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A B S T R A C T

This study explores the use of chemical descriptors derived from force field atom types to predict Fickian
diffusion coefficients of rejuvenators in bitumen, utilizing machine learning models trained on data from 240
non-equilibrium molecular dynamics simulations. The simulations cover three bitumen types (NO, TO, FO), five
aging degrees, and four temperatures (60 ◦C, 120 ◦C, 160 ◦C, 200 ◦C), capturing diffusion coefficients ranging
from 0.0068e-10 m2/s in highly aged bitumens at 60 ◦C to 4.35e-10 m2/s in fresher samples at 200 ◦C. The MLM,
built with 18 chemical descriptors for bitumen and rejuvenator sides, achieves an R2 of 0.97, accurately pre-
dicting diffusion across varied conditions. This approach abstracts away from the need for repeated MD simu-
lations, enabling diffusion predictions even for systems outside the original dataset. The manuscript presents
three case studies to illustrate how the model can be used for the iterative design of rejuvenators by optimizing
molecular structures based on critical chemical features, such as rejuvenator oxygen content, bitumen sulfur
content, and molecular weights. It also demonstrates how the model offers a practical framework for under-
standing the diffusion and performance of rejuvenators by linking time-dependent factors—such as concentra-
tion, depth, and rejuvenation time—with the bulk properties of bitumen-rejuvenator systems, facilitating
industrial applications.

1. Introduction

Roads constitute the backbone of a functional transport network, and
maintaining them in optimal condition is crucial for fostering economic
growth and stability. Consequently, significant efforts have been dedi-
cated to improving the performance and durability of asphalt mixtures.
Central to these efforts is enhancing the mechanical and rheological
properties of bitumen, given its critical role in dictating the physical
response of asphalt mixtures to operational demands [1].

Describing bitumen’s structure on a molecular scale has proven
remarkably challenging [2]. The chemical composition of bitumen
varies significantly based on its source, refining processes, and charac-
terization methods, resulting in a material with an uncertain formal
definition [3]. Furthermore, the atomic structures of many molecules
within bitumen remain disputed, as bitumen comprises millions of
diverse organic molecules varying widely in aromaticity, saturation,
polarity, and size [4].

Experimental attempts to chemically characterize bitumen often
involve fractionating its molecules based on solubility [5]. This

approach has evolved into the widely-used SARA (Saturates, Aromatics,
Resins, Asphaltenes) fractionation technique, which describes the
chemical composition of bitumen samples without requiring funda-
mental molecular identification [6]. Understanding the interactions
between these chemically distinct fractions has revealed that they form
physically separated regions, developing into complex molecular ar-
rangements. These arrangements impart unique morphologies to each
bitumen sample, significantly affecting their mechanical and rheological
responses, even when chemical compositions remain constant [7]. These
structural variations span multiple size domains, presenting significant
multiscale characterization challenges not commonly found in materials
such as metals or polymers [8].

Bitumen’s intricate structure, both at the molecular and micro-
structural levels, is also heavily influenced by its lifecycle [9]. From
production, where bitumen is subjected to temperatures exceeding
200 ◦C, to its application in pavement exposed to weathering conditions
for an average of 15 years, bitumen undergoes significant chemical
changes, such as oxidation. These changes alter the proportions of its
chemical fractions and morphology, leading to a gradual stiffening and
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loss of optimal mechanical properties in a process known as bitumen
aging.

Recent research has focused on designing bituminous materials with
intrinsic resistance to aging. Concurrently, another research branch is
dedicated to developing state-of-the-art chemical compounds that can
be applied to existing bitumen to reverse aging effects, aiming to restore
the material’s original mechanical and rheological properties [10]. This
process, known as rejuvenation, employs various techniques to return
aged bitumen to a fresh condition [11]. Simpler rejuvenation methods
aim to restore the original proportions of SARA fractions by adding re-
juvenators that resemble specific SARA fractions. More complex tech-
niques seek to chemically reverse aging effects, though this remains a
challenging task.

All rejuvenation techniques, whether simple or complex, face a
common challenge: ensuring the rejuvenator reaches and uniformly
diffuses throughout the applied bitumen layer [12]. This has spurred
numerous research projects exploring bitumen’s surface chemistry to
understand the mechanisms that enhance rejuvenator diffusion and how
the SARA fractions and their microscale arrangements influence this
process [13–15]. Some rejuvenators, although effective within the bulk
structure of bitumen, do not diffuse readily into a bitumen layer,
rendering them ineffective when applied to bitumen surfaces [16].

Most studies on bituminous materials have focused on engineering-
scale behaviors [17]. However, the advancement of computational
models and the need for a fundamental understanding of bitumen
mechanisms have driven scientists to utilize molecular modeling tech-
niques[2,18]. Multiple articles have addressed various challenges,
though scalability issues and limited computational resources still
constrain atomistic modeling of bitumen at the microscale[19]. None-
theless, MD simulations have proven effective in predicting surface
chemistry-related phenomena, driven by fundamental mechanisms
known to scale well throughout numerous spatiotemporal domains
[20,21]. These simulations enable scientists to understand rejuvenators’
interactions with bitumen’s SARA fractions at an atomic level,
enhancing the design of chemically tuned rejuvenators with minimal
reliance on resource-intensive experimental techniques [22].

Research articles have explored rejuvenator diffusion into different
bitumen samples using Non-Equilibrium MD (NEMD) techniques to
study surface-to-surface interactions and diffusivity potentials
[13–15,23]. NEMD is fundamentally a subset of Molecular Dynamics
(MD), distinguished by its focus on systems where time-dependent
changes in properties are explicitly studied [24]. In NEMD, the system
is either initialized in a non-equilibrium state, deliberately perturbed (e.
g., by applying external forces or gradients such as temperature or
concentration) or observed as it evolves naturally toward equilibrium.
This contrasts with standard (equilibrium) MD simulations, where the
system is assumed to remain in thermodynamic equilibrium throughout
the simulation. In equilibrium MD, properties like energy, pressure, or
diffusivity are typically expected to remain constant over time, reflect-
ing a steady-state balance, whereas in NEMD, these properties are
inherently time-dependent and provide insights into transient responses
or transport phenomena [25]. When studying Fickian diffusion co-
efficients, NEMD setups are necessary to observe how materials diffuse
over time, studying the impact that time, concentration, and depth have
on the diffusive potential of a rejuvenator into bitumen [26].

While existing studies using NEMD simulations have successfully
computed Fickian diffusion coefficients to quantify rejuvenator diffu-
sion into bitumen, these computations are often limited in scope,
addressing only a narrow range of specific bitumen and rejuvenator
combinations. These studies typically rely on tracking molecular dis-
placements over time, such as mean square displacement [17], or
monitoring concentration gradients under controlled conditions to
derive diffusion coefficients using Fick’s laws [20,23]. However, the
methods and observations are frequently tied to the particular materials
and system conditions used in the simulations, which makes them highly
system-specific. This specificity necessitates new simulations whenever

the methods are applied to different rejuvenator-bitumen systems or
when their results are contested or require reproduction [27]. As a
result, despite significant progress in refining simulation protocols to
incorporate factors such as temperature, molecular interactions, and
material variety, there remains a gap in developing generalized models
or transferable insights that can reliably predict diffusion behavior
across diverse materials. This limitation hampers the broader applica-
bility of these findings and underscores the need for approaches that are
both predictive and rooted in fundamental chemical and structural de-
scriptors of the systems under study [28].

This paper aims to address five key challenges by implementing a
series of methodological innovations. First, we perform a comprehensive
bitumen-rejuvenator sweep test, exploring a broad range of chemical
compositions, aging conditions, and temperatures to identify trends
across various bitumen types and rejuvenator formulations. Second, we
use force field atom types to describe the chemical nature of the samples,
moving beyond conventional parameters like SARA fractions and
elemental compositions, thereby improving the accuracy of insights
fromMD and NEMD simulations. Third, we develop a Machine Learning
Model (MLM) to predict the Fickian Diffusion coefficient of bitumen-
rejuvenator systems, enabling accurate predictions without the need
for additional molecular simulations, even for systems beyond the
training dataset. Fourth, we analyze the effect of changes in input
properties on predicted diffusion coefficients, enabling scientists to fine-
tune rejuvenator molecules based on their diffusion potential. Finally,
we integrate the predictive capabilities of the MLMs developed in pre-
vious research [29] with the diffusion predictions and simulations pre-
sented, allowing for the evaluation of bulk thermophysical properties as
a function of rejuvenator concentration, depth, and time. This compre-
hensive framework enhances understanding of how chemical charac-
teristics influence rejuvenator diffusion and offers a practical tool for
designing rejuvenation strategies without the need for additional sim-
ulations. The research contributes to more effective maintenance stra-
tegies for asphalt pavements, promoting the durability and reliability of
transportation infrastructure.

2. Methodology

2.1. Sample collection and preparation

2.1.1. Bitumen sources
A total of 13 bitumens from various sources were collected and

characterized through elemental analysis and SARA fractionation. Many
of these samples exhibited similar properties; therefore, the sample size
was reduced while maintaining a diverse range of chemophysical
properties to ensure sufficient variation. For this study, three bitumen
sources, all with a 70/100 penetration grade, were selected: “JB”, “LB”,
and “UB” bitumens. These samples were specifically chosen based on
their differing sulfur content bymass—type JB at 0.8 %, LB at 2.8 %, and
UB at 4.5 %. The sulfur content is crucial in distinguishing bitumens, as
it significantly affects their properties, even when samples with varying
carbon, hydrogen, and oxygen levels show similar characteristics [30].
Additionally, this focus on sulfur is growing in research, driven by
stricter fuel regulations that are encouraging the development of bi-
tumens with higher and more diverse sulfur content [31].

The selection of bitumens within the penetration grade of 70/100
was intentional and does not compromise the diversity of the chemical
characteristics investigated. Penetration grade, while indicative of me-
chanical hardness, is not a reliable descriptor of chemical variability, as
bitumens with differing penetration grades can exhibit similar chemical
traits. Instead, the sulfur content was employed as a more robust crite-
rion for sample selection, as it better reflects variations in functional
groups and molecular composition, which are critical for understanding
the chemical diversity of bituminous systems. This approach ensures
that the study captures a wide range of fundamental chemical de-
scriptors with a minimal number of samples, aligning with its objective
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to comprehensively investigate chemical diversity through meaningful
and scientifically relevant parameters.

2.1.2. Aging conditions
Five aging conditions, categorized as 0 through 4, are selected to

represent distinct stages in the life cycle of bitumen: degree 0 is fully
fresh from its source (non-aged), degree 1 is short-term aged, similar to
bitumen’s state when exposed to short but high thermal loads during
road construction, and degree 2, 3, and 4 simulate long-term aging,
reflecting the gradual transformations that bitumen undergoes after
roughly 3, 7, and 12 years of service life, respectively [32]. To prepare
the aging conditions in the laboratory, non-aged samples are converted
to their aged counterparts since obtaining real-life aged bitumen sam-
ples is remarkably challenging [33]. Degree 1 aging is achieved by
performing Thin-Film Oven Tests (TFOTs) exposing 1 mm-thick fresh
bitumen samples to 5 h in a Thin-film Oven at 160 ◦C – following the
standards described in [34] − while Degree 2 through 4 are achieved by
further aging Degree 1 bitumens in a Pressurized Aging Vessel (PAV) for
20, 40, and 80 h respectively at 100 ◦C and 2.1 MPa, following PAV
testing standards detailed in [34].

2.1.3. Rejuvenator types
Rejuvenators are chemical additives that mimic the molecular

structure of specific SARA groups to modify the properties of aged bi-
tumens. While rejuvenation mainly induces physical changes rather
than reversing the aging chemically, these compounds aim to restore the
SARA composition to its original state, as seen in fresh bitumen [35]. For
this study, four types of rejuvenators have been selected, each resem-
bling the molecular structures found in four popular rejuvenator com-
pounds used in the bitumen industry: Vegetable Oil (VO), Engine Oil
(EO), Naphthenic Oil (NO), and Aromatic Oil (AO) [36]. For illustration
purposes, VO is depicted in Gold, EO in Orange, NO in Green, and AO
in Brown throughout the manuscript.

2.2. Chemical characterization methods

Chemophysical properties for all samples were obtained to establish
a preliminary fingerprint for each bitumen type across all aging degrees,
which are later utilized in the Model Fitting section. These properties
include average molecular mass and dispersity of the mixture, estimated
density by mass and number, SARA composition by mass, elemental
composition by Carbon, Hydrogen, Oxygen, Nitrogen, and Sulfur,
Colloidal Index, and Saturation Degree. The properties are obtained
through three distinct chemical characterization tests: SARA fraction-
ation, Elemental Analysis, and GPC-MS, detailed in the following sub-
sections. A summary of the characterization results obtained for all the
samples (type JB, LB, and UB) across all aging conditions is presented in
Table 1.

2.2.1. Thin-Layer Chromatography with Flame Ionization detection (TCL-
FID)

In this study, the mass fractions of Saturates, Aromatics, Resins, and
Asphaltenes (or SARA fractions) of all bituminous samples are quanti-
fied using the Thin-Layer Chromatography coupled with Flame Ioniza-
tion Detection (TLC-FID) method, as described by Khan et al. [37]. The
experimental setup involved a controlled flow of air and hydrogen at
rates of 2 l/min and 160 ml/min, respectively, to ensure optimal
detection conditions.

To prepare the samples, approximately 0.1 g of bitumen are dis-
solved in 10 ml of toluene to create a homogenous bitumen/toluene
solution. This solution is then subjected to chromatographic separation
using a silica-coated chromatographic rod. The separation and detection
of the individual fractions were carried out in a stepwise manner based
on solvent polarity. The Saturates fraction is eluted using n-heptane,
allowing its isolation and subsequent quantification. The Aromatics and
Resins fractions were separated and measured using solvent mixtures of
toluene/n-heptane (80:20 v/v) and dichloromethane/methanol (95:5 v/
v), respectively. The Asphaltenes fraction, being insoluble in the afore-
mentioned solvents, remained at the initial sampling spot on the chro-
matographic rod.

Table 1
Summary of the characterization results obtained for all the bitumen types (JB, LB, and UB) across all aging conditions. The values have been grouped by property in
JB, LB, and UB order. These physicochemical properties are used in the Model Fitting section to build the molecular models for use in MD simulations.

Test type 0 1 2 3 4

SARA Fractionation (2.2.1) Saturates [m%] 5.8 5.88 5.80 5.80 5.71
3.6 3.6 3.6 3.7 3.7
5.2 5.48 5.5 5.69 5.8

Aromatics [m%] 63.1 61.88 55.09 49.82 44.28
53.357.2 51.655.02 43.947.31 38.841.79 32.534.85

Resins [m%] 26.2 26.47 30.94 34.89 37.73
30.322 30.221.80 33.924.76 36.826.91 38.427.80

Asphaltenes [m%] 4.90 5.64 7.64 8.59 10.90
12.815.6 14.617.78 18.622.43 20.725.61 25.431.55

Colloidal Index [:] 0.12 0.14 0.19 0.22 0.28
0.1960.261 0.2220.293 0.2850.376 0.3230.428 0.4100.541

Elemental Analysis (2.2.2) Carbon [m%] 85.5 85.2 84.7 84.4 83.7
84.0682.53 83.7282.21 83.2681.78 83.0281.45 82.1480.66

Nitrogen [m%] 0.66 0.67 0.67 0.65 0.67
0.90.60 0.910.61 0.920.61 0.890.59 0.910.61

Hydrogen [m%] 10.5 10.4 10.3 10.0 9.77
10.9010.36 10.8610.31 10.7510.21 10.449.92 10.109.56

Oxygen [m%] 2.00 2.39 2.99 3.53 4.58
0.6182.22 1.0042.59 1.583.13 2.1133.72 3.3124.85

Sulfur [m%] 1.28 1.28 1.27 1.29 1.29
3.524.30 3.514.29 3.494.26 3.534.31 3.544.32

GPC (2.2.3) Mass-avg. molar mass[g/mol] 1481 1779 2012 2194 2258
38,791,886 40,492,117 47,732,441 58,022,807 82,103,434

Number-avg. molar mass[g/mol] 889
1,290,647

929
1,310,667

979
1,346,694

1015
1,400,720

1030
1,488,748

Molecular Dispersity[:] 1.673.012.91 1.913.093.18 2.063.43.52 2.164.153.90 2.195.524.59
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2.2.2. Elemental analysis
The elemental compositions of the samples, namely the mass frac-

tions of Carbon (C%), Hydrogen (H%), Sulfur (S%), Nitrogen (N%), and
Oxygen (O%), are analyzed using an elemental analyzer (Vario EL III)
manufactured by Elementar Analysensysteme GmbH, in Germany. In
depth details about this method can be found in Sieper et al. [38]. The
elemental analyzer is calibrated prior to the measurements using a
standard reference substance, Sulfanilamide, to ensure accurate deter-
mination of elemental distributions. Approximately 10 mg of each
bituminous sample are encapsulated in a thin capsule and placed into
the sample tank. The samples undergo complete oxidation and com-
bustion under controlled conditions, producing gaseous products that
are subsequently separated and detected to quantify the elemental
contents. Due to the inability of elemental analyzers to directly detect
oxygen as a unique gaseous product during combustion, the oxygen
content is calculated indirectly by subtracting the measured percentages
of other elements from 100 %, as shown in Eq. (2.1),

O% = 100 − (C%+H%+ S%+N%) (2.1)

assuming that no other elemental types are present in the re-
juvenators. This approach provides a reliable characterization of the
rejuvenators’ elemental composition, enabling further investigation of
their chemical properties. Obtaining the elemental composition for each
sample is crucial in theModel Fitting section for constructing accurate
molecular models of bitumen, especially that these metrics are highly
accurate and capture S% and O% contents which are instrumental for
discretizing systems according to bitumen type and aging degree.

2.2.3. Gel permeation chromatography (GPC)
The characterization of all bitumen samples, including their number-

average molecular weight (Mn), weight-average molecular weight (Mw),
and z-average molecular weight (Mz), was conducted using Gel Perme-
ation Chromatography (GPC) as outlined in [39]. These metrics provide
insights into the molecular size, variety, and distribution within each
sample. Combined with the derived Polydispersity Index (D), they are
instrumental in the Model Fitting section for constructing accurate
molecular models of bitumen. Tetrahydrofuran is used as the mobile
phase, with a flow rate set at 1 ml/min. To prepare the sample,
approximately 0.05 g of bitumen is dissolved in 10 mL of THF at room
temperature. The resulting solution is filtered through a syringe filter to
remove any particulates before being injected into the GPC system.

2.3. 11 Molecules selection

2.3.1. 12 Bitumens
The molecular set used in this study to construct bitumen models

comprises 33 molecules, expanding on the original 12 identified by
Greenfield [40] based on Shisong et al. [41]. This expansion in-
corporates structural modifications consistent with SARA fractionation
and elemental analysis of the samples. The set aims to represent typical
hydrocarbon classes found in bitumen—such as alkanes, alkenes, poly-
cyclic aromatics, and non-aromatics—and includes functional groups
like phenols, oxanes, pyridines, thioketones, and sulfoxides. These
molecules, with molecular masses ranging from 200 to 1000 g/mol, high
aromaticity, and significant planarity, reflect the complex structures
typically found in bitumen [27]. The molecules are categorized by SARA
fraction and aging degree to align with research on bitumen aging,
ensuring the MD simulations accurately capture physical behaviors
relevant to civil engineering [9]. The skeletal structures, chemical for-
mulas, molecular masses, and estimated densities are provided in
Table 2. Corresponding SMILES [42] notation can be found in Table S-4
in the Supplementary Information. The molecules are included as
ACD/ChemSketch objects for direct use in chemistry drawing software.

2.3.2. Rejuvenators
Rejuvenators are typically composed of a complex mixture of mol-

ecules—for example, EO contains thousands of different compounds. In
this study, a single representative molecule is used for each rejuvenator
(VO, EO,NO, and AO), incorporating the key functional groups relevant
to each. This simplification facilitates a more focused estimation of their
impact on the bitumen blend, as demonstrated in several studies on
rejuvenators [36]. The skeletal representation of the rejuvenator mole-
cules, along with their chemical formula, molecular mass, and estimated
density are presented in Table 3. Their corresponding SMILES notation
can be found in Table S-5 in the Supplementary Information. The mol-
ecules in this table are inserted as ACD/ChemSketch objects that can be
directly imported and used in most widely utilized chemistry drawing
software.

2.4. 14 Molecular models

2.4.1. 15 Model Fitting
Molecules from Table 2 are selected and combined to create bitumen

mixtures that match the experimentally obtained chemophysical prop-
erties from Table 1. This matching is accomplished by using SciPy’s
Minimize function [43] to optimize the selection and proportion of
molecules to minimize the Mean Squared Error (MSE) between the
experimental values and those computed from the virtually-created
mixture. The fitting process involves the following steps:

1. Loading all molecules listed in Table 2 and Table 3 into a Python
environment using the RDKit module [44] to retrieve the chemical
descriptors (e.g., molecular weight) from their SMILES notation.

2. Computing the chemophysical properties for each molecule in
Table 2 (i.e., as in pure form).

3. Creating an array representing the target mixture of molecules,
initially containing 3 molecules of each type.

4. Calculating the mixture-wide chemophysical properties given the
initial array of molecules using the properties from Step 2.

5. Employing SciPy’s Minimize function to iteratively adjust the num-
ber of molecules in the mixture and minimize the MSE between the
estimated mixture properties (yest

i ) and the reference values obtained
using experimental characterization tests (yexp

i ) from Table 1. The
MSE is calculated using Eq. (2.2), as follows:

MSE =
1
m

∑m

i=1

(
yest
i (x1, x2, ⋯, xn) − yexp

i
)2 (2.2)

wherem is the number of chemophysical properties to fit, with equal
penalty weights, n is the number of different molecule types in the
mixture, and x represents the count of each molecule type.

6. The process is repeated for all the samples required until all the
samples are obtained.

Four main constraints are enforced when generating the plausible
molecular models:

1. The total number of atoms in each mixture must remain within 7000
± 2 %, reducing the relative impact of size differences and boundary
conditions and ensuring similar simulation performance across all
models to facilitate high-throughput operations. This limitation
inherently sets a limitation on the total number of molecules, from 73
to 76, comparing well with other models built in the literature
[4,40].

2. Only molecules that are within the aging degree above or below of
the required mixture’s aging condition are selected. For instance, a
mixture representing an aging condition of 3 can only be comprised
of molecules from aging conditions 2, 3, and/or 4, unless such a
selection cannot produce a valid molecular model. Models of aging
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Table 2
Skeletal representation of the molecules employed in constructing the molecular models for this study. Within the Saturates category, (1) squalane and (2) hopane are depicted. The Aromatics group includes (3) dio-
ctylcyclohexane naphthalene and (4) perhydrophenanthrene naphthalene. In the Resins category, (5) quinolinohopane, (6) thioisorenieratane, (7) benzobisbenzothiophene, (8) pyridinohopane, and (9) trime-
thylbenzeneoxane are shown. Lastly, the Asphaltenes category comprises (10) phenolic asphaltene, (11) pyrrolic asphaltene, and (12) thiophenic asphaltene.

SARA ID Aging degree

0 1 2 3 4

Saturates 1

C30H62 | 422 | 0.803

−
− − −

2

C35H62 | 482 | 0.913

−
− − −

Aromatics 3

C35H44 | 464 |

1.030

O

C35H42O | 478 |

1.064

O

O
O

O

C35H36O4 | 1.173

−
−

4

C30H46 | 406 | 0.916

O

C30H44O | 420 | 0.955

O

O
C30H42O2 | 434 | 0.995

−
−

Resins 5
N

C36H57N | 503 |

0.977

N
O

C36H55NO | 517 |

1.006

N
O

O

C36H53NO2 | 531 |

1.040

− −

6

O

C26H50O | 414 | 0.893

O

O
C26H48O2 | 428 |

0.930

− − −

7 S

S
C18H10S2 | 290 | 1.417 S

S

O

C18H10S2 | 306 | 1.540
S

S

O

O

C18H10O2S2 | 322 | 1.68

−
−

8 S

C40H60S | 572 |

0.962

S
O

C40H60OS | 588 |

1.010

SO

O

C40H58O2S | 602 |

1.040

S
OO

O
C40H56O3S | 616

| 1.071

−

9 N

C40H59N | 553 |

1.007

N
O

C40H57NO | 567 |

1.035

N
O

O

C40H55NO2 | 581

| 1.067

− −

(continued on next page)
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Table 2 (continued )

SARA ID Aging degree

0 1 2 3 4

Asphaltenes 10

NH
C66H81N | 888

| 1.104

NH

O

O O

O

C66H73NO4 | 944

| 1.188

NH

O

O O

O

O
OO

C66H67NO7 | 986

| 1.254

− −

11

OH

C42H54O | 574 | 1.049

O
O

O

C42H50O3 | 602 | 1.130

O
O

O

OO

C42H46O5 | 630 | 1.201

−
−

12

S C51H62S | 707 | 1.100 S O C51H62OS | 723 | 1.160
S O

O

C51H60O2S | 737 | 1.189 S O
O

O

C51H56O3S | 751 |

1.220

S O
O

O

O

C51H56O4S | 765

| 1.252
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conditions 0 and 4 are forced to use molecules of aging degree 0 and
4, respectively. This approach ensures that “aged mixtures”—which
are the primary focus—contain minimal contributions from mole-
cules in aging categories that are too distant. Saturates are not known
to undergo aging, so a single category is used to represent them
across all aging states.

3. The properties of the obtained molecular mixtures must not overlap
within the measured error intervals of other mixtures from different
aging conditions. This condition is especially enforced on the oxygen
content, which varies from 1 % to 5 % across all samples, ensuring
that each mixture accurately represents its specified aging condition
and maintains sufficient discretization to yield statistically valid
comparisons, especially when considering the impact of oxidative
aging.

4. The range of molecule types used in each generated mixture must be
between 8 and 14. Moreover, there must be at least one molecule
from each SARA category. This ensures sufficient variability in the
molecules included while aligning with the typical systems used in
other research articles that model bituminous materials, which
commonly feature an average of 9 to 14 molecule types per mixture
[40].

Table S-1 in the Supplementary Information lists the chemophysical
properties and Table S-2 lists the type and number of molecules from
Table 2 required to construct each of the mixtures for all bitumen types
(JB, LB, UB) and aging degrees (0 through 4).

The rejuvenator mixtures, however, consist of a single molecule type
(from Table 3) and do not undergo any Model Fitting process. Four
molecular mixtures are created, with the only constraint being that the
total number of atoms is comparable to that of the bitumen systems, set
at 7000 ± 2 %, resulting in approximately 92 rejuvenator molecules per
system for each type: VO, EO, NO, and AO.

2.4.2. Force field selection
The forces governing the motion of atoms in MD simulations are

represented as potential energy functions, where the force and energy
relationship is expressed in Eq. (2.3),

F = − ∇E (2.3)

The molecular simulations of this study employ the Polymer
Consistent Force Field (PCFF) [45], where the potential energy (EPCFF) is
given by the sum of 12 interaction types, as shown in Eq. (2.4),

EPCFF =
∑

Eb+Eia+Eoa+Et+Ebb+Eba+Ebt+Eaa+Eat+Ett+EVDW+Ecoul

(2.4)

where each interaction term and its respective potential is described
in Table S-3 in the Supplementary Information. The PCFF force field was
chosen for its ability to accurately model complex organic mixtures,
including those present in aromatic, resinous, or asphaltenic mixtures.
Moreover, the PCFF force field has been widely employed in simulating
similar MD systems. All the simulations are performed using the Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [46].
The non-bonded interaction distance is established at 12 Å, beyond
which all interactions are considered negligible and set to zero.

The parameters required to run the simulations are differentiated by
the atomic types used to represent each atom in the system. The PCFF,
being a Class2 force field [47], differentiates atoms through the use of
several criteria, among them the chemical element of the parent atom,
number of attached hydrogens, hybridization state, coordination num-
ber, presence in a ring, involvement in an aromatic system, and the
nature of the list of neighboring atoms. [45]. Table 4 contains a list of the
atom types and their description used to model all the samples (bi-
tumens and rejuvenators alike) in this study. These atom types are
explicitly addressed in this manuscript as they serve as key chemical
descriptors for defining the input features used in training the MLM, as
outlined in the Features selection section.

In the Supplementary Information, Folder /pcff comprises a simu-
lated sample of a bitumen-rejuvenator blend containing all the mole-
cules from Table 2 and Table 3. This simulation includes all necessary
atom types and input parameters for conducting the study’s simulations
utilizing the PCFF force field. Script /pcff/input.data can be used to load
/pcff/structure.data into LAMMPS. Additionally, PDB2DAT, a software
package developed by our research group, can assign PCFF force field
atom types to a PDB system when topologies for LAMMPS’ structure
data files are necessary.

Table 3
Skeletal representation of the rejuvenator molecules employed in this study, accompanied by their chemical formula, molecular mass, and estimated density.

Rejuvenators
O
O

VOC19H36O2 | 297 | 0.873 EOC22H44 | 308 | 0.812 NOC30H40 | 401 | 0.984 AOC26H48 | 360 | 0.863

Table 4
Atom types and their corresponding description used to represent the atoms in
the molecular simulations involving the use of all-atom PCFF force field
dynamics.

Atom
type

Description Atom
type

Description

hc Hydrogen bonded to carbon hn Hydrogen bonded to
nitrogen

o= Oxygen double bonded to O, N,
C, S, P

c3 Sp3 carbon with 3H’s

ho Hydrogen bonded to oxygen oh Oxygen in hydroxide ion
(OH–)

c_1 Amide, acid and ester carbonyl
carbon

cpc Alpha/ipso carbon in
aromatic ethers (− C-O-C-)

c2 Sp3 carbon with 2H’s c = 1 Non-aromatic, next to end
doubly bonded carbon

c5h Sp3 carbon in 5-membered ring c3oe Alpha carbon in methyl
containing ethers (− C-O-
CH3)

c0oe Alpha carbon in ether
containing tertiary alkyl group
(− C-O-C-R3)

nh Sp2 nitrogen in 5-or 6-
membered ring

sp Sulfur in an aromatic ring (e.g.
thiophene)

c0 Sp3 carbon with 0H’s

na1 Sp3 nitrogen in secondary
aliphatic amines

c5 Sp2 aromatic carbon in 5-
membered ring

s’ S in thioketone group cp Sp2 aromatic carbon with
partial double bond

oc Sp3 oxygen in ether or acetals c_0 Aldehydes and ketones
carbonyl carbon

cs Sp2 aromatic carbon in 5
membered rings next to S

c= Non-aromatic end doubly
bonded carbon

np Sp2 nitrogen in 5- or 6-
membered ring

c5h1 Sp2 aromatic carbon in 5-
membered ring

o_1 Carbonyl oxygen c1 Sp3 carbon with 1H
c = 2 Non-aromatic doubly bonded

carbon
o_2 Ester oxygen
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2.4.3. Individual models
The procedures for preparing molecular systems in LAMMPS for

subsequent simulations are outlined in detail below:

1. The structures of the molecules of Table 2 and Table 3 are initialized
using their SMILES notations, processed into metastable 3D con-
formers via the RDKit Python module [44].

2. The initialized molecules are placed into a simulation box at a low
initial density of 0.20 g/cm3, ensuring an even distribution and
minimizing particle overlap by utilizing a low-discrepancy Sobol
distribution method. Molecules are placed 25 Angstroms away from
the walls along the z-axis to ensure that the atoms remain confined
within the boundaries. Moreover, as the systems are expected to be
merged into surface-to-surface systems (i.e., bitumen surfaces facing
rejuvenator surfaces) later, the initial x and y dimensions are set to
match the x and y dimensions of the equilibrium density of the ma-
terial, resulting in an elongated simulation box along the z-axis.

3. The PCFF force field parameters and charges are assigned to the
molecules using RDKit atomic descriptor functions (e.g., atom.
GetIsAromatic() to identify if an atom is a member of an aromatic
ring). The atomic positions are optimized to minimize EPCFF in Eq.
(2.4) using the conjugate gradients method until both energies and
forces reach a threshold precise to the nearest integer [48].

4. The systems undergo uniaxial compression along the z-axis (keeping
the dimensions of x and y constant) to achieve the target density.
This is performed under NVT conditions over 5 ns, using a true strain
rate of 1 %, and applying uniaxial deformations to the simulation box
every 1 picosecond elapsed. The molecules are confined along the z
dimension by two walls of LAMMPS fix indent type, located at the
edges of the simulation box (i.e., at z = 0 and z = lz). Compression is
stopped when the dimensions of the simulation box reach approxi-
mately equal magnitudes, and the system density matches the re-
ported density estimate of the samples in Table 2 and Table 3. At this
stage, subsequent NPT simulations will enable the box dimensions to
adjust gradually, facilitating the system’s convergence to a more
accurate equilibrium volume and density.

5. The systems are subjected to 50 isobaric NPT annealing cycles to
remove residual conformational strain, where the temperature is
oscillated sinusoidally with an amplitude of ±25 % of the set equi-
librium temperature. Each cycle period varies between 0.2 and 1 ns.
The systems are allowed to expand only along the z-axis, while the x
and y dimensions are fixed at constant values. Pressure is controlled
in the z-direction, with the walls along z acting as flexible, movable
boundaries that maintain a pressure of 1 atm while still confining the
particles. This setup ensures that the system can relax strain by
adjusting the volume in the z-direction while preventing particles
from escaping through the walls [49].

6. The systems’ densities are stabilized at the desired equilibrium
temperature and pressure during two successive 50 ns NPT stages.
The final density is calculated based on the average recorded in the
latter NPT stage. Just as in Step 5, the systems are allowed to expand
along the z-axis only [50].

7. An additional step is implemented when simulations do not require
confinement along the z-axis. This involves executing Step 6without
walls along the z-axis and applying full periodic boundary condi-
tions. This configuration enables the molecules to freely cross
boundaries, effectively transforming confined systems into repre-
sentations of bulk conditions in all directions. Although not strictly
necessary for the surface-to-surface simulations in this study, this
step allows for the generation of models whose properties can be
more easily evaluated without the influence of confining conditions.

8. System stability is evaluated by conducting dynamics stages under
NVT and NVE conditions for 50 ns each, without a barostat or
thermostat. Stability is confirmed if the potential and kinetic

energies stay within 5 % of their initial average. Systems failing to
meet this criterion are discarded, and the process is restarted from
Step 1.

The modified Nose-Hoover integration algorithm [51] utilized to
estimate the motion of the atoms includes a drag factor to reduce
oscillatory effects on controlled temperatures and pressures. The
damping factors for temperature and pressure are set at 500 steps, with a
particle velocity drag coefficient maintained at 1.0. The procedure is run
separately for the same sample at 60, 120, 135, and 200 ◦C. All LAMMPS
routines are run at 101325 Pa with a step size of 0.5 fs/step. Periodic
boundary conditions are implemented only along the x and y directions.
The resulting systems from Step 6 and Step 7 are used for later simu-
lations performed in this study. Steps 1 and 2 entail the utilization of
SMI2PDB [52], whereas Step 3 involves the use of PDB2DAT [53]. These
tools have been created by our research team to execute the respective
tasks rapidly and effectively. Figure S-1 in the Supplementary Infor-
mation illustrates all the steps performed to initialize the molecular
models of this study.

2.4.4. Surface-to-Surface models

2.4.4.1. Initialization. The models developed in Step 6 of the Individ-
ual Models section serve as the basis for all surface-to-surface models
simulated in this study, including those of same composition but
different temperature. The subsequent steps detail the creation of these
bitumen-rejuvenator models are presented next, with Fig. 1 summari-
zing them through a series of illustrations.

1. Merging both bitumen and rejuvenator systems into a single one,
translating the rejuvenator system along the z-axis so that the two
systems are facing each other with an inter-surface distance equal to
5 Angstroms [14]. The dimension of the z-axis in the merged systems
is therefore given by:

Lz = Lbit
z + Lrej

z +5 (2.5)

2. Walls are introduced at three locations: at the edges of the simulation
box, where z = 0 and z = lz, and between the two layers (at Lz/2).
The walls at the extremes are modeled using LAMMPS’ wall/table
type, which utilizes tabulated values of E(r) and F(r) to calculate
the interactions between the atoms and the walls. This approach
improves the quality of the boundary conditions by providing
interaction potentials that closely resemble the bulk behavior of the
material near the wall. A more detailed description of this approach
can be found in Boundary Conditions. The wall in the middle uti-
lizes LAMMPS’ harmonic wall type, which softly pushes particles
back, preventing the particles from diffusing from one layer to
another.

3. An isothermal-isobaric NPT routine is run for 5 ns to initialize par-
ticle interactions within the merged setup. During this stage, the
system is allowed to interact across the inner wall (at Lz/2), while
limiting periodic interactions across the outer walls at z = 0 and z =

lz. These outer walls are movable under the pressure control process,
still applying 1 atm along the z-axis as defined previously. This
pressure control ensures that while interactions occur within the
merged system, the boundaries continue to reflect the influence of
the external pressure equal to 101325 Pa. Allowing the system to
expand or contract uniaxially until reaching equilibrium helps
release residual stresses, which can significantly impact the diffusive
behavior of rejuvenators into bitumen. In condensed systems, even
small changes in linear volume can result in significant variations in
internal stresses and, consequently, system pressure. Under condi-
tions of high variation, this pressure is recognized as a key driver of
diffusion, and as such, these variations must be minimized.
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4. The inner wall is then removed, and the particles are then allowed to
accommodate lower energy positions in a subsequent NVT routine
0.25 ns long. While the separation between the two phases may be
disrupted (some molecules are expected to come together), the
diffusion expected is short enough to still consider the last point in
this step to be the condition where t = 0 when computing the
diffusion coefficient.

2.4.4.2. Boundary conditions. Given the relatively small size of the
systems under study—where the diffusive behavior of both bitumens
and rejuvenators is expected to influence the interaction potential up to
the boundary walls—it is crucial that the walls interact with the mole-
cules in a manner that accurately represents the bulk of the materials at
the surface. In many surface-to-surface diffusion simulations found in
the literature, walls are typically modeled as hard, reflective boundaries
that fail to replicate the bulk material at the interface, resulting in
“artificial” interactions between the molecules and the boundary

[14,15,28]. Some studies address this limitation by introducing an
additional layer of material at the boundary, where the atoms are fixed
to create a barrier that more closely mimics the bulk interactions [23].
However, this approach requires a layer almost as thick as the simulated
material itself, effectively doubling the number of particles and signifi-
cantly impacting computational performance. Since the diffusive simu-
lations in this study are expected to run for tens of nanoseconds, such
material-like barriers are computationally intractable.

To overcome this, the recently introduced fix wall/table command
in LAMMPS is utilized, allowing for the construction of walls that
interact with particles using tabulated potentials. These potentials relate
the distance between the atoms and the wall to their corresponding
potential energy and force values (E(r) and F(r)), enabling a more
realistic interaction with minimal additional computational cost.

To develop the tabulated potentials, simulations are conducted by
initially positioning two surfaces of the same material very close
together and then sequentially separating them until they reach a

Fig. 1. Molecular models from the Initialization section are stacked along the z-axis to form surface-to-surface configurations, with their faces oriented towards
each other.

Fig. 2. Tabulated potentials are generated for all the bulk models created in this study to represent more realistic walls. Using these tabulated potentials as “walls”
aims to minimize artificial artifacts during particle interactions with the boundaries in the simulations, as they more accurately reflect the material’s behavior in its
bulk phase.
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specified distance, equal to 75 Å or more to ensure that long-range
electrostatic interactions described by the Coulomb term in the PCFF
force field (see Table S-3 in the Supplementary Information) are mini-
mized. The detailed procedure for these simulations is described below;
a sequence of the steps is illustrated in Fig. 2.

1. Each individual system undergoes an NVT dynamics stage for 1 ns to
initialize the system’s dynamics to a steady state. This process is
repeated separately for all four temperatures tested in this study
(60 ◦C, 120 ◦C, 160 ◦C, and 200 ◦C). During this stage, confinement is
applied to prevent atoms from crossing the z-axis.

2. A duplicate of the equilibrated system is created and positioned
adjacent to the original, facing it along the z-axis, with a separation
distance of 1 Å.

3. The two systems then undergo uniaxial expansion along the z-axis
(while keeping the x and y dimensions constant) until the distance
between the two regions equals to the original length of the simu-
lation box (~78 Å). This expansion is performed under NVT condi-
tions over 1 ns, using a true strain rate of 1 %, with uniaxial
deformations applied to the simulation box every 1 picosecond. A
true strain rate is used instead of a linear rate to ensure denser
sampling at shorter distances, where the energetic potential is ex-
pected to exhibit the most significant variations.

4. Intermolecular energies corresponding to non-bonded interactions,
along with their corresponding forces, are recorded. These values are
obtained using the LAMMPS’ compute group/group command,
with the energies and forces averaged over the last 1000 steps before
the next deformation step. This approach ensures that any intra-
molecular strain is dissipated before measurements are taken. The
non-bonded interaction energy is calculated as shown in Eq. (2.6).

Enb = EVdW + ECoul +Elong (2.6)

Tabulated potentials are generated for each system examined in this
study, encompassing 19 models—comprising 3 types of bitumen across
5 aging degree and 4 rejuvenators—at 4 different temperatures (60 ◦C,
120 ◦C, 160 ◦C, and 200 ◦C). This results in a total of 76 distinct
potentials.

2.4.4.3. Sample labels. Considering there are 3 types of bitumen by
source, 5 degrees of aging, and 4 types of rejuvenators, a total of 60
surface-to-surface models are created. Since the models are tested at four
different temperatures, a total of 240 surface-to-surface simulations are
conducted. The label format “AAA”, depicted in Fig. 3, is composed of
three characters: the first indicates the bitumen type, the second denotes
the aging degree, and the third specifies the rejuvenator type. For
example, the label “l4e” corresponds to a bitumen of type LB aged to
degree 4, rejuvenated with EO. A character represented by the letter “X”
signifies “all members within its category”, used to identify multiple
samples using one label.

2.4.5. Fickian diffusion simulations
The diffusion simulations extend the systems generated in Step 4 of

Initialization by continuing the simulations for an additional 30 ns,

while maintaining all previously established simulation parameters. The
choice of 30 ns is a compromise between ensuring measurable dif-
fusion—particularly at lower temperatures and for incompatible
bitumen-rejuvenator combinations—and avoiding excessive diffusion at
higher temperatures, where bitumen-rejuvenator mixtures readily
combine, rendering the calculation of the diffusion coefficient, D, via
Eq. (2–7) statistically insignificant. Each simulation outputs 300 tra-
jectories, sampled every 0.167 ns, capturing atomic positions, velocities,
accelerations, and stress tensors. These trajectories are divided into
three files, each containing data for Bitumen-only, Rejuvenator-only,
and Bitumen-rejuvenator molecules. Additionally, system-wide proper-
ties, such as potential energies and densities, are sampled at the same
rate, with the values calculated as averages of the instantaneous mea-
surements taken at each time step within the sampling interval. Fig. 4
depicts the expected progression of the simulations over time.

2.5. Benchmarking properties

2.5.1. Thermophysical properties
Numerous thermophysical properties can be extracted from the

simulations and can be categorized into time-dependent or steady-state
measurements. The properties measured in the Fickian Diffusion
Simulations are time-dependent and track the evolution of these
properties over time, ensuring that the observed phenomena follow
thermodynamically and kinetically favorable trends. Some properties
measured are compared to those in their analogous systems from Step 6
and 7 in the Individual Models section and Step 4 of the Initialization
of surface-to-surface models. This is performed to ensure that the
properties observed during the Fickian Diffusion Simulations adhere
to realistic trends and are not influenced by artificial numerical artifacts
or complexities that may arise during these simulations. These proper-
ties, along with the methods used for their computation, are summarized
in Table 5. Among the thermophysical properties computed, the Cohe-
sive Energy Density (CED) is determined using a specific set of LAMMPS
routines, building upon the systems outlined in Step 7 in the Individual
Models section. Further details of these simulations are provided in the
file Section S-1.5 in the Supplementary Information.

2.5.2. Fickian diffusion coefficient
The diffusion coefficient D for a Fickian diffusion process across one

dimension can be calculated from the density profiles using Fick’s Sec-
ond Law of diffusion, as presented in Eq. (2.7):

C(z, t) = C0

(
1
2

(

1 − erf
(

z
2

̅̅̅̅̅
Dt

√

)))

(2.7)

where C(x, t) is the concentration of bitumen or rejuvenator along z (i.e.,
depth) and at a time t, and C0 is the concentration of the material in its
bulk phase. In this approach, a fitting process is employed to extract the
value of D from the simulations in the Production section. This method is
consistent with that used in previous studies [13,23,54], and the specific
details of the procedure are provided next.

The trajectories for all the samples obtained from the Fickian

Fig. 3. The labeling system used to identify all surface-to-surface models in this study, categorized by bitumen type, aging degree, and rejuvenator type.
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Diffusion Simulations section are divided into 50 slices along the z-axis
of the simulation box. The position along the z-axis is normalized by
applying a shift, calculated as the mean of the box boundaries in the z-
dimension. The volume of each slice is determined by multiplying the
slice thickness (obtained from the slice’s z-boundaries) by the cross-
sectional area in the x and y dimensions. Atoms are assigned to their
corresponding slices based on their z-coordinates, with the atomic mass
and position used to allocate them appropriately. The density for each
slice, ρi, is then calculated as shown in Eq. (2.8):

ρi =

∑
mj

Vslice
(2.8)

wheremj is the mass of atom jwithin slice i, and Vslice is the volume of the
slice. The density of each slice is stored alongside the mean z-position of
the slice. To fit the data to the diffusion equation, the mean position of
each slice is scaled by the simulation time t, using the transformation
zt− 0.5. This transformation is commonly applied in Fickian diffusion

analysis to account for the time-dependent spreading of the density
profile, allowing all the data points in different locations and times to be
grouped into a single, “sigmoidal looking” continuous curve.

The transformed data is subsequently fitted to a sigmoidal curve
using the error function, which represents the solution to the diffusion
equation in one dimension. The error function describes the spatial and
temporal evolution of the density distribution, given in Eq. (2.9) by:

ρ(x, t) = ρ0erf
(

z
2

̅̅̅̅̅
Dt

√

)

(2.9)

where ρ0 corresponds to the bulk density of the material, z is the position
of the particle in the z dimension, t is the simulation time elapsed, and D
is the diffusion coefficient. The curve fitting process involved adjusting
one parameter, B, related to the diffusion coefficient. The error function
fit is performed using Scypy’s CurveFit function to match the trans-
formed data points with the density values. The relationship between
the fitted parameter B and the diffusion coefficient D is obtained as
shown in Eq. (2.10).

D =
1
4B2 (2.10)

2.6. Machine learning

This study introduces a MLM designed to predict the Fickian diffu-
sion coefficient between two hydrocarbon blends—specifically, bitumen
and rejuvenators—using a series of chemical descriptors and the system
temperature as inputs. This model allows for the near-instantaneous
estimation of diffusion coefficients, offering insights into how various
chemical factors (e.g., changes in molecular structures) influence the
diffusive behavior of both components. The details of this approach are
presented in the following sections.

2.6.1. Model
The MLM used in this study is generated and trained through a Py-

thon script utilizing the Pandas [55] and Sklearn [56] libraries. This
script implements a hybrid predictive model that combines the advan-
tages of both tree-based and linear interpolation models. The core of the
approach is encapsulated within a HybridModel class, which employs a
Random Forest Regressor (RFR) [57] as the primary predictive model,
alongside a Linear Regression model to handle interpolation. During the
prediction process, the hybrid model first verifies whether the input
features align with those in the training data. If they do, predictions are
made directly using the tree-based model. If not, the model locates the
two nearest neighbors using a k-dimensional tree, predicts their values
with the tree model, and interpolates between them based on their
distances to provide the final output [58].

Fig. 4. Expected progression of the diffusion simulations over time where the bitumen and rejuvenator molecules are compatible.

Table 5
Thermophysical properties computed for evaluative purposes, encompassing
both Step 6 and 7 in the Individual Models section (steady state) and Fickian
Diffusion Simulations (time-dependent) sections.

Quantity Time
dependency

Expression Notes

Potential Energy (PE) [kJ/
kg]

Both EPCFF

Non-bond Energy (Enb) [kJ/
kg]

Both Enb = EVdW + ECoul +

Elong

Bonded Energy (Eb) [kJ/kg] Both Eb = Ep − Enb

Enthalpy (H) [kJ/kg] Steady state H = Ep + Ek + PV
Molar Volume (Vm) [m3] Steady state Vm =

Mw

ρ
Density (ρ) [kg/m3] Steady state ρ =

m
V

Self-diffusion coefficient
(Dself )
[m2/s]

Steady state D =

limn→∞
|r(t) − r(0) |2

6t
Enthalpy of Vaporization
(Hv) [kJ/kg]

Steady state Hv = VmCED + RT

Solubility Parameter (δsol)
[kJ0.5/m1.5]

Time
dependent δsol =

̅̅̅̅̅̅̅̅̅
CED
Vm

√

Surface Tension (T) [N/m] Time
dependent

T =
lz
2

(σxx + σyy

2
− σzz

)

Isochoric Heat Capacity (Cv)
[kJ/kg/K]

Steady state
Cv =

(
δU
δT

)

V
Thermal Expansion
Coefficient (β) [1/K]

Steady state
β =

1
V

(
δV
δT

)

P
Fickian diffusion coefficient
(D)

Time
dependent ρ(x, t) = ρ0erf

(
x

2
̅̅̅̅̅
Dt

√

)
​
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To assess the predictive potential of the machine learning models, 10
% of the properties measured through MD simulations are randomly
selected and excluded from the training set. Specifically, out of a total of
240 samples (60 bitumen-rejuvenator combinations across a tempera-
ture sweep of 4 temperatures), 24 samples are used for evaluating the
MLMs’ unobserved predictive performance, while the remaining sam-
ples will serve as input for training the models. Although the 90/10 ratio
is slightly higher than the commonly used 80/20 (or lower) ratio in MLM
training, the limited number of available samples necessitates a more
conservative approach, requiring a larger proportion of samples for
model training [59].

The script follows these steps during execution:

1. Data Reading and Preparation: Load the dataset containing the x1,
x1,⋯x19 and yi values for all the simulations of this study into
Panda’s DataFrame objects.

2. Hybrid Model Initialization: Initialize the hybrid model with a RFF
and a linear interpolation model, incorporating a preprocessing
pipeline for data standardization.

3. Model Training: Scale the training data using the preprocessing
pipeline, train both the RFF and interpolation models, and construct
a K-dimensional tree to enable nearest neighbor searches. Determine
feature ranges for boundary checking.

4. Prediction and Evaluation: Predict the values of yi using the hybrid
model for 90 % of the training arrays of x1, x1,⋯x19 values used. This
ensures that 10 % of the computed data points remain unobserved by
the MLMs, which are used in Step 6 to corroborate the capacity of the
MLM to predict properties given a combination of features previ-
ously unknown to it.

5. Interpolation Smoothness: The generated MLM is tested with a
finer set of xi values (20 values in between), to ensure that the pre-
dicted values are smooth and continuous (yleft

i < yi< yright
i ).

6. Results Handling and Model Saving: Save the values of xi, yMD
i ,

and yi to a CSV file. The resulting model, MLMi, is serialized and
saved if the R-squared value is above 0.96 and the magnitudes of the
differences between yMD

i and yi are below 5 % for both observed and
unobserved datasets.

The MLM file to predict Fickian Diffusion, created by serializing the
HybridModel objects along with all associated features using Python’s
Pickle module, is located in the /MLMs directory within the Supple-
mentary Information. The MLM can be loaded back into Python and be
used to predict Diffusion coefficients by using a custom set input
features.

2.6.2. Features selection
The input parameters for training the MLMs in this study include the

chemical composition of the samples, the molecular mass of bitumen
and rejuvenator layers, and the system’s temperature. Initially, all 30
atom types in the PCFF were considered, but this approach would
require managing 60 chemical descriptors due to the bilayer nature of
the systems (to describe the chemical nature of both the bitumen and
rejuvenator layers separately). This would demand an excessively large
data set for training [45]. To simplify, the PCFF atom types were com-
bined into 8 descriptors that capture elemental and functional differ-
ences, resulting in 18 atomic type descriptors (9 for each layer). Table 6
maps this simplification.

Although the number of types has been reduced from 30 to 18 (9 for
bitumens and 9 for rejuvenators), this reduction remains sufficient to
identify trends between diffusion potentials and more fundamental

Table 6
List of simplified atom types and their respective description derived from the PCFF force field. These atom types are instrumental in formulating the “atom type”
formulas employed for chemical characterization of MD systems and for training the MLMs of this study.

E.I. Assaf et al. Materials & Design 248 (2024) 113502 

12 

http://Pickle


chemical descriptors. The “atom-type” formula for one side (bitumen or
rejuvenator) is obtained by applying Eq. (2.11). Fig. 5 depicts how atom
types can be used to discretize molecules into functional blocks.

xi, 1− 8 =
1
N

(∑
a1,

∑
a2,⋯,

∑
a8
)

(2.11)

where N is the total number of atoms, and ai corresponds to the number
of a certain atom type in the sample.

Fig. 6 provides an overview of how features are used to describe both
bitumen and rejuvenator samples in a Fickian diffusion simulation. The
MLM distinguishes between the two by separately analyzing their
chemical descriptors. This approach helps the model capture the dif-
ferences between bitumen and rejuvenators and better assess the driving
force pushing diffusive interactions.

Therefore, the MLM is trained using 19 features. The first nine fea-
tures (x1 to x9) represent the chemical descriptors and molecular weight
of the bitumen side, while the next nine (x10 to x18) describe the same
properties for the rejuvenator side. The final feature (x19) corresponds to
the temperature of the system. This separation of features mirrors the
distinction between bitumen and rejuvenator in surface-surface simu-
lations, ensuring that each material is represented individually. Direc-
tory MLMs/predictions in the Supplementary Information includes the
files containing the chemical features for all samples prepared in this
study.

2.6.3. Labels selection
The properties, or labels, correspond to the properties that are to be

predicted by the MLMs. In this study, only the Fickian Diffusion Coef-
ficient described in Fickian Diffusion Coefficient is selected. This aims
to establish a MLM that can, to a certain extent, abstract away from the
use of MD simulations to predict the Fickian Diffusion Coefficient, Di, of
bitumen-rejuvenator systems almost as accurately as if they were
measured using MD simulations (DMD), as depicted in Eq. (2.12),

MLM = f(x1, x2,⋯x19)i = Di ≈ DMD
i ← ρ0erf

(
x

2
̅̅̅̅̅
Dt

√

)

(2.12)

where xn correspond to a combination of features describing the mo-
lecular system, i, for which the property, Di, is required. By obtaining the
value of Di and knowing its relation to Eq. (2.12), the concentration of a
rejuvenator at a specific depth and/or time can be estimated without
having to set up experiments or perform additional MD simulations.

3. Results

3.1. Diffusion coefficients

Fig. 8 presents various simulation endpoints to demonstrate how the
diffusion values discussed in this study relate to the extent of mixing
achieved by the rejuvenators. Specifically, a diffusion coefficient below
0.2 indicates a “Slightly- to Non-diffused” state, while a D value between
0.2 and 1.5 corresponds to a “halfway” diffusion state. A D value
exceeding 1.5 signifies a “Well diffused” state. This depiction follows
Fick’s second law of diffusion in one dimension, in Eq. (2.7), which
provides an estimate of how far, on average, particles have diffused over
time. Conversion into equivalent millimeters per hour is provided as
well.

Table 7, Table 8, and Table 9 summarize the diffusion rates of the
samples based on rejuvenator type, bitumen type, and bitumen aging
degree, respectively. Each table groups the samples into three catego-
ries—those with the highest, average, and lowest diffusion rates—across
the studied temperature range, with the average diffusion coefficients
provided in parentheses. Table 10 presents visual representations from
simulations corresponding to the highest, average, and lowest diffusion
coefficients measured across all four temperatures.

Fig. 9 displays visual representations of the diffusion simulation for
sample “l0v” at six distinct time points throughout the simulation.

3.2. Experimental validation

Before developing MLMs to predict diffusion coefficients and their
application in pavement engineering, it is essential to validate the
training data generated from MD simulations. This validation involves
comparing MD-derived data with empirical observations, preferably for
both individual steady-state systems and diffusion measurements in
bitumen-rejuvenator combinations.

While it is not feasible to obtain experimental data for all the samples
(19 for individual systems and 240 for diffusion systems), key physical
properties—such as densities, heat capacities, thermal expansions, and
solubility parameters—can still be obtained for certain hydrocarbon
blends, presented in Table 11.

Careful attention must be paid to the Fickian diffusion coefficients
from the time-dependent simulations in this study to ensure they match
experimental data. Although individual experimental diffusion data is
limited, and the experimental range does not fully match the variety

Fig. 5. Identification of chemical features described in Table 6 in bitumen-like molecules (Left − Phenolic Asphaltene) and rejuvenator-like molecules (Right – EO).
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tested in the simulations, there is overlap in some samples and condi-
tions, providing validation for the MD-based diffusion results [36,69].
Table 12 shows the diffusion coefficients from both experiments and
simulations for samples where data is available.

3.3. Features range

Given that the study sweeps through an array of 240 different
bitumen-rejuvenator simulations, there exists 240 unique arrays of
features (x1, x2,⋯x19) used as inputs for training the MLM of this study.
Therefore, the range of values (from minimum to maximum) covered by
these simulations for each xi are presented in Table 13. These serve to
understand the boundaries of the features covered by this study, and
whether the features of another material to be studied by other re-
searchers lies within these ranges.

3.4. Features Importance and directionality

Table 14 displays the sorted and normalized importance scores for
features that influence diffusion coefficients, organized from the most to
the least influential.

Table 15 through 18 present the results for each temperature, dis-
playing the measured diffusion coefficient in relation to the most
influential features of the samples identified by the MLM. The tables
categorize the systems into three groups: the top five systems with the
highest diffusion coefficients, five systems with intermediate values, and
five with the lowest diffusion coefficients.

3.5. Prediction potential

Table 19 displays scatter plots for D, comparing predicted values (Di)
with measured values (DMD

i ). These plots include data from both the
observed and unobserved datasets used to assess the predictive perfor-
mance of the MLMs. Ideally, the plots should display a 45◦ diagonal line,
reflecting perfect agreement between the predicted and MD-measured
values for both datasets, particularly when evaluating the model using
unobserved samples. The complete list of simulated values and their
corresponding predictions, based on the input features for each sample,
is available in the tabulated files within the MLMs/predictions directory
in the Supplementary Information.

4. Discussion

4.1. 36 diffusion coefficients

This analysis provides an initial interpretation of the results, focusing

on basic observations to generate insights. It does not explore the deeper
correlations possible with machine learning or the effect of chemical
descriptors on diffusion. Instead, it focuses on typical Pavement Engi-
neering links between bitumen type, aging, and rejuvenator type, and
their influence on diffusion potential.

4.1.1. Rejuvenator dependency
The performance of different rejuvenators in facilitating diffusion

into bitumens is clearly temperature-dependent and varies significantly
based on the type of rejuvenator used. From across all temperatures
tested (60 ◦C, 120 ◦C, 160 ◦C, and 200 ◦C) (as seen in Fig. 7 and Table 7),
VO exhibits the highest absolute and relative diffusion rates, consis-
tently ranking the highest nominal values and in the top third of sam-
ples. At 160 ◦C, for instance, 10 out of 15 VO samples are found in the
top third with an average diffusion coefficient of 1.28e-10 m2/s, as
opposed to 0.57 and 0.32e-10 m2/s for the bottom thirds, and about 10
% higher than other rejuvenators’ average. Even at lower temperatures,
such as 60 ◦C, VO still performs relatively well, with 9 samples in the top
category and an average diffusion coefficient of 0.284e-10 m2/s, almost
ten times higher than the bottom thirds, and about 30 % higher than
other rejuvenators’ average in the top third. This trend suggests that VO
is highly effective in promoting diffusion over a broad temperature
range, maintaining strong relative performance even at lower temper-
atures, where diffusion rates diminish across all samples. Moreover, the
performance of VO seems to improve with an increase in temperature,
where both the magnitudes and distribution of scores become more
apparent. Based on the visual reference depicted in Fig. 8, VO systems
remain “slightly diffused” at 60 ◦C, an observation that quickly reverses
at higher temperatures, where most of the systems pass the “halfway
diffused” mixing point, even in cases that are grouped into the bottom
thirds. As a rough estimate, the average diffusion coefficient for all VO-
rejuvenated samples, encompassing all temperatures, bitumen types,
and aging conditions, is 1.02e-10 m2/s, equivalent to 0.85 mm/h.

In contrast, EO displays a more balanced distribution across the top,
middle, and bottom thirds, as seen in Table 7. In nominal terms, its
diffusion coefficients also lie below that of VO across all temperatures
but have a more intricate relationship with NO and AO. While EOs
consistently score higher counts in the top thirds across all temperatures,
the values of the diffusion coefficients do not dominate over these two,
but rather compete very closely. This is especially true at higher tem-
perature and top thirds, where NO and AO’s coefficients sometimes
surpass that of EO. Moreover, while EO’s top third count aligns with that
of VO at lower temperatures, they quickly diminish as temperatures
increases (from a count of 7 in the top third when VO is 9, to a mere 4
when VO is 10). These observations suggest that EO has a relatively
good performance, placing it below VO, but above AO and NO, and

Fig. 6. The MLM trained to predict diffusion uses 19 features: the first 9 (x1–x9) represent the chemical descriptors and molecular weight of the bitumen side, the
next 9 (x10–x18) represent the same for the rejuvenator side, and the final feature (x19) corresponds to the system-wide temperature. This segregation allows for the
separate definition of the bitumen and rejuvenator sides, similar to how they would be distinguished in surface-surface simulations.
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Fig. 7. Fickian Diffusion coefficients measured for every simulation case performed in this study. Light green, Brown, Orange, and Dark green correspond to VO, AO,
EO, and NO respectively. Values reported are multiplied by a factor of 1010, and are reported in units of m2/s. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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whose detrimental temperature dependency may hinder its relative
performance at higher temperatures. As a rough estimate, the average
diffusion coefficient for all EO-rejuvenated samples, encompassing all

temperatures, bitumen types, and aging conditions, is 0.58 e-10 m2/s,
equivalent to about 0.64 mm/h.

NO and AO exhibit the poorest performance across all temperatures.
Both types are heavily represented in the bottom third of samples, with
NO, for example, placing 8 samples in the bottom third at 60 ◦C, and 6
samples at 200 ◦C. Similar observations can be said about AO. In nom-
inal terms, the diffusion coefficients are, on average, 30 % lower than
those of VO and EO across all observations. NO’s performance at lower
temperatures is slightly better (both nominally and relatively) than that
of AO, an observation that reverses at higher temperatures in favor of
AO. In fact, AO’s diffusion coefficients experience a drastic increase at
higher temperatures, which put it on par with the nominal scores of that
of EO. The same cannot be said for NO, whose diffusion coefficients
consistently rank the lowest in nominal values. Overall, while NO and
AO consistently perform worse than VO and EO, relative temperature
susceptibility (for worse in EO and for better in AO) indicate that while
temperature may exponentially increase diffusion coefficients, the
impact differs when considering relative values among rejuvenators. As
a rough estimate, the average diffusion coefficients for NO– and AO-
rejuvenated samples, across all temperatures, bitumen types, and aging
conditions, are 0.42 and 0.43e-10 m2/s, respectively, corresponding to
approximately 0.51 mm/h. While these averages provide a general

Fig. 8. Renders of the diffusion states of rejuvenators at the end of the simulations. These visualizations illustrate how the diffusion values translate into the extent of
mixing achieved by the end of the simulations, aiding in the visualization and interpretation of the results presented in Fig. 7.

Table 7
The samples are categorized by rejuvenator type and temperature, then grouped
into three categories based on diffusion rates: the top third with the highest
rates, the middle third with average rates, and the bottom third with the lowest
rates. The number in parentheses represents the average diffusion coefficient
calculated from the sampled data.

T [◦C] Rejuvenator Top Middle Bottom

60 VO 9 (0.284) 4 (0.109) 1 (0.0814)
EO 7 (0.223) 4 (0.108) 4 (0.0319)
NO 3 (0.188) 4 (0.118) 8 (0.0265)
AO 0 6 (0.109) 7 (0.0382)

120 VO 9 (0.994) 2 (0.341) 3 (0.199)
EO 6 (0.724) 6 (0.31) 3 (0.179)
NO 2 (0.476) 7 (0.304) 6 (0.151)
AO 2 (0.555) 3 (0.316) 8 (0.159)

160 VO 10 (1.28) 3 (0.577) 1 (0.319)
EO 6 (1.06) 4 (0.594) 5 (0.279)
NO 1 (1.1) 7 (0.556) 7 (0.278)
AO 2 (1.15) 4 (0.493) 7 (0.314)

200 VO 9 (2.75) 5 (1.22) 0
EO 4 (1.82) 7 (1.02) 4 (0.558)
NO 2 (1.54) 7 (1.02) 6 (0.448)
AO 3 (1.9) 1 (1.13) 10 (0.55)

Table 8
The samples are categorized by bitumen type and temperature, then grouped
into three categories based on diffusion rates: the top third with the highest
rates, the middle third with average rates, and the bottom third with the lowest
rates. The number in parentheses represents the average diffusion coefficient
calculated from the sampled data. Aging degree is not considered.

T [◦C] Bitumen type Top Middle Bottom

60 LB 6 (0.293) 5 (0.0948) 9 (0.0371)
JB 3 (0.177) 8 (0.111) 7 (0.0256)
UB 10 (0.239) 6 (0.131) 4 (0.0438)

120 LB 6 (0.85) 6 (0.325) 8 (0.165)
JB 0 7 (0.321) 11 (0.168)
UB 13 (0.789) 6 (0.298) 1 (0.142)

160 LB 6 (1.32) 6 (0.517) 8 (0.285)
JB 2 (0.871) 8 (0.569) 8 (0.294)
UB 11 (1.17) 5 (0.584) 4 (0.306)

200 LB 4 (2.49) 10 (1.18) 6 (0.595)
JB 3 (2.05) 6 (0.864) 11 (0.495)
UB 12 (2.19) 4 (1.12) 3 (0.469)

Table 9
The samples are categorized by bitumen aging degree and temperature, then
grouped into three categories based on diffusion rates: the top third with the
highest rates, the middle third with average rates, and the bottom third with the
lowest rates. The number in parentheses represents the average diffusion coef-
ficient calculated from the sampled data.

T [◦C] Aging Degree Top Middle Bottom

60 0 6 (0.265) 4 (0.118) 2 (0.0667)
1 4 (0.292) 5 (0.123) 2 (0.0282)
2 5 (0.223) 4 (0.101) 2 (0.00741)
3 4 (0.201) 4 (0.103) 4 (0.0548)
4 0 2 (0.124) 10 (0.0264)

120 0 5 (0.864) 3 (0.397) 4 (0.192)
1 5 (0.95) 3 (0.281) 3 (0.174)
2 5 (0.715) 4 (0.377) 2 (0.178)
3 3 (0.747) 5 (0.286) 4 (0.176)
4 1 (0.474) 4 (0.254) 7 (0.138)

160 0 6 (1.24) 6 (0.519) 0 (N/A)
1 5 (1.28) 3 (0.602) 3 (0.332)
2 4 (1.1) 6 (0.561) 1 (0.314)
3 4 (1.09) 2 (0.596) 6 (0.357)
4 0 2 (0.547) 10 (0.24)

200 0 6 (2.56) 4 (1.1) 2 (0.665)
1 6 (2.17) 4 (1.08) 2 (0.431)
2 4 (2.23) 4 (0.893) 3 (0.436)
3 2 (1.65) 6 (1.19) 4 (0.599)
4 1 (1.8) 2 (1.05) 9 (0.503)
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Table 10
Renders of the molecular systems at the conclusion of the simulations, illustrating the diffusion of rejuvenators into the bitumen surfaces. For clarity, the table presents
only the highest (column 1), average (column 2), and lowest (column 3) diffusivity values across the four temperatures.

T Highest Average Lowest

60 ◦C

120 ◦C

160 ◦C

200 ◦C

Fig. 9. Renders of sample “l2v” (LB bitumen aged for 20 h rejuvenated with VO) at six different elapsed simulation times at 120 ◦C.

Table 11
Averaged thermodynamic properties derived from the molecular models for each SARA fraction and each rejuvenator, alongside their experimental counterparts.

Experimental (yexp
i ) Computational (yMD

i )

SARA ρ[kg/m3]

[60]

ΔHvap[kJ/kg]

[61–63]

δsol[kJ0.5/m1.5]

[60,63]

Cp[kJ/kg/K]

[64–67]

β[1/K]
(•104)

[66–68]

ρ[kg/m3] ΔHvap[kJ/kg] δsol[kJ0.5/m1.5] Cp[kJ/kg/K] β[1/K]
(•104)

Saturates 850 270–290 509.9 2.0–3.0 5–8 873.5 283.3 494.2 2.82 7.60
Aromatics 1000 300 631.6 1.5–2.0 4–7 1002 338.2 574.4 1.91 6.58
Resins 1050 300 618.9 1.5–2.0 1–4 1060 325.3 580.5 2.06 3.32
Asphaltenes 1070 350–450 575.8 1.0–1.5 0.1–1.5 1068 328.7 588.7 2.19 0.32
Engine Oil 750–900 300 500.2 1.8–2.2 5–10 833.7 330.4 524.8 2.95 7.37
Vegetable Oil 850–930 200–250 489.5 2.0–3.5 8–12 865.4 356.1 555.2 2.67 10.58
Aromatic Oil 950–1000 300 607.8 1.5–2.5 4–8 977.2 349.1 584.2 2.34 7.19
Naphthenic Oil 850–900 300–320 598.0 1.5–2.5 7–10 888.1 300.5 516.3 2.69 8.33
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overview, they do not fully account for the influence of temperature;
however, they assist in establishing a preliminary ranking among the
rejuvenators.

However, when computing the average across all samples separately
for each of the four temperatures (reported in Table 20), the perfor-
mance order at lower temperatures is VO, EO, NO, and AO. At higher
temperatures, AO slightly surpasses NO. In realistic terms, diffusion
depths at high temperatures are, on average, an order of magnitude
higher than those at lower temperatures.

4.1.2. Bitumen type dependency
The diffusion behavior of bitumen types (LB, JB, and UB) across

varying temperatures shows distinct patterns in their ability to promote
diffusion. UB bitumen consistently exhibits the highest count in the top
third group (see Table 8) across all temperature regimes, where it scores
above 10 in all observations. Moreover, UB also has the lowest bottom-
third count, averaging only 4 counts and being the lowest of all bitumen
types. Even though UB bitumen scores the highest top third counts (and
the lowest bottom third counts), the magnitude of its diffusion co-
efficients in some cases is slightly below that of LB bitumens. This
observation suggests that, while UB’s diffusion potential is superior for
the majority of the samples, a localized phenomenon is favoring
increased diffusion in a select few LB samples.

LB bitumen shows a more balanced distribution between the top,
middle, and bottom thirds. The top thirds average a count of 6
(compared to 10 for UB, and a mere 2 for JB), while the bottom thirds a
count of 6 and 8. Interestingly, the relative performance of LB bitumens
improves at higher temperatures, where the count distribution becomes
more skewed toward the top third, especially at 160 ◦C and beyond.
Generally, the diffusion coefficients of LB bitumens rank between UB
and JB, but in the top third cases, it surpasses that of other bitumen types
across all temperatures. As mentioned earlier, this particularity may be
attributed to a phenomenon that cannot be isolated and identified using
bitumen types alone, but which is clearly favoring the magnitude of
diffusion coefficients in a consistent number of LB bitumens samples,
equal across all temperatures.

JB bitumen demonstrates the lowest diffusion rates, both relatively
and nominally, where the top third counts average at 2, and the bottom
third counts average at 9, and the diffusion coefficients are about 20 %
lower than in other bitumen types across all observations. This places
JB’s relative diffusive capacity as the weakest of the three types,

consistently observed across all temperatures. In very few cases, espe-
cially at higher temperatures, JB’s diffusion scores surpass that of other
bitumens (as evidenced in the bottom third at 200 ◦C) – which is too
isolated of a case to be explainable analyzing the data available in Fig. 7
and Table 7, requiring a more detailed or fundamental approach. When
computing the average diffusion coefficient by considering only
bitumen type and temperature, the overall diffusion performance,
ranked from high to low, is UB, LB, and JB bitumens across all tem-
peratures, as depicted in Table 21.

4.1.3. Bitumen aging dependency
The data in Fig. 7 and Table 9 illustrate the diffusion behavior of

rejuvenated bitumen samples across varying degrees of aging (0 to 4)
and temperatures (60 ◦C to 200 ◦C). While the counts and diffusion
magnitudes are more evenly distributed – making it more difficult to
isolate trends – observations can still be made with relative ease. In
general, fresher bitumens (those of age 0 and 1) score the highest count
in the top third and consistently have the highest diffusion coefficients
by magnitude across all temperatures, being, on average, 20 % higher
than bitumens of age 2, 3, and 4. Heavily aged bitumens (3 and 4) are
considerably underrepresented in the top third, in some cases with
counts equal to 0, showcasing that beyond aging degree 2, the diffusive
performance considerably lowers. This is especially the case for age 4

Table 12
Comparison of experimentally and computationally obtained Fickian diffusion
coefficients for samples and temperatures where both datasets are available.

Sample Temperature D[m2/s] (1010)

Experimental Computational
(literature)

Computational
(this study)

l3v 160 ◦C 0.969 3.82 1.027
l3e 160 ◦C 0.858 3.07 0.817
l3n 160 ◦C 0.540 2.78 0.341
l3a 160 ◦C 0.252 1.75 0.404

Table 13
Minimum and maximum values for all 19 features measured across all 60 simulations of this study.

xi Feature xmin
i xmax

i xi Feature xmin
i xmax

i

Bitumen 1 Saturation 0.5198 0.5689 Rejuvenator 10 Saturation 0.5714 0.6667
2 Aliphatic 0.219133 0.25364 11 Aliphatic 0.22856 0.35131
3 Aromatic 0.14195 0.178823 12 Aromatic 0 0.2
4 Cyclopentane 0.00068 0.0052 13 Cyclopentane 0 0
5 DoubleBond 0 0.002763 14 DoubleBond 0 0.03509
6 Oxygen 0.004839 0.067688 15 Oxygen 0 0.07016
7 Nitrogen 0.001716 0.003279 16 Nitrogen 0 0
8 Sulfur 0.002112 0.011563 17 Sulfur 0 0
9 Mol. Weight [g/mol] 431.6466 508.0281 18 Mol. Weight [g/mol] 296.478 400.62

19 Temperature [◦C] 60 200

Table 14
The list shows the normalized importance scores for features influencing diffu-
sion coefficients, ordered from most to least influential. The sign indicates
whether an increase in the feature has a positive or negative impact on the
diffusion coefficient. Scores near zero are represented as 0.

Most influential Least influential

xi Feature Importance
[%]

xi Feature Importance
[%]

xi Feature Importance
[%]

xi Feature Importance
[%]

x19 Temperature 41.94 x5 Bitumen
DoubleBond

− 1.29

x9 Bitumen Mw − 19.04 x10 Rejuvenator
Saturation

1.11

x18 Rejuvenator
Mw

− 8.51 x1 Bitumen
Saturation

1.11

x15 Rejuvenator
Oxygen

6.44 x4 Bitumen
Cyclopentane

1.10

x14 Rejuvenator
DoubleBond

6.12 x2 Bitumen
Aliphatic

− 0.97

x8 Bitumen Sulfur 5.66 x11 Rejuvenator
Aliphatic

0.70

x6 Bitumen
Oxygen

− 2.71 x12 Rejuvenator
Aromatic

0.19

x3 Bitumen
Aromatic

1.56 x13 Rejuvenator
Cyclopentane

0.00

x7 Bitumen
Nitrogen

− 1.53 x16 Rejuvenator
Nitrogen

0.00

​ ​ ​ x17 Rejuvenator
Sulfur

0.00

E.I. Assaf et al. Materials & Design 248 (2024) 113502 

18 



bitumens (the most aged), as they consistently score 0 in the top third,
and 10 in the bottom third, regardless of temperature. The diffusion
coefficient of heavily aged bitumens (age 3 and 4) are on average 30 %
below those of other aging degrees, showcasing that this reduction in

diffusive performance is not relative to the group (i.e., the third they are
grouped into) but also in nominal terms. Interestingly, bitumens aged to
degree 1 (shortly aged) display a smaller count in top thirds, but those
that do show, have higher diffusion magnitudes than those of bitumens

Table 15
Top five, middle five, and bottom five systems based on diffusion coefficients, along with key influential features identified by the MLM. Results obtained at 60 ◦C.

Group sample x8 x17 x14 x13 x7 x5 x2 x6 x4 D[m2/s] (1010)

Highest u3-v 461 296 0.0702 0.0351 0.0085 0.0188 0.166 0.00266 0.00177 0.272
l1-v 453 296 0.0702 0.0351 0.00995 0.00532 0.173 0.00172 0.00206 0.341
l1-e 453 309 0 0 0.00995 0.00532 0.173 0.00172 0.00206 0.369
u0-v 432 296 0.0702 0.0351 0.0116 0.00958 0.161 0.00271 0.00181 0.374
l0-v 448 296 0.0702 0.0351 0.0105 0.00484 0.171 0.00173 0.00207 0.497

Average j2-e 475 309 0 0 0.0037 0.0225 0.148 0.00241 0.000161 0.103
u0-a 432 401 0 0 0.0116 0.00958 0.161 0.00271 0.00181 0.103
j1-v 474 296 0.0702 0.0351 0.00376 0.018 0.155 0.00245 0 0.106
j4-v 489 296 0.0702 0.0351 0.00211 0.0349 0.142 0.0026 0 0.111
j1-e 474 309 0 0 0.00376 0.018 0.155 0.00245 0 0.119

Lowest l2-a 469 401 0 0 0.00544 0.0119 0.176 0.00238 0.00204 0.00291
l4-a 508 401 0 0 0.00637 0.0677 0.179 0.0031 0.00276 0.00319
l4-n 508 361 0 0 0.00637 0.0677 0.179 0.0031 0.00276 0.0051
u4-n 487 361 0 0 0.00788 0.025 0.167 0.00268 0.00201 0.0058
j4-a 489 401 0 0 0.00211 0.0349 0.142 0.0026 0 0.00688

Table 16
Top five, middle five, and bottom five systems based on diffusion coefficients, along with key influential features identified by the MLM. Results obtained at 120 ◦C.

Group sample x8 x17 x14 x13 x7 x5 x2 x6 x4 D[m2/s] (1010)

Highest u2-v 446 296 0.0702 0.0351 0.00856 0.0142 0.165 0.00328 0.00219 0.949
l0-e 448 309 0 0 0.0105 0.00484 0.171 0.00173 0.00207 0.95
u0-v 432 296 0.0702 0.0351 0.0116 0.00958 0.161 0.00271 0.00181 1.3
l1-v 453 296 0.0702 0.0351 0.00995 0.00532 0.173 0.00172 0.00206 1.31
u1-v 439 296 0.0702 0.0351 0.00823 0.0135 0.169 0.00274 0.00183 1.75

Average u1-n 439 361 0 0 0.00823 0.0135 0.169 0.00274 0.00183 0.296
l4-e 508 309 0 0 0.00637 0.0677 0.179 0.0031 0.00276 0.301
j3-e 487 309 0 0 0.00309 0.0234 0.142 0.00244 0.00276 0.304
u3-a 461 401 0 0 0.0085 0.0188 0.166 0.00266 0.00177 0.308
l2-n 469 361 0 0 0.00544 0.0119 0.176 0.00238 0.00204 0.323

Lowest j4-a 489 401 0 0 0.00211 0.0349 0.142 0.0026 0 0.0862
j1-n 474 361 0 0 0.00376 0.018 0.155 0.00245 0 0.0941
l4-n 508 361 0 0 0.00637 0.0677 0.179 0.0031 0.00276 0.107
l3-a 481 401 0 0 0.00584 0.0326 0.175 0.00258 0.00275 0.121
l4-a 508 401 0 0 0.00637 0.0677 0.179 0.0031 0.00276 0.131

Table 17
Top five, middle five, and bottom five systems based on diffusion coefficients, along with key influential features identified by the MLM. Results obtained at 160 ◦C.

Group sample x8 x17 x14 x13 x7 x5 x2 x6 x4 D[m2/s] (1010)

Highest l1-v 453 296 0.0702 0.0351 0.00995 0.00532 0.173 0.00172 0.00206 1.53
l2-v 469 296 0.0702 0.0351 0.00544 0.0119 0.176 0.00238 0.00204 1.55
l0-e 448 309 0 0 0.0105 0.00484 0.171 0.00173 0.00207 1.6
u3-v 461 296 0.0702 0.0351 0.0085 0.0188 0.166 0.00266 0.00177 1.73
u1-v 439 296 0.0702 0.0351 0.00823 0.0135 0.169 0.00274 0.00183 2.32

Average j0-e 470 309 0 0 0.0047 0.0164 0.172 0.00244 0 0.52
j2-e 475 309 0 0 0.0037 0.0225 0.148 0.00241 0.000161 0.542
j3-e 487 309 0 0 0.00309 0.0234 0.142 0.00244 0.00276 0.553
j0-n 470 361 0 0 0.0047 0.0164 0.172 0.00244 0 0.555
u1-n 439 361 0 0 0.00823 0.0135 0.169 0.00274 0.00183 0.563

Lowest l4-e 508 309 0 0 0.00637 0.0677 0.179 0.0031 0.00276 0.0844
u4-n 487 361 0 0 0.00788 0.025 0.167 0.00268 0.00201 0.16
l4-n 508 361 0 0 0.00637 0.0677 0.179 0.0031 0.00276 0.206
j4-n 489 361 0 0 0.00211 0.0349 0.142 0.0026 0 0.211
j4-a 489 401 0 0 0.00211 0.0349 0.142 0.0026 0 0.215
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in their fresh state. This could be attributed to the slight increase in polar
centers that oxidized groups bring, increasing the diffusion potential to a
certain extent, especially in bitumens with lower counts of polar groups
(JB).

Table 9 indicates that aging reduces the susceptibility of bitumen to
the effects of temperature increases on diffusion. Fresh and slightly aged
bitumen (aging degrees 0, 1, and 2) exhibit significant improvements in
diffusion coefficients with rising temperatures, as evidenced by fresh
bitumen’s increase from 0.265 at 60 ◦C to 2.56e-10 m2/s at 200 ◦C.
However, as bitumen ages, the impact of temperature diminishes.
Moderately aged bitumen (Aging degree 3) shows a less pronounced but
still notable increase, from 0.201 at 60 ◦C to 1.65e-10 m2/s at 200 ◦C. In
contrast, highly aged bitumen (Aging degree 4) demonstrates the

weakest response to temperature, with diffusion coefficients rising from
negligible levels at 60 ◦C to only 1.8e-10 m2/s at 200 ◦C. This suggests
that aging progressively limits the bitumen’s ability to rejuvenate
through thermal effects, resulting in diminished sensitivity to tempera-
ture increases in more aged samples.

The diffusion coefficient of highly aged bitumen (aging degree 4) at
elevated temperatures bears resemblance to that of fresh bitumen (aging
degree 0) at significantly lower temperatures. For instance, the diffusion
coefficient of aged bitumen at 200 ◦C, which reaches an average of
1.00e-10 m2/s, mirrors the performance of fresh bitumen at much lower
temperatures, akin to what might be observed at 120 ◦C. Similarly, the
diffusion coefficient of moderately aged bitumen (aging degree 3) at
120 ◦C, with an average around 0.50e-10 m2/s, closely resembles that of

Table 18
Top five, middle five, and bottom five systems based on diffusion coefficients, along with key influential features identified by the MLM. Results obtained at 200 ◦C.

Group sample x8 x17 x14 x13 x7 x5 x2 x6 x4 D[m2/s] (1010)

Highest u1-v 439 296 0.0702 0.0351 0.00823 0.0135 0.169 0.00274 0.00183 2.69
l1-v 453 296 0.0702 0.0351 0.00995 0.00532 0.173 0.00172 0.00206 2.92
u2-v 446 296 0.0702 0.0351 0.00856 0.0142 0.165 0.00328 0.00219 3.23
l0-v 448 296 0.0702 0.0351 0.0105 0.00484 0.171 0.00173 0.00207 3.32
u0-v 432 296 0.0702 0.0351 0.0116 0.00958 0.161 0.00271 0.00181 4.35

Average u2-n 446 361 0 0 0.00856 0.0142 0.165 0.00328 0.00219 0.892
j0-e 470 309 0 0 0.0047 0.0164 0.172 0.00244 0 1.01
j3-v 487 296 0.0702 0.0351 0.00309 0.0234 0.142 0.00244 0.00276 1.03
l10e 453 309 0 0 0.00995 0.00532 0.173 0.00172 0.00206 1.09
l2-e 469 309 0 0 0.00544 0.0119 0.176 0.00238 0.00204 1.1

Lowest j2-n 475 361 0 0 0.0037 0.0225 0.148 0.00241 0.000161 0.269
j1-n 474 361 0 0 0.00376 0.018 0.155 0.00245 0 0.369
u4-a 487 401 0 0 0.00788 0.025 0.167 0.00268 0.00201 0.389
u4-n 487 361 0 0 0.00788 0.025 0.167 0.00268 0.00201 0.394
j4-n 489 361 0 0 0.00211 0.0349 0.142 0.0026 0 0.4

Table 19
Scatter plots of y1 depicting predicted values against measured values. Blue dots represent combinations of input features used to train the MLMs (observed), while
black dots denote combinations of features considered unknown (unobserved), thereby denoting the MLM true prediction potential.

y1(D) [m2/s] (1010)
Observed Unobserved Values Combined Values

Table 20
Mean diffusion coefficients across all bitumen types and ages, grouped by both
temperature and rejuvenator type.

Diffusion Coefficients [m2/s] (Equivalent depth rate [mm/h])

Temperature [◦C] 60 120 160 200

VO 0.21 (0.39) 0.71 (0.71) 1.03 (0.86) 2.16 (1.25)
EO 0.14 (0.32) 0.45 (0.57) 0.68 (0.70) 1.11 (0.89)
NO 0.08 (0.24) 0.27 (0.44) 0.46 (0.58) 0.86 (0.79)
AO 0.07 (0.23) 0.26 (0.43) 0.50 (0.60) 0.88 (0.80)

Table 21
Mean diffusion coefficients across all rejuvenator types and ages, grouped by
both temperature and bitumen type.

Diffusion Coefficients [m2/s] (Equivalent depth rate [mm/h])

Temperature [◦C] 60 120 160 200

JB 0.09–0.25 0.23–0.40 0.48–0.59 0.84–0.78
LB 0.13–0.30 0.42–0.55 0.67–0.69 1.27–0.96
UB 0.17–0.35 0.61–0.66 0.85–0.78 1.70–1.10
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fresh bitumen at 60 ◦C, highlighting how aging effectively shifts the
behavior of bitumen toward what would be observed under lower
thermal conditions in fresher samples. The observation that higher aging
degrees hinder diffusion potential is well-documented in the literature.
Greater interest would be in analyzing the information to illustrate the
same relationship while considering bitumen type. According to Fig. 10,
on average, UB exhibits the best diffusion performance, followed by LB,
with JB showing the lowest performance. Interestingly, LB performance
at high temperatures and aging degrees (greater than 160 ◦C and at Ages
3 and 4) surpasses that of UB. Such behavioral shifts are not observed in
other combinations of bitumen types. Generally, the ranking is UB > LB
> JB; however, under higher aging degrees and temperatures, LB aligns
with UB, and in extreme cases, surpasses it. Therefore, in these condi-
tions, the ranking becomes LB > UB > JB.

4.2. Machine learning predictions

The objectives of using MLM predictions are threefold: First, to
provide detailed insights into the chemical and conditional features that
most significantly influence the Fickian diffusion coefficient. Second, to
reduce reliance on continuous MD simulations for predicting diffusion
coefficients by offering near-instantaneous predictions comparable to
those obtained from MD simulations. Third, to equip researchers with a
predictive tool (i.e., a model) capable of estimating the diffusion co-
efficients of bitumen-rejuvenator systems not included in this study but
that sharing many chemical features, as is common with various hy-
drocarbon blends used in the pavement industry. The subsequent section
will utilize these MLMs to identify the most important chemical features,
examine their effects on the diffusive performance of bitumen and re-
juvenators, and explore their applications in characterizing, designing,
and improving future bitumen-rejuvenator systems.

4.2.1. 41 Features Importance

4.2.1.1. 42 Temperature. Temperature is observed to be the primary
driver of diffusion, with a positive influence of 41.94 % as shown in
Table 14, confirming the relationship between increased diffusion co-
efficients at elevated temperatures. This observation is supported by
fundamental principles and is also reflected in experimentally obtained
diffusion coefficients from comparable setups, where Fickian diffusion
exhibits an exponential relationship with temperature.

4.2.1.2. Bitumen molecular weight. The molecular weight of bitumen
negatively influences diffusion, with an influence factor of − 19.04 %.
Larger molecular masses correlate with reduced diffusion, which can be
attributed to the increased size of the molecules, resulting in decreased
molecular mobility, reduced accessible free volume, and the formation
of more complex intermolecular structures. For example, the u0-, u1-,
and even u2-x bitumens, with the lowest overall molecular weights
(431–446 g/mol), display the highest diffusion, while l4- and j4-x

bitumens, which have the highest molecular weights (488–508 g/
mol), show the lowest diffusion. This inverse relationship between
molecular weight and diffusion aligns with the expected hindrance
caused by larger molecular structures and their resulting decreased
intermolecular mobility. A more detailed example shows that, at 60 ◦C,
the average diffusion coefficient for u0-x bitumens is 0.218, for u4-x it is
0.043, for j0-x it is 0.107, for j4-x it is 0.033, for l0-x it is 0.222, and for
l4-x it is 0.050e-10 m2/s. This suggests a ratio of five times between non-
aged and fully aged bitumens across all types and rejuvenator cate-
gories. The ratio is similar but decreases when comparing aging degrees
that are closer to one another, such as between j0-x and j2-x bitumens.

4.2.1.3. Rejuvenator molecular weight. The molecular weight of the
rejuvenator also negatively impacts diffusion, with an influence factor of
− 8.51 %; however, this effect is less pronounced than that of bitumen
molecular weight, which has an influence factor of − 19.04 %. While the
underlying reasoning for these effects is similar, the reduced impact of
the rejuvenator can be attributed to the more complex structure of
bitumen, which generally has higher average molecular weights. This
complexity means that bitumen molecules are more sensitive to changes
in molecular mobility and accessible space compared to rejuvenator
molecules, which in turn enhances the sensitivity and influence of the
former. For example, at 60 ◦C, fresh bitumens of all types show that VO
systems (the rejuvenator with the lowest molecular weight) have a
diffusion coefficient of 0.340, EO systems have 0.153, NO systems have
0.149, and AO systems have 0.0879e-10 m2/s. At 200 ◦C, the diffusion
coefficients are as follows:VO at 3.11, EO at 1.54,NO at 1.14, and AO at
1.23e-10 m2/s. The smaller molecular structure of rejuvenators en-
hances mixing and mobility within the bitumen matrix. Notably, as
indicated in Rejuvenator dependency, the temperature sensitivity
observed between AO and NO is evident here as well; at lower tem-
peratures, NO performs better, while AO quickly matches its perfor-
mance at higher temperatures.

4.2.1.4. Rejuvenator oxygen content. Oxygen content in the rejuvenator
is observed to positively affect diffusion, with an influence factor equal
to 6.44 %, likely due to the increased polarity and better miscibility
introduced by oxygen-containing functional groups. The presence of
oxygen groups requires careful consideration, as an increase in oxygen
features (x14) can significantly increase the stiffness of hydrocarbons, as
reported in the literature, thereby impeding their diffusion potential.
Consequently, only modest increases in rejuvenator oxygen features
appear to be advantageous, particularly when the molecular structure
contributes to preventing stiffness, such as through a high number of
aliphatic branches and/or minimal presence of aromatic rings.

An interesting observation arises when comparing the oxygen con-
tent of rejuvenators to bitumen samples with varying levels of oxygen.
The differences between the oxygen features of bitumen (x5) and re-
juvenators (x14) are calculated and plotted against the measured diffu-
sion coefficients. Initially, this analysis showed no clear trend across all

Fig. 10. Average diffusion coefficient of all samples, accounting for bitumen type, aging degree and temperature.
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samples. However, previous insights suggest that increasing the oxygen
content in the rejuvenator can enhance diffusion up to a certain point,
after which it becomes detrimental. Taking this into account, the data
was analysed by grouping bitumen samples according to their aging
degree. For samples with aging degrees 0 and 1 (less aged bitumen), a
clear trend emerged: smaller differences in oxygen content (smaller
x5− x14 values) significantly promote diffusion. In contrast, for samples
with aging degrees of 2 and higher (more aged bitumen), this trend
disappears, and no new patterns are observed. In practical terms,
matching oxygen content between bitumens and rejuvenators can be
advantageous up to a certain level of aging. Fundamentally, this may be
due to the smaller differences in solubility parameters between bitumens
and rejuvenators, as solubility is strongly influenced by the presence of
polar groups, including oxygen. Compounds with similar solubility pa-
rameters tend to mix more effectively than those with larger differences,
not accounting for the general stiffening that oxidation may bring to
hydrocarbons of this nature.

4.2.1.5. Bitumen sulfur content. The sulfur content in bitumen demon-
strates a moderate positive effect on diffusion, quantified at +5.2 %. For
example, at 60 ◦C, u0-x bitumens, which have the highest sulfur content
(x7 = 0.0115), exhibit a diffusion coefficient of 0.218e-10 m2/s. In
contrast, l0-x bitumens (x7 = 0.0105) show a coefficient of 0.155, while
j0-x bitumens (x7 = 0.0046) display a value of 0.107e-10 m2/s. At
200 ◦C, the diffusion coefficients for these bitumens are 2.590, 1.638,
and 1.037e-10 m2/s, respectively.

This trend is consistent across all temperature regimes, indicating
that the diffusion coefficient is highly sensitive to minor variations in
sulfur content, particularly when the sulfur features fluctuate from just
1.1 % to 0.5 % by number and 1 to 5 % by weight. Similar patterns are
observed in bitumens subjected to more extensive aging; however, the
sensitivity diminishes significantly. For example, a reduction in sulfur
content in aged bitumens, specifically comparing UB and JB bitumen,
leads to a slight decrease in diffusion, from 0.673 to 0.559 at 200 ◦C.
This trend is consistent across all temperatures and becomes more pro-
nounced with increasing temperature.

4.2.1.6. Rejuvenator double bonds. Carbon DoubleBonds in the rejuve-
nator, though contributing positively to diffusion, have a moderate
positive influence (measured at +6.12 %), similar to those of other
factors such as molecular weight and oxygen content. For instance, VO
contains small amounts of Double Bonds (as indicated by feature 14),
which may slightly enhance diffusion, though this effect is secondary.
Nevertheless, rejuvenators with more isolated double bonds could
potentially see a marginal increase in diffusion, as these structural fea-
tures may improve the reactivity or flexibility of the rejuvenator.

4.2.2. Maximize/Minimize diffusion coefficients
Given the insights obtained in the Features Importance section along

with the summarized factors of Table 14, there are 9 most influential
features that account for a little over 95 % of the influence, namely
features x8, x17, x14, x13, x7, x5, x2, x6, excluding temperature. In
essence, to maximize diffusion coefficients, chemical systems must: 1)
be maintained at the highest possible temperature; 2) utilize bitumens
and rejuvenators with the lowest average molecular weight; 3) maxi-
mize the polarizable features of rejuvenators, while excluding those that
significantly promote molecular stacking; 4) maximize sulfur features in
bitumen while minimizing oxygen features; and 5) preferentially favor
the presence of aliphatic features over aromatic features in bitumen,
while avoiding excessive nitrogen content. Conversely, the opposite
strategies should be employed to minimize diffusion. More formally,
these features must be adjusted according to the directionality indices
shown in Table 14.

Table 22 presents the averaged values of the top 5, middle 5, and
bottom 5 samples from Table 15 through Table 18, highlighting the

relationship between key chemical features and diffusion coefficients.
By summarizing the data across these samples, Table 22 illustrates how
maximizing or minimizing the influential features directly impacts the
diffusion coefficient. This table demonstrates that the diffusion coeffi-
cient can be reliably predicted by adjusting the values of the most sig-
nificant features, as identified by theMLM. The directionality (maximize
or minimize) and weights of these features, as detailed in Table 14,
further clarify the influence of each feature on diffusion trends observed
in the experimental samples. Notably, these results are based on actual
experimental observations rather than predictions from the MLM,
ensuring that there is no bias toward features deemed significant by the
model. The trends remain consistent across all tested samples, with no
deviations or shifts in behavior. Notably, the Diffusion Coefficient values
reported in Table 22 are extracted from MD simulations rather than
predicting them using the MLM, ensuring that the reported values are
accurate and free from potential bias introduced by the MLM.

5. Case studies

The scope of experimental observations in this field is limited, and
the number of potential case studies that can be conceived is vast.
Nonetheless, this section aims to introduce a few illustrating examples
aimed at showcasing the potential use of MLMs to predict bitumen-
rejuvenator diffusion potential while remaining relevant to Pavement
Engineering applications.

5.1. Example 1

The Discussion section indicates that the diffusive potential of EO is
occasionally comparable to that of VO, and in most instances, both are
categorized as the highest performing rejuvenators among the four
tested. This study aims to introduce simple chemical modifications to
the structure of EO to assess whether its diffusive performance can be
enhanced to match or exceed that of VO.

The section on Rejuvenator Oxygen Content indicates that to
optimize diffusion, two key features of the rejuvenator should be
modified: molecular weight, which should be reduced, and oxygen
content, which should be increased. Contrastingly, altering the molec-
ular structure by substituting Sp3 carbons with oxygens typically leads to
an increase in molecular weight. To address this, it is essential to
maximize the number of carbon and hydrogen atoms while minimizing
the number of oxygen atoms introduced.

One effective strategy is to incorporate carboxylic groups into the
octyl branches of EO, similar to the case of VO. This results in two
modified structures: Modified 1, which contains one carboxylic group in
one branch, and Modified 2, which includes two carboxylic groups—one
in each branch. The introduction of carboxylic groups serves a dual
purpose: it increases the number of “DoubleBond” features, thereby
enhancing diffusion, and it also adds “Oxygen” features. Consequently,
this strategy effectively mitigates the negative impact associated with
increased molecular weight. These changes are reflected in Fig. 11.

The comparative analysis between the EO, two modified structures,
and VO highlights distinct differences in performance across the tested
temperatures (see Table 23). At 60 ◦C and 120 ◦C, both modified
structures exhibit slight improvements over the EO, with Modified 2
showing a clearer advantage, while the VO consistently outperforms all
other structures, particularly at lower temperatures. As temperatures
increase, Modified 2 begins to show a more significant improvement,
particularly at 160 and 200 ◦C, where it surpasses both Modified 1 and
EO, and approaching the performance of the VO. This indicates that
Modified2 is the most promising candidate for improving EO rejuve-
nator performance at higher temperatures, offering clear advantages
over the base molecule and Modified1, while Modified1 shows only
marginal benefits overall. It is important to note that these modifications
focus solely on diffusion performance and do not consider the potential
effects of highly oxygenated compounds on the properties of the base
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bitumen as a bulk material, which could negatively impact other per-
formance metrics.

5.2. Example 2

The Results section of this manuscript showed that VO shows the
highest diffusive performance as a rejuvenator. However, this analysis
does not consider the potential negative effects VO may have on other
performance metrics. For example, while VO significantly softens
bitumen, altering its rheological properties, this softening may not al-
ways be desirable, especially in regions of the bitumen that have not
undergone aging. Although softening is an intended effect of rejuvena-
tion, excessive softening in unaged areas could compromise the mate-
rial’s overall performance.

The goal of this example is to integrate the predictive models
developed by Assaf et. Al. [29], which estimate 12 thermophysical
properties of various bituminous materials, including bitumen-
rejuvenator blends, with the diffusion insights obtained in this study.
By combining these approaches, the effect of rejuvenator concentration
on the bulk properties of a bitumen layer at different depths and times
can be evaluated. This process is depicted in Fig. 12.

To implement this, the chemical features of both the bitumen and
rejuvenator are used to generate a concentration profile where the
rejuvenator concentration is progressively increased from 0 % to 100 %.
These features are then input into the MLMs to predict the 12 thermo-
physical properties for each system. Fick’s second law of diffusion,
together with the diffusion coefficient predicted by the MLMs in this
manuscript, is applied to determine how concentration, depth, and time
influence the bulk properties of the rejuvenated bitumen. This process is
demonstrated using the “u3v” sample at 60 ◦C under the following
conditions:

a) Rejuvenator concentration (by wt.%) after 8 h at a depth of 1.0 mm
and the bulk properties of the bitumen-rejuvenator under these
conditions.

b) Time required to reach a rejuvenator concentration of 5 % by weight
at a depth of 1.0 mm and the bulk properties of the bitumen-
rejuvenator under these conditions.

Table 22
Summary of chemical feature values and their relationship with diffusion coefficient across four temperature regimes (60, 120, 160, and 200 ◦C). ’Minimize’ features
should have lower values and ’Maximize’ features higher values for increased diffusion. The table highlights how following these conditions impacts the resulting
diffusion coefficient, with the ’top5′ category aiming to maximize diffusion and the ’bottom5′ to minimize it. Green indicates maximized features, and red indicates
minimized features. Values in parenthesis display the overall feature range.

Most influential Features (Chemical only) Diffusion
[m2/s] (1010)x8 x17 x14 x13 x7 x5

Temp. [◦C] Group Minimize
(431.6–508.0)

Minimize
(296.4–400.6)

Maximize
(0–0.0702)

Maximize
(0–0.0351)

Maximize
(0.002–0.011)

Minimize
(0.0048–0.068)

60 Top 449.4 298.6 0.0562 0.0281 0.0101 0.0088 0.371
Middle 468.8 322.2 0.0281 0.0140 0.0050 0.0206 0.108
Bottom 492.2 385.0 0.0000 0.0000 0.0056 0.0414 0.005

120 Top 443.6 298.6 0.0562 0.0281 0.0098 0.0095 1.250
Middle 472.8 348.2 0.0000 0.0000 0.0063 0.0271 0.306
Bottom 492.0 385.0 0.0000 0.0000 0.0049 0.0442 0.107

160 Top 454.0 298.6 0.0562 0.0281 0.0085 0.0109 1.746
Middle 468.2 329.8 0.0000 0.0000 0.0049 0.0184 0.547
Bottom 496.2 358.6 0.0000 0.0000 0.0050 0.0460 0.175

160 Top 443.6 296.0 0.0702 0.0351 0.0098 0.0095 3.302
Middle 465.0 316.8 0.0140 0.0070 0.0063 0.0142 1.024
Bottom 482.4 369.0 0.0000 0.0000 0.0051 0.0251 0.364

Fig. 11. Identification of chemical features in the molecular structures of EO, Modified 1, and Modified 2.

Table 23
Diffusion values predicted using the MLM to assess whether the modified mo-
lecular structures can surpass the diffusion performance of EO.

Temperature (◦C) MLM predicted diffusion [m2/s] (1010)

EO (Base) Modified1 Modified2 VO

60 0.22 0.24 0.25 0.36
120 0.75 0.74 0.83 1.22
160 1.18 1.17 1.31 1.28
200 2.11 2.14 3.27 3.85
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c) Depth at which the rejuvenator concentration reaches 10 % by
weight after 8 h and the bulk properties of the bitumen-rejuvenator
under these conditions.

5.2.1. Case A: Solving for concentration
Knowing z, t, and D, C(z, t) is given by directly evaluating Eq. (2.7).

Plugging C0 = 849.7 kg/m3, z = 1 mm, t = 1 h, and the computed
diffusion coefficient for sample “u3v”, D = 0.272e-10 m2/s, results in a
rejuvenator concentration of 18.52 % by weight, and a mixture-wide
density of 973.6 kg/m3. At such bitumen-rejuvenator proportions
(refer to Table 24, “Slice7”), the values of Hv, cP, δsol, and Dself are equal
to 311.3 kJ/kg, 4.61 kJ/kg/K, 523.4 kJ0.5/m1.5, and 2.72e-9 m2/s,
respectively, showcasing how the thermophysical properties of the
mixture change and can be obtained with respect to concentration
changes, depth, and/or time.

5.2.2. Case B: Solving for time
Knowing z, C(z, t), and D, t is given by rearranging Eq. (2.7) into Eq.

(5.1), below:

t =
z2

4D
(
erf− 1(α)

) where α = 1 −
2C(z, t)

C0
(5.1)

Plugging the same values reported in 5.2.1, the time required for the
rejuvenator to reach a concentration of 5 % by weight at 1 mm. is equal

to about 2 h and 10 min. The bulk properties of such a mixture − ρ, Hv,
CP, δsol, and Dself − are equal to 997.8 kg/m3, 309.1 kJ/kg, 4.43 kJ/kg/K,
577.5 kJ0.5/m1.5, and 2.54 e-9 m2/s, respectively (by interpolation be-
tween “Slice 9” and “Slice 10” in Table 24).

5.2.3. Case C: Solving for depth
Knowing t, C(z, t), and D, z is given by rearranging Eq. (2.7) into Eq.

(5.2), below:

z = 2
̅̅̅̅̅
Dt

√
erf− 1

(α)whereα = 1 −
2C(z, t)

C0
(5.2)

Plugging the same values reported in 5.2.1, the depth at which the
rejuvenator concentration reaches 10 % by weight after 8 h is 4.60 mm.
The bulk properties of such a mixture − ρ, Hv, CP, δsol, and Dself − are
equal to 992.9 kg/m3, 309.2 kJ/kg, 4.45 kJ/kg/K, 575.6 kJ0.5/m1.5,
2.56e-9m2/s, respectively (by interpolation between “Slice 8” and “Slice
9” in Table 24).

These analyses can be customized and can be done in near-
instantaneous times, as all the inputs are obtainable or predictable
using the results and MLMs of this study across all samples and tem-
peratures presented, and more importantly, on samples that include
unobserved combinations in their chemical structures (such as obtaining
the bulk properties of bitumen-rejuvenator combinations in “slice” re-
gions). This is particularly powerful as most of these properties do not
scale linearly and weighted averages cannot be used to estimate them
given the initial concentration of both species.

Fig. 12. The MLMs developed by Assaf et. Al.[29] can be used to predict thermophysical properties of regional slices cut along the diffusion direction (along the z-
axis) to investigate the time- and concentration dependency of the material properties. Out of the 12 properties available for prediction, five are selected for
computation due to their relevance at the engineering scale: Density, Heat of Vaporization, Heat Capacity, Solubility Parameter, and the Self-diffusion Coefficient.
The bulk properties, for each “slice” system at different depths along z, are presented in Table 24.

Table 24
MLM-predicted values for Density, Heat of Vaporization, Heat Capacity, Solubility Parameter, and self-diffusion coefficient as a function of simulation box’s depth.

Slice Number Rejuvenator[vol.%] Rejuvenator[wt.%] ρ[kg/m3] Hv[kJ/kg] CP[kJ/kg/K] δsol[kJ0.5/m1.5] Dself [m2/s]

Slice0 100 100.0 849.7 342.2 5.507 495.9 6.774
Slice1 96.5 95.9 855.2 340.6 5.448 497.6 6.222
Slice2 92.3 91.0 861.8 331.1 5.353 498.8 5.844
Slice3 86.5 84.3 871.0 326.8 5.129 501.8 5.016
Slice4 63.9 59.9 906.5 321.4 4.998 508.9 4.540
Slice5 39.4 35.4 945.0 315.5 4.810 518.8 3.440
Slice6 25.9 22.8 966.3 314.9 4.674 520.3 2.887
Slice7 21.4 18.6 973.4 311.3 4.611 523.4 2.724
Slice8 14.2 12.3 984.6 310.6 4.497 544.3 2.720
Slice9 9.00 7.7 992.9 309.2 4.452 575.6 2.562
Slice10 0.00 0.0 1007 309.0 4.402 581.2 2.489
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5.3. Example 3

More comprehensive analyses can be performed, involving the study
of the thermophysical properties and Fickian diffusion dynamics across
different rejuvenators – expanding Example 2′s focus on “u3v” to “u3x”.
For instance, contrasting constraints may be required to be met– where
rejuvenated bitumens must report a density above 1000 kg/m3 while
needing to be “rejuvenated” in 4 h, at 1 mm, and at 60 ◦C, with a
minimum rejuvenator concentration between 1 and 2 % and by weight.
These conditions put VO at a disadvantage, as the density of the
bitumen-rejuvenator in such case is lower than 1000 kg/m3. When
performing the computations for all four rejuvenators, where VO, EO,
NO, and AO have bulk densities of 849.7, 805.1, 868.7, and 968.4 kg/
m3, and diffusion coefficients of 0.272, 0.206, 0.147, and 0.101e-9 m2/s,
respectively, AO is the only candidate that can match the requirements,
even though it has been reported to be the “worst” performing rejuve-
nator of all, as its concentration by weight at 1 mm., 60 ◦C, and after 4 h
is just about 1.2 %, and the mixture density is at 1005 kg/m3. The next
candidate would be NO, but at such conditions, even though the density
still hovers around 1000 kg/m3, the concentration by weight is far above
that required, at ~8 %. Such findings further corroborate that careful
analysis must be performed to select rejuvenators, where higher diffu-
sion coefficients do not necessarily translate into better performance.
The use of MLMs, though, to evaluate them certainly allow this to be
feasible in very short times. Also, such example elucidates how steady-
state, bulk properties of individual materials predicted using other
MLMs can be of use in time-dependent situations, such as those
involving Fick’s diffusion dynamics.

6. Conclusion

This manuscript presents an in-depth investigation into the diffusion
behaviors of rejuvenator-bitumen systems using NEMD simulations,
considering factors such as rejuvenator type, temperature, bitumen type,
aging degree, and chemical descriptors. Three bitumen types, UB, LB,
and JB, were chosen based on sulfur composition, conditioned at five
aging degrees, and paired with four rejuvenators: VO, EO, NO, and AO,
which are commonly found in commercially available rejuvenation
blends. A total of 240 non-equilibrium MD simulations were performed
across four temperature regimes (60 ◦C, 120 ◦C, 160 ◦C, and 200 ◦C),
providing a comprehensive view of the Fickian diffusion coefficients for
various bitumen-rejuvenator combinations.

The results show that diffusion coefficients range from as low as
0.0068e-10 m2/s in highly aged bitumens (degree 4) rejuvenated with
AO and NO at the lowest temperature (60 ◦C) to as high as 4.35e-10 m2/
s in fresher bitumens rejuvenated with VO and EO at 200 ◦C, with values
in line with experimental observations. Diffusion is primarily influenced
by temperature, followed by rejuvenator type (VO > EO ≫ NO > AO),
bitumen aging degree (higher aging results in reduced diffusion, espe-
cially beyond aging degree 2), and bitumen type, where sulfur-rich and
lower molecular weight bitumens (UB > LB > JB) exhibit the highest
diffusion rates. Interestingly, slightly aged bitumens show favorable
diffusion characteristics in certain conditions, while heavily aged sam-
ples exhibit diminished sensitivity to temperature changes, likely due to
structural changes that impede molecular mobility.

The MLM employed in this study achieved an R2 of 0.97, demon-
strating its efficacy in predicting diffusion coefficients with high accu-
racy. By utilizing 19 featural descriptors (nine each for the bitumen and
rejuvenator sides and one for temperature), the MLM captures trends
and correlations much more efficiently than conventional methods like
SARA fractionation or Elemental Analysis. The most influential features
affecting diffusion are temperature (42 %), bitumen molecular weight
(− 20 %), rejuvenator molecular weight (− 9 %), and more fundamental
chemical features such as rejuvenator oxygen content, double bonds,
and bitumen sulfur content, all contributing positively to diffusion po-
tential. Meanwhile, descriptors like bitumen oxygen (indicative of

aging), nitrogen, and aliphatic content negatively impact diffusion.
This detailed characterization provides a useful framework for tun-

ing the most influential features to optimize diffusion performance. For
example, selecting rejuvenators with slightly oxidized functional groups
or bitumens with high sulfur content and aromatic groups enhances
diffusion, whereas higher molecular weights and increased aging reduce
it. The MLM predictions offer near-instantaneous predictions, making
them valuable for the iterative study, design, and evaluation of re-
juvenators, allowing adjustments to molecular structures based on the
key chemical descriptors.

While higher diffusion rates—such as those observed with VO—can
expedite the rejuvenation process, maximizing diffusion alone does not
necessarily lead to optimal material properties. For example, VO’s high
diffusion rate may cause significant softening of the bitumen, potentially
compromising rheological stability, particularly in unaged sections or at
greater depths. Therefore, diffusion performance must be carefully
balanced with other key thermophysical properties such as density, heat
capacity, and cohesiveness to meet industrial requirements. This study
further highlights the value of integrating the Fickian diffusion co-
efficients obtained from MD simulations with previously published
MLMs for bulk property predictions. This comprehensive approach fa-
cilitates the design and characterization of rejuvenators, ensuring that
formulations optimize both diffusion and broader material properties
across different temperatures, concentrations, depths, and time scales.
By addressing these dual considerations, this methodology provides a
powerful tool for tailoring rejuvenator formulations to practical indus-
trial needs.
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