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REVIEW Open Access

Instrumented assessment of motor function
in dyskinetic cerebral palsy: a systematic
review
Helga Haberfehlner1* , Marije Goudriaan1,2, Laura A. Bonouvrié1, Elise P. Jansma3,4, Jaap Harlaar1,5,
R. Jeroen Vermeulen6, Marjolein M. van der Krogt1 and Annemieke I. Buizer1

Abstract

Background: In this systematic review we investigate which instrumented measurements are available to assess
motor impairments, related activity limitations and participation restrictions in children and young adults with
dyskinetic cerebral palsy. We aim to classify these instrumented measurements using the categories of the
international classification of functioning, disability and health for children and youth (ICF-CY) and provide an
overview of the outcome parameters.

Methods: A systematic literature search was performed in November 2019. We electronically searched Pubmed,
Embase and Scopus databases. Search blocks included (a) cerebral palsy, (b) athetosis, dystonia and/or dyskinesia,
(c) age 2–24 years and (d) instrumented measurements (using keywords such as biomechanics, sensors,
smartphone, and robot).

Results: Our search yielded 4537 articles. After inspection of titles and abstracts, a full text of 245 of those articles
were included and assessed for further eligibility. A total of 49 articles met our inclusion criteria. A broad spectrum
of instruments and technologies are used to assess motor function in dyskinetic cerebral palsy, with the majority
using 3D motion capture and surface electromyography. Only for a small number of instruments methodological
quality was assessed, with only one study showing an adequate assessment of test-retest reliability. The majority of
studies was at ICF-CY function and structure level and assessed control of voluntary movement (29 of 49) mainly in
the upper extremity, followed by assessment of involuntary movements (15 of 49), muscle tone/motor reflex (6 of
49), gait pattern (5 of 49) and muscle power (2 of 49). At ICF-CY level of activities and participation hand and arm
use (9 of 49), fine hand use (5 of 49), lifting and carrying objects (3 of 49), maintaining a body position (2 of 49),
walking (1 of 49) and moving around using equipment (1 of 49) was assessed. Only a few methods are potentially
suitable outside the clinical environment (e.g. inertial sensors, accelerometers).

Conclusion: Although the current review shows the potential of several instrumented methods to be used as
objective outcome measures in dyskinetic cerebral palsy, their methodological quality is still unknown. Future
development should focus on evaluating clinimetrics, including validating against clinical meaningfulness. New
technological developments should aim for measurements that can be applied outside the laboratory.

Keywords: Dystonia, Choreoathetosis, Technology, Reliability, Validity, Responsiveness, Quantitative assessment,
Devices
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Background
Cerebral palsy (CP) is the most common physically disab-
ling condition in childhood, with a prevalence of approxi-
mately two in every 1000 live births in Europe [1].
Dyskinetic CP accounts for 6–15% of all children with CP
and is the second most common form after spastic CP
(85%) [1–3]. A majority of children with dyskinetic CP
have a lesion in the basal ganglia and thalamus or both
[4]. Children and young adults with dyskinetic CP experi-
ence limitations in mobility and manual ability due to
motor impairments. These motor impairments are charac-
terized by involuntary movements and changes in muscle
tone (i.e. dystonia and choreoathetosis) [2, 5]. The severity
of motor impairments and limitations in mobility and
manual ability is wide-ranging in dyskinetic CP. However,
the majority of children with dyskinetic CP are severely af-
fected, with about 70–80% classified within the Gross
Motor Functioning Classification System (GMFCS) [6]
level IV-V (i.e. non-ambulatory) and the Manual Ability
Classification System (MACS) [7] level IV-V (i.e. severely
impaired manual ability) [8, 9].
Several scales are currently used to describe the sever-

ity of dystonia in dyskinetic CP [10]. Examples are the
Barry-Albright Dystonia Scale (BADS) [11], Dyskinesia
Impairment Scale (DIS) [12], Burke-Fahn-Marsden Dys-
tonia Rating Scale (BFMDRS) [13], Hypertonia Assess-
ment Tool (HAT) [14, 15], and Unified Dystonia Rating
Scale (UDRS) [16]. The DIS in addition to dystonia also
assesses choreoathetosis [12]. Clinical scales are often
combined with questionnaires such as the Pediatric
Evaluation of Disability Inventory (PEDI) [17] and Child
Health Index of Life with Disabilities (CPCHILD) [18],
and performance based outcome measures such as Qual-
ity of Upper Extremity Skills Test (QUEST) [19]. Also
individualized outcome measures (Goal attainment scal-
ing (GAS) [20] or Canadian Occupational Performance
Measure (COPM) [21] are used to evaluate treatment
outcome in dyskinetic CP [22–26].
The current clinical scales (e.g. BADS, DIS and

BFMDRS) are based on the observation by a clinician [10].
Although treatment (e.g. intrathecal baclofen and deep
brain stimulation) targets a decrease of dystonia and chor-
eoathetosis the effects of treatment have mainly been
found on individualized outcome measures (e.g. GAS and
COPM) and less or not at all on clinical scales [27, 28].
Outcomes of the clinical scales measuring dystonia and
choreoathetosis are subjective, i.e. dependent on the per-
sonal judgement and experience of the rater. Therefore, it
might be useful to measure motor impairments in this pa-
tient group using objective measurements.
Another reason for the discrepancy in outcome be-

tween clinical scales and individualized outcome mea-
sures might be that the severity of abnormal movements
varies over time and is exacerbated by external stimuli,

such as stress, pain and noise [4], therefore improvement
in dystonia and choreoathetosis might be difficult to
capture at one time point in the clinical environment.
Ideally, measuring at home might result in more mean-
ingful and precise outcome.
Kinematic measures within a laboratory environment

(i.e. gait and upper limb functional analysis) are fre-
quently performed within a general population of CP
and seem to become more common in dyskinetic CP as
well [29]. Devices such as surface electromyography
(sEMG) and wearable sensors may offer additional op-
portunities to objectively quantity dyskinetic movements
(i.e. as functions of the musculoskeletal system) such as
dystonia and choreoathetosis in dyskinetic CP. Wearable
sensors may also allow for assessment of activities and
participation outside the laboratory environment.
Although these techniques are promising, there is cur-

rently no consensus which outcome parameters are rele-
vant in the assessment of dyskinetic movements or
related activity limitations and participation restrictions
in dyskinetic CP. As a first step we deem it necessary to
inventory the outcome parameters that are currently
used in studies using instrumented measures of motor
function. To describe functioning in dyskinetic cerebral
palsy, the ICF (international classification of functioning)
provides a useful framework [30]. It can be used to clas-
sify assessment tools as to which aspect of functioning
they measure [30]. The ICF is a classification system of
functioning and disability, distinguishing between (a)
body function and structure, (b) activities and participa-
tion, and (c) components of contextual factors i.e. envir-
onmental factors and personal factors [31]. We
considered the following chapters of the ICF to be rele-
vant for the assessment of motor function in dyskinetic
CP: (a) within body function and structure: Neuromus-
culoskeletal and movement-related functions, focusing
on muscle and movement functions and (b) within activ-
ities and participation: Mobility, especially changing and
maintaining body position, carrying, moving and hand-
ling objects and walking and moving. The ICF children
and youth version (ICF-CY) has derived from the ICF
expanding the coverage of the main ICF volume by pro-
viding specific content and additional detail to more
fully cover the body functions and structures, activities
and participation, and environments of particular rele-
vance to infants, toddlers, children and adolescents [31].
We choose to use the ICF-CY categories to cover the
age range from preschool children up to young adults.
See Table 1 for codes and definitions of ICF-CY [31].

Aim of review
The objective of this review is to investigate which in-
strumented measurements are available at all levels of
the ICF-CY to assess motor function in children and
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young adults with dyskinetic CP. Additionally, we aim to
provide an overview of the parameters that can be ex-
tracted from these instrumented measurements.

Methods
Search and selection
A literature search was performed in November 2019. We
electronically searched: Pubmed, Embase and Scopus. The

search strategy for Pubmed has been published along with
the study protocol [32]. For the other databases the same
search strategy was used, but modified to the correspond-
ing database. The searches are provided in the supplemen-
tary materials (Additional file 1). In brief, the search blocks
included (a) diagnosis (i.e. cerebral palsy), (b) movement
disorder (i.e. dyskinesia, athetosis and dystonia), (c) age (i.e.
2–24 years) and (d) instrumented measurements with

Table 1 Considered relevant categories of the international classification of functioning, disability and health for children and youth
(ICF-CY) [31] for dyskinetic cerebral palsy related to movement disorders

Body function and structure

Neuromusculoskeletal and movement-related functions (Chapter 7)

Muscle functions (b730-b749) Movement functions (b750-b789)

b730 b735 b740 b750 b755 b760 b765 b770

Muscle
powera

Muscle tone Muscle
endurance

Motor reflex Involuntary
movement
reaction

Control of
voluntary
movement

Involuntary
movement

Gait pattern

Function
related to
the force
generated
by the
contraction
of a muscle
or muscle
groupb.

Functions related
to the tension
present in the
resting muscles
and the resistance
offered when
trying to move the
muscles passivelyc.

Functions
related to
sustaining
muscle
contraction
for the
required
period of
timed.

Functions of
involuntary
contraction of
muscles automatic-
ally induced by
specific stimulie.

Functions of
involuntary
contractions of
large muscles or
the whole body
induced by body
position, balance
and threatening
stimulif.

Functions
associated
with control
over and
coordination
of voluntary
movementsg.

Functions of
unintentional,
non- or semi-
purposive invol-
untary contrac-
tions of a
muscle or
group of
musclesh.

Functions of
movement patterns
associated with
walking, running or
other whole body
movementsi.

Activities and participation

Mobility (Chapter 4)

Changing and maintaining body
position (d410-d429)

Carrying, moving and handling objects (d430-d449) Walking and moving (d450-d469)

d410 d415 d430 d440 d445 d450 d455 d465

Changing
basic body
position

Maintaining a body
position

Lifting and
carrying
objects

Fine hand use Hand and arm use Walking Moving around Moving around using
equipment

Getting into
and out of a
body
position and
moving from
one location
to another.

Staying in the same
body position as
required.

Raising up
an object or
taking
something
from one
place to
another.

Performing the
coordinated actions
of handling objects,
picking up,
manipulating and
releasing them
using one’s hand,
fingers and thumb.

Performing the
coordinated
actions required to
move objects or to
manipulate them
by using hands
and arms.

Moving
along a
surface on
foot, step by
step, so that
one foot is
always on
the ground.

Moving the
whole body
from one place
to another by
means other
than walking.

Moving the whole
body from place to
place, on any surface
or space, by using
specific devices
designed to facilitate
moving or create
other ways of
moving around.

aNote that power in physics is defined as energy output per unit of time, or the rate of doing work. Strength (force or torque output) and power (work/time) are
separate physical parameters. However, the ICF-CY does not distinguish between strength and power. Therefore articles measuring strength were included in the
category muscle power
Inclusion:
bFunctions associated with the power of specific muscles and muscle groups, muscles of one limb, one side of the body, the lower half of the body, all limbs, the
trunk and the body as a whole
cFunctions associated with the tension of isolated muscles and muscle groups, muscles of one limb, one side of the body and the lower half of the body, muscles
of all limbs, muscles of the trunk, and all muscles of the body; impairments such as hypotonia, hypertonia and muscle spasticity
dFunctions associated with sustaining muscle contraction for isolated muscles and muscle groups, and all muscles of the body
eFunctions of stretch motor reflex, automatic local joint reflex, reflexes generated by noxious stimuli and other exteroceptive stimuli; withdrawal reflex, biceps
reflex, radius reflex, quadriceps reflex, patellar reflex, ankle reflex, appearance and persistence of reflexes
fFunctions of postural reactions, righting reactions, body adjustment reactions, balance reactions, supporting reactions, defensive reactions
gFunctions of control of simple voluntary movements and of complex voluntary movements, coordination of voluntary movements, supportive functions of arm
or leg, right left motor coordination, eye hand coordination, eye foot coordination; impairments such as control and coordination problems
hFunctions of involuntary contractions of muscles; impairments such as tremors, tics, mannerisms, stereotypies, motor perseveration, chorea, athetosis, vocal tics,
dystonic movements and dyskinesia
iWalking patterns and running patterns
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keywords such as biomechanics, accelerometer, velocity,
speed, electromyography, sensors, smart phone, computer,
and robot. To also cover literature where cerebral palsy
was not mentioned in the title or abstract, population was
defined by: (a) and (b) or (b) and (c).
The search results were imported into Endnote X8

(Clarivate Analytics, Boston, USA). After removal of du-
plicates, all titles and abstracts were transferred to Ray-
yan (Qatar Computing Research Institute, Qatar), a free
web application for systematic reviews [33]. In Rayyan
two reviewers (HH, MG) independently screened titles
and abstracts against the inclusion criteria. The inclusion
criteria are presented in Table 2. The studies that were
selected by HH and MG were retrieved in full text and
their citation information imported in Endnote as a sec-
ond database. The reference lists of all studies retrieved
in full text as well relevant secondary research (i.e. re-
views) were screened for additional studies. The full text
of selected citations were then assessed in detail against
the same inclusion criteria defined in the PICOS (Partic-
ipants, Intervention, Comparison, Outcome, and Study
design) framework [34] (Table 2) by both reviewers
(HH, MG). Any disagreements that occurred between
these reviewers at each stage of the study selection
process was resolved through discussion with a third
and if necessary fourth reviewer (LB, AB).

Data extraction and assessment of methodological quality
We extracted relevant information from each included
paper in a custom-made Excel based (Microsoft Office,
Microsoft, Redmond, WA, USA) data extraction form. In-
formation regarding patient characteristics, assessed ICF-
CY categories (Table 1), body region, outcome parameters,
used instruments/technologies/software, and primary aim
of the study was extracted. Studies may be categorized in
more than one ICF-CY category when multiple experi-
ments are performed or an experiment includes outcome
parameters in different categories. Measurement properties
of the available techniques (i.e. validity, reliability, respon-
siveness and measurement error) were assessed with the
COnsensus-based Standards for the selection of health
Measurement INstruments (COSMIN) checklist of bias
[35]. Data extraction was done by one reviewer (HH) and
audited by a second reviewer (MG).

Results
An overview of the search and selection process is shown
in Fig. 1 using a Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) flow diagram [34].
After removal of duplicates, our search yielded 4537 re-

cords, of which a total of 245 were included in full-text for
further eligibility assessment. Subsequently, 196 articles
were excluded based on the following main reasons: 1) no

Table 2 Inclusion and exclusion criteria defined in the PICOS (Participants, Intervention, Comparison, Outcome, Study design)
framework

Description Inclusion/Exclusion criteria

Participants Dyskinetic CP, 2–24 years -The study sample or an substantial number of subjects
(minimal 50%) are represented in the study population
or in a sub-study population that is separately analyzed;
-As definition of dyskinetic CP is not always clear also
studies describing dystonia due to CP are included

Intervention Instrumented measurements to assess
movement function and related
activities/participation

-Imaging techniques (e.g. MRI) were excluded
-Studies that only use video recording without
computerized analyzing techniques but purely
to score from the video through observation
were excluded.

Comparison No control group or comparison is required -Comparison to a clinical test, a control group or the
effect of intervention assessed by the methods will be
reported but if there is none, the method is still
listed in the review

Outcome Outcomes measured in one of the ICF-CY level
reported in Table 1 (i.e. muscle or movement
function, changing and maintaining body
position, carrying, moving and handling
objects, (fine) hand and arm use or walking
and moving with or without equipment)

-Other categories of ICF-CY (e.g. mental functions,
sensory functions and pain, speech, communication
or self-care) were excluded

Study design Original research studies are included, peer
reviewed full text and conference abstracts
with sufficient information on used
methodology and participants

-No restrictions on the type of studies, including
technical reports, case studies, case-control studies
and intervention studies
-If both an abstract and full text article were
published on the same data/methodology
only the full text article was selected
-Articles published in languages
other than English were excluded

CP cerebral palsy, MRI magnetic resonance imaging, ICF-CY international classification of functioning for children and youth
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instrumented measurements were used to assess move-
ment function, 2) the participants were too old, 3) too
many participants did not have the diagnosis of dyskinetic
CP, or 4) in case of mixed group of participants with CP,
no sub analysis of dyskinetic group was performed. Finally,
49 articles [36–84] were included in the review. A sum-
mary of the included studies is provided as supplementary
material (Additional file 2). Overall the sample size of the
included studies was low with majority of studies includ-
ing 10–20 participants. Figure 2 shows an overview of fre-
quency of the ICF-CY categories and frequency of used
instruments and technologies.

Body function and structures
Muscle functions

Muscle power Torques and force levels were assessed
by force sensors in the lower [38] and upper extremity
[45]. In the lower extremity, maximum isometric flexion
and extension torques of the knee [38] were analyzed. In

the upper extremity, force variability as well as change of
force variability with increased force levels of the biceps
were studied [45].
From a biomechanical point of view strength (force or

torque output) and power (work/time) are separate physical
parameters. However, the ICF-CY does not distinguish be-
tween strength and power. Therefore articles measuring
torque or force were included in the category muscle power.

Muscle tone / motor reflex Muscle tone and motor re-
flex were measured in both upper and lower extremity,
more specifically at elbow [44, 46, 51], knee [36–38] and
ankle [37]. The most frequently used method was sEMG
alone or combined with force sensors or position mea-
sures [36–38, 44, 46, 51]. These measurements intended
to distinguish between spastic and dyskinetic CP [36–38,
51], to determine the relation of muscle tone and motor
reflex in dyskinetic CP [46], and/or the influence of
muscle tone and motor reflex on control of voluntary
movement [44, 51].

Fig. 1 PRISMA flow diagram for information through the different phases of study selection
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Movement functions

Involuntary movement Involuntary movement was
mainly quantified by determining the overflow of muscle
activation that is not directly required for a task, thus
resulting in involuntary movement. This was mostly
measured as kinematic overflow by 3D motion analysis
[51, 54, 60, 61] and overflow of muscle activation by
sEMG [44, 71–74]. Different stimuli were used to trigger
overflow e.g. movement of contralateral arm, hand, fin-
gers, antagonist muscles [44, 51, 54, 60, 61, 71, 73, 74],
and eye-blinking [61]. Other studies measured the invol-
untary movement component during voluntary move-
ments [48, 82], while holding the arm in a raised
position and during lying in rest [62]. In addition, move-
ment parameters were measured during quiet sitting
using perturbations as a sudden noise [80], closing the
eyes [83] or computer use [84].

Control of voluntary movement Control of voluntary
movement was measured for the upper extremity [43,
44, 47–60, 63–67, 78, 79], for the fingers [69–77], for
the lower extremity [43], head [81] and trunk [78, 79] in
a variety of ways:
(a) Position and joint angle measurements were per-

formed using 3D motion tracking and other measures
like electrogoniometry and shape tape to assess spatio-
temporal and kinematic parameters during different
upper extremity tasks [48, 51–56, 58–60, 63, 75, 76, 78,
79] (Additional file 7). Thorax position and stability of
the trunk during reaching was assessed in two studies
[78, 79] (Additional file 7).
(b) Virtual reality games and touch screen tracking

games were also used to evaluate voluntary movement
function of upper extremity, finger, and head move-
ments. Several input and output devices were used i.e. a
manipulandum controlled by arm movement [49, 50], a
touch screen tablet operated by the index finger [69, 70],
a virtual handwriting system [77], touch activated
switches [65–67] and different kind of mice [81]. These
devices were used to assess a range of outcome parame-
ters mainly studying movement time and/or accuracy
(Additional file 7).
(c) Muscle activity was measured in several studies by

sEMG to assess the contribution of muscle activity to
task performance. This was done during elbow extension
movements [44], during activating a switch by touch

Fig. 2 Frequency of instrumented assessed categories within the
international classification of functioning, disability and health for
children and youth (ICF-CY) for dyskinetic cerebral palsy a: Muscle
and movement functions categories, b: Mobility categories and c:
Frequency of used instruments and technologies
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[65], during a finger-to-nose task [59] and during a 8-
figure writing task [75, 76].
(d) sEMG was also used to assess voluntary muscle ac-

tivation to control tracking games on a (computer)
screen e.g. tracking a target by activating biceps and
triceps [47], keeping an indicator in a central position by
biceps activation [43], control of position and movement
of a line by left and right biceps activation [64] or
tracking a target by isometrically activating intrinsic
muscles [71–74].

Gait pattern Parameters to assess gait pattern were all
measured by marker based 3D motion capture systems. The
marker models used and parameters derived from it differed
between studies, but consisted mainly of spatiotemporal and
kinematic parameters [38–42] (Additional file 7).

Activities and participation
Control of voluntary and involuntary movement was
assessed within functional activities in some studies and
these studies were classified within the following cat-
egories of activities and participation with the ICF-CY:
(a) maintaining a body position [79, 80, 83], (b) lifting
and carrying objects [52, 53, 55, 56], (c) fine hand use
[69, 70, 75–77]; (d) hand and arm use [51, 54, 57–60, 63,
65–67, 78, 79]. One study measured not only gait pat-
tern but also walking velocity and was therefore classi-
fied within the ICF-CY category (e) walking [38]. (f)
Moving around using equipment (i.e. electric wheel-
chair) was assessed in one recent study [68]. No studies
were found that assessed ICF-CY categories of changing
basic body position and moving around.

Assessment of methodological quality
Initially we aimed to assess methodological quality using
the COSMIN checklist [35] However, most papers did
not have as primary aim to determine measurement
properties and provided little to no information for a
formal scoring of the measurement properties of de-
scribed instrumented measurements. We therefore de-
cided to give an indication concerning construct validity
by (a) describing which parameters were compared to a
clinical instrument (i.e. hypotheses testing, convergent
validity) and (b) describing which parameters were used
to compare a dyskinetic CP group to a control group or
to distinguish between subgroups (e.g. between spastic
and dyskinetic CP, i.e. hypotheses testing, discriminative
validity) (Additional file 7). We also extracted informa-
tion on whether test-retest or intra-session reliability
was assessed and/or if information on the measurement
error was available (Additional file 7). An indication of
responsiveness of the used instrumented methods is
given by describing if the method has been used in
evaluation of an intervention (Additional file 7).

The results of studies that report the correlation of mea-
sured parameters to a clinical comparator instrument (e.g.
BADS, UDRS, BFMDRS, MACS) [39, 47, 51–53, 55, 56,
58–62, 69, 71–73] are summarized in Additional file 3. An
overview of studies that report on comparison to a control
group [37, 39, 40, 44, 45, 47–56, 58–61, 64, 67, 69–71] or
distinguish between subgroups within the cerebral palsy
(i.e. dyskinetic versus spastic) [38–40, 42, 51, 53, 55, 57,
66, 83] are provided in Additional file 4. In four studies a
reliability assessment was performed, either intra-session
[53, 66] and /or test-retest reliability [61, 62, 66] (Add-
itional file 5). Only one article used adequate statistical
testing to determine reliability of the assessment, i.e.
reporting intraclass correlation coefficients (ICC) and a
measurement error [61]. Limitations of the remaining
studies were that correlation coefficients were provided
without testing for a systematic change between sessions
[53], the number of subjects used for the reliability ana-
lysis were extremely low (n = 3) [62, 66], or analyses were
performed for the entire group of participants with CP,
without making a distinction for dyskinetic CP [53]. Add-
itional file 6 provides an overview of studies used an in-
strumented method assessing the effects of an
intervention (e.g. physical exercise [43], biofeedback [47,
64, 71, 76] splints [57], deep brain stimulation [62], botu-
linum Toxin Type B [63], different seating types [66, 80]
and transcranial direct current stimulation [72–74].

Discussion
The current review provides an overview of available in-
strumented measurements to assess motor function in
dyskinetic CP, at all levels of the ICF-CY. It can serve re-
searchers and clinicians to make an informed decision
about instrumented measurements in dyskinetic CP for
their specific purpose. There is a range of instrumented
methods to assess motor function in dyskinetic CP, es-
pecially for the upper extremity. Most methods assess
voluntary movement expressed as spatiotemporal and
kinematic parameters and involuntary movements
expressed as overflow of muscle activation that is not
directly required for a task.

Muscle functions (muscle power, muscle tone / motor
reflex, muscle endurance)
Concerning muscle function, the majority of articles fo-
cused on muscle tone and motor reflex. Force and/or
sEMG was measured during rest and movement (passive
and active; slow and fast velocities) [36–38, 44, 46, 51].
Torques, force levels and force variability were described
in two articles and classified within the ICF-CY level of
functioning of muscle power [38, 45]. No instrumented
method is available to assess muscle endurance in dyski-
netic CP. This is surprising since force generation and
sustaining muscle contraction for a certain amount of
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time have an effect on task performance. It would be es-
pecially useful to assess muscle strength and power in
children with dyskinetic CP, because they present with
lower maximal isometric flexion and extension torques
in the lower limbs when compared to those with spasti-
city and typically developing children [38]. In addition to
a severely impaired strength, children with dyskinetic CP
showed increased force variability [45]. Thus strength
measurements could provide important information
concerning muscle function in dyskinetic CP.

Movement functions (control of voluntary movement,
involuntary movement, gait pattern)
On the ICF level of functioning, control of voluntary
movement was frequently assessed by analyzing muscle
activity during different tasks via sEMG analyses [44, 59,
65, 75, 76]. The average of co-contraction [59] and the
relative contribution of muscle activity (task correlation
index) [75, 76] during a repetitive task are possibly inter-
esting variables to assess in children and young adults
with dyskinetic CP. Yet experiments were performed in
a small group and further development of methods
would be necessary. Other ways to study control of vol-
untary movement were virtual reality or tracking games
with various types of input systems (e.g. sEMG con-
trolled input, a touch screen tablet or head mice). As-
sessment of tracking error, timing error, movement
time, or speed-accuracy using Fitt’s law were frequently
employed [47, 49, 50, 64–67, 69–71, 73, 74, 77]. These
studies point out that available software (e.g. FittsLaw-
Software [85]), assessing point-and-click or drag and
drop using the individual computer input device of a
participant, could be an interesting option for assess-
ment of control of voluntary movement as part of
human-computer interaction in dyskinetic CP.
Gait analysis and upper limb measurements using 3D

motion capture systems and sEMG are frequently per-
formed in the general population of CP and several rec-
ommendations and protocols are available for
measurements of kinematics, including Vicon clinical
manager or Plug in gait full body model (Vicon UK),
American Society of Biomechanics recommendations for
upper extremity motion analysis [86], University of
Western Australia’s (UWA) upper limb model [87],
upper limb model proposed by Rab et al. [88], upper
limb three-dimensional movement analysis (UL-3DMA)
[89], ELEPAP clinical protocol [90–92] and Reach &
Grasp Cycle [93]. These recommendations and protocols
were (partly) used in several of the reviewed articles
[38–41, 53, 55–57, 60, 61]. Parameters that were mostly
used to assess dyskinetic movements during gait and
upper extremity tasks included variability and timing of
movement trajectories, jerk, kinematic overflow and
overflow measured by sEMG [39, 42, 44, 53, 54, 57, 58,

60, 61, 71, 73, 74]. Some of these parameters have
already been shown to have a strong correlation to clin-
ical comparator instruments (r > 0.70) (e.g. variability of
ankle trajectory during swing [39], kinematic overflow
[51, 60, 61] number of movement units (i.e.
acceleration-deacceleration) [52] and movement, reach
or hold time [52, 55] (see Additional file 3) and might be
interesting for assessment of treatment effects. For that,
the reliability including measurement error is important
to know, especially the test-retest reliability over differ-
ent days. An insufficient reliability of assessment instru-
ments can hamper results of clinical trials aiming to
assess the efficacy of (new) treatments, if changes due to
the intervention are not detected. Two studies assessed
reliability of outcome variables but the reliability mea-
surements were performed on the same day [53, 61]. Of
these two studies, only one used adequate statistical test-
ing following the COSMIN checklist of bias [61]. We ex-
pect that the variability of dyskinetic movements
negatively affects test-retest reliability on different days,
resulting in a higher measurement error in gait analysis
and upper limb measurements for dyskinetic CP com-
pared to the general population of CP. To overcome this
limitation measuring for a longer period of time might
be necessary in dyskinetic CP.

Assessment of motor function in severely impaired
children
The majority of the reviewed methods have in common
that they assessed muscle function and movement dur-
ing tasks that require some level of understanding of a
task instruction, manual ability and/or ambulation.
However, it is known that in dyskinetic CP a high per-
centage of children has severe intellectual disability
(about 70%), severe visual impairments (about 40%), and
70–80% are non-ambulatory (GMFCS IV-V) and have a
severely impaired manual ability (MACS IV-V) [8, 9].
Therefore for a large group of children and young adults
with dyskinetic CP, only few instrumented methods are
available. No task performance was required for asses-
sing motor activity during rest with an accelerometer at-
tached to the wrist [62] and for evaluation of seating
using 3D motion capture and a pressure measurement
system of the back, using an external perturbation by
sudden noise to trigger dystonic movements [80]. Other
possible options for the more severely impaired group
are: assessment of head movement during computer use
with a computer interface controlled by head movement
(e.g. camera mouse, inertial sensor) [81, 82] or finger
movement (e.g. wearable switch) [84] and assessment of
movement and muscle function during very simple tasks
i.e. operate a touch activated switch, perform an
outward-reaching, a finger-to nose task, finger-tapping
or eye blinking [59, 61, 63, 65–67, 79]. In summary,
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instrumented assessment for the severely impaired chil-
dren and young adults are highly needed.

Implications and future directions
Using instrumented methods with a hypothesis about
pathophysiological aspects in mind may lead to more
understanding of the mechanisms behind current treat-
ment and may possibly lead to new treatments or im-
provement of current treatments. It has been suggested
that an imbalance between the direct and indirect path-
way of the basal ganglia plays a role in how the brain le-
sion in dyskinetic CP effects movements (i.e. the direct
pathway is responsible for the control of voluntary
movement and the indirect pathway for the inhibition of
involuntary movements) [4, 94]. Therefore the assess-
ment methods of control of voluntary movements versus
inhibition of involuntary movements or a combination
thereof might help to gain more knowledge how brain
abnormalities result in dystonia and choreoathetosis in
dyskinetic CP.
Some articles of the current review could be classified

within ICF-CY level of activities and participation. How-
ever, none of the methods actually assessed activities
within the daily environment of the participants. There-
fore it is questionable whether results can be generalized
to real-life situations. A large number of children and
young adults with dyskinetic CP are dependent on
wheeled mobility (manual or powered), instrumented as-
sessment of quality and quantity of wheelchair use might
be worthwhile. Assessing the performance of wheeled
mobility (or the performance of different control devices
for powered wheeled mobility) within a virtual environ-
ment as recently reported [68] is a very interesting op-
tion for this group.
In the recent years wearable sensor techniques have

increasingly been used for detecting specific movements
of interest, e.g. stereotypical movement patterns in epi-
lepsies as well as for activity monitoring in neurological
disorders [95] including the general population of CP
[96, 97]. However, no study was found specifically for
dyskinetic CP. Wearable sensors might offer opportun-
ities in monitoring dyskinetic movements outside the la-
boratory setting. Considering that severity of abnormal
movements varies over time and is exacerbated by exter-
nal stimuli, such as stress, pain, and noise [4], measuring
during a longer period of time in the daily environment
of children and young adults with dyskinetic CP might
result in more reliable measures.

Conclusion
Although this current review shows the potential of sev-
eral instrumented methods to be used as objective out-
come measures in dyskinetic CP, their methodological
quality is still unknown. Future development should

focus on evaluating their clinimetrics, including validat-
ing against clinical meaningfulness. New technological
developments should aim for measurements that can be
applied outside the laboratory. This is especially import-
ant for the group of severely impaired children and
young adults with dyskinetic CP.
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