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Abstract

Particle Tracking Velocimetry (PTV) is an effective and non-intrusive flow measurement
technique that is able to provide quantitative information of the full velocity field at a
certain instant in time, by tracking each particle individually with high-speed cameras.
This permits to have a very high precision in measuring the flow evolutions. The abundant
time information can then be leveraged by reconstruction algorithms not only to bring the
information into a Cartesian format, but also to increase the space resolution of the original
measurements. This thesis aims to explore the enhancement of the Navier-Stokes based
reconstruction method called VIC-TSA (Vortex-in-Cell with Time-Segment-Assimilation)
through the implementation of Radial Basis Functions (RBF). Moreover, it investigates
whether the incorporation of RBFs can enable VIC TSA to match or exceed the accuracy
of the VIC+ method. The improvements are evaluated numerically with a synthetic flow
field (Taylor-Green sine wave vortex lattice) and experimentally (flow over a bluff body)
with a real Lagrangian Particle Tracking (LPT) experiment in the TU Delft W-Tunnel.
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Chapter 1

Introduction

1.1 Background

Fluid dynamics plays a crucial role in a wide range of scientific and engineering applications,
ranging from aerospace engineering to environmental studies. Accurate experimental
analysis of fluid flows is essential for advancements in these fields. However, capturing the
intricate details of fluid motion poses significant challenges. Particle Image Velocimetry
(PIV) has established itself as an effective and non-intrusive flow measurement technique
that can provide quantitative information on the entire velocity field at a certain time. It
works by filling the flowfield with tracer particles, illuminating them with a powerful light
pulse, and tracing their position with high-speed cameras. Further details are provided
in Section 1.5. Recent advancements in Lagrangian particle tracking algorithms (Schanz
et al. [2016]) made it possible to track each particle individually, providing a high degree
of resolution.

1.2 Problem statement

With Lagrangian particle tracking, it is possible to determine the velocity and acceleration
of each particle at each time snapshot. Each particle acquired in multiple time snapshots
identifies a particle track. The problem with this is that the measured data will be sparse,
because the Lagrangian particle tracking will calculate velocity and acceleration at each
particle location. Even if the dynamics of the flow gets captured very well, it is not in a
very useful format for post-processing visualization or computation of quantities like the
gradient of the velocity field, which usually requires the data to be in a Cartesian format.
Reconstruction methods for PIV here come into play, which basically reconstruct the
velocity field on a Cartesian grid. One might wonder why not to use linear interpolation
(LI) or other similar methods, and the answer is that this would not ensure that the new
Cartesian flowfield obeys the physical constraints; reconstruction methods often integrate
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physical laws (like the Navier-Stokes equations) into their algorithms. This ensures that
the reconstructed velocity fields are physically consistent, which might not be the case
with simpler methods like LI.

Moreover, even if one the velocity field is reconstructed correctly, what about all
the available time information that is contained in the acceleration data or in the other
time snapshots? It can be leveraged by reconstruction algorithms not only to bring the
information into Cartesian format, but also to increase the space resolution of the
original measurements, by reconstructing on a Cartesian grid that has a grid spacing
smaller than the average interparticle distance of the tracers. This process was named by
Schneiders and Scarano [2016] as pouring time into space, and it actually allows one to go
beyond the limits of the experimental setup. The opposite also holds: space information
can be used to leverage time information (Schneiders et al. [2014]), and extract time
evolutions of the flow that are way below the Nyquist cryterion.

Different reconstruction methods mainly differ for the way they impose the physical
constraints: Navier-Stokes equations (Schneiders et al. [2014], Schneiders and Scarano
[2016], Scarano et al. [2022]), Physics-Informed Neural Network (PINN) (Wang et al.
[2022]), splines with incompressibility constraints (Gesemann et al. [2016]).

1.3 Research objectives

This thesis will focus on space-resolution reconstruction methods that make use of the
Navier-Stokes equations based on the vorticity field, also referred to as the Vortex-in-Cell
(VIC) approach. An example is the VIC+ method (Schneiders and Scarano [2016]), which
leverages the time information of the acceleration (material derivative of the velocity)
and the governing laws, to produce a Cartesian velocity field that fits best with the
experimental data.

An evolution of this method was proposed by Scarano et al. [2022] with the VIC-TSA
method. Time-Segment-Assimilation (TSA) stands for the way this method assimilates the
time information: it includes other time snapshots in the minimization problem, instead
of the acceleration. However, this method has not exceeded VIC+ in specific scenarios
that will be explained better later.

This thesis aims to explore the enhancement of VIC-TSA’s accuracy through the
implementation of Radial Basis Functions (RBF). It investigates how the incorporation of
RBFs can improve VIC-TSA and how well it compares with other metrics and methods, by
providing a numerical investigation on a synthetic flowfield and an experimental assessment
of the flow over a bluff body.

2
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1.4 Structure of the thesis

This thesis is organized in the following way:

1. General notions about Particle Image Velocimetry and Particle Tracking Velocimetry
are given.

2. Then, the state-of-the-art and relevant literature is reported, with focus on the key
concepts that will be part of this work.

3. The VIC-TSA framework is then introduced with its theoretical foundations and
numerical implementation, to provide background information to the reader and
describe the areas object of modifications.

4. The implementation of the Radial Basis Functions into VIC-TSA is then detailed,
from the mathematical details to the implementation into the code.

5. Subsequently, the numerical assessment procedure for evaluating the new implemen-
tations is described, with the reconstruction of the Taylor-Green vortex test case.
The results of the synthetic flow reconstruction for different cases are then shown,
comparing different methods and the effect of the RBFs; particular relevance is given
in testing convergence and robustness to noise.

6. Finally, an experimental assessment with the flow over a wall-mounted hemisphere
is presented, to demonstrate the effect of the improvements on a real-case scenario.

3
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1.5 Overview of PIV and PTV

Aerodynamics research extensively uses Particle Image Velocimetry (PIV) and Particle
Tracking Velocimetry (PTV) as experimental techniques to visualize and analyze the
flowfield. These experimental methods introduce tracer particles into the fluid and track
their movement to infer the flow properties. The choice of technique depends on the
specific characteristics of the flow under investigation and the desired spatial and temporal
resolution.

1.5.1 Particle Image Velocimetry (PIV)

Figure 1.2: Figure 2:
Schematic of PIV process.

PIV is employed in a controlled environment where the flow
is seeded with small particles that are assumed to follow the
flow dynamics faithfully. These are typically micron-size fog
droplets and produced with a generator installed in a wind
tunnel. More recently, larger tracers have been introduced
to achieve a larger measurement domain in wind tunnels.
Such tracers are sub-millimetre Helium-Filled Soap Bubbles
(HFSB, Caridi [2018]). A typical PIV setup includes a laser to
illuminate the particles and high-speed cameras to capture a
quick pair of sequences close in time, so that the movement of the particles can be inferred.
The imaging area is divided into numerous interrogation windows in 2D or interrogation
volumes in 3D. Then, the cross-correlation between image pairs is applied, where the most
probable displacement of particles within each window is identified. This displacement
yields the velocity field by relating it to the time interval between frames.

Figure 1.1: Particles around an airfoil at
α = −15

◦
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Figure 1.3: Processed velocity field with
streamlines and velocity magnitude.
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The resultant velocity field serves as a vector map that provides instantaneous spatial
flow characteristics. Researchers can derive additional dynamic properties from this field,
such as vorticity, to gain deeper insights into flow behavior, especially in turbulent regimes.

1.5.2 Particle Tracking Velocimetry (PTV)

PTV, meanwhile, is an experimental technique that offers a Lagrangian perspective by
tracking the paths of individual particles over time. A PTV experimental setup often
involves equipment similar to PIV but is optimized for tracking individual particles across
a series of images, by using cameras that can record at a high acquisition frequency
continuously, rather than only for an image pair. By using Lagrangian particle tracking
algorithms like Shake-The-Box (Schanz et al. [2016]), this method allows the reconstruction
of particle trajectories in three dimensions, providing time-resolved flow information.
Recently, Helium-Filled Soap Bubbles (HFSB) have been successfully used in PTV because
of their increased dimension, while maintaining a relatively low weight, which helps them
scatter more light.

Figure 1.4: Lagrangian particle tracks
(Schneiders and Scarano [2016]).

Figure 1.5: Iso-surfaces of the Q-criterion
(Schneiders and Scarano [2016]).

Trough PTV, it is possible to observe and analyze the temporal evolution of flow structures
within the flow, but the Lagrangian particle tracking allows for greater resolution. For
example, in PIV with cross-correlation Figure 1.2, the movement of multiple particles is
averaged to find a single velocity vector for each interrogation window, while with PTV
each particle is tracked individually.

5



Chapter 2

Data assimilation techniques

2.1 Introduction

In the following, the state of the art of data assimilation methods is presented. T the
topic of reconstruction methods for Particle Image Velocimetry (PIV) will be explored,
focusing more on the Navier Stokes-based approach like the Vortex-in-Cell (VIC) method
(Schneiders et al. [2014]) and its evolutions, which have been studied with particular
attention here at TU Delft. The papers presented emphasize the development of the
technique in terms of accuracy and fields of applications, highlighting the differences
between existing reconstruction methods and identifying potential areas for advancement.

Reconstruction methods in fluid dynamics refer to a range of computational techniques
to extract additional information from Particle Image Velocimetry (PIV) data. These
methods are designed to enhance the understanding of fluid flow by improving the quality
and detail of the data obtained from PIV experiments. Some applications of reconstruction
methods include:

• enhancing the temporal resolution of PIV experiments, where the cross-correlation
is applied to interrogation windows to obtain the average velocity vector in that
window. This is given as input for time-super sampling reconstruction algorithms
like VIC, which will be utilized to extrapolate the velocity field both forward and
backward in time. This provides a higher temporal resolution than the one imposed
by the limits of the measurement setup.

• reconstruct the velocity field on a Cartesian grid in experiments where Particle
Tracking Velocimetry (PTV) is employed. Such experiments yield the velocity and
acceleration of every single particle, thanks to the tracking algorithm, but only at
the sparse location of the tracer particles. This is not ideal for performing operations
like the gradient or for flow post-processing, hence space-super resolution algorithms
(like VIC+, Schneiders and Scarano [2016]) can be applied to reconstruct the velocity
field on a Cartesian grid.

6
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Other types of reconstruction methods are available and some of them will be discussed
more deeply, like the Physics-Informed Neural Network (PINN).

The report is organized as follows: it progresses through an exploration of reconstruction
methods in aerodynamics, highlighting advancements in both temporal and spatial reso-
lution enhancements. Developments in particle tracking and alternative reconstruction
techniques are discussed. Challenges specific to PIV, including pressure reconstruction
and turbulence measurement, are examined. The chapter concludes with a summary and
the formulation of key research questions.

2.2 Time-super sampling

This section describes the algorithm for time-super sampling of PIV data. It starts with
the simple advection equation and introduces the VIC

Advection model The idea of increasing the temporal resolution of 3D PIV data
traces back to 2012, when it was first introduced by Scarano and Moore [2012]. The first
approach used was the simple advection equation to advance the flowfield in time (or
travel back), creating intermediate snapshots in between the measurement frames. For a
generic property ν:

ν(X+Vconv · dt, t+ dt) = ν(X, t). (2.1)

Compared to linear interpolation between two samples, the advection equation performs
better because it takes into account the local movement of the flowfield, rather than
just averaging between two snapshots. If Taylor’s hypothesis of frozen turbulence holds,
which yields that velocity fluctuations are transported passively by the bulk motion of
the flow, then the advection equation works well at reconstructing the time evolution of
turbulent fluctuations. An example is given by the experimental assessment of the flow
past the trailing edge of a NACA0012 airfoil, where the hypothesis holds reasonably well
(Figure 2.1).
This approach works because the missing temporal information is contained in space, at
least for the advection-dominated flows. The principle is visualized in Figure 2.2, where
the measured frequency in an Eulerian frame for a single point would be 1/2∆t. But if one
imagines slowly sliding the blue spatial distribution from t to t+∆t, all the fluctuations
will be captured at that point. This is addressed by the authors as pouring space into
time.

The second experimental assessment is a jet flow, where Taylor’s hypothesis does not
hold due to the dynamics of the shear layers. The method is still able to provide an
improvement in temporal resolution by a factor of two.
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Figure 2.1: Time-super sampling at Super
Sampling Factor (SSF=24), which refers to
the ratio between the time step of the high-
resolution super-sampled data and the time
step of the original data. The graph shows
the velocity evolution of a point close to the
trailing edge.

PIV(t) PIV(t+∆t)

Vconv

Measured Eulerian frequency = 1
2 ·∆t

PIV measurement domain

Figure 2.2: Transport of a fluid streamline
by advection.

VIC The Vortex-in-Cell (VIC) method is a numerical method for solving different flow
problems. It follows the trajectories of discrete particles and computes the potential
vorticity as they move over an underlying Eulerian grid (Cottet and Koumoutsakos
[2000]). In reconstruction methods for PIV, VIC describes the class of Navier-Stokes-based
reconstruction methods that this thesis belongs to, which makes use of the Vortex-in-Cell
formulation. As an evolution of the advection model, the VIC time-super sampling for
PIV was introduced by Schneiders et al. [2014] to increase the temporal resolution of time-
resolved PIV data for general flows. It is based on the method developed by Christiansen
[1973], under the hypothesis of incompressible and inviscid flow1, which can be applied to
3D data obtained from PIV, as already introduced. The principle of time-supersampling
with VIC is schematically illustrated in Figure 2.3.
In a nutshell, the algorithm uses the Navier-Stokes equations based on the vorticity field.
This is necessary to eliminate the pressure gradient from the momentum equation, because
PIV cannot yield pressure measurements (see also Section 2.6):

Dω

Dt
= (ω · ∇)u+ ν∇2ω. (2.2)

So, taking as inputs the velocity vectors from the interrogation voxels (obtained, for
instance, with the cross-correlation technique 2 for PIV experiments), and the (Cartesian)
grid coordinates, the algorithm computes the vorticity ω = ∇ × u and the material

1Which is also necessary to travel back in time, otherwise viscosity would introduce dissipation.
2The cross-correlation technique consists in dividing the measurement domain into small volumes,

usually on a Cartesian grid, and then applying the cross-correlation from signal processing to find the
average movement of the particles inside the volume between successive time frames.
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u(ti) u(ti+1)u(t+ τ)

Forward
VIC

Backward
VIC

Figure 2.3: VIC time-supersampling principle, which can increase the time resolution of
PIV data by leveraging spatial information.

derivative of it, used to update the velocity field at a next time frame:

ωt+τ = ωt +
dω

dt

∣∣∣∣
t

· τ. (2.3)

The accuracy of this time-supersampling method is studied for two experimental datasets
obtained from time-resolved 3D-PIV measurements: the turbulent wake of a NACA 0012
airfoil (Schneiders et al. [2014]) and a circular jet. The results are compared to linear
interpolation, advection-based supersampling, and measurement data at a high sampling
rate. While for the turbulent wake, both the advection-based method and the VIC produce
good reconstructions, VIC was proven to be better for the circular jet, due to the strong
non-linearities of the phenomenon. In both flows, the authors demonstrate the ability to
reconstruct detailed temporal dynamics using data subsampled at a rate far below the
Nyquist frequency.

2.3 Space super-resolution

VIC+ Reconstruction methods can be also used to deal with sparse data from a PTV
experiment. Typically, modern PTV cameras can capture images at a frequency of up
to several kilohertz and can be used in a tomographic setup to record the trajectory of
the tracer particles. A precise Lagrangian particle tracking is ensured by the recently
introduced Shake-the-Box algorithm (Schanz et al. [2016]). This yields the instantaneous
velocity and its material derivative (acceleration), but only at the location of the sparse
tracers, which is not very convenient for post-processing and data analysis. The VIC+
method (Schneiders and Scarano [2016]) is then used to both increase the spatial resolution
and bring the information on a Cartesian grid (Figure 2.4).
The resulting mathematical problem is ill-posed, since the number of degrees of freedom,
which are the unknown values of the velocity on the Cartesian grid, is higher than the

9



Martino Pinto, MSc Thesis Advancements in VIC-TSA with RBFs

u

Du
Dt

VIC+

Figure 2.4: Spatial super-resolution principle illustrated, where the VIC+ algorithm is
used to increase spatial resolution starting from sparse, time-resolved PTV data.

number of equations. Hence, a minimization problem is formulated, where the flow field
produced by the Navier-Stokes algorithm must minimize a cost function. The additional
spatial information is obtained by leveraging the temporal information available in the
measurements through the velocity material derivative. Both numerical and experimental
assessments here in TU Delft have shown that VIC+ performs better than traditional
methods in situations where seeding concentration is limited, such as in large-scale
experiments with high flow speeds and volumes. Moreover, VIC+ has been shown to offer
less spatial averaging of turbulent fluctuations than the cross-correlation approach used in
traditional tomographic PIV.

VIC-TSA If VIC+ works well in reconstructing the velocity field, a legitimate question
might be about why not using the available information of an entire time segment
(ti−τ, ti+τ) rather than a single snapshot ti. This is the idea behind the method proposed
by Scarano et al. [2022]. The principle of VIC-TSA (Time-Segment-Assimilation) is to
involve all the snapshots of the time segment in the minimization problem, adding them
as additional constraints (Figure 2.5).

u

ti

ti+1

ti+2

VIC
TSA

Figure 2.5: VIC-TSA principle visualized.
Figure 2.6: Optimization problem for VIC-
TSA (Scarano et al. [2022]).

A quantitative way to describe how VIC-TSA increases the spatial resolution even further
is the following: consider the particle tracks in Figure 2.7. The concept entails that the
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r̃

r
r̃

r r̃ r

Impulsive regime Adjacent tracks regime Stringy tracks regime

Figure 2.7: Track regimes, depending on the length of the assimilated time segment.

dependency of spatial resolution is shifted from the particles’ distance, hereby referred to
as r, to the tracks’ distance, r̃, which will be shorter as the time segment is increased. As
a result, the increase in spatial resolution is expected to be proportional to r̃/r. As it will
be better explained in the dedicated chapter 3, the adjacent track regime is a potential
optimum since increasing the time segment even further will not decrease r̃ furtherly.

Scarano et al. [2022] compared to VIC+ and linear interpolation in evaluating a
synthetic vortex flowfield, particularly focusing on the modulation of the reconstructed
amplitude values with respect to the analytical expression.
Figure 2.8 shows that the linear interpolator proved to be the worst at reconstructing
the velocity field, as expected for this baseline case that does not actually extrapolate
additional space information. The VIC+ method showed a visibly flatter behavior that
was outclassed only by VIC-TSA with 21 assimilated snapshots.

This was unexpected, as VIC-TSA at a low time assimilation setting was expected to
give similar results to VIC+, as the additional time information yielded by the instant
material derivative in VIC+ can be roughly be assimilated to VIC-TSA in the impulsive
regime (Figure 2.7). This is ascribed by the authors to a more accurate optimization in
the VIC+ algorithm due to the use of Radial Basis Functions (RBF), not implemented
in the VIC-TSA algorithm for computational affordability. RBFs are interpolants that
have unique properties of global support and smoothness requirements, which can improve
and stabilize the convergence of the optimization loop in VIC-TSA, yielding to a more
accurate flow fitting.The study of the effect of RBF in the VIC-TSA algorithm is
the main objective of this thesis project, in order to further increase its performances.

In the study, the VIC-TSA method’s effectiveness is demonstrated experimentally
using a large-scale Particle Image Velocimetry (PIV) setup conducted in a Karman wake
behind a circular cylinder, with a Reynolds number of 27000. These experiments, carried
out in a low-speed wind tunnel at TU Delft, utilized sub-millimeter helium-filled soap
bubbles as flow tracers. The measurements covered a domain encompassing the near
wake of the cylinder, and the data processing involved Shake-the-Box analysis for tracer
motion evaluation. The results from these experiments showed that increasing the time
segment length for the TSA method led to a more consistent resolution of spatial scales,
particularly in capturing both primary vortex structures and interconnecting ribs in the
complex flow field. The analysis indicated that a time-segment length corresponding to τ ∗

= 2 offers an optimal balance, yielding an approximate 30 % increase in the amplitude of
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vorticity fluctuations compared to shorter time segments

VIC# This method was proposed by Jeon et al. [2022] by LaVision and it is basically a
complement to VIC+. It improves certain aspects of the latter, in terms of computational
efficiency and boundary treatment, where the method was known to show some small
artifacts. The reason for this is that the distribution of tracer particles is usually lower at
the extremes of the domain, which is a problem for imposing the boundary conditions. In
order to get the velocity from the vorticity field, VIC+ has to solve the Poisson equation:

∇2u = −∇× ω. (2.4)

This requires a set of boundary conditions to be imposed; some of them are known, like
the no-slip condition at the walls, and freestream values when possible depending on the
flow case (Schneiders and Scarano [2016]). The other boundary conditions are unknown
and need to be updated from the optimization procedure. That is why a lower seeding
concentration at the boundaries causes a poor update of these boundary conditions. To
account for this, a padding volume (Figure 2.9) was added to stabilize the convergence,
acting like a “buffer” region, at the cost of increasing the computational cost considerably.

With VIC#, the author proposes to use only a very small amount of padding volume,
and at the same time add the physical constraints of incompressibility and the Navier-
Stokes equations in the cost function, similarly to what happens in the other data
assimilation methods (FlowFit, Gesemann et al. [2016], see in 2.4). The procedure is
assessed experimentally with the jet flow test case and synthetic DNS data and shows
significant improvement at the boundaries (Figure 2.10). Here, it becomes evident that the
added constraints effectively impose the freedom of divergence at these peripheral regions.

Figure 2.8: Amplitude modulation u∗ vs seeding concentration (Scarano et al. [2022]).
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Figure 2.9: Padding volume (Wang et al.
[2022]).

Figure 2.10: Visual abstract of Jeon et al. [2022].

2.4 Other types of reconstruction methods

PINNs Wang et al. [2022] discusses the use of a physics-informed neural network (PINN)
to reconstruct dense velocity fields from sparse experimental data obtained through particle
image velocimetry (PIV) and particle tracking velocimetry (PTV). The authors propose a
PINN-based data assimilation method that approximates both velocity and pressure by
means of a neural network that takes as inputs the position of the particles and time. The
hidden layers (that act as the solver) output the velocity components and the pressure,
and some differentiation operators are employed to enforce the Navier-Stokes equations
on these outputs. In this way, the Neural Network can be trained with a physics-based
loss function. This allows the PINN to improve velocity resolution and also to predict the
pressure field with a 10% error.

The performance of the PINN is investigated using Taylor’s decaying vortices and
turbulent channel flow with and without measurement noise. The authors assess various
parameters of the proposed method, including activation functions, optimization algorithms,
and data parameters. They also explore the ability of the PINN to reconstruct wall-bounded
turbulence.

Finally, the PINN is applied to reconstruct dense velocity fields from experimental
tomographic PIV (Tomo-PIV) velocity in the three-dimensional wake flow of a hemisphere
(Figure 2.11). The results indicate that the proposed PINN has great potential for
extending the capabilities of PIV/PTV, even though the experimental setup proposed by
the authors is limited and there are no comparisons with more advanced reconstruction
methods like VIC+.

FlowFit This method was developed by Gesemann et al. [2016] initially out of necessity,
in order to participate in the 2014 PIV challenge with what became the Shake-the-Box
(Schanz et al. [2016]) particle tracking algorithm, the first key step that enabled the
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Figure 2.11: Visual comparison of different reconstruction methods.

development of more precise measurement methods that do not suffer from low-pass
filtering (like it happens for all the window averaging techniques like the cross-correlation
analysis). In its simplest form, it consists essentially of a spline-based interpolation of the
velocity field, with the possibility of adding penalizations in order to enforce freedom of
divergence or incompressibility. The proposed approach can be split into two parts:

1. TrackFit is used to create a spline for the particle track itself. It takes the (noisy)
particle tracks and applies a technique similar to Kalman filtering in order to reduce
the noise and allow for the computation of the first and second derivatives. These
are essential to obtain the velocity and the acceleration, and, in some sense, this
step can still be considered part of the STB algorithm.

2. FlowFit takes as inputs the velocity, acceleration, and position of the particles and
computes 3D B-splines for velocity, acceleration, and also pressure.

The difference between FlowFit and VIC methods is that in the latter the interpolation is
carried out with the Navier-Stokes equations, while FlowFit is a data assimilation method
that can enforce some physical constraints in the cost function. Nonetheless, it is still
difficult to prove which methods perform best, regardless of the accuracy of the model,
and VIC methods suffer from additional computational complexity. Here is an example of
how splines are used to represent the 3D velocity field:

v⃗(x) =
∑
i

∑
j

∑
k

ci,j,k · β3D (x− xl,j,k) , (2.5)

where x is the generic location in a 3D space and i, j, k the indexes of a Cartesian grid
point, which are the points around which the splines β3D and their coefficients ci,j,k are
built, as result of a least squares approach. This separate reconstruction of velocity and
acceleration is rather simple and computationally efficient. However, this does not allow
us to enforce all the constraints that should be satisfied according to the flow physics: for
instance, while the divergence of the velocity is zero, we know that the divergence of its
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time derivative should also be zero:

∇ · u⃗ = 0 =⇒ ∇ · ∂u
∂t

= 0. (2.6)

The second generation of FlowFit allows to perform such operations and combine the two
optimization problems using a non-linear optimization algorithm. This guarantees the
addition of a second physical constraint to the optimization.

One interesting thing to point out is that FlowFit introduced the effect of viscosity for
the first time in a data assimilation procedure for PIV. This had a particular effect on
the synthetic test case “Forced Isotropic Turbulence”, where neglecting viscosity led to
noticeably worse reconstructions. The assumptions made and the reason why viscosity
terms are neglected in VIC will be described later in the present work.

2.5 Lagrangian particle tracking

Since its introduction by Elsinga et al. [2006], TOMO-PIV has been used extensively
thanks to the possibility of reconstructing 3D velocity fields and its reliability. This
technique, though, has some important limitations:

• it uses the cross-correlation approach on interrogation volumes (voxels) to find
the average displacement of the particles inside it, which is then used to find the
velocity. This acts as a spatial low-pass filter, since the smallest flow structures will
be inevitably lost due to the averaging effect;

• the computational cost is relatively high, considering that an iterative approach has
to be applied to reduce the reconstruction error. Moreover, the algorithm starts from
scratch for every new time snapshot, without any possibility of using the already
existing information to partially predict the next time frame;

• ghost particles have a significant influence on the reconstructed velocity.

These limitations showed that it was desirable to gain direct knowledge of particle positions
in space. Here is where Lagrangian particle tracking and the Shake-The-Box (Schanz
et al. [2016]) method come into place. Knowing the particle track, this algorithm can
drastically reduce computational time by extrapolating the particle position at the next
time step. The following iterative procedures to match the prediction with the observed
data (‘shaking’) will then be pretty short, because the solution is similar to the previous
one. The process can be divided into two parts:

1. Initialization: even if the method is able to extrapolate the particle location pretty
accurately, there is no information about any track or particles at the beginning of
the operations. For this reason, a more ‘traditional’ particle detection method has to
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be used to detect the location of each particle in the measurement domain. This is
done for the first ninit time steps, in order to successively extract coherent trajectories
from the particle distribution. This is done with a search radius algorithm. All the
particles that do not belong to a track are potential ghost particles.

2. Convergence and shaking: the algorithm is now ready to extrapolate the particle
location from the track and correct the prediction with the actual image at the next
time frame. Here the concept of shaking the particles comes into play: each detected
particle is moved slightly around its location, until it minimizes the error with the
recorded image. The error is quantified with the residual intensity, defined as:

Ires = Imeasured − Ipredicted. (2.7)

Ghost particles will be detected and eliminated easily, since they do not converge.
The process is then repeated for the next time frame and it is self-stabilizing.

In order for STB to work properly, the extrapolation of the particle’s position from its
track should be fairly precise, which means that an accurate calibration is required. For
all the other aspects, STB has proven to be extremely convincing and permitted the
development of more advanced reconstruction methods and measurements.

2.6 Challenges of PIV

Pressure reconstruction PIV is known to provide velocity measurements, with no
information about the instantaneous pressure field. The idea of getting pressure measure-
ments with PIV is very appealing, because of the non-intrusive nature of the method.
Reconstruction methods can be also used to compute the pressure field from an instan-
taneous velocity field (Van Oudheusden [2013], Schneiders et al. [2016]), obtained for
instance with tomographic PIV and cross-correlation analysis, even if with some important
limitations. The VIC framework is still used to compute the material derivative of the
velocity, used then to obtain the pressure gradient:

∇2p = −ρ∇ · Du
Dt

, (2.8)

with mixed boundary conditions. There are some important limitations, though, imposed
by theoretical limits:

• by applying Helmholtz decomposition, the velocity field can be decomposed into a
curl-free (potential) and divergence-free part:

u = uϕ + uψ = −∇ϕ+∇× ψ. (2.9)
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the first can only be estimated from the boundary points, which are in a smaller
number. This makes it particularly sensitive to errors and makes the procedure
difficult to apply in flows dominated by potential velocity fields;

• the Poisson equation used to get the velocity derivatives can be split into two
components: a homogeneous Poisson equation with non-homogeneous boundary
conditions and a non-homogeneous Poisson equation with homogeneous boundary
conditions. Since the PIV system does not measure the boundary conditions of ∂u

∂t
,

the latter is difficult to solve.

Boundary treatment Cakir et al. [2022] tackle the challenge of accurately interpolating
Lagrangian Particle Tracking (LPT) data in areas close to solid boundaries by proposing
two computational fluid-structure interaction frameworks, ALE-VIC+ and ImVIC+. The
first introduces the Arbitrary Lagrangian-Eulerian (ALE) approach to VIC+ and the
other uses the immersed boundary method. These are designed to effectively handle
boundary-induced phenomena within LPT data, which is often sparse near obstructions
due to shadowing effects or measurement limitations.

This paper first discusses the inherent limitations in the spatial resolution of LPT
measurements and recent attempts to enhance it near solid boundaries using data assimi-
lation methods. Then, it validates the methods introduced against high-fidelity numerical

Figure 2.12: Visual abstract of Cakir et al. [2022].
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simulations of flow over periodic hills, demonstrating their superiority in reconstructing
flow fields near the interaction surfaces (Figure 2.12). A uniform structured mesh with the
immersed boundary surface is used for VIC+ and ImVIC+, and a curvilinear boundary
fitted mesh on the hill surface for ALE-VIC+. The experimental application calculates the
pressure distribution over an unsteadily moving elastic membrane, revealing the interaction
between the flow structures and the membrane deformations.

The study highlights the benefits of ALE-VIC+ and ImVIC+ in estimating the
velocity profiles and pressure gradients near solid boundaries. It contrasts these with
traditional approaches like AGW (Adaptive Gaussian Windowing) and linear interpolation,
emphasizing the improvements in accuracy and the capability to capture complex flow
details without increasing computational costs, typically associated with higher accuracy
or more detailed simulations.

Turbulent dissipation and vorticity Quantities like vorticity and turbulent dissipation
rate are quite challenging to measure with PIV, since they depend, respectively, on the
velocity gradient and the velocity gradient squared. For this reason, they are very sensitive
to spatial resolution, and tomographic PIV has always struggled to provide good agreement
with DNS data near the wall.

Schneiders et al. [2017] presents a study on improving the spatial resolution of turbu-
lent flow measurements using tomographic particle tracking velocimetry (PTV) and the
vortex-in-cell-plus (VIC+) technique. The researchers reprocessed existing time-resolved
tomographic particle image velocimetry (PIV) measurements in a turbulent boundary layer
to compare the small-scale flow properties, specifically vorticity and turbulence dissipation.
The tomographic PTV particle track measurements were interpolated using VIC+ to a
dense grid, incorporating information on particle velocity and Lagrangian acceleration.

(a) Velocity fluctuations. (b) Vorticity (RMS). (c) Dissipation rate.

Figure 2.13: PIV performance in reconstructing turbulence quantities (Schneiders et al.
[2017]).
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The study compared the vortical structures obtained through visualization of isosurfaces of
vorticity magnitude and found that both methods produced similar coherent vortical struc-
tures. However, VIC+ demonstrated increased strength in terms of vorticity magnitude,
suggesting an improved spatial resolution.
Statistical evaluation revealed that tomographic PIV underestimated the root mean square
(RMS) of vorticity fluctuations by approximately 40% compared to a reference profile from
a DNS simulation. In contrast, the VIC+ technique returned RMS vorticity fluctuations
within 10% of the reference, indicating its efficacy in capturing vortical dynamics more
accurately. The study also highlighted the novel aspect of directly measuring dissipation
through volumetric experiments, contrasting with other approaches that rely on 2D
measurements combined with isotropic turbulence assumptions or corrections based on
sub-grid scale turbulence modeling. VIC+ proved to estimate the dissipation statistics
with a 5% error, versus a 50% error yielded by tomo-PIV analysis (see Figure 2.13).

The study has demonstrated the potential of the VIC+ technique in improving the
spatial resolution and accuracy of near-wall turbulent flow measurements, specifically
in capturing vorticity and dissipation characteristics in a turbulent boundary layer. It
highlights the limitations of traditional tomographic PIV and emphasizes the importance
of innovative techniques for more reliable flow analysis.

2.7 Conclusions and research questions

As highlighted in this state of the art, the Vortex-in-Cell Time-Segment Assimilation
(VIC-TSA) method holds promise for achieving superior spatial super-resolution accu-
racy. However, its performance did not significantly exceed that of the VIC+ method,
particularly at low time segment assimilation settings, where it showed even less precision.
This limitation has been attributed to the absence of Radial Basis Functions (RBF)
implementation in the VIC-TSA framework, as discussed in Scarano et al. [2022].

This leads towards the primary research question of this thesis, which focuses on
exploring the role of Radial Basis Function (RBF) in enhancing VIC-TSA’s accuracy. The
question arises from the observation that the absence of Radial Basis Functions (RBF) in
VIC-TSA may be a contributing factor to its performance issues, as suggested in Scarano
et al. [2022]:

“How can the integration of RBF improve the VIC-TSA method’s accuracy?”

Additionally, considering the foundational aspects of VIC-TSA and its relationship with
VIC+, it becomes pertinent to examine the potential of VIC-TSA when enhanced with
RBF. This inquiry is especially relevant in understanding the accuracy levels of VIC-TSA
(especially in the impulsive regime) compared to VIC+:

“How does the VIC-TSA, with a robust RBF implementation, compares with VIC+?”
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The insights gained from this implementation are expected to contribute to further
improving the performance of VIC-TSA, which is the state-of-the-art Navier-Stokes
reconstruction method.
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Chapter 3

The VIC-TSA framework

The Vortex-in-Cell with Time-Segment-Assimilation (VIC-TSA) framework is a physics-
based data assimilation method for Particle Tracking Velocimetry (PTV), based on the
Navier-Stokes equations. It is used to increase the space resolution of an experiment with
Lagrangian particle tracking (LPT) by leveraging the available time information, which is
provided by all the other frames captured with the high-speed cameras. This method was
introduced by Scarano et al. [2022], and it uses the formulation of the Navier Stokes based
on the vorticity field, following the Vortex-in-Cell (VIC) framework (Christiansen [1973]).
For this reason, it is defined as a space-super resolution method.

In doing this, the sparse information of the velocity field is reconstructed on a Cartesian
grid, which is also beneficial for visualization, post-processing, and evaluation of differential
quantities.

In a nutshell, the algorithm is formulated as a minimization problem that tries to
fit the best possible field on the Cartesian grid that minimizes the disparity with the
measurement data. The assimilation of an entire time segment enforces the solution to
satisfy the governing equations for a finite amount of time. A simplified schematic is
provided in Figure 2.6.

Definitions Some basic definitions and notation used to explain the VIC-TSA method
will be hereby defined. Suppose that an experimental PTV campaign with Lagrangian
particle tracking yields the particle data, which includes position, velocity and acceleration
of the tracers at each time step. Each particle is tracked individually, which enables to
identify the particle tracks. We define:

• r: distance between the tracer particles;

• r̃: distance between the particle tracks (see also Figure 3.1);

• up: velocity of the particles, as recorded by the experimental setup with STB
processing;
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r̃

r
r̃

r r̃ r

Impulsive regime Adjacent tracks regime Stringy tracks regime

Figure 3.1: Particle tracks and regimes. The figure depicts the trajectory of tracer particles,
highlighting the effective distances r and r̃ that govern the spatial resolution in VIC-TSA.

• ug: velocity on the Cartesian grid;

• ug,p: velocity on the Cartesian grid linearly interpolated to the location of the
particles.

3.1 Working principle

The VIC-TSA method is founded on the premise of utilizing a finite time-resolved segment
of tracer particles’ positions and velocities for reconstructing the velocity field on a
Cartesian grid, enhancing its space resolution. This method extends the VIC principle by
assimilating the temporal evolution of particle tracks into the velocity field estimation,
and it is schematically represented in Figure 3.2.

Track regimes and effective distance The fundamental principle of VIC-TSA lies in
enhancing spatial resolution by assimilating time-resolved data across a defined temporal
window. As visualized in Figure 3.1, this assimilation involves considering the collective
path traversed by particles within this window. The effective spatial resolution, in this
case, is influenced not only by the instantaneous particle separation r but also by the
average track separation r̃ over the time segment. These distances are visible in Figure 3.1,
where r represents the average distance between the particles at a given time instant, and
r̃ symbolizes the minimum separation between the evolving particle tracks.

Time-segment length The VIC-TSA’s optimization of spatial resolution is achieved
by extending the assimilated time-segment T , thus reducing r̃ relative to r. There exists
an optimal regime, identified as the adjacent tracks regime, where the temporal window
is sufficiently large to improve spatial resolution significantly but not excessively long to
impose diminishing returns on the reconstruction accuracy or to raise computational costs,
since increasing the track further will not reduce r̃.
The selection criterion for the time segment length that identifies the adjacent tracks
regime is:

τ ∗ =
T Uref

r
≈ 1,
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Figure 3.2: Schematic of the VIC-TSA reconstruction framework. Velocity and vorticity
are initialized (black arrow) from tracks data at the center of the time-segment (t0)
by interpolating tracks data from the measurements. Time marching by vortex-in-cell
(blue arrows) along the chosen time-segment. The cost function J is evaluated from the
differences between the computed velocity and the tracks data. The cost function is
minimized iteratively (grey line arrow) yielding the optimized velocity field at t0.(Scarano
et al. [2022]).

Here, Uref denotes a reference velocity characteristic of the flow, T represents the duration
of the time segment under consideration. This nondimensional parameter τ ∗ essentially
acts as an indicator of the spatial relationship between the length of the particle tracks
and their separation.

Consequences of regime selection The selection of the time segment length and
the subsequent regime has implications on the analysis of the PTV data. The ‘impulsive
regime’, characterized by a short time segment length, yields little improvement over
traditional instantaneous reconstruction techniques. Conversely, the ‘stringy regime’,
where the time segment is excessively extended, does not yield a substantial decrease in
r̃, suggesting that an intermediate length, as exhibited by the ‘adjacent tracks regime,’
potentially offers an optimal balance. The concept of track regimes introduced here will be
further elaborated in the algorithm section, where the mathematical and computational
framework of VIC-TSA will be detailed.

3.2 The algorithm

The objective of the VIC-TSA technique is to enhance the spatial resolution of the velocity
field within a specific temporal segment, ensuring that it closely aligns with the particle
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velocity measurements derived from experimental data. The procedure originates from
the integration of time-resolved 3D particle tracks data, which are typically acquired from
techniques like tomographic Particle Tracking Velocimetry (PTV) with Shake-the-Box
(STB) processing (Schanz et al. [2016]). The ensemble of particle tracks consists of spatially
scattered data points capturing the particles’ positions xp and velocities up across Nt

instances within a uniform time interval ∆ts.

Flow solver The VIC-TSA algorithm is initiated by interpolating the particle velocity
data up onto a Cartesian grid, resulting in the gridded velocity ug at the starting time
t0. Following the VIC framework (Christiansen [1973]), the VIC-TSA method uses the
incompressible and inviscid vorticity transport equation, which is used to travel the flow
field in time under appropriate boundary conditions. The vorticity ω = ∇ × u is used
instead of the velocity in the flow equations of VIC-TSA. This is because it cancels out
the pressure gradient from the Navier-Stokes equations, which cannot be obtained with
PIV (see also Section 2.6). Starting with the Navier-Stokes equation for an inviscid flow,
given by:

ρ

Å
∂u

∂t
+ u · ∇u

ã
= −∇p+ f (3.1)

where ρ is the fluid density, u is the velocity field, p is the pressure, and f represents body
forces. Taking the curl of the Navier-Stokes equation and applying the property that the
curl of a gradient is zero, we get:

∇×
Å
ρ

Å
∂u

∂t
+ u · ∇u

ãã
= ∇× f (3.2)

Expanding the left-hand side using the properties of the curl operator and the definition
of vorticity, we obtain:

ρ

Å
∂ω

∂t
+∇× (u× ω)

ã
= ∇× f (3.3)

Assuming that the body forces are irrotational (∇× f = 0), the final form of the vorticity
transport equation is:

∂ω

∂t
= (ω · ∇)u− (u · ∇)ω. (3.4)

In case of VIC-TSA, the boundary conditions are:

ω(x, t) = ω(x, t0), ∀x ∈ ∂Ω, ∀t ∈ [t0, t1] (3.5)

This means that the boundary conditions are computed with linear interpolation for the
central time frame only and considered constant throughout the time segment, which is
an approximation The vorticity transport equation can be discretized in different ways for
time marching. An example with Forward Euler:

ωt+1 = ωt +∆t (−ut · ∇ωt + ωt · ∇ut) . (3.6)

In the code (Scarano et al. [2022]), a Runge-Kutta 4 method is used.
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Velocity computation The desired velocity field can be obtained from the vorticity by
solving a Poisson equation:

∇2u = −∇× ω. (3.7)

Due to the boundary conditions on the vorticity, this step introduces an error. Another ap-
proach by Schneiders and Scarano [2016] involved the inclusion of the boundary conditions
as degrees of freedom in the optimization loop.

Optimization loop The VIC-TSA’s analytical process repeats in a series of iterative
steps in order to minimize a cost function J , which quantifies the disparity between
the measured particle velocities and the computed velocity field across the considered
time-segment T . Considering he cost function is expressed as:

J(T ) =
 ∑

p,n

J2
p,n, (3.8)

where Jp,n is the error at the n-th timestep between the particle velocity up and the
reconstructed gridded velocity ug,h linearly interpolated to the particle’s location:

Jp,n = up(xp, tn)− ug,h(xp, tn). (3.9)

The optimization problem is then defined as finding the initial vorticity field that minimizes
the cost function:

argminω J(ω(t0), up). (3.10)

The optimization employs the limited-memory Broyden–Fletcher–Goldfarb–Shanno method
(L-BFGS), which is a quasi-Newton technique suited for large-scale problems with limited
computational memory resources.
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Input up

Initialize ug

Optimizer
ωnew = fminlbfgs(J(ω),∇ωJ)

Advance ω in time
ωt+τ = ωt +

dω
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∣∣
t
· τ

Compute new Vg
∇2u = −∇× ω

Compute J
J ∝ ug,p − up

Converged?

Stop

yes

no

Figure 3.3: Flowchart of VIC-TSA
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3.3 Adjoint method for gradient evaluation

A key aspect of the optimization procedure is the evaluation of the gradient of the cost
function J with respect with the control variables αi, indicated as ∇αJ . In this problem,
the number of degrees of freedom corresponds to the number of grid points N3

edge, where
the RBF coefficients are placed. The adjoint method is instead is able to compute ∇αJ
fast and exactly, solving one additional equation only. In this section, the mathematical
foundations of the method will be introduced, following to the application to the VIC-TSA
method.

3.3.1 Mathematical formulation of the optimization problem

In mathermatics, the concept of adjoint can be understood as a way of ’reversing’ the
effect of an operator with respect to an inner product space. The notation for it is δ∗,
which can be thought as a variation that represents how changes in the output of a system
are related back to changes in the input.

The adjoint method revolves around the concept of backward differentiation, which
is particularly efficient for functions with a large number of input variables and a single
output. In essence, it calculates the gradient of an objective function by first running a
forward simulation to compute the function value and then running a backward simulation
to compute the gradient. The mathematical elegance of the adjoint method lies in its
ability to reverse the chain of computations, tracing the influence of inputs on the output
by reversing the flow of differential equations, which is computationally more efficient
than traditional forward sensitivity analysis methods. As stated by Giering and Kaminski
[1999]:

“Adjoint models are tools developed for inverse modeling of physical systems. Inverse
modeling is used in various fields of sciences such as geophysics and molecular physics.
Among the applications of adjoint models in oceanography and meteorology are data

assimilation, model tuning, sensitivity analysis, and determination of singular vectors
(Giering and Kaminski [1999]).”

In order to fully understand the method and apply it to the VIC-TSA framework, it is
useful to describe our minimization problem in mathematical terms:

Y = F ·X, (3.11)

where:

• X represents the control variables, which are the Cartesian values of velocity (or
vorticity);

• F is the flow solver plus the linear interpolation;
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Figure 3.4: Forward and backward problem for adjoint method (Giering and Kaminski
[1999]).

• Y is the predicted velocity at the data points.

It is then true that if n is the size of X and m is the size of Y :

F : Rn → Rm. (3.12)

A cost function J can be defined as follows:

J =
1

2
f(Y −D, Y −D), (3.13)

that quantifies the reconstruction error comparing with data points. The cost function is
defined with the inner product, which yields the squared sum of the reconstruction error
at the particle’s location. This will also come handy for the following steps. It is then true
that:

J : Rn → R, (3.14)

since the cost function yields a scalar.

3.3.2 Calculation of the gradient

Following Giering and Kaminski [1999], the problem is to determine the set of control
variables X that minimizes J . Effective minimization algorithms require the gradient
∇XJ(X0) of J with respect to the control variables at a given point X0. For the gradient
of the cost function:

∇XJ : R → Rn. (3.15)

First, we write the Taylor expansion of J :

J(X) = J(X0) + (∇XJ(X0), X −X0) + o(|X −X0|) (3.16)

or, in short terms,
δJ = (∇XJ(X0), δX). (3.17)
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In the following, this shorthand notation will be used whenever linear approximations are
involved. Suppose F is sufficiently regular; then, for each parameter vector X0, a variation
of Y can be approximated to first order by

δY = A(X0)δX, (3.18)

where A(X0) denotes the Jacobian of F at X0. This is basically a linearization of the
model around a state X0, and is called tangent-linear of the model.

Due to the symmetry of the inner product and the product rule, the differentiation of
the cost function yields:

δJ =
1

2
(A(X0)δX, F (X0)−D) +

1

2
(F (X0)−D,A(X0)δX) (3.19)

= (F (X0)−D,A(X0)δX). (3.20)

Using the definition of the adjoint operator A∗:

(v, Aw) = (A∗v, w), (3.21)

it is possible to obtain:
δJ = (A∗(X0)(F (X0)−D), δX). (3.22)

Therefore, according to the definition of the gradient (5), the gradient of the cost function
with respect to the control variables is

∇XJ(X0) = A∗(X0)(F (X0)−D). (3.23)

If A represents the tangent-linear model, A∗ represents the adjoint model, which follows the
reverse order of differentiation to trace back the influence of the inputs on the outputs. It
basically measures the sensitivity of the cost function to changes in Y. The term F (X0)−D
can be seen in fact as a forcing term of the adjoint model. The derivation of the adjoint
model for VIC-TSA is analytical, and it will be shown in the next section.

3.3.3 Adjoint equations for VIC-TSA

The adjoint model derived in the previous section can be obtained analytically due to
the nature of the VIC-TSA algorithm. In general, if an algorithm has k steps, then the
gradient of the cost function can be derived as:

∇XJ =
K∑
k=1

δ∗k (3.24)

This means that each step need to be traced back to derive its adjoint, and then at the
end all the adjoint contributions needs to be summed. The process of traveling backward
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starts from the generation of the vorticity field, and the time marching and ends with the
predicted velocity ug,h through linear interpolation1.

According to (3.23), in order to evaluate the adjoint model, we travel backwards the
steps of the algorithm described in Section 3, formalized as function F of (3.11). The
adjoint of each step is denoted as δ∗. We want to calculate the gradient of the cost function
with respect to the control variables; this process starts with the adjoint counterpart of
the cost function : δ∗ug,p = 2(ug,p − up). This first derivation is needed because we are
interested in the sensitivity of the control variables on J . Then:

1. LI: The gridded velocity ug,p was obtained from ug with LI, which can be written in
matrix form as ug,p = Lug. The adjoint of LI is just the transpose of the LI matrix,
hence δ∗ug = LTug,p;

2. Velocity was obtained from vorticity with Poisson equation: ∇2δ∗ug = −∇̃× δ∗ωg.
The Laplacian is self-adjoint, so the existing solver can be used to evaluate the

left hand. The adjoint nabla is ∇̃ =

ñ
∂̃

∂x
,
∂̃

∂y
,
∂̃

∂z

ô
. Since finite differences were

used, the adjoint operator is simply the inverse of these matrices. The final result is
δ∗ω1 = δ∗ωg.

3. Vorticity was also used in the vorticity transport equation Dωg

Dt
= (ωg · ∇̃)ug, so

the sensitivity contribution of that step needs to be computed too. The adjoint
counterpart of the temporal derivative of the vorticity is:

δ∗ωi,2 =
∂uj
∂xi

δ∗
∂ωj
∂t

− δ̃

Å
u∗jδ

∗∂ωi
∂t

ã
, (3.25)

Which results is δ∗ω2.

The gradient of the cost function is then:

∂J

∂ωg
= δ∗ω1 + δ∗ω2 (3.26)

One might ask why the adjoint of LI is not summed but rather applied to the adjoint
variables. The reason is that in the optimization process, the adjoints of differential
equations directly contribute to the gradient of the objective function by reflecting the
sensitivity of J to changes in the solution variables, summed to capture their collective
influence. In contrast, the adjoint of operations like LI (or RBF interpolation) is applied
to modify these sensitivities, ensuring that the transformation’s impact on the objective
function’s gradient is accurately represented, rather than being directly summed with the
other adjoints.

1The modifications needed to include the RBF will be discussed later in this work.
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One has to keep in mind that the DoFs are the three components of vorticity, which is
a vector field with three components. Hence, the gradient of the vector field is an array
of dimensions (3, Np). The adjoint takes 3-4 times more than the evaluation of the cost
function (Giering and Kaminski [1999]), versus the Np + 1 evaluations requested with
forward sensitivity methods. In Section 4.5, the addition of the adjoint of the Radial Basis
Functions operations will be discussed.
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Chapter 4

Radial Basis Functions

This chapter describes the implementation of Radial Basis Functions (RBF) in the VIC-
TSA algorithm. As described in the Introduction and the research question, the VIC-TSA
method does not perform as well as its predecessor, VIC+, for sequences up to a certain
NT, and this is attributed to the use of radial basis functions in the VIC+ algorithm. The
validity of this affirmation is further discussed in Section 5.2.2. This chapter discusses the
application of RBF, specifically focusing on the enhancements they provide. It establishes
the mathematical foundations and delineates the process of their incorporation into the
code. The relationship and transition between degrees of freedom and physical values
are explained. Lastly, the integration of radial basis functions into the adjoint method is
addressed.

4.1 Implementation in VIC-TSA

In Section 3, it was shown how the optimization loop works to fit the best possible velocity
field to increase the space resolution of the measurements. The opmizer fminlbfgs guesses a
vorticity field ωg, which is time-travelled with the analytical equations and the discrepancy
between ug,p and up is computed.

The idea behind the use of Radial Basis Functions in the VIC-TSA method is to expand
the vorticity field with RBF and optimize the coefficients of this expansion, rather than ω
directly (Figure 4.1). Each grid point now represents a point where a basis function with
a Gaussian kernel is placed. The choice of the latter will be explained in the next section.
More specifically:

1. Expansion of vorticity field: The vorticity field ω is expressed as a sum of radial
basis functions ϕi(r), each weighted by a coefficient αi. Mathematically, this is
represented as:

ω =
∑
i

αiϕi(r), where ϕi(r) = e−
r2

2σ2 .
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αi,j

Optimizer

Flow solver

∇2u = −∇× ω

J =
∑

(uh − up)
2 up

Cost function
Dω

Dt
= (ω · ∇)u

αg ⇒ ωg

Initialize

Converged?

End

Figure 4.1: Simplified scheme of VIC-TSA with RBF.

Here, r is the radial distance and σ is the spread parameter of the Gaussian RBF.

2. Optimization for coefficients αi: The next step involves optimizing these coeffi-
cients αi so that the reconstructed vorticity field best fits the observed data.

3. Computation of vorticity from expansion: Finally, the optimized coefficients
are used to compute the vorticity field from the RBF coefficients, which is then
utilized in the flow solver.

The choice of using RBF, particularly Gaussian RBF, in this context is expected to offer
several advantages:

• Global support : the value of the basis function at one point will also influence the
surrounding grid points, effectively giving a higher order interpolation method.

• Stabilization of convergence: for the aforementioned reasons, the RBF are expected
to give VIC-TSA improved robustness to noise, which can help in stabilizing the
convergence.

• Smoothness requirements: Gaussian Radial Basis Functions (GRBF) are infinitely
smooth, and their analytical formula can be derived to compute exact derivatives of
the quantity represented. Even if the discretization error remains, RBF derivatives
are free of truncation error, unlike Finite Differences methods. This property can be
used, for instance, to compute the spatial derivatives of the vorticity in the Poisson
equation (??).

4.2 Gaussian Radial Basis Functions

The RBF kernel chosen for this numerical evaluation is the Gaussian shape e
r2

2σ2 . Such
functions are typically used to construct smooth interpolations from scattered data points.
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They are widely used in many other purposes in numerical analysis, like mesh motion
algorithms (Lombardi et al. [2013]), FSI problems (Rendall and Allen [2008]), visualization
methods in FEM (Xia et al. [2019]), modeling of moving boundary value problems (Vrankar
et al. [2007]), and comparative studies with traditional FEM (Loeffler et al. [2018]).

Gaussian RBF are mathematically expressed by the formula:

ϕi(r) = e
−
∥r∥2
2σ2 , (4.1)

where r = x− xi is the radial distance from the function’s center xi, and σ is the spread
parameter. They have the following properties:

• Radial symmetry : these functions are radially symmetric, meaning their value
depends only on the distance from the center, not the direction from it.

• Smoothness : GRBF are infinitely differentiable, providing a high degree of smooth-
ness. This property is particularly valuable in applications where continuous and
smooth transitions are required.

• Localization: This property encapsulates the RBF influence being intensely concen-
trated around their centers (localization) and diminishing rapidly as one moves away

(decay). The parameter σ, typically set to
1

4
h in VIC-TSA and VIC+ (where h is

the grid spacing), governs the scope and intensity of this localized effect, ensuring
that each RBF impacts its immediate vicinity while fading rapidly beyond this
region. This characteristic is critical for maintaining precise local influences without
extensive overlap.

• Adaptability : The ability to adjust the centers and scale parameters allows these
functions to be adapted to a wide range of data patterns and shapes.

• Interpolation and approximation: Gaussian RBF are versatile, capable of exact data
fitting (interpolation) or creating a smoothed representation of data (approximation).
Their smoothing effect will be one of the monitored behaviors in the numerical test
case and especially the experimental assessment.

While Gaussian RBF are advantageous in many aspects, their global support makes
them effectively a higher-order interpolation method. This will result in having an
interpolation matrix with a larger bandwidth, which will make the computation more
precise but slightly slower. The choice of σ can directly affect the computational stability
and precision, since a value too large might induce smoothing.
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4.2.1 Computing derivatives

Radial Basis Functions, particularly Gaussian RBF, are used not only to interpolate
scattered data, but also to approximate derivatives of a vector field. The derivatives of
the Gaussian RBF with respect to a spatial coordinate are used for the evaluation of the
Poisson equation (??). Instead of using Finite Differences, the derivatives of ω can be
computed with term-by-term differentiation by deriving the analytical expression of the
kernel:

ω =
∑
i

αiϕi(r) =
∑
i

αiϕi(∥x − xi∥), (4.2)

∂ω

∂x
=

∂

dx

∑
i

αiϕi(r) =
∑
i

αi
∂

∂x
ϕi(x, y). (4.3)

This eliminates the truncation error in computing derivatives, as happens with Finite
Differences formulations. This makes them ideal for computing spatial derivatives, such as
for the vorticity in the Poisson equation. For all the components, these kernel derivatives
can be mathematically expressed as:

∂

dx
ϕi(x, y, z) = −x− xi

σ2
· e−

(x−xi)
2+(y−yi)

2+(z−zi)
2

2σ2 , (4.4)

∂

dy
ϕi(x, y, z) = −y − yi

σ2
· e−

(x−xi)
2+(y−yi)

2+(z−zi)
2

2σ2 , (4.5)

∂

dz
ϕi(x, y, z) = −z − zi

σ2
· e−

(x−xi)
2+(y−yi)

2+(z−zi)
2

2σ2 . (4.6)

This derivative retains the Gaussian shape but is scaled and shifted according to the
coordinate differences, providing a measure of the rate of change of the function at a point.

The implementation of RBF differentiation is expected to provide more accuracy in
the representation of the derivative, because of the aforementioned absence of truncation
error and for the global support properties.

4.3 From RBF coefficients to vorticity values

To evaluate a certain value of vorticity at a specific point, the influence of every basis
function on that point needs to be evaluated:

ω(x⃗p) =
∑
i

αiϕi(|x⃗i − x⃗p|).

Not all basis functions have the same influence on that point, because of the Gaussian
shape of the kernel that decays with radius. The width of it can be specified with the shape
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Figure 4.2: Gaussian radial basis function and its derivative.

parameter σ. In general, one would like to encapsulate all the cross distances between the
points in a matrix (Euclidean distance matrix) and, for each value of the matrix, compute
the RBF value with the kernel (4.5). Once this matrix is set up, it is possible to move
from the RBF coefficients α to vorticity values with:

ω = Aα. (4.7)

The A matrix has dimensions N×N and can be computed with nested loops, for instance,
in 2D:

A = sparse(n_interp , n_points );

for i = 1: n_points

for j = 1: n_points

dist = sqrt((X(j) - X(i))^2 + (Y(j) - (i))^2);

A(i, j) = phi(dist);

A more efficient approach by leveraging vectorization is:

DX = X_interp (:) - X(:)’; DY = ...; DZ = ...;

D = DX.^2 + DY.^2 + DZ.^2;

A = exp(-D / (2 * sigma ^2));

and for the derivatives, by using the analytical expression for the kernel (4.4):

dA_dx = -(DX / sigma ^2) .* exp(-D / (2 * sigma ^2));

dA_dy = -(DY / sigma ^2) .* exp(-D / (2 * sigma ^2));

dA_dz = -(DZ / sigma ^2) .* exp(-D / (2 * sigma ^2));
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Figure 4.3: Grid spacing and lexicographic ordering of the unknowns.

Example in 2D For a support radius of 1.1 * grid h and the following grid:


ω1,1

ω2,1

ω3,1

ω1,2

ω2,2

ω3,2

 =



ϕ(0) ϕ(h) ϕ(2h) ϕ(h) ϕ(h
√
2) ϕ(h

√
5)

ϕ(h) ϕ(0) ϕ(h) ϕ(h
√
2) ϕ(h) ϕ(h

√
2)

ϕ(2h) ϕ(h) ϕ(0) ϕ(h
√
5) ϕ(h

√
2) ϕ(h)

ϕ(h) ϕ(h
√
2) ϕ(h

√
5) ϕ(0) ϕ(h) ϕ(2h)

ϕ(h
√
2) ϕ(h) ϕ(h

√
2) ϕ(h) ϕ(0) ϕ(h)

ϕ(h
√
5) ϕ(h

√
2) ϕ(h) ϕ(2h) ϕ(h) ϕ(0)




α1,1

α2,1

α3,1

α1,2

α2,2

α3,2

 , (4.8)

where the red colored values are the ones within σ. Below, a color-coded plot shows that
the points that are further away from the domain are indeed associated with a lower RBF
value.
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1

Figure 4.4: A matrix, with explicit RBF value for all the distances between the points.

4.3.1 Test case description

In this section, a simple test case is set up, which involves the implementation of Radial
Basis Functions (RBF) for the approximation of a scalar field and its derivative. The test
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case is structured to evaluate the performance of RBF in interpolating a known function
and its spatial derivative.

Initialization and grid setup The test case is defined within a cubic domain with
edge length 2π. The grid is uniformly spaced with a grid spacing of half the typical length
scale (0.5× 0.17× π). The RBF spread parameter σ is set to 1.1 times the grid spacing to
ensure adequate coverage of the domain by the basis functions; this follows the previous
work of Schneiders and Scarano [2016] on the implementation of RBF in VIC+. The setup
is defined in MATLAB as follows:

L = pi;

grid_h = 0.1 * L;

sigma = 1.1 * grid_h;

[X, Y, Z] = meshgrid(-L:grid_h:L, -L:grid_h:L, -L:grid_h:L);

n_points = numel(X);

Scalar field and its derivative The scalar field ω to be fitted is defined as ω =
cos(X) · cos(Y ) · cos(Z). The derivative of this field with respect to x, denoted as dω

dx
, is

analytically given by − sin(X) · cos(Y ) · cos(Z). The MATLAB implementation is:

w_to_fit = cos(X) .* cos(Y) .* cos(Z);

dw_to_fit = -sin(X) .* cos(Y) .* cos(Z);

RBF implementation and derivative computation The Euclidean distance matrix
and its derivatives are computed to set up the RBF system. The MATLAB code snippet
for this process is as follows:

DX = X(:) - X(:)’;

DY = Y(:) - Y(:)’;

DZ = Z(:) - Z(:)’;

D = DX.^2 + DY.^2 + DZ.^2;

A = exp(-D / (2 * sigma ^2));

dA_dx = -(DX / sigma ^2) .* exp(-D / (2 * sigma ^2));

Reconstruction of scalar field and its derivative Finally, the RBF coefficients
are computed and used to reconstruct the scalar field ω and its derivative dω

dx
. The

reconstruction is carried out as follows:

RBF_coeffs = A \ w_to_fit (:);

w = A * RBF_coeffs;
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dw_dx = dA_dx * RBF_coeffs;

w = reshape(w, size(X));

dw_dx = reshape(dw_dx , size(X));

This test case demonstrates the capability of RBF in approximating both a scalar field and
its spatial derivative within a defined domain (Figure 4.5). All of these approaches exhibit
a N2 convergence, where N is the total number of points in the domain. The following
section describes a faster method that makes use of the Fast Fourier Transform (FFT).

4.4 RBF evaluation with FFT

The method proposed in Abe and Iiguni [2006] is able to execute the same task, without
differentiation for now, with N · log(N) convergence, compared to the N2 of the Euclidean
distance matrix-based approach. The operation in FFT domain is:

DFT[yn[k]] =
1

dk
DFT[cpl ][k] (4.9)

cpl = IDFT

ï
1

dk
DFT[yn[k]][l]

ò
(4.10)

c = Tcp (4.11)

(T )ij =

®
0 if |(G−1Gp)ij| ≤ ρ,

(G−1Gp)ij otherwise
(4.12)

For instance, in VIC+, a formula similar to (4.10) was used:

y = ifftn( TFFT .* fftn(RBFcoeff padded) ), (4.13)

yn = IDFT [dkDFT[cp][k]] (4.14)

The code with FFT runs about 30 times faster than the code with the Euclidean distance
matrix approach.

The use of FFT in the context of RBF is a powerful technique due to the convolution
theorem, which states that the Fourier transform of a convolution is the pointwise product of
their Fourier transforms. In the spatial domain, we often deal with convolutions, especially
when working with filters or any operation that involves the overlap of functions across
a domain. The FFT method transforms the convolution operation into a multiplication
in the frequency domain, which is significantly faster, particularly for large datasets.
FFT-based methods maintain a high level of accuracy, and also with the Discrete-FTT
the error in moving from αi to ωi is low (Abe and Iiguni [2006]).
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Figure 4.5: Testcase of RBF interpolation and derivative computation. Ground thruth
above and reconstruction with interpolation error below.

Application of FFT to RBF in VIC-TSA The enhancement of spatial resolution in
the VIC-TSA algorithm is achieved by leveraging the convolution of the RBF coefficients
with the RBF kernel. This process is translated into the frequency domain to utilize the
FFT for efficient computation.

An important aspect of the FFT approach in the VIC-TSA algorithm is the construction
of the transformation matrix TFFT , which encapsulates the convolution operation of the
RBF coefficients in the spatial domain.

function TFFT = calcTFFT_TSA(sig ,X,Y,Z)

[ny , nx , nz] = size(X);

t = exp( - (1/2/ sig^2) * ((X(:) - X(1)).^2 + (Y(:) - Y(1)) ...

t = reshape(t, ny, nx, nz);
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T = zeros (2*ny+1, 2*nx+1, 2*nz+1);

% ... (Rest of the code populating the T matrix)

TFFT = fftn(T(1:end -1, 1:end -1, 1:end -1));

end

This function computes the FFT of the matrix T , which contains the spatial influence
values of a single RBF (note the X(1)) over the entire domain. The calculation takes
advantage of the symmetry and periodicity of RBF to construct TFFT efficiently. To
evaulate then the coefficients:

function w = calcUfromRBF_TSA(TFFT , RBF_coeffs)

RBFcoeff_padded = % ... pad RBF coefficients

wx = ifftn( TFFT .* fftn(RBFcoeff_padded) );

% ... same for other 2 components

Velocity field reconstruction The velocity field is reconstructed by applying the
transformation matrix TFFT to the RBF coefficients. The process is outlined in the
following code snippet:

% Compute omega with FFT

tic

TFFT = calcTFFT_TSA(support_radius , X, Y, Z);

RBF_coeffs = calcRBFcoeff_TSA(TFFT , w_to_fit );

w = calcUfromRBF_TSA(TFFT , RBF_coeffs );

wx = reshape(w(:,1), size(X));

toc

The velocity field w is obtained by reshaping the result to match the spatial dimensions.
This method ensures that the spatial super-resolution of the velocity field is realized
with computational efficiency, even though implementing the RBF differentiation is more
challenging, for this reason, when the RBF derivatives are being used, the EDM method is
applied. The FFT method becomes significantly preferable to the EDM approach when the
grid is ≈ 40x40x40. Future work might focus on refining the derivative computation and
fully integrating the FFT-based RBF method into the VIC-TSA framework to enhance its
applicability to a wider range of fluid dynamics situations, for instance experiments with a
large number of grid points in the measurement volume.

4.5 Modification to the adjoint procedure

In 3.3, the adjoint procedure was introduced for a fast and exact calculation of ∇XJ , the
gradient of the cost function with respect to the control variables. This procedure follows
the steps in reverse order from the final result of an optimization loop, the cost function
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J , to the control variables ωg. It was stated that if an algorithm has k analytical steps,
the adjoint of each one needs to be computed:

1. (LI) to obtain ug,p = Lug; δ
∗ug = LTug,p.

2. Poisson equation: ∇2δ∗ug = −∇̃×δ∗ωg. The adjoint gradient ∇̃ leads to δ∗ω1 = δ∗ωg.

3. Vorticity transport equation gives: δ∗ωi,2 =
∂uj
∂xi
δ∗

∂ωj

∂t
− δ̃

(
u∗jδ

∗ ∂ωi

∂t

)
, resulting in δ∗ω2.

The radial basis function evaluation can be represented as a matrix multiplication, where
the resulting vector ω is obtained by multiplying the matrix Φ with the weight vector
α. In this equation, Φ contains the values of the radial basis function at each grid point,
and w represents the weights. The adjoint equation corresponding to this calculation is
expressed as:

δ∗ω1 = ΦT δ∗ω. (4.15)

This computing method is applicable to both the Euclidean distance matrix approach and
the FFT approach. In the first case, Φ would be represented by matrix A, while in the
second case by TFFT, as described earlier in this chapter. Furthermore, to make the code
compatible with the introduction of RBF operations, such as the spatial derivatives of ω
with RBF, the same adjoint code can be used by converting the DoFs, which are the RBF
coefficients α, to their respective values ω. As a conceptual implementation:

function [J, gradJ] = VIC_TSA_optimization_func(DoF)

if opts.rbf.userbf == 1

xi_init = calc_vort_from_RBF(PHI_matrix , DoF);

else

xi_init = DoF;

end

[u_fw , OUT_fw] = VICforward(xi_init ); % travel forward

[J_fw , OUT_fw] = calcJ(u_fw , OUT_fw );

gradJ_fw = gradJ_adjoint(OUT_fw );

% same for backward (bw)

J = J_fw + J_bw;

gradJ = gradJ_fw + gradJ_bw;

if opts.rbf.userbf == 1

gradJ = calc_vort_from_RBF_TSA(PHI_matrix , gradJ );

end

end
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Chapter 5

Numerical Assessment

The numerical assessment of the reconstruction technique consists on the evaluation of
the reconstruction of a synthetic vortex field, which is described by the Taylor-Green sine
wave lattice Taylor and Green [1937]. The purpose of this artificial tracer generator is to
provide the same output of the Shake-The-Box algorithm (Schanz et al. [2016]) to the
VIC-TSA code. A random set of tracers is generated in a simulated measurement volume
and are time-advanced using a Runge Kutta 4-5 method. This simulates the measurement
data produced by a PTV experiment with variable seeding density. The assessment is done
by comparing the reconstructed value of velocity magnitude with the ground thruth flow,
provided by the analytical expressions. Particular attention is given to the modulation of
the peak value of the sinusoidal waves.

Subsequent sections provide background on the complexities of reconstruction method
assessments, including the analytical expression of the Taylor-Green vortex lattice and
relevant concepts like amplitude modulation, time marching, and nondimensional parame-
ters. The discussion highlights the importance of consistent tracer density for accurate
simulation and outlines the criteria for comparing different reconstruction techniques. Ad-
ditionally, it touches on mesh convergence and the robustness of the reconstruction method
in the presence of noise, offering a concise overview of the technical and methodological
foundations underlying the reconstruction analysis.

5.1 Assessment of reconstruction methods

The assessment of reconstruction methods for PIV is not an easy task, due to the lack
of generality of a common ground test case. Such methods are very different in the way
they apply the reconstruction and in their architecture, hence it is difficult to predict
a well-established procedure that can assess all of them. It should also be mentioned
that experimental assessments do not have a ground-thuth by definition, and numerical
evaluations do not fully encapsulate the challenges encountered in experimental settings,

43



Martino Pinto, MSc Thesis Advancements in VIC-TSA with RBFs

including uncertainties and errors.
Space-super resolution methods use the available time information to enhance space

resolution, but, for instance, while VIC+ (Schneiders and Scarano [2016]) uses only a single
time frame and the additional time information is provided by the material derivative,
VIC-TSA leverages the information provided by the other time frames. This means that
the tracers need to be generated and time-marched, which can introduce an additional
truncation error. The situation becomes even more complicated if the object of assessment
is the unsteady reconstruction capabilities: in the literature there are some assessments
available like the turbulent boundary layer, which can be both experimental (Schneiders
and Scarano [2016]) or from a Direct Numerical Simulaition (DNS) (Wang et al. [2022])
and jet flow (Schneiders and Scarano [2016], Schneiders et al. [2014]), but the quality of the
reconstruction is usually evaluated visually or statistically, for instance, by reconstruction
of the turbulence length scales. For instance, Wang et al. [2022] shows in the experimental
assessment the flow over a hemisphere reconstructed from a PTV experiment, and compares
it to a DNS simulation, to visually assess the general shape of the flowfield. In general,
such test cases do not yield quantitative information like an analytical test case, and in
literature there is still no such thing as a clear and common methodology.

Sine-wave reconstruction Sine-based velocity distributions have been widely used to
test PIV reconstruction methods, both in 2D (Willert and Gharib [1991], Scarano and
Riethmuller [2000]) and in 3D (Kähler et al. [2016], Scarano et al. [2022]). In this work,
the reconstruction is fully tridimensional. The examination focuses on reconstructing
the sinusoid, particularly considering the modulation of the peak value, as the seeding
concentration is progressively reduced. This means that the quality of the reconstruction
will deteriorate, but the performance at a lower seeding concentration is where the
differences are most evident. An analytical test case allows controlling variables such as
particle density and sampling time to validate and verify the reconstruction methods. At
a lower seeding concentration, the influence of the governing equation (which provides
additional time information and physical constraints) is expected to produce a more
uniform and accurate reconstruction, especially at a lower seeding density.

5.1.1 Taylor-Green vortex lattice

In fluid dynamics, the Taylor–Green flow represents a decaying vortex, which is an unsteady
flow pattern and has an explicit solution of the incompressible Navier–Stokes equations in
Cartesian coordinates. It is named after the two mathematicians who have studied it for
the first time (Taylor and Green [1937]). In this case, the steady version is used since the
evaluation is steady. It is composed of three velocity components, which are described by
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(a) u(x, y) (b) v(x, y)

Figure 5.1: Taylor Green vortex lattice.

the following expressions:
u(x, y) = A sin
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2πx
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ã
sin
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2πy

λ

ã
v(x, y) = A cos
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2πx
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ã
cos

Å
2πy

λ

ã
w = A

(5.1)

where A is the amplitude of the sine and cosine waves, and λ the wavelenght. In this
work, these quantities are set to unity, for ease of implementation and intuition. In any
case, non-dimensional coefficients will be used that link the seeding concentration to the
wavelength and the amplitude. The flow field is independent of the vertical coordinate
z, and the z− velocity component is constant throughout the domain. This means that
the flow rotates around the z−axis and travels in this direction with constant speed. The
flow pattern produced is shown in Figure 5.1. The u(x, y) and v(x, y) alternate with a
period dictated by the wavelenght λ, inducing a in-plane rotation on the xy−plane. This
rotational motion is overimposed with the constant z−velocity, producing an array of
parallel vortices.

To simulate the output of the Shake-The-Box algorithm, the velocity and material
derivative of the velocity of each particle must be evaluated in multiple time acquisitions.
The material derivative can be calculated analytically. The gradient of the vector field
ũ = (u, v, w) is a matrix with all the first-order partial derivatives of the vector components.
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The gradient of the velocity is given by:

∇u⃗ =
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Calculating these partial derivatives yields:
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This matrix represents the rate of change of the vector field components in each direction.
The material derivative can now be computed as:

Du⃗

Dt
=
∂u⃗

∂t
+ u⃗ · ∇u⃗ = u⃗ · ∇u⃗, (5.4)

since the flowfield is steady. Substituting the expression for the gradient yields:

Du⃗

Dt
=
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, 0

ò
(5.5)

5.1.2 Tracer tracking

Tracer generation Once the flow domain has been enstablished, a random set of particle
is generated with Matlab’s rand function, with a uniform distribution in the domain. It
is good practice to include additional padding volume with respect to the flow domain
that needs to be reconstructed, in order to avoid boundary effects. For example, Figure
5.2 shows that lack of padding may lead to regions with less seeding density, because
some tracers in the highlighted region will leave the domain. Including a padding volume,
instead, ensures that the seeding density is manteined constant thoughout the simulated
measurement volume. The output of this operation are the coordinate arrays, Xp, Yp and
Zp, of length N .

Time marching For time marching, an explicit fourth-order Runge-Kutta scheme has
been used. After the particles have been generated, they can be time-marched on the
domain according to the magnitude of the velocity components at the tracer’s location.
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Figure 5.2: Tracer particles leaving the do-
main of interest, reducing the seeding density
in the highlighted area. On the background:
v(x, y) velocity component.

Figure 5.3: RK45 vs Euler time tracking
method.

Integrating for the whole time segment T yields the particle track. The particle motions
can be formulated by the following set of ODEs:

dx

dt
= U(x) (5.6)

where x = (x, y, z) and U(x) = (U(x, y), V (x, y),W ). These can be discretized for time
marching in a Forward Euler fashion as:

xt+1 = xt +∆t ·U(xt) (5.7)

For the RK4 method, the update for each variable over a timestep ∆t from tn to tn+1

would be:

xn+1 = xn +
∆t

6
(k1 + 2k2 + 2k3 + k4) (5.8)

where each ki for i = 1, 2, 3, 4 is a vector function representing the RK4 increments,
calculated similarly to the single variable case, but using the functions U(x, y), V (x, y),
and W for the respective variables. RK45 is a combination of RK4 and RK5, allowing
for adaptive step size control. It automatically adjusts the step size during integration to
balance accuracy and computational efficiency. The implementation of the method in the
Matlab’s function ode45 allows for the user to specify the time step at which the solution
needs to be returned, while the time integration is carried out with automatic selection by
ode45, which ensures stabilty and accuracy. This permits to vary the simulated tracer
sampling frequency without worrying about the time integration.
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Figure 5.4: Generated tracers

During the time marching in the reconstruction process, some particles may move
upward in the positive z−direction and eventually leave the domain. To maintain a
consistent tracer density within the domain of interest, these particles are replaced by
generating new particles within a padding volume. This approach ensures a continuous
presence of particles in the domain, as shown in Figure 5.4, where the selected time
segment allows the movement of the particles upward without leaving empty regions. The
method of generating particles with a padding volume was chosen for its straightforward
implementation with the ode45 function, facilitating the management of particle positions
during each iteration of the time integration procedure.

Numerical implementation The analytical formulas described in (5.1) and (5.5) can
be efficiently implemented in Matlab using symbolic manipulation:

syms x y z

u = A * sin(2*pi*x/lambda) * sin(2*pi*y/lambda );

v = A * cos(2*pi*x/lambda) * cos(2*pi*y/lambda );

w = A;

U = [u,v,w];.

gradU = [[diff(u,x) diff(u,y) diff(u,z)]

[diff(v,x) diff(v,y) diff(v,z)]

[diff(w,x) diff(w,y) diff(w,z)]];

DuDt = U * gradU
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Figure 5.5: Material derivative.

Figure 5.6: Artificial tracers, slice of the
u(x, y) component

The output is in Figure 5.5, where it is shown that the material derivative points correctly
at the direction of the acceleration: The equations of motions are defined in the following
way:

function dXdt = vel(t, X, u, v, w)

dXdt = zeros (3,1);

dXdt (1) = u(X(1),X(2));

dXdt (2) = v(X(1),X(2));

dXdt (3) = w;

end

which are then time integrated with the Runge-Kutta 4 method:

tspan = 0:dt:T;

for i = 1: numTracers

X0_i = X0(i,:); % vector of init. pos. of the tracer

[t, X_out] = ode45(@(t,X) vel(t,X,u,v,w), tspan , X0_i);

end

At each time step, u⃗ = [u, v, w] and
Du⃗

Dt
=

ï
Du

Dt
,
Dv

Dt
,
Dw

Dt

ò
can be computed at each

particle location with the formulas described in Section 5.1.1. These quantities will only
depend on the x and y coordinates as previously explained.

The purpose of the tracer generator is to provide an output file of the same type as the
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output of Shake-The-Box, so that there are no differences between the reconstruction of
synthetic or experimental data. The format is shown in Table 5.1 and is assembled after
time marching.

5.1.3 Metrics and comparisons

This section explains the non-dimensional parameters considered for the numerical assess-
ment of the VIC-TSA reconstruction method. The reconstruction applied to the simulated
tracers is compared with the analytical velocity distribution (5.1). Particular attention is
given to the modulation of the peak values of the sine waves, and either the u or v velocity
components can be used for the evaluation. Hence, the parameters used for the evaluation
are the amplitude of the reconstructed wave, the average interparticle distance and the
time segment, made non-dimensional using:

• the convective velocity A, which is amplitude of the waves and velocity in z−direction;

• the wavelenght λ;

• the average interparticle distance r∗ between the tracers, which is an indication of
their concentration. For a uniform distribution in a 3D volume, it can be computed
with Wigner–Seitz radius:

r =
3

…
3

4πC
, (5.9)

with C being the seeding concentration expressed in C = Npart/V . There are also
other ways to compute it, but this formulation is chosen in order to be consistent
with Scarano et al. [2022].

All of these parameters have been set to unity for ease of interpretation. The nondimen-
sionalization allows for comparison with Scarano et al. [2022] even if different values of
Uconv, λ and T have been used by the authors. The metrics used for the evaluation are:

x y z u v w |V | I Time Track ax ay az |a|
(mm) (mm) (mm) (m/s) (m/s) (m/s) (m/s) Step ID (m/s²) (m/s²) (m/s²) (m/s²)

-0.424 0.300 0.105 -0.438 0.277 1.000 1.126 - 1 1 2.572 1.862 0.000 3.175
0.280 0.439 -0.549 0.367 0.173 1.000 1.079 - 1 2 -1.154 2.176 0.000 2.463
-0.062 -0.459 0.711 0.095 -0.896 1.000 1.346 - 1 3 -2.196 -1.536 0.000 2.679
0.223 0.376 -1.019 0.694 -0.118 1.000 1.223 - 1 4 1.028 3.141 0.000 3.304
...

...
...

...
...

...
...

...
...

...
...

...
...

...
-0.296 -0.002 0.924 0.011 -0.284 1.000 0.000 - 19 1 1.708 0.073 0.000 3.175
0.125 0.197 1.529 0.669 0.233 1.000 0.000 - 19 2 3.142 -1.956 0.000 2.463
0.457 0.457 0.501 0.071 0.929 1.000 0.000 - 19 3 -1.608 1.627 0.000 2.679
-0.361 0.571 -0.447 0.330 0.578 1.000 0.000 - 19 4 3.090 -2.440 0.000 3.555

Table 5.1: DaVis Particle Track Data Sample
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• Amplitude modulation u∗. The amplitude modulation is defined as

u∗ =
u

A
, (5.10)

where u is the reconstructed value of the Taylor-Green vortex lattice at the peak
of the wave; A is the amplitude of the waves. The value of u∗ ranges from 0 to 11,
which is an indication of the quality of reconstruction.

• Average interparticle distance r∗. This quantity is made nondimensional with the
wavelenght:

r∗ =
r̄

λ
(5.11)

• Assimilated time segment t∗. The nondimensional time is defined as:

t∗ =
UconvT
r

=
AT
r
, (5.12)

as A is assumed as convective velocity of the entire flowfield. These metrics give an
indication of the track regime, as explained in chapter 3. For instance, the adjacent
tracks regime is characterized by t∗ = 1.

• Moving average. One of the metrics used to compare the performance of the different
algorithms is the moving average, which will be plotted as a baseline for the amplitude
modulation analysis. From the theory of linear filters, the moving average is a filter
that creates an average of values close to a specific location in a data set. This filter
is often employed to smooth out a dataset by shifting the center value across the
entire data sequence, hence the name moving average.

In this case, the moving average is applied by centering a squared interrogation
window on the peak values of the synthetic lattice vortex Figure 5.1, either the
u−component or the v−component. This yields an average value of the velocity
component in that interrogation window. The process is repeated while increasing
the dimension of the window size, which is expected to smooth out the value of the
peak and introduce amplitude modulation.

The computation can be carried out analytically, since the expressions for u and v for
the synthetic lattice vortex are known (5.1). The average value over the interrogation
window (IW) can be computed as:

umean =

∫∫
IW

v(x, y) dxdy∫∫
IW

dxdy
=

l/2∫
−l/2

l/2∫
−l/2

v(x, y) dxdy

SIW
, (5.13)

1Or slighlty above, since the method can sometimes overshoot.

51



Martino Pinto, MSc Thesis Advancements in VIC-TSA with RBFs

where SIW is the area of the interrogation window. This can be proven to be equal
to the sinc2 function.

• Linear interpolation. It is a method to estimate the values between two known points
in a straight-line fashion. When dealing with 3D interpolation of sparse data, this
concept extends to three dimensions. Trilinear interpolation, for example, is used
to estimate values within a 3D space with sparse data by considering the nearest
data points. It is a simple but reliable technique that is often used in fields such as
computer graphics and fluid dynamics.

An example of the amplitude modulation plot is given in Figure 5.7. It is obtained by
comparing the reconstruction of the peaks with the analytical value. The grid spacing
is chosen so that there will always be a grid point where the amplitude of the sine wave
lattice is maximum, equal to 1, as shown by Figure 5.8; in this way there is no need to
interpolate, and the value of the reconstructed field at that point can be probed from the
grid. This operation is performed for increasing values of r∗, up to the point where the
interparticle distance is almost half the wavelength.

Figure 5.7: Example of u∗ − r∗ plot.
Figure 5.8: Ground thruth flow, with a
grid point covering each peak.

The moving average filter is plotted as a baseline. It is a good representation of what
could be obtained with the classic PIV approach based on the interrogation window and
the cross-correlation. In this case, the measurement domain is divided into interrogation
windows (or volumes in 3D PIV), where every volume contains a few numbers of particles.
Then, the cross-correlation analysis is applied to each interrogation window to find the
average movement of the particles. In this way, the velocity field can be obtained easily,
but the small-scale dynamics of the single particles will be lost. The moving average
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effectively acts as a low-pass filter, cutting out the smallest scales of motion to obtain
the average movement of the group of particles. In contrast, with 3D PTV every particle
is tracked singularly, hence giving more space (and time) resolution. It is expected then
that every reconstruction method that starts from time-resolved 3D PTV data, even
linear interpolation, should perform better than the moving average. It is not always so
obvious, as sometimes in real experiments the seeding concentration needs to be reduced
for Shake-The-Box to work properly, but for the sake of this numerical evaluation, this
should hold, given that the output of the STB method is simulated with an artificial tracer
generator.

Generally speaking, the quality of reconstruction is good for low r∗, which means higher
seeding concentration, and eventually worsens for higher interparticle distances. A method
that decays in resolution u∗ at the latest possible r∗ is desired because it means that it is
able to spatially reconstruct the velocity field even when the seeding information is lower.
The results of the analysis are shown in Chapter 5.2.

5.2 Results

5.2.1 Amplitude modulation

This chapter presents the performances of VIC-TSA (Scarano et al. [2022]), space-super
resolution with time-segment assimilation, against VIC+ (Schneiders and Scarano [2016]),
space-super resolution with material derivative assimilation. The influence of the radial
basis functions is investigated. Subsequently, other metrics for mesh convergence and
robustness to noise will be presented.

Figure 5.9 shows the amplitude modulation u∗ vs. the interparticle distance r∗ for
different methods. Each method with a specific setting is referred to by a certain color
and line style consistently throughout the plots. The solid line indicates RBF on, and
dashed is RBF off.

• Figure 5.9a: Amplitude Modulation (LI, VIC+ rbf on/off)
This figure compares the amplitude modulation of the Linear Interpolation (LI)
method against the VIC+ methods with and without RBF. The solid black curve
represents the moving average and serves as a baseline for comparison, representative
of the cross-correlation analysis in classic PIV. This should be the worst, because
it averages different particles while all the others, also LI, interpolate on the single
particles directly. The presence of RBF (cyan solid curve) seems to improve the
response to the amplitude modulation, as indicated by the curve being higher than
the moving average baseline and VIC+ RBF off, suggesting that RBF enhance the
fidelity of the VIC+ method. The dashed cyan curve, representing VIC+ without
RBF, shows a less performing response but still superior to LI. We see that the
moving average is indeed the worst because it crosses the u∗ = 0.5 line, (which is
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Figure 5.9: Amplitude modulation.

the -3 dB line), at around r∗ = 0.13. VIC+ without RBF does it at 0.22 and the
RBF improves it to 0.27.

• Figure 5.9b: Amplitude Modulation (VIC-TSA with RBF)
This figure presents the amplitude modulation of VIC-TSA for various time segments
with the inclusion of RBF. We see that the RBFs have a similar effect as on VIC+,
particularly at NT = 3 and NT = 21.

• Figure 5.9c: Amplitude Modulation (VIC-TSA & VIC+ no RBF)
Here is it shown the comparison of the VIC-TSA method for different time segments
against VIC+ without RBF. The TSA method generally improves the response over
the VIC+ method without RBF. The performance gain is more pronounced with
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Figure 5.10: Amplitude modulation, global comparison.

longer time segments, and the situation is very similar to Scarano et al. [2022], with
Nt = 11 being slighlty better than VIC+ and Nt = 21 considerably better. The latter
would be representative of the stringy regime, which in theory should be beyond the
optimum τ∗ = 1, but it has to be said that for steady test cases, increase in temporal
information yields additional spatial information.When considering VIC-TSA with
NT = 3, it appears to be inferior to VIC+. This suggests that the material derivative
may be a more effective approach compared to using a few assimilated snapshots
with TSA in the adjacent tracks regime.

• Figure 5.9d: Amplitude Modulation (VIC-TSA & VIC+ with RBF)
This is similar to the previous figure, but it includes the use of RBF. The general
trend remains consistent, but the inclusion of RBFs has greatly improved the TSA
method. For example, in the confidence region where the u∗ curve intersects the
u∗ = 0.9 line, TSA21 RBF extends the crossing point to the right up to r∗ = 0.22.
If compared to LI, which crosses at r∗ = 0.1, this would in theory indicate that an
experiment can be conducted with only half of the resolution requirements.

Figure 5.10 summarizes all the different cases. The TSA method demonstrated an improved
capacity to capture amplitude modulation, particularly as the time segment length increases,
which suggests better spatial resolution or reduced error in flow reconstruction.
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5.2.2 On the importance of t∗ and track regimes

The performance of the VIC-TSA reconstruction method is visualized in Figure 5.11 for
the Taylor-Green vortex lattice using synthetic tracer data. The multiplot arrangement
presents r∗ increasing from left to right, and the number of assimilated timesteps Nt,
extending downward.

The increase in r∗ demonstrates a progressive refinement in reconstruction accuracy,
as observed by the enhanced clarity and definition in the contour plots from left (lower r∗)
to right (higher r∗). Similarly, an upward trend in reconstruction precision is visible as Nt

grows, evident from the top (lower Nt) to the bottom (higher Nt) of the figure.
Subsequently, the implementation of Radial Basis Functions (RBFs) within the VIC-

TSA algorithm has shown to further improve the details and sharpness of the reconstructed
fields (Figure 5.12). Each corresponding plot within the RBF-enhanced reconstruction
exhibits augmented fidelity and richer spatial features, affirming the beneficial impact of
RBFs on the VIC-TSA method’s capability to accurately capture complex flow structures.

One thing that has to be taken into account is the relation between how the nondimensional
time t∗ relates to the track regimes, which defines the effectiveness of the method, and
to the spatial parameters. One thing in particular that should be kept in mind is that
t∗(T , r) is a function of two variables, that constantly change during the u∗ − r∗ sweep.
The nondimensional time used in this work is compared to the one by Scarano et al. [2022]
in Table 5.4. It can be seen that the values of t∗ change depending on the interparticle
distance r∗ and the length of the time segment. Even for the longest time segment, at
Nt = 21 or 31, the stringy regime (t∗ > 1) is not always guaranteed at all the r. At the
same time, even Nt = 3 can reach values of 1 for a very high seeding concentration (low
r∗), even if this is not representative of a real situation experiment. So, one must not
confuse the three Nt configurations with the impulsive, adjacent and stringy track regime,
but for sure they guarantee that the governing equations will be satisfied for a longer
period of time. This means that the method is still working but not necessarily at its
optimum.
In order to be very accurate, one would need to add a third axis to the u∗ − r∗ plot, with

Nt

r = r∗

0.35 0.2 0.05
3 0.086 0.15 0.6
11 0.31 0.55 2.2
21 0.6 1.05 4.2

Table 5.2: t∗ values obtained in this work.

Nt

r
0.4 0.25 0.15

3 0.05 0.08 0.13
11 0.26 0.41 0.67
31 0.77 1.22 2.01

Table 5.3: t∗ values by Scarano et al. [2022].

Table 5.4: t∗ values.
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(g) r∗ = 0.05, Nt = 11 (h) r∗ = 0.2, Nt = 11 (i) r∗ = 0.35, Nt = 11

(j) r∗ = 0.05, Nt = 21 (k) r∗ = 0.2, Nt = 21 (l) r∗ = 0.35, Nt = 21

Figure 5.11: v(x, y) velocity component, reconstruction with VIC-TSA without radial
basis functions.
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(a) r∗ = 0.05, Nt = 3 (b) r∗ = 0.2, Nt = 3 (c) r∗ = 0.35, Nt = 3

(d) r∗ = 0.05, Nt = 11 (e) r∗ = 0.2, Nt = 11 (f) r∗ = 0.35, Nt = 11

(g) r∗ = 0.05, Nt = 21 (h) r∗ = 0.2, Nt = 21 (i) r∗ = 0.35, Nt = 21

Figure 5.12: v(x, y) velocity component, reconstruction with VIC-TSA with radial basis
functions.

the parameter dt∗ = U ·dt
r
, because this would change the length of the tracks (since we keep

the same 3 configurations of Nt). The dependence on λ should not be an issue as long as
the parameter r∗ is considered. All of this is an overcomplication, considering also that in a
real experiment the seeding density is fixed, and the particle tracks can be short and dense,
or long and sparse, depending on the local flow velocity. The sampling rate is also fixed.
For this reason, a good approach to this numerical evaluation could be to tune dt in a way
that produces an optimal adjacent regime around Nt = 11 and r∗ = 0.2. This last value
would be a typical and desired situation in PTV2; moreover, at high seeding concentration
(r∗ ≈ 0.05, 0.1), almost every method performs accurately, while the biggest advantage is

2with respect to the flow scales of the specific experiment
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dt∗

dt∗

Figure 5.13: Particle tracks characterized by the same t∗, but different dt∗.

around r∗ ≈ 0.25. After this value, the seeding concentration is definitely not enough to
perform any quality reconstruction. The three different choices of Nt are introduced to
provide a wider range of time variables but also not increased further for computational
affordability. However, the parameter t∗ is an important indicator of whether the method
is working at its optimal condition and an indicator to take into account when balancing
accuracy with computational bargain.

5.3 Robustness and convergence

This section presents two additional metrics used to investigate convergence performance
and robustness to noise. The analysis compares VIC-TSA with linear interpolation and is
articulated as follows.

• Mesh convergence for interpolations:

– 1D interpolation performance: a comparative analysis of RBF interpolation
with other methods using a predefined function f(r).

– Taylor-Green interpolation performance: examination of VIC-TSA against
linear interpolation in reconstructing the Taylor-Green flow while varying grid
sizes.

• Robustness analysis:

– Investigating the impact of variable Signal-to-Noise Ratio (SNR) on VIC-TSA’s
performance in reconstructing Taylor-Green flow.

This evaluation is expected to provide a more quantitative understanding of each method’s
performance and limitations in data interpolation and reconstruction.
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5.3.1 Mesh convergence for interpolations

1D interpolation performance. This analysis consists in comparing the interpolation
performance of RBf interpolation with linear interpolation and other methods. A function
f(r) is chosen as the target for interpolation and is plotted versus r. A certain grid size is
chosen, and the function sampled at each data point is interpolated on a more refined grid.
The RMSE of the error is computed between the interpolated value and the analytical
function f(r):

ε =

√∑nint

i (f inti − f(ri))2

nint
(5.14)

The RMSE is rooted in the Euclidean distance, or the L2 norm, which measures the
straight-line distance between two points in a multidimensional space. In the context of
data fitting and interpolation, the L2 norm is a measure of the aggregate distance between
the predicted values (interpolated values) and the actual values across all dimensions (data
points). The RMSE, as the square root of the average of the squared differences, thus
reflects the L2 norm of the error vector.
The study investigates three primary interpolation methods: linear interpolation, spline,
and the Radial Basis Functions (RBFs). Each method has distinct attributes: linear
interpolation is straightforward and less susceptible to noise; splines create smooth in-
terpolants, and it is commonly used for various applications, including reconstruction
methods (FlowFit, Gesemann et al. [2016]). Radial basis functions are highly flexible, and
should be versatile and suitable for complex patterns.
The functions investigated are:

1. a sinusoid, which is similar to the Taylor-Green flow;

2. a sawtooth function, to assess the performance in reconstructing sharp gradients;

3. a function that resambles the response to a step function.

Results Figure 5.14 shows the interpolation of different functions with the same number
of sample points, with different methods. The comparison of the interpolation error in
Figure 5.15 shows that the RBF is generally stable and precise, outperformed by spline
for function 3 only, but in this case, the boundary points might play an important role.

Figure 5.16 shows instead the error as a function of the number of sampling points.
Generally speaking, RBF seems to be quite good up until it becomes unstable and starts
overfittings, which is characterized by a change in slope as can be observed from the
Function 1 plot. Nevertheless, this point is way past the level of necessary sample points
per wavelength (≈ 100), hence for a realistic number of samples, radial basis functions are
a reliable, versatile, and accurate method, especially for sinusoid and oscillating functions
like it happens in real flow experiments.
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Figure 5.14: Interpolation for different functions with the same number of sample points.
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Figure 5.15: Interpolation errors for the different functions.

Taylor-Green interpolation performance This section describes a mesh convergence
analysis performed to assess the mesh convergence of the VIC-TSA method on the Taylor-
Green test case. It was carried out to verify that the solution is not affected by the grid size
and that the error decays when the mesh resolution is increased. It can also be conducted
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Figure 5.16: Errors for different interpolation methods across the three functions.

to investigate an optimal grid size, to the point that reducing the grid spacing h does not
further reduce the error.

To perform the analysis, VIC-TSA was run with the same settings for multiple values
of grid spacing. The tracer particles are generated using the method described in 5, and
all the parameters of the analysis are provided in Table 5.5. Regarding the choice of
optimal h, Schneiders and Scarano [2016] discussed the use of the value 1

4
r for VIC +,

which basically allows an increase in space resolution based on tracer concentration. In
VIC-TSA, Scarano et al. [2022] shifts the focus to the average distance between particle
tracers during a finite time interval, which in theory could still be reduced if r ≈ r̃, but it
is still set to 1

4
r as VIC+. In any case, it might be interesting to note that these values

represent an optimal condition in the u∗ − h sweep. For this reason, two test cases were
set:

• r = 0.05: such a low value of interparticle distance, which means high tracer
concentration, is set to eliminate the dependance of the seeding density. For instance,
it could happen that if the grid is very fine and the tracer concentration relatively low,
the reconstruction in between two particles is so finely discretized that overfitting
may occurr;

• r = 0.3: this coarser value of tracer concentration is introduced to observe the effect
of reducing the grid size considerably with respect to the tracer concentration. The
idea is to induce overfitting to obtain the value of h which does not further reduce
the error if it decreases, and to see if the result matches the criterion of Schneiders
and Scarano [2016] 1

4
r.
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r Nt dt t∗ n.iter. h
0.05, 0.3 11 0.01 2.2 40 0.02-0.12

Table 5.5: Parameters of the analysis
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Figure 5.17: Mesh convergence analysis for VIC-TSA and LI on Taylor-Green flow.

From the results of the analysis (Figure 5.17), it can be seen that:

• r = 0.05: for this dense tracer concentration setting, the amplitude mudulation
always converges to 1 if the grid spacing is reduced, as expected. VIC-TSA with
RBF on seems to converge slightly faster and modulate less when the grid spacing is
coarse, for instance around h ≈ 0.08− 0.1. In general, VIC-TSA offers an increase
of 0.05− 0.1 with respect to LI;

• r = 0.3: this value shows a quite different behavior, since the amplitude modulation
does not converge anymore to unity if h is descreased furtherly. This probably
happens because if the grid spacing is much smaller than the average interparticle
distance, then overfitting might occur. As already explained, Schneiders and Scarano
[2016] suggests 1

4
r as an optimal value for the super-resolution factor, and indeed

it is also the optimal value in Figure 5.17. If h is further decreased, the method is
probably not able to extract enough temporal information to enhance the spatial
resolution so much.

5.3.2 Robustness (noise over Taylor-Green)

The particle’s velocity in the Taylor-Green flow is subjected to the addition of noise with
variable signal-to-noise ratio (SNR), and the reconstruction is carried out using VIC-TSA.
This study examines the relationship between the amplitude modulation and the SNR.
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An important factor to consider is the comprehension of the power, amplitude, and
associated noise properties of the signal. This section provides an explanation of the
approach used to compute signal power, introduce noise to the signal, and add it to the
data.

Adding noise to the data The signal power is calculated based on the flow field
velocity data. Given the oscillatory nature of the velocity components in the flow field,
the calculation of signal power involves computing the squared magnitude of the three-
dimensional velocity vector for each particle. The velocity components are the Taylor-Green
flow (Chapter 5), with A = 1 being the amplitude of the oscillatory components, and
λ is the wavelength. The squared magnitude of the velocity vector for each particle is
calculated as:

U mag 2 = sum(dataSTB(:,4:6)2, 2), (5.15)

where dataSTB(:,4:6) contains the u(x, y), v(x, y), and w - components of the velocity
for each particle. The mean of these squared magnitudes gives the signal power:

Psignal = mean(U mag 2). (5.16)

To assess the robustness of the VIC-TSA algorithm under noisy conditions, artificial noise
is added to the velocity data. The noise power is derived from the desired SNR level and
the calculated signal power. For a given SNR in decibels, the noise power is:

Pnoise =
Psignal

10
SNR
10

. (5.17)

The standard deviation of the noise σnoise, representative of its amplitude, is then the
square root of the noise power. The noise is generated as a normally distributed random
variable with zero mean and standard deviation equal to the square root of the noise
power. Then it is added to each velocity component:

noise =
√
Pnoise · randn(size(dataSTB(:,4:6))). (5.18)

dataSTB(:,4:6) = dataSTB(:,4:6)+ noise. (5.19)

In this process, the noise amplitude is directly related to the standard deviation of the
added noise. This approach allows for a clear understanding of the impact of noise
amplitude on the flow field data and the performance of the VIC-TSA algorithm.

Discussion of results The analysis of the VIC-TSA algorithm’s performance with added
noise, as shown in Figure 5.18, indicates that increasing the number of assimilated time-
steps Nt enhances the stability and smoothness of the amplitude modulation, particularly
evident at lower SNR levels. This improvement in performance can be attributed to
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Figure 5.18: Amplitude modulation for flow with added noise reconstructed with VIC-TSA
at different Nt and RBF configurations. The results are plotted vs. the SNR and the
standard deviation of the noise.
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the additional temporal information used in the reconstruction process, which effectively
reduces the impact of noise on the estimated flow field. The activation of radial basis
functions further refines the reconstruction, consistently yielding amplitude modulation
values closer to the expected unity, which corresponds to the true amplitude of the Taylor-
Green vortex being reconstructed. Notably, the incorporation of RBFs appears to expedite
the convergence of the solution towards the correct amplitude, with a marked stabilization
observed even at lower SNR values, which correspond to higher standard deviations of
noise. This behavior suggests that RBFs enhance the algorithm’s robustness to noise by
enforcing a spatial coherence that is resilient to the disruptive effects of random fluctuations
inherent to higher noise levels.

Conclusion

This chapter systematically evaluated a reconstruction technique for a synthetic vortex
field, specifically the Taylor-Green sine-wave lattice. This model simulates the dynamics
of tracer particles in a flow, allowing for the comparison of reconstructed velocities with
their theoretical counterparts. The focus is on accurately capturing peak values in the
sine waves to gauge the reconstruction’s effectiveness.

The chapter begins by addressing the challenges in evaluating reconstruction methods
for Particle Image Velocimetry (PIV), given the diversity of approaches and the lack of a
standard test case. It underscores the differences between experimental and numerical
evaluations and introduces sine-wave reconstructions as a common test scenario. This leads
to an in-depth look at the Taylor-Green vortex lattice, which establishes the mathematical
basis for simulating the flow and its reconstruction.

The methodology for generating and tracking tracer particles is detailed, including the
use of Runge-Kutta methods for time advancement and the derivation of the material
derivative. This section emphasizes the mathematical and numerical approaches employed
to simulate the movement of particles through the flow field.

Subsequently, the chapter discusses metrics for comparing the reconstruction methods
and the process of maintaining consistent tracer density within the domain. It elaborates
on the numerical implementation of the flow’s governing equations, setting the stage for
the reconstruction analysis that follows.

In the evaluation segment, various reconstruction techniques are compared by analizing
the modulation of the peak value that they introduce. The discussion incorporates the
nondimensional parameters to frame the analysis, comparing moving averages and linear
interpolation as baselines. This comparison highlights the strengths and limitations of
each method.

The chapter also delves into mesh convergence and robustness analysis. Mesh con-
vergence is explored through the performance of VIC-TSA and linear interpolation in
reconstructing the Taylor-Green flow with variable grid sizes, seeking an optimal grid size
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that balances accuracy and computational efficiency. The robustness section examines the
algorithm’s performance under noisy conditions, assessing its stability and accuracy as
noise levels vary.

The chapter concludes with a detailed examination of the reconstruction results,
focusing on the accuracy of the VIC-TSA method compared to others and the role of
radial basis functions in enhancing reconstruction fidelity.
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Chapter 6

Experimental assessment

This section describes the experimental assessment for the VIC-TSA method. The purpose
of the experiment is to evaluate the performance of the reconstruction method in a
real-world scenario, and observe how well it behaves compared to the reconstruction of
synthetic data. It consists of the PTV of the flow past a hemisphere with Helium-Filled
Soap Bubbles, because:

• it is an easy-to-implement test case;

• it can be used to compare qualitatively how the physics based methods perform
versus the PINN (Wang et al. [2022]);

• it contains interesting flow phoenomena to be captured, like hairpin and horshoe
vortices and periodic structures.

The effects of radial basis functions and time segment assimilation can be evaluated, as well
as the comparison with VIC+ and linear interpolation. A real experiment is considered a
good practice because it can reveal strenght and weaknesses of each method. For instance,
VIC+ looks very good in simulation, but might struggle in real life since the noise affects
more the acceleration data, which is a derived quantity.

The rest of the chapter is organized in this way: first, the experiment is described in
detail, including the setup, the parameters, and the data analysis. Then, the limitations
of the experiment are discussed. Finally, the results are presented and discussed.

6.1 Experiment description

6.1.1 Objective

In order to evaluate the reconstruction performance of VIC-TSA in a real-world scenario,the
flow over a hemisphere was chosen as test case. As already introduced, the choice for this
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Figure 6.1: DNS data at Re = 2750 with iso-surfaces of the Q-criterion colored by the
streamwise velocity (Wang et al. [2022]).

test case was made taking into account the experiment carried out by Wang et al. [2022],
which was reconstructed with a Physics-Informed Neural Network (PINN). Even though
the conditions could not be matched completely due to the difference in the experimental
setup, the geometry of the problem still allows for the creation of different flow patterns
and vortices, which are interesting and challenging to capture.

An DNS visualization of the flowfield is provided in Figure 6.1, and different features
of the flow can be isolated:

• horseshoe vortex near the stagnation point;

• periodic hairpin vortices, created as a result of the sphere obstructing the flow.

6.1.2 Experimental setup for flow over hemisphere

The experimental setup was specifically designed for the Particle Tracking Velocimetry
(PTV) of the flow over a hemisphere. This configuration allows for the visualization and
analysis of unique flow characteristics around the hemisphere, offering a practical and
insightful test case for evaluating the performance of the VIC-TSA reconstruction method.

Wind-tunnel and imaging specifications The experiments were conducted in the
W-Tunnel at TU Delft’s High-Speed Laboratory, featuring an open-loop, close/open jet
configuration with a 40x40cm square exit. The setup facilitates a controlled maximum
velocity of 35m/s, with the turbulence intensity kept to a minimum of 0.5%.

Three Photron Fastcam sa1.1 cameras, synchronized with a LaVision High-Speed
Controller, were used for image acquisition. These cameras have a resolution of 1024x1024
pixels and a pixel size of 20µm, capable of recording at up to 5400kHz. At the same time,
the cameras were arranged to cover the specified field of view: x(-90, 200)mm, y(-220,
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Figure 6.2: Schematic of the experimental setup. Top view (top) and front view (bottom).
The measurement volume is in red.

80)mm, z(0, 150)mm. Nikon prime lenses with focal lengths of 60mm and 50mm were
used to ensure full coverage of the measurement volume. Two LaVision LED Flashlights
were placed on top, which can pulse synchronously with the cameras or continuously. The
first option was chosen, since the peak power of the cameras is maximum in pulse mode
and provides more illumination.

Hemisphere setup Central to the experiment is a hemisphere with a diameter of 10
cm, mounted on a flat plate and finished in black to minimize reflections. This setup is
placed within the wind tunnel, positioned to capture the airflow dynamics around the
hemisphere effectively. It is shown in Figure 6.3. Some white markers were drawn on the
hemisphere to facilitate the positioning of the sphere in the post-processing phase.

Seeding system and particle tracking The HFSB were generated using a specialized
rake system placed in the wind tunnel settling chamber. The pressure levels of the mixture
were controlled using a Fluid Supply Unit (FSU), which allowed the production of bubbles
with diameters between 300 and 500µm. The expected particle concentration was estimated
to be in the range of C = 7.8 to 19.5 particles/cm³, with the experiment achieving a
concentration of approximately C ≈ 3 particles/cm³.

Calibration and data processing The calibration of the measurement volume was
conducted to match the specified field of view. The Shake-The-Box (STB) algorithm was
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Figure 6.3: Experimental setup. A flat plate with the hemisphere is mounted inside the
open section of the wind tunnel.

Object diameter 10 cm
Re ≈ 17000
Uinf 2.5 m/s
Domain size (mm) (−90, 200), (−220, 80), (0, 150)
Cameras 3 Photron Fastcam
Sampling frequency 2000 Hz

Table 6.1: Experiment parameters

employed for Lagrangian Particle Tracking, providing accurate tracking of the flow charac-
teristics around the hemisphere and in the wake. This setup facilitated a comprehensive
analysis of the flow patterns and vortices generated by the hemisphere, offering valuable
insights for the evaluation of VIC-TSA.

Acquisition of the data The acquisition of the measurements were carried out while
setting the wind-tunnel at its lowest speed, Ufs = 2.5 m/s. This corresponds to a Reynolds
number of Re ≈ 17000, which is higher than the one of the experiment conducted by Wang
et al. [2022], but it is the minimum reachable with the available setup. This will be further
discussed in Section 6.1.4. A total set of 50 images was acquired, with a time interval
of 0.5 milliseconds between each image. The total acquisition time was 25 milliseconds,
which was enough to capture the vortex structures and their convection.
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6.1.3 Data Analysis

Pre-processing and STB DaVis software for PIV was used to preprocess the images.
This preprocessing included noise reduction, high-pass filtering of the data, time averaging,
and subtracting the average, among other steps.

After the pre-processing, the raw image data of the three camera was processed with
Shake-The-Box (STB), which is embedded in DaVis. An important parameter of the
processing is the minimum intensity count for detecting a particle. For the current
experiment, it was set to 20 counts and 40 counts for the two test cases.

Data sorting and visualization After STB processing, the data are outputted in a
text file with Tecplot formatting. In order to match the requirement of the VIC-TSA
format described in Table 5.1, Matlab was used to sort the data. Subsequently, the file can
be saved as normal experimental data with .mat extension, which will be used to obtain
the particle data at specific time frames by the VIC+ or VIC-TSA algorithm.

For flow visualization, streamlines are used in conjunction with velocity slices. The
isosurfaces of the λ− 2 criterion, colored by streamwise velocity u, were plotted for the
vortex structures. A specific code for calculating the λ− 2 criterion was developed.

6.1.4 Limitations

Flow regime For sake of comparison, the hemisphere experiment conducted by Wang
et al. [2022] to assess the performance of the PINNs (??) was at Re ≈ 2750 (Section
2.4). Such a value indicates that the flow is in the transitional regime, so it will present
unsteady structures that are still coherent and recognizable, but not fully laminar. To
achieve such low Reynold numbers, the authors conducted the experiment in water. This
was of course not feasible in the TU Delft W-Tunnel, and the lowest possible Reynolds
number obtainable was ≈ 17000, with the lowest wind-tunnel setting at UWT = 2.6 m/s.
At this value of Re, turbulence starts playing a role, coherent structures are more difficult
to visualize and the horshshoe vortex becomes even smaller.

FOV Moreover, the field of view obtainable with three cameras was not very long, whilst
the vortex structures get more stable when they are convected a bit aft from the sphere.
Also, for STB to work properly, it is important that each particle is captured by each
camera. For this reason, a big open view of the cameras on the flowfield was chosen.
Nevertheless, it couldn’t be avoided for some of the tracers, especially near the stagnation
region, are not perfectly seen by all the three cameras at the same time. This reduces the
amount of information that can be used by the reconstruction algorithms slightly.

Nevertheless, considering that the goal of the experiment is not to compare the same
exact experiment of the PINN but mainly to provide a simple and effective experimental
case to VIC-TSA, it is still acceptable.
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Illumination conditions The sphere acts like an obstruction and the particles under-
neath get a bit shadowed. Also, the reflection in one point causes a bit of ghost particles,
but STB is effective at handling these.

6.2 Results

Figure 6.4: Shake-The-Box tracks colored by velocity magnitude.

6.2.1 Streamlines

The visualization provided in Figure 6.6 shows the streamline patterns for the side and
top views of a flow field experiment at a height of 23 mm. The comparison between
Linear Interpolation (LI), VIC-TSA, and VIC-TSA with RBF provides insight into the
effectiveness of each method in capturing the flow dynamics. The visualization involves
streamlines of the flow generated from the same random points for all cases and velocity
contours.

Linear interpolation appears to present the flow with more angularity, which could
be indicative of a less smoothed representation, potentially capturing rapid changes in
flow direction or velocity but at the risk of introducing more noise and sparseness into the
visualization. The LI method might also not adequately capture the continuous nature of
the streamlines, leading to a less coherent understanding of the flow dynamics.

VIC-TSA shows a smoother representation of the flow, which suggests that this method
is more effective in filtering out noise and presenting a coherent flow structure. This could
be beneficial to identify the overall trends and patterns in the flow, such as recirculation
zones, vortex shedding, and regions of high shear.

The introduction of RBF seems to refine the streamline pattern of the recirculating
region, for instance by filtering out the smaller vortex at the rear bottom of the sphere in
VIC-TSA without RBF, which is likely an error of the method since is is very close to the
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ground and the seeding density is very low there. But it seems that VIC-TSA without
RBF is able to capture the doublet-like structures in the wake, even though the end of
this looks less physical than the RBF on counterpart.

Although the use of RBFs in VIC-TSA is expected to enhance the reconstruction by
providing additional support and potentially stabilizing convergence, it may also introduce
some degree of smoothing. This smoothing effect can be beneficial in filtering out non-
physical fluctuations and noise, which is evident in the visualization of the 3D λ2 criterion
(Figure 6.5).

6.2.2 Vortex structures

As a general trend, it is possible to observe large vortex structures that break apart from
the top of the hemisphere and move downstream, as shown by the λ2 vortex detection
cryterion in Figure 6.5. These vortices will later arrange in the classical hairpin structure.
Other smaller vortices are also visible, especially in the recirculation region behind the
sphere. Some hints of the horseshoe vortex are also visible, especially in the LIC plot,
but it is not very clear, probably because it is very small. In addition, it is generally
difficult to capture and reconstruct details of the flow near the wall. A second test case
was attempted by focusing the three cameras on the horseshoe vortex, but the results
were also not satisfactory.

The illumination of the sphere came from the top, which in the coordinate system is
the positive y-axis, probably causing some noise on the top part of the sphere because of
the strong illumination and presence of several particles. However, this did not influence
the flow below the sphere significantly, which actually looked very clean and had less noise
than the top part, probably due to VIC-TSA acting as a flow solver and still trying to
enforce physical constraints in the less illuminated regions.

Among all the reconstruction methods, VIC-TSA with RBF on is the one that provides
more clear vortex structures in the 3D visualization; it is also more stable to noise, especially
on the region on top of the sphere. It is not entirely clear if some oversmoothing is happening.
VIC-TSA RBF off, instead, showed more details, especially in the recirculation region
(Figure 6.6), but it is difficult to assess whether they are real or just noise: they for sure
look flow-like, but it is the nature of the physics-based methods to enforce some forms
of constraints that could make random structures more flow-like, but in the 3D vortex
structures is clear that some of them look rather like noise. Generally, it is a good sign
that both the physics-based methods are better than linear interpolation and they do not
show the typical discontinuities of the latter, which cause problems for derived quantities.
This behavior aligns in some sense with the comparison between VIC+ and VIC-TSA
discussed in Section 7, where VIC-TSA might be producing a flow that is coherent for the
whole time window, and is indeed more stable to noise, but it could also be more diffusive.
VIC+, instead, is more sensitive to noise, but it seems pretty accurate for instantaneous
flow fields.
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(a) Linear Interpolation

(b) VIC-TSA

(c) VIC-TSA with RBFs

Figure 6.5: Iso-surfaces of the λ2 criterion colored by the streamwise velocity u.
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(a) Linear Interpolation (b) Linear Interpolation

(c) VIC-TSA (d) VIC-TSA

(e) VIC-TSA with RBFs (f) VIC-TSA with RBFs

Figure 6.6: Streamlines for side view (left) and top view (right), at a height z = 23mm.
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Figure 6.7: Uniform structured mesh with the immersed boundary surface for VIC+ and
ImVIC+ (left) and curvilinear boundary fitted mesh on the hill surface for ALE-VIC+
(right), (Cakir et al. [2022]).

6.2.3 Boundary treatment

To deal with the introduction of solid obstructions into the flow, like a hemisphere,
artificial particles of zero velocity are added at all time steps to the experimental data in
the preprocessing phase. These are generated with a Matlab script and positioned to fill
the volume of the solid objects, according to their respective positions in the experimental
setup. The ground plane is padded 2 cm below the vertical z−direction and filled with still
particles in this space, to more stabily apply the no-slip condition at a greater distance
from the lower numerical boundary.

As described in 2.6, Cakir et al. [2022] investigated the effect of introducing solid objects
into the fluid domain, introducing the Arbitrary Lagrangian-Eulerian (ALE) approach for
the mesh deformation and the immersed boundary method (ImVIC+). In their numerical
assessment, they performed the reconstruction of the flow over a hill with tracer particles
sampled from DNS data. A uniform structured mesh (??) was used with the immersed
boundary surface for VIC+ and ImVIC+ (left) and the mesh fitted to the curvilinear
boundary on the hill surface for ALE-VIC+ (right). In a similar scenario like in the present
work, the authors had to deal with the fact that the base code for VIC+ is not designed
to handle domains with solid walls, so the velocity at the grid points inside the hill was
set to zero velocity.

As recently explained, in the present work, particles with zero velocity inside the
hemisphere were instead implemented in this work, adding them directly to the experi-
mental data. In its simplicity, the approach has the advantage that the main code remains
untouched. Regarding the stability during the optimization with VIC-TSA, while it is
true that fixing the values of the grid nodes inside the hemisphere would be more efficient,
it is also true that at these grid points the solution will converge rapidly, because of the
stable still particles around them.
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Figure 6.6 shows the performances of VIC-TSA with and without RBF against the
linear interpolator, and it can generally be seen that the still-particle approach for enforcing
the hemisphere boundary worked quite smoothly, since there were no evident artifacts near
the walls. To some surprise, it was observed how VIC-TSA, regardless of the RBF setting,
was able to reconstruct the flow even in zones of the domain without seeding. For instance,
by looking at Figure 6.6b, it is visible that linear interpolation is not able to characterize
the flow below the hemisphere, and straight parallel streamlines are visible instead, which
are clearly unphysical as they also cut throught the sphere. This happens because, as
shown in Figure 6.3, the illimunation in the experimental setup came from the top and
therefore a cone-shaped shadowed region formed below the hemisphere. Consequently,
no particles were captured in this region. Here, VIC-TSA was able to reconstruct the
streamlines smoothly, as well as its separation point at x ≈ 0.05, which was also shadowed.
The integration of this area with the remaining flowfield occurs in a seamless manner, as
is visible in the coherent streamline pattern in the lower shear layer but also in proximity
of the sphere, where the LI showed minor artifacts.

The reconstruction of these regions is possible because VIC-TSA is in essence a Navier-
Stokes solver, which will try to fit a field that minimizes the difference with the experimental
data and the residuals of the physical equations. This can be thought about as blending
PIV and CFD together, in order to get a better representation of the solution in the
regions without seeding information. Taking as an example the experiment in Figure 6.6b,
one could set the boundary conditions manually in the lower boundary of the domain,
in the portion shadowed by the object, to enforce the physical constraint even better.
This is because otherwise VIC-TSA will compute such boundary conditions with LI from
experimental data, which is missing there. This will also affect the global properties of the
flow, since the boundary conditions for the vorticity will influence the computation of the
velocity field with the Poisson equation.

Given the interest in the literature in near-wall PIV reconstruction, as well as handing
arbitrarily shaped geometries, the approach used in this work with still particles added
to the experimental data offers a versatile approach that can work without the need of
external tools or user intervention in the code. A more rigorous quantification of the
reconstruction accuracy near the wall is out of the scope of this work but could be an
object of future work.

Conclusion

In this chapter, an experimental evaluation of the influence of the RBF on the VIC-TSA
method was presented, focusing on its application to the flow around a hemisphere. This
setup was selected for its straightforward implementation and the opportunity it offers
for a qualitative comparison with both traditional methods and the physics-based PINN
approach. The experiment aimed to capture a range of flow phenomena, such as hairpin
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and horseshoe vortices, which are challenging yet interesting for reconstruction methods.
The setup, parameters, and data analysis of the experiment were described in detail,

laying the basis for a comprehensive evaluation of VIC-TSA performance in real-world
conditions. Despite facing challenges such as achieving the desired Reynolds number
and managing illumination conditions, the experiment served as a valuable test case for
examining the method’s effectiveness and limitations.

The results section highlighted VIC-TSA’s ability to reconstruct coherent vortex
structures and its resilience to noise, suggesting a slight trade-off with potential diffusiveness.
Compared to linear interpolation, VIC-TSA showed better capability in handling flow
structures and reconstructing in areas with scarce data. This performance is attributed to
VIC-TSA’s foundation on Navier-Stokes equations, enabling it to infer flow dynamics in
regions with limited information.

The chapter also delved into the boundary treatment, introducing the approach of
using still particles to represent solid objects within the flow. This simple yet effective
method allowed for accurate flow reconstruction near solid boundaries without altering the
core algorithm. The discussion indicated that while this approach successfully maintains
flow integrity near boundaries, it also opens the door for further exploration into accurately
quantifying reconstruction accuracy in these areas.
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Chapter 7

Conclusion and future work

This thesis has explored the implementation of Radial Basis Functions (RBF) in the
Vortex-in-Cell Time-Segment Assimilation (VIC-TSA) framework, aiming to enhance the
method’s accuracy and performance. The study has provided a comprehensive overview of
the VIC-TSA method, its theoretical foundations, and its numerical implementation. It
has also detailed the process of integrating RBF into the algorithm, including additional
metrics for mesh convergence and robustness to noise. The numerical assessment has
evaluated the new implementations, comparing different methods and the effect of RBFs.
The experimental assessment has demonstrated the impact of the improvements on a real-
case scenario, providing insights into VIC-TSA’s performance in reconstructing complex
flow phenomena.

Performances and comparative analysis

Regarding the performance of VIC-TSA versus its predecessor VIC+, enhancements due
to the inclusion of RBF were clearly visible, resulting in an improved version of VIC-TSA
which performs better in terms of amplitude modulation. The level of improvement in
VIC-TSA’s performance is approximately equivalent to the improvement achieved by
activating the RBF in VIC+. However, it is worth noting that at low time assimilation
(Nt = 3), VIC-TSA does not exhibit significant improvements over VIC+. It might be,
following the discussion in Section subsection 5.2.2, that even though the time segment
assimilation should in theory be better at assimilating time information (because the
equations need to be satisfied over a longer period), VIC+ has the material derivative that
in some way improves the minimization problem, similarly to what using the RBF would
do, which can be considered a numerical-physical effect; or perhaps for the instantaneous
flow field reconstruction, the material derivative is more effective than what we think.
Perhaps further work could be developed to include the material derivative to create
VIC-TSA+, which might give a better view on the problem.

Regarding the discussion about instantaneus versus time segment approach, the follow-
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ing can be summarized:

• VIC-TSA assimilates data over a longer time segment, ensuring that the reconstructed
flow field at the central snapshot adheres more closely to the governing fluid dynamics
equations; this approach might inherently act as a filter, smoothing out short-term
fluctuations or noise, leading to a more coherent and less noisy snapshot.

• VIC+ incorporates both velocity and acceleration data of tracer particles, focusing
on the immediate state and dynamic changes at a single instant. This method
captures transient, short-term dynamics but might include more noise or fluctuations
due to less temporal smoothing.

Suggestions for future work

In light of the findings and discussions presented throughout this thesis, some avenues
for future research have been identified. These suggestions aim to address some of the
limitations observed in the current study and propose potential enhancements for the
Vortex-in-Cell Time-Segment Assimilation (VIC-TSA) framework.

1. Exploration of alternative RBF kernels The utilization of Gaussian Radial Basis
Functions (GRBF) in the VIC-TSA framework has demonstrated certain limitations,
particularly in terms of data smoothing. It is proposed that future studies investigate
alternative RBF kernels, such as a spikier version of the Gaussian shape that
gets steeper towards zero (??), which may offer reduced smoothing effects. This
exploration could potentially enhance the accuracy of the velocity field reconstructions
by preserving more detailed flow features.

Figure 7.1: Alternative RBF kernel.

2. Improvement of boundary treatment The handling of solid boundaries within the flow
by the VIC-TSA method requires further refinement. The current approach, utilizing
still particles to model solid objects, presents an opportunity for improvement.
Future work could explore alternative methods for boundary treatment, assessing
their efficacy in accurately capturing the flow dynamics near boundaries and their
integration into the VIC-TSA framework as a more effective flow solver.
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3. Adjoint code optimization The integration of RBFs into the adjoint code, particularly
for vorticity calculations, has been identified as an area for optimization. Rewriting
the adjoint procedure to more efficiently incorporate RBFs could lead to improve-
ments in computational efficiency and accuracy. This optimization would address
the current methodological limitations and align the computational representation
more closely with the continuous nature of fluid dynamics.

4. Inclusion of the material derivative Despite the theoretical redundancy due to the
time segment assimilation approach of VIC-TSA, the incorporation of the material
derivative into the framework warrants exploration. This addition could provide a
comparative analysis of the dynamics captured by VIC+ versus VIC-TSA, potentially
enhancing the ability of VIC-TSA to accurately model transient phenomena.

5. Methodologies for unsteady flow assessment Finally, the development of new method-
ologies or metrics to evaluate the accuracy of the reconstruction of unsteady flows
remains a critical need. Such methodologies would facilitate a more robust evalu-
ation of reconstruction methods, particularly in their ability to capture transient
flow characteristics, and could significantly contribute to the advancement of flow
reconstruction techniques.

These suggestions are proposed as logical extensions of the current work, aimed at
further exploring and addressing the complexities of flow reconstruction using the VIC-TSA
framework. While the proposed improvements are grounded in the findings of this study,
their implementation and impact would require thorough investigation.
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Appendix A

Radial Basis Functions use in the
code

1. VICplusplus main.

% Calcu la te TFFT
i f v i c . rb f . u s e rb f == 1

[ v i c . rb f .A, v i c . rb f . dA dx , v i c . rb f . dA dy , v i c . rb f . dA dz ] =
RBF matrices ( v i c . g r i d s .X{1} , v i c . g r i d s .X{2} , v i c . g r i d s .X{3} , v i c ) ;

v i c . rb f .TFFT = calcTFFT TSA( v i c . rb f . r b f s i g , v i c . g r i d s .X{1} ,
v i c . g r i d s .X{2} , v i c . g r i d s .X{3} ) ;

end

% Def ine i n i t i a l c ond i t i on
i f ˜ i s f i e l d ( vic , ’ DoF init ’ )

i f v i c . rb f . u s e rb f == 1
v i c . omega in i t = x i c a l c 3d ( v i c . g r i d s . hx , v i c . g r i d s . hx , v i c . g r i d s . hx ,

v i c . u i n i t , 2 0 ) ;
v i c . omega in i t = reshape ( v i c . omega in it , [ numel ( v i c . u i n i t )/3 , 3 ] ) ;
i f v i c . rb f . u s e r b f d i f f == 1

v i c . DoF init = v i c . rb f .A ∗ v i c . omega in i t ;
e l s e

v i c . DoF init = calcRBFcoeff TSA ( v i c . rb f .TFFT, v i c . omega in i t ) ;
end

e l s e
v i c . DoF init = x i c a l c 3d ( v i c . g r i d s . hx , v i c . g r i d s . hx , v i c . g r i d s . hx ,

v i c . u i n i t , 2 0 ) ;
end

end

2. VICplusplusOptFunc(costFunc, DoFs 0).

% MARTINO: from DoF ( omegas ) to RBFs
i f opts . rb f . u s e rb f == 1

x i i n i t = calcUfromRBF TSA( opts . rb f .TFFT, DoF) ;
x i i n i t = reshape ( x i i n i t , s i z e (DoF ) ) ;

e l s e
x i i n i t = DoF;

end

3. VICCICforward(DoFs).
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u = ve l o c i t yCa l c ( g r i d s . hx , g r i d s . hy , g r i d s . hz , xi , bc , opts ) ;

4. velocityCalc. (Poisson eq)

i f opts . rb f . u s e r f b d i f f == 1
dwx dx = opts . rb f . dA dx ∗ wx ;
dwy dx = opts . rb f . dA dx ∗ wy ;
dwz dx = opts . rb f . dA dx ∗ wz ;
. . .
dwz dz = opts . rb f . dA dz ∗ wz ;

end

% Source term c a l c u l a t i o n
i f narg in == 6

fu {1} = − ( ddy (hy , vort ( : , : , : , 3 ) ) − ddz ( hz , vort ( : , : , : , 2 ) ) ) ;
. . .
fu {3} = − ( ddx (hx , vort ( : , : , : , 2 ) ) − ddy (hy , vort ( : , : , : , 1 ) ) ) ;
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