medical imaging), (deep
graph matching) AND (medical imaging), (intra-patient) AND
(matching), (graph matching[Title/Abstract]) AND (medical
imaging), (correspondence) AND (medical imaging), (Graph
neural network) AND (graph matching), (Unsupervised graph
matching). Furthermore, seed platforms like Litmaps, Con-

1



nected Papers and Research Rabbit were utilized together with
collected literature to discover additional related works that
were not captured by the search terms.

This work is structured as follows. Section II provides
insight on the fundamentals of graph matching including the
basic formulations and definitions. Section III contains a semi-
complete overview of main methodologies encountered over
the years and more recent developments. This section also
includes how these approaches were employed in medical
imaging. Lastly, Section IV and Section V conclude this work
by discussing the findings and possible future developments.

II. FUNDAMENTALS OF GRAPH MATCHING

A. Problem Definition

A graph of size n (i.e., numbers of nodes) can be represented
as G = (V, E , A,X,E), in which V = v1, · · · , vn denotes the
set of nodes (also known as vertices), E ⊆ V ×V denotes the
set of edges, A ∈ {0, 1}n×n denotes the adjacency matrix,
X ∈ Rn×d denotes the initial feature matrix of nodes, and E ∈
Rn×n×d denotes an optional initial feature matrix of edges,
as described in [13]. A feature matrix can be expressed as a
row-wise concatenation of feature vectors where the number
of rows is defined by the number of nodes (or edges) and the
number of columns is devised from the number of features
[13]. Different variations of this representation can be found
in literature.

The aim of the graph matching problem is to identify
the optimal node-to-node correspondence between two input
graphs, specifically G1 and G2. Generally, the two-graph
matching problem can be expressed by Lawler’s QAP form:

J(S) = vec(S)TKvec(S)

s.t ST 1n1
≤ 1n2

, S1n2
= 1n1

(1)

where vec(S) represents the vectorized version of the assign-
ment matrix S ∈ {0, 1}n1×n2 (also known as correspondence
or permutation matrix) between two graphs, i.e Sij = 1
means that node vi ∈ G1 corresponds to vj ∈ G2 and
otherwise Sij = 0, K ∈ R(n1×n2)

2

is the second-order affinity
matrix where each element Kij,ab indicates the level of cor-
respondence between nodes (vi, vj) ∈ G1 and (va, vb) ∈ G2.
Specifically, the diagonal and off-diagonal elements represent
the node-to-node and edge-to-edge similarity respectively, as
described by [14, 13]. Lastly, 1n is a column vector of length
n whose elements are equal to 1 and the constraints enforce
a one-to-one assignment between nodes and a V1 ≤ V2 node
count. The aim is to find the optimal assignment matrix S that
maximizes the affinity score J(S) [1, 8]. This formulation has
been widely adopted in literature [1, 13, 5, 8].

Additionally, another QAP form for two-graph matching
is known as the Koopmans-Beckmann’s QAP and can be
described by:

J(S) = tr(STAiSAj) + tr(KT
p S) (2)

where Ai and Aj are the weighted adjacency matrices of graph
G1 and G2 and Kp is the node affinity matrix. It should be
noted that, this formulation can be regarded as a special case
of Lawler’s QAP by setting K = Aj ⊗Ai, where ⊗ signifies

the Kronecker product operation [1, 14, 8]. We also offer an
example illustration of the node-to-node correspondence in a
real life scenario related to medical imaging in Figure 1.

B. Additional Formulations

1) Factorized Affinity Matrix. Zhou and De la Torre [14]
presented a way to factorize the affinity matrix as:

K = diag(vec(Kp)) + (G2 ⊗G1)diag(vec(Kq))(H2 ⊗H1)
T

(3)
where G,H ∈ {0, 1}n×m are incidence matrices, i.e Gic =
Gjc = 1 if the cth edge starts from the ith node and ends at
the jth node; Kp ∈ Rn1×n2 indicates the node affinity matrix,
with n number of nodes, and Kq ∈ Rm1×m2 indicates the
edge affinity matrix, with m number of edges. The diag(k)
represents a diagonal matrix whose diagonal elements are
k. The formulation includes two incidence matrices as it
represents the general case that can handle both directed and
undirected graphs. Additional information on this factorization
can be found in the original work.

2) Higher-Order Graph Matching. So far the previous
formulations only consider the affinity between vertex and
edges, also known as first-order and second-order respectively.
An alternate formulation used considers higher-order affinity
as it compares the differences between super or hyperedges [1,
9]. Hyperedges are composed of 3 or more nodes and could
likely produce a more robust correspondence. The formulation
takes a tensor format as:

J(s) = H ⊗1 s⊗2 s · · · ⊗m s

s.t ST 1n1 ≤ 1n2 , S1n2 = 1n1 (4)

where s=vec(S) ∈ {0, 1}n1×n2 , m is the order of the affinity
tensor and H is the affinity tensor.

III. METHODOLOGIES

In line with previous works regarding GM [3, 12, 8, 9,
15], we arrange the different inexact matching methodologies
in categories as presented in Figure 2; Discrete methods,
Relaxation and Replacement, Deep Learning methods and
Miscellaneous.

Fig. 1. The structure on the left shows the liver vasculature before a tumor
resection, while the structure on the right displays the vasculature after the
procedure. The vascular tree is depicted as a graph, where bifurcations serve as
anatomical landmarks indicated by blue spheres (vertices). A graph matching
method was used to detect correspondences between the vascular trees as
shown by the green and red lines connecting the structures [3].

2
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Fig. 2. Proposed graph matching methods categorization

a. Charnoz et al. [4], Zhu et al. [16], Pinheiro et al. [17], Zhu et al. [18], Lajevardi et al. [19], Shen et al. [20], Olivera et al. [21], Osmanlioglu et al. [22,
23], Olafson et al. [24], Bukhari et al. [25], Serradell et al. [26, 27], Garcia Guevara et al. [28, 29], Czajkowska et al. [30], Bai et al. [31].

b. Umeyama et al. [32], Smeets et al. [33], Im et al. [34], Guo et al. [35], Lombaert et al. [36], Shakeri et al. [37, 38], Wright et al. [39], Leng et al. [40],
Chen et al. [41, 42], Zhou et al. [43].

c. Groher et al. [44], Almasi et al. [45], Deng et al. [46], Metzen et al. [47, 48], Liu et al. [49, 50, 51], Zaslavskiy et al. [52], Calissano et al. [53], Wang
et al. [54].

d. Zhao et al. [55, 56, 57], Furukawa et al. [58, 59], Mikamo et al. [60, 61].
e. Moriconi et al. [62], Guo et al. [63], Motta et al. [64], Zhu et al. [65], Riffaud et al. [66], Rist et al. [67], Behkamal et al. [68], Yao et al. [69], Rochman

et al. [70], Buskulic et al. [71], Yadav et al. [72, 73].

A. Discrete Methods

Discrete methods attempt to solve the GM problem in
the discrete domain. Categories of algorithms that fit this
paradigm include but are not limited to, Tree Search, Integer
Projected Fixed Point (IPFP), Monte Carlo approaches, Branch
and Bound and Graph Edit Distance (GED). A number of
these methods have been applied to medical imaging and are
presented here.

Perhaps one of the first attempts to GM using medical
imaging was performed by Charnoz et al. [4]. They proposed
a tree matching algorithm to match liver vascular systems
between two CT acquisitions with the goal of making an intra-
patient follow-up of tumors. In more detail, they model the
liver vasculature as a tree with nodes and edges representing
bifurcations and vessel connections respectively. Then, they
follow an iterative approach where, starting from the tree roots,
they focus on the most probable solutions consisting of a
set of matches, examine the probable solutions at each tree
depth step and update the solution. The probable solutions
are evaluated by quality match criteria consisting of several
cost functions, to limit the selection of possible tree matching
solutions. In a similar fashion, Zhu et al. [16] present a
heuristic tree searching technique for 3D/2D rigid registration
of vessel structures. Their approach comprises of GM and
registration phases. The vessels are represented as a graph
where vertices represent bifurcations and endpoints and edges
represent the connections. They propose that a matching of
graphs can be represented as vertex and edge pairs and follow
a successive tree search procedure using either an evolution

of the A* search algorithm or a greedy tree search based on
best-first search. This procedure is divided into states whose
combination constructs the complete search tree. Each state is
characterized by adding a new superedge pair, controlled by a
set of conditions, and updating the vertex and edge pairings.

Monte Carlo tree search is another technique that has been
used successfully for the GM problem within the medical
imaging domain. Pinheiro et al. [17] recently used said tech-
nique to register vessels in retinal fundus images, brain circuit
scans and heart angiograms and neurons in brain circuits.
In addition, they make use of hyperedges to increase the
robustness of their results. Additionally, they establish a set of
rules and a transformation model to guarantee the feasibility of
newly added matches to the final set. The approach is capable
of processing extensive graphs in a prompt and effective
manner. A similar technique was used by Zhu et al. [18] for
3D CTA to 2D DSA vessel registration and was tested on the
hepatic and coronary arteries and the aorta.

In many cases, Munkres’s algorithm (also known as the
Hungarian Method) has been used to find correspondences
between graphs. The Hungarian Method results in a discrete
assignment matrix calculated based on the minimization of
a cost matrix. Lajevardi et al. [19] proposed an automatic
retina verification framework based on GM applied on the
retinal vasculature. The GM step utilizes a modified Hungarian
method, with the cost matrix representing the cost of edit
operations to convert G1 to G2. Their methodology outputs
the minimum graph edit distance between the two graphs and
the graph edit path indicating the optimal set of edit operations

3
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TABLE I
CLASSIFICATION ACCORDING TO IMAGING MODALITY

Glossary: CT: Computed Tomography, CTA: Computed Tomography Angiography, CBCT: Cone-Beam CT, MRI: Magnetic Resonance
Imaging, MRA: Magnetic Resonance Angiography, DSA: Digital Subtraction Angiography, EM: Electron Microscopy, LM: Light
Microscopy, C-EM: Cryo-Electron Microscopy, AOSLO: Adaptive Optics Scanning Light Opthalmoscopy.

CT (including CTA,CBCT): Charnoz et al. [4], Zhu et al. [16],Zhu et al. [18], Garcia Guevara et al. [28, 29], Czajkowska et al. [30],
Smeets et al. [33], Groher et al. [44], Metzen et al. [47, 48], Zhu et al. [65], Riffaud et al. [66], Rist et
al. [67], Yao et al. [69], Rochman et al. [70]

MRI (including f-MRI,MRA,T1-
MRI,Diffusion MRI):

Shen et al. [20], Osmanlioglu et al. [22, 23], Olafson et al. [24], Bukhari et al. [25], Im et al. [34],
Lombaert et al. [36], Shakeri et al. [37, 38], Wright et al. [39], Leng et al. [40], Chen et al. [41, 42],
Groher et al. [44], Almasi et al. [45], Metzen et al. [47, 48], Calissano et al. [53], Moriconi et al. [62],
Guo et al. [63], Buskulic et al. [71]

X-ray (including DSA, X-ray An-
giography):

Zhu et al. [16], Pinheiro et al. [17], Zhu et al. [18], Serradell et al. [26, 27], Guo et al. [35], Groher et
al. [44], Zhao et al. [55, 56, 57], Zhu et al. [65]

Microscopy (including EM, LM,
C-EM):

Pinheiro et al. [17],Serradell et al. [26, 27], Behkamal et al. [68]

Retinal Fundus Imaging or
AOSLO:

Lajevardi et al. [19],Serradell et al. [26, 27], Deng et al. [46], Liu et al. [49, 50, 51], Motta et al. [64]

Infrared Breast Imaging: Olivera et al. [21]

Endoscopy Wang et al. [54], Furukawa et al. [58, 59], Mikamo et al. [60, 61]

3D Rotational Angiography Almasi et al. [45]

Structured light 3D body scanner Zhou et al. [43]

to convert one graph to the other. These are then used to
create a maximum common subgraph. Moreover, Shen et al.
[20] proposed a GM based method to quantify connectomic
similarity then used it to provide a subject-specific score
allowing them to separate patients and controls in traumatic
brain injury cases. Specifically, they use GED and define
the cost matrix of operations (insertion, deletion, substitution)
as the Manhattan distance weighted by a coefficient learned
through Markov chain Monte Carlo. The correspondence be-
tween nodes can be extracted from the edit path if that path
matches a node to its counterpart. However, the problem is
intractable and they calculate an approximate solution using
the Hungarian method. A similar approach was followed by
Olivera et al. [21]. Their method finds graph correspondences
using an adaptation of the graph edit distance as presented
by Armiti and Gertz [74]. They iteratively compute the edit
distance based on vertex operations costs, similar to GED,
calculate the minimum distance matrix and finally use the
Hungarian method to obtain a final correspondence matrix.
Differing from the previous works in terms of the use of
GED, Osmanlioglu et al. [22] proposed a matching accuracy
acquired through GM as an affinity metric to compute the
resemblance between structural and functional connectivity in
the brain. Their method also employed the Hungarian method
with the cost matrix comprised of the Euclidean distance
between node feature vectors. They applied their method on
functional and structural connectomes created after imaging
using functional and diffusion weighted Magnetic Resonance
Imaging (MRI). The same authors used the matching accuracy
as described in this work to investigate the consistency of func-
tional connectomes in later work [23]. The connectivity of the
brain was additionally explored by Olafson et al. [24] where
GM was used to capture longitudinal Functional Connectivity
(FC) reorganization in stroke patients. Closely resembling
the work of [22], they used the Hungarian method to solve
the assignment problem where the cost matrix comprised

of the Euclidean distances between the partial correlation-
based FC matrices of two regions. Functional connectome
work was recently expanded by Bukhari et al. [25]. Following
the previous works on FC differences between individuals,
they proposed a GM approach aiming to develop an inter-
individual functional connectome metric that measures the
distance between individuals’ partial functional connectivity
matrices. They alter the method used by [22, 24] by adding
an additional penalty or regularization term to the problem
formulation and solve it using the Hungarian method in an
iterative fashion until convergence of the objective function
is reached. Consequently, the matching results are used to
construct the targeted metrics.

Serradell et al. [26] introduced the idea of using Gaussian
processes to find correspondences and tested said idea on
angiography images of the heart, brain blood vessels and
neuronal trees. They achieve elastic registration based on the
graph matching method proposed. In more detail, their GM
method consists of finding an initial set of node matches to
instantiate the Gaussian Process (GP). The GP is then refined
and finally a geometric mapping is obtained, where given a
node, its match in the second graph is determined by its mean
and covariance. The GP’s goal is to predict the mapping of
nodes in G1 and minimize the set of potential matchings.
The most likely prediction based on geometric and other
criteria is chosen to refine the GP. This method includes two
improvements from the original paper [27], the introduction
of non-linear regression to the GP and the combination of
active testing and bayesian models. Garcia Guevara et al. [28,
29] improved upon this method twice. First, they combine
the method with biomechanical modelling which allows the
model to handle large deformations. Additionally, they use an
adaptation of the work by Seradell et al. [26], introducing
the improved Gaussian process regression, by adding further
constraints during the matching procedure when the hypothesis
space is large. This resulted in less computational costs. Their
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method was applied on the synthetic data of the liver portal
vein tree and porcine liver data acquired using Computed
Tomography (CT) and Cone Beam CT (CBCT). Their method
was later further enhanced, as it used a new biomechanical vas-
cularized liver model, allowing it to find correspondence via
a compliance-based adaptive search. This approach was tested
on vascular graphs segmented from Computed Tomography
Angiography (CTA) and a porcine liver dataset acquired by
CTA.

In the work of Czajkowska et al. [30] two methods for
3D registration of pre-post operation CTA in abdominal aortic
aneurysm cases are explored. One of the methods is known
as skeleton GM as proposed by Bai et al. [31]. The method
finds correspondence between two graphs by establishing a
matching of their end nodes only using skeleton graphs. The
correspondence is determined by computing a dissimilarity
cost matrix and using the Hungarian method to reach the final
discrete assignment matrix.

B. Relaxation and Replacement

Relaxation is a common way to approach the GM problem
as given the original formulation the problem is intractable
and has an NP-hard nature. Common relaxation approaches
include spectral, continuous, convex, and convex-to-concave
relaxation. Due to the overlap of relaxations in different
approaches which leads to vague classifications, we divide
this section in spectral and continuous relaxation methods.
Spectral relaxations conventionally transform the GM problem
to an eigenvector problem which can then be solved by a
number of strategies [75]. Continuous relaxations commonly
relax the original problem from discrete to continuous space
and follow a discretization procedure afterwards to return
back. Given their similarity to convex and convex-to-concave
relaxations, all of them are grouped under this category. A
multitude of relaxation techniques have been used and applied
in medical imaging and a number of them are presented in
this section.

1) Spectral Matching. Spectral matching was originally
proposed by Umeyama et al. [32], where the idea revolved
around performing eigendecomposition on the adjacency ma-
trices of both graphs, attaining the absolute values of the
eigenvector matrices and employing the Hungarian method to
obtain the assignment matrix. This method later inspired a
number of different approaches.

The majority of work has been inspired by methods used in
alternate fields. For instance, the work of Scott and Longuet-
Higgins [76] was used by Smeets et al. [33] to find a matching
between 3D lung vessel trees. Briefly, the spectral technique
performs singular value decomposition on a previously cre-
ated soft correspondence matrix constructed using bifurcation
matching probability measures. Moreover, the correspondence
technique by Leordeanu and Hebert [77], a common method
used in computer vision, was employed by Im et al. [34] to
find correspondences between sulcal graphs. In their approach,
they computed a similarity matrix based on the feature affinity
of nodes. The permutation matrix was then calculated using

Leordeanu and Heberts’ [77] technique. Furthermore, Guo
et al. [35] used an altered version of the method called
Spectral Matching with Affine Constraints (SMAC), initially
proposed by Cour et al. [78] in order to identify landmark
correspondence in hand X-ray images. In the original method
the similarity between possible matches is calculated by their
geometric distance and angle and an energy function is de-
fined, in order to maximize a quadratic score function, which
is then solved by a spectral relaxation technique. Guo et al.
[35] improve this approach by refining the construction of the
affinity matrix and adding sparsity on the assignment matrix
to exclude ambiguous matches. Then they reformulate the
energy function and solve it using a region reflective algorithm
followed by the Hungarian method. Lastly, this approach is
integrated in an iterative hierarchical matching framework
consisting of the proposed sparse GM and thin-plate spline
based interpolation.

Lombaert et al. [36] approach the spectral matching tech-
nique in a slightly different way. Their work presents a surface
matching method. While it is does not solve a strictly GM
problem it is included due to its similarity. The method is
applied to brain surface matching. Specifically, their algorithm
uses eigenvalues and eigenvectors produced through eigende-
composition of the Laplacian matrices of graphs to produce
node correspondences and is used for feature matching as a
special kind of regularization. Shakeri et al. [37] proposed
a slightly altered method inspired by Lombaert et al. [36]
used to identify regional morphological differences in sub-
cortical structure between healthy subjects and subjects with
Alzheimer’s disease. They improve the method by adding a
final smooth mapping by introducing an association graph
using the initial correspondence map between the surfaces, and
performing a similar Laplacian eigendecomposition matching
step. The same authors use the original approach as a primary
step for Alzheimer’s disease classification [38]. Wright et al.
[39] obtain a cortical surface correspondence in data collected
from in utero MRI of fetuses. Their method is an extension of
the one proposed by Lombaert et al. [36]. Following [36], they
obtain a correspondence map based on the shortest Euclidean
distance in the spectral domain. Their adaptation includes
the use of additional surface descriptors (mean curvature and
surface normal direction) and edge-based smoothing as a
form of regularization. Additionally, Leng et al. [40] applied
a similar method for image matching using brain images
obtained through MRI. In more detail, they use a normalized
version of the Laplacian matrices followed by singular value
decomposition. The resulting eigenvectors are used to compute
an affinity matrix from which the final matching is extracted.

Unlike the approaches explored so far where determining
some form of correspondence was the goal, Chen et al.
[41] perform a GM technique to reduce noise occurring in
diffusion MRI images. Concisely, they perform neighborhood
matching based on features derived from a graph Laplacian
decomposition. Additionally, in their later work [42], they
propose additional improvements to this algorithm, one of
which is the introduction of Gaussian kernels when defining
the affinity weight between node pairs.

Lastly, the following technique followed a spectral approach
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which is not strictly a spectral matching method but is fairly
similar and is therefore included. Zhou et al. [43] integrated the
spectral matching by [36] followed by coherent point drifting,
a well known point matching approach, for the purpose of 3D
human shape landmark detection.

2) Continuous Relaxation. One of the first works targeting
GM in the continuous realm was proposed by Gold and
Rangarajan [79] and is well known as Graduated Assignment
(GA). They formulate the GM problem as defining an assign-
ment matrix while taking into account a compatibility matrix
that denotes the link compatibility between two graphs. Their
final formulation includes a continuous assignment matrix
(also known as a softassign) made possible by the Sinkhorn
method. This allowed them to develop an assignment problem
which was solved iteratively until convergence was reached
using a deterministic annealing scheme. Groher et al. [44]
incorporated this method in their approach for the task of
2D to 3D registration of vascular structures derived from
angiographic scenes. Vascular registration was similarly ex-
plored by Almasi et al. [45] and was tested on cerebrovascular
MRA and 3D rotational angiography (3DRA) images. Their
method included node and edge attributes that incorporated
geometrical information which allowed them to relax the
problem to a linear assignment problem. This problem is
then solved using an adapted version of the GA. Additionally,
the same method by [79] was utilized as a principle step in
registering retinal fundal vessel shape models using vascular
structure graphs [46].

Metzen et al. [47, 48] followed the association graph
approach proposed by Pelillo et al. [80, 81] to match liver
and lung vascular trees. The method is not strictly a GM
method as the problem is a continuous formulation of the
maximum clique problem, however a matching is produced
and we therefore decided to include it.

Moreover, Liu et al. [49] introduced a GM technique that
utilizes the dual decomposition (also known as Langragian
relaxation), which is known to be convex and continuous, to
solve a model comprised of visual similarity and geometric
constraints. Their purpose was to find correspondences be-
tween cone photoreceptor neurons. Their method is evaluated
on a longitudinal adaptive optics scanning light opthalmoscopy
dataset. The authors used the same technique in two other
cases. First, they utilize it as a seminal step to identify paired
patterns in longitudinal retinal pigment epithelium images[50].
Specifically, they use the GM technique to calculate affine
invariant maximal stable extremal region matchings in Gaus-
sian scale-space in order to approximate image displacement.
Second, they apply GM for cell centroid correspondence
consequently used for label transferring [51].

Furthermore, Zaslavskiy et al. [52] approached the GM
problem using a reformulation to a least-square problem and
convex-concave relaxations controlled by continuous param-
eters. The result was obtained through iteratively solving
the Franke-Wolfe algorithm. In addition, they consider the
assignment matrix as doubly-stochastic.

Calissano et al. [53] follow the GM algorithm propose by
Vogelstein et al. [82] to align structural connectomes of healthy
individuals, considering division of different granularity to

gain knowledge on the connectivity misalignment between
regions. The method in [82] relaxes the correspondence matri-
ces from the discrete domain to the continuous using doubly
stochastic matrices. The matching solution is calculated via
gradient descent and it is noteworthy that a permutation matrix
initialization is necessary.

A different approach is proposed by Wang et al. [54] where
they solve the GM problem using a probabilistic way based
on mean field theory in order to register 3D supine and prone
colonography scans. In detail, the objective function resembled
the Ising model with quadratic interaction. The expectation
of the assignment matrix is approximated using mean field
theory and resembles the confidence of a match. To maintain
a one-to-one matching they solve the problem iteratively by
maintaining the higher expectation at each step.

C. Deep Learning Methods

Deep learning and in general the field of machine learning
have seen significant improvements in the past years. These
techniques have been used in a multitude of fields to solve
a vast number of problems. Computer vision is a field where
deep learning models have been utilized extensively and their
efficacy has been undoubtedly proven. Given the similari-
ties, medical imaging is an area that is steadily migrating
towards the use of such techniques. In the case of GM, recent
developments in deep learning have introduced alternative
ways to solve it. Most importantly, Graph Neural Networks
(GNNs) are a type of neural network specifically designed
to deal with graph representations. Recent works in domains
outside of medical imaging have proven the usefulness of these
networks when working with graph-like data. GNNs have been
proposed as a way to solve the GM problem and have been
successfully used in domains like computer vision and their
effectiveness in solving the QAP is promising [83]. Their use
in medical imaging applications is yet to be fully explored, but
the following section provides some examples of how deep
learning has been utilized to solve the GM problem in the
field.

Zhao et al. [55, 56, 57] have presented three different
approaches to solve the GM problem as a way to semanti-
cally label coronary arteries acquired from invasive coronary
angiograms. It is important to note that all these networks
operate in a supervised fashion where ground truth data is nec-
essary. In their first approach [55], they defined an association
graph that simulates the connectivity between to graphs. This
allowed them to convert the problem to a vertex classification
problem. They then developed a network where the three main
components were a feature embedding and feature decoding
module and a Graph Convolutional Network (GCN). Finally,
the network was trained using cross entropy loss between
the prediction and the ground truth. Their second approach
[56] follows a similar structure with one clear change. The
change is marked by the inclusion of an attention mechanism
through using a Graph Attention Network (GAT). Their most
recent method [57], enhanced their previous work with the
goal of achieving real-time inference. Their enhancements
include the use of hypergraphs (3-uniform), the addition of
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node and edge attention via graph transformer networks and
the use of uncertainty quantification via a true class probability
approximation.

Focusing on a different application, Furukawa et al. [58]
suggested a robust GM method with the purpose of auto-
calibrating an active-stereo-based 3D endoscopic system. Their
GM method was used to obtain correspondences between the
graph represented original and detected pattern. Specifically,
the correspondence estimation was achieved using a GCN
approach applied to node feature vectors and the equivalent
graph adjacency matrix of one graph and outputted a matching
node ID on the second graph. This resembles a classification
problem and was trained in a supervised fashion. The same
authors developed the method further by using GCN on the
node feature vectors of two graphs [60]. The matching was
then attained using the cosine similarity of the produced
feature embeddings and the model was trained again in a
supervised fashion. Furukawa et al. [59] further used a very
similar approach to [60] enhancing it through combining the
achieved similarity matrix with epipolar constraints in the
matching procedure. This is then used for auto-calibration and
shape reconstruction and was evaluated on bio-tissues and a
colon phantom. This method is then used once again for an
identical purpose [61].

D. Miscellaneous

This section includes methods for which an accurate catego-
rization could not be achieved or cases where the method used
was not strictly a GM approach but served a similar purpose.

Zhou and De la Torre [14] presented a different formulation
to the GM problem which was introduced in Section II, and
introduced a factorized GM (FGM) approach based on it.
Their method was employed by Moriconi et al. [62] along
with other common techniques. Namely, they implemented
GA, Spectral Matching, SMAC, Probabilistic Matching, IPFP
and Re-weighted Random Walks in order to compare their
performance in determining an elastic registration of vascular
graphs. Importantly, they presented a novel formulation of the
vessel structures as over-connected geodesic graphs and pre-
ceded the GM with a coarse geometrical alignment using the
globally-optimal Iterative Closest Point (ICP) algorithm. Guo
et al. [63] use the same FGM to match elastic shape graphs
devised from brain arterial networks as part of developing a
statistical analysis of said networks.

Motta et al. [64] proposed an alternate reformulation to
the original GM problem. In more detail, they model the
registration of vessels in retinal fundus images as a GM prob-
lem formulated as a discrete optimal transport (OT) problem.
The OT cost function is specified using particular similarity
measures, and this formulation relaxes the problem to a linear
model solved using mixed integer linear programming.

Furthermore, Zhu et al. [65] targeted 3D to 2D coronary
artery registration via an iterative closest GM procedure. Their
framework included matching and transformation phases. The
matching phase is based on redundant GM which in simple
terms introduces redundant edges. These edges lead to a denser
affinity matrix which increases the probability of correct

matches. A fine vessel matching is then obtained based on
the node correspondences.

Moreover, abdominal aortic identification is achieved using
a kind of GM technique by Riffaud et al. [66]. Their approach
does not strictly consider the GM problem but they attain a
matching of the abdominal arterial system to trees extracted
via segmentation. They accomplish this by maximizing a
similarity metric between the tree branches and the arteries and
using a series of handcrafted conditions. A non-strictly GM
approach is similarly proposed by Rist et al. [67]. They per-
form bifurcation matching of cerebrovascular graph structures
generated from vessel segmentations in order to obtain vessel
labels. In more detail, they construct candidate subgraphs
using a handcrafted distance measure and identify bifurcation
correspondence based on a cost function iteratively evaluated
on plausible vessel paths for a singular node. The collection
of subgraphs is then fused according to their overlap. In
a similar fashion Behkamal et al. [68] developed a GM
technique that does not consider the classical GM problem,
but is however included. They developed their approach for
secondary structure element correspondence to cryo-electron
microscopy maps in the field of bioinformatics. Briefly, fea-
tures are extracted from secondary structure elements, graphs
are built based on three defined mathematical based features
and their respective adjacency matrices. Next, they compute
the node similarities using two statistical scoring functions,
obtaining possible matching sets. The final set is decided using
a voting algorithm.

GM has also been used for segmentation of the whole heart
great vessels including the aorta and pulmonary artery [69].
Precisely, the GM technique was used to identify the great
vessels (aorta, pulmonary artery). In order to achieve this
they create a graph library to resemble connections between
the great and anomalous vessels. Following that, they use
the graphs extracted from the segmentation, model them as
distributions, and match them to the library using a similarity
metric (Earth mover’s distance).

Further, Rochman et al. [70] take inspiration from the work
of Szeskin et al. [84] and propose a solution to the bipartite
GM problem so as to obtain a correspondence between lesions
in CT images as follow-up. In particular, they formulate their
problem as a bipartite GM problem where vertices represent
lesions and edges represent lesion matchings. In addition, they
introduce connected component which define lesion changes
based on their properties. The lesion correspondence is per-
formed using greedy-overlap based coupling.

In the context of sulcal GM, Buskulic et al. [71] collected a
number of two and multi-GM techniques, indicative of differ-
ent classes of methods, and benchmarked their performance.
Namely, the benchmark SMAC, IPFP, RRWM, KerGM [85]
and mALS [86] for pair-wise and multi GM respectively.
Yadav et al. [72] update this benchmark further by comparing
the best performing pair-wise method (KerGM) with multi-
GM methods, namely, mALS, mSync [87] and Hippi [88].
This work was further extended in [73] by adding additional
multi-GM methods to compare such as MatchEig [89] and
CAO [90].
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IV. DISCUSSION

In this section, we briefly discuss the methods that have
been used to solve the GM problem in medical imaging and
we offer some insight on the evolving methods for solving
the GM problem in alternative fields. These implementations
could serve as examples and have potential use in medical
imaging applications, thus signalling potential future solutions
for this long-studied problem.

GM has been used in a multitude of ways as demonstrated
in this document. Comparison between medical imaging ac-
quisitions is a very useful procedure in the case of diagnosis,
post-operative evaluation, and intra-operative enhancement. Its
correct integration in these procedures can provide abundant
useful information without suffering from intra-observer vari-
ability or at least reducing its prevalence. Graph representation
of data in the medical field can be very useful, stemming
from the notion that medical structures can often be intuitively
represented as graphs. Previous and continued work [91, 92,
93, 94] demonstrate this. Therefore, graph-based techniques,
like GM, can be of great value.

In this work we separated the types of GM procedures based
on the methodology employed. However, It is our firm belief
that a consensus on the different categories must be reached,
as the current state of research suggests that one does not exist.
Different authors choose to use different categories which
results in unclear categorisation of the methods and further
confusion.

Our work suggests that discrete methods, spectral and
continuous relaxations have all had fair share of use in medical
imaging applications. Discrete methods perform adequately
with the drawback of being more computationally expensive
which is in some cases not within the acceptable margin
for time-reliant procedures. In addition, a number of discrete
methods focus on some kind of tree search method. These
methods commonly assume acyclic graph structures which
is rarely the case, especially in 2D vessel imaging. On the
other hand, both continuous and spectral relaxations improve
on the efficiency, but lack in the robustness of their results.
For example, continuous methods are known to suffer from
local minima and do not ensure a globally optimal solution.
Despite the long on-going research, all these types of methods
are still under investigation and work on their comparison is
still sparse.

The evergrowing field of machine learning has demonstrated
its beneficial use in medical imaging applications in a great
number of ways. However, the use of machine learning and
deep learning techniques for the purpose of solving quadratic
problems in the medical field, such as GM, is still in its
infancy. On the other hand, fields like computer vision have
recently presented a plethora of methods for solving the GM
problem (e.g. image matching) [13, 95, 9]. Affinity matrix
learning is one of those methods and has been demonstrated
several times [96, 97, 5, 98]. The basic notion revolves
around the idea of learning an affinity metric given graph
node embeddings, which can usually be acquired using a
combination of CNN feature extraction and GNN feature
embedding. In many cases these approaches are combined with

the factorized affinity matrix introduced by Zhou and De la
Torre [14]. A different approach sharing some similar ideas
is feature matching, where the constructed node embeddings
are matched [2]. An additional technique considers higher-
order GM. These methods can produce results with improved
robustness but are still in early development [99, 100, 101].
A number of these methods do not strictly solve the QAP but
employ deep learning techniques to find correspondences. This
is indicative of how deep learning techniques could potentially
avoid the QAP all together and achieve improved GM results.

The vast majority of the aforementioned machine learning
techniques focus on supervised methodologies. It is widely
known that these approaches usually require a great number
of ground truth to learn effectively. This is rarely the case
in medical imaging applications as ground truth retrieval is
often time consuming and impractical. Several unsupervised
deep learning techniques have been proposed, but additional
development is necessary [102, 103, 104, 105].

Based on the continuous development of machine learning
techniques, we believe that current solutions to the GM
problem will be enhanced with their use, and offer improved
performance and reduced time complexity. However, the com-
bination of problems that have a rigorous mathematical formu-
lation with the use of machine learning techniques, typically
applied on problems that do not have such a formulation,
is a challenging task and their interaction should be studied
thoroughly.

V. CONCLUSIONS

This paper provides a targeted survey of GM methods with
a focus in medical imaging applications. It includes basic
concepts, characteristic methodologies, their different variants
and their application and a short discussion on possible future
developments. In this review, we note the extensive use of GM
techniques in medical imaging applications. Given the intuitive
graph representation of human structures (e.g. vessels) and
the continuous development of deep learning techniques, we
expect additional GM research utilizing deep learning for
medical imaging applications in the future. We believe that
deep learning can enhance the performance of existing GM
techniques and be invaluable, as it has been in other domains.
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