
CAML-IDS
A framework for the correct assessment of
machine learning-based intrusion detection
systems
Mathew Vermeer

Te
ch

ni
sc

he
Un

ive
rs
ite

it
De

lft





CAML-IDS
A framework for the correct assessment

of machine learning-based intrusion
detection systems

by

Mathew Vermeer
to obtain the degree of Master of Science in Computer Science

Data Science & Technology Track
with a specialization in Cyber Security
at the Delft University of Technology,

to be defended publicly on 15 July, 2019.

DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics & Computer Science



Mathew Vermeer: CAML-IDS: A Framework for the Correct Assessment of Machine
Learning-based Intrusion Detection Systems, © 2019

STUDENT NUMBER: 4216989
THESIS COMMITTEE: Prof. dr. ir. R.L. Lagendijk, TU Delft

Prof. dr. M. van Eeten, TU Delft
Dr.-Ing T. Fiebig, TU Delft
Dr. S. Picek, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Abstract

The Internet is a relatively new technology that the world has become immensely de-
pendent on. It is a tool that makes it possible to simplify our lives and better our so-
ciety. But as with many things, there are people who with to exploit this tool we have
for their own malicious gain. One of the mechanisms that we can use for protection
against these malicious actors is the intrusion detection system. Machine learning-
based intrusion detection systems (IDS) have been heavily researched for a number of
years now. Much of this research, though, appears to be conducted using improper
methodologies and incorrect evaluation. Such methodologies include training and
testing IDSs with unrealistic data and using uninformative metrics to determine per-
formance. In this research, we perform a case study using one such IDS. This IDS is
trained and evaluated using real network traffic collected from a real-world network.
Additionally, we test its performance on actual attack traffic. This research demon-
strates that an IDS that is trained with unrealistic data performs nowhere near as well
as is claimed by the author when trained using real network traffic. Finally, we propose
CAML-IDS, a framework for the correct assessment of machine learning-based intru-
sion detection systems. This framework can assist future IDS research by preventing
incorrect evaluation, in turn preventing the formulation of incorrect research.

iii





Preface

For the longest time, I thought artificial intelligence and cyber security were either/or
subjects. Being able to combine the two, as well as being able to make a contribution
to this field is a dream come true.

Before you lies my contribution to this field: CAML-IDS. This is a framework that
allows for the correct assessment of machine learning-based intrusion detection sys-
tems. It is written in order to fulfill the graduation requirements of the Data Science
& Technology Track of the Computer Science program with a specialization in Cyber
Security from Delft University of Technology. Most of the work was performed at the
Faculty of Technology, Policy and Management.

First and foremost, I would like to thank my supervisor Tobias Fiebig, who provided
me with all the support I could have possibly wanted, without the need for any spoon-
feeding. I am extremely grateful for this guidance that allowed me to reach the finish
line of this project. A big thank you to Michel van Eeten, who helped me out when,
planning-wise, things were not going as smooth as we would have liked. Thanks to
all members of my thesis committee for their valuable feedback that helped me turn a
stack of papers into a coherent report. Finally, I will be forever grateful to my parents,
my brother, my friends, and my girlfriend for their constant support throughout and
understanding for all the absences and cancelations due to being glued to the com-
puter screen.

It has certainly been a tough journey, but it is one I will certainly look back on with
a sense of pleasure, pride, and satisfaction. It is my hope you can appreciate this final
product as much as I enjoyed working on it.

Mathew Vermeer
Delft, July 2019

v





Acronyms

AIDS application-based intrusion detection system.

ANN artificial neural network.

AUC area under the curve.

BGP Border Gateway Protocol.

DNS Domain Name System.

DoS denial of service.

EER Equal Error Rate.

HIDS host-based intrusion detection system.

IDS intrusion detection system.

IoT Internet of Things.

IPv4 Internet Protocol Version 4.

IPv6 Internet Protocol Version 6.

MSE mean-square error.

NIDS network-based intrusion detection system.

PCA principal component analysis.

pcap packet capture.

PR precision-recall.

R2L remote-to-local.

RMSE root-mean-square error.

ROC receiver operating characteristic.

U2R user-to-root.

VM virtual machine.

vii





Contents

Acronyms vii
1 Introduction 1

1.1 Research statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background literature 5
2.1 Intrusion detection systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Machine learning-based intrusion detection systems . . . . . . . . . . . . 6
2.3 Evaluation of intrusion detection systems . . . . . . . . . . . . . . . . . . 9
2.4 Dataset collection and generation . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Case study 15
3.1 IDS selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Kitsune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Attack traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Data collection and processing 23
4.1 Obtaining appropriate data . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Network description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Mail server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.4 Public DNS server . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.5 Private DNS server . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.6 Shell access server . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.7 Web server with authentication . . . . . . . . . . . . . . . . . . . . 26

4.3 Capturing network traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Sanitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Filtering network traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Results of filtering process . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Attack traffic construction 37
5.1 Mirai infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 SYN flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 OS scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Successful SSH brute-force . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 DNS abuse and DNS amplification . . . . . . . . . . . . . . . . . . . . . . 44

ix



x Contents

6 IDS evaluation 45
6.1 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Classifying everyday network traffic . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Detecting anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.2 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Attack simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Discussion 65
8 Conclusion 71

8.1 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.2.1 Evaluation of the framework. . . . . . . . . . . . . . . . . . . . . . 72
8.2.2 Revisiting previous research . . . . . . . . . . . . . . . . . . . . . . 73
8.2.3 Real-world testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.3 CAML-IDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 75



1
Introduction

The advent of computing and the Internet has allowed us to construct digital systems
that increase productivity, run businesses, and manage critical infrastructure. The
Internet has also provided us with a way of sharing and accessing all of these digital
products and services from any point in the world. Businesses and organizations have
adapted it into their daily operation.

Hence, businesses and organizations have become extremely reliant on these sys-
tems and their proper functioning. All of an organization’s sensitive data is stored on
their systems, and the services they provide are all made possible through the proper
functioning of the same systems. That means that any abnormality in the availability
of these systems can have consequences for the organization.

Additionally, for certain institutions, malfunctioning digital systems can also have
implications for human life and the environment itself. Take, for instance, malfunc-
tioning sensors in a nuclear power plant [24], or a country’s critical infrastructure with
an openly accessible and poorly secured management panel [4].

While some failures can occur due to honest and unintentional mistakes by an ad-
ministrator, designer or legitimate user, there are malicious actors that purposely and
deliberately compromise and cause damage to organizations’ systems. This is even
made easier by the fact that many of these systems are directly connected to the Inter-
net, including critical infrastructure systems [28].

Several tools and techniques exist that help protect networks from malicious ac-
tors. A common instance of such tools is using a blacklist-based filter. A blacklist only
keeps track of illegitimate traffic, meaning that it allows all traffic, except for the types
that are explicitly defined in the filter. A blacklist is easy to manage, but not entirely
effective. It is not feasible to define all malicious traffic in the world. Even if it was,
every packet would then have to be evaluated against a huge list before being allowed.

On the other hand, we have whitelist-based filters. This filter only allows traffic
that has been explicitly defined, and discards any other traffic. While effective, it is this
effectiveness that is also its disadvantage. The filter would need to be reconfigured
every time a user needs to use some software that produces undefined traffic.

A more advanced approach is the intrusion detection system (IDS). An IDS is a
system that is used to detect unwanted intrusion attempts in a network. Since every
organization has a different network, there is no one-size-fits-all approach for IDSs.
For instance, one organization would like to block all Remote Desktop Protocol (RDP)
traffic, while another organization might specifically need RDP traffic in order to pro-
vide their services.

1



2 1. Introduction

IDSs can employ either signature-based or anomaly-based detection of threats. A
signature-based IDS uses patterns extracted from known threats in order detect these
same attacks in the future. Even though this approach allows for easy detection of
already-known threats, new types of threats will not be detected, as no pattern for them
is yet known.

Anomaly-based IDSs use machine learning to create a model of legitimate behav-
ior, which is then used to detect illegitimate, or anomalous, behavior. Its advantage
over signature-based IDSs is that they allow for the detection of previously unknown
threats. There is also the possibility of false positives, however: that previously un-
known legitimate traffic is classified as anomalous.

The performance of anomaly-based IDSs is influenced by the choice of training
data, and the manner in which the system is trained with said data. Ideally, the training
data should be as close to real-world data as possible. In the case an IDS, this means
that the traffic used for its training should closely match the traffic of the network that
it will protect.

Anomaly-based intrusion detection is an active field of research. Many different
systems have been designed in order to detect malicious traffic. And while these sys-
tems claim a certain level of performance, we have noticed flaws in the methodolo-
gies used in much of the available literature. For instance, many use outdated and
overly general network data to train and evaluate their systems. Others use too small
an amount of network data. Due to this, it is possible that the reported performance
will not be the same if the systems were to be tested in a real-world environment.

The lack of proper training and evaluation of classifiers in the literature calls for
an alternative method that produces correct and reliable results. This research will
focus on developing such a methodology. This methodology will enable the correct
evaluation of machine learning-based IDSs using real-world traffic data. A case study
will be conducted in order to evaluate the performance and validity of the developed
methodology.

1.1. Research statement
How can a machine learning-based intrusion detection

system be correctly evaluated?

The objective of this project is to create a methodology that allows for the correct
evaluation of an intrusion detection system.

The research question stated above can be decomposed into several sub-questions.
Answering these sub-questions will allow us to answer the main research question it-
self.

1. How do we properly collect training data for the machine learning-based IDS?

Data collection is a necessary procedure for this project, since an IDS will need
to be trained. Since the IDS will be trained to protect a specific network, the
collected data must be representative of the environment it is collected from.
Also, sufficient data must be collected to properly train the used IDS.

2. How do we annotate anomalous data correctly?

Data that is anomalous in one network might not be classified as such in a dif-
ferent network. It is therefore necessary to select data that will be anomalous in



1.2. Research outline 3

the specific network that is being investigated. This could be both benign but
unwanted network traffic, and malicious traffic.

3. How can anomalous network traffic be injected correctly?

The evaluation of the IDS must be a realistic process. The simulated evaluation
scenarios must be similar to those that occur in reality. The order and frequency
in which the anomalous traffic is injected into the network must be realistic, as
well as the amount of anomalous traffic that is injected in a single instance.

4. What are appropriate metrics for determining the performance of an IDS?

Machine learning-based classifiers have many different use cases, and there are
many different metrics that can be used for determining the performance of a
classifier. The choice of metrics is an important one, since different metrics pro-
vide different information about a classifier. Image classification may require
a different set of metrics than anomaly detection. To make sure this research
is performed adequately, we must identify the metrics that provide the most
amount of information about a machine learning-based intrusion detection sys-
tem.

In order to fully answer the aforementioned questions, we will conduct a case study
on an anomaly-based IDS that was designed and evaluated by its developers in an ar-
tificial and unrealistic environment. We will identify common mistakes and use the
best practices from state-of-the-art research to develop a framework that allows for the
correct evaluation and assessment of a machine learning-based IDS. With this frame-
work, the IDS from the case study will be evaluated, and the acquired results can be
compared with the original results. The results that we obtain by using this framework
will much better illustrate the actual performance of the IDS.

1.2. Research outline
This research can be split up into two parts. The first part introduces the relevant ter-
minology and literature, as well as the anomaly-based IDS that we will use to conduct
our case study. Chapter 2 gives an overview of different types of IDSs that are devel-
oped by different researchers, the techniques that are used in their design, and their
performance. Common ways of IDS evaluation are discussed, as well as the recom-
mended ways that are considered best-practice. Based on the information from this
chapter, Chapter 3 describes the IDS that is chosen for the case study, and elaborates
on the manner in which it was evaluated.

The second part of the research is conducting the case study itself. Firstly, we need
real-world data to perform this research. Before we can use this data, though, we need
an accurate description of the network from which we capture this data. This enables
us to determine ground-truth of the captured data. The process of capturing and fil-
tering network traffic is described in Chapter 4. It is also interesting to study the IDS’s
detection performance on actual attack traffic. The process of constructing this attack
traffic is described in Chapter 5. The final evaluation of the IDS is given in Chapter 6,
and these results are discussed in Chapter 7. Finally, the constructed framework will
be provided in Chapter 8, as well as some concluding remarks and future research pos-
sibilities.





2
Background literature

There is more to anomaly detection and IDSs than simply choosing arbitrary machine
learning techniques. This chapter will elaborate on the different steps that need to
be taken when trying to develop an effective IDS. The first section in this chapter will
briefly introduce the the topic of IDSs and the purpose that they serve. There are many
different machine learning techniques that can be applied, each with their own advan-
tages and drawbacks. The second section will describe a number of machine learning-
based IDSs that have been developed over the years. The used methodologies will
be discussed, as well as the obtained results. Evaluation is a process that needs to
be performed soundly in order to produce accurate conclusions. The third section
will mention and discuss commonly used metrics and methodologies for sound IDS
evaluation. Lastly, no machine learning technique can be properly evaluated without
appropriate datasets. The last section in this chapter will focus on the suitableness
of current widely-used datasets, as well as other techniques that are used to create or
collect network traffic.

2.1. Intrusion detection systems
IDSs are classified by their placement, and by the techniques that are used for detec-
tion itself. As for the placement of an IDS, there are network-based intrusion detec-
tion systems (NIDS), host-based intrusion detection systems (HIDS), and application-
based intrusion detection systems (AIDS). Depending on its method of detection, an
IDS can be signature-based or anomaly-based [41].

A network-based IDS is named as such, because it is placed at a strategic point
within a network and analyzes all network packets it receives to detect attacks. It is
generally a single, independent host whose only purpose is to capture and analyze
network traffic. NIDSs can easily allow for the monitoring or large networks. Since an
NIDS needs to capture and process all the traffic it receives, it may encounter diffi-
culties in doing so if placed within a considerably busy network. Processing speed is
therefore a necessary attribute for any NIDS. When an IDS is installed on an existing
host, it is called a host-based IDS. An advantage that an HIDS has over a NIDS is that it
has the ability to analyze the memory and logs of the machine on which it is installed.
This gives it the ability to discover which process or user is responsible for any mali-
cious activity that is detected. A drawback, though, is that it is unable to monitor the
behavior of the network, as the HIDS installed on a particular host will only have ac-
cess to the traffic that this host receives. Application-based IDSs are similar to HIDSs,

5



6 2. Background literature

as they are installed on specific hosts. The difference is that AIDSs monitor only the
activity belonging to a single application on a host. This specialization makes AIDSs
very effective at detecting malicious activity, but any malicious activity outside of the
monitored application is not seen [41].

Signature-based IDSs find malicious activity by matching it with a predefined set
of patterns or events that are characteristic of known attacks. Although this technique
certainly is effective at detecting known attacks, it struggles at detecting novel attacks.
This is because a signature for the novel attacks is not available yet. Anomaly-based
IDSs work with the assumption that malicious activities behave differently than nor-
mal activities. By establishing a baseline for normal behavior, it tries to detect the ma-
licious activities by identifying these differences. In this manner, it is often able to
detect not only previously-seen attacks, but novel attacks as well. This approach is
hardly perfect, and as such produce false positive results [41]. The field of anomaly-
based intrusion detection is a heavily researched one, and much of this research relies
on machine learning techniques. The next section will discuss in more detail a number
of anomaly-based IDSs that use machine learning techniques to detect anomalies.

2.2. Machine learning-based intrusion detection systems
Wang and Stolfo [89] developed a method for anomaly detection based on the analy-
sis of payloads that are sent within the network. They call it a payload-based anomaly
detector. Given the normal payloads, their system produces a byte frequency distribu-
tion of said payloads. This distribution serves as a model for all normal payloads. The
centroid of this distribution—its geometric center—is computed during the learning
phase, and is used for the anomaly detection. Specifically, incoming payloads are cap-
tured and their distance to this computed centroid is calculated. The payloads with
a distance above a certain threshold are classified as anomalies. Wang and Stolfo use
five differently learned models to evaluate their system. The five models are trained
using the following data: (i) the packet’s entire payload; (ii) the packet’s first 100 bytes;
(iii) the packet’s last 100 bytes; (iv) the entire payload of each connection; and (v) the
first 1000 bytes of each connection. In this research, Wang and Stolfo use the DARPA
1999 IDS dataset [31] for the training and evaluation of the classifier. Additionally, a
two datasets were collected from a university web server by capturing network traffic
on two different days. Wang and Stolfo focus solely on TCP traffic. Therefore, attacks
using a transport-layer protocol other than TCP are not detected, and all TCP traffic is
filtered out of the datasets. When training and evaluating the models on the DARPA
1999 dataset and limiting the false positive rate to 1%, detection rate was around 60%.
They note, however, that their models have difficulty detecting attacks when the pro-
tocol’s payload structure varies more than usual. Examples of these protocols where
the models have trouble detecting attacks are SMTP and Telnet. They use false posi-
tive rates and ROC curves to evaluate their system’s performance on the DARPA 1999
dataset. This evaluation is not done when using the university web server dataset. This
is due to the fact that they did not separate the captured traffic into benign and ma-
licious. Instead, they trained the models on the dataset from the first day and then
tested them on the same dataset, as well as the dataset from the second day. This pro-
cess was repeated for the second dataset. Then, the models were trained and tested
on the union of both datasets. During this evaluation, the models were able to detect
buffer overflow attacks and Code Red II attacks [78]. Since the data was unlabeled, no
performance metrics were calculated.

Srivastav and Challa [74] propose two similar IDS frameworks that use neural net-



2.2. Machine learning-based intrusion detection systems 7

works to detect four types of attacks: denial of service (DoS), probing, remote-to-local
(R2L), and user-to-root (U2R). DoS attacks include attacks such as SYN floods and
Teardrop [61], probing includes activities such as port scanning, R2L attacks are at-
tempts at achieving unauthorized access to a host from a remote machine, and U2R is
gaining unauthorized access to local superuser privileges [75]. The proposed frame-
works are layered, and each layer is a chain that is made up of a data pre-processor, an
encoder, and a neural network. Each element in the chain passes the data to the next.
Every layer has a separate neural network that is responsible for detecting a single type
of attack. If a layer does not detect the type of attack assigned to it, the network traffic is
passed on to the next layer. Once an attack is detected, the process stops and the data
is blocked and labeled as malicious. The only difference between the two proposed
frameworks is that one has a feature-extraction module in each layer after the data pre-
processor, while the other one does not. This feature extraction is achieved by means
of principal component analysis (PCA) [83]. To train and evaluate their system, they
use KDD Cup 1999 dataset [85], which is derived from the DARPA 1998 dataset [86].
For the training process, the training dataset is divided into tree parts: 70% of the data
into the training set, 15% into the validation set, and the remaining 15% into the test
set. The system is trained until the mean-square error (MSE) on the validation set is
constant for six epochs. Performance was evaluated using mainly confusion matrices.
The first model achieved an overall accuracy of 97.1%, with a detection rate over 90%
for every type of attack. However, the false positive rate of this model was nearly 0.25.
The second model achieved a slightly lower overall accuracy, namely 94.4%. In this
case, the false positive rate dropped considerably to 0.08. Somewhat noteworthy is
that a layer would often detect attacks that did not correspond to that particular layer.
For instance, in the second model, the layer responsible for detecting R2L attacks de-
tected about 77% of U2R attacks before the traffic could reach the responsible U2R
layer.

Naoum et al.[49] have constructed an IDS using a single neural network to detect
all types of attacks. This contrasts the approach by Srivastav and Challa[74] that uses
multiple layers of neural networks that each only detect one single type of attack. The
neural network is trained using the RPROP (resilient propagation) algorithm devel-
oped by Riedmiller and Braun [63], which is their improvement on backpropagation
using purely gradient descent. This algorithm allows for a faster and more efficient
learning process. The first element in the system is a pre-processor. This pre-processor
converts the data into a format that is compatible with the neural network. The neural
network is learned with labeled data, and, therefore, in a supervised manner. During
the learning process, the weights in the neural network are updated on every iteration
until the MSE reaches a predetermined number. Naoum et al. experimented with a
different number of hidden neurons during the training phase and found that 26 hid-
den neurons provide the highest detection rate. The data that is fed into the neural
network is classified into one of five categories: normal, DoS attacks, R2L attacks, U2R
attacks, or probing activities. Naoum et al. use the NSL-KDD [87] dataset, which is de-
rived from the KDD Cup 1999 dataset. Evaluation is largely based on detection rates.
A confusion matrix is provided, although not discussed. All attacks have a detection
rate of over 96%, except for the U2R attacks, which are detected only 54.1% of the time.
For the entire test set, they achieve a detection rate of 94.7%, with a rather high false
positive rate of almost 15.7%.

Shone et al.[70] utilize deep learning techniques for intrusion detection. They feed
network traffic data into their proposed “non-symmetric deep autoencoder” in order



8 2. Background literature

to learn features from the data in an unsupervised fashion. “Non-symmetric” refers to
using a system containing only an encoding segment, instead of the usual autoencoder
structure that contains the “symmetric” encoder-decoder segments. This is done to re-
duce computational complexity and execution time. The “deep” part of their proposed
system refers to the multiple hidden layers that each encode the output of the previ-
ous hidden layer. They stack two of these non-symmetric deep autoencoders on top
of each other, with the output of one being the input of the next. The final output of
the encoders is then fed into a random forest, which performs the actual classification.
They train and test the data on both the KDD Cup 1999 dataset [85] and the NSL-KDD
dataset [87]. The metrics that are used to evaluate the classifier’s performance are ac-
curacy, precision, recall, false positive rate, and F-score [71]. Additionally, a ROC curve
was used to evaluate performance when using the NSL-KDD dataset. When testing on
the KDD Cup 1999 dataset, their system achieved an average accuracy of 97.85% with
a false positive rate of about 0.02. However, R2L attacks are rarely detected, and U2R
attacks are never detected at all. Shone et al. point to the lack of of enough attack in-
stances to train the classifier on as the reason for this poor performance. The NSL-KDD
dataset test consisted of two parts. The first evaluation tested the classifier’s ability to
separate the date into five different classes: normal, DoS, R2L, U2R, and probes. The
second evaluation had the classifier separate the data into 13 classes: normal, and the
12 specific types of malicious activities present in the dataset. In the 5-class classifi-
cation test, the classifier achieved an average accuracy of 85.42% with a false positive
rate of approximately 0.15. Again, the classifier had difficulties detecting R2L and U2R
attacks. Compared to the 5-class classification, the 13-class classification provided a
3.8% improvement in overall accuracy, which Shone et al. use to support their claim
that their model works more effectively with more complex datasets.

Mirsky et al.[47] use autoencoders for intrusion detection, similarly to Shone et
al.[70]. However, instead of stacking two autoencoders on top of each other, Mirsky
et al. feed the features extracted from the network data into an ensemble, or collec-
tion, of autoencoders simultaneously. The process starts with the arrival of a packet
and the extraction of a number of features from the packet, such as IP and MAC ad-
dresses, packet timestamps, and packet sizes. The learning process has two phases:
the clustering together of the features, and the learning of the autoencoders. After the
features are clustered together based on their correlation, each cluster of features is
fed into a different autoencoder ensemble. The individual autoencoders measure the
abnormality of each subspace (feature) of the packet. All of these measurements are
then used as the input for the final layer of the system, which uses all of the abnormal-
ity measurements to calculate a final abnormality score in order to determine whether
the packet is legitimate or not. They extracted their network traffic from two different
networks. One was a private surveillance camera network, and the other one a small
test network containing a few PCs and a collection of IoT devices. In order to evaluate
the effectiveness of their system, Mirsky et al. performed a series of attacks on their
networks and captured the traffic while performing the attack. These attacks included
OS scans, SYN floods [7], and infecting a host with the Mirai botnet malware [1]. Mirsky
et al. perform the attacks on the network one at a time. They then fed this attack traffic
into their anomaly detection system. The evaluation of their system is based on true
positive rates, area under the curve (AUC) values, and equal error rates. All the attack
traffic tests they performed on their system, they also performed on a number of dif-
ferent anomaly detection systems. They rate the performance of their system based on
how well the rest of these different anomaly detection systems fared. From the results



2.3. Evaluation of intrusion detection systems 9

we can see that their system significantly outperforms most other anomaly detection
systems when evaluating fuzzing attacks, SSDP floods, and Mirai botnet infections.

2.3. Evaluation of intrusion detection systems
Network intrusions are anomalies, and anomaly detection is a classification problem.
All instances are classified either as normal or anomalous. While being a classification
problem, however, the usual practice of using simply overall accuracy does not pro-
vide sufficient information about the performance of an anomaly detection system,
according to He and Garcia [19]. This is because of the inherent imbalance between
normal and anomalous instances. In other words, there are far more normal instances
than anomalous instances in datasets, which is why they are called anomalies. Take
a dataset with 0.1% anomalies. A trivial classifier that classifies all instances as nor-
mal will still achieve an accuracy of 99.9%, all without detecting a single anomaly. He
and Garcia [19] state that more informative metrics are needed to properly evaluate
these types of systems. These metrics include receiver operating characteristic (ROC)
curves, precision-recall scores and curves, and cost curves. The ROC curve plots a
classifier’s false positive rate against its true positive rate. It is used as a measure for a
classifier’s ability to separate classes [83]. ROC curves can be reduced to a single value
by computing the area under the ROC curve (AUC). This AUC value is equivalent to the
probability that the classifier will rank a random positive instance higher than than a
random negative instance [15]. This means that the higher the AUC, the better the av-
erage performance of the classifier. The AUC value can be computed without an ROC
curve for a single point using the formula [71]

AUC = 1

2

(
T P

T P +F N
+ T N

T N +F P

)
,

where TP is the number of true positive instances, FN the number of false negative
instances, TN is the number of true negative instances, and FP the number of false
positive instances. DeLong et al. [12] state, however, that an ROC curve that has few
thresholds will significantly underestimate the true AUC. An ROC curve with a single
threshold is therefore a worst-case scenario. Precision and recall [83] are computed as
follows:

precision = T P

T P +F P
and recall = T P

T P +F N
.

These metrics are more informative than accuracy, because they penalize incorrect
classifications [19]. A precision-recall curve is obtained by plotting precision and re-
call against each other. While ROC curves certainly are informative, both He and Gar-
cia [19] and Saito and Rehmsmeier [65] state that precision-recall curves are more use-
ful than ROC curves when evaluating binary classifiers on imbalanced datasets. ROC
curves are overly optimistic for imbalanced data, He and Garcia [19] state.

Sokolova and Lapalme [71] state that another common metric for binary classifier
evaluation is the F1 score. This metric is the harmonic mean of precision and recall,
and it is calculated with the following formula:

F1 = 2 · precision · recall

precision+ recall
or F1 = 2 ·TP

2 ·TP+FP+FN
.

Its values range from 0 to 1, where 1 is its best value.
Sommer and Paxson [73] also discuss IDS evaluation. They focus less on met-

rics, and more on methodologies for sound evaluation. First of all, they strongly sug-
gest researchers manually examine the classification results. This is often difficult



10 2. Background literature

due to the black-box nature of many types of classifiers, such as artificial neural net-
works (ANNs) [90] and random forests [55]. Even so, Sommer and Paxson state that
researchers need to understand the reason behind certain classification results. This
can help researchers identify flaws in their systems. Manual inspection can help re-
searchers identify what aspects of the data are responsible for its corresponding clas-
sification. For example, researchers can ensure their system is basing anomaly detec-
tion on multiple features, instead of just flagging packets based on their packet size.
If researchers find that their system’s performance is the result of faulty methodology,
they can rethink their approach before publishing inaccurate research or implement-
ing unreliable systems. Furthermore, they state that “the single most important step
for sound evaluation concerns obtaining appropriate data to work with.” This “appro-
priate data” is ground-truth data obtained from a real-world environment. Dataset
collection will be further discussed in Section 2.4. Ground-truth in this sense means
that we can say with certainty that data that is labeled as “normal” truly is normal,
and “bad” data truly is bad. Sommer and Paxson go on to recommend that the sys-
tem be trained with data different than the data used for the final evaluation. The best
evaluation of all, Sommer and Paxson state, is testing an anomaly detection system in
the real world. The system being deemed useful by real network administrators gives
much support to the work that was performed by the researchers.

2.4. Dataset collection and generation
There is a particular pair of datasets that is widely used for machine learning-based
intrusion detection research [5, 13, 48, 74, 89], namely the DARPA 1998/1999 Intrusion
Detection Evaluation Datasets [31] by Lippmann et al. [33], and its derivative KDD Cup
1999 dataset [85]. It is a dataset generated by DARPA, as the name suggests, that con-
sists of seven weeks of network traffic. Different versions exists, and these versions are
identified by the year they were created. DARPA claim that this generated dataset is
similar to real network traffic found inside actual Air Force bases. This network traf-
fic contains benign activity of hundreds of users on thousands of UNIX hosts. Addi-
tionally, this dataset contains malicious traffic produced by an assortment of different
attacks that were launched against hosts in the network. Originally there had been
little intrusion detection research using a single dataset shared by different research
groups. Privacy concerns about the captured network traffic always complicate the
publication of such datasets. Also, a wide range of attacks must be successfully per-
formed against different hosts with different systems. For the most part, datasets back
then had neither a wide range of attacks nor a large number of hosts. The network
in the dataset is split into two segments: the internal segment (i.e. inside the base),
and the external segment (i.e. outside the base). In the internal segment, there are
three machines that serve as the victim machines, and a gateway that serves as a link
with the rest of Air Force base PCs and workstations. Most of the hosts in the internal
segment run UNIX-based operating systems. The 1999 edition of the DARPA dataset
also contains Windows NT hosts. A Cisco router connects the inside network with the
outside. The external segment is supposed to represent the Internet. It contains two
different gateways: one that provides access to outside web servers, and another that
provides outside workstations access to the network. This second gateway is where
the attacks are launched from. Finally, the traffic sniffer is located in front of the Cisco
router, on the outside. This placement of the sniffer means that internal network traf-
fic is not captured. Only the communication between the inside and outside networks
is captured. See Figure 2.1 for an illustration of the network. This private network



2.4. Dataset collection and generation 11

was used to generate network traffic that is “similar” to traffic found in real Air Force
bases. The hosts within the internal network segment ran software that generated a
large quantity of network traffic. This allowed a single host to act as if it were instead a
collection of hosts, each with its own IP address. User actions such as sending email,
using FTP services, or accessing other hosts via Telnet, were automated. These au-
tomated user actions were performed using the same software that was used in real
Air Force base networks. Examples include sendmail, ftp, and Telnet [33]. Additional
protocols that can be found in the dataset include HTTP, IRC, DNS, and SNMP, among
others. The timing of the usage of the different services, as well as the proportions of
all the traffic corresponding to each individual service, was based on actual Air Force
base network usage, claim Lippmann et al [34]. Usage of synthetic data instead of ac-
tual network traffic is due to security and privacy concerns. For the 1998 version of the
DARPA dataset, the network traffic included 38 different types of attacks. These attacks
range from reconnaissance activities, like Nmap scans and port sweeps, to more mali-
cious ones, such as Smurf [26] and Ping of Death attacks [9]. Much of the attack traffic
was present in the training data. However, many of the attack types were only placed
in the test data. This was done to test the effectiveness of IDSs on not only known at-
tacks, but on novel attacks as well. Some of the attacks were performed on software
vulnerabilities that were discovered specifically for the project. The 38 types of attacks
are classified into the following four groups: Denial of Service, Remote-to-Local, User-
to-Root, and probes. Of these four groups, the tested IDSs were able to “generalize
well” to probes and User-to-Root attacks, but were not able to detect unseen Denial of
Service and Remote-to-Local attacks accurately.

Many researchers have been using the DARPA datasets and its derivatives for their
own research projects. They do this in spite of the thorough criticisms the datasets
have received. McHugh’s 2000 paper [40] is one such example. On the datasets, he
mentions the claim by Lippmann et al. that the network traffic contained in the datasets
are “similar” to real Air Force base traffic, and criticizes the lack of evidence supporting
that claim, statistical or otherwise. Also, McHugh states that Lippman et al. only speak
of the frequency and usage time of software utilities. The similarity of the content
of the network traffic created by the utilities is never discussed. It is only mentioned
that the network traffic is constructed using public domain and randomly generated
data sources. Furthermore, no analysis is provided as to the false positive rates of the
synthesized background data. According to McHugh [40], this type of analysis is im-
portant, because in order for the synthesized traffic to be a valid substitute for real
network traffic, the false positive behavior of the tested IDSs should not differ signif-
icantly when classifying real and synthetic network traffic. Another point raised by
McHugh is that Lippmann et al. do not discuss the data rate within their synthetic
network, nor any variation in this data rate over time. A quick examination of some
of the DARPA dataset revealed an unrealistically low data rate, especially for a network
containing such a large number of hosts. Due to this low data rate, the false alarm
rates would differ significantly if the IDS were tested on a noisier and more realistic
network. As for the attack data, McHugh criticizes the distribution of the attack traf-
fic among the background traffic. Most notably, every type of attack was performed
roughly the same amount of times. This creates an unrealistic scenario, according to
McHugh, since surveillance or probing activities are by far the most prevalent cause of
malicious traffic.

Mahoney and Chan [36] are others who criticize the DARPA datasets. They do this
using a more detailed approach than McHugh [40]. They focus on specific aspects of



12 2. Background literature

the synthetic background traffic and simulated attack traffic. Firstly, they show that
the network traffic collected from the artificial Air Force base contains simulation arti-
facts that can be utilized in order to detect attacks. To demonstrate this, they created
an IDS of very poor quality. This IDS bases its anomaly detection on a single byte of
a packet. If this specific byte was not seen during the training phase (and 60 seconds
have passed without detecting an anomaly), then the packet is classified as malicious.
It is clear that this IDS would be useless in a real-world scenario. In this particular
case, however, this IDS detects 45% of all attacks, with 43 false positives. This perfor-
mance is comparable with the best-performing systems in the original DARPA dataset
evaluation. Mahoney and Chan collected network traffic from a university departmen-
tal server and mixed this captured traffic into the DARPA dataset. After training and
testing on this newly created dataset, the IDS was barely able to detect any attack at
all. Additionally, the false positive rate increased significantly. They also compared
the synthetic background data to real network traffic they collected from a university
server. This comparison yielded several findings. For instance, many of the DARPA
packets have no IP, TCP, UDP, or ICMP checksums. Also, they found a lack of variety
in many of the DARPA packet fields. The packets’ TTL fields were set only to nine val-
ues out of the possible 256 values. The real network traffic, on the other hand, had
177 different values. Furthermore, compared to the DARPA dataset, the real network
traffic had much more variety in the types of HTTP, SMTP, and SSH requests. Using
these values as part of an anomaly detection rule would result in a high false positive
rate, since the values are much less predictable in real-world traffic. This is especially
evident given the low-quality simulation of several attacks. Attacks such as dosnuke,
neptune, and queso [33], among others, use only two different TTL values. ICMP pack-
ets in the smurf [26] attack contain checksum errors. Detecting these attacks using
these attributes might increase the performance of the IDS when operating on the
DARPA datasets, but such an IDS would be worthless in the real world. Despite the
many shortcomings of the DARPA datasets, Mahoney and Chan considered it to be the
most sophisticated dataset that was publicly available. To alleviate the dataset’s inher-
ent problems, they propose mixing real traffic into the simulated traffic. Though in
this case, it would be important that the real traffic be transformed in such a way that
would make the real and simulated traffic indistinguishable to an IDS.

Tavallaee et al. [80] performed an analysis on the KDD Cup 1999 dataset. In this
analysis, they found two significant issues that plague the dataset. These issues affect
the performance of the anomaly detection systems, which in turn results in an inad-
equate evaluation of said systems by researchers. The first issue is the vast amount of
redundant records in the KDD Cup 1999 dataset. Training a classifier on this dataset
cause it to be biased towards these redundant (frequently-occurring) records, which
makes the classifier much less likely to learn from records that occur less frequently.
Furthermore, these duplicate records in the test set will cause the classifier to present
a much higher detection rate for these specific records than for less frequent records.
Tavallaee et al. solved this issue by removing all duplicate records and keeping only a
single instance of each record. They also found that simply using accuracy, detection,
and false positive rates for evaluation when using the KDD Cup 1999 dataset is an un-
suitable approach for evaluating an anomaly detection system. They discovered this
by learning 21 different classifiers on random subsets of the dataset, and then having
these classifiers label all the records in the training and test sets. All 21 classifiers were
able to correctly label 98% of the training set and 87% of the test set. To address this
second issue, the NSL-KDD dataset is made more “challenging”. Tavallaee et al. do this



2.4. Dataset collection and generation 13

by selecting more “difficult” records and less “easy” records from the KDD Cup 1999
dataset. This record “difficulty” is determined by the number of classifiers that were
able to correctly label the record. An easy record would be one that is correctly labeled
by all 21 classifiers, while a difficult record would be one that is correctly labeled by
a single one. However, since the NSL-KDD dataset’s origins can be traced back to the
DARPA 1998 dataset, Tavallaee et al. admit that it still contains some of the problems
that were described by McHugh [40].

Others opt not to generate synthetic network traffic, but instead to directly capture
traffic from a small test network. Labib and Vemuri [29] test their developed IDS with
data collected from their small private network. This network is made up of two sub-
nets. The first subnet contains a single attacker and “tens of other hosts”. The second
subnet contains only two hosts, both of which are attackers. They then proceed to train
and test their IDS using the collected data. This collected data, however, is far from
realistic. The network is not connected to the Internet, nor is there any background
traffic present in the used dataset. Under minimum load, a host on this network re-
ceives an average of one packet per second. Furthermore, when extracting the source
and destination IP addresses from the packets, only the two trailing bytes of the IPs
are selected to form the dataset. The rationale behind this was that, since their private
network is of Class C, the leading two bytes of the IP addresses will never change, and
these two “redundant” bytes would negatively influence the performance of their clas-
sifier. Mirsky et al. [47] also chose to construct their own sample networks and using
the traffic produced in those networks as training and test data. They built two dif-
ferent networks: one containing eight networked surveillance cameras, and another
containing nine IoT devices and three PCs. These networks, too, are rather unreal-
istic, and will produce very uniform traffic. The first network, for example, will only
ever produce “surveillance camera-like” traffic. Any deviation from this “surveillance
camera-like” traffic, be it malicious or not, will be more likely labeled as an anomaly.
Likewise, the latter network will be saturated with IoT traffic. This will likely have simi-
lar implications as the surveillance camera network. This points to a somewhat lacking
evaluation, since the network traffic used for training is not realistic. As for the attack
traffic, Mirsky et al. perform a series of attacks on the networks and capture that traf-
fic at a specific point in the networks. Attacks include SYN floods, fuzzing, and Mirai
infection, among others.

Collecting data from a small private network is much easier than doing the same
thing in a bigger, noisier network. Testing hypotheses using this data might even pro-
duce promising results. However, results obtained from small environments are sel-
dom the same when the same experiments are repeated in a larger environment [73].

Due to security and privacy concerns, releasing collected network traffic is not a
straightforward process. Sensitive data might be present in the network traces, for
instance. Having publicly available realistic data is something that is of interest to
many researchers in this field. To avoid these security and privacy issues, people that
have captured some amount of network traffic choose to anonymize it before releas-
ing it to the public. However, this anonymization is not necessarily an effective mea-
sure [11]. Anonymization of network data significantly reduces the data’s usefulness
for research [30, 56]. According to Killourhy and Maxion [27], this is because by anonymiz-
ing traffic, one very often removes key information that IDSs use to detect anomalies
(e.g. IP addresses, packet payloads).

Sommer and Paxson [73] state that for properly evaluating anomaly detection sys-
tems, obtaining “appropriate data” is the most important issue. The researcher should



14 2. Background literature

strive to acquire a dataset that contains real network traffic. This network traffic should
also be collected from network that is as large as possible. If possible, different datasets
collected from different networks should be used. They state that working with actual
traffic increases the quality of research, since one can immediately observe the perfor-
mance of the studied IDS in a real-world scenario.

Figure 2.1: Diagram of the network in the DARPA datasets [33]

2.5. Summary
Much research has been done in the field of intrusion detection. Many different ma-
chine learning techniques have been applied to this problem, with many researchers
claiming to have created highly effective IDSs. These “highly effective” IDSs are de-
signed and evaluated using methodologies and datasets that have been heavily crit-
icized by others. For instance, most of the papers discussed in Section 2.2 use some
flawed dataset, as the papers by McHugh et al. [40] and Mahoney and Chan [36] have
demonstrated. The rest use data from small, private networks, which is inadvisable,
according to Sommer and Paxson [73].

There seems to be large disconnect between these two groups of researchers. One
group criticizes current methodologies and suggests more suitable alternatives, while
the other group never seems to adjust their approach to anomaly detection research
in order to improve the quality of their work.

None of this research has ever been revisited in order to test how the same method-
ologies and technologies will perform in a real-world scenario, with real network traf-
fic, as Sommer and Paxson suggest [73]. This is unfortunate, since much of this re-
search may contain erroneous results and conclusions. Future research is then built
on top of these possibly erroneous conclusions, as many researchers will not doubt the
validity of published research articles. It is therefore in the interest of the entire field of
anomaly detection to verify the findings of such published research.



3
Case study

From the background literature presented in Chapter 2, we see many different ap-
proaches and methods being developed to resolve a common task, namely automatic
intrusion detection. However, many of these methods use data that is flawed [36, 40]
for not only the training of the classifiers, but the evaluation as well. The fact that these
inadequate methodologies and data are used for the realization of academic research
raises questions about the validity of said research.

It is therefore interesting to see whether these approaches are able to hold their
own when correctly tested in a real-world environment. By using real-world network
traffic data, we will be able to appropriately evaluate the developed approaches, as well
as the validity of the authors’ conclusions.

3.1. IDS selection
The first thing that is necessary for this research is an IDS that we can study. Section 2.2
lists a number of IDSs that were developed over the years. We will select one of these
IDSs for this project. This choice is made with two factors in mind: the age of the
system, and its ease of use.

We prefer the IDS to be as recent as possible. Using recent research ensures that
the techniques used are up to date with current developments in the field of anomaly
detection. The two most recent works discussed in Chapter 2 are the systems proposed
by Shone et al. [70] and Mirsky et al. [47]. Both published their research early 2018.
Coincidentally, both use autoencoder-based approaches for the design of their IDS.

The final selection will therefore be based on each system’s ease of use. Due to
the time constraints set upon this project, we very much favor a system that is easy
to set up and easy to use. The system by Mirsky et al. [47] clearly has the advantage
over the system by Shone et al. [70] Shone et al. have not made their system publicly
available, so trying to obtain it would be unnecessarily time-consuming. On the other
hand, the IDS by Mirsky et al. is open-source, and they have made it publicly available
on GitHub [44]. The public availability of the source code makes it a straightforward
process to install the system on our machines. Furthermore, this system also takes its
input data in raw pcap format, meaning that newly captured network traces can easily
be fed into the system without the need for any data transformation or feature extrac-
tion. Thus, the IDS chosen for this research is the Kitsune IDS by Mirsky et al. [47].

15



16 3. Case study

Figure 3.1: Architecture of Kitsune [47]

3.2. Kitsune
The Kitsune system is not simply a classifier, but includes an entire framework of func-
tionality. The system uses autoencoders to learn the “normal” behavior of the network
in order to, later on, detect deviations from this “normal” behavior.

An autoencoder is a type of artificial neural network that is trained in an unsuper-
vised manner to create a representation of its input [32]. Explained simply, an autoen-
coder encodes the data it receives as input as an object of lower dimensionality, after
which it tries to reconstruct the higher-dimensional object as accurately as possible.

Its functionality comprises the following elements:

1. Feature Extractor;

2. Feature Mapper; and

3. Anomaly Detector.

See Figure 3.1 for an illustration of Kitsune’s architecture.

3.2.1. Components
This section will discuss the aforementioned components of Kitsune, as well as some
of the relevant technical details.

Feature Extractor

Kitsune does not directly operate on raw packet data. Instead, as its name sug-
gests, the Feature Extractor component extracts a collection of features from ev-
ery captured packet. Packets are parsed and certain information is extracted
from them. Specifically, the following fields are selected:

– IP version (IPv4/IPv6);

– packet timestamp;

– frame length;

– source and destination IP;

– source and destination MAC address; and

– transport, internet, or link layer protocol [79].

It is from these fields that the eventual features are actually constructed from.

Mirsky et al. emphasize the importance of analyzing the temporal features of
network traffic to find anomalies and possible intrusions. Instead of using packet
windows to compute these statistics, Kitsune uses packet timestamps to create
damped windows, using a technique that Mirsky et al. call Damped Incremental



3.2. Kitsune 17

Statistics. They claim using a conventional window will not scale due to memory
usage, which is one of the reasons for the usage of their damped windows. For
each packet that arrives, the previously mentioned fields are retrieved. These
fields are then used to update the statistics in the damped window.

The goal of damped windows is to maintain the temporal statistics of a collec-
tion of packets within a given time window, but have the weight of older values
decrease as time goes on. Temporal statistics are computed for five different
time windows λ: 100ms, 500ms, 1.5s, 10s, and 1min (λ = 5,3,1,0.1,0.01). For
every one of these time windows, Kitsune maintains a collection of incremental
statistics tuples for each of the following:

– every source MAC-IP address (denoted SrcMAC-IP 1);

– every source and destination IP address pair (denoted SrcIP);

– every connection between a source IP and destination IP (denoted Chan-
nel); and

– every connection between a source IP-port pair and destination IP-port
pair (denoted Socket);

For all records except the SrcIP records, Kitsune extracts from packets both the
packet size and timestamp. The purpose of the SrcIP records is to capture jit-
ter behavior between different hosts, and therefore only extracts timestamps.
The tuples corresponding to SrcMAC-IP and SrcIP are used to compute one-
dimensional (1D) statistics. The tuples corresponding to Channel and Socket
are used to compute two-dimensional (2D) statistics. This naming (1D and 2D)
refers to the number of tuples involved in the statistics computations: the 1D
statistics involve a single one of these tuples, while the 2D statistics are com-
puted using two different tuples. The tuples are defined as

I Si ,λ← (w,LS,SS,SRi j ,Tl ast ),

where λ is the time window, w is the weight, LS is the linear sum of the packet
sizes, SS is the sum of the squares of the packet sizes, SRi j is the sum of resid-
ual products between the tuples I Si ,λ and I S j ,λ, and Tl ast is the timestamp of
the most recently received packet that corresponds to the given tuple. SRi j uses
data from two different tuples, and is only present in the tuples used for 2D com-
putations: Channel and Socket.

Kitsune creates or fetches a tuple for every packet that it receives. It then uses
these tuples to compute a total of 23 statistics to capture the behavior of the
network for each of the given time windows. Thus, a total of 115 features are
extracted. See Figure 3.2 for the full list of features extracted from the tuples.

It is important to note that the usage of 2D statistics makes Kitsune detection
context-dependent. By this, we mean that previous behavior between two hosts,
if there is any, is taken into account when evaluating traffic. Therefore, it matters
whether traffic is evaluated within the context of other network traffic or out of
context. For example, say there is a malicious host that had previously interacted
with the network in a strictly benign manner. If this host suddenly launches an
attack, Kitsune will evaluate these malicious packets differently than in a situa-
tion where the malicious host had not previously interacted with the network at
all.

1notation taken from Mirsky et al.[47]



18 3. Case study

Figure 3.2: Statistics computed by Kitsune using the incremental statistics tuples [47]

Feature Mapper

The features that are extracted from the network traffic are passed to the Feature
Mapper. The Feature Mapper then processes these features in order to produce
the input for the Anomaly Detector’s ensemble of autoencoders.

Firstly, the features that are given as input are clustered together using correla-
tion between features as the distance between them, which they define as

dcor (u, v) = 1− (u −u) · (v − v)

‖(u −u)‖2‖(v − v)‖2
,

where ū is the mean of the elements in vector u, and u ·v is the dot product [47].

Out of the 115 features extracted, every cluster will be constructed in such a way
that it contains at most m features, where m is a user-defined parameter. So,
each autoencoder will have a maximum of m inputs. This parameter has an
effect on the complexity of the autoencoder ensemble, and therefore also on
the speed and performance of the system as a whole. Mirsky et al. state that
a smaller m will “usually” make Kitsune perform better than a higher value of
m, although processing speed will decrease significantly [47]. This makes sense,
since a smaller m will lead to a larger amount of clusters, which which will in
turn lead to an increase in complexity.

The output of this component is a list of these feature clusters.

Anomaly Detector

The Anomaly Detector is made up of two layers of autoencoders: the Ensemble
Layer, and the Output Layer. The Ensemble Layer takes the list of feature clusters
as input, while the Output Layer takes the output of the Ensemble Layer as input.

Each autoencoder in the Ensemble Layer will be assigned a single cluster of fea-
tures to process. The features are mapped to a subspace and then reconstructed
by the autoencoder. After the mapping and reconstruction phases, the root-
mean-square error (RMSE) is computed between the original features that were
the inputs of the autoencoders and the reconstructed features. A lower RMSE
indicates an accurate reconstruction of the input features, which is the objective
of the autoencoders. All the RMSE values from the Ensemble Layer are collected,
and provided as input to the Output Layer.



3.2. Kitsune 19

The Output Layer is a single autoencoder that has the same amount of inputs
as the Ensemble Layer has autoencoders. Every RMSE value from the Ensemble
Layer is fed into the Output Layer. Initially, this final autoencoder is trained on
the RMSE values that are computed with normal network traffic. When actu-
ally in operation, the Output Layer tries to reconstruct the original RMSE values.
It then computes takes the original RMSEs and the reconstructed RMSEs and
computes one final RMSE value, which will serve as the packet’s anomaly score.

The previous was a brief overview of Kitsune’s inner workings. For a more de-
tailed description of the mathematics and algorithms behind Kitsune, see the paper
by Mirsky et al. [47].

3.2.2. Experimental setup
For the purpose of testing Kitsune, Mirsky et al. set up two different networks from
which to collect network traffic and inject attacks [47]. The first network was an IP
camera video surveillance network. The second one was a WiFi network containing a
number of Internet of Things (IoT) devices, and three PCs.

The video surveillance network consisted of two sub-network containing a switch
each to which four video cameras were connected. Each sub-network had a site-to-site
VPN tunnel established to an third, external, network that contained a DVR server to
which the cameras streamed their data. The attacks were performed from several dif-
ferent locations on this network, such as directly via a switch in a camera sub-network,
or via physical access to the DVR network’s VPN router.

The IoT network consisted of nine IoT devices, such as security cameras, doorbells,
and thermostats, among others. Additionally, the network contained three different
PCs, one of which was situated on a separate subnet. The IoT devices were connected
to the network via WiFi, while the PCs used an Ethernet cable to establish a connection
to the network. On this network, the attacker executes attacks via a connection to the
WiFi router, although it is not stated in the paper whether access was wired or wireless.

Mirsky et al. placed the Kitsune instance at specific places within the network. The
effect of this is that not all traffic flowing through the network will be picked up by
Kitsune. The Kitsune instance would also collect all the network traffic that it received.

Every experiment only lasted for a few hours. During these few hours, Kitsune
would train itself on the unaltered, benign traffic that flowed through the network.
After training on the first million packets received, it would start evaluating the traffic
in order to find anomalies in the traffic. After some time evaluating benign traffic,
Mirsky et al. would perform the attack. When the attack had been completed, the
experiment would be brought to a halt.

3.2.3. Attack traffic
Mirsky et al. performed their attacks one at a time. In other words, Kitsune’s detec-
tion performance was only ever tested on one attack per evaluation. Every attack is
independent from the rest. There are nine different types of malicious activities that
Mirsky et al. performed on their networks. Mirsky et al. split these activities up into
four groups: reconnaissance, Man-in-the-Middle, Denial of Service, and Botnet Mal-
ware. The four groups will be discussed below.

Reconnaissance

This group contains two types of malicious activities: OS scanning and fuzzing.
The OS scanning consists of an attacker using Nmap [50] to scan the network



20 3. Case study

and its hosts and operating system in order to find any possible vulnerabilities.

The fuzzing attack uses SFuzz [10] to probe the surveillance camera’s web servers.
It sends a collection of malformed CGI commands to the web servers in hopes
of triggering an error and find a vulnerability.

Man-in-the-Middle

These attacks are a special case. As mentioned in Section 3.2.2, the Kitsune in-
stance would not receive all the network traffic that flowed through the network.
Mirsky et al. state that, although the actual malicious traffic would not be seen
by the Kitsune instance, statistical changes in the network’s behavior would be
picked up by Kitsune due to its usage of incremental statistics. They state that
network behavior caused by Man-in-the-Middle attacks, such as packet jitter,
can be detected this way.

There are three types of Man-in-the-Middle attacks that were performed on the
networks. The first is video injection. Since the surveillance cameras maintain
a constant stream of video traffic to the DVR server, it is possible for a malicious
actor with access to the network to access this traffic. In this attack, Mirsky et al.
inject a recorded video clip into a camera’s live video stream.

The second attack is an ARP poisoning attack. They poison ARP caches in order
to intercept the network traffic between a surveillance camera and the DVR.

The third is the usage of an active wiretap. It is performed by installing a network
bridge on an exposed network cable. This allows the attacker to intercept all
network traffic flowing across the network bridge.

Denial of Service

Mirsky et al. perform three types of DoS attacks against their network, the first of
which is an SSDP flood. The surveillance cameras use SSDP to advertise them-
selves on the network. This can be exploited by attackers who want to overload a
host. The attacker sends the cameras an SSDP request with the IP address of the
DVR as a spoofed address. Once received, the cameras “reply” to the DVR with a
much larger SSDP response. This overloads the DVR server.

Second is a SYN flood. Mirsky et al. overload a camera’s web server by sending
it a large number of SYN packets. The result of this attack is the disabling of the
camera’s live video stream.

Lastly is an SSL renegotiation attack. Using the RSA cryptosystem, decryption
takes significantly longer than encryption. This is because the private exponent
is computed as the modular multiplicative inverse of the pubic exponent, there-
fore making it much larger than the public exponent [88]. Due to this imbalance
in processing speeds, an attacker can flood an SSL service with SSL renegotia-
tion requests and disable it by forcing it to perform a huge amount of expensive
decryptions. Mirsky et al. perform this attack on one of the cameras, which dis-
ables its live video stream.

Botnet Malware

Mirsky et al. perform this attack not on their surveillance camera network, but
on their IoT network. A malicious actor connects to the network’s WiFi access
point. He then scans the network for available Telnet services. When one of
these services is found on an IoT device, the attacker connects to it using default



3.2. Kitsune 21

admin credentials and installs on it the Mirai malware. The infected IoT device
then starts scanning the network using ARP requests in order to find more live
hosts to infect.

3.2.4. Evaluation
As discussed in Section 3.2.1 of this chapter, the final output of Kitsune is an RMSE
value that serves as an anomaly score for the currently processed packet. The greater
this RMSE value, the greater the anomaly [47]. A RMSE by itself, however, is not suf-
ficient to classify traffic as anomalous. A threshold value needs to be chosen first.
Any packet that receives a final RMSE score below this threshold is considered benign.
Packets receiving scores above the threshold are classified as anomalous.

Naturally, the choice of threshold value will determine the accuracy of classifica-
tion, and hence the overall performance of the classifier itself. Therefore, it is impor-
tant that this threshold is not chosen in an arbitrary manner. A way of choosing this
threshold is to minimize the number of false positives generated by the classifier, since
intrusion detection systems become practically unusable with even a minute false pos-
itive rate [3]. This is the approach that is taken by Mirsky et al. for determining their
threshold value [47].

For every attack, they select two different thresholds that would give them fixed
false positive rates of 0 and 0.001 when classifying the benign traffic. We will refer
to these thresholds as F PR = 0 and F PR = 0.001, respectively. After selecting these
two thresholds, the portion of network traffic containing the attack itself is classified.
Applying the F PR = 0 and F PR = 0.001 thresholds to the malicious traffic, Mirsky
et al. compute two statistics for each threshold (four in total): the true positive rate
(TPR) and false negative rate (FNR). In addition to the TPR and FNR, Mirsky et al. use
two ROC curve [83] statistics: Area Under the Curve (AUC) [17], and Equal Error Rate
(EER) [69]. These statistics are computed, not only for Kistune, but for other IDSs and
algorithms, such as Suricata [76], Isolation Forest [35] and pcStream [46]. Kitsune’s
overall performance is then determined by comparing it to the performance of the
other algorithms on the same attacks.





4
Data collection and processing

Usage of inadequate data for the development of IDSs has been highlighted in Chap-
ter 2. As stated by Sommer and Paxson [73], one should aim at acquiring a dataset that
contains real network traffic from an environment that is as large as one can get their
hands on. This is an important aspect of data collection, because it cannot be assumed
that analysis of small environments will yield the same results when such an analysis is
performed on larger and more realistic environments [72]. Performing one’s research
on real network traffic, as opposed to pre-collected data or data collected from an arti-
ficial network, improves the quality of the research and its results, since the evaluation
of the system will demonstrate its performance in a real-world scenario [73].

4.1. Obtaining appropriate data
For this research, we will not use pre-collected datasets, such as the DARPA 1998/1999 [31]
or KDD Cup 1999 datasets [85]. Neither will we be collecting network traffic from small
experiment networks, as Labib and Vemuri [29], and Mirsky et al. [47] have done. In-
stead, we will follow the recommendations by Sommer and Paxson [73]. They state
that it is important to a research project that datasets be collected from a real-world
environment.

We must find and obtain access to as large a network as we can. If this network
belongs to a third party, agreements need to be made about proper storage and usage
of any captured network traffic. Once the agreements have been made and network
access has been provided, we will start capturing network traffic. Several weeks of
network traffic will be collected in order to have enough variety in the eventual network
traces. This variety in the traces can include many unique IP addresses, usage of many
different protocols, and variety in packet sizes, among many others. Special care needs
to be taken of the possible privacy concerns that may arise. In any case that involves
sensitive data, measures need to be taken in order to secure this data. If necessary, this
sensitive data should be anonymized before being processed.

As stated by Sommer and Paxson [73], obtaining ground-truth data is imperative
for proper IDS evaluation. Without knowledge of the network that is used, it is impos-
sible to obtain this ground-truth. Therefore, cooperation between us and the network
administrator is necessary. The network administrator will need to provide a thor-
ough description of the network. This includes the hosts, which services are running
on which ports, and how the hosts communicate between themselves and with exter-
nal hosts on the Internet. When we have received the description of the network, we

23



24 4. Data collection and processing

will begin filtering the captured network. The goal is to obtain ground-truth data by
filtering network traffic so that we end up with two sets of network traffic for which
we know with absolute certainty that one contains only normal traffic and the other
contains only illegitimate or malicious traffic.

The filtering will be performed by creating a static rule-set from the provided net-
work description. It is likely that this network description will be incomplete, meaning
that the rule-set created from the description will be incomplete as well. Filtering the
network traces using this rule-set will split the data into three categories: legitimate
traffic, illegitimate traffic, and unclassified (i.e. traffic for which no rule currently ex-
ists). The next part of the filtering must be an iterative process. Of the unclassified
traffic, we will select a subset and discuss this traffic with the network administrator.
The network administrator will label this traffic as legitimate or illegitimate. We will
then update the network description and the rule-set, and, once again, filter the net-
work traces. This process is repeated until the unclassified traffic disappears and the
rule-set is able to filter all of the captured network traffic into either the legitimate
or illegitimate category. In the case that ground-truth cannot be established about a
specific type of network traffic, it will be removed from the dataset. Ground-truth is
essential for anomaly detection datasets, so data of which we are uncertain cannot be
included in our datasets.

4.2. Network description
The data that will be used in this research is taken from a real-world network. This
section will describe the layout of this network, as well as the components that it is
made out of.

The services provided by this network are used by a multitude of users from differ-
ent places all over the world. While itself a relatively small network compared to large
organizations, many types of traffic that are also found in such large organizations,
such as mail, web, and DNS traffic. The presence of these different types of network
traffic makes this used network a much more realistic one than the artificial network
created by Mirsky et al. for their paper [47], since that network mostly consisted out of
IP cameras that output video traffic.

In addition to using IPv4, this network also accepts the newer IPv6 and can use it to
communicate. All components of the network have both an IPv4 address and an IPv6,
with the only exception being the private DNS server. This private DNS server is only
assigned an IPv4 address.

The network used in this research contains (i) a gateway, (ii) a mail server, (iii) a
web server, (iv) a public DNS server, (v) a private DNS server, (vi) a shell access server,
and (vii) a web server requiring authentication.

While every component on the network is a separate and independent unit, in ac-
tuality, they are all virtual machines (VM) running on the same physical server. The
gateway VM is the only component that is directly connected to the Internet. Its job
in the network is to provide the remaining virtual machines with Internet access, and
to allow for communication between said virtual machines. It does this by means of
a virtual bridge. This virtual bridge is set up on the gateway VM, and is configured to
contain all of the other virtual machines as interfaces. See Figure 4.1 for a diagram of
the network.

All virtual machines on this server are running OpenBSD 6.3 [52] as operating sys-
tem. OS distribution updates are downloaded from an OpenBSD mirror1. An SSH ser-

1https://ftp.halifax.rwth-aachen.de/

https://ftp.halifax.rwth-aachen.de/


4.2. Network description 25

Figure 4.1: Diagram of the network

vice is running on every virtual machine but the gateway VM. Additionally, all virtual
machines except the gateway and shell access server use the ACME protocol to auto-
matically renew their Let’s Encrypt SSL certificate. The characteristics of the different
components of this network will be discussed in the sections that follow.

4.2.1. Gateway
The gateway provides Internet access to the network. No filtering of firewall is set up
on this virtual machine. Therefore, any type of traffic is allowed to enter and leave the
network.

4.2.2. Mail server
Being a mail server, this VM offers services such as SMTP on port 25 and IMAP on
port 143. In addition to these services, also offered are its encrypted alternatives that
connect using SSL: SMTPS and IMAPS on ports 465 and 993, respectively. A mail sub-
mission agent (MSA) running ESMTP runs on port 587. This MSA offers opportunistic
TLS [20] using the STARTTLS command in order to encrypt the otherwise plaintext
SMTP traffic entering and leaving this port. Although these ports are open and visible
to the Internet, emails will only be successfully received if recipient is member of the
local domain. The mail server also offers a web interface that allows users to access
their email through their web browser. This web interface can be accessed on port 80
or port 443, although users attempting access through port 80 will be redirected to port
443.

4.2.3. Web server
The web server hosts a website that is publicly accessible on the Internet. As with the
mail server, people trying to access this website through port 80 will be automatically
redirected to port 443.

4.2.4. Public DNS server
This virtual machine offers a DNS service on port 53. DNS requests are accepted in
both TCP and UDP format, and replies are sent back in the same manner. A web inter-
face is available for management purposes, which is accessible through ports 80 and
443. Every attempted connection to port 80 is also redirected to port 443.



26 4. Data collection and processing

4.2.5. Private DNS server
The private DNS server provides the same services and functionality that the public
DNS server does. The only difference is that DNS requests to this server originate only
from within the local network. Outside access to this server is prohibited.

4.2.6. Shell access server
The only service this server itself provides is SSH on port 22. This port is accessible
from the Internet, although only authorized users are allowed to utilize it. The users
themselves then have the ability to run or access services that produce other network
traffic, such as ICQ, XMPP, and IRC.

4.2.7. Web server with authentication
This virtual machine is also a web server. In contrast to the public web server, how-
ever, this server uses HTTP Basic authentication in order to grant users access to the
web page. All HTTP requests to port 80 are redirected to port 443. This is necessary
for confidentiality, since HTTP Basic authentication does not encrypt user credentials
before sending them to the web server.

4.3. Capturing network traffic
For the purpose of collecting the network traffic necessary for this research, we made
use of tcpdump, which is a packet capture and analysis tool [81]. A tcpdump instance
was set up on the gateway VM to capture all the traffic that passes the virtual network
bridge. This includes incoming and outgoing Internet traffic, as well as internal com-
munication between the virtual machines themselves within the network.

When writing network traffic to a file, tcpdump writes raw packets straight to disk [39].
These packet captures are saved to a pcap file, which contains the captured sequence
of raw packets. This allows the tcpdump instance to run as fast as possible in order to
minimize the amount of dropped packets [39].

This tcpdump instance ran uninterrupted for a period of seven weeks, or 49 days.
During this time, a total of 33.7 GB of traffic was captured, containing approximately
240000 unique IP addresses. Per day, the average packet capture file is around 690 MB
in size and contains 12170 unique IP addresses.

4.3.1. Sanitation
This is a real-world network with actual users. Given the possibility that the captured
network traces contain the users’ sensitive data, we need to take their privacy concerns
into consideration. This means that the captured data must be sanitized in order to
remove all of the potentially sensitive information.

This network contains two servers that require network traffic sanitation. These
are the mail server and the shell access server.

The mail server makes use of SMTP on port 25 for sending emails. Plain SMTP does
not make use of encryption. Hence, capturing this traffic will also capture the contents
of the users’ emails as plaintext. In order to prevent privacy issues, any packet with port
25 as either source or destination port is stripped of its TCP payload. The result of this
sanitation is that all SMTP packets are transformed into empty TCP packets, meaning
TCP packets with no payload.

The shell access server allows users to set up their own messaging services or con-
nect to external messaging services. These messaging services include ICQ, XMPP,
and IRC. Network traffic created by these messaging services are not necessarily en-



4.4. Filtering network traffic 27

crypted [62]. IRC, for instance, is a plaintext protocol. Anyone with access to the net-
work can also access the information that is sent via this protocol. Several clients that
allow for encrypted IRC traffic are available [43, 66]. However, encryption is neither
mandatory nor enabled by default, so we must assume that captured IRC traffic will
be in plaintext. While XMPP had no encryption capabilities originally, such function-
ality has been developed. The developers of XMPP have been pushing for mandatory
encryption on XMPP, and in May of 2014 they signed an agreement with a large num-
ber of XMPP operators to ensure they cooperate [57]. There are not all of the XMPP
users globally, though, and the users of this server, or the external XMPP servers they
use, might not necessarily adhere to these rules. Even though ICQ offers end-to-end
encryption for all voice and video calls [38], messaging uses no encryption whatso-
ever [37]. Based on this information, the network traffic that corresponds to these ser-
vices must be sanitized.

See Table 4.1 for an overview of the sanitized hosts and ports.

Table 4.1: All hosts and ports that were sanitized.

HOST PORT PROTOCOL

Mail server 25 SMTP

Shells server 5190 ICQ
5223 XMPP
6667 IRC
6697 IRC
9999

Sanitation was achieved by creating a Python script that utilizes the packet manip-
ulation library Scapy [68]. Every packet that is captured is processed by this script. The
script checks whether a packet’s source or destination and service matches one of the
aforementioned services that handle sensitive information. If it does, it removes the
TCP payload from the packet and saves the rest of the packet to disk.

4.4. Filtering network traffic
After capturing and sanitizing the captured traffic, the next step is to start the filtering
process. The filtering is performed in order to separate the malicious traffic from the
benign. This allows us to obtain the ground-truth data that is necessary to properly
train an IDS.

The filtering process is not only useful for research purposes, but potentially ben-
eficial to the network administrator as well. First of all, knowing exactly what type
of traffic is present in a network is useful to a network administrator. It is possible
that the network administrator might have overlooked certain configuration errors.
Alternatively, unknown network traffic could indicate a possible network intrusion or
a compromised machine.

In the paper by Mirsky et al. [47], Kitsune is described as an “NIDS which can learn
to detect attacks on the local network, without supervision.” Unsupervised learning,
as opposed to supervised learning, does not require class labels in order to build a
classification model [18]. In this specific case of Kitsune, it is implied that Kitsune
need not know whether the traffic used for training is benign or malicious, and that it
will be able to differentiate between normal and abnormal traffic on its own. In the
penultimate section of the article, however, the authors clarify: “When first installed,



28 4. Data collection and processing

Kitsune assumes that all traffic is benign while in train-mode.” Due to this, any ma-
licious actors already present in the network will be able to circumvent Kitsune’s at-
tempts at detection. Technically, Kitsune is an unsupervised system due to its usage
of autoencoders [32] for its learning and classification process, which do not need ex-
plicit labeling of data. In practicality, however, training on just normal data suggests
that any candidate data that will be used for training must first be split up into be-
nign and malicious traffic before being fed into the system. This is especially the case
in the current Bring Your Own Device [6] era. People bring their own devices to the
workplace and use them to access the company network. In turn, these devices bring
with them a large collection of software that produces lots of new network traffic that
would otherwise never be seen in the company network. Much of the traffic within a
company network will undoubtedly be benign, but one cannot say with certainty that
all of the network traffic is benign without performing some sort of analysis on said
network traffic. Consequently, any real-world network traffic must be analyzed and
filtered before being used as training data.

The objective of this research is to test Kitsune’s classification performance on a
real-world network that is noisier and contains a larger variety of types of network
traffic. Additionally, for anomaly detection research, it is imperative to obtain reli-
able ground-truth data [73]. Therefore, the traffic that is captured cannot simply be
used immediately to train a classifier. The traffic collected from this network must be
filtered in order to train Kitsune on ground-truth and completely benign traffic. Any
presence of malicious or unwanted traffic in the training data will influence the classi-
fier’s performance.

A Python script was created to perform the filtering process. The script utilizes
tcpdump’s filter rule functionality. This allows the user to extract a specific portion of
network traffic from either a real-time network traffic stream, or a pcap file containing
previously collected traffic. This script carries out a number of tasks in order to extract
ground-truth benign traffic.

Certain services offered by the network require authentication before usage is pos-
sible. Therefore, we cannot assume that all network traffic corresponding to this ser-
vice is benign. See Table 4.2 for the full list of these services. Access to these services is
logged, and these logs enable us to differentiate between benign access and unwanted
or malicious connection attempts. The IP addresses that attempt to access the services
are extracted from the logs and separated into valid and invalid IP addresses. This sep-
aration is based on whether the host has successfully completed authentication on the
corresponding service. Once extracted and separated, only the hosts with valid IP ad-
dresses have their traffic classified as benign. It is important to note, however, that the
validity of hosts is not global. That is to say, if a host is considered benign for a certain
service on a single host, it is not assumed that this host is benign on all the other hosts.
For instance, a host with a valid connection to the SSH service on the mail server does
not mean that any connection attempts to the web server’s SSH port will be considered
benign. Furthermore, there exists the possibility that a host has their IP address classi-
fied as both valid and invalid, e.g., a user successfully logging in to their account after a
number of failed attempt. It is difficult to make a distinction between a legitimate user
forgetting or mistyping their password and a malicious user attempting to break into
an account. Since obtaining ground-truth benign data is necessary, and determining
the ground-truth of this specific case is difficult, such hosts, and their corresponding
traffic, are considered malicious.

A drawback of using service logs for this type of filtering, is that logging applica-



4.4. Filtering network traffic 29

tions do not log all activity on its port. For instance, OpenSSH, which provides an SSH
service on all hosts, logs the “beginning, authentication, and termination of each con-
nection” [53]. It does not, however, log port scans or incomplete connections. Any
traffic that does not produce a complete connection will not be logged, and will, there-
fore, remain unclassified. There is no infallible method of determining the nature of
such network traffic, and since the goal is to obtain ground-truth data, we cannot make
any unfounded assumptions about said traffic. For this reason, this remaining network
traffic is discarded from the dataset altogether.

Table 4.2: Services that require authenti-
cation per server

SERVER PORT SERVICE

Mail 22 SSH
80/443 HTTPS
143 IMAP
465 SMTPS
587 ESMTP
993 IMAPS

Web 22 SSH

Public DNS 22 SSH
80/443 HTTPS

Shells 22 SSH

Web with auth 22 SSH
80/443 HTTPS

After service-specific filtering has been com-
pleted, the general behavior of the network is
considered. The network description from Sec-
tion 4.2 that is provided by the administrator of
the network must be translated into tcpdump’s
filter rule format. These rules provide a model for
the network traffic that is expected to be present
in the network. The traffic remaining from the
previous step is filtered using these filter rules. All
of the traffic that fits into this model is assumed
to be benign traffic.

Much of the captured traffic, though, does
not fit into the model. Not all of the traffic can
be explained by the constructed filter rules. This
remainder must be filtered further until all of the
unknown traffic is accounted for. The following
is a list of the types of traffic that can be found in
the remaining traffic:

• port scans;

• ICMP traffic;

• exploitation attempts;

• additional legitimate traffic; and

• additional unknown traffic

The subsections below will describe the traffic from this list. We will also elaborate
on the filtering processes for every type of traffic.



30 4. Data collection and processing

(a) Incoming connections per minute
for every IP

(b) Incoming connections to a single port per
minute for every IP

Figure 4.2: Attempted heuristics for port scan detection

TCP port scans

The majority of the remaining traffic was composed of several types of port scan-
ning activities. These can be categorized into two main groups: TCP scans and
UDP scans. The objective is to detect these port scans in order to separate the
them from the rest of the traffic.

TCP connections are initiated with SYN packets [79]. Several statistics can be
created by counting the number of SYN packets sent out by hosts. So, initially,
port scan detection was attempted using two different statistics that were ex-
tracted from the SYN packet information. The first of the two is the number of
incoming connections per minute per IP address. When performed aggressively,
port scans attempt to initiate a large number of connections in a relatively short
span of time. The objective was to depict that phenomenon with this particu-
lar statistic. The expectation was that hosts scanning the network would have
a much higher number of connections per minute than legitimate hosts. Fig-
ure 4.2a illustrates this statistic as a scatter plot. As can be seen in the figure,
however, there is no clear correlation between connection validity and the num-
ber of connections per minute. There is no way of separating valid and invalid
connections based on this statistic alone.

The second statistic is the number of incoming connections to a single port. Fig-
ure 4.2b illustrates this statistic. It describes hosts scanning a single specific port
across the network. This type of scanning is performed when looking for spe-
cific services or specific vulnerabilities. While certainly a far cleaner figure than
Figure 4.2a, Figure 4.2b is not perfect either. Although most of the valid con-
nections have a low amount of connections per minute, there are several valid
connections that share the same amount of connections per minute as lots of
the invalid connections. Just as with the previous statistic, it is impossible to
divide the traffic into valid and invalid using this statistic.

One could argue that the thresholds could be set in such a way that the majority
of the invalid traffic could be captured using these statistics. The problem with
this argument is that it does not take into account the need for ground-truth.
And data obtained using these statistics would therefore be useless for our pur-
pose.



4.4. Filtering network traffic 31

A form of TCP scans is the SYN scan. A side effect of a SYN scan is the creation of
RST packets, either by the host performing the scan, or by the host that is being
scanned [14]. The scanner creates a SYN packet addressed to a specific host and
port, and sends it to the target host. In the case that the target port is open, the
host will respond to the scanner with a SYN/ACK packet. The SYN/ACK packet
tells the scanner that the port is open. After receiving the SYN/ACK packet, the
scanner responds with a RST packet to close the connection. If the target port
is closed, however, the scanned host does not respond to the scanner with a
SYN/ACK packet, but responds with a RST packet instead. In both cases, a RST
packet is generated by either of the two hosts. Also, since RST packets must be
generated when a port receives packets for which an open connection does not
exist [59], we can assume that no legitimate connections will produce RST pack-
ets. Hence, the presence of this RST packet can be used to detect SYN scans and
the scanning hosts themselves. The filtering process is then as follows: 1) For
every RST packet, collect the IP address of the remote host. 2) Extract all of the
network traffic corresponding to the collected IP addresses. 3) Classify the ex-
tracted traffic as malicious.

Some port scanners, though, do not close the connections they open when scan-
ning. Just as the previous case, the scanners send a SYN packet to a certain port
on a server, who then responds to the scanner with a SYN/ACK packet. In the
style of a SYN flood attack [7], the scanner does not to respond to the server with
a RST packet, but instead opts to end the connection. This leaves the connec-
tion on the server’s side in a half-open state [59]. The server assumes the sent
SYN/ACK packet did not successfully arrive at its destination and retransmits
the packet a number of times before finally closing the connection. Retransmis-
sions of the SYN/ACK packets can be identified in the network traffic, and can
be used to detect this type of port scans. The retransmitted SYN/ACK packets
are extracted, and the IP addresses responsible for this traffic are collected. The
traffic generated by these hosts is then extracted and classified as malicious.

The network traffic captures also contained a number of lone SYN packets origi-
nating from remote hosts and addressed to local servers. No matching SYN/ACK
packets appear in the pcap file. Considering there is no firewall or packet fil-
ter active on neither the gateway nor the rest of the virtual machines, the SYN
packets could have simply been dropped silently by the virtual machines. Alter-
natively, the tcpdump instance could have failed to capture these packets. Either
way, lone SYN packets that do not attempt to set up a full connection can be in-
dicative of port scanning, and, therefore, this traffic should be filtered as well.
IP addresses are extracted from the SYN packets, and all traffic corresponding to
those IP addresses is classified as malicious. As mentioned earlier, all TCP con-
nections are initiated with SYN packets. By simply filtering out SYN packets, all
SYN packets belonging to complete connections will be removed too, be they
malicious or not. It is for this reason that it is important for this step of filtering
to be performed last. This ensures that all other traffic has been accounted for,
and that lone SYN packets are the only thing left to worry about.

UDP port scans

Seeing as how using connection statistics as in Figure 4.2 did not help with iden-
tifying TCP scans, that method was not attempted when trying to identify UDP
port scans in the network traffic. Since UDP is a connectionless protocol, there



32 4. Data collection and processing

is no need to use handshakes and establish a connection in order to exchange
data. Given that there is no firewall or filter in place, hosts can just send out
any arbitrary UDP datagram to a port listening for UDP traffic, and the port will
receive it [79].

In this network, the only servers that accept UDP traffic are the public DNS
server and the private DNS server. As these two servers are the only users of
UDP traffic, the only legitimate instances of UDP traffic in the network are the
following:

– Internal DNS traffic to and from port 53 on the private DNS server.

– Incoming DNS traffic to port 53 on the public DNS server.

– Outgoing DNS traffic from the public DNS server to port 53 on a remote
server.

Nevertheless, it is wise to avoid using a single blanket filter that captures all but
the aforementioned traffic. Doing so makes it impossible to find possible net-
work configuration errors or intrusions that the network administrator is obliv-
ious of. Hence, it is interesting to examine the specific instances of UDP scans,
because flaws in the network can possibly be identified.

Outside hosts probe many different ports in hope of finding one that responds
to the scan with a UDP packet of their own, thus informing the scanner of an
open port. Many of these attempts are basic scans, but a great deal of them are
targeted scans. Specific ports for which their corresponding services are known
are singled out and receive UDP packets specially crafted for those particular
services. Examples of these include LDAP (Lightweight Directory Access Proto-
col) on port 389, SIP (Session Initiation Protocol) on ports 5060 and 5061, and
NetBIOS on port 137.

During the examination of the UDP scanning, we discovered an NTP (Network
Time Protocol) service running on a server where no such service should be run-
ning. Upon further investigation by the administrator, it was determined that the
NTP service was set up some time in the past for legitimate reasons. The service
was originally supposed to be running temporarily, but nobody remembered to
shut it down afterwards. It could be argued that this traffic should belong with
the rest of the benign traffic, since the service served a legitimate purpose. How-
ever, this argument is outweighed by the fact that—by own admission of the net-
work administrator—this service is not part of the network’s normal operation.
Just because this NTP service turned out to be benign in this particular case,
there can be no certainty that no malicious actor will set up an such an NTP
service in the future. Since the classifier should be trained with ground-truth
benign data, placing this traffic with the rest of the benign data will bias the clas-
sifier and be of detriment to the results of classification. But because the NTP
service is not malicious either, it cannot be placed with the rest of the malicious
traffic. For this reason, all traffic corresponding to this NTP service was removed
completely from the dataset.

The rest of the ports receiving UDP packets were examined, and no other irreg-
ular incidents were discovered. A filter rule was created for every one of these
ports, so that the UDP scans get placed with the malicious traffic.

As none of the other probed services are running on any of the virtual machines,
no UDP packets are sent back. Although no server responds to the probes with



4.4. Filtering network traffic 33

UDP packets, closed ports respond to unexpected UDP packets with an ICMP
Type 3 Code 3 packet (Destination unreachable: Destination port unreachable) [58].
ICMP traffic will be discussed in a later section.

Miscellaneous targeted port scans

In the captured traffic, there was one type of port scanning traffic that was nei-
ther TCP nor UDP. An outside host was scanning the network for services using
SCTP (Stream Control Transmission Protocol). The network does not run any
service that uses SCTP, so this is classified as malicious.

ICMP traffic

There are many types of ICMP packets present in the captured traffic. Since this
network operates with both IPv4 and IPv6, both its respective ICMP versions
can be found in the dataset. Different types of these packets serve different pur-
poses. Some are part of normal network management traffic, while others can be
indicative of malicious activities. Some ICMP traffic can also be used for purely
malicious objectives.

When deciding what ICMP traffic is malicious, we checked out the IP addresses
in the packet. The IP addresses were then compared to the lists of valid and
invalid IPs per host and service. If an ICMP packet corresponds to an invalid IP
for a certain service, the packet is placed with the malicious traffic. Conversely,
if the packet corresponds to a valid IP and service, the packet is deemed benign.

As mentioned in the UDP port scans section, UDP scans can generate ICMP
packets of the “Destination unreachable” type. The ICMP traffic of this type that
is present in the network traces is the result of UDP scanning. Therefore, these
packets are part of the malicious traffic and, as such, are classified as malicious.

Ping traffic can be either benign or malicious, depending on the frequency of the
ping request and the size of the packet. Both the Windows and Linux versions of
the ping utility sends out one ICMP request per second by default. The network
administrator has no need for ICMP requests being received by the network at
a high frequency. Thus, we set the limit for benign ICMP requests to four per
second for a single host. Any host that sends ICMP requests at this frequency or
higher will have their corresponding ICMP deemed malicious. The rest is placed
with the benign traffic.

An example of a purely malicious instance of ICMP traffic is the Ping of Death [9].
This is an IPv4 ICMP packet that is larger than the maximum packet length of an
IPv4 packet, which is 65,535 bytes. To extract Ping of Death packets, we created
a tcpdump filter rule that examines ICMP packets and their IP header. It the
total length of the packet exceeds 65,535 bytes, the packet is a malicious one. All
remaining ping traffic is benign.

Furthermore, we also encountered ICMP packets of type Time Exceeded that
originate from outside the network. These are ICMP packets that are sent back
to a packet’s source by a router when the time-to-live field reaches zero [58]. The
packets announce that certain DNS packets originating from the public DNS
server did not reach their destination before the expiration of its time-to-live
value. There is nothing abnormal about either the DNS packet’s destination IP
or the contents of the payload. Therefore, a BGP routing loop is the most likely
explanation as to the cause ICMP Time Exceeded packets. This routing loop



34 4. Data collection and processing

is possibly caused by a link failure somewhere between our public DNS server
and the destination of the packet. When the link failure is detected, the affected
router R sends a withdrawal to routers with which it has a connection. It also
sends the packet to one of the other routers so another route to the destination
may be found. While new paths have not been propagated throughout the net-
work, the other routers will only know of paths to the destination that use router
R. Since router R has already sent a withdrawal to the other routers, the paths are
invalid, and the routers will end up forwarding the packet to each other until the
time-to-live value expires. See the paper by John et al. [23] for a more detailed
explanation.

The network traces also contain the ICMPv6 packets used for the Neighbor Dis-
covery Protocol. This protocol is used with IPv6 and performs actions similar to
ARP in IPv4. Since the network uses IPv6, this traffic is necessary for the proper
functioning of the network, and is therefore benign.

The rest of the ICMP and ICMPv6 packets that are present in the captured net-
work traffic are part of normal network management traffic. They are placed
with the rest of the benign traffic.

Exploitation attempts

During filtering, we found that outside hosts were attempting to exploit the Heart-
bleed bug [77] on a number of the local servers. See Figure 4.3 for one of the
captured Heartbleed packets. The Ethernet and IP headers have been redacted
from the figure.

Figure 4.3: Wireshark capture of a Heartbleed packet

To detect Heartbleed packets, we must first make sure that the packet is a TLS
Heartbeat Request packet. This is done by checking if the first byte of the TCP
payload equals 0x18. Then, we check if the packet’s TLS version is one that is vul-
nerable to the exploit by checking if the second byte of the payload equals 0x03
and the third byte less than 0x04. These bytes represent the major and minor
version, respectively. Finally, we calculate the actual length of the payload and
verify whether it matches the claimed length of the payload. Figure 4.3 shows
that the attacker entered a payload length of 65,535, which certainly does not
correspond to the packet’s true length.

Legitimate traffic

The network traces also contain legitimate traffic that was overlooked by the net-
work administrator when providing the network description. Specifically, this



4.5. Results of filtering process 35

traffic is composed of network traffic between the Shells server and the IP ad-
dress 178.63.40.67 on port 443. This IP address belongs to a chat client website2.
Since this is legitimate user traffic, this is placed with the benign traffic.

Unknown traffic

The last portion of unclassified traffic that we encountered was traffic to port
443 on the Shells server. This traffic is not supposed to be present, and only oc-
curred on a small number of days. Interestingly, none of this traffic is HTTPS,
even though it is port 443 that is receiving requests. We know this because the
Shells server presents an OpenSSH banner when a connection with a host is es-
tablished. After examination by the network administrator, no definite explana-
tion could be found as to the cause of the OpenSSH service, nor for what purpose
it was used. Due to the lack of information on this particular type of network
traffic, we cannot establish the necessary ground-truth. All traffic of this type,
namely traffic that corresponds to port 443 on the Shells server, was eliminated
from the dataset.

4.5. Results of filtering process
Figure 4.4 illustrates the proportion of good, bad, and unclassified traffic before and af-
ter the complete filtering process. Specifically, Figure 4.4a illustrates these proportions
after filtering the traffic using the original description of the network that was provided
by the network administrator. Using the filtering rules described in this chapter, we
were able to entirely annotate the unclassified portion of network traffic as good and
bad.

An interesting aspect about Figure 4.4a is the increase in unclassified network traf-
fic as the days progress. While the original network description was somewhat effective
at classifying most of the network traffic during the initial portion of the capture, it be-
came increasingly difficult to do so later on. This demonstrates the unpredictability of
traffic within a network, and the limited knowledge we have about our own networks.

2https://weechat.org/

https://weechat.org/


36 4. Data collection and processing

(a) Before filtering

(b) After filtering

Figure 4.4: Proportions of good, bad, and unclassified traffic before and after the filtering process.



5
Attack traffic construction

The previous chapter spoke about the network used for the experiment. Its structure,
contents, and the different types of traffic that the network receives every day were
discussed. In addition to testing the Kitsune classifier on the everyday traffic of a real-
world network, it is interesting to see how well the classifier would fare against network
traffic that is undeniably malicious.

In the research by Mirsky et al. [47], they evaluate the performance of their classifier
by simulating a number of attacks on their artificial networks. Nine different attacks
are simulated in the network, which can be categorized into four types:

• Reconnaissance: OS scan, fuzzing.

• Man-in-the-Middle: Video injection, ARP poisoning, active wiretap.

• Denial of Service: SSDP flood, SYN flood, SSL renegotiation.

• Botnet Malware: Mirai infection.

After allowing the Kitsune instance to train itself on a stream of benign traffic, one
of these attacks was performed on the network. This process was then repeated for
every attack in the list.

Mirsky et al. have released the datasets of the captured traffic from their network
that were used in the testing of Kitsune [45] in the form of pcap files. Directly testing
our Kitsune instance on this dataset, however, will not provide us with any meaningful
results. This is because our network, and all the network traffic found within it, differs
significantly from the network used by Mirsky et al. The difference is not only in type
of network traffic (web, mail, SSH, etc. vs. mostly video), but more subtle differences,
such as IP and MAC addresses, and network latency. Any of these differences could
give a classifier enough reason to label certain traffic as malicious, whether or not it
actually is.

Therefore, it is necessary to transform the provided datasets to resemble our own
network traffic as closely as possible. Doing so will ensure that our Kitsune instance
is evaluating the attack traffic on the aspects that actually make the traffic malicious,
as opposed to, for instance, IP or MAC addresses it as never seen before. On the other
hand, we must not alter the datasets too much. Since the idea is to replicate the evalu-
ation performed by Mirsky et al., the altered attack traffic must still resemble the origi-
nal attack traffic. Only by ensuring this, will the results obtained from our experiments

37



38 5. Attack traffic construction

be comparable to the work by Mirsky et al. Along with the network traffic datasets
themselves, Mirsky et al. also provides files containing labels for every packet in the
datasets. This enables the extraction of the malicious traffic from the pcap files, which
in turn allows us to focus exclusively on transforming the important (malicious) traffic,
and prevents us having to deal with the benign traffic ourselves.

Figure 5.1 illustrates the true positive rates that Mirsky et al. [47] obtained when
performing their experiments given the false positive thresholds of 0 and 0.001. Look-
ing at the results, and specifically to the true positive rates at a false positive threshold
of 0.001, we see that Kitsune does not seem to perform better than alternative intru-
sion detection systems for every type of attack. The three attacks where Mirsky et al.
report significantly improved detection are when detecting Mirai infections, fuzzing
attacks, and SSDP flooding. And apart from SYN flooding and OS scanning, the other
intrusion detection systems either have very similar performance to Kitsune or signif-
icantly outperform it.

Figure 5.1: Performance statistics from Mirsky et al. [47]

So, out of the nine attacks, there are five which are interesting to reproduce in this
current research. These are the Mirai infection, fuzzing, SSDP flooding, SYN flooding,
and OS scanning.

Besides reproducing the same attacks as Mirsky et al., experimenting on Kitsune
with novel attacks will provide added value to this research. One of the novel attacks
that will be created for this purpose is a successful SSH brute-force with log in and



5.1. Mirai infection 39

Figure 5.2: The attacker initiating a Telnet connection with the victim.

command execution. SSDP flooding is an attack that was made possible to Mirsky et
al. due to the numerous plug-and-play video surveillance cameras connected to the
network [47]. The network that we use for our research has no such equipment that
uses SSDP. Therefore, we must replace this attack with another that is more suitable for
the type of network we have access to. Since SSDP flooding is an amplification attack,
we choose the similar DNS amplification attack as a replacement. A DNS amplification
attack is more suitable for our network, given the presence of a public DNS server on
the network. This is the second novel attack that we will create for this research.

The sections below will elaborate on the process of transforming the attack traf-
fic from the Mirsky et al. paper [47] into traffic closely resembling our own network’s
traffic. Furthermore, the creation of novel attack traffic will also be discussed.

5.1. Mirai infection
The Mirai attack was performed on the network composed of nine IoT devices and
three PCs. This was the only attack that was performed on this particular network.

All devices, with the exception of a single PC, operated on a 192.168.2.0/24 net-
work. The remaining PC sat in its own 192.168.4.0/24 network, but was able to com-
municate with the first network.

Firstly, the malicious traffic needed to be extracted from the dataset. The process
of doing so, however, was not a straightforward one. This is because, for this particular
case, the labels provided by Mirsky et al. did not indicate which specific packets were
benign or malicious. Instead, the labels merely marked the point in the network trace
where the attack was initiated. Every packet before this point is labeled benign, while
every packet after is labeled malicious. Extracting all “malicious” traffic then leaves us
the task of figuring out what is the actual attack traffic, and what is benign background
traffic.

The Mirai botnet uses Telnet brute-forcing in order to spread itself to new de-
vices [1]. Exploring the network traffic, we can indeed find Telnet traffic. In Figure 5.2,
we can see a device initiating a Telnet connection with one of the IoT devices. Exam-
ining this Telnet conversation, we find that the device initiating the connection logs
in successfully, and installs Mirai malware onto the victim device. We can therefore
conclude that the malicious actor possesses the IP address 192.168.2.107, and the first
victim 192.168.2.110.

Interestingly, after infection, the IoT device starts to flood the network with ARP
requests, probably to collect a list of all the devices on the network that can be probed
for a vulnerable Telnet service.

Mirsky et al. [47] describe their Mirai attack as follows: “The attacker infects [an]
IoT [device] with the Mirai malware by exploiting default credentials, and then scans
for new vulnerable victims [on the] network.” Based on that description, we need to



40 5. Attack traffic construction

verify whether the attacker attempts to infect any host other than the one at 192.168.2.110.
A quick search informs us that no other attempts occur, and 192.168.2.110 is the only
host that is personally infected by the attacker. Devices infected with Mirai will try to
spread the infection to other vulnerable devices [1], so we must also check if the device
at 192.168.2.110 tries to do this.

The infected IoT device indeed attempts this, as can be seen in Figure 5.3. This
infected device initiates a Telnet connection with the device at 192.168.2.103, although
it is not clear from the packet data whether the spread of the malware was successful.

Based on these findings, we must extract the following:

• all network traffic generated by 192.168.2.107;

• all network traffic between 192.168.2.107 and 192.168.2.110;

• all network traffic between 192.168.2.110 and 192.168.2.103;

• all ARP requests generated by 192.168.2.110; and

• all ARP replies addressed to 192.168.2.110.

Figure 5.3: The infected IoT device initiating a Telnet connection with another IoT device.

After extraction, we obtain the true malicious network traffic from Mirsky et al.’s
Mirai attack. In this remaining traffic, six different hosts: one wireless router, one at-
tacker, and four IoT devices. To have this network traffic resemble our own network,
every host had their MAC and IP address swapped with the MAC and IP of a server on
our own network. See Table 5.1 for the specifics.

Table 5.1: Transformations applied to hosts on the Mirai network

DEVICE IP MAC ASSIGNED VM

Wireless router 192.168.2.1 4c:09:d4:c6:12:7b Gateway

Attacker device 192.168.2.107 40:8d:5c:4b:99:14 none (given new IP on network)

IoT 1 (initial victim) 192.168.2.110 3c:33:00:98:ee:fd Shells

IoT 2 192.168.2.103 00:01:6c:d5:63:5c Web

IoT 3 192.168.2.101 40:8d:5c:4b:99:1d Mail

IoT 4 192.168.2.118 b8:27:eb:e1:a9:f6 Web with authentication

Finally, we need to shift all of the packet’s timestamps to the same time period as
our own collected traffic. This is done in order to prevent any adverse effect a times-
tamp mismatch might produce during processing by Kitsune. The original timestamps
on this traffic are set to the 25th of October, 2018, and we initiated our packet capture
the 21st of June, 2018. All timestamps must therefore be shifted 10,886,400 seconds
into the past.



5.2. Fuzzing 41

Figure 5.4: Snippet of an invalid GET request sent out by SFuzz

5.2. Fuzzing
The Mirai attack was the only attack that was performed on the IoT network. The re-
maining attacks, including the fuzzing attack, were carried out on the IP surveillance
camera network [47].

Fuzzing is a technique in software testing in which incorrectly formed data is pro-
vided as input to some piece of software in order to discover bugs and vulnerabilities.
Mirsky et al. [47] describe their fuzzing attack as “[searching] for vulnerabilities in the
camera’s web servers by sending random commands to their CGIs.” A camera’s CGI
enables the users to control several aspects of the camera by sending commands to
said CGI. CGIs a range of different commands, including the HTTP-like GET, POST,
and HEAD methods [64]. The CGIs of the surveillance cameras used in the network,
specifically, accept these commands when contained within a UDP packet.

Two obstacles stood in the way of directly porting this attack traffic to our own
network. These two were the following:

1. The extracted malicious traffic contained UDP video traffic from the victim surveil-
lance camera.

2. The fuzzing traffic itself consisted of HTTP requests wrapped in UDP packets.

Firstly, there is no UDP video traffic present anywhere in our network, so the Kit-
sune instance that will be trained on our network will more readily regard this traffic
as abnormal. This traffic must therefore be eliminated from the dataset. Additionally,
while HTTP requests certainly appear within the captured network traffic, they are all
contained in TCP packets, not UDP packets. Since HTTP requests wrapped in UDP
packets are not present in our dataset, we cannot directly use this traffic either. For-
tunately, Mirsky et al. [47] share with the reader the tool that is used to create their
fuzzing attack, namely SFuzz [10]. Instead of attempting to transform the UDP traf-
fic into valid TCP connections, we create our own fuzzing traffic that is similar to the
original by using the same tool and method described in their paper.

First, we set up a virtual machine and install SFuzz onto it. We then set up an
Apache web server that will receive and reply to the requests sent by SFuzz. When the
web server is up, we execute SFuzz on the port 80 web server. The fuzzing is made up of
malformed and invalid GET, POST, and HEAD requests. See Figure 5.4 for an example
of such an invalid request. The entire fuzzing process was captured using tcpdump.

The attack traffic contained approximately 20,000 packets. Since the attack was
performed locally on a virtual machine, both the attacker and victim have 127.0.0.1 as
IP address, and both have the same MAC address too. We can distinguish the direction
of traffic by looking at whether port 80 is the source port or destination port. If port 80
is the destination port, it is a packet coming from the attacker and its destination is the
victim machine. The source IP should then be replaced with a random IP address that
is not present in the legitimate traffic. This would prevent any bias Kitsune might have
against certain IP addresses to influence detection results. The destination IP address
then has to be replaced with an IP address of one of the local servers. For consistency



42 5. Attack traffic construction

with our network, we replace this destination IP address with the IP address of the
Web server. If port 80 is the source port, then the packet is a reply to the attacker
coming from the web server. The source IP is then replaced with the IP address of our
Web server, and the destination IP is replaced with the randomly chosen IP address.
Furthermore, MAC addresses need to be fixed according to the working of our network:
in case of incoming traffic (i.e. fuzzing traffic addressed to our Web server), the source
MAC is replaced with a previously-unseen MAC, and the destination MAC is replaced
with the MAC of our network’s Gateway VM. Outgoing packets get the source MAC of
our Web server, and the randomly chosen MAC address as destination MAC.

5.3. SYN flooding

A SYN flood is a denial-of-service attack in which an attacker sends out of SYN requests
to a certain server. The objective is to consume all of the victim’s server resources in
order to prevent the server from providing its service to legitimate users.

The SYN flooding attack dataset is also one that is released by Mirsky et al. [45]
The attack is performed using the hping3 tool [67]. The attacker sends a flood of SYN
packets to the web server (HTTP port 80) of a single video surveillance camera, which
causes its video stream to halt. The source IP address in the SYN packets are spoofed
and replaced with random IP addresses. This dataset contains normal video traffic
over UDP and over HTTPS. The malicious traffic itself that is present in the dataset
consists of the SYN/ACK packets that the victim camera sends out in response to the
incoming SYN requests, as well as retransmissions of these SYN/ACK packets when
no ACK packet is received from the spoofed IP addresses. The original malicious SYN
packets are not available in the dataset, because these packets did not reach the seg-
ment of the network where Mirsky et al. had set up their Kitsune instance [47].

This situation would not occur in our case, since all of the servers are connected
to a central gateway. Therefore, this dataset is not suitable for our experiments, and
we must create our own SYN flood dataset that is more appropriate for our type of
network.

For our dataset, we decided to simulate a 100 Mbps SYN flood. A single SYN packet
is 60 bytes, meaning that a 100 Mbps SYN flood would have to contain around 210,000
SYN packets per second. Just like the dataset released by Mirsky et al., these SYN pack-
ets contain spoofed source IP addresses. In the original dataset, the SYN packets were
addressed to a web server on port 80. For the newly created dataset, the SYN packets
are addressed to port 80 of our own Web server. Finally, it is necessary to ensure that
the SYN packet’s timestamps correspond to the 21st of June, 2018. This dataset was
constructed with the use of Scapy.

However, this dataset that was created has two limitations that were not possible
to avoid due to them being caused by Kitsune itself. The Python version of Kitsune
that is released by Mirsky et al. [44] can consume a great deal of memory when deal-
ing with large surges of traffic. Much more than the unreleased C++ version of the
IDS [47]. Because of these issues with memory consumption, we were forced to limit
the number of SYN packets to a just million packets. In a 100 Mbps SYN flood, this is
approximately five seconds worth of traffic. Also, every new IP address creates a new
incremental statistic tuple, consuming more memory in the process. As a result, we
also limited the randomization of the source IP addresses. All spoofed addresses are of
the form 123.123.123.x, where x is the only randomized portion of the IP address.



5.4. OS scanning 43

5.4. OS scanning
The OS scan dataset is also one that is released by Mirsky et al. [45] This attack is de-
scribed as “[an] attacker [scanning] the network for hosts, and their operating systems,
to reveal possible vulnerabilities.” [47] In reality, the OS scan differs from what is de-
scribed by Mirsky et al. in their paper. What actually occurs in the scan traffic is that
the attacker targets a single host and scans this host by sending a single SYN request to
every port (1-65535). No separate scan was conducted for UDP service discovery.

The IP address of the host performing the OS scan is 192.168.2.7. This address is
used only by the attacker, and only for the purpose of scanning the target host. The IP
address of the host being scanned is 192.168.2.1, meaning that the attacker and the vic-
tim are on the same subnet (assuming a /24 network). Seeing as this is the way Mirsky
et al. performed their experiment, we must make sure that our version differs as little
as possible. To this end, we replace the IP address of the attacker with a completely
new IP address that would place the attacker inside our network (again, assuming a
/24 network). We replace the victim’s IP address with the IP address of the Web server.
The MAC addresses are also altered: the attacker’s MAC is changed to the MAC address
of the Gateway VM, and the victim’s MAC address is changed to that of the Web server.

5.5. Successful SSH brute-force
The successful SSH brute-force attack is another novel attack that we created for the
purpose of our research. We wanted to test Kitsune’s detection abilities in a scenario
where an attacker uses readily available tools to successfully brute-force the password
belonging to the admin user on an open SSH service, logs in using the found password,
and executes some commands on the remote host. We set up a virtual machine we
could perform the attack on, and all traffic was captured using tcpdump.

In order to perform a brute-force attack, an attacker sometimes uses a list con-
taining a collection of commonly-used passwords. We constructed such a list, which
contains 1141 passwords. Of the 1141, only the last password in the list is the correct
one. An SSH server was set up on a virtual machine, and the hydra tool [82] was used to
launch the brute-force attack. As the attacker, we launched hydra with 16 parallel tasks
to speed up the brute-force attack. Since the correct password is the last element in the
list of 1141, the brute-force attack had 1140 failed attempts before finally succeeding
at attempt number 1141. After the successful brute-force and finding the correct pass-
word, the attacker then logs in to the remote SSH service using the acquired password
and executes the commands “cat /etc/passwd” and “cat /etc/shadow” before ex-
iting.

Because the attack was not performed on the actual network, but instead in a vir-
tual machine, the pcap file must be altered before it can be used. First of all, the IP
address of the attacker should be an IP address that is not present in the legitimate
traffic. Again, this is to prevent any bias Kitsune might have against IP addresses it has
already seen. Secondly, the victim’s IP address should be replaced with the IP address
of one of the local servers. It is important to keep the attack traffic consistent with the
functionality offered by the servers on the network. Although all servers offer an SSH
service, the Shells server is the only one that has this service as its primary function.
The Shells server would send and receive much more SSH traffic than the rest of the
servers. It is possible that Kitsune would see a spike in SSH traffic to the other servers
as malicious—regardless of whether it actually is—simply because it is a spike that it
is not used to seeing. To prevent this other bias from influencing the results, we chose
to assign the IP address of the Shells server to the victim of the brute-force. Lastly, the



44 5. Attack traffic construction

MAC address of the victim should also be replaced with the MAC address of the Shells
server.

5.6. DNS abuse and DNS amplification
This section describes three different attacks that we created. All three are related to
each other. The first two contains traffic that abuses the functionality of the public
DNS server. The last attack is an incoming DNS amplification attack that resulted from
the abuse of external open DNS servers.

DNS amplification attack. In a DNS amplification attack, an attacker sends DNS
queries with a spoofed source IP to open DNS servers, which causes the DNS servers
to flood the victim with all the DNS responses [8]. Since the size of DNS responses is
larger than the query sent by the attacker, the amount of traffic that reaches the victim
is amplified by the DNS servers. DNS amplification attacks are a very common type
of attack, making up 18.6% of all DDoS attacks on the Internet [22]. The network used
for this research contains such an open DNS server that could potentially be used to
carry out DNS amplification attacks. Therefore, it is interesting to see whether Kitsune
is able to detect such a scenario, and also whether it is able to detect such an incoming
attack itself.

When abusing open DNS servers for DNS amplification attacks, attackers will of-
tentimes use ANY queries for DNS amplification attacks, as this results in the largest
possible DNS response [8]. The public DNS server on our network, however, does not
accept DNS queries of type ANY over UDP. It only accepts ANY queries over TCP. An
alternative that also amplifies traffic significantly is the request of an MX record. For
example, one incoming 88 byte MX query to the public DNS server produced a 492
byte response. The public DNS server has no restrictions on querying MX records over
UDP.

We extracted the aforementioned MX query and response from the DNS traffic.
This two packets form be the basis of the DNS amplification attack. Using Scapy, we
replaced the source IP of the query and the destination IP of the response with a ran-
domized IP address that is not present in the legitimate traffic. This IP address will
represent the victim’s IP address. In order to avoid the same memory issues as in the
SYN flood case, we reduced the total number of packets to 200,000. Half of these pack-
ets are DNS queries, while the other half are DNS responses.

To examine the effect of the frequency with which the DNS queries are sent, we
created to variations of this attack. The first version has the queries sent with a fre-
quency of 100 DNS queries per millisecond, while the second version does it at a lower
frequency of one DNS query per millisecond.

The DNS amplification attack itself was also constructed using the extracted DNS
transaction. The difference with the previous two scenarios is that only the DNS re-
sponse was used to create the attack. Since a DNS amplification attack is a flood
of DNS responses, this is the only packet that is necessary. We simulated an attack
where 10 external servers would flood the Web server with DNS response traffic. To
this end, the source IP of the packet was replaced with one of 10 randomly chosen and
previously-unseen IP addresses. The source MAC address was replaced with the MAC
address of the Gateway VM. Because the Web server is the host that is being attacked,
the destination IP and MAC addresses were replaced with those corresponding to the
Web server. The DNS responses are received at a packet rate of 100 packets per mil-
lisecond.



6
IDS evaluation

Previous chapters described the preparation of the datasets that we used for the ex-
periments. This chapter will begin by elaborating on the methodology we followed to
perform the evaluation of the Kitsune IDS. Afterwards, we present the results obtained
from the evaluation process. These results include Kitsune’s performance on everyday
data, as well as on actual attack traffic.

6.1. Performance evaluation
Once we have downloaded the Kitsune IDS [44] and installed it onto our machines, we
must train it in the manner Mirsky et al. [47] did. Proper performance evaluation is
only possible when sufficient data is captured, and all of this data is properly filtered
and separated into legitimate and illegitimate traffic.

Mirsky et al. make the objective of their research to create an IDS that uses unsu-
pervised learning [47]. They state this as an objective due to the difficulty encountered
by supervised learning IDSs when trying to detect previously-unseen malicious traffic.
Afterwards, they also state that Kitsune must be trained on “normal data” [47]. There-
fore, we must test Kitsune in two different manners.

In the first, we will train Kitsune on all of the ground-truth legitimate data obtained
from the first day of capturing. Because we are training on all of the legitimate data in-
stead of just a portion, this will function as a best-case scenario for Kitsune’s detection
performance. After training on the legitimate data, we will merge the legitimate and
illegitimate traffic into a single dataset and attempt to detect the illegitimate traffic
with Kitsune. An additional experiment will be performed. We will inject attack traffic
into our network traces. Then, the trained Kitsune instance will be tasked with pro-
cessing the altered network trace and detect this malicious attack traffic. Specifically,
we will use the benign portion of the first day of captured traffic for this experiment.
We choose this portion of the network trace, since it is the same data with which we
will train our Kitsune instance. To maintain consistency with their work, we will use
attack traffic that is as similar as possible to the attack traffic used by by Mirsky et
al. [47]. Mirsky et al. have released their attack traffic to the public [45]. We will use
these datasets for own experiments. This research will also contain attacks that have
not been performed by Mirsky et al. [47] A detailed explanation as to the generation
of this attack traffic can be found in Chapter 5. In Chapter 3, we describe Kitsune’s m
parameter. Mirsky et al. perform their experiments in two different scenarios: (i) us-
ing a maximum autoencoder size m = 10, and (ii) using a maximum autoencoder size

45



46 6. IDS evaluation

m = 1 [47]. To maintain consistency between this research and that by Mirsky et al., we
will also perform these experiments using both parameters.

The reason for Kitsune making use of unsupervised learning is so that it can be
able to detect previously-unseen attacks as malicious traffic [47]. We must therefore
perform a second type of test on Kitsune’s detection performance. Instead of train-
ing Kitsune on only the legitimate traffic, we now train Kitsune on the full first day of
captured network traffic. After training, we have Kitsune process the network traces
from the rest of the captured days. The goal of this second test is to determine whether
Kitsune is able to detect previously-unseen traffic if trained on realistic, noisy data.

Section 2.3 discussed many types of techniques and measures that are used for the
performance evaluation of anomaly detection systems. Of all the performance met-
rics, Mirsky et al. focus on the following four: false positive rate, true positive rate,
AUC, and equal error rate. Again, for the sake of consistency and to provide a true
comparison of performance, we will also focus on these metrics during evaluation in
this project.

6.2. Classifying everyday network traffic
We collected seven weeks of network traffic. Two experiments were performed using
just this captured data to test both Kitsune’s detection performance and claims made
by Mirsky et al. [47] about their IDS. In the first experiment, we trained Kitsune on the
ground-truth benign data filtered from the first day of capturing, and then processed
the benign and malicious traffic from the remaining days. The second experiment had
Kitsune trained on both the benign and malicious parts of the first day of captured
traffic. Kitsune then processed the remaining traffic in an attempt to detect previously-
unseen attack traffic. This section will discuss the results obtained from these two
experiments.

6.2.1. Detecting anomalies
After obtaining ground-truth benign and malicious traffic for all of the seven weeks
of traffic, we trained Kitsune on the benign data of the first day of capturing. We
first trained Kitsune using the parameter m = 10. The detection thresholds were de-
termined by having our trained Kitsune instance process the same benign data with
which it was trained. For F PR = 0.001 and F PR = 0, this yielded as thresholds ap-
proximately 0.1857 and 7.460, respectively. We then used the trained Kitsune instance
to process the remaining 48 days of traffic and we recorded the anomaly scored pro-
duced by Kitsune. This process was repeated using the parameter m = 1. In this case,
the detection thresholds for F PR = 0.001 and F PR = 0 were approximately 0.2021 and
6.2696, respectively. The false positive rates and false negative rates were computed
using the detection thresholds. See Figures 6.1 and 6.2 for the false positive rates and
false negative rates for all seven weeks of captured traffic for m = 10 and m = 1, respec-
tively.

Table 6.1: Average FPRs and FNRs, using the thresholds obtained from the first day of network traffic

m = 10 m = 1
F PR = 0.001 F PR = 0 F PR = 0.001 F PR = 0

actual FPR 0.064313 0.000002 0.057190 0.000002
actual FNR 0.999870 0.999998 0.999039 0.999998



6.2. Classifying everyday network traffic 47

As can be seen from both Figures 6.1a and 6.2a, Kitsune’s FPRs are minuscule when
using the F PR = 0 threshold. When looking at Figures 6.1b and 6.2b, however, we see
that this low FPR comes at a price, namely an extremely high FNR. For every day, Kit-
sune does not produce an FNR lower than 0.97. This is the case for both thresholds,
and for both m = 10 and m = 1. Therefore, while Kitsune rarely classifies normal traffic
as malicious, detection of actual malicious traffic occurs much less frequently. Ta-
ble 6.1 contains the average FPRs and FNRs from Kitsune’s anomaly detection.



48 6. IDS evaluation

(a
)

Fa
ls

e
p

o
si

ti
ve

ra
te

s

(b
)

Fa
ls

e
n

eg
at

iv
e

ra
te

s

F
ig

u
re

6.
1:

Fa
ls

e
p

o
si

ti
ve

ra
te

s
an

d
fa

ls
e

n
eg

at
iv

e
ra

te
s

u
si

n
g

K
it

su
n

e
in

st
an

ce
w

it
h

m
ax

im
u

m
au

to
en

co
d

er
si

ze
m

=
10

.



6.2. Classifying everyday network traffic 49

(a
)

Fa
ls

e
p

o
si

ti
ve

ra
te

s

(b
)

Fa
ls

e
n

eg
at

iv
e

ra
te

s

F
ig

u
re

6.
2:

Fa
ls

e
p

o
si

ti
ve

ra
te

s
an

d
fa

ls
e

n
eg

at
iv

e
ra

te
s

u
si

n
g

K
it

su
n

e
in

st
an

ce
w

it
h

m
ax

im
u

m
au

to
en

co
d

er
si

ze
m

=
1.



50 6. IDS evaluation

(a) The anomaly scores of the day 7 network
trace show a significant amount of false posi-
tives.

(b) The anomaly scores of the day 41 network
trace show a large burst of false positive in-
stances.

Figure 6.3: Two scatter plots of Kitsune anomaly scores that clearly contain anomalous traffic

We can make a scatter plot of the anomaly score per packet from the processed traf-
fic. Such a scatter plot provides us with a general view of the classifier’s effectiveness
and allows us to quickly evaluate its performance. Two of these scatter plots are illus-
trated in Figure 6.3. These two specific graphs are especially interesting. Figure 6.3a,
for instance, illustrates a case where a large amount of unrecognized benign traffic
could possibly be classified as malicious, leading to an extremely high FPR. Figure 6.3b
is interesting, because it presents a relatively large burst of malicious malicious that
Kitsune is actually able to detect.

We extracted the detected anomalies from the malicious traffic (i.e. the true pos-
itives). In order to extract the largest number of anomalies while still maintaining a
consistent threshold, we chose the F PR = 0.001 threshold.

Correctly detected as anomalies (i.e. true positives) were mainly illegitimate con-
nection attempts to port 443 on the web server with authentication. Also detected
as anomalies were scans and illegitimate connection attempts to port 22 on several
servers. As a matter of fact, we found that the burst of detected anomalies during day
41, illustrated in Figure 6.3b, was a single host sending out a large number of SYN pack-
ets to port 22 on our servers.

The false positive instances were identified as being primarily file downloads from
port 443 on the web server with authentication, and large email traffic. In Figure 6.3a,
there are two curves of benign traffic that extend away from the rest of the traffic. These
two curves turned out to be just this: file download traffic between the aforementioned
server and an outside host.

Kitsune’s design is based on autoencoders. The black-box nature of ANNs such as
autoencoders makes it a difficult process to identify the reasons for a particular clas-
sification result. Therefore, instead of investigating the calculations performed by the
autoencoders, we chose to look at the features responsible for certain results. Kitsune
attempts to reconstruct the clusters of features that are extracted from network traffic.
A packet’s anomaly score is determined by the accuracy of this reconstruction process
(specifically, the RMSE between the original and the reconstruction). Thus, if we iden-



6.2. Classifying everyday network traffic 51

Figure 6.4: Packets sent by a malicious host in order to scan the network in the day 41 network trace

tify the feature cluster that contributes the most toward the final anomaly score, we
can infer what aspects of network traffic Kitsune deems more significant when trying
to detect anomalies.

The cluster that contributes the most towards the high anomaly scores illustrated
in Figure 6.3a consists of eight features. These features all describe the weight (see
Figure 3.2) of the incoming packets for all type of incremental statistic tuples (SrcMAC-
IP, SrcIP, Channel, and Socket) for λ values 0.01 and 0.1. In other words, a sudden surge
in the number of packets exchanged between two hosts, either on arbitrary ports or on
a single, specific port. This makes sense, since the anomalous packets originate from
the downloading of a large file.

As for day 41 (Figure 6.3b), the feature cluster with the highest contribution is 10
features large. The features in this cluster all correspond to the Socket between an
outside host and each one of our servers. Five of the features describe the correla-
tion between the sizes of the packets that are sent between the two hosts on a specific
port for all time windows λ. Almost the same applies to the other five features, but
the statistic is the approximate covariance, instead of correlation. Interestingly, upon
further investigation of this malicious host, we found that the host had been scanning
our network several times throughout the day. The I/O graph in Figure 6.4 illustrates
these scans. Kitsune was only able to detect one of these instances, namely the second
burst from the left, roughly between the values 4500 and 6000 on the x axis.

During the last day of capturing, day 49, Kitsune found another interesting burst
of anomalous packets. As opposed to the previously discussed burst, this one was a
burst of false positives. This burst is shown in Figure 6.5. Here, the false positives have
a different appearance than those from the download traffic we found during day 7
(Figure 6.3a), so its cause is probably different. It turns out these instances are out-
going SSH packets over IPv6, from the shells server to an outside host. The feature
cluster that contributes the most is the same as for the anomalous packets in day 41:
the correlation and covariance of the sizes of the packets sent between two Sockets.
This outside host had been interacting with our network throughout the day, but only
a small amount of packets were seen as anomalous. Given the responsible feature clus-
ter, we investigated the sizes of the packets exchanged between the hosts. Figure 6.6
compares the packet sizes of incoming and outgoing SSH packets. The graph shows



52 6. IDS evaluation

Figure 6.5: Scatter plot of Kitsune anomaly scores containing a burst of false positives around the 600,000
mark on the x axis, day 49.

us that for most of the time, there is a strong correlation between incoming and out-
going SSH packets. This correlation is broken at around the 20,000 mark on the x axis,
which is also the location of the anomalous packets. At this point, we see total ab-
sence of incoming SSH packets. This is due to the scanning host not replying to the
scanned server, causing packet retransmissions. Based on this graph we can infer that
this sudden lack of incoming SSH packets, while SSH packets are still being sent out, is
the reason for the traffic being classified as anomalous. It is possible that Kitsune ex-
pects that, for this type of traffic, the amount of packets sent between the two hosts be
balanced and consistent. The sudden halt in bidirectional communication between
the two hosts creates an imbalance on one side. This then causes the calculated cor-
relation and covariance statistics to deviate from “normal” behavior, which, in turn,
causes Kitsune to finally classify the scan as anomalous.

Figure 6.7 illustrates the RMSEs of all the days of captured traffic in the form of
a box plot. For all but two of the days, the second and third quartiles are all below
the F PR = 0.001 threshold. The two exceptions are days 7 and 24. This indicates
that a significant portion of the traffic during these two days produces anomaly scores
above this threshold. Upon investigation, this is indeed the case (see Figure 6.3a for the
anomaly scores of day 7). Note the large amount of outliers above the two thresholds.
This fact, together with the false positive rates in Figure 6.1a, highlights the instability
of Kitsune’s detection performance.



6.2. Classifying everyday network traffic 53

Figure 6.6: Sizes incoming SSH packets vs sizes outgoing SSH packets, day 49. The gray points that appear
in the graph after the black points stop (at around the 20,000 mark on the x axis) correspond to the burst
of false positives illustrated in Figure 6.5.

Figure 6.7: Box plot of the RMSEs for every day of captured traffic. The RMSEs are those produced by the
Kitsune instance using maximum autoencoder size m = 10.



54 6. IDS evaluation

6.2.2. Unsupervised learning
The second aspect we wanted to evaluate was the claim by Mirsky et al. about Kitsune’s
practicality as an unsupervised learning system [47]. Mirsky et al. designed their sys-
tem using unsupervised learning techniques in order to 1) be able to detect previous-
ly-unseen attacks, and 2) avoid the costly process of explicitly labeling network traffic
as benign or malicious. The second item is true from a purely theoretical standpoint.
The rationale behind using this method instead of others, however, is a flawed one.
Although it is true that explicitly labeling network traffic is not necessary, this time-
consuming task has merely been replaced by another equally time-consuming task.
We have demonstrated this in Chapter 4, by describing the elaborate procedure of fil-
tering all network traffic to obtain ground-truth data.

With statement 2) debunked, we focus our attention to the first statement. Due to
Kitsune’s use of unsupervised learning, it should be able to detect novel attacks.

We trained Kitsune on both the benign and malicious traffic of the first day. After
training, we fed the rest of the traffic from the remaining days into the IDS. Because of
time constraints, we performed this experiment only using m = 10 as parameter.

First of all, we identified the network traffic that is not present in the first network
trace, but is present during other days. The following is a non-exhaustive list of some
of the novel network traffic and protocols:

• BACnet [2]

• HART-IP [60]

• L2TP [84]

• UDP encapsulation of IPsec packets [21]

• X Display Manager Control Protocol [54]

• OMRON FINS Protocol [51]

• Quake III Arena Network Protocol

• DirectPlay 8 protocol [42]

• kNet Protocol [25]

• TACACS [16]

Ideally, these types of traffic would be classified as anomalous by Kitsune, as the data
with which it was trained did not contain any of the aforementioned protocols. In actu-
ality, however, none of this traffic was classified as anomalous by Kitsune. The anoma-
lies that Kitsune could detect were generally of the same type, if not exactly the same
instances. Comparisons between anomaly scores are illustrated in Figures 6.8 and 6.9.
In the figures we see a clear decrease in the number of detected anomalies. Do note the
vertical line separating the traffic in Figures 6.8b and 6.9b. The network traffic on the
left side of the vertical line is benign traffic, while the malicious traffic is on the right.
Novel traffic could be either benign or malicious, and a malicious host can first pro-
duce benign traffic before initiating an attack. Since Kitsune’s detection of malicious
packets is partly dependent on the traffic that surrounds it, we wanted to remove the
possibility of ambiguous hosts altering detection performance. Therefore, in the case
of training on both benign and malicious data, we decided to split up the data and
have Kitsune process the benign and malicious portions separately. This ensures that



6.3. Attack simulations 55

(a) Anomaly scores when Kitsune is trained
on only benign traffic.

(b) Anomaly scores when Kitsune is trained
on both benign and malicious traffic. Note
that the benign and malicious traffic is sep-
arated from one another during processing.

Figure 6.8: Scatter plots of Kitsune anomaly scores when processing the day 5 network trace, both using
maximum autoencoder size m = 10.

the classification of the benign novel traffic does not influence the classification of the
malicious novel traffic, and vice versa.

6.3. Attack simulations
In addition to testing Kitsune’s performance on everyday traffic, we also examined its
effectiveness detecting specific attacks on a host or the network. Our process of obtain-
ing or generating this attack traffic is described in Chapter 5. This section will discuss
the results of these particular experiments.

We tested Kitsune on the attack traffic in two different ways:

1. process only the attack traffic; and

2. inject the attack traffic into our captured network traces and process the entire
dataset.

Because we trained our Kitsune instance on the benign portion of the first day of cap-
tured traffic, we decided to inject the attack traffic into this benign traffic. Since all but
the attack traffic was used for training, this would give us a best-case scenario of Kit-
sune’s detection performance. The Mirai attack traffic is mostly the same as what was
used by Mirsky et al. in their experiments [47].

Figure 6.10 illustrates the anomaly scores for the Mirai attack produced by Kitsune
using the parameter m = 10. The anomaly scores from only the attack traffic are shown
in Figure 6.10a. Figure 6.10b shows the anomaly scores when injected into network
traffic. As can be seen from the figures not a single packet from the attack itself was
detected by Kitsune. Instead, we can see a number of false positive instances in Fig-
ure 6.10b. These false positives were also present when the original network trace was
processed by Kitsune. It is particularly strange that no single detection was made. Not
only does the attack contain ARP flooding, but Telnet traffic too. Telnet is a protocol



56 6. IDS evaluation

(a) Anomaly scores when Kitsune is trained
on only benign traffic.

(b) Anomaly scores when Kitsune is trained
on both benign and malicious traffic. Note
that the benign and malicious traffic is sep-
arated from one another during processing.

Figure 6.9: Scatter plots of Kitsune anomaly scores when processing the day 7 network trace, both using
maximum autoencoder size m = 10.

that is never used in the training data, and neither is its corresponding port 23 used
for any actual communication. Still, Kitsune does not consider the usage of this pro-
tocol and port anomalous. Interestingly, using m = 1 as parameter, Kitsune was able
to detect a large portion of the Mirai attack traffic. This is shown in Figure 6.11. Out
of the 575,000 malicious packets, Kitsune was able to detect approximately 520,000
of them, achieving a precision of 0.99, and a recall of 0.91. Kitsune detected none of
the Telnet traffic, however. Instead, it detected the ARP flooding. We can see clearly
that Kitsune found the ARP flooding more anomalous than the rest of the attack traffic
when we look at the features responsible for the high anomaly scores. These are all
weight statistics from a packet’s SrcIP, SrcMAC-IP, and Channel for λ = 0.1. We note
the absence of any of the Socket features, which are the ones that specifically capture
behavior on specific ports. Since the weight statistic is the damped count of all the
packets that have arrived [47], the flood of ARP packets will cause this statistic to spike
in value.

In Figure 6.12 we can see the results of the fuzzing attack, using m = 10 as param-
eter. The results from this attack are much more positive than the Mirai results. Here,
we see that the majority of the malicious traffic is detected using the F PR = 0.001
threshold. Even when using the stricter F PR = 0 threshold, Kitsune manages to de-
tect a portion of the attack packets. The features that contribute the most toward the
high anomaly scores are all based on the variation of packet sizes. First of all, the ra-
dius statistic for a packet’s Channel and Socket (for all λ) weighs heavily. The radius
statistic is calculated using the standard deviation of packet size [47], so we can ex-
pect the standard deviation statistic itself to also play a role in detection. As expected,
the standard deviation statistics from a packet’s SrcMAC-IP and Channel (for λ= 0.01)
are the features that contribute the most. From this, we can see that Kitsune detected
the fuzzing attack due to the inconsistent packet sizes originating from the malicious
host. When processing the data using m = 1, detection performance improves signifi-



6.3. Attack simulations 57

(a) Anomaly scores when the Mirai attack
traffic only is processed by Kitsune. None
of anomaly scores exceed the F PR = 0.001
threshold, meaning that not a single detec-
tion is made.

(b) Anomaly scores when the attack traffic
is injected into the benign portion of the
day 1 network trace. Executing the attack in
the context of the rest of the network traffic
has no significant effect on detection perfor-
mance, since the anomaly scores here do not
exceed the F PR = 0.001 threshold either.

Figure 6.10: Mirai attack anomaly scores produced by Kitsune using maximum autoencoder size m = 10

(a) Anomaly scores when the Mirai attack
traffic only is processed by Kitsune. As op-
posed to the anomaly scores illustrated in
Figure 6.10a, the anomaly scores in this case
do exceed the F PR = 0.001 threshold, thereby
allowing Kitsune to detect these instances as
anomalous.

(b) Anomaly scores when the attack traffic
is injected into the benign portion of the
day 1 network trace. Just as in Figure 6.11a,
the anomaly scores exceed the F PR = 0.001
threshold, meaning that Kitsune is able to de-
tect portions of the Mirai attack when exe-
cuted in the context of the rest of the network
traffic.

Figure 6.11: Mirai attack anomaly scores produced by Kitsune using maximum autoencoder size m = 1



58 6. IDS evaluation

(a) Anomaly scores when the fuzzing attack
traffic only is processed by Kitsune. Most
of the malicious packets are detected by
Kitsune.

(b) Anomaly scores when the attack traffic is
injected into the benign portion of the day
1 network trace. There is no significant in-
crease in detection performance when exe-
cuting the attack within the context of the rest
of the network traffic.

Figure 6.12: Fuzzing attack anomaly scores produced by Kitsune using maximum autoencoder size m =
10

cantly. As can be seen in Figure 6.13b, almost all of the attack traffic is detected by the
F PR = 0.001 threshold. In this case, there are many different features that contribute
heavily to detection. Just as the m = 10 results, these are all standard deviation and ra-
dius statistics. And, again, the most significant feature is a standard deviation statistic.
Specifically, the standard deviation statistic of a packet’s Socket for λ= 5.

Figure 6.14 illustrates the m = 10 anomaly scores of our SYN flood simulation. We
performed this experiment only in an out-of-context scenario, meaning that the traffic
was not injected into captured traffic. This is due to Kitsune’s memory consumption:
the Kitsune process used up all available memory on the machine, which caused the
process to stall. Despite this being an 100 Mbps SYN flood, no detection was made. It
is possible that because of the large amount of legitimate SYN packets in the training
dataset we extracted from a more realistic network, Kitsune is less sensitive to SYN
packet anomalies. The m = 1 results did not differ significantly from the m = 10 results.
Kitsune was not able to detect any anomaly. The resulting m = 1 anomaly score graph
shown in Figure 6.14b is very similar to the m = 10 graph in Figure 6.14a, albeit less
smooth. The features that contribute the most to the anomaly score of these packets
are weight statistics, meaning that Kitsune indeed recognizes the traffic as a flood of
packets.

Shown in Figure 6.15 are the anomaly score results from OS scan traffic for m = 10.
As shown in the figure, much of this traffic is detected by Kitsune, but only when using
the F PR = 0.001 threshold. The features most responsible for the high anomaly scores
are all weight statistics for a packet’s SrcMAC-IP, SrcIP, Channel, and Socket. Through-
out the duration of the attack, the weight statistic remains the most anomalous. The
only change is in the time window, which changes several times during the OS scan.
The results when using the m = 1 parameter do not differ significantly from the m = 10
results. Most of the scanning traffic is detected. All of the features that contribute the



6.3. Attack simulations 59

(a) Anomaly scores when the fuzzing attack
traffic only is processed by Kitsune. All of
the malicious packets, except for the first por-
tion, are detected by Kitsune.

(b) Anomaly scores when the attack traffic is
injected into the benign portion of the day
1 network trace. Like Figure 6.13a, only the
first portion of malicious packets are not de-
tected.

Figure 6.13: Fuzzing attack anomaly scores produced by Kitsune using maximum autoencoder size m = 1

(a) Anomaly scores produced by Kitsune us-
ing maximum autoencoder size m = 10.

(b) Anomaly scores produced by Kitsune us-
ing maximum autoencoder size m = 1.

Figure 6.14: Anomaly scores produced by Kitsune when processing the SYN flood traffic. This particular
attack is not injected into the day 1 network trace due to Kitsune’s large memory consumption.



60 6. IDS evaluation

(a) Anomaly scores when the fuzzing attack
traffic only is processed by Kitsune.

(b) Anomaly scores when the OS scan traffic
is injected into the benign portion of the day
1 network trace. There is no improvement in
detection performance.

Figure 6.15: OS scan anomaly scores produced by Kitsune using maximum autoencoder size m = 10

most toward the high anomaly scores are weight statistics, mostly for the Socket be-
tween the scanning host and the host being scanned.

The m = 10 results from the successful SSH brute-force attack are shown in Fig-
ure 6.16. As can be seen, the actual brute-force traffic that makes up the majority of
the malicious traffic is not detected by Kitsune. Kitsune was only able to detect three
packets at the very end of the attack. The detected packets contain a command sent
to the victim’s machine, and the victim’s response after successfully guessing the pass-
word and logging in. These packets are larger than the ones sent during the brute-
force attack, and this is precisely the reason why Kitsune was able to detect them. We
can see this when looking at the responsible features, as they are all standard devia-
tion statistics for a packet’s SrcMAC-IP, SrcIP, Channel, and Socket, for several different
time windows λ. For m = 1, the feature most responsible for detection is also a stan-
dard deviation statistic: the standard deviation in packet size for the Socket between
the attacker and victim for λ= 5. This means that for both cases, the change in packet
size is responsible for the detection of these last few attack packets.

Figure 6.17 illustrates the anomaly scores of the DNS abuse traffic using the m = 10
Kitsune instance. The version of the attack with 100 incoming DNS queries per mil-
lisecond is shown in Figures 6.17a and 6.17b, while the version with one query per
millisecond is shown in Figures 6.17c and 6.17d. In the figures belonging to the attack
traffic-only anomaly scores (Figures 6.17a and 6.17c), we clearly see that the graphs
contain two separate curves. One of the curves represents the anomaly scores of the
incoming DNS queries, while the other represents the anomaly scores of the outgo-
ing DNS responses. Compared to the SYN flood attack, this attack contains much
less packets, and the speed at which the packets arrive is also much slower. Despite
this, Kitsune is able to detect the attack in both circumstances with the F PR = 0.001
threshold. Kitsune is much better able to detect the version of the attack with the faster
packet rate. When we examine the feature cluster that is most responsible for the high
anomaly scores, we can see why this is the case: all of the features in the cluster are
weight statistics. The amount of packets that Kitsune receives within a certain time



6.3. Attack simulations 61

(a) Anomaly scores when the SSH brute-force
attack traffic only is processed by Kitsune.
The only malicious packets that are detected
are at the very end of the graph. These corre-
spond to the sending of SSH commands and
replying with the requested data. The actual
brute-force traffic is not detected.

(b) Anomaly scores when the OS scan traffic
is injected into the benign portion of the day
1 network trace. Executing this attack within
the context of the rest of the network traffic
has no effect on detection performance. The
only malicious packets that are detected are
the same ones as in Figure 6.16a.

Figure 6.16: SSH brute-force anomaly scores produced by Kitsune using maximum autoencoder size m =
10

limit will make this statistic increase. Therefore, a higher packet rate will make this
statistic increase faster. In Figure 6.17b we can clearly see an interesting effect that
the attack has on the anomaly scores of the legitimate traffic. When the attack traffic
ends, at the 800,000 mark on the x axis, we see a number of false positive instances
that are not present on any of the other anomaly score graphs. These false positives
are legitimate outgoing DNS packets. While the anomaly scores of the false positives
quickly return to normal ranges, the attacker was able to deceive Kitsune into classi-
fying legitimate traffic as anomalous, simply due to its proximity to the attack traffic.
The results with the m = 1 Kitsune instance are very similar. In this case, the features
most responsible for the high anomaly scores are weight statistics as well.

The m = 10 results of the actual DNS amplification attack are illustrated in Fig-
ure 6.18. Even though the packet rate during this attack 100 packets per millisecond
(or 100,000 packets per second), the in the previous DNS abuse case, we can see that
the anomaly score curve rises much slower and does not reach as high a value as in
the Figures 6.17a and 6.17b. This is due to the fact that the incremental statistics are
all computed per source IP address, and all the malicious traffic is divided between 10
different hosts. This is in contrast to the DNS abuse case, where the malicious traffic
was coming from just a single IP address. Despite the lower anomaly scores, Kitsune
is still able to detect most of the attack traffic, with a recall of 0.869 and precision of
0.990 using the F PR = 0.001 threshold. The m = 1 instance of Kitsune was also able
to detect most of the attack traffic, although not as well as the m = 10 instance. Recall
decreased slightly to 0.866, while precision saw a more considerable decrease, with its
value dropping to 0.930.

We can calculate the AUC for both F PR = 0.001 and F PR = 0 thresholds. These are
illustrated in Figures 6.19a and 6.19b. We see that the AUC for F PR = 0.001, Kitsune



62 6. IDS evaluation

(a) DNS abuse, 100 queries/ms (b) Attack injected into day 1 benign traffic,
100 queries/ms

(c) DNS abuse, 1 query/ms (d) Attack injected into day 1 benign traffic,
1 query/ms

Figure 6.17: Anomaly scores produced by Kitsune using maximum autoencoder size m = 10 when pro-
cessing abusive incoming DNS queries for the purpose of creating a DNS amplification attack. As shown,
the quicker we receive DNS queries, the quicker Kitsune is able to detect the malicious traffic. It makes
no difference whether Kitsune processes the malicious DNS queries by themselves or within the context
of the rest of the network traffic; detection performance remains the same.



6.3. Attack simulations 63

(a) Anomaly scores when the DNS amplifi-
cation attack traffic only is processed by Kit-
sune.

(b) Anomaly scores when the DNS amplifica-
tion attack traffic is injected into the benign
portion of the day 1 network trace.

Figure 6.18: DNS amplification anomaly scores produced by Kitsune using maximum autoencoder size
m = 10. The speed at which the packets arrive is 100,000 packets per second. Though the attack consists
of a single second’s worth of DNS amplification traffic, Kitsune very quickly deems the traffic anomalous.
As we were able to deduce from Figure 6.17, this is due to the high packet rate of the attack traffic.

with m = 1 performs better than with m = 10. The exception here is for the SSH brute-
force attack, for which Kitsune’s performance is equally bad. The F PR = 0 thresh-
old produces a poorly performing classifier, as we can see in Figure 6.19b, where the
AUC for all attacks is rarely higher than 0.5. Since ROC curves, and therefore its AUC,
are overly optimistic on imbalanced datasets [19], we also compute the F1 scores (see
Figures 6.19c and 6.19d). Interestingly, the computed F1 scores agree with the AUC
values. We see Kitsune’s best performance using m = 1 and the F PR = 0.001 thresh-
old, although SSH brute-force detection performance is very poor regardless of which
threshold or parameter used. Mirai detection is much better with m = 1, which corre-
sponds to the anomaly scores illustrated in Figure 6.11, compared to Figure 6.10. Using
F PR = 0 as threshold, however, has a very negative effect on detection performance.
Just as is apparent from the DNS abuse anomaly scores in Figure 6.17, the AUC and
F1 scores for the 100 queries/ms are significantly higher than for the 1 query/ms case.
The SYN flood attack is absent from both figures, because it does not contain any true
positive instances. Therefore, its AUC would be 0.5 and its F1 score would be 0 in all
cases.



64 6. IDS evaluation

(a)
A

U
C

fo
r

F
P

R
=

0.001
th

resh
o

ld
(b

)
A

U
C

fo
r

F
P

R
=

0
th

resh
o

ld

(c)
F

1
sco

res
fo

r
F

P
R
=

0.001
th

resh
o

ld
(d

)
F

1
sco

res
fo

r
F

P
R
=

0
th

resh
o

ld

F
igu

re
6.19:A

U
C

an
d

F
1

sco
res

fo
r

d
ifferen

tm
an

d
d

etectio
n

th
resh

o
ld



7
Discussion

The results in Chapter 6 were obtained after training Kitsune on real network traffic
from a real-world network. From these results, we can make valid observations and
conclusions about the performance of the Kitsune IDS. Additionally, we compare our
results with those published by Mirsky et al. [47].

From the false positive rates and false negative rates illustrated in Figures 6.1 and 6.2,
we can say two things. Firstly, network traffic is very difficult to predict. So much so,
that an entire 24-hour network trace does not provide Kitsune with enough informa-
tion to limit the amount of false positive instances in data from later days. Granted,
most of the false positives corresponded to download traffic, which was not present
in the training dataset to the degree of day 7, for instance (see Figure 6.3a). This just
goes to show, however, that the behavior of hosts within a network varies substantially
and is not fixed. This does not hold when the F PR = 0 threshold is used, though. In
this case, however, the detection threshold is set so high that rarely any anomaly is de-
tected, which would make the IDS useless. We must point out here that none of the
packet traces used by Mirsky et al. during their research have a duration that exceeds
even an hour. In the network we have used, a network trace of 24 hours is not enough
to capture all legitimate behavior. In the work by Mirsky et al., however, it was decided
that an hour’s worth of traffic is very much representative of the network’s overall be-
havior without any sort of substantiation. This might be explained by the fact that the
networks only host a very limited number of services (mostly IP camera traffic and IoT
device traffic), making the traffic within the network very uniform. This does not nec-
essarily mean that the networks are unrealistic. The issue with this explanation is that
it does not conform to the description of Kitsune in the original paper. There is abso-
lutely no mention of Kitsune being a domain-specific IDS that is supposed to be used
within networks with uniform traffic [47].

Secondly, we can also conclude from the extremely high false negative rates that
the vast majority of malicious traffic within a network is very subtle. So subtle, in fact,
that Kitsune regards it as “normal” traffic. From Table 6.1 we can see that all average
FNRs are around 0.9999. Most of the malicious traffic in the network traces is port
scanning. Kitsune deems these subtle port scans similar enough to legitimate traffic,
even though none of the port scan traffic is present in the training dataset. This is in
contrast to the positive results obtained by Mirsky et al [47]. As previously mentioned,
the network traffic used by Mirsky et al. is very uniform. It is possible that the positive
results are due to this fact. For instance, if most of the network traffic Kitsune has
trained on is video traffic, any other type of network traffic will much more likely be

65



66 7. Discussion

seen as malicious, since it is a much less common type of traffic.
It is important to mention that before releasing their attack traffic datasets, Mirsky

et al. made the decision to truncate all packets to 200 bytes due to privacy reasons [45].
The Mirai attack and OS scan are the two attacks for which we directly used the data
released by Mirsky et al. Since the OS scan solely consists SYN packets that are 60 bytes
in size, the truncation has an effect only on the Mirai attack traffic. Specifically, some
of the Telnet packets between the attacker and victim IoT device were larger than 200
bytes and were truncated. See Figure 7.1 for one of such truncated Telnet packets.
Notice the abrupt end of the text “Tried to access table.11 but it.”

Figure 7.1: Hex and ASCII sample of truncated Telnet packet

The implication of the release of this truncated data is that all results published
by Mirsky et al. [47] are irreproducible. Any other researcher that would be interested
in verifying their findings using their methods and datasets would be unable to do so.
Consequently, we are forced to accept their results and conclusions at face value.

We know from He and Garcia [19] that ROC curves are too optimistic when eval-
uating classifiers that work with imbalanced data. Any statistics computed from ROC
curves will therefore be overly optimistic as well. Even though anomaly detection in-
herently works with imbalanced datasets, Mirsky et al. use the AUC and EER statistics
to evaluate their anomaly detection system [47]. Figure 7.2 illustrates the AUC for all of
the attacks performed by Mirsky et al. [47] on their Kitsune instance. Notice Kitsune’s
high AUC values for the most of the attacks. Though they may seem impressive, little
meaning can be attributed to these results due to the imbalanced datasets. Similarly
to the results obtained by Mirsky et al. [47], our results in Figure 6.19a show a high AUC
for the Mirai attack using m = 1, and the OS scan and fuzzing attack for both values of
m. These AUC values are computed using a single threshold point, meaning that the
true AUC will be higher than the one that illustrated in the figure [12].

Most of the attacks on which Kitsune achieves high F1 scores are due to the pres-
ence of traffic floods. These are the Mirai, OS scan, and DNS amplification attacks.

Something to keep in mind is that even though the F1 scores and AUC seem good
for some of the attacks, this is only the case when the injected attack traffic is the only
malicious traffic present in the dataset. If the attack traffic were injected into an unfil-
tered dataset, the AUC and F1 scores would be significantly lower.

Mirsky et al. stated that using m = 1 as parameter, instead of m = 10, would yield
better anomaly detection performance. This improvement in performance is almost
negligible when classifying everyday traffic, as shown in Table 6.1. Classifying attack
traffic that is injected into benign traffic, however, did have a notable effect. This is es-
pecially so in the case of the Mirai attack. Not a single malicious packet was detected by
Kitsune using m = 10. When using m = 1, Kitsune was able to detect 91% of malicious
packets. The cause of this increase in performance is the lack of feature clustering.
With feature clustering, the entire cluster of features is used for computing anomaly
scores. This makes Kitsune less sensitive to noise, since well-reconstructed features



67

Figure 7.2: AUC values for the attacks performed by Mirsky et al. [47]

in the cluster will compensate for the single anomalous feature that would otherwise
cause a large RMSE. There is a side effect to this, though. Using m = 1, clusters contain
at most a single feature, meaning that there are no other features in the cluster that
can compensate for a single anomalous feature. This can amplify the final anomaly
score that is computed for a particular packet, especially if the anomalous features are
reconstructed particularly poorly.

Given the anomalies that were successfully detected, it seems that Kitsune specifi-
cally looks out for two types of behavior:

1. sudden surges of traffic with little delay between each packet; and

2. inconsistencies in the amount of data exchanged between hosts.

These inconsistencies can be abnormally large packets coming from a certain host, as
in the fuzzing attack, or an imbalance between the amount of data sent and received,
as in the case illustrated in Figures 6.5 and 6.6. If we look at the design of the Kitsune
IDS, we see that all features are computed using only packet counts, packet sizes and
packet timestamps. Therefore, it makes sense that Kitsune would look out for the two
aforementioned behaviors. No special attention is paid to the content of a packet’s
payload. Take the cases of the Mirai attack and OS scan, for instance. The detec-
tion of all malicious packets was based entirely on packet counts within a certain time
window. While detecting the Mirai attack’s ARP flood using packet counts is under-
standable, detection of the OS scan can be easily circumvented by limiting the speed
at which the adversary sends out SYN packets. The processing of both versions of the
DNS abuse cases also exemplifies Kitsune’s preference for detecting sudden surges in
traffic. We can see the attack with the higher packet rate produces high anomaly scores
much faster than the attack with the slower packet rate. The DNS abuse traffic and
DNS amplification attack also demonstrate the significance of the origin of a traffic
flood. If, for a certain packet rate, all network traffic originates from a single IP address,
Kitsune will more readily classify the flood as anomalous. Given that same packet rate,
Kitsune will find it increasingly difficult to detect the flood as the number of partici-
pants in the flood attack increase. For example, if a botnet contains enough hosts, it



68 7. Discussion

is certainly possible that Kitsune will not be able to detect a DDoS attack initiated by
that botnet if every host limits its packet rate properly.

In the cases of the fuzzing attack and SSH brute-force, the packets were detected
by looking at the variation in the sizes of packets sent between two hosts. The SSH
brute-force provides the clearest example of this. Most of the packets in the attack are
under 200 bytes, which correspond to the login attempts. None of these packets are
seen as malicious. It took just a single packet with a size of 3262 bytes sent between
the hosts for the anomaly scores to spike. After this packet, the anomaly scores quickly
return to the “normal” range. Thus, detection can be avoided by ensuring packet sizes
do not exceed a certain size.

Though Kitsune was unable to make a single detection during the SYN flood, the
curves illustrated in Figure 6.14 seem to have positive slopes. Given a larger SYN flood
dataset, and a machine with the resources necessary to process it, the anomaly scores
might eventually cross the F PR = 0.001 threshold. Just like this SYN flood, the OS scan
is composed of only SYN packets. The only difference is that the SYN flood is directed
at a single port, while the OS scan send out SYN packets to a large range of ports. Seeing
that much of the OS scan was detected (see Figure 6.15), it is entirely possible that a
SYN flood would be detected, given a larger dataset.

The fact that Kitsune does not take the payload into account when analyzing a
packet is a serious drawback. Especially in larger networks, packets of all sizes can
be found, meaning that packet size loses its value as a metric. Additionally, malicious
packets can be crafted that are as large (or as small) as legitimate packets. Take Heart-
bleed packets, for instance, which are 74 bytes in size. It is certainly not uncommon to
see legitimate SSH packets of that size (or legitimate heartbeat packets, for that mat-
ter). Malicious Heartbleed packets could erroneously be lumped together with legiti-
mate traffic, simply because the packet is of a normal size.

With the results we obtained from our experiments, we have demonstrated two
things. Firstly, we have found that when deploying Kitsune in a real-world environ-
ment and training it on real-world data, it is utterly ineffective as an IDS. It is very
rarely able to detect malicious traffic, and its false positive rate is much to high for it
to be useful in practice. Our network received an average of 690 MB of network traffic
per day. Using the better-performing m = 1 version of Kitsune with the F PR = 0.001
threshold, Kitsune would flag 39 MB worth of packets as anomalies per day. Secondly,
we have shown that Kitsune is only able to reliably detect malicious packets that are
either too large or arrive to quickly one after the other (e.g. a DDoS attack). Detec-
tion of specific attacks can be evaded without much difficulty if the attacker knows the
normal behavior of the network. This makes Kitsune essentially no more than a DoS
or packet flood detector, as opposed to a general anomaly detection system.

These findings can be condensed into the following statement: flawed methods
lead to flawed results. It is very likely that the authors could have spotted their er-
rors if they ensured the data and methodology they used were valid. In fact, such
mistakes could have been avoided in the first place. From the results obtained from
this case study, as well as the numerous other IDS papers discussed in Chapter 2, it is
apparent that usage of flawed data and methods are widespread. IDSs are thus eval-
uated in an incorrect manner, unfortunately leading to the generation of potentially
erroneous information. Additionally, not every team of researchers uses the same pro-
cesses when implementing and evaluating their designed IDS. This emphasizes the
necessity for a set methodology that is designed to ensure proper evaluation of an IDS.
For instance, many different authors often do not even use the same datasets when



69

evaluating an IDS. On top of that, much of this data is flawed in some way, it being
either unrealistic simulated data, or data extracted from an unrealistic or artificial net-
work [36, 40, 73, 80]. The “gold standard” is network traffic that is extracted from a
real-world network that is as large as one can get their hands on [73]. An issue with
collecting real traffic is that none of it will be labeled. Since labeling is important for
machine learning, it is necessary to engage in some form of collaboration with the ad-
ministrator of the network in order to label the traffic accurately and extract the neces-
sary ground-truth for classification. Of course, this is a time-consuming process, but
there certainly is payoff in the form the ability to perform of valid experiments. This
in turn leads to valid results. Finally, the evaluation process needs to be appropriate
for the field of anomaly detection. Basing conclusions on different overly optimistic or
uninformative metrics (e.g. ROC curves, accuracy) will also stand in the way valid eval-
uations and conclusions [19]. Agreeing on a common design and evaluation process
would help researchers create valid research. Furthermore, such a common process
will also allow for the easier reproduction of research by others, thereby helping the
anomaly detection community as a whole as well. The steps that we have followed in
our case study are extracted from academic literature. These steps can be aggregated
and formalized to create a framework that is easy to follow and makes research more
repeatable. This framework is presented in Section 8.3





8
Conclusion

Machine learning-based anomaly detection is a heavily studied field of research. Many
researchers develop their own system using different techniques and evaluation meth-
ods. According to Sommer and Paxson [73], much of these methodologies are not suit-
able for the proper design and evaluation of intrusion detection systems. Other re-
searchers will readily consider this previous research as flawless and completely truth-
ful, and build their research upon this faulty foundation. To our knowledge, none of
this research has been revisited in order to validate the findings. Neither have there
been independent reviews that aim to replicate the results. It was for these reasons
that we considered it an interesting endeavor attempting to do precisely that.

In our research, we selected one specific machine learning-based IDS that was
trained and evaluated using network traffic from small and unrealistic networks. Much
of this network traffic was very uniform and contained hardly any noise. With the work
we performed, we have successfully demonstrated this observation. Specifically, we
have shown that training and deploying a machine learning-based IDS in a real-world
scenario will yield wildly different results compared to an artificial or unrealistic sce-
nario. Real-world networks are busier and noisier than private or artificial networks.
Undoubtedly, this fact will have a considerable effect on the performance of any such
IDS. In this chapter, we come back to our main research question:

How can a machine learning-based intrusion detection system be correctly evaluated?

This chapter will elaborate on how we provided an answer to this question and
how our research objective was achieved. Due to time constraints, we were only able
to perform a single case study, using a single IDS for this project. This opens up several
paths for future research, which will also be discussed in this chapter. Finally, we will
present CAML-IDS, a framework that combines the best practices for anomaly detec-
tion research that we have discovered during our work on this project, which will allow
for the correct assessment of machine learning-based intrusion detection systems.

8.1. Research objective
By combining the thorough literature analysis with the results obtained from our re-
search itself, we are able to answer all of the sub-questions mentioned in Chapter 1.
However, due to time constraints, we have only been able to propose a possible an-
swer to our original research question. Several additional steps are necessary in or-
der to provide a definitive answer to the research question. These will be discussed

71



72 8. Conclusion

in Section 8.2, where we discuss possible future work. Below we will discuss the sub-
questions that we were able to answer.

Firstly, properly collecting data for a machine learning-based IDS requires the cap-
ture of real network traffic from a real-world network. This network is preferably as
large as possible. Or rather, as large a network as one can get access to. Also, a suffi-
cient amount of network traffic needs to be captured. This is important, because small
network traces will not contain enough of the network traffic to adequately model the
network’s behavior.

In order to annotate the anomalous data correctly, we need a comprehensive de-
scription of the network from which the traffic is being captured. The description of
the network is compiled by the administrator of the network, and, if necessary, is it-
eratively improved through cooperation between the researcher and administrator. A
complete network description allows for the establishing of ground-truth, which is a
crucial aspect of anomaly detection. By establishing ground-truth for the captured
data, we can determine which data is benign and which is anomalous with absolute
certainty.

When evaluating the IDS on attack traffic, we have to ensure that the injected at-
tack traffic closely matches the actual traffic that is found within the network. If the
attack traffic is simulated, or the attack was originally performed on different hosts,
the traffic needs to be altered. Otherwise, these differences might influence the per-
formance of the IDS, thereby invalidating any results that are obtained. For example,
IP and MAC addresses need to be changed to ones that match the network.

Finally, the evaluation metrics that are used must be appropriate for the field of
anomaly detection. Instead of simply using detection accuracy as a metric, precision
and recall should be used, because these take false positive instances into account.
Moreover, instead of the widely-used ROC curve, precision-recall (PR) curve should be
used, since ROC curves are very optimistic when dealing with imbalanced datasets. In
the case that a single value is desired that describes the performance of an anomaly-
based IDS, the F1 score can be computed as well.

By combining the aforementioned guidelines into a usable assessment framework,
we provide a possible solution to the problem of properly evaluating the performance
of machine learning-based intrusion detection systems. This framework still needs
further research, and this will be elaborated upon in the next section.

8.2. Future work
Our work collects the best practices from across this field of research and combines
them to form our proposed framework. The next step in this process is to evaluate the
framework itself, which will provide definitive proof about its usefulness.

8.2.1. Evaluation of the framework
By applying this framework and to work by Mirsky et al. [47], this project demonstrates
the failings in current anomaly detection research. However, even though this research
demonstrates shortcomings in current research, the fact remains that this case study
considers only a single IDS. There are many more anomaly-based IDS papers that can
be revisited. By revisiting such previous research and reproducing it using the frame-
work we have proposed, we can gain more insight into the validity of the framework.
A key aspect of any academic studies is its reproducibility. Therefore, it is necessary
to, not only test IDSs using this same framework, but also using the same data that
was used in this study. This ensures that the only variable in the future experiments



8.2. Future work 73

is the IDS itself. If further research demonstrates the validity of this framework, then,
naturally, a good way forward is to adhere to our proposed framework when working
on anomaly detection research in the future. Doing so would prevent researchers from
making the errors that are so widespread in anomaly detection nowadays.

8.2.2. Revisiting previous research
Revisiting previous research is not only necessary for the evaluation of the framework,
but it is also an opportunity to assess the validity of the research itself. More case stud-
ies such as this are necessary to make definitive conclusions about the entire field of
research. As more of the research in this field is repeated using appropriate data and
correct evaluation, more information will be available about the true state of anomaly
detection research. Also, these repeats of existing research can be compiled together.
Such a compilation of different case studies will researchers to better critique the field
of anomaly detection.

8.2.3. Real-world testing
Lastly, it is certainly interesting to compare the steps as stated in this framework with
the processes that are followed when implementing an IDS in a real-world scenario.
This comparison can also be used to see whether this framework is appropriate for
practical use. Sommer and Paxson [73] state that the most convincing evidence for
the value and usefulness of an IDS is to get feedback network operators who have im-
plemented said system in their network. This same statement can be applied to this
framework. If network operators deem this framework useful for successfully imple-
menting an effective IDS into their network, then it stands to reason that the frame-
work certainly has value for both academic and practical use.



74 8. Conclusion

8.3. CAML-IDS

STEP ACTION REMARKS

1 Obtain access to a real-world net-
work.

It is important that this network be as
large possible

2 Obtain a detailed network description
from network administrator.

3 Create a static rule-set from the net-
work description.

4 Collect the necessary network traffic.

5 Filter the collected network traffic us-
ing the static rule-set into (i) legiti-
mate, (ii) illegitimate, and (iii) unclas-
sified traffic.

Network traffic will be unclassified if
it is not covered by any rule.

6 Take a subset of the unclassified traf-
fic from Step 5 and refine the static
rule-set by adding rules that cover the
instances in the subset.

This is done in cooperation with the
network administrator in order to de-
termine with certainty whether the
traffic is legitimate or not. This is im-
portant for establishing ground-truth.

7 Repeat Steps 5 and 6 until all unclas-
sified traffic has been successfully an-
notated.

8 Train the IDS on the ground-truth le-
gitimate traffic obtained from Steps 5
and 6.

9 Test the IDS using the entirety of legit-
imate and illegitimate traffic.

If attack traffic is injected into the
dataset, ensure that this attack traffic
matches the used network as closely
as possible (e.g. IP addresses, MAC
addresses, used protocols).

10 Evaluate the IDS performance using
suitable statistics (e.g. precision, re-
call, PR curves, F1 score).



Bibliography

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. Halderman, L. Invernizzi, M. Kallitsis, et al. Understanding the Mirai
Botnet. In Proc. Usenix Security Symp., pages 1092–1110, 2017.

[2] ASHRAE. BACnet/IP. http://www.bacnet.org/Tutorial/BACnetIP/
sld004.html. Accessed on 6/2/2019.

[3] S. Axelsson. The Base-Rate Fallacy and Its Implications for the Difficulty of In-
trusion Detection. In Proc. ACM Conference on Computer and Communications
Security (CCS), pages 1–7. ACM, 1999. ISBN 1-58113-148-8.

[4] W.J. Bloem. Sluizen, gemalen en bruggen slecht beveiligd. https:
//eenvandaag.avrotros.nl/binnenland/item/sluizen-gemalen-en-
bruggen-slecht-beveiligd/, 2012. Accessed on 26/2/2018.

[5] D. Bolzoni, S. Etalle, and P. Hartel. Poseidon: A 2-Tier Anomaly-Based Network
Intrusion Detection System. In Proc. IEEE International Workshop on Information
Assurance (IWIA), pages 144–156. IEEE, 2006. ISBN 0-7695-2564-4.

[6] T. Bradley. Pros and Cons of Bringing Your Own De-
vice to Work. https://www.pcworld.com/article/246760/
pros_and_cons_of_byod_bring_your_own_device_.html. Accessed on
2/11/2018.

[7] CERT Division. 1996 CERT Advisories. https://resources.sei.cmu.edu/
asset_files/WhitePaper/1996_019_001_496172.pdf. Accessed on
1/20/2019.

[8] Cloudfare. DNS Amplification Attack. https://www.cloudflare.com/
learning/ddos/dns-amplification-ddos-attack/, . Accessed on 6/3/2019.

[9] Cloudfare. Ping of Death DDoS attack. https://www.cloudflare.com/
learning/ddos/ping-of-death-ddos-attack/, . Accessed on 3/1/2019.

[10] A. Conole. sfuzz | Penetration Testing Tools. https://tools.kali.org/
vulnerability-analysis/sfuzz. Accessed on 20/11/2018.

[11] S.E. Coull, C.V. Wright, F. Monrose, M.P. Collins, M.K. Reiter, et al. Playing Devil’s
Advocate: Inferring Sensitive Information from Anonymized Network Traces. In
Proc. Internet Society Symposium on Network and Distributed System Security
(NDSS), volume 7, pages 35–47, 2007.

[12] E.R. DeLong, D.M. DeLong, and D.L. Clarke-Pearson. Comparing the Areas Under
Two or More Correlated Receiver Operating Characteristic Curves: A Nonpara-
metric Approach. Biometrics, 44(3):837–845, 1988.

75

http://www.bacnet.org/Tutorial/BACnetIP/sld004.html
http://www.bacnet.org/Tutorial/BACnetIP/sld004.html
https://eenvandaag.avrotros.nl/binnenland/item/sluizen-gemalen-en-bruggen-slecht-beveiligd/
https://eenvandaag.avrotros.nl/binnenland/item/sluizen-gemalen-en-bruggen-slecht-beveiligd/
https://eenvandaag.avrotros.nl/binnenland/item/sluizen-gemalen-en-bruggen-slecht-beveiligd/
https://www.pcworld.com/article/246760/pros_and_cons_of_byod_bring_your_own_device_.html
https://www.pcworld.com/article/246760/pros_and_cons_of_byod_bring_your_own_device_.html
https://resources.sei.cmu.edu/asset_files/WhitePaper/1996_019_001_496172.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/1996_019_001_496172.pdf
https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/
https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/
https://www.cloudflare.com/learning/ddos/ping-of-death-ddos-attack/
https://www.cloudflare.com/learning/ddos/ping-of-death-ddos-attack/
https://tools.kali.org/vulnerability-analysis/sfuzz
https://tools.kali.org/vulnerability-analysis/sfuzz


76 Bibliography

[13] O. Depren, M. Topallar, E. Anarim, and M.K. Ciliz. An Intelligent Intrusion De-
tection System (IDS) for Anomaly and Misuse Detection in Computer Networks.
Expert Systems with Applications, 29(4):713–722, 2005.

[14] J. Erickson. Hacking: The Art of Exploitation. No Starch Press, 2nd edition, 2008.
ISBN 0132126958, 9780132126953.

[15] T. Fawcett. An Introduction to ROC Analysis. Pattern Recognition Letters, 27(8):
861–874, 2006.

[16] C. Finseth. An Access Control Protocol, Sometimes Called TACACS. Technical
report, 1993.

[17] J. Fogarty, R.S. Baker, and S.E. Hudson. Case Studies in the Use of ROC Curve Anal-
ysis for Sensor-based Estimates in Human Computer Interaction. In Proc. Graph-
ics Interface, pages 129–136. Canadian Human-Computer Communications Soci-
ety, 2005. ISBN 1-56881-265-5.

[18] D. Greene, P. Cunningham, and R. Mayer. Unsupervised Learning and Cluster-
ing. In Machine Learning Techniques for Multimedia, pages 51–90. Springer, 2008.
ISBN 978-3-540-75171-7.

[19] H. He and E.A. Garcia. Learning from Imbalanced Data. IEEE Trans. on Knowledge
and Data Engineering (TKDE), (9):1263–1284, 2008.

[20] P. Hoffman. RFC 3207 - SMTP Service Extension for Secure SMTP over Transport
Layer Security. RFC 3207, RFC Editor, February 2002. URL https://www.rfc-
editor.org/rfc/rfc3207.txt.

[21] A. Huttunen, B. Swander, V. Volpe, L. DiBurro, and M. Stenberg. UDP Encapsula-
tion of IPsec ESP Packets. Technical report, 2004.

[22] Imperva, Inc. The Top 10 DDoS Attack Trends. https://www.imperva.com/
docs/DS_Incapsula_The_Top_10_DDoS_Attack_Trends_ebook.pdf. Ac-
cessed on 6/3/2019.

[23] J.P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and A. Venkataramani.
Consensus Routing: The Internet as a Distributed System. In Proc. Usenix Sympo-
sium on Networked Systems Design and Implementation (NSDI), pages 351–364,
2008. ISBN 978-1-931971-58-4.

[24] E. Joyce. Malfunctioning sensor adds to list of problems at San Onofre
nuclear power plant. https://www.scpr.org/news/2012/05/29/32601/
malfunctioning-sensor-adding-list-things-wrong-san/, 2012. Accessed
on 26/2/2018.

[25] J. Jylänki et al. juj/kNet. https://github.com/juj/kNet. Accessed on 6/2/2019.

[26] Kaspersky Lab. What is Smurf Attack? https://usa.kaspersky.com/resource-
center/definitions/smurf-attack. Accessed on 3/1/2019.

[27] K.S. Killourhy and R.A. Maxion. Toward Realistic and Artifact-Free Insider-Threat
Data. In Proc. Annual Computer Security Applications Conference (ACSAC), pages
87–96. IEEE, 2007. ISBN 0-7695-3060-5.

https://www.rfc-editor.org/rfc/rfc3207.txt
https://www.rfc-editor.org/rfc/rfc3207.txt
https://www.imperva.com/docs/DS_Incapsula_The_Top_10_DDoS_Attack_Trends_ebook.pdf
https://www.imperva.com/docs/DS_Incapsula_The_Top_10_DDoS_Attack_Trends_ebook.pdf
https://www.scpr.org/news/2012/05/29/32601/malfunctioning-sensor-adding-list-things-wrong-san/
https://www.scpr.org/news/2012/05/29/32601/malfunctioning-sensor-adding-list-things-wrong-san/
https://github.com/juj/kNet
https://usa.kaspersky.com/resource-center/definitions/smurf-attack
https://usa.kaspersky.com/resource-center/definitions/smurf-attack


Bibliography 77

[28] R. King. Researcher: U.S. Tops the World in Critical Infrastructure De-
vices Connected to the Internet. https://blogs.wsj.com/cio/2014/10/
08/researcher-u-s-tops-the-world-in-critical-infrastructure-
devices-connected-to-the-internet/, 2014. Accessed on 20/2/2018.

[29] K. Labib and V.R. Vemuri. NSOM: A Tool to Detect Denial of Service Attacks Using
Self-Organizing Maps. Technical report, 2002.

[30] K. Lakkaraju and A. Slagell. Evaluating the Utility of Anonymized Network Traces
for Intrusion Detection. In Proc. International Conference on Security and Privacy
in Communication Networks (SecureComm), page 17. ACM, 2008. ISBN 978-1-
60558-241-2.

[31] Lincoln Laboratory, Massachusetts Institute of Technology. Datasets. https:
//www.ll.mit.edu/r-d/datasets. Accessed on 3/1/2019.

[32] C. Liou, J. Huang, and W. Yang. Modeling Word Perception Using the Elman Net-
work. Neurocomputing, 71(16-18):3150–3157, 2008.

[33] R. Lippmann, R.K. Cunningham, D.J. Fried, I. Graf, K.R. Kendall, S.E. Webster, and
M.A. Zissman. Results of the DARPA 1998 Offline Intrusion Detection Evaluation.
In Proc. RAID Recent Advances in Intrusion Detection, volume 99, pages 829–835,
1999.

[34] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. McClung, D. Weber,
S.E. Webster, D. Wyschogrod, R.K. Cunningham, et al. Evaluating Intrusion Detec-
tion Systems: The 1998 DARPA Off-Line Intrusion Detection Evaluation. In Proc.
DARPA Information Survivability Conference and Exposition (DISCEX), volume 2,
pages 12–26. IEEE, 2000. ISBN 0769504906.

[35] F. Liu, K.M. Ting, and Z. Zhou. Isolation Forest. In Proc. IEEE International Confer-
ence on Data Mining (ICDM), pages 413–422. IEEE, 2008. ISBN 978-0-7695-3502-
9.

[36] M. Mahoney and P.K. Chan. An Analysis of the 1999 DARPA/Lincoln Laboratory
Evaluation Data for Network Anomaly Detection. In Proc. RAID Recent Advances
in Intrusion Detection, pages 220–237. Springer, 2003. ISBN 3-540-40878-9.

[37] Mail.Ru. ICQ Privacy Policy. https://privacy.icq.com/legal/
privacypolicy/en, . Accessed on 2/11/2018.

[38] Mail.Ru. Secure video calls with end-to-end encryption in ICQ. https://
icq.com/security-calls/en, . Accessed on 2/11/2018.

[39] S. McCanne. libpcap: An Architecture and Optimization Methodolog
for Packet Capture. https://sharkfestus.wireshark.org/sharkfest.11/
presentations/McCanne-Sharkfest’11_Keynote_Address.pdf. Accessed on
7/10/2018.

[40] J. McHugh. Testing Intrusion Detection Systems: A Critique of the 1998 and 1999
DARPA Intrusion Detection System Evaluations as Performed by Lincoln Labo-
ratory. ACM Trans. on Information and System Security (TISSEC), 3(4):262–294,
2000.

https://blogs.wsj.com/cio/2014/10/08/researcher-u-s-tops-the-world-in-critical-infrastructure-devices-connected-to-the-internet/
https://blogs.wsj.com/cio/2014/10/08/researcher-u-s-tops-the-world-in-critical-infrastructure-devices-connected-to-the-internet/
https://blogs.wsj.com/cio/2014/10/08/researcher-u-s-tops-the-world-in-critical-infrastructure-devices-connected-to-the-internet/
https://www.ll.mit.edu/r-d/datasets
https://www.ll.mit.edu/r-d/datasets
https://privacy.icq.com/legal/privacypolicy/en
https://privacy.icq.com/legal/privacypolicy/en
https://icq.com/security-calls/en
https://icq.com/security-calls/en
https://sharkfestus.wireshark.org/sharkfest.11/presentations/McCanne-Sharkfest'11_Keynote_Address.pdf
https://sharkfestus.wireshark.org/sharkfest.11/presentations/McCanne-Sharkfest'11_Keynote_Address.pdf


78 Bibliography

[41] P. Mell. Understanding Intrusion Detection Systems. In IS Management Hand-
book, pages 409–418. Auerbach Publications, 2003. ISBN 978-0849315954.

[42] Microsoft. [MC-DPLHP]: DirectPlay 8 Protocol: Host and Port Enu-
meration. https://msdn.microsoft.com/en-us/library/cc217240.aspx?f=
255&MSPPError=-2147217396. Accessed on 6/2/2019.

[43] mIRC Co., Ltd. mIRC: Using SSL with mIRC. https://www.mirc.com/ssl.html.
Accessed on 2/11/2018.

[44] Y. Mirsky. ymirsky/Kitsune-py: A network intrusion detection system based on
incremental statistics (AfterImage) and an ensemble of autoencoders (KitNET).
https://github.com/ymirsky/Kitsune-py. Accessed on 3/10/2018.

[45] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune Datasets. https://
drive.google.com/drive/folders/1kmoWY4poGWfmmVSdSu-r_3Vo84Tu4PyE.
Accessed on 10/11/2018.

[46] Y. Mirsky, B. Shapira, L. Rokach, and Y. Elovici. pcstream: A Stream Clustering
Algorithm for Dynamically Detecting and Managing Temporal Contexts. In Proc.
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pages
119–133. Springer, 2015. ISBN 978-3-319-18031-1.

[47] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune: An Ensemble of Au-
toencoders for Online Network Intrusion Detection. Proc. Internet Society Sym-
posium on Network and Distributed System Security (NDSS), 2018.

[48] S. Mukkamala, G. Janoski, and A. Sung. Intrusion Detection Using Neural Net-
works and Support Vector Machines. In Proc. International Joint Conference on
Neural Networks (IJCNN), volume 2, pages 1702–1707. IEEE, 2002.

[49] R.S. Naoum, N.A. Abid, and Z.N. Al-Sultani. An Enhanced Resilient Backprop-
agation Artificial Neural Network for Intrusion Detection System. International
Journal of Computer Science and Network Security (IJCSNS), 12(3):11, 2012.

[50] Nmap. Nmap: the Network Mapper - Free Security Scanner. https://nmap.org/.
Accessed on 30/1/2019.

[51] Omron Europe B.V. FINS Commands Reference Manual.
https://www.myomron.com/downloads/1.Manuals/Networks/
W227E12_FINS_Commands_Reference_Manual.pdf. Accessed on 6/2/2019.

[52] OpenBSD. OpenBSD. https://www.openbsd.org/. Accessed on 2/11/2018.

[53] OpenSSH. sshd(8) - OpenBSD manual pages. https://man.openbsd.org/sshd.
Accessed on 2/11/2018.

[54] K. Packard. X Display Manager Control Protocol. ftp://www.x.org/pub/
X11R7.6/doc/libXdmcp/xdmcp.html. Accessed on 6/2/2019.

[55] A. Palczewska, J. Palczewski, R.M. Robinson, and D. Neagu. Interpreting Random
Forest Classification Models Using a Feature Contribution Method. In Integration
of Reusable Systems, pages 193–218. Springer, 2014. ISBN 978-3-319-04717-1.

https://msdn.microsoft.com/en-us/library/cc217240.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/cc217240.aspx?f=255&MSPPError=-2147217396
https://www.mirc.com/ssl.html
https://github.com/ymirsky/Kitsune-py
https://drive.google.com/drive/folders/1kmoWY4poGWfmmVSdSu-r_3Vo84Tu4PyE
https://drive.google.com/drive/folders/1kmoWY4poGWfmmVSdSu-r_3Vo84Tu4PyE
https://nmap.org/
https://www.myomron.com/downloads/1.Manuals/Networks/W227E12_FINS_Commands_Reference_Manual.pdf
https://www.myomron.com/downloads/1.Manuals/Networks/W227E12_FINS_Commands_Reference_Manual.pdf
https://www.openbsd.org/
https://man.openbsd.org/sshd
ftp://www.x.org/pub/X11R7.6/doc/libXdmcp/xdmcp.html
ftp://www.x.org/pub/X11R7.6/doc/libXdmcp/xdmcp.html


Bibliography 79

[56] R. Pang, M. Allman, V. Paxson, and J. Lee. The Devil and Packet Trace Anonymiza-
tion. ACM Computer Communication Review (CCR), 36(1):29–38, 2006.

[57] I. Paul. 70-plus XMPP messaging services now securing chats with TLS encryp-
tion. https://www.pcworld.com/article/2157180/xmpp-services-push-
encrypted-connections-by-default.html. Accessed on 2/11/2018.

[58] J. Postel. Internet Control Message Protocol. RFC 792, RFC Editor, September
1981. URL https://www.rfc-editor.org/rfc/pdfrfc/rfc792.txt.pdf.

[59] J. Postel. Transmission Control Protocol. RFC 793, RFC Editor, September 1981.
URL https://www.rfc-editor.org/rfc/rfc793.txt.

[60] ProComSol, Ltd. Introduction to HART-IP. https://procomsol.com/files/
downloads/White%20Paper%20-%20HART-IP%20Introduction.pdf. Accessed
on 6/2/2019.

[61] radware. Teardrop Attack. https://security.radware.com/ddos-knowledge-
center/ddospedia/teardrop-attack/. Accessed on 2/3/2018.

[62] D. Reed. RFC 1324 - A Discussion on Computer Network Conferencing. RFC 1324,
RFC Editor, May 1992. URL https://www.rfc-editor.org/rfc/rfc1324.txt.

[63] M. Riedmiller and H. Braun. A Direct Adaptive Method for Faster Backpropaga-
tion Learning: The RPROP Algorithm. In Proc. IEEE International Conference on
Neural Networks (ICNN), pages 586–591. IEEE, 1993. ISBN 0-7803-0999-5.

[64] D. Robinson and K. Coar. RFC 3875 - The Common Gateway Interface (CGI)
Version 1.1. RFC 3875, RFC Editor, October 2004. URL https://www.rfc-
editor.org/rfc/rfc3875.txt.

[65] T. Saito and M. Rehmsmeier. The Precision-Recall Plot Is More Informative Than
the Roc Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS
One, 10(3):1–21, 2015.

[66] S. Sanfilippo. Encrirc - Client independent encryption proxy for IRC. http://
www.hping.org/encrirc/, . Accessed on 2/11/2018.

[67] S. Sanfilippo. Hping - Active Network Security Tool. http://www.hping.org/, .
Accessed on 1/3/2019.

[68] Scapy. Scapy. https://scapy.net/. Accessed on 7/10/2018.

[69] M.E. Schuckers. Receiver Operating Characteristic Curve and Equal Error Rate.
In Computational Methods in Biometric Authentication, pages 155–204. Springer,
2010. ISBN 978-1-84996-202-5.

[70] N Shone, T.N. Ngoc, V.D. Phai, and Q. Shi. A Deep Learning Approach to Network
Intrusion Detection. IEEE Trans. on Emerging Topics in Computational Intelli-
gence (TETCI), 2(1):41–50, 2018.

[71] M. Sokolova and G. Lapalme. A Systematic Analysis of Performance Measures for
Classification Tasks. Information Processing & Management, 45(4):427–437, 2009.

[72] R. Sommer. Viable Network Intrusion Detection in High-Performance Environ-
ments. PhD thesis, Technische Universität München, 2005.

https://www.pcworld.com/article/2157180/xmpp-services-push-encrypted-connections-by-default.html
https://www.pcworld.com/article/2157180/xmpp-services-push-encrypted-connections-by-default.html
https://www.rfc-editor.org/rfc/pdfrfc/rfc792.txt.pdf
https://www.rfc-editor.org/rfc/rfc793.txt
https://procomsol.com/files/downloads/White%20Paper%20-%20HART-IP%20Introduction.pdf
https://procomsol.com/files/downloads/White%20Paper%20-%20HART-IP%20Introduction.pdf
https://security.radware.com/ddos-knowledge-center/ddospedia/teardrop-attack/
https://security.radware.com/ddos-knowledge-center/ddospedia/teardrop-attack/
https://www.rfc-editor.org/rfc/rfc1324.txt
https://www.rfc-editor.org/rfc/rfc3875.txt
https://www.rfc-editor.org/rfc/rfc3875.txt
http://www.hping.org/encrirc/
http://www.hping.org/encrirc/
http://www.hping.org/
https://scapy.net/


80 Bibliography

[73] R. Sommer and V. Paxson. Outside the Closed World: On Using Machine Learn-
ing for Network Intrusion Detection. In Proc. IEEE Symposium on Security and
Privacy (SP), pages 305–316. IEEE, 2010. ISBN 978-0-7695-4035-1.

[74] N. Srivastav and R.K. Challa. Novel Intrusion Detection System Integrating Lay-
ered Framework with Neural Network. In Proc. IEEE Advance Computing Confer-
ence (IACC), pages 682–689. IEEE, 2013.

[75] S.J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P.K. Chan. Cost-Based Modeling
for Fraud and Intrusion Detection: Results from the JAM Project. In Proc. DARPA
Information Survivability Conference and Exposition (DISCEX), volume 2, pages
130–144. IEEE, 2000. ISBN 0769504906.

[76] Suricata. Suricata | Open Source IDS / IPS / NSM engine. https://suricata-
ids.org/. Accessed on 22/11/2018.

[77] Synopsys, Inc. Heartbleed Bug. http://heartbleed.com/. Accessed on
1/3/2019.

[78] Peter Szor and Eric Chien. CodeRed II. https://www.symantec.com/security-
center/writeup/2001-080421-3353-99. Accessed on 3/1/2019.

[79] A.S. Tanenbaum and D.J. Wetherall. Computer Networks. Prentice Hall Press,
Upper Saddle River, NJ, USA, 5th edition, 2010. ISBN 1593271441, 9781593271442.

[80] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani. A Detailed Analysis of the KDD
Cup 99 Data Set. In Proc. IEEE Symposium on Computational Intelligence for Se-
curity and Defense Applications (CISDA), pages 1–6. IEEE, 2009. ISBN 978-1-4244-
9941-0.

[81] tcpdump. TCPDUMP/LIBPCAP public repository. http://www.tcpdump.org/.
Accessed on 7/10/2018.

[82] The Hacker’s Choice. vanhauser-thc/thc-hydra: hydra. https://github.com/
vanhauser-thc/thc-hydra. Accessed on 1/3/2019.

[83] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press, 4th
edition, 2008. ISBN 9781597492720.

[84] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter. Layer Two
Tunneling Protocol "L2TP". RFC 2661, RFC Editor, August 1999. URL https:
//www.rfc-editor.org/rfc/rfc2661.txt.

[85] University of California. KDD Cup 1999 Data. http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html, . Accessed on 3/1/2019.

[86] University of California. KDD-CUP-99 Task Description. http:
//kdd.ics.uci.edu/databases/kddcup99/task.html, . Accessed on 20/1/2019.

[87] University of New Brunswick. NSL-KDD. https://www.unb.ca/cic/datasets/
nsl.html. Accessed on 20/1/2019.

[88] J.C.A. van der Lubbe. Basic Methods of Cryptography. Cambridge University Press,
1998. ISBN 978-9065623461.

https://suricata-ids.org/
https://suricata-ids.org/
http://heartbleed.com/
https://www.symantec.com/security-center/writeup/2001-080421-3353-99
https://www.symantec.com/security-center/writeup/2001-080421-3353-99
http://www.tcpdump.org/
https://github.com/vanhauser-thc/thc-hydra
https://github.com/vanhauser-thc/thc-hydra
https://www.rfc-editor.org/rfc/rfc2661.txt
https://www.rfc-editor.org/rfc/rfc2661.txt
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/task.html
http://kdd.ics.uci.edu/databases/kddcup99/task.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html


Bibliography 81

[89] K. Wang and S.J. Stolfo. Anomalous Payload-Based Network Intrusion Detection.
In Proc. RAID Recent Advances in Intrusion Detection, pages 203–222. Springer,
2004. ISBN 3-540-23123-4.

[90] Z. Zhang, M.W. Beck, D.A. Winkler, B. Huang, W. Sibanda, H. Goyal, et al. Open-
ing the Black Box of Neural Networks: Methods for Interpreting Neural Network
Models in Clinical Applications. Annals of Translational Medicine, 6(11), 2018.


	Acronyms
	Introduction
	Research statement
	Research outline

	Background literature
	Intrusion detection systems
	Machine learning-based intrusion detection systems
	Evaluation of intrusion detection systems
	Dataset collection and generation
	Summary

	Case study
	IDS selection
	Kitsune
	Components
	Experimental setup
	Attack traffic
	Evaluation


	Data collection and processing
	Obtaining appropriate data
	Network description
	Gateway
	Mail server
	Web server
	Public DNS server
	Private DNS server
	Shell access server
	Web server with authentication

	Capturing network traffic
	Sanitation

	Filtering network traffic
	Results of filtering process

	Attack traffic construction
	Mirai infection
	Fuzzing
	SYN flooding
	OS scanning
	Successful SSH brute-force
	DNS abuse and DNS amplification

	IDS evaluation
	Performance evaluation
	Classifying everyday network traffic
	Detecting anomalies
	Unsupervised learning

	Attack simulations

	Discussion
	Conclusion
	Research objective
	Future work
	Evaluation of the framework
	Revisiting previous research
	Real-world testing

	CAML-IDS

	Bibliography

