
Improving Agda’s module system

Master’s Thesis

Ivar Cornelis de Bruin

Improving Agda’s module system

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Ivar Cornelis de Bruin
born in Dordrecht, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2023 Ivar Cornelis de Bruin.

Improving Agda’s module system

Author: Ivar Cornelis de Bruin
Student id: 4944135

Abstract

Agda is a language used to write computer-verified proofs. It has a module system that
provides namespacing, module parameters and module aliases. These parameters and
aliases can be used to write shorter and cleaner proofs. However, the current imple-
mentation of the module system has several problems, such as an exponential desug-
aring of module aliases. This thesis shows how the module system can be changed to
address these problems. We have found that we do not need any desugarings during
type-checking, but can instead handle module parameters and aliases during signature
lookup by making a small change to the scope-checker, completely eliminating any ex-
ponential growth problems and unnecessary complexity. This will allow users to make
more effective use of the module system, simplifying their proofs. Furthermore, the im-
provements to the module system will allow future research to fix the problems with
Agda’s implementation of pretty-printing, records and open public statements.

Thesis Committee:

Chair: Prof. dr. A. van Deursen, Faculty EEMCS, TU Delft
Committee Member: Dr. J.G.H. Cockx, Faculty EEMCS, TU Delft

University Supervisors: Dr. J.G.H. Cockx, Faculty EEMCS, TU Delft
Bohdan Liesnikov, MSc, Faculty EEMCS, TU Delft

Preface

This thesis has been written to fulfil the graduation requirements of the Master Computer
Science at the Technical University in Delft. It has been written between November 2022 and
June 2023.

During my master, I focused on programming languages and algorithms. At some point,
I realised that I was starting to enjoy the programming language courses much more and I
have always liked projects like this where you can try out different approaches and try to
find their advantages and disadvantages. Combined with the fact that I had worked with
both Jesper and Bohdan before, made this a perfect thesis to work on.

This report has been written in a way that should allow almost all computer scientists to
follow what is happening and why, as special care is taken to introduce the reasons for each
step. Sections 5.3 and 8.4 are the exception and they will be harder to follow for anyone not
involved in Agda as they discuss topics that should be covered in the future without intro-
ducing all of the relevant background information separately. Readers that are not working
with Agda, nor planning to, should probably skip these sections as they are difficult to follow
and heavily focused on Agda’s implementation.

I would like to thank my supervisors Jesper and Bohdan for their help during the thesis.
Our weekly meetings and their feedback were extremely useful.

Ivar Cornelis de Bruin
Delft, the Netherlands

June 23, 2023

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background 3
2.1 Dependently-typed languages . 3
2.2 Agda’s module system . 4
2.3 Type-checking Agda . 5

3 The Problem 9
3.1 Identifying the problems . 9
3.2 Addressing the problems . 10

4 Simple Agda 11
4.1 Syntax . 11
4.2 Scope-checking . 12
4.3 Evaluation . 12
4.4 Type-checking . 12
4.5 Removed features . 14

5 Iteratively improving the implementation of the module system 17
5.1 Problem 1 - Lack of structure . 17
5.2 Problem 2 - Module alias performance . 22
5.3 Problem 3 - Pretty-Printing . 23

6 Generating Agda files 27
6.1 Why use a generator? . 27
6.2 Limitations of randomly generated files . 27
6.3 The Simple Agda Generator . 28
6.4 Setting parameters to realistic values . 29

7 Evaluation 33
7.1 Simple Agda results . 33

v

CONTENTS

7.2 Agda results . 41

8 Discussion 47
8.1 The Simple Agda experiments . 47
8.2 Impact of the Agda experiments . 48
8.3 Remaining limitations of the experiments . 48
8.4 Advice for improving Agda’s module system 49

9 Related work 53

10 Conclusion 55

Bibliography 57

Acronyms 63

A Full typing judgements for version 1 65

B Full typing judgements for version 2 67

C Paper for IFL 69

vi

List of Figures

4.1 WHNF evaluation of Simple Agda . 12
4.2 getCommonTelescope definition . 13
4.3 Term typing and elaboration judgements for Simple Agda 13
4.4 Declaration typing and elaboration judgements for Simple Agda 14
4.5 Telescope typing rules for Simple Agda . 14

5.1 Signature lookup for version 1 . 19
5.2 Updated term typing judgements for version 1 . 20
5.3 Declaration typing judgements for version 1 . 21
5.4 newDecls definition for version 1 . 21
5.5 Signature lookup for version 2 . 22
5.6 Declaration typing judgements for version 2 . 23

6.1 The number of decls in files in both agda-stdlib and agda-categories 29
6.2 The number of imports in files in both agda-stdlib and agda-categories 30
6.3 The size of module parameters in files in both agda-stdlib and agda-categories . 31
6.4 The size of module alias arguments in files in both agda-stdlib and agda-categories 31

7.1 Experiment 1: Only declarations . 34
7.2 Experiment 2: Impact of both size and number of module parameters 35
7.3 Experiment 3: Impact of type size . 35
7.4 Experiment 4: Influence of the size of alias arguments 36
7.5 Experiment 5: Aliasing larger modules . 36
7.6 Experiment 6: Nested aliases . 37
7.7 Experiment 7: Impact of using aliased declarations 38
7.8 Multi-file experiment 1: Only declarations . 39
7.9 Multi-file experiment 2: Import chains . 39
7.12 Agda experiment 1: Only declarations . 42
7.13 Agda experiment 2: Impact of module parameters 42
7.14 Agda experiment 4: Influence of the size of alias arguments 43
7.15 Agda experiment 5: Aliasing larger modules . 43
7.16 Agda experiment 6: Nested aliases . 44
7.17 Agda multi-file experiment 1: Only declarations 44

A.1 Signature lookup for version 1 . 65
A.2 WHNF evaluation of version 1 . 65
A.3 Telescope typing rules for version 1 . 65
A.4 Term typing judgements for version 1 . 66
A.5 Declaration typing judgements for version 1 . 66

vii

LIST OF FIGURES

A.6 newDecls definition for version 1 . 66

B.1 Signature lookup for version 2 . 67
B.2 WHNF evaluation of version 2 . 67
B.3 Telescope typing rules for version 2 . 68
B.4 Term typing judgements for version 2 . 68
B.5 Declaration typing judgements for version 2 . 68

viii

List of Tables

7.10 Average size of the core files outputted during type-checking in the various ex-
periments . 40

7.11 Core file size of imported files in various multi-file experiments 40
7.18 File sizes for Agda experiments . 45

ix

Chapter 1

Introduction

Throughout programminghistory, programmers have struggledwith bugs. This is especially
a problem in security-related programswhere bugs can have big consequences. One possible
solution to this problem has been to create code that is proven to be correct. This has already
seen some use in, for example, the creation of a C compiler [1].

To create such proofs, programmers have to work in proof-assistants [2]. Many of these
proof-assistants are programming languages with strong type systems and additional prop-
erties such as guaranteed termination to allow for the creation of proofs. This thesis focuses
on Agda [3], a proof assistant that uses a syntax similar to Haskell. This allows users to write
programs in Agda, prove them correct, then transform them to Haskell code using a Haskell
backend, thereby maintaining the guarantee that their code has the proven properties, while
still using a programming language optimised for performance.

Agda is also used to prove various mathematical properties or even entire mathematical
fields [4, 5]. To help programmers structure larger proofs, Agda provides a module system.
Modules allow for easy namespacing and grouping of proofs. In addition, there are two
interesting features that can be of great help when writing proofs: module parameters and
module aliases.

Module parameters are in scope for all declarations in that module while module aliases
allow programmers to create aliases that instantiate these parameters with specific argu-
ments. This allows programmers to make proofs generic over some module parameters.
Then, using a module alias, these proofs can be instantiated for a specific value as can be
seen here, where CategoryProofs contains a variety of proofs generalised over some Category
c:
postulate d e : Category
module CategoryProofs (c : Category) where
...
module DProofs = CategoryProofs d
module EProofs = CategoryProofs e

Structuring proofs this way greatly increases both the usability as well as the readability and
ease of writing of the proofs. Unfortunately, the current version of Agda does not perform
well when many aliases are used due to exponential growth problems. This occurs because
Agda replaces the alias with specialised functions for each declaration being aliased, similar
to what many compilers do when dealing with parametrised functions [6]. While this tech-
nique makes sense for a compiler, it is not necessarily a good idea for a proof-assistant, as we
do not care for the speed of the type-checked code, but about the speed of the type-checker.

Furthermore, removing aliases makes the implementation of the type-checker more com-
plex and bug-prone due to the increase in transformations needed and finally, any backends
that are implemented for Agda will not have access to the aliases as the type-checker already
removed them, limiting the potential compilations.

1

1. INTRODUCTION

This thesis will analyse different approaches to Agda’s module system to remove this
performance bottleneck while preserving the module features during type-checking. Con-
cretely, we make the following contributions:*

• We analyse the issues on the Agda GitHub issue tracker to identify the main problems
with Agda’s module system: The lack of structure, the performance problems with
nested module aliases and a variety of issues related to pretty-printing (Chapter 3).

• We create a specification for a simplified version of Agda called Simple Agda which
allows us to analyse Agda’smodule system in isolation of its other features (Chapter 4).
This type-checker is implemented in Haskell and this original version will be referred
to as version 0.

• We iteratively improve the type-checking process and implementation to address the
previously mentioned problems by first adding a sense of structure by keeping mod-
ules andmodule aliases intact. Next, we address the performance problems by keeping
aliases intact and finally we address some of the pretty-printing problems. These im-
provements will be referred to as versions 1 through 3 and all versions preserve the
original semantics of the module system (Chapter 5).

• We create a generator for generating random Simple Agda programs and analyse two
existing Agda libraries to find out what settings to use for the generator (Chapter 6).

• We analyse the different type-checkers in a variety of scenarios which shows that keep-
ing aliases intact without expanding them has far superior performance, with barely
any downsides. We also verify the accuracy of our experiments by executing them
on Agda to make sure that our baseline version 0 matches with Agda’s performance
(Chapter 7).

• We analyse the results, the issues on the Agda GitHub repository and Agda’s imple-
mentation to show that Agda should implement at least version 2 as soon as possible.
We also use this information to outline what we believe to be the logical next steps in
improving Agda (Chapter 8).

*All code and results can be found at https://github.com/ivardb/AgdaModuleImprovement

2

https://github.com/ivardb/AgdaModuleImprovement

Chapter 2

Background

This chapter will provide the required background knowledge for this thesis. Section 2.2 will
explain the most important features of Agda’s module system while section 2.3 will explain
how these features are type-checked. However, as Agda is dependently-typed, section 2.1
will first explain what dependent types are, as well as an explanation of weak head nor-
mal form evaluation which is needed to properly type-check dependently-typed programs.
Readers already familiar with these concepts can skip this section.

2.1 Dependently-typed languages
Dependent types are types that depend on terms [7]. For example:

f : (b : Bool) -> (if b then Unit else Bool) -> (if b then Unit else Bool)
f = \b x . x

Here f is either the identity function for Bool or for Unit, depending on the value b. This
dependencymakes this a dependent type. Tomake this possible, parameters can have names
in type signatures and these parameters are in scope for all later parameters. Such a list of
named type parameters is called a telescope [8] and denoted with a Greek letter such as ∆.

Dependent typing also introduces some interesting changes to case-matching judgements
such as if-statements. When the condition is a variable, we should introduce definitions for
that variable to allow more programs to type-check, as types in the branches could depend
on the variable in the condition. A typing judgement for such a case would look something
like this:

x : Bool P Γ Σ; Γ $ A : Type
Σ;Γ $ v[x := True] : A[x := True] Σ; Γ $ w[x := False] : A[x := False]

Σ; Γ $ if x then v else w : A

2.1.1 Weak head normal form
Dependently-typed languages sometimes need to evaluate a term during type-checking.

x : if True then Bool else Unit
x = True

The above example should type-check. The type evaluates to Bool and True is a valid value
of type Bool. To allow this, dependently-typed languages will evaluate types to weak head
normal form (WHNF) [9]. To convert a term to WHNF, the outermost part of the term is
evaluated until evaluation is no longer possible.

Bool -> if True then Bool else Unit

3

2. BACKGROUND

The above term is in WHNF as a function type cannot be evaluated further. The if expres-
sion is also not simplified, as knowing that we have a function type is enough to continue.
Only once we need a more specific return type will we evaluate the if expression. Doing
this evaluation lazily like this can lead to large performance increases as we do not perform
unnecessary work.

To be able to reduce terms to WHNF we not only need to track the types of definitions,
but also their actual definitions when type-checking.
b : Bool
b = True

f : if b then Bool else Unit
f = True

2.2 Agda’s module system
This section will explain the module system of Agda in so far as it is relevant for this thesis.
A complete overview of the module system can be found in chapter 4 of Norell’s thesis [10].

Agda [10] is a dependently-typed language, mainly used as a proof assistant [2]. To
accommodate this, the language is pure, total and terminating [11, 12]. These properties are
needed in combination with the Curry-Howard correspondence to ensure that a proof that
type-checks, is a valid mathematical proof [13].

To help structure proofs, Agda uses modules which can also be nested. We could for
example have a module with a bunch of definitions and proofs related to data structures,
which contains a module for Lists and one for Sets.
module DataStructures where
module Lists where
append : (A : Type) -> List A -> A -> List A
contains : (A : Type) -> A -> List A -> Bool

module Sets where
contains : (A : Type) -> A -> Set A -> Bool

Many of these definitions will need to know the type of the elements in the data structure.
Dependently-typed languages can simply take that type as a parameter tomake the functions
polymorphic. As this value is the same for each function, Agda allows it to be moved to the
module level to create a module with data structures over elements of type A.
module DataStructures (A : Type) where
module Lists where
append : List A -> A -> List A
contains : A -> List A -> Bool

module Sets where
contains : A -> Set A -> Bool

This feature is not limited to type polymorphism, but anyparameter of any type can bemoved
to the module level so that all declarations can access it. As parameters are in scope for all
further parameters, the following is also perfectly valid:
module M (A : Type) (x : A) where ...

When calling a function in a module with module parameters, we need to provide these
parameters as if they were at the function level:
module Example where
module M (A : Type) (x : A) where

4

2.3. Type-checking Agda

f : A
f = x

g : A
g = f

h : Bool
h = M.f Bool True

In this example, g can call fwithout providing any arguments as A and x are in scope for both.
As h is outside of M, it does need to provide some arguments to be able to call f.

If you often need to call functions inside of a module with the same parameters, you can
make use of a module alias:

module DataStructuresBool = DataStructures Bool

This will create a module with all of the data structures for elements of type Bool. Module
aliases can also introduce new parameters and do not have to provide an argument for all
parameters of the original module:

module M' (b : Bool) = M (if b then Bool else Unit)

Both of these features can be incredibly useful to keep proofs readable and nicely structured.
There is also a variety of purely scoping-related features in Agda such as a variety of import
and open statements:

import M1 as M2
open import M1 hiding (_+_) renaming (N to N')
open M using (Z)
...

These features are all dealt with during scope-checking and as this thesis focuses on the type-
checking part we will ignore these features as they can easily be added to any type-checker
by simply changing the scope-checker that runs before it.

2.3 Type-checking Agda
This section will cover the type-checking process Agda uses for its modules. During type-
checking, Agda will remove modules and instead output a completely flattened program
consisting only of top-level definitions.

2.3.1 Scope-checking Agda

Agda starts by scope-checking a file. During this process, it verifies that all names that are
referenced are declared beforehand. It then replaces all names with fully qualified names so
that each name is unique and stores where it is defined.

It can then remove anyvisibilitymodifications as these are not necessary for type-checking.
This means we end up with only two kinds of module declarations after scope-checking,
module definitions and module aliases:

module M (A : Type) (x : A) where ...
module M1 (x : Bool) = M Bool x

These will be the constructs used in the remainder of this thesis.

5

2. BACKGROUND

2.3.2 Agda’s core language
Once Agda finishes type-checking, it outputs a signature in a core language. This core lan-
guage can be used to cache the result of type-checking in an interface file. This means that
when the file is imported we do not have to type-check anything again. For this to be pos-
sible, the core signature has to contain type signatures for every declaration that is publicly
accessible. So, if the type-checking implementation supports any form of inference, then all
inferred information should be stored explicitly so that it does not have to be inferred again.
Furthermore, the core language should be easy to load into the typing environment. This
means that the typing environment and the core language are very closely related.

An Agda core interface has two essential parts. First, there is a list of section declarations.
These are the module signatures.
section Example
section M (A : Type) (x : A)

These signatures are required when type-checking module aliases to see if the provided ar-
guments are valid. Next, we get a list of definitions. Each definition is accompanied by a type
signature that we know is correct. The core language does not support modules as these are
flattened to the top level. How this flattening is performed is explained in section 2.3.3.

As an example: the Example module shown in section 2.2 will turn into the following
core code:
section Example
section Example.M (A: Type)(x: A)

Example.M.f : (A : Type) -> A -> A
Example.M.f = \A x. x
Example.M.g : (A : Type) -> A -> A
Example.M.g = \A x. Example.M.f A x
Example.h : Bool
Example.h = Example.M.f Bool True

2.3.3 Type-checking and elaboration of module statements
The current implementation of Agda removes modules during type-checking. Part of this
process is moving module parameters to the definition level. For example:
module M (X : Type) where
M.id : X → X
M.id x = x

will be transformed to:
M.id : (X : Type) → X → X
M.id X x = x

If there are multiple declarations in a module, this will create additional copies of the mod-
ule parameter type. Because functions now have more arguments, each call will need to be
modified during type-checking to introduce these new arguments.
module M (b : Bool) where
f : Bool
f = b
module M2 (a : Unit) where
g : Bool
g = f

6

2.3. Type-checking Agda

This is a perfectly valid program. Both f and g have b automatically in scope. However, when
the module parameters are transferred to the definition level we end up with:
M.f = \b . b
M.g = \b a . M.f b

M.f now needs to be explicitly passed the b argument.
To type-check a module alias, new definitions are introduced. For each definition in the

original, we need a definition in the new module that redirects to the old definition, passing
the appropriate arguments.
module M (X : Type) where
M.id : X → X
M.id x = x

module MBool = M Bool

will transform to:
M.id : (X : Type) → X → X
M.id X x = x

MBool.id : Bool -> Bool
MBool.id = M.id Bool

This means that any arguments passed to an aliased module will be copied once for each
declaration.

There are several problems with this way of type-checking and chapter 3 will explain
what these are and how this thesis will address them.

7

Chapter 3

The Problem

This chapter will explain the various problems with the current Agda module system in
section 3.1. Section 3.2 will then explain how this thesis will address these issues.

3.1 Identifying the problems
Agda’smodule systemhas several problems,manyofwhich are reported as issues onGitHub.
Before we go through the problems found in these issues there is a more general problem.
The type-checker acts as a compiler by not only type-checking the code but immediately
transforming it to a simplified language.

Agda allows for the implementation of custom backends which can be used to compile
Agda to different languages. However, by then Agda will already have removed its modules
and moved the module parameters to the declaration level. This means that the backend
is not able to decide to do so for itself. If you want to make a backend for Agda that ap-
plies a transformation and then returns valid Agda code you will not be able to do so while
preserving the original module structure.

Besides this conceptual problem, there are also many issues that have been reported on
the issue tracker related to the module system. We will group these issues according to
the type of problem they are about and see if they can be fixed through a redesign of the
module system. Issues related to rewrite rules and other new Agda features will be ignored
as the reason for these issues is not that the module system does not work properly but that
whatever new feature is being implemented does not work well with modules and as such
is out of scope for this thesis.

1. Lack of proper structure during type-checking: Agda has to make changes to the
declarations to lift them to the top level and to move the module parameters to the
declaration level. These changes can easily introduce bugs due to renaming to preserve
unique names [14] or because it becomes harder to know if a parameter is part of the
original declaration or if it came from a module [15–17]. While these bugs could all
be easily resolved, some issues are still not fixed. One such issue is issue #6359 which
is a problem that is caused by declarations being added to the global scope while they
should only exist locally, thereby breaking the tracking of specific data resulting in
buggy behaviour [18]. These issues show that the current approach of Agda is both
complex and restrictive.

2. Pretty-Printing problems: Agda has a variety of problems with pretty-printing values
from different modules. Either because it cannot remember where a definition origi-
nated [19, 20] or because it loses track of module parameters making infix operators
especially confusing to read [21, 22].

9

https://github.com/agda/agda/issues?q=label%3Amodules+sort%3Aupdated-desc+
https://github.com/agda/agda/issues/6359

3. THE PROBLEM

3. Performance problems: While the previous problems were more convenience prob-
lems, Agda also has severe performance problems [23–25]. These problems are either
caused by very large numbers of module parameters or more often by nested module
aliases as this produces an exponential growth in the number of new declarations be-
ing created. This problem is so bad that the agda-categories library has a special wiki
dedicated to avoiding Agda’s performance problems [26].

4. Openpublic statements: While this thesiswillmostly ignore the scopingpart ofAgda’s
module system there is one scoping feature we do want to discuss. Take the following
example:
module A where
f = True

module M (x : Bool) where
open public A
g = x

y : Bool
y = M.g True
z : Bool
z = M.f

Here open public makes the contents of module A visible inside module M. However,
the parameter x will not be added to the telescope of module A’s declarations. This is
rather inconsistent behaviour that causes a lot of confusion [27, 28]. A more consistent
behaviour would be to make open public desugar to using a module alias. This is not
done yet because of the performance issues with module aliases [29].

5. A variety of weird module features: Open public statements are not the only mod-
ule feature that could use a redesign. Anonymous modules [30] and named where
blocks [31, 32] both have some weird behaviour as well. However, as none of these are
affected by the handling of modules they will not be covered in this thesis.

6. Records: Records interact somewhat poorly with module parameters [33]. However,
records also have a large variety of other problems [34, 35] as well as open proposals
for changes [36, 37] and several calls for a proper overview of records to be created [35,
38]. This means that it would be better to redesign these separately after implementing
the changes proposed in this thesis and as such records will not be covered by this
thesis.

3.2 Addressing the problems
This thesis will answer the following question: ”What changes need to be made to Agda’s
module system to increase the usefulness of its core features, improve its time complexity
and make its core files more useful for potential compilers?” We also answer the following
related questions:

• What are the individual effects of each of the changes made?

• Are there any disadvantages or side-effects that are introduced by these changes?

• What are the realistic use cases of Agda’s module system and how do these cases affect
performance?

• What are the follow-up steps to the proposed changes?

10

Chapter 4

Simple Agda

For most of this thesis, we will use a much simpler language than Agda. This chapter will
describe the starting point of this language which will accurately represent Agda’s module
system. Later chapters will make modifications to the language to improve upon Agda’s
module system. This version is implemented as version 0*. The code is a modified version
of pi-forall [39].

Section 4.1 will first cover the syntax of Simple Agda. Sections 4.2 to 4.4 will then cover
the type-checking process for this language. Finally, section 4.5 will explain which features
have been removed from Simple Agda and why this is acceptable.

4.1 Syntax

A,B, u, v ::= x Variable
| α.f Qualified name
| Type Universe
| Unit | Bool Built-in types
| 1 | True | False Basic values
| if u then v else w if expressions
| (x : A) Ñ B Dependent function types
| \x.u Lambda
| u v Application

α, β ::= ι No qualifier
| M.α Module qualifier

∆,Γ ::= ϵ | (x : A)∆ Contexts
Σ ::= ϵ | decl,Σ Declaration context
decl ::= f : A Type signature

| f = u Definition
| module M ∆ where decls Module definition
| module M 1 ∆ = α.M ū Module alias

Grammar 4.1: Simple Agda grammar

Simple Agda’s grammar can be found in grammar 4.1. It is dependently typed with Pi-types,
primitive Unit and Bool values as well as a dependent case expression to eliminate Bool
values.

The core language, which type-checking outputs, can be found in grammar 4.2. It starts
with a list of sections describing the modules and then contains a list of declarations. These
declarations are either type signatures or definitions, as modules are removed.

*https://github.com/ivardb/AgdaModuleImprovement/tree/master/version0

11

4. SIMPLE AGDA

Core ::= [section] [coreDecl] Core
section ::= section α.M ∆ Section with telescope
coreDecl ::= α.f : A Type signature

| α.f = u Definition

Grammar 4.2: Core language grammar

4.2 Scope-checking
Before a file is type-checked, we scope-check it. During scope-checking, we verify that all ref-
erenced names exist. We also fully qualify each name to simplify module operations during
type-checking.

4.3 Evaluation
As Agda is dependently typed, we need to be able to evaluate terms to WHNF. The evalua-
tion rules for this can be found in figure 4.1.

α.f = u P Σ

Σ $ a.f
WHNF
ÝÝÝÝÝÑ u Σ $ (λx . u) v

WHNF
ÝÝÝÝÝÑ u[x := v]

Σ $ u
WHNF
ÝÝÝÝÝÑ u1

Σ $ u v
WHNF
ÝÝÝÝÝÑ u1 v

Σ $ if True then v else w
WHNF
ÝÝÝÝÝÑ v Σ $ if False then v else w

WHNF
ÝÝÝÝÝÑ w

Σ $ u
WHNF
ÝÝÝÝÝÑ u1

Σ $ if u then v else w
WHNF
ÝÝÝÝÝÑ if u1 then v else w

Σ $ u
WHNF
ÝÝÝÝÝÑ v Σ $ v

WHNF
ÝÝÝÝÝÑ w

Σ $ u
WHNF
ÝÝÝÝÝÑ w Σ $ u

WHNF
ÝÝÝÝÝÑ u

Figure 4.1: WHNF evaluation of Simple Agda

4.4 Type-checking
The typing judgements for Simple Agda are split into term level judgements and declaration
level judgements. Both are of the form: Σ;Γ $ u : A⇝ u1. This states that given a signature
environment Σ and a variable context Γ, the term u has the type A and type-checking it
results in u1, where u1 is a modified version of u.

Term typing and elaboration judgements The judgements can be found infigure 4.3. These
judgements make no distinction between type-inference and type-checking although this
could be implemented [40].

The reason that term typing outputs modified terms is that we sometimes need to insert
additional terms when type-checking a qualified name. Take our earlier example:
module M (b : Bool) where
f : Bool
f = b
module M2 (a : Unit) where

12

4.4. Type-checking

g : Bool
g = f

This is a perfectly valid program. Both f and g have b automatically in scope. However, when
the module parameters are transferred to the definition level we end up with:

M.f = \b . b
M.g = \b a . M.f

This will not type-check. The shared module parameter b needs to be threaded through the
function call. These variables can be found using the getCommonTelescope method, defined
in figure 4.2, which will find the shared module telescope with a qualified name. The found
telescope can then be turned into a set of arguments by the asVarsmethodwhichwill convert
a telescope into terms by taking the names in the telescope. Adding these arguments to the
function results in M.f b, which is correct.

getCommonTelescope(M(∆)Γ,M.α) = ∆ ++ getCommonTelescope(Γ1, α)

getCommonTelescope(N(∆)Γ,M.α) = ϵ

getCommonTelescope(ϵ,M.α) = ϵ

getCommonTelescope(Γ, ι) = ϵ

Figure 4.2: getCommonTelescope definition

x : A P Γ

Σ; Γ $ x : A⇝ x Σ;Γ $ Type : Type⇝ Type Σ;Γ $ Bool : Type⇝ Bool

Σ;Γ $ Unit : Type⇝ Unit Σ;Γ $ True : Bool⇝ True

Σ;Γ $ False : Bool⇝ False Σ;Γ $ 1 : Unit⇝ 1

Σ;Γ $ u : Bool⇝ u1 Σ;Γ $ v : A⇝ v1 Σ;Γ $ w : A⇝ w1

Σ;Γ $ if u then v else w : A⇝ if u1 then v1 else w1

Σ;Γ $ A : Type⇝ A1 Σ;Γ, x : A1 $ B : Type⇝ B1

Σ;Γ $ (x : A) Ñ B : Type⇝ (x : A1) Ñ B1

Σ;Γ, x : A $ u : B ⇝ u1

Σ;Γ $ λx . u : A Ñ B ⇝ λx . u1

Σ;Γ $ u : A⇝ u1 Σ;Γ $ A
WHNF
ÝÝÝÝÝÑ (b : B) Ñ C Σ;Γ $ v : B ⇝ v1

Σ;Γ $ u v : C[b := v1]⇝ u1 v1

getCommonTelescope(Γ, α) = ∆ α.f : ∆ Ñ A P Σ

Σ;Γ $ α.f : A⇝ α.f asVars(∆)

Figure 4.3: Term typing and elaboration judgements for Simple Agda

Declaration typing and elaboration judgements The judgements for declarations are found
in figure 4.4. While the language uses separate type signatures and definitions, we will treat
them as one unit in the judgements.

13

4. SIMPLE AGDA

When type-checkingmodules, we need tomove themodule parameters to the declaration
level and lift the declarations inside to the top level. The first rule shows how this works for
definitions. Once the term itself has been type-checked, we can insert the entire variable
context around both the type and the definition to lift it to the top level. This means that the
signature will only contain top level declarations. This is why we need to remove some of
the parameters of a definition when type-checking a qualified term.

The second rule shows the typing of a module. Here we simply add the module pa-
rameters to the context together with the module name, before continuing with typing the
declarations. The module name is needed for our getCommonTelescope function to identify
which parameters to remove from a lifted declaration.

The third rule shows the typing of a module alias. For this, we create new declarations
for each of the original declarations. These declarations call the original with the arguments
provided to the alias. Note that just like with normal qualified names, we also insert the
parameters acquired from getCommonTelescope to the function call and just like with normal
modules, we put the module parameters around the new definitions.

Σ;Γ $ A : Type⇝ A1 Σ;Γ $ u : A1 ⇝ u1

Σ;Γ $ α.f : A = u⇝ [α.f : Γ Ñ A1 = λΓ. u1]

Σ; Γ $ ∆⇝ ∆1 Σ;ΓM(∆1) $ decls⇝ decls1,M(Γ∆1)

Σ; Γ $ module M ∆ where decls⇝ decls1

Σ;Γ $ ∆⇝ ∆1 getCommonTelescope(Γ,M 1) = Γ1 M 1(Γ1Θ) P Σ
Σ;ΓM(∆1) $ ū : Θ⇝ ū1 for each M 1.fi : Γ

1Θ Ñ A P Σ
let δi = M.fi : Γ∆

1 Ñ A[Θ := ū1] = M 1.fi toVars(Γ1) ū1

Σ;Γ $ module M ∆ = M 1 ū⇝ δ̄,M 1(Γ∆) Σ; Γ $ []⇝ []

Σ; Γ $ decl⇝ Σ1 ΣΣ1; Γ $ decls⇝ Σ2

Σ;Γ $ decl :: decls⇝ Σ1Σ2

Figure 4.4: Declaration typing and elaboration judgements for Simple Agda

Σ;Γ $ ϵ⇝ ϵ

Σ;Γ $ A : Type⇝ A1 Σ;Γ, x : A $ ∆⇝ ∆1

Σ;Γ $ (x : A),∆⇝ (x : A1,∆1)

Figure 4.5: Telescope typing rules for Simple Agda

4.5 Removed features
Simple Agda is missing quite a few features compared to Agda, which include:

• Inductive data types
• Pattern matching
• Mutual definitions
• Universe levels
• Meta variables
• Record types

For each of these, we will explain why it is acceptable to remove them for Simple Agda.

14

4.5. Removed features

Inductive data types can be seen as simply another sort of declaration when it comes to
how it interacts with modules. Adding them to the language would make the type-checker
much more complicated but would not change much about the module system. Not includ-
ing it does make our experiments in chapter 7 a bit less accurate as we can only create com-
plicated terms from if expressions and lambdas while in reality, the most complex terms will
be proofs and data types.

Pattern matching and mutual definitions mostly influence the totality and terminality
checker which are completely separate from the module system. In a similar vein, meta-
variables and universe levels only interact with the term level typing. All of these features
can thus be left out.

Record types do interact quite a bit with modules. However, the interaction between
record types and modules would probably make an interesting thesis subject on its own, so
it’s considered out of scope for this thesis.

15

Chapter 5

Iteratively improving the
implementation of the module system

This chapter will propose iterative improvements to the module system to fix its problems.
Section 5.1 will address the lack of structure in the type-checker by keeping modules and
module parameters intact. Section 5.2 will address the performance problems by keeping
module aliases intact as well. These two improvements will be evaluated on their perfor-
mance.

The final problem that this chapter will address is pretty-printing in section 5.3. Not
all of Agda’s pretty-printing problems can be solved by changing the module system nor
can they be modelled perfectly in Simple Agda. This means that this section will split the
problem into two. The first set of problems relates to mix-fix notation inside parametrised
modules and can be fixed with a simple change to the module system. This change will also
be programmed into Simple Agda as version 3. However, not all of its effects can be explored
as Simple Agda does not actually implement mix-fix notation.

The second set of problemswith pretty-printing does not have an obvious solution. There
are multiple ways of solving them, either through different evaluation strategies, changes in
the module system or improvements to Agda’s display form system. Section 5.3 will explain
these various approaches so that future work can compare them in more detail.

5.1 Problem 1 - Lack of structure
Chapter 3 described a number of issues that occurred due to the lack of structure in Agda’s
type-checking and the moving of module parameters to the declaration level. This lack of
structure is completely unnecessary as we are already tracking the sections in the core lan-
guage, which are simply the module headers detached from their statements. We can com-
bine them and allow for nested modules which would allow us to maintain the structure
with few changes to the output, but with much more information.

This section will explain what needs to change to accomplish this and why. We will also
go over the complexity of implementing this version and see how it compares to version 0.

5.1.1 Changes made
The main change in this version is the introduction of modules in the core language. This
changemeans that sections are no longer necessary, as thosewere simply themodule headers
detached from their definitions and we can now simply get these headers from the modules
themselves. The updated grammar for the core language can be found in grammar 5.1.
Now that we keep track of modules, our typing environment Σ also becomes more struc-
tured. A module qualifier now becomes a path used to find the declaration in the signature.

17

5. ITERATIVELY IMPROVING THE IMPLEMENTATION OF THE MODULE SYSTEM

Core ::= module M ∆ where coreDecls Core
coreDecl ::= α.f : A Type signature

| α.f = u Definition
| module α.M ∆ where coreDecls Module

Grammar 5.1: Core language grammar for version 1

Eachmodule has its own signature that can contain othermoduleswith their own signatures,
creating a tree. This structure also allows for easier module parameter handling and easier
creation of new modules when dealing with module aliases as we can easily find all decla-
rations belonging to a specific module. Before we can define a notion of module lookup in
such a structure we need to look at how we use qualified names in version 1.

Qualified names In version 0 we had to insert module parameters as arguments to any
function call to ensure they would still type-check after being lifted to the top level. If mod-
ule parameters are kept intact we no longer need to do this to ensure everything type-checks.
By keeping track of the module parameters for each module, we could have the typing en-
vironment take care of these module parameters. This will however lead to problems when
evaluating terms. Take the following code:
module M (b : Bool) where
f : Bool
f = b

g : Bool
g = M.f

module N = M False
main : (if N.g then Unit else Bool)
main = N.g

Here g = M.f is a perfectly valid definition for type-checking as the b parameter is in scope
for both g and f. We have already qualified the name f so that when we evaluate N.g in the
if statement, we will still reference the same f. However, this is not yet enough as evaluating
the type of main in this example will lead to:
module M (b : Bool) where
f : Bool
f = b

g : Bool
g = M.f

module N = M False
main : (if M.f then Unit else Bool)
main = N.g

This does not type-check since M.f outside ofmodule M is a function Bool -> Bool. To address
this issue we will have the scope checker insert names together with the module parameters
like so:
module M (b : Bool) where
f : Bool
f = b

18

5.1. Problem 1 - Lack of structure

g : Bool
g = (M b).f

module N = M False
main : (if N.g then Unit else Bool)
main = N.g

We make explicit which parameters are used for each module. If we now evaluate the call to
N.g we get:
module M (b : Bool) where
f : Bool
f = b

g : Bool
g = (M b).f

module N = M False
main : (if (M True).f then Unit else Bool)
main = N.g

This program still type-checks.
This means that terms in our core language now use term-qualified names as can be seen

in grammar 5.2 for function calls and module aliases. This does not require changes to the
surface language of Simple Agda as we only insert these during scope-checking.

α, β ::= ι No qualifier
| M.α Module qualifier
| (M ū).α Term qualifier

Grammar 5.2: Term-qualified names

Signature lookup Now that we have updated our typing environment and redesigned our
fully qualified names we can define signature lookup. We will use the syntax Σ!α⇝ (∆,Σ1).
As users are not required (nor even able) to pass module parameters in the qualified name
we also return a telescope ∆ which contains any remaining module parameters. The split
operator will split the telescope into the parameters for which arguments were supplied and
those that have not been applied yet. The definition of signature lookup can be found in
figure 5.1.

module M ∆ = Σ1 P Σ ∆1,∆2 = split(∆, ū) Σ1[∆1 := ū]!α⇝ (∆1,Σ2)

Σ!(Mū).α⇝ (∆2∆1,Σ2)

Σ!ι⇝ (ϵ,Σ)

Figure 5.1: Signature lookup for version 1

Updated term typing Another advantage of having the scope-checker take care of themod-
ule parameter insertion is that the term type-checker no longer needs to make any changes
and we can thus remove its output. Note that this is only true for Simply Agda and not Agda
as Agda still requires changes for inference and other removed features.

19

5. ITERATIVELY IMPROVING THE IMPLEMENTATION OF THE MODULE SYSTEM

Figure 5.2 shows how we previously type-checked function calls and if-expressions as
well as their new versions. All other typing judgements are similarly simplified to the if-
expressions but are left out for brevity. A complete overview of the updated judgements can
be found in figureA.4 in appendixA. For the function calls we can see that we find the correct
signature, look up the type in that signature and then add any required module parameters
to it.

Old judgements

Σ;Γ $ u : Bool⇝ u1 Σ;Γ $ v : A⇝ v1 Σ;Γ $ w : A⇝ w1

Σ;Γ $ if u then v else w : A⇝ if u1 then v1 else w1

getCommonTelescope(Γ, α) = ∆ α.f : ∆ Ñ A P Σ

Σ;Γ $ α.f : A⇝ α.f asVars(∆)

Updated judgements

Σ;Γ $ u : Bool Σ;Γ $ v : A Σ;Γ $ w : A

Σ;Γ $ if u then v else w : A

Σ!α⇝ (∆,Σ1) f : A P Σ1

Σ;Γ $ α.f : ∆ Ñ A

Figure 5.2: Updated term typing judgements for version 1

Declaration typing judgements The typing judgements for declarations can be found in
figure 5.3. The extend function places the declaration in the appropriate signature in the
environment.

Type-checking definitions and modules is very simple in this version. Module aliases
are a bit more complicated as we need to create a new module for the alias. The newDecls
function will recursively generate a new module that calls the declarations from the aliased
modules with the appropriate arguments and any module parameters can be passed along
using term-qualified names.

module M (b : Bool) where
module M2 (b2 : Bool) where
and : Bool
and = if b then b2 else False

module MTrue = M True

which becomes:

module M (b : Bool) where
module M1.M2 (b2 : Bool) where
M1.M2.and : Bool
M1.M2.and = if b then b2 else False

module MTrue where
module MTrue.M2 (b2 : Bool) where
MTrue.M2.and : Bool
MTrue.M2.and = M.(M2 b2).and True

the definition for newDecls can be found in figure 5.4.

20

5.1. Problem 1 - Lack of structure

Σ;Γ $ A : Type Σ;Γ $ u : A

Σ;Γ $ α.f : A = u⇝ α.f : A = u

Σ;Γ $ ∆ Σ;ΓM(∆) $ decls⇝ decls1

Σ;Γ $ module M ∆ where decls⇝ module M ∆ where decls1

Σ;Γ $ ∆ Σ!α⇝ (Θ,Σ1) module M 1 Θ1 where decls P Σ1

Σ;ΓM(∆) $ ū : ΘΘ1 let decls1 = newDecls(M,α.M 1, ū, decls[ΘΘ1 := ū])

Σ; Γ $ module M ∆ = α.M 1 ū⇝ module M ∆ where decls1

Σ;Γ $ []⇝ ϵ

Σ;Γ $ decl⇝ decl1 let Σ1 = extend(Σ, decl1)
Σ1; Γ $ decls⇝ Σ2

Σ;Γ $ decl :: decls⇝ Σ2

Figure 5.3: Declaration typing judgements for version 1

newDecls(M,M 1, ū, D) = newDecl(M,M 1, ū, d) for each d P D

newDecl(M,M 1, ū,M 1.f : A = u) = M.f = M 1.f ū

newDecl(M,M 1, ū,module M 1.N ∆ where decls) =

module M.N ∆1 where newDecls(M.N,M 1.(N ∆), ū, decls)

Figure 5.4: newDecls definition for version 1

5.1.2 Implementation analysis
Implementing a structured module system is much easier than an unstructured module sys-
tem. Having to figure outwhich parameters gowhere in version 0 is not easy and is extremely
bug-prone. In this version, we only need to insert module parameters into declarationswhen
adding qualified names. This is really easy as the scope-checker already knows which quali-
fiers to insert and we now simply have to also add the parameters when adding the qualifier.
This does not lead to additional complexity compared to only inserting the qualifier.

Dealing with the module aliases does become more complex however as the generated
declarations all have different types depending on how far nested they were in the original
module. In version 0 this was simple, as all declarations being aliased were already lifted to
the top level. In version 1 they all exist at different levels, requiring you to track all this extra
data to generate the appropriate new declarations.

Generating these modules becomes even more complicated with partial aliases. These
are not represented in the typing judgements, but in an actual implementation, they can
present a challenge as the following code is perfectly acceptable:

module M (A : Type) (x : A) where
...
module MBool = M Bool

In Agda, the module parameters are moved to the declaration level and a partial application
of a module is the same as partly applying a function, which is perfectly fine. However, if
we change aliases to modules, this is no longer possible. This means we need to insert the
remaining parameters:

module M (A : Type) (x : A) where

21

5. ITERATIVELY IMPROVING THE IMPLEMENTATION OF THE MODULE SYSTEM

...
module MBool (x : Bool) = M Bool x

note that the added parameter x now has type Bool instead of type A. When applying the
arguments to the aliased module, we need to perform the created substitutions everywhere
in the new module, including in the inserted parameters.

This problem with partial aliases is only present if aliases go to modules. If we trans-
form them into declarations or keep aliases intact, it will automatically work, as the alias
arguments become function arguments and functions can be partially applied.

5.2 Problem 2 - Module alias performance

The biggest problemwith Agda’s module system is the performance problems caused by the
expansion of module aliases. As we now have a structured core language, it is relatively easy
to also preserve aliases, therebymaking the source and core languages of Simple Agda equal
except for the term-qualified names introduced by the scope-checker.

We will again cover both the required changes and the ease of implementation.

5.2.1 Changes made

If we no longer expand module aliases then we do not need to make any changes to Simple
Agdawhile type-checking as themodule system is kept intact during type-checking. Instead,
we now need to deal with aliases in the signature lookup.

The updated signature lookup can be found in figure 5.5. Dealing with module aliases is
very similar to the changes made in version 1 to support term-qualified names. In addition,
we need to keep track of both the current signature and the root signature as aliases are
relative to the root, not to the current signature.

When we encounter a module alias we have to look up the module it is aliasing. We then
have to substitute the provided arguments in the found signature and then we can continue
our lookup in this signature. These substitutions can of course be applied lazily in an actual
implementation as we only need a single declaration from the final signature.

module M ∆ = Σ1 P Σ ∆1,∆2 = split(∆, ā) ΣR $ Σ1[∆1 := ā]!α⇝ (∆1,Σ2)

ΣR $ Σ!(Mā).α⇝ (∆2∆1,Σ2)

module M ∆ = M 1 ū P Σ ∆1,∆2 = split(∆, ā) ΣR $ ΣR!M 1 ⇝ (∆1,Σ1)
∆1

1,∆
1
2 = split(∆1, ū) ΣR $ Σ1[∆1

1 := ū[∆1 := ā]]!α⇝ (∆2,Σ2)

ΣR $ Σ!(Mā).α⇝ (∆2∆1
2∆

2,Σ2)

ΣR $ Σ!ι⇝ (ϵ,Σ)

Figure 5.5: Signature lookup for version 2

Our typing judgements will remain mostly intact. The typing judgement for module
aliases changes of course and none of our typing judgements need an output as we no longer
change any terms. These new judgements can be found in figure 5.6. The judgement for
aliases is very similar to that of normal modules. We simply have to do an additional lookup
and substitution to find the module we are aliasing.

22

5.3. Problem 3 - Pretty-Printing

Σ;Γ $ A : Type Σ;Γ $ u : A

Σ;Γ $ α.f : A = u

Σ;Γ $ ∆ Σ;ΓM(∆) $ decls

Σ;Γ $ module M ∆ where decls

Σ;Γ $ ∆ Σ $ Σ!α⇝ (Θ,Σ1) module M 1 Θ1 P Σ1 Σ;ΓM(∆) $ ū : ΘΘ1

Σ;Γ $ module M ∆ = α.M 1 ū

Σ;Γ $ []

Σ; Γ $ decl Σ;Γ $ decls

Σ;Γ $ decl :: decls

Figure 5.6: Declaration typing judgements for version 2

5.2.2 Implementation analysis
Implementing this version is much easier than the implementation of the other versions.
Version 1 already simplified the term-typing and the handling of module parameters but
the typing of module aliases was rather complicated. Version 2 completely eliminates this
complexity as the declaration typing is now also trivial, while the signature lookup did not
get much more complicated as aliases require roughly the same handling as term-qualified
names which were already supported.

Overall, this version eliminates a lot of complexity, it eliminates the exponential declara-
tion generation and the type-checker no longer hides features from the backend allowing it
to decide for itself how it wants to handle them.

5.3 Problem 3 - Pretty-Printing
While this thesis mostly focuses on the performance problems with Agda’s module system,
the system also has a variety of pretty-printing problems that wewould like to go over. These
problems can be divided into two types. The first type of problem is related to infix operators
in parametrised modules which will be discussed in section 5.3.1. These are problems that
can largely be fixed by a few modifications to our earlier versions. Section 5.3.2 will then dis-
cuss the problemsAgda haswith decidingwhich qualified name to usewhen pretty-printing.

5.3.1 Infix operators and module parameters
Agda has great support for infix and mix-fix operators. These can be created by using _
in names such as if_then_else_ which says that an if expression takes three terms in the
specified places. This works great until module parameters get involved. Take the following
module which defines String addition with a separator passed as module argument.
module M (sep : String) where
<+> : String -> String -> String
s <+> s2 = s + sep + s2

x = M.<+> ";" "ab" "de"

The definition of the operator inside module m can nicely use the infix notation. Outside of
the module, this is not possible as we need to pass the module parameter as well. This could
be fixed by creating a module alias that supplies an argument to the module but that does
not work for automatically generated types when Agda is used interactively. Furthermore, it
can lead to pretty-printing problems when we use partly applied operators. M.<+> ";" "ab"
is a function that adds "ab;" in front of its argument. However, this will get pretty-printed
as ";" M.<+> "ab" which is not a function at all and equal to ";ab" [21]. While this pretty-
printing bug might be fixed by keeping the module parameters intact, as it should allow the

23

5. ITERATIVELY IMPROVING THE IMPLEMENTATION OF THE MODULE SYSTEM

pretty-printer to detect that it cannot use infix notation here, it would still be nice to have a
good way to pretty-print this.

In the previous chapters, we have already introduced the syntax of (M Bool).f for use
by the scope-checker. Enabling this syntax for use by the programmer does not require any
further changes to the type-checker and will prevent this problem for at the very least infix
operators where we can now type "ab" (M ";").<+> "de". For mixfix operators, users can
qualify the first term, for example: (M Bool).if b then False else True.

In the code repository, a version 3 has been defined* that enables this syntax in the source
language to show that it does not require any further changes from version 2. This version
will not be used in experiments as this change is not about performance and does not use the
same source language as the other versions.

5.3.2 Choosing the right qualified names

In this section, we would like to mention a variety of problems encountered with pretty-
printing qualified names. There is generally not an obvious solution to these problems. This
section will propose a variety of possible solutions for further analysis in future work.

5.3.2.1 Pretty-printing generated code

Agda has interactive features that require it to generate code. Agda can split a variable in a
pattern into further cases by creating a case for each possible constructor or it can interactively
generate the type of a hole in the code. During both of these operations, it needs to figure
out how to qualify displayed names. At the moment this is done through an inverse scope
lookup and display forms. This system has a variety of bugs related to imports [41] and
open statements [22] but there is a good chance that these are simply bugs or could be fixed
easily once a structured module signature is used.

The system also has flaws that cannot easily be fixed. Take the following example taken
from issue 1643 [42].

module M where
postulate A : Set

module N = M

open M

postulate a : A

x : A
x = {!a!}

Here we have three A’s in scope. M.A, N.A and A which comes from M.A through the open
statement. WhenAgda is asked to display the type of the hole it gives N.A instead of A. It does
this because it has a renaming rule for M.A -> N.A introduced by the alias and A has already
been disambiguated to M.A. If we remove the renaming rule, then the example would not
work correctly in the case where we open N as it would display M.A but no longer rename it to
N.A. This example shows that the current system needs a redesign once the module system
has been updated as keeping more information in the signature would allow for a more
powerful system to be built.

*https://github.com/ivardb/AgdaModuleImprovement/tree/master/version3

24

5.3. Problem 3 - Pretty-Printing

5.3.2.2 WHNF evaluation

There are also problems when evaluating existing terms. Take the following code where we
want to reduce main to normal form.
module M (b : Bool) where
postulate f : Bool

g : Bool
g = f

module N = M false
main = N.g

Reducing main to normal form will result in M.f false. While correct, a perhaps nicer form
would be N.f. This could be achieved through a modification of the type-checker to modify
the names in a term when looking up a definition from an alias. This could be implemented
as a lazy substitution similar to that performed for the arguments of the alias. If we use
the new term-qualified syntax we would perform the lazy substitution from (M b).f -> (M
false).f this could be changed to instead do (M b).f -> N.f.

Mini-modules [43] instead proposes to use relative names for qualified terms. By ma-
nipulating the qualifiers of terms we could both improve the normal forms as well as avoid
many substitutions of module arguments.

Another approach would be to keep track of the original code similar to how we track
where a term was located in the original file through source position annotations. Similar
annotations could perhaps be used for function calls to track where a reduced term origi-
nated. This information could then be used to clarify how a term came to be as it could be
nicer to have the reduced name, to better see why something goes wrong. Take the following
example:
module M where
g = True
f = g

module N where
open public M

module O = N
module P = O
x : if P.f then Set else Bool
x = True

This program will not type-check as P.f reduces to True instead of False. Here it is however
not very useful to tell the user that this happens because P.g equals True. We would then
still have to find out where P.g is defined and have to go through multiple steps of aliases
and open public statements. In this scenario, it would be nice if we could request some form
of stack trace where the type-checker is able to tell us that the following reduction occurred:
P.f -> O.f -> N.f -> M.f. Such a history would also work in our first example to let us know
that (M false).f came from N.g or could even be used to realise that (M false).f = N.f as
aliases are kept intact and this information is thus available.

The comparison between these different approaches is non-trivial and should be made
in more detail in future work as whatever option is chosen would have a significant impact
on how users interact with Agda and can thus not be changed easily to another option after-
wards.

25

Chapter 6

Generating Agda files

One of the biggest issues with the current implementation of Agda is its performance. This
means that we need to evaluate our improved versions on performance as well to make sure
that they are actually an improvement. These experiments need to analyse the impact of a
variety of module features such as the size of aliases, the number of aliases, the number of
module parameters and others to make sure that we do not create any performance regres-
sions.

This chapter will describe how we create the files used for this performance comparison
and why we need a generator to do so.

6.1 Why use a generator?
Using randomly generated tests is common in Haskell as a form of property-based test-
ing [44]. QuickCheck [45] is a common testing framework that does exactly this. For normal
testing, random tests are useful because they are often able to quickly find edge cases that
you would not find with manual testing. While this was beneficial for finding bugs during
development, it is not the main reason for using a generator for this thesis.

Instead, the reason we rely on random tests is that they allow us to isolate a specific
property, such as the number of declarations in a module being aliased. If we tried to do
this using existing files this would be near impossible as it is very difficult to find files that
have a similar structure except for a single difference such as the size of the module being
aliased. We could of course manually create this dataset, but that would take a lot of work
and would not allow for the easy creation of new experiments or larger data sets for existing
experiments.

To use a generator for this, we need a generator that generates programs of roughly equal
difficulty. This is only really possible once programs are large enough that all of the random
choices converge to their average. This is the reason that all of our generated files will have
at least 50 declarations even though many real files are smaller than this. Furthermore, if we
generate enough files for each setting we can average them to get a stable average time for a
specific setting. We can then alter one of the settings to analyse its impact.

6.2 Limitations of randomly generated files
One of the biggest limitations of generating random code is ensuring that the result still type-
checks. If you generate functions of different types then these become difficult to use as you
will only be able to use them in places that need something of that type.

With dependent types, we also need to ensure that all types can be reduced to the in-
tended type. If we generate the following type: if p1 then Bool else Bool we need to be

27

6. GENERATING AGDA FILES

certain that p1 will be knownwhen evaluating this type as otherwise the type-checker might
not realise that this is equal to Bool. This severely limits the possibilities for types.

The second big limitation of random generators is that the generated programs are non-
sense. While it is easy to generate an expression of a certain size, this expression will not
make sense. No real code will nest 10 if expressions inside a lambda that is immediately
called with an argument consisting of a further 5 if expressions. This means that generated
code files can never be compared to real code files.

While these are two big disadvantages, generated files still allow us to isolate specific
properties to see how they affect performance which is exactly what we need.

6.3 The Simple Agda Generator
The generator developed for this thesis generates declarations of type Bool as well as mod-
ule parameters of type Bool. This allows us to easily use other declarations as everything is
either of type Bool or can become of type Bool by supplying a number of boolean arguments.
We still cannot use declarations inside types as they could depend on unknown module ar-
guments.

To generate files with the generator, two pieces of configuration are needed. The first is
a structure which tells the generator the module hierarchy, how many declarations to gener-
ate as well as which modules to alias where. The declarations produced by the aliases will
automatically be in scope for later declarations just like normal declarations.

The second set of configurations is a series of settings that tell the generator how large
the generated values should be. The following settings are supported:

• Term size: How large should declarations be? This indirectly affects how many func-
tion calls can be produced.

• Type size: How large should the types of declarations be? Types need to be reduced to
WHNF somaking larger types will increase how often this needs to be done. However,
we cannot use declarations in types as these are of type Bool, not Type, and we also
cannot use declarations in if statements as we cannot be sure that they can be fully
evaluated.

• Size and number of module parameters: As the different versions treat module param-
eters differently these are important properties to analyse.

• Module alias argument size: As different versions treat module aliases differently, this
is an important property to analyse.

• Number of module alias arguments: Configuring this separately from the number of
module parameters allows for the creation of partial aliases.

• Alias and import modifiers: Normally it is equally likely for the generator to select
a normal declaration or a declaration in an alias and the same goes for selecting an
identifier from the current file or from an imported file. These modifiers can change
this behaviour.

With these two configurations combined, a wide variety of files can be generated. The
generatormakes use of the syntax of version 0 aswell as its pretty printer to generate files that
can be parsed by all of the Simple Agda versions. By plugging in a different pretty printer
they can also be pretty-printed as normal Agda files so that they can analyse the current ver-
sion of Agda. Any results gathered are not comparable to those of the Simple Agda versions
but they could still be used to verify that Agda is similarly affected by increasing a specific
parameter as version 0.

28

6.4. Setting parameters to realistic values

Figure 6.1: The number of decls in files in both agda-stdlib and agda-categories

6.4 Setting parameters to realistic values
Before we can generate files to use in our experiments we need to know what realistic num-
bers are to use for these experiments. This section will analyse existing libraries to find out
things such as what a common number of declarations is, howmanymodule parameters are
used etc.

6.4.1 Analysis setup
For this thesis, two libraries were analysed: agda-stdlib [46] and agda-categories [4]. The
standard library of Agda is a large library, but it doesn’tmake extensive use ofmodule aliases.
Agda categories is a lot smaller butmakesmuchmore use ofAgda’smodule systemand some
of the original reports of Agda being slow in the presence of multiple aliases came from the
development of this library as category theory is well-suited to using module aliases to for
example create different categories.

To analyse these libraries we created a tool that makes use of Agda’s parser and scope-
checker to parse the files. Then instead of type-checking, we instead analyse the generated
Abstract syntax tree (AST) to determine how often module aliases are used, how large mod-
ule parameters get etc. This analysis is not perfect as Agda uses a rather complicated AST
and this means that some sizes were estimated. This is no problem as these experiments will
only be a guideline for the generator.

6.4.2 Analysis results
In this section, we will cover all of the collected data from both libraries. Note that all graphs
use a logarithmic scale.

Number of declarations The first interesting data point is the number of declarations in a
file. This is a somewhat difficult number to measure due to pattern matching, where clauses,
aswell as constructs such as data types and recordswhich are not quite declarations. Wehave
chosen to measure this number as the number of type signatures in a file. The results can
be found in figure 6.1. Here we see that most modules are less than a hundred declarations
with no modules exceeding 500 declarations. This indicates that even if people are creating

29

6. GENERATING AGDA FILES

Figure 6.2: The number of imports in files in both agda-stdlib and agda-categories

smallermodules because of performance reasons, theywouldmost likely never bemore than
a couple hundred declarations. So this is a good size for our experiments.

Number of imports Another important aspect to analyse is how often Agda files import
other modules. One of the major changes between versions is what they output after type-
checking. This only affects performance when files are being imported and we thus need to
know how often this happens. From figure 6.2 we can see that imports are very common
and we should thus take into account how importing affects the performance of different
versions. We will not be generating 30 files to import however as accurately representing the
dependencies between real files in generated files is not easy. Instead, we will only import a
single file, but this still allows us to inspect the impact of imports on performance.

Size of module parameters The major difference between version 0 and version 1 is how
they deal with module parameters. We thus need to know how large the types of these
parameters get. This can be found in figure 6.3. The size of an expression is even harder
to determine than the number of declarations as the Agda AST is quite complicated. These
numbers should thus be seen as a rough estimate useful for generating terms of roughly
similar size and complexity.

Size of module arguments The size of module arguments is also important. We know that
the types of module parameters are quite large. However as can be seen in figure 6.4, module
arguments are much smaller. This makes sense as these will often be either a literal or an
identifier referring to a variable or earlier defined declaration with the few larger arguments
being record instantiations.

30

6.4. Setting parameters to realistic values

Figure 6.3: The size of module parameters in files in both agda-stdlib and agda-categories

Figure 6.4: The size of module alias arguments in files in both agda-stdlib and agda-
categories

31

Chapter 7

Evaluation

This chapter consists of two sections. Section 7.1 will cover the experiments for Simple Agda
while section 7.2 will cover the experiments run for Agda. Both sections will discuss their
own experiment setups as they differ quite a bit.

7.1 Simple Agda results
This section will analyse the performance of the different Simple Agda type-checkers using
sets of randomly generated files. The results of these experiments are covered in section 7.1.2,
each of the experiments will also be accompanied by a short explanation of why the results
could be theway they are. Amore thorough analysis of all of the results can be found in chap-
ter 8. Before moving on to the experiments, section 7.1.1 will explain how the experiments
were executed.

7.1.1 Experiment setup
This section will first explain how we time the code as well as the inherent problems with
timing Haskell code. After that, we will explain how the experiments were executed.

7.1.1.1 Timing the code

To run any experiment at all we need to be able to time the execution of the code. Doing
this in Haskell is more complicated than it is in other languages as we need to deal with
laziness. While benchmarks in almost all languages have to prevent their experiment from
being deleted through dead code elimination, Haskell also has the problem that only parts of
the final term will be evaluated. Because all type-checking results are written to file this will
not happen in our experiments. However, for our experiments, we are tracking more than
just the total time. To get an accurate picture of the length of specific parts of the code we use
deepseq [47] to force Haskell to evaluate terms fully after type-checking and scope-checking.

The code is timed using the timestats library [48]. With this library, it is easy to time
specific parts of the type-checking process such as scope-checking, type-checking and seri-
alization separately. This allows us to get a better idea of why one version is slower than
another.

7.1.1.2 Running the experiments

The experiments were all executed on a 6 core Intel i7-8750H running at 2.20 GHzwith 16 GB
of RAM. To get accurate results we generated 15 random files for each experiment configura-
tion, each file is then executed 50 times. To prevent some effects of caching we run the entire
batch of files before we repeat any file.

33

7. EVALUATION

Figure 7.1: Experiment 1: Only declarations

The results of the different runs are then averaged. We use the mean as we have a low
standard deviation and this ensures that the total time remains equal to the sum of all the
other times. The times from the different files are then also averaged as the standard devi-
ation between them is also very low. This will provide us with a single data point for each
test configuration. We also collect the size of the output core files for each generated file and
again average all the files generated with a single configuration. These filesizes can be found
in table 7.10.

7.1.2 Results
This section will cover a variety of experiments used to compare the different versions. The
first set of experiments are all single-file experiments. These will analyse the impact of spe-
cific features on the performance. After that, the experiments will look at the performance
when importing files with and without using the core output in a variety of circumstances
to analyse the differences between the core files of the different versions.

The graphs for the experiments will only contain the data needed to show the difference
between the versions. The full experiment data as well as the generated files and their con-
figurations can be found on GitHub*.

7.1.2.1 Single-file experiments

Experiment 1: Only declarations The first experiment functions as a baseline. What if we
generate files that have nomodule parameters nor anymodule aliases? Figure 7.1 shows that
in that case, the serialization times are all equal. This makes sense as the output formats are
roughly equal in this case. From table 7.10 we can even see that version 0 has the smallest
core output. This is a side effect of the core output being stored in a human-readable form
including indentation. As version 0 moves everything to the top level it has less indentation
compared to the other versions and thus a smaller file.

There are however some differences in the speed of the actual type-checking. These dif-
ferences are most likely caused by the complexity difference in implementation. Because ver-
sion 0 needs to be able to make the most modifications to terms, it will always take slightly
more time than a version that never makes such changes. Even in scenarios such as these
were none of the changes are needed. This shows that a simpler type-checker is not only
easier to work with but in our case also slightly faster.

Experiment 2: Impact of module parameters As versions 0 and 1 treat module parameters
differently but aliases the same, it is important to look at module parameters separately from

*https://github.com/ivardb/AgdaModuleImprovement/tree/master/benching

34

https://github.com/ivardb/AgdaModuleImprovement/tree/master/benching

7.1. Simple Agda results

Figure 7.2: Experiment 2: Impact of both size and number of module parameters

Figure 7.3: Experiment 3: Impact of type size

aliases. This experiment will investigate the effects of increasing both the number and the
size of the parameters. From figure 7.2 we can see that module parameter size is not very
impactful. Version 0 is a bit slower withmodule parameters present, but making them larger
does not matter very much.

In contrast, increasing the number of parameters does significantly slow down version 0.
This is most likely because we now need to wrap more parameters around the declaration
creating additional AST nodes in the form of variable bindings and lambdas. From table 7.10,
we can indeed see that the file size of the core output growsmuch faster when increasing the
number of parameters, compared to increasing the size of the parameters even though the
total size of all of the parameters combined is equal.

Experiment 3: Influence of increased type sizes with module aliases Due to the expan-
sion of aliases, version 1 and version 2 will create copies of the types of declarations being
aliased. This experiment will investigate how problematic this is. From figure 7.3 we can see
that increasing the type size does not significantly increase the difference between versions.
Clearly, this type of copying is not very important. This means that the fix for no longer
copying types in issue #5499 [49] is not useful as this does not contribute meaningfully to
the performance problems.

Experiment 4: Influence of the size of alias arguments This experiment will investigate
the performance impact of using larger argumentswhen aliasing. As can be seen in figure 7.4,
increasing the size has a significant effect on serialization time as well as a smaller effect
on the type-checking time for version 0. So in contrast to type size, the argument size will

35

7. EVALUATION

Figure 7.4: Experiment 4: Influence of the size of alias arguments

Figure 7.5: Experiment 5: Aliasing larger modules

significantly impact the performance of versions 0 and 1 while not affecting version 2. This
matches with the file size changes observed in table 7.10. This makes sense as version 2 does
not have to copy the arguments for each declaration it aliases and module arguments are
only present for aliases, while the size of the types will also affect the original declarations.

It is however important to realise that from the analysis done in section 6.4, we know that
these arguments are often very small in real applications and will thus stay below the sizes
where this difference starts to become a problem, but there is no need for performance to be
affected by argument size and it could be that the performance problems are the reason that
the arguments remain small.

Experiment 5: Aliasing larger modules This experiment analyses the impact of aliasing
larger modules. As module aliases will almost always be of modules with parameters, this
experiment will also use them. In this experiment, we have 350 declarations in total. Some-
where in there, we will put an alias that covers all previous declarations. This will increase
the number of declarations being aliasedwithout increasing the total number of declarations.

From figure 7.5 we can see that versions 1 and 2 need less time to type-check files where
the alias is inserted later. This is because there will be fewer function calls generated to
the aliased declarations. (The impact of increasing the number of function calls is analysed
further in experiment 7.)

We also see that the serialization times of version 0 increase as it needs to create more
copies of the module parameters. The effect on version 1 is more minor as version 1 does
not move the module parameters and only has to generate a few more declarations. Finally,
we see that version 2 does not have an increase in serialization time as its core output is the
simplest and does not grow based on alias size as can be seen in table 7.10.

36

7.1. Simple Agda results

Figure 7.6: Experiment 6: Nested aliases

Experiment 6: Nested aliases While the previous experiment showed that version 0 is af-
fected by the size of a module alias it was only a linear effect. This experiment will analyse
nested aliases which can trigger exponential slowdowns. Many of these kinds of slowdowns
have been reported by the developers of theAgda-categories librarywhich has a complicated
nested structure. However, due to its complexity it is hard to create an experiment from it.
Instead, we will make use of a reduced example mentioned in one of the issues reporting the
slowdowns [23].

For these experiments, we have a module M0with 5 declarations and a module parameter
of type Bool. We also define a function f and g which are const True and const False. We
can then create modules that look like this:

module M1(x: Bool) where
module M = M0
module N = M (f x)
module O = M (g x)

As the previous module becomes part of the current module through the first module alias,
this will trigger an exponential growth when aliases are expanded. From figure 7.6 we can
see just how bad this exponential growth gets. (Note the log scale used.) In contrast to ex-
periment 5, we see that in this experiment both version 0 and version 1 perform terribly. This
shows that no longer moving around the module parameters can lead to improvements but
does not fix the more serious problems. The filesizes shown in table 7.10 are a bit misleading
when it comes to the difference between version 0 and 1 as core files are kept human-readable
in Simple Agda, meaning version 1 has much more indentation making the file larger. If bi-
nary files were used this would not be the case.

Experiment 7: Impact of using aliased declarations The final property to investigate re-
lated to module aliases is how increased usage affects performance. Version 2 no longer
creates the new declarations and should thus become slower when they are used more often
as it has to generate the new types each time. This is indeed the effect we see in figure 7.7.
Version 2 slowly loses its time advantage compared to the other versions. At 10x increased
use its performance becomes roughly equal to version 1. Such an increased usage means
that almost every term is a function call to an aliased declaration. This means that even in
the worst case for version 2 it remains the fastest version.

This makes sense as creating new declarations for an alias has never been a problem. The
real slowdowns are often caused by an increase in serialization time, lookup time or having
to modify terms due to the moving around of parameters. So while version 2 now needs to
create the declaration far more often than versions 0 and 1, this does not cost much time.

37

7. EVALUATION

Figure 7.7: Experiment 7: Impact of using aliased declarations

The reason that the serialization times also converge is because the most time-consuming
part of pretty-printing becomes the printing of the nested function calls instead of the in-
creased amount of declarations due to the expanded aliases. From table 7.10 we can see that
version 2 still has a smaller core file.

7.1.2.2 Multi-file experiments

In this section, we will evaluate the performance difference between having to type-check an
imported file versus using the core output of type-checking when importing. These experi-
ments will not be very realistic compared to the real Agda as Simple Agda does not support
any real inference nor any complex features, nor does it use a core file format that is easy to
de-serialize. This will make using the core output less beneficial than it would be for Agda.
Instead, these experiments are meant to see how the changes to the core files impact the
performance of versions 1 and 2 compared to version 0.

Multi-file experiment 1: Only declarations The first experiment again only uses simple
declarations. In that case we see in figure 7.8 that version 0 is slightly faster compared to
the other versions. This is because the qualified terms used in versions 1 and 2 take longer
to parse and de-serialization takes up a large percentage of the total time. With a custom
efficient serialization algorithm, this would not be the case.

Multi-file experiment 2: Import chains The previous experiment used files with barely
any difference between versions. This experiment will instead use files with aliases which
are treated very differently by the three versions. We will do this using import chains. We
will create a base file with some declarations and an alias. Then we create a test file that
makes use of the declarations in this alias. To extend the chain we can add files in between
them that alias the alias from the previous file in the chain, allowing the test file to use this
alias instead.

In many languages expanding the in-between aliases would lead to a clear benefit as it
would eliminate the need to load the transitive imports. However, as Agda is dependently
typed we also need access to the definitions and thus versions 0 and 1 still need to load the
transitive imports.

Figure 7.9 shows that version 2 is by far the fastest in the presence of such transitive im-
ports as all versions need to load all of the transitive imports, but version 2 can do this much
faster as its core files are smaller, as can be seen in table 7.11. As version 2 does not increase
in size we can see from figure 7.9 that version 2 is now also the fastest at de-serialization.
Version 1 is the slowest as it has more complicated module paths and also expands module
aliases.

38

7.1. Simple Agda results

Figure 7.8: Multi-file experiment 1: Only declarations

Figure 7.9: Multi-file experiment 2: Import chains

39

7. EVALUATION

Experiment: Version 0 Version 1 Version 2
Experiment 1: 50 declarations 15.0 KB 15.7 KB 15.7 KB
Experiment 1: 150 declarations 46.0 KB 48.4 KB 48.4 KB
Experiment 1: 450 declarations 141.4 KB 148.6 KB 148.6 KB
Experiment 2: 2 parameters 25.3 KB 23.0 KB 23.0
Experiment 2: 4 parameters 29.9 KB 23.0 KB 23.0 KB
Experiment 2: 8 parameters 41.9 KB 26.3 KB 26.3
Experiment 2: Size 5 parameters 24.9 KB 22.5 KB 22.5 KB
Experiment 2: Size 10 parameters 25.9 KB 22.7 KB 22.7 KB
Experiment 2: Size 20 parameters 29.8 KB 22.9 KB 22.9 KB
Experiment 3: Types of size 5 35.3 KB 31.1 KB 25.3 KB
Experiment 3: Types of size 15 44.0 KB 39.3 KB 31.1 KB
Experiment 3: Types of size 50 62.7 KB 58.0 KB 43.9 KB
Experiment 4: Arguments of size 1 52.1 KB 37.6 KB 29.3 KB
Experiment 4: Arguments of size 10 55.0 KB 40.4 KB 29.7 KB
Experiment 4: Arguments of size 50 67.7 KB 55.8 KB 30.3 KB
Experiment 4: Arguments of size 200 107.9 KB 101.3 KB 31.1 KB
Experiment 5: Alias after 40 declarations 117.1 KB 114.1 KB 107.2 KB
Experiment 5: Alias after 120 declarations 144.7 KB 131.9 KB 110.3 KB
Experiment 5: Alias after 300 declarations 202.1 KB 165.4 KB 110.8 KB
Experiment 6: 1 module with aliases 6.0 KB 5.0 KB 2.0 KB
Experiment 6: 3 modules with aliases 52.0 KB 54.0 KB 3.0 KB
Experiment 6: 5 modules with aliases 506.0 KB 552.0 KB 3.0 KB
Experiment 6: 7 modules with aliases 4892.0 KB 5585.0 KB 4.0 KB
Experiment 7: 1 time multiplier 54.9 KB 50.7 KB 43.5 KB
Experiment 7: 2 times multiplier 56.9 KB 52.6 KB 45.1 KB
Experiment 7: 4 times multiplier 60.5 KB 55.4 KB 48.3 KB
Experiment 7: 10 times multiplier 70.1 KB 66.1 KB 58.8 KB

Table 7.10: Average size of the core files outputted during type-checking in the various ex-
periments

Experiment: Version 0 Version 1 Version 2
Experiment 1: 50 declarations 6.6 KB 7.0 KB 7.0 KB
Experiment 1: 150 declarations 20.8 KB 21.9 KB 21.9 KB
Experiment 1: 450 declarations 62.9 KB 66.4 KB 66.4 KB
Experiment 2: Length 1 chain base 11.6 KB 11.4 KB 7.2 KB
Experiment 2: Length 2 chain base 10.0 KB 8.0 KB 5.1 KB
Experiment 2: Length 2 chain in-between 2.7 KB 3.0 KB 0.0 KB
Experiment 2: Length 3 chain base 9.1 KB 6.2 KB 4.0 KB
Experiment 2: Length 3 chain in-between 1 2.6 KB 2.2 KB 0.0 KB
Experiment 2: Length 3 chain in-between 2 2.0 KB 2.2 KB 0.0 KB

Table 7.11: Core file size of imported files in various multi-file experiments

40

7.2. Agda results

7.2 Agda results
To verify the accuracy of version 0, we will execute some of the experiments on Agda itself
to see if version 0 behaves the same as Agda.

7.2.1 Converting the experiments to Agda
The experiments in the previous section were all generated for Simple Agda using the gener-
ator from chapter 6. To create these same experiments in Agda we parsed the files to Simple
Agda and then pretty-printed them to Agda syntax. However, Simple Agda supports a num-
ber of primitives that Agda does not support, so we need to make some changes to the files.

First, we need to add support for Unit and Bool. Simple Agda supports this nativelywhile
Agda does not. It does comewith built-in definitions for them, however, we cannot use these
directly as they function as actual imports in Agda’s benchmarking which we do not want.
Instead, we have copied their definitions including the BUILT-IN pragma’s as these will affect
performance.

We also need to support if expressions. For this, we used the following definition:

if_then_else_ : ∀{i}{A : Set i} -> Bool → A → A → A
if true then t else f = t
if false then t else f = f

Note that we use a definition that works for all levels of Set. We need this as Agda does not
have Set in Set and as such we will have if expressions that need to work in Set and some
that work in Set1.

The final primitive that we need are type annotations. Agda does not support type defi-
nitions in arbitrary locations. Luckily type annotations can be created quite easily in Agda:

Q : ∀{i}(A : Set i) →A → A
A Q x = x

This definition allows us to give the type of an expression whenever we want just like in
Simple Agda.

These changeswill work for single-file experiments but will cause problemswith imports
as we will have multiple data structures that use the BUILT-IN pragmas for Bool and Unit
which is not allowed. We fix this by adding an additional open import for Bool and Unit
whenever we import a file and in that case only adding the definitions to the base file.

A final change that we need to make is to use an operator similar to the $ in Haskell
whenever we generate an application of a lambda. Without the $, Agda will automatically
beta reduce this application before type-checking and we want to avoid such optimizations
as they will be more efficient on some files, thereby messing up the comparisons.

7.2.2 Experiment setup
The experiments are executed using theAgda-2.6.2.2 executable [3]. While Agda can be used
as a Haskell library this reduces its performance significantly. So instead we execute Agda
with the ”-vprofile:7” flagwhich will activate benchmarking of different phases such as type-
checking and serialization. To bring the timings more in line with those of Simple Agda,
we combine the parsing and de-serialization times as Simple Agda does not differentiate
between these.

The Simple Agda files used the mean for combining the repeated experiment runs. For
the Agda experiments we instead made use of the median as the Agda experiments had
much more extreme outliers.

41

7. EVALUATION

Figure 7.12: Agda experiment 1: Only declarations

Figure 7.13: Agda experiment 2: Impact of module parameters

7.2.3 Results
This section will go over some of the experiments to see how Agda behaves. This will allow
us to evaluate how accurate of a representation version 0 is. Some experiments will be left
out such as experiment 7 which was designed to evaluate the weaknesses of version 2 and
as such it is not useful for comparing version 0 to Agda.

Agda experiment 1: Only declarations From figure 7.12 we can see that with normal dec-
larations Agda behaves the exact same as our versions. We can also see that Agda is much
slower than our versions. This is partly because Agda is much more complicated. Just like
version 0 is slower than version 2 in experiment 1 because it needs to support more trans-
formations, so is Agda much slower as it needs to support transformations for all of Agda’s
features.

Agda experiment 2: Impact of module parameters This experiment shows that version 0
is not a perfect representation of Agda. Experiment 2 showed that version 0 is very sensitive
to the number of parameters when serializing. Figure 7.13 shows that for Agda there is only
aminor difference during serialization compared to simply increasing the size of parameters.
We do see that for larger numbers of parameters, the type-checking time starts to increase.
This is most likely because of the increased amount of manipulations needed when dealing
with declarations with more parameters.

Agda experiment 4: Influence of the size of alias arguments The results in figure 7.14
match the results from version 0. Increasing the size of the module arguments will signifi-

42

7.2. Agda results

Figure 7.14: Agda experiment 4: Influence of the size of alias arguments

Figure 7.15: Agda experiment 5: Aliasing larger modules

cantly increase the time needed for serialization. What is surprising however is how much
the type-checking is affected. This is not something we saw happen with version 0. This
seems to indicate that Agda does more unnecessary work with module arguments than just
copying them to the new declarations.

Agda experiment 5: Aliasing larger modules While version 0’s serialization was affected
significantly by increasing the module alias size we do not see the same effect for Agda in
figure 7.15. It behaves similar to the way version 2 performed in this experiment.

There are several possible explanations for this. Either serializing function calls is more
time-consuming than serializing a couple of short declarations orAgda has another optimiza-
tion in its file format that deals with this. Agda uses a custom binary file format with a lot of
compression that could also reduce the serialization time in this case. The type-checking dif-
ference can be explained by the fact that the generator produced simpler declarations when
it cannot call functions from an alias. Thus type-checking becomes easier, the fewer declara-
tions there are after the alias.

Agda experiment 6: Nested aliases While the previous experiment showed that Agda is
not sensitive to the number of declarations in a module alias, we can see from figure 7.16 that
it still suffers extremely badly when we start nesting aliases. Adding twomore sets of aliases
adds two orders of magnitude to the runtime. This is clearly a huge problem that needs to
be addressed.

43

7. EVALUATION

Figure 7.16: Agda experiment 6: Nested aliases

Figure 7.17: Agda multi-file experiment 1: Only declarations

44

7.2. Agda results

Experiment: agdai file size
Experiment 1: 50 declarations 127.4 KB
Experiment 1: 150 declarations 353.6 KB
Experiment 1: 450 declarations 1078.2 KB
Experiment 2: 2 parameter 160.3 KB
Experiment 2: 4 parameters 158.0 KB
Experiment 2: 8 parameters 177.3 KB
Experiment 2: Size 5 parameters 161.1 KB
Experiment 2: Size 10 parameters 159.9 KB
Experiment 2: Size 20 parameters 161.8 KB
Experiment 4: Size 1 arguments 190.5 KB
Experiment 4: Size 10 arguments 191.3 KB
Experiment 4: Size 50 arguments 198.0 KB
Experiment 4: Size 200 arguments 207.2 KB
Experiment 5: Alias after 40 declarations 757.7 KB
Experiment 5: Alias after 120 declarations 755.6 KB
Experiment 5: Alias after 300 declarations 713.6 KB
Experiment 6: 1 module with aliases 28.0 KB
Experiment 6: 3 modules with aliases 72.0 KB
Experiment 6: 5 modules with aliases 527.0 KB
Experiment 6: 7 modules with aliases 5724.2 KB

Table 7.18: File sizes for Agda experiments

Agda multi-file experiments For the multi-file experiments, we will only look at the first
experiment so that we can see how much Agda benefits from using its interface files. We
can see from figure 7.17 that in Agda the serialization and de-serialisation times are equal.
This makes sense as it uses a custom algorithm for it. This means that the increase in de-
serialization time for versions 1 and 2 will most likely not affect Agda as the serialization can
easily be adapted for this. We also see that serialization and de-serialization is roughly half
of the run-time. This means that shorter core files will also have a nice effect on the total
runtime, especially given how common imports are in Agda.

45

Chapter 8

Discussion

This chapterwill discuss and analyse the results of the experiments on both Simple Agda and
Agda. Section 8.1 will first go through the Simple Agda experiments. After which section 8.2
will discuss how the Agda experiments affect the conclusions from the Simple Agda exper-
iments. Next, section 8.3 will discuss any remaining limitations of the experiments. Finally,
section 8.4 will explain what we believe should be done to improve Agda.

8.1 The Simple Agda experiments
This section will make a number of observations from the Simple Agda experiments starting
with the observation that version 0 is always a bit slower when type-checking than version 1
which in return is slower than version 2. This shows that the type-checking phase is impacted
by the complexity of the type-checker even if that complexity is not necessary. For example,
version 0 needs to be able to move around parameters. Because of this, it is slower than
version 1 even if there are no parameters, simply because the code becomes more complex.

The second observation is that version 0 is significantly affected by the number ofmodule
parameters present. From experiments 2 and 5, we can see that there is a significant differ-
ence in serialization time between version 0 and version 1 showing the impact of module
parameters. From experiment 2 we can also see that the number of module parameters is
more impactful than the size of the parameters. This makes sense as we need to wrap more
parameters around declarations which requires more variable bindings and lambda nodes.

The third observation is that the number of declarations created through aliasing is not
too impactful until you start nesting aliases. In experiment 5 the difference between version
1 and version 2 is very small, showing that the alias expansion was not very impactful. How-
ever, from experiment 6 we can see that if we create a proper nesting of aliases the difference
between version 0 and version 1 becomes minimal as they are both far slower than version
2. This shows that not messing around with module parameters can lead to some positive
effects in small cases but that the worst cases are caused by the explosion of the number of
declarations.

The fourth observation we can make is related to experiment 4 which shows that mod-
ule alias arguments are very impactful on the performance. This makes a lot of sense, while
we previously mentioned that the generated declarations for aliases are very simple, this
depends heavily on the size of the module arguments as these make up the majority of the
declaration. While we know from the analysis performed in section 6.4 that module argu-
ments tend to be simple variables, this might be because users have realised the performance
impact of using anything else.

From the multi-file experiments, we can observe that the simpler core files of the later
versions are better than the core files of version 0. They take less time to serialise and de-
serialise and perform just as well for type-checking.

47

8. DISCUSSION

The final and most important observation to make is that version 2 performs better in all
experiments and across all statistics. This shows that it is a clear improvement over version
0. While the constant time improvement in type-checking is useful, the most important im-
provement is that version 2 only scales with the number of declarations in the input and not
the type of declaration.

8.2 Impact of the Agda experiments

In this section, we will analyse the experiments run on Agda and see how these affect our
previous observations.

The first observationwe canmake on theAgda experiments is that type-checking inAgda
takes much longer. We previously observed that version 0 is slower in type-checking partly
because it is performing more complex manipulations as it needs to move around module
parameters. Agda is far more complex compared to version 0 and as such it needs much
longer to deal with normal declarations as can be seen in experiment 1 where it already
needs a couple of seconds for just type-checking the larger files.

The second observation is that the number of parameters is still slightly more problem-
atic than the size of the parameters as can be seen in experiment 2. However, the difference
for serialization is much smaller than for Simple Agda while the difference in type-checking
is larger. One explanation is that the type-checking is more affected because Agda has differ-
ent ways of dealing with variable binding that cause additional slowdowns. However, the
precise reason is hard to pin down due to Agda’s complexity. The reason that Agda does not
have a similar explosion in serialization time is more easily explained. Agda uses a custom
compression algorithm when serializing that is meant to prevent slowdowns due to exces-
sive duplication of values. This could be very effective at removing the problems that version
0 experienced in this experiment.

The third observation we can make is that Agda seems to be less sensitive to the size of
module aliases as can be seen in experiment 5. The most likely reason for this is that the
time increase from having more declarations is much smaller than the time decrease due to
fewer complex function calls. This is a similar reason as to why the performance of version 2
improvedwith larger aliasedmodules. Agda is still however very sensitive to the exponential
explosion that happenswith nested aliases as can be seen in experiment 6. Its performance in
this experiment is even worse than that of version 0 as its runtime is exponential even when
plotted on a logarithmic scale.

The fourth observation is that Agda is still sensitive to module argument size as can be
seen in experiment 4. Whatever the reason is that Agda became less sensitive to the impact
of the number of module parameters this does not apply to all forms of copying. This is a
problem that is present in both version 0 and 1 but not in version 2 and would thus likely be
fixed if Agda switched to this module system.

The final observation relates to the multi-file experiments. Previously we noted that Sim-
ple Agda is too quick at type-checking compared to its serialization performance to notice
the benefits of caching. This is absolutely not the case for Agda.

8.3 Remaining limitations of the experiments

While some of the limitations of the experiments have been mitigated by verifying them on
Agda itself there are still some clear limitations remaining. This section will go over them
and discuss their impact on the conclusions of this thesis.

48

8.4. Advice for improving Agda’s module system

8.3.1 Limitations of using generated files
One of the major limitations of the experiments are the files used in the comparison. While
generated files are quite good at isolating a specific modification they are far from realistic
files. So while these files allow us to analyse the behaviour of the different versions under
different circumstances, these circumstances are not necessarily realistic. For example, many
of the terms generated will not be in WHNF while human-written code is almost always
in WHNF. This already caused problems with lambdas being automatically beta-reduced,
requiring us to introduce a $ operator to prevent this optimization. Other such optimizations
might still be present which will affect the accuracy of the results.

8.3.2 Limitations of Simple Agda
Another limitation of the experiments is that there could be a feature of Agda that is affected
aversely by the changes, but that is not present in Simple Agda. For example, the Agda
rewrite rules could potentially be affected because looking up definitions takes more time
and substitutions in the changed versions. While we do not believe that there are any such
side-effects with a big enough impact to matter, it could happen. Although if it happens, it
could probably be solved by implementing a form of caching that keeps any generated decla-
rations for later use. This would solve any potential performance issueswithout immediately
generating an exponential number of declarations.

8.3.3 Limitations of my Haskell knowledge
The final problem to discuss is the quality of the Haskell code of the type-checkers. My
experience and knowledge of optimizing Haskell code is rather limited. This means that
some of the versions could performworse than they should due tomistakes in programming
them. This could be an explanation for why Agda sometimes behaves better than version
0. On the other hand, the complexity of implementing version 0 properly is another good
argument for switching to a module system such as version 2 which is much easier to work
with and of course, no amount of programmingmistakes can compensate for the asymptotic
complexity advantages of version 2 when it comes to dealing with module aliases.

8.4 Advice for improving Agda’s module system
This sectionwill cover two different topics. First wewill explainwhyAgda should switch to a
module system similar to version 2 as soon as possible. Then, we will explain what we think
should be done afterwards to continue improving the module system and Agda in general.

8.4.1 Module system changes outlined in this thesis
We believe that Agda should switch as soon as possible to a module system that is close to
version 2. From the experiments we have seen that it generally performs better than the other
versions we have tried and avoids the exponential growth problems that the other versions
have with nested module aliases.

Besides the performance argument, switching to version 2 will also simplify the handling
of module parameters which in the past has led to quite a few bugs [15–17]. It will also allow
for open public statements to desugar tomodule aliases without a performance decrease and
finally, it could benefit the pretty-printing issues Agda experiences as the pretty-printer has
access to a signature with more information as the modules and aliases are kept intact.

The disadvantages of version 2 are quite minimal. From the experiments, we saw that
serialization and de-serialization were impacted by the increased complexity of using term-

49

8. DISCUSSION

qualified names. We don’t think Agda will have this issue, as it already uses a custom-made
serialization algorithm which should minimize the impact of more complicated names.

There are also a few feature interactions that need to change when switching to version
2. As modules are no longer lifted to the top level the handling of instances found in mod-
ules might need to be refactored as well to allow the algorithm to search through a nested
structure. This should not be more difficult, it simply needs to be redesigned.

The same goes for erasedmodules. We can no longer handle the erasing ofmodule aliases
by applying the erasure to the generated declarations. This will now have to be done during
lookup. This should not be too difficult either.

A feature that might be more difficult for version 2 is an open proposal for allowing mod-
ules to be extended [50]. As this proposal has already been put in the icebox, we don’t believe
this to be a problem either as it is unlikely this feature will ever be added to Agda.

Finally, the system could be updated to version 3 as well to allow for slightly better pretty
printing and some nice shorthand for users to use. If term-qualified names are used to im-
plement version 2 then switching to version 3 requires no big changes to the type-checker
and this change could thus happen later if it needs to be discussed first.

8.4.2 Future steps

We believe there are three remaining steps needed to fully fix Agda’s module system. We
will go over all three.

8.4.2.1 Breaking module system changes

There are two features of Agda’s module system that spark questions again and again. Open
public and anonymous modules. For open public the consensus seems to be that it needs to
be changed to act the same as a module alias [29]. This change has not been made yet due
to it being a breaking change and module aliases having terrible performance.

Anonymous modules behave weirdly at the moment in the sense that using an under-
score as a module name has completely different behaviour compared to using an under-
score as the name of a declaration. For a module, it will scope all declarations inside as if
they exist in the outside scope while for declarations the declaration can simply not be refer-
enced. In my opinion, anonymousmodules should also be hidden from the outside scope. A
new syntax should be introduced to support the current behaviour of anonymous modules.

As both of these changes are breaking, they should be performed at the same time tomin-
imize the number of version updates with breaking changes. As open public is something
that can be fixed once the performance refactor is complete, it would inmy opinion be a good
idea if anonymous modules were actively discussed at the moment so that their behaviour
can be finalized by the time the performance refactor is finished.

8.4.2.2 Pretty-printing improvements

Once the inverse scope lookup and display form systems have been been updated to the new
module system it can be investigated what the next steps related to pretty-printing are. A
number of approaches has already been outlined in section 5.3.2.2 and after the performance
refactor it can been analysed which of these features users want as well as what steps are still
necessary to deal with the remaining bugs. At themoment this is hard to determine as pretty-
printing issues could be caused by the poormodule representation, bugs in the display forms,
fundamental issues with the current display form algorithm etc.

50

8.4. Advice for improving Agda’s module system

8.4.2.3 Record changes

The last feature related tomodules that is in need of further analysis is the record system. The
record system supports many annotations to get the users their desired behaviour. However,
many changes have been made to records and termination checking since these annotations
were introduced and they are in need of careful analysis and documentation to see which
annotations are still useful and how they interact with each other [38]. There are also some
more fundamental problems with the record systemwhich could perhaps be analysed at the
same time [35] and finally, some features might have a more efficient implementation now
that the module system has been changed. All of these issues should be analysed to see how
records can be improved.

51

Chapter 9

Related work

This thesis started with an unpublished, early draft by my supervisor Jesper Cockx [43].
Besides this draft there are no papers that this work is directly based on. Instead this chapter
will describe several different module systems and how Agda compares to them. After that,
we will cover exponential growth problems experienced by other module systems similar to
those experienced by Agda to explain why our problem is different and cannot use the same
solutions. Finally, we will cover some research that could be relevant to improving Agda’s
module system in future work.

Module systems in general One of the most prevalent module systems in research is that
of ML [51, 52]. ML modules are parametrised and can be typed using signatures. This al-
lows for the definition of functors which are module definitions parametrised over a module
matching a specific signature. This allows for the creation of new modules given an existing
module with a specific signature.

It has been shown that almost any language can be extendedwith anML-likemodule sys-
tem [53] and while few languages have this exact system, almost any language has a system
that fulfils similar needs. For example, object-oriented languages like Java provide classes
and interfaces which similarly allow programmers to create types for classes by using inter-
faces that can then be used to define other classes through a constructor. Generics can also
be used to create parametrised methods or classes although these tend to be much weaker
than those in a language like Agda as there is no dependent typing.

Another approach to module systems is that of Haskell with type classes. Type classes
might not seem like a module system as they focus almost purely on polymorphism but the
system is extremely powerful and is in fact equivalent to ML’s modules [54].

Yet another interesting set ofmodule systems areMixin systems or hole-based systems [55–
57]. These systems allow programmers to define both concrete definitions and declarations
that need to be imported from another module. Modules can then be combined to satisfy
the needs of each other in a potentially cyclic manner. Like Haskell type classes, this system
has a different focus compared to ML, but it can still be used to encode ML functors [56] or
be combined with Haskell’s system [57].

Agda’s module system Agda’s module system consists of twomain features: modules and
records. Records combine many different features into one. They are very similar to classes
in object-oriented languages in that they have a constructor and fields with optionally some
definitions. They also support instances and instance search, allowing records to behave like
Haskell type classes [58].

Records can also be combined with modules to create a form of functors by specifying a
module parameter of a specific record type. Themodule can then either directly define the re-

53

9. RELATED WORK

sulting record or be used to instantiate a record. Alternatively, functors can be defined using
the record instances similar to how type classes are used to encode functors in Haskell [54].

Exponential size problems encountered by module systems similar to that of Agda To
deal with Agda’s exponential growth problemswe can look to other module systems to see if
they encountered similar problems and if we can reuse their solutions. Two systems similarly
expand the applications of a generic construct: generic functions in languages like Rust and
functors in systems likeML. Of those two, Agda’smodule aliases aremost similar to generics.

Both structs and functions can be generic over types in Rust [59]. For each instantiation of
a generic construct, a copy is created during compilation that is specific for that instantiation.
This results in a very fast run time, but slow compile time as well as larger binaries [6]. Rust
also supports type aliases for structs that instantiate some or all of the arguments. While
Agda’s parameters andmodule aliases are of coursemuchmore powerful than generics, they
are handled in the same way at the moment.

Agda’s modules are quite different compared to functors as Agda’s modules are not first-
order, nor objects. Agda does not have to decidewhether its modules should be generative or
applicative as they are not objects [60]. Nevertheless, these systems also generate the mod-
ules created through functor applications to reduce the number of indirect calls, similar to
Agda’s current system [61, 62]. While doing so, the systems can also encounter the problem
that they generate an exponential amount of code [61]. The exponential size is caused by
code duplication in this case and can be solved through better code generation and clever
use of let bindings.

Applicability of the solutions to Agda Agda’s exponential size problem is not because of
duplication, but because of nested module aliases creating an exponential amount of decla-
ration names that need to be defined and it can thus not be solved in the same way.

The exponential expansion in languages such as Rust is not considered to be a problem
at all and thus has no solution. Not everything will be a generic and thus not everything will
have multiple copies. In contrast, almost every declaration in Agda can be aliased and thus
require the creation of new declarations. The scale of the problem is thus larger.

Furthermore, the exponential growth with both functors and generics happens during
compilation where some level of exponential growth is acceptable as long as it improves the
runtime execution speed. In contrast, Agda’s problems occur during type-checking which
we do often without even executing the code. This means we want the type-checking to
be fast while with compilation we care more about the speed of the resulting code. These
reasons combined mean that we cannot use the solutions provided for these problems in
Agda.

Problems that Agda shares with other module systems While Agda’s exponential growth
problem cannot easily be addressed using solutions from other systems, there are two areas
of research that could be very relevant to future work on Agda’s module system.

In many of the discussed languages, the module-level system is separate from the term-
level system. ML is the closest to being unifiedwith recent research proposing a redesign that
would completely unify the term and module levels [63]. Future research on Agda might
want to achieve a similar goal and try to unify Agda’smodules and records into proper terms.

Other big topics for research are how to compile the variousmodule systems efficiently [64,
65]. Once Agda has been refactored to no longer remove the module system during type-
checking, the various compilers will have to solve the problem of compiling the modules
effectively to their target language. At that point, it has to be evaluated whether compiler-
techniques from Rust or ML or active research into compiling modules could be of benefit to
those compilers.

54

Chapter 10

Conclusion

The main goal of this thesis was to improve the performance of Agda’s module system. We
have created a simpler language called Simple Agda to evaluate the performance of three
different approaches: Agda’s current approach, keeping modules and module parameters
intact and keeping modules andmodule aliases both intact. We have introduced the concept
of term-qualified names, which allows us to implement these later versions with ease, by
realising that much of the difficulty of Agda’s module system can be resolved by the scope-
checker.

We have evaluated these approaches in a variety of scenarios using randomly generated
files. These experiments showed that the best approach is to keep modules and module
aliases intact during type-checking. This will perform better in all evaluated scenarios and
completely eliminates the exponential complexity of Agda’s current systemwhen aliases are
nested.

Furthermore, we have seen that this change will allow for several other problems to be
addressed as well. The improved module system makes use of term-qualified names inter-
nally: (M True).f. Allowing this syntax to be used when programming in Agda will remove
a significant number of pretty-printing problems. The improved performance of module
aliases also means that open public statements can be changed to a more intuitive version.
This was not yet possible due to the performance bottle-necks.

The performance benefits combined with the other benefits mean that making the pro-
posed changes to Agda will massively improve the user experience as some long-standing
problems are eliminated. The performance problems especially have hampered the develop-
ment of, for example, category theory proofs as these benefit massively frommodule aliases,
which so far, could not be used extensively.

However, the proposed changes are not yet the end of the improvements of Agda’s mod-
ule system. More research is still needed for both pretty-printing and records. With regards
to pretty-printing it will still need to be decided as to how we want to qualify terms. Do we
keep the alias qualifier when evaluating akin to a sort of dynamic dispatch or do we reduce
it to the aliased term and start fully reducing terms? Now that we maintain aliases after
type-checking, such questions can start to be analysed in much more detail.

Agda’s record functionality has been extended multiple times in the past few years but
this often occurred in an isolated manner. This means that it is unclear what the various
interactions between the record features are. Furthermore, there is also a lack of consensus
on how records should interact with the module system. Now that the module system has
been cleared up more, it is time to do the same for the record system and see how it should
interact with itself and with modules.

55

Bibliography

[1] X. Leroy et al. “Compcert c verified compiler.” (2022), [Online]. Available: https://
compcert.org/compcert-C.html (visited on 04/10/2023).

[2] H. Barendregt and H. Geuvers, “Proof-assistants using dependent type systems,” in
Handbook of automated reasoning, NLD: Elsevier Science Publishers B. V., Jan. 1, 2001,
pp. 1149–1238, ISBN: 978-0-444-50812-6. (visited on 02/03/2023).

[3] Agda Community, Agda, version 2.6.2.2, Mar. 27, 2022. [Online]. Available: https://
github.com/agda/agda/tree/v2.6.2.2.

[4] J. Carette and J. Hu, “Formalizing Category Theory in Agda,” 2021. DOI: 10 . 1145 /
3437992.3439922.

[5] E. Rijke, E. Bonnevier, J. Prieto-Cubides, F. Bakke, et al., Univalent mathematics in Agda.
[Online]. Available: https://github.com/UniMath/agda-unimath/.

[6] B. Anderson. “Generics and compile-time in rust,” PingCAP. (Jun. 15, 2020), [Online].
Available: https://www.pingcap.com/blog/generics- and- compile- time- in- rust/
(visited on 02/09/2023).

[7] M. Hofmann, “Syntax and Semantics of Dependent Types,” in Semantics and Logics of
Computation, A. M. Pitts and P. Dybjer, Eds., Cambridge University Press, 1997, pp. 79–
130. DOI: 10.1017/CBO9780511526619.004. [Online]. Available: https://www.tcs.ifi.
lmu.de/mitarbeiter/martin- hofmann/pdfs/syntaxandsemanticsof- dependenttypes.
pdf.

[8] N. G. de Bruijn, “Telescopic mappings in typed lambda calculus,” Information and Com-
putation, vol. 91, no. 2, pp. 189–204, Apr. 1, 1991, ISSN: 0890-5401. DOI: 10.1016/0890-
5401(91) 90066 - B. [Online]. Available: https : / / www . sciencedirect . com / science /
article/pii/089054019190066B (visited on 02/03/2023).

[9] “Theλ-calculus,” inAbstract ComputingMachines: A LambdaCalculus Perspective, ser. Texts
in Theoretical Computer Science, W. Kluge, W. Brauer, G. Rozenberg, and A. Salo-
maa, Eds., Berlin, Heidelberg: Springer, 2005, pp. 51–88, ISBN: 978-3-540-27359-2. DOI:
10.1007/3-540-27359-X_4. [Online]. Available: https://doi.org/10.1007/3-540-
27359-X_4 (visited on 02/03/2023).

[10] U. Norell, “Towards a practical programming language based on dependent type the-
ory,” Ph.D. dissertation, Chalmers University of Technology and Göteborg University,
Göteborg, Sweden, 2007, 166 pp. [Online]. Available: https://www.cse.chalmers.se/
~ulfn/papers/thesis.pdf.

[11] Agda Language Reference. “Coverage checking.” (2023), [Online]. Available: https:
//agda.readthedocs.io/en/v2.6.3/language/coverage-checking.html (visited on
04/22/2023).

57

https://compcert.org/compcert-C.html
https://compcert.org/compcert-C.html
https://github.com/agda/agda/tree/v2.6.2.2
https://github.com/agda/agda/tree/v2.6.2.2
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1145/3437992.3439922
https://github.com/UniMath/agda-unimath/
https://www.pingcap.com/blog/generics-and-compile-time-in-rust/
https://doi.org/10.1017/CBO9780511526619.004
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://doi.org/10.1016/0890-5401(91)90066-B
https://doi.org/10.1016/0890-5401(91)90066-B
https://www.sciencedirect.com/science/article/pii/089054019190066B
https://www.sciencedirect.com/science/article/pii/089054019190066B
https://doi.org/10.1007/3-540-27359-X_4
https://doi.org/10.1007/3-540-27359-X_4
https://doi.org/10.1007/3-540-27359-X_4
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://agda.readthedocs.io/en/v2.6.3/language/coverage-checking.html
https://agda.readthedocs.io/en/v2.6.3/language/coverage-checking.html

BIBLIOGRAPHY

[12] AgdaLanguageReference. “Termination checking.” (2023), [Online].Available: https:
//agda.readthedocs.io/en/v2.6.3/language/termination-checking.html (visited on
04/22/2023).

[13] M. H. Sørensen and P. Urzyczyn, Lectures on the Curry-Howard Isomorphism, Volume 149
(Studies in Logic and the Foundations of Mathematics). USA: Elsevier Science Inc., 2006,
ISBN: 978-0-444-52077-7.

[14] N. A. Danielsson. “Shadowing parameters are sometimes renamed.” (2020), [Online].
Available: https://github.com/agda/agda/issues/2018 (visited on 03/31/2023).

[15] Google Code Exporter. “Copatterns do not work in parametrized modules.” (2015),
[Online].Available: https://github.com/agda/agda/issues/940 (visited on 03/31/2023).

[16] W. Kahl. “Regression: Module parameters lost.” (2015), [Online]. Available: https:
//github.com/agda/agda/issues/1701 (visited on 03/31/2023).

[17] A. Abel. “Not a splittable variable.” (2016), [Online]. Available: https://github.com/
agda/agda/issues/2181 (visited on 03/31/2023).

[18] O.Melkonian. “Unsafe(?) irrelevant projections by ‘open‘ing.” (2023), [Online]. Avail-
able: https://github.com/agda/agda/issues/6359 (visited on 03/31/2023).

[19] Google Code Exporter. “Undeclared name accepted in fixity declaration.” (2015), [On-
line]. Available: https://github.com/agda/agda/issues/329 (visited on 03/31/2023).

[20] A. Abel. “Printer prefers (longer) qualified over (shorter) unqualified name.” (2019),
[Online].Available: https://github.com/agda/agda/issues/3240 (visited on 03/31/2023).

[21] Google Code Exporter. “Printing of infix/mixfix operators defined in parametrized
modules.” (2022), [Online]. Available: https://github.com/agda/agda/issues/632
(visited on 03/31/2023).

[22] L.-T. Chen. “Qualified names are printed if introduced by ‘open M ...‘.” (2022), [On-
line]. Available: https://github.com/agda/agda/issues/5632 (visited on 03/31/2023).

[23] A. Abel. “Exponential module chain leads to infeasible scope checking.” (2022), [On-
line]. Available: https://github.com/agda/agda/issues/1646 (visited on 03/31/2023).

[24] J. Carette. “Switch to a structured signature?” (2022), [Online]. Available: https://
github.com/agda/agda/issues/4331 (visited on 03/31/2023).

[25] A. Jonathan. “Unnecessary conversion checking due to parameterized module slows
type-checking (a lot).” (2022), [Online]. Available: https://github.com/agda/agda/
issues/4517 (visited on 03/31/2023).

[26] J. Carette. “Agda-categories wiki: Speed.” (2023), [Online]. Available: https://github.
com/agda/agda-categories/wiki/speed (visited on 06/20/2023).

[27] P. G. Giarrusso. “Regression with open public.” (2018), [Online]. Available: https:
//github.com/agda/agda/issues/1985 (visited on 03/31/2023).

[28] N.A.Danielsson. “Record constructors sometimes in recordmodules, sometimes not.”
(2019), [Online]. Available: https://github.com/agda/agda/issues/4189 (visited on
03/31/2023).

[29] Google Code Exporter. “Change the semantics of open public in parameterised mod-
ule.” (2018), [Online]. Available: https://github.com/agda/agda/issues/892 (visited
on 03/31/2023).

[30] L. Diehl. “Closed AnonymousModules.” (2022), [Online]. Available: https://github.
com/agda/agda/issues/2293 (visited on 03/31/2023).

[31] N. A. Danielsson. “Private where modules.” (2023), [Online]. Available: https : / /
github.com/agda/agda/issues/2593 (visited on 03/31/2023).

58

https://agda.readthedocs.io/en/v2.6.3/language/termination-checking.html
https://agda.readthedocs.io/en/v2.6.3/language/termination-checking.html
https://github.com/agda/agda/issues/2018
https://github.com/agda/agda/issues/940
https://github.com/agda/agda/issues/1701
https://github.com/agda/agda/issues/1701
https://github.com/agda/agda/issues/2181
https://github.com/agda/agda/issues/2181
https://github.com/agda/agda/issues/6359
https://github.com/agda/agda/issues/329
https://github.com/agda/agda/issues/3240
https://github.com/agda/agda/issues/632
https://github.com/agda/agda/issues/5632
https://github.com/agda/agda/issues/1646
https://github.com/agda/agda/issues/4331
https://github.com/agda/agda/issues/4331
https://github.com/agda/agda/issues/4517
https://github.com/agda/agda/issues/4517
https://github.com/agda/agda-categories/wiki/speed
https://github.com/agda/agda-categories/wiki/speed
https://github.com/agda/agda/issues/1985
https://github.com/agda/agda/issues/1985
https://github.com/agda/agda/issues/4189
https://github.com/agda/agda/issues/892
https://github.com/agda/agda/issues/2293
https://github.com/agda/agda/issues/2293
https://github.com/agda/agda/issues/2593
https://github.com/agda/agda/issues/2593

Bibliography

[32] U.Norell. “Internal error for localmoduleswith refined parameters.” (2018), [Online].
Available: https://github.com/agda/agda/issues/2897 (visited on 03/31/2023).

[33] M. Arntzenius. “record module functions should get hidden parameters when copied
by module application.” (2022), [Online]. Available: https://github.com/agda/agda/
issues/2675 (visited on 03/31/2023).

[34] U. Norell. “TERMINATING pragma ignored in record.” (2022), [Online]. Available:
https://github.com/agda/agda/issues/3008 (visited on 03/31/2023).

[35] A. Abel. “In record declarations, meta variables are messed up.” (2019), [Online].
Available: https://github.com/agda/agda/issues/2561 (visited on 03/31/2023).

[36] S. Levy. “Instance fields without eta-equality.” (2022), [Online]. Available: https://
github.com/agda/agda/issues/5071 (visited on 03/31/2023).

[37] A. Abel. “Records: separate field names from binders.” (2022), [Online]. Available:
https://github.com/agda/agda/issues/5361 (visited on 03/31/2023).

[38] ul. “Doubts regarding inductive records with eta.” (2022), [Online]. Available: https:
//github.com/agda/agda/issues/5842 (visited on 03/31/2023).

[39] S. Weirich, Pi-forall, version 2022 version, Oct. 18, 2022. [Online]. Available: https :
//github.com/sweirich/pi-forall.

[40] T. Coquand, “An algorithm for type-checking dependent types,” Science of Computer
Programming, vol. 26, no. 1, pp. 167–177, 1996, ISSN: 0167-6423. DOI: https://doi.org/
10.1016/0167-6423(95)00021-6. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0167642395000216.

[41] G.Allais. “Case-split on adatatypedefined in a parametrisedmodule produces needlessly-
prefixed patterns.” (2022), [Online]. Available: https : / / github . com / agda / agda /
issues/3209 (visited on 03/31/2023).

[42] A. Abel. “inverseScopeLookup chooses suboptimal name.” (2018), [Online]. Avail-
able: https://github.com/agda/agda/issues/1643 (visited on 03/31/2023).

[43] J. Cockx, “Mini modules: A structured module system with parametrized modules
and dependent types,” 2020.

[44] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random testing of
haskell programs,” SIGPLAN Not., vol. 46, no. 4, pp. 53–64, May 2011, ISSN: 0362-1340.
DOI: 10.1145/1988042.1988046. [Online]. Available: https://doi-org.tudelft.idm.
oclc.org/10.1145/1988042.1988046.

[45] N. Smallbone, K. Claessen, O.Grenrus, and B. Bringert,Quickcheck, version 2.14.2, 2023.
[Online]. Available: https://hackage.haskell.org/package/QuickCheck.

[46] M. Daggitt, N. A. Danielsson, and G. Allais, Agda-stdlib, version 1.7.2, 2023. [Online].
Available: https://github.com/agda/agda-stdlibs.

[47] Haskell, Deepseq, version 1.4.8.1, Dec. 18, 2022. [Online]. Available: https://hackage.
haskell.org/package/deepseq.

[48] F. Domínguez, Timestats, version 0.1.0, Jul. 13, 2022. [Online]. Available: https : / /
hackage.haskell.org/package/timestats-0.1.0.

[49] J. Carette. “Feature request: aliases (or ’light’ modules).” (2022), [Online]. Available:
https://github.com/agda/agda/issues/5499 (visited on 04/24/2023).

[50] anuyts. “Extending existing modules.” (2022), [Online]. Available: https://github.
com/agda/agda/issues/6038 (visited on 04/06/2023).

59

https://github.com/agda/agda/issues/2897
https://github.com/agda/agda/issues/2675
https://github.com/agda/agda/issues/2675
https://github.com/agda/agda/issues/3008
https://github.com/agda/agda/issues/2561
https://github.com/agda/agda/issues/5071
https://github.com/agda/agda/issues/5071
https://github.com/agda/agda/issues/5361
https://github.com/agda/agda/issues/5842
https://github.com/agda/agda/issues/5842
https://github.com/sweirich/pi-forall
https://github.com/sweirich/pi-forall
https://doi.org/https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/https://doi.org/10.1016/0167-6423(95)00021-6
https://www.sciencedirect.com/science/article/pii/0167642395000216
https://www.sciencedirect.com/science/article/pii/0167642395000216
https://github.com/agda/agda/issues/3209
https://github.com/agda/agda/issues/3209
https://github.com/agda/agda/issues/1643
https://doi.org/10.1145/1988042.1988046
https://doi-org.tudelft.idm.oclc.org/10.1145/1988042.1988046
https://doi-org.tudelft.idm.oclc.org/10.1145/1988042.1988046
https://hackage.haskell.org/package/QuickCheck
https://github.com/agda/agda-stdlibs
https://hackage.haskell.org/package/deepseq
https://hackage.haskell.org/package/deepseq
https://hackage.haskell.org/package/timestats-0.1.0
https://hackage.haskell.org/package/timestats-0.1.0
https://github.com/agda/agda/issues/5499
https://github.com/agda/agda/issues/6038
https://github.com/agda/agda/issues/6038

BIBLIOGRAPHY

[51] D. MacQueen, “Modules for standard ml,” in Proceedings of the 1984 ACM Symposium
on LISP and Functional Programming, ser. LFP ’84, Austin, Texas, USA: Association for
Computing Machinery, 1984, pp. 198–207, ISBN: 0897911423. DOI: 10 . 1145 / 800055 .
802036. [Online]. Available: https://doi.org/10.1145/800055.802036.

[52] D. MacQueen, R. Harper, and J. Reppy, “The history of standard ml,” Proc. ACM Pro-
gram. Lang., vol. 4, no. HOPL, Jun. 2020. DOI: 10.1145/3386336. [Online]. Available:
https://doi-org.tudelft.idm.oclc.org/10.1145/3386336.

[53] X. Leroy, “Amodular module system,” Journal of Functional Programming, vol. 10, no. 3,
pp. 269–303, May 2000, Publisher: Cambridge University Press, ISSN: 1469-7653, 0956-
7968. DOI: 10.1017/S0956796800003683. [Online]. Available: http://www.cambridge.
org/core/journals/journal-of-functional-programming/article/modular-module-
system/A8D022C76CBFB0DD9EEA05458D5C662D# (visited on 03/10/2021).

[54] S. Wehr and M. M. T. Chakravarty, “Ml modules and haskell type classes: A construc-
tive comparison,” in Programming Languages and Systems, G. Ramalingam, Ed., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 188–204, ISBN: 978-3-540-89330-1.

[55] A. Rossberg and D. Dreyer, “Mixin’ up the ML module system,” ACM Transactions on
Programming Languages and Systems, vol. 35, no. 1, 2:1–2:84, Apr. 1, 2013, ISSN: 0164-0925.
DOI: 10.1145/2450136.2450137. [Online]. Available: http://doi.org/10.1145/2450136.
2450137 (visited on 11/18/2022).

[56] T. Hirschowitz and X. Leroy, “Mixin modules in a call-by-value setting,” in Program-
ming Languages and Systems, D. Le Métayer, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 6–20, ISBN: 978-3-540-45927-9.

[57] S. Kilpatrick, D. Dreyer, S. Peyton Jones, and S.Marlow, “Backpack: Retrofitting haskell
with interfaces,” in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, San Diego California USA: ACM, Jan. 8, 2014, pp. 19–
31, ISBN: 978-1-4503-2544-8. DOI: 10.1145/2535838.2535884. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2535838.2535884 (visited on 02/24/2021).

[58] Agda Language Reference. “Record types.” (2023), [Online]. Available: https://agda.
readthedocs.io/en/latest/language/record-types.html (visited on 05/04/2023).

[59] S. Klabnik and C. Nichols, The Rust Programming Language, 1st Edition. San Francisco:
No Starch Press, Jun. 26, 2018, 552 pp., ISBN: 978-1-59327-828-1.

[60] Y. Sato and Y. Kameyama, “Type-safe generation of modules in applicative and gener-
ative styles,” in Proceedings of the 20th ACM SIGPLAN International Conference on Gen-
erative Programming: Concepts and Experiences, Chicago IL USA: ACM, Oct. 17, 2021,
pp. 184–196, ISBN: 978-1-4503-9112-2. DOI: 10.1145/3486609.3487209. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/3486609.3487209 (visited on 02/07/2023).

[61] Y. Sato, Y. Kameyama, and T. Watanabe, “Module generation without regret,” in Pro-
ceedings of the 2020 ACM SIGPLAN Workshop on Partial Evaluation and Program Manip-
ulation, ser. PEPM 2020, New York, NY, USA: Association for Computing Machinery,
Jan. 20, 2020, pp. 1–13, ISBN: 978-1-4503-7096-7. DOI: 10.1145/3372884.3373160. [Online].
Available: https://doi.org/10.1145/3372884.3373160 (visited on 02/07/2023).

[62] Y. Sato and Y. Kameyama, “Type-safe generation of modules in applicative and gener-
ative styles,” in Proceedings of the 20th ACM SIGPLAN International Conference on Gen-
erative Programming: Concepts and Experiences, Chicago IL USA: ACM, Oct. 17, 2021,
pp. 184–196, ISBN: 978-1-4503-9112-2. DOI: 10.1145/3486609.3487209. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/3486609.3487209 (visited on 02/07/2023).

[63] A. ROSSBERG, “1ml – core and modules united,” Journal of Functional Programming,
vol. 28, e22, 2018. DOI: 10.1017/S0956796818000205.

60

https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/3386336
https://doi-org.tudelft.idm.oclc.org/10.1145/3386336
https://doi.org/10.1017/S0956796800003683
http://www.cambridge.org/core/journals/journal-of-functional-programming/article/modular-module-system/A8D022C76CBFB0DD9EEA05458D5C662D#
http://www.cambridge.org/core/journals/journal-of-functional-programming/article/modular-module-system/A8D022C76CBFB0DD9EEA05458D5C662D#
http://www.cambridge.org/core/journals/journal-of-functional-programming/article/modular-module-system/A8D022C76CBFB0DD9EEA05458D5C662D#
https://doi.org/10.1145/2450136.2450137
http://doi.org/10.1145/2450136.2450137
http://doi.org/10.1145/2450136.2450137
https://doi.org/10.1145/2535838.2535884
https://dl.acm.org/doi/10.1145/2535838.2535884
https://dl.acm.org/doi/10.1145/2535838.2535884
https://agda.readthedocs.io/en/latest/language/record-types.html
https://agda.readthedocs.io/en/latest/language/record-types.html
https://doi.org/10.1145/3486609.3487209
https://dl.acm.org/doi/10.1145/3486609.3487209
https://doi.org/10.1145/3372884.3373160
https://doi.org/10.1145/3372884.3373160
https://doi.org/10.1145/3486609.3487209
https://dl.acm.org/doi/10.1145/3486609.3487209
https://doi.org/10.1017/S0956796818000205

Bibliography

[64] G. Kuan, “True higher-order module systems, separate compilation, and signature cal-
culi,” Ph.D. dissertation, University of Chicago, Chicago IL USA, Jun. 2010. [Online].
Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
07258e13737477d9ca682db338325ea98189bdc9.

[65] K.Crary, “Fully abstractmodule compilation,”Proc. ACMProgram. Lang., vol. 3, no. POPL,
Jan. 2019. DOI: 10.1145/3290323. [Online]. Available: https://doi-org.tudelft.idm.
oclc.org/10.1145/3290323.

61

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07258e13737477d9ca682db338325ea98189bdc9
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07258e13737477d9ca682db338325ea98189bdc9
https://doi.org/10.1145/3290323
https://doi-org.tudelft.idm.oclc.org/10.1145/3290323
https://doi-org.tudelft.idm.oclc.org/10.1145/3290323

Acronyms

WHNF weak head normal form

AST Abstract syntax tree

63

Appendix A

Full typing judgements for version 1

This appendix will provide a fully updated set of judgements for version 1, including all
the judgements that were left out in section 5.1 because they are the same as in version 0.
extend uses the fully qualified names in declarations to insert them in the proper places in
the signature.

module M ∆ = Σ1 P Σ ∆1,∆2 = split(∆, ā) Σ1[∆1 := ā]!α⇝ (∆1,Σ2)

Σ!(Mā).α⇝ (∆2∆1,Σ2)

Σ!ι⇝ (ϵ,Σ)

Figure A.1: Signature lookup for version 1

α.f = u P Σ

Σ $ a.f
WHNF
ÝÝÝÝÝÑ u Σ $ (λx . u) v

WHNF
ÝÝÝÝÝÑ u[x := v]

Σ $ u
WHNF
ÝÝÝÝÝÑ u1

Σ $ u v
WHNF
ÝÝÝÝÝÑ u1 v

Σ $ if True then v else w
WHNF
ÝÝÝÝÝÑ v Σ $ if False then v else w

WHNF
ÝÝÝÝÝÑ w

Σ $ u
WHNF
ÝÝÝÝÝÑ u1

Σ $ if u then v else w
WHNF
ÝÝÝÝÝÑ if u1 then v else w

Σ $ u
WHNF
ÝÝÝÝÝÑ v Σ $ v

WHNF
ÝÝÝÝÝÑ w

Σ $ u
WHNF
ÝÝÝÝÝÑ w Σ $ u

WHNF
ÝÝÝÝÝÑ u

Figure A.2: WHNF evaluation of version 1

Σ;Γ $ ϵ

Σ;Γ $ A : Type Σ;Γ, x : A $ ∆

Σ;Γ $ (x : A),∆

Figure A.3: Telescope typing rules for version 1

65

A. FULL TYPING JUDGEMENTS FOR VERSION 1

x : A P Γ

Σ; Γ $ x : A Σ;Γ $ Type : Type Σ;Γ $ Bool : Type Σ;Γ $ Unit : Type

Σ;Γ $ True : Bool Σ;Γ $ False : Bool Σ;Γ $ 1 : Unit

Σ;Γ $ u : Bool Σ;Γ $ v : A Σ;Γ $ w : A

Σ;Γ $ if u then v else w : A

Σ;Γ $ A : Type Σ;Γ, x : A $ B : Type
Σ;Γ $ (x : A) Ñ B : Type

Σ;Γ, x : A $ u : B

Σ;Γ $ λx . u : A Ñ B

Σ;Γ $ u : A Σ;Γ $ A
WHNF
ÝÝÝÝÝÑ (b : B) Ñ C Σ;Γ $ v : B

Σ;Γ $ u v : C[b := v]

Σ!α⇝ (∆,Σ1) f : A P Σ1

Σ;Γ $ α.f : ∆ Ñ A

Figure A.4: Term typing judgements for version 1

Σ;Γ $ A : Type Σ;Γ $ u : A

Σ;Γ $ α.f : A = u⇝ α.f : A = u

Σ;Γ $ ∆ Σ;ΓM(∆) $ decls⇝ decls1

Σ;Γ $ module M ∆ where decls⇝ module M ∆ where decls1

Σ;Γ $ ∆ Σ!α⇝ (Θ,Σ1) module M 1 Θ1 where decls P Σ1

Σ;ΓM(∆) $ ū : ΘΘ1 let decls1 = newDecls(M,α.M 1, ū, decls[ΘΘ1 := ū])

Σ; Γ $ module M ∆ = α.M 1 ū⇝ module M ∆ where decls1

Σ;Γ $ []⇝ ϵ

Σ;Γ $ decl⇝ decl1 let Σ1 = extend(Σ, decl1)
Σ1; Γ $ decls⇝ Σ2

Σ;Γ $ decl :: decls⇝ Σ2

Figure A.5: Declaration typing judgements for version 1

newDecls(M,M 1, ū, D) = newDecl(M,M 1, ū, d) for each d P D

newDecl(M,M 1, ū,M 1.f : A = u) = M.f = M 1.f ū

newDecl(M,M 1, ū,module M 1.N ∆ where decls) =

module M.N ∆1 where newDecls(M.N,M 1.(N ∆), ū, decls)

Figure A.6: newDecls definition for version 1

66

Appendix B

Full typing judgements for version 2

This appendix will provide a fully updated set of judgements for version 2, including all
the judgements that were left out in section 5.2 because they are the same as in version 1.
Because no changes are made to the program, Σ is initialised to the original program and
never modified.

module M ∆ = Σ1 P Σ ∆1,∆2 = split(∆, ā) ΣR $ Σ1[∆1 := ā]!α⇝ (∆1,Σ2)

ΣR $ Σ!(Mā).α⇝ (∆2∆1,Σ2)

module M ∆ = M 1 ū P Σ ∆1,∆2 = split(∆, ā) ΣR $ ΣR!M 1 ⇝ (∆1,Σ1)
∆1

1,∆
1
2 = split(∆1, ū) ΣR $ Σ1[∆1

1 := ū[∆1 := ā]]!α⇝ (∆2,Σ2)

ΣR $ Σ!(Mā).α⇝ (∆2∆1
2∆

2,Σ2)

ΣR $ Σ!ι⇝ (ϵ,Σ)

Figure B.1: Signature lookup for version 2

α.f = u P Σ

Σ $ a.f
WHNF
ÝÝÝÝÝÑ u Σ $ (λx . u) v

WHNF
ÝÝÝÝÝÑ u[x := v]

Σ $ u
WHNF
ÝÝÝÝÝÑ u1

Σ $ u v
WHNF
ÝÝÝÝÝÑ u1 v

Σ $ if True then v else w
WHNF
ÝÝÝÝÝÑ v Σ $ if False then v else w

WHNF
ÝÝÝÝÝÑ w

Σ $ u
WHNF
ÝÝÝÝÝÑ u1

Σ $ if u then v else w
WHNF
ÝÝÝÝÝÑ if u1 then v else w

Σ $ u
WHNF
ÝÝÝÝÝÑ v Σ $ v

WHNF
ÝÝÝÝÝÑ w

Σ $ u
WHNF
ÝÝÝÝÝÑ w Σ $ u

WHNF
ÝÝÝÝÝÑ u

Figure B.2: WHNF evaluation of version 2

67

B. FULL TYPING JUDGEMENTS FOR VERSION 2

Σ;Γ $ ϵ

Σ;Γ $ A : Type Σ;Γ, x : A $ ∆

Σ;Γ $ (x : A),∆

Figure B.3: Telescope typing rules for version 2

x : A P Γ

Σ; Γ $ x : A Σ;Γ $ Type : Type Σ;Γ $ Bool : Type Σ;Γ $ Unit : Type

Σ;Γ $ True : Bool Σ;Γ $ False : Bool Σ;Γ $ 1 : Unit

Σ;Γ $ u : Bool Σ;Γ $ v : A Σ;Γ $ w : A

Σ;Γ $ if u then v else w : A

Σ;Γ $ A : Type Σ;Γ, x : A $ B : Type
Σ;Γ $ (x : A) Ñ B : Type

Σ;Γ, x : A $ u : B

Σ;Γ $ λx . u : A Ñ B

Σ;Γ $ u : A Σ;Γ $ A
WHNF
ÝÝÝÝÝÑ (b : B) Ñ C Σ;Γ $ v : B

Σ;Γ $ u v : C[b := v]

Σ!α⇝ (∆,Σ1) f : A P Σ1

Σ;Γ $ α.f : ∆ Ñ A

Figure B.4: Term typing judgements for version 2

Σ;Γ $ A : Type Σ;Γ $ u : A

Σ;Γ $ α.f : A = u

Σ;Γ $ ∆ Σ;ΓM(∆) $ decls

Σ;Γ $ module M ∆ where decls

Σ;Γ $ ∆ Σ $ Σ!α⇝ (Θ,Σ1) module M 1 Θ1 P Σ1 Σ;ΓM(∆) $ ū : ΘΘ1

Σ;Γ $ module M ∆ = α.M 1 ū

Σ;Γ $ []

Σ; Γ $ decl Σ;Γ $ decls

Σ;Γ $ decl :: decls

Figure B.5: Declaration typing judgements for version 2

68

Appendix C

Paper for IFL

This thesis was made into a paper for IFL. This paper will be finished after the submission
deadline for the master thesis, which means that the version below is still a draft.

69

Improving Agda’s module system∗

Ivar de Bruin
ABSTRACT
Agda is a language used to write computer-verified proofs. It has
a module system that provides namespacing, module parameters
and module aliases. These parameters and aliases can be used to
write shorter and cleaner proofs. However, the current implemen-
tation of the module system has several problems, such as an ex-
ponential desugaring of module aliases. This paper shows how the
module system can be changed to address these problems.We have
found that we do not need any desugarings during type-checking,
but can instead handle module parameters and aliases during sig-
nature lookup bymaking a small change to the scope-checker, com-
pletely eliminating any exponential growth problems and unnec-
essary complexity. This will allow users to make more effective
use of the module system, simplifying their proofs. Furthermore,
the improvements to the module system will allow future research
to fix the problems with Agda’s implementation of pretty-printing,
records and open public statements.

ACM Reference Format:
Ivar de Bruin. 2023. Improving Agda’s module system. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Throughout programming history, programmers have struggled
with bugs.This is especially a problem in security-related programs
where bugs can have big consequences. One possible solution to
this problem has been to create code that is proven to be correct.
This has already seen some use in, for example, the creation of a C
compiler [29].

To create such proofs, programmerswork in proof-assistants [7].
Many of these proof-assistants are programming languages with
strong type systems and additional properties such as guaranteed
termination to allow for the creation of proofs. This paper focuses
on Agda [4], a proof assistant that uses a syntax similar to Haskell,
allowing users towrite programs inAgda, prove them correct, then
transform them to Haskell code using a Haskell back-end, thereby
maintaining the guarantee that their code has the proven proper-
ties, while still using a programming language optimised for per-
formance.

∗This is a shortened version of my Master thesis with the same title [16]. All code and
results used in this paper can be found at: https://github.com/ivardb/AgdaModuleIm
provement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Agda is also used to prove various mathematical properties or
even entire mathematical fields [9, 34]. To help programmers struc-
ture larger proofs, Agda provides a module system. Modules allow
for easy namespacing and grouping of proofs. In addition, there
are two interesting features that can be of great help when writing
proofs: module parameters and module aliases.

Module parameters are in scope for all declarations in that mod-
ule while module aliases allow programmers to create aliases that
instantiate these parameters with specific arguments. This allows
programmers to make proofs generic over some module parame-
ters. Then, using a module alias, these proofs can be instantiated
for a specific value as can be seen here, where CategoryProofs
contains a variety of proofs generalised over some Category c:

p o s t u l a t e d e : Category
module Ca t ego ryP roo f s (c : Category) where
. . .
module DProofs = Ca t ego ryP roo f s d
module EProo f s = Ca t ego ryP roo f s e

Structuring proofs this way greatly increases both the usability as
well as the readability and ease of writing of the proofs. Unfortu-
nately, the current version of Agda does not perform well when
many aliases are used due to exponential growth problems. This
occurs because Agda replaces the alias with specialised functions
for each declaration being aliased, similar to what many compil-
ers do when dealing with parametrised functions [6]. While this
technique makes sense for a compiler, it is not necessarily a good
idea for a proof-assistant, as we do not care for the speed of the
type-checked code, but about the speed of the type-checker.

Furthermore, removing aliasesmakes the implementation of the
type-checker more complex and bug-prone due to the increase in
transformations needed and finally, any back-ends that are imple-
mented for Agda will not have access to the aliases as the type-
checker already removed them, limiting the potential compilations.

This paper will analyse different approaches to Agda’s module
system to remove this performance bottleneck while preserving
the module features during type-checking. Concretely, we make
the following contributions:

• We analyse the issues on the Agda GitHub issue tracker
to identify the main problems with Agda’s module system:
The lack of structure, the performance problemswith nested
module aliases and a variety of issues related to pretty-printing
(Section 3).

• We introduce the concept of term-qualified names and ex-
plain how we can use these to change Agda’s approach to
type-checking modules in a way that no longer requires us
to change modules and module aliases to declarations, sim-
plifying the implementation grealy (Section 4).

• We analyse the different type-checkers in a variety of sce-
narios, using randomly generated files, which shows that
keeping aliases intact has far superior performance, with
barely any downsides. We also verify the accuracy of our

Conference’17, July 2017, Washington, DC, USA Ivar de Bruin

experiments by running them on Agda to make sure that
our baseline implementation matches Agda’s performance
(Section 5).

• We analyse the results as well as a number of other factors,
such as the difficulty of refactoring Agda, to explain that
Agda should switch its implementation to an approach that
preserves module aliases (Section 6).

2 BACKGROUND
This section will cover the required background information on
Agda. It is assumed that readers are already familiar with depen-
dent typing [23] and its associated concepts such as weak head nor-
mal form evaluation [27] and telescopes [15]. A full description of
Agda’s module system can be found in Norell’s thesis [33].

Agda’s module system. The basis of Agda’s module system are
modules which can be nested. In addition to standard namespacing,
modules can also have parameters:
module M (x : Bool) where

f = x
g = f

z : Bool
z = M. g True
The parameters are in scope for all declarations inside the module
and when a declaration is used outside of its module, the module
parameters have to be supplied just like normal function parame-
ters.

When you often make use of the same module with the same
module arguments, it can be useful to make use of a module alias
instead:
module MBool = M True
z : Bool
z = MBool . g
Module aliases allow you to create an alternative module that sup-
plies zero or more of the parameters of a module. Module aliases
and parameters can be extremely useful whenwriting a set of proofs
that depend on some category or some number etc.

Interface files. Before we cover how Agda’s current implemen-
tation type-checks these module parameters and aliases, we need
to quickly cover Agda’s interface files. During type-checking Agda
will simplify the program down to a core language that can then be
stored in its interface files.These files are then used whenever a file
needs to be imported to prevent it from having to be type-checked
every time it is used.

Such a core language output consists of two parts. First, there
are the sections, these are all the modules that exist together with
their telescope. This information is needed to type-check module
aliases. After that, wewill have the declarations together with their
given or inferred type signatures. The declarations are all lifted to
the top level as that is how they would be used when imported. For
example:
s e c t i o n M (x : Bool)

M. f : Bool −> Bool

M. f = \ x . x
M. g : Bool −> Bool
M. g = \ x . M. f x

Type-checking and elaboration ofmodules. Before type-checking,
the scope-checker will insert fully-qualified names and deal with
any visibility modifiers. This paper will ignore the visibility mod-
ifiers and assume that the scope-checker somehow inserts these
fully-qualified names.

The current implementation of Agda lifts all declarations to the
top level. This will change the types of function calls as the type
of a qualified name depends on the module it is in as a module pa-
rameter that is shared by both the caller and the target declaration
is not part of the type of the function call. When declarations are
lifted to the top level, they lose these shared module parameters as
they become function parameters.

In this example, the function f does not take any parameters as
both f and g have b in scope.
module M (b : Bool) where

f : Bool
f = b

g : Bool
g = f

When we remove modules to get:
M. f = \ b . b
M. g = \ b a . M. f b
M.f needs to be explicitly passed the b argument as it is no longer
automatically in scope.

To type-check a module alias, new definitions are introduced.
For each definition in the original, we need a definition in the new
module that redirects to the old definition, passing the appropriate
arguments.
module M (X : Type) where

M. i d : X → X
M. i d x = x

module MBool = M Bool
will create
M. i d : (X : Type) → X → X
M. i d X x = x

MBool . i d : Bool −> Bool
MBool . i d = M. i d Bool
This means that any arguments passed to an aliased module will
be copied once for each declaration.

There are several problems with this way of type-checking and
section 3 will explain what these problems are in more detail.

3 PROBLEM DESCRIPTION
Agda’s module system has several problems, many of which are
reported as issues on GitHub1. Before we go through the problems
1https://github.com/agda/agda/issues?q=label%3Amodules+sort%3Aupdated-desc+

Improving Agda’s module system Conference’17, July 2017, Washington, DC, USA

found in these issues there is a more general problem. The Adga
type-checker already performs a partial compilation.

Agda allows for the implementation of custom back-ends which
can be used to compile Agda to different languages. However, by
then Agda will already have removed its modules and moved the
module parameters to the declaration level. This means that the
back-end is not able to decide to do so for itself. If youwant tomake
a back-end for Agda that applies a transformation and then returns
valid Agda code, you will not be able to do so while preserving the
original module structure.

This is a conceptual problem that harms Agda’s usefulness but it
is not relevant whenworking in Agda itself. Looking at the Agda is-
sue tracker on GitHubwe can see that there are three major groups
of problems that affect Agda programmers:

(1) Lack of module structure in the typing environment:
Agda has to make changes to the declarations to lift them
to the top level and to move the module parameters to the
declaration level. These changes can easily introduce bugs
due to renaming to preserve unique names [14] or because it
becomes harder to know if a parameter is part of the original
declaration or if it came from a module [20, 25, 2]. While
these bugs could all be easily fixed, some issues are still not
fixed. One such issue is issue #6359 which is a problem that
is caused by declarations being added to the global scope
while they should only exist locally, thereby breaking the
tracking of specific data resulting in buggy behaviour [32].
These issues show that the current approach of Agda is both
complex and restrictive.

(2) Performance problems: The second and most serious of
the problems is that of performance [1, 8, 24]. These prob-
lems are either caused by very large numbers of module pa-
rameters or more often by nested module aliases as this pro-
duces an exponential growth in the number of new declara-
tions being created. Finally, many users are of the opinion
that the current behaviour of the open public statement is
unintuitive [18, 13]. However, this cannot be fixed at the
moment as the current implementation is merely a scope-
checking trick while fixing the behaviour would require the
use of module aliases which would be too big of a perfor-
mance sacrifice [19].

(3) Pretty-Printing problems: The final set of problems is re-
lated to pretty-printing. Agda has a variety of problemswith
pretty-printing values fromdifferentmodules. Either because
it cannot remember where a definition originated [22, 3] or
because it loses track of module parameters making infix
operators especially confusing to read [21, 10].

4 IMPROVEMENTS TO THE MODULE
SYSTEM

This section will explain our main contribution of an updated mod-
ule system. Section 4.1 will first explain the simplified version of
Agda, used to implement these updated systems. Section 4.2 will
then explain the core idea behind our changes. After this, section 4.3
will explain howwe use this concept to preserve both modules and
module aliases, after which section 4.4 will explain the different
versions of the type-checker used for the experiments.

4.1 Simple Agda
Making changes to the actual Agda code base is not a quick pro-
cess. To be able to prototype a number of different approaches
we have implemented a simplified version of Agda, called Simple
Agda, which supports pi-types, lambdas, primitive Unit and Bool
values as well as if expressions to eliminate booleans and it sup-
ports module parameters and module aliases.

The language has no scoping features such as visibilitymodifiers
nor features such as universe levels and inductive data types as
these do not impact the module system, only the complexity of the
implementation.

A full specification of Simple Agda can be found in the full the-
sis [16]. The remainder of this section will use Simple Agda to ex-
plain a number of changes required for dealing with the previously
mentioned problems.

4.2 Term-qualified names
Lets take a look at how Agda handles module parameters. Take the
following example:

module M (x : Bool) where
module M1 (y : Bool) where

f : Bool
f = x

module M2 (z : Bool) where
g : Bool
g = M1 . f True

Which gets transformed to:

M.M1 . f : Bool −> Bool −> Bool
M.M1 . f = \ x y . x
M.M2 . g : Bool −> Bool −> Bool
M.M2 . g = \ x z . M.M1 . f x True

We can see from this example that two things changed in the func-
tion call to M1.f. First, the scope-checker inserted the qualifier M to
create a fully-qualified name, and then the type-checker inserted
the parameter x to make sure the program is still correct after be-
ing lifted to the top level.

It is important to realise that the inserted parameters are always
exactly the module parameters belonging to the modules whose
names are added to create fully-qualified names. We have three
module parameters in our example. z clearly does not need to be
inserted into the function call as it is only in scope for g. y does
not need to be inserted into the function call as the programmer
already passed a value for it in the form of True. Finally, x does
need to be inserted into the function call as the programmer does
not have to provide it, while it is in scope for both f and g, meaning
it needs to be passed through the function call to make sure that
both f and g use the same parameter.This exact reasoning holds for
which module names the scope-checker needs to insert to create
fully-qualified names.

if we switch to a system preserving modules like so:

module M (x : Bool) where
module M.M1 (y : Bool) where

M.M1 . f : Bool

Conference’17, July 2017, Washington, DC, USA Ivar de Bruin

M.M1 . f = x
module M2 (z : Bool) where

M.M2 . g : Bool
M.M2 . g = M.M1 . f True

we no longer need to insert these parameters for the generated
code to make sense, as we are no longer performing any liftings.
However, this code is still problematic. If we evaluate the term:
h = i f M.M2 . g F a l s e F a l s e then True e l s e F a l s e
we get:
h = i f M.M1 . f True then True e l s e F a l s e
h = i f (\ y . True) then True e l s e F a l s e
This happens as we needed to lift the function call to M1.f out of
themodule M2 as part of substituting the call to M.M2.g.This caused
the x parameter and its value to completely disappear as they do
not occur in the definition of g.

Instead we will use term-qualified names to preserve these pa-
rameters by transforming the example to:
module M (x : Bool) where

module M.M1 (y : Bool) where
M.M1 . f : Bool
M.M1 . f = x

module M2 (z : Bool) where
M.M2 . g : Bool
M.M2 . g = (M x) . M1 . f True

This transformation can be done entirely by the scope-checkerwith
no additional work compared to only inserting qualified names.
The type-checker now no longer needs to deal with the moving
around and insertion of module parameters.

Evaluating the previous term will now correctly evaluate to:
h = i f (M F a l s e) . M1 . f True then True e l s e F a l s e
h = i f F a l s e then True e l s e F a l s e
h = F a l s e

4.3 Signature lookup
Using term-qualified names we can switch to a type-checking ap-
proach that preserves modules and their parameters and switch to
a structured signature. To find the declaration belong to a specific
module inside this signature we have to perform signature lookup.

We will use the syntax: Σ𝑅 ⊢ Σ!(𝑀𝑥).𝑀2⇝ (Δ, Σ′) to say that
we are looking for the signature belonging to (𝑀𝑥) .𝑀2 relative
to Σ and that this results in the signature Σ′ with Δ representing
the telescope of module parameters surrounding this signature. Σ𝑅
then represents the root signature which we need when dealing
with module aliases.

The definition of signature lookup can be found in figure 1 con-
sisting of a base case and two relevant cases. First, we define lookup
in the case where we encounter a normal module. In that case, we
can split the module telescope into two (potentially empty) parts.
A part of the telescope to which we provided arguments in the
qualified name, and a part which still needs an argument. If we
use our example of (𝑀𝑥).𝑀2 we can see that when looking up 𝑀
we would get (𝑥 : 𝐵𝑜𝑜𝑙), () while when looking up 𝑀2 we would

get (), (𝑦 : 𝐵𝑜𝑜𝑙). Next, we look up the remaining qualifier in the
signature of our newly found module and add the unmatched pa-
rameters to the returned telescope. Note that the substitution on
the signature would be implemented lazily in an actual implemen-
tation as there is no need to perform it on the whole signature.

The second case of signature lookup occurs when we encounter
a module alias during lookup. In that case, we perform all of the
same steps as the previous case, except we now first need to find
the signature belonging to the module being aliased. This lookup
is relative to the root signature instead of relative to the current
signature as we use fully-qualified names which are relative to the
root. Note that we also have to split the telescope of the module
being aliased, as it is not required to provide an argument for each
of its parameters in an alias.

module𝑀 Δ = Σ′ ∈ Σ Δ1,Δ2 = split(Δ, 𝑎)
Σ𝑅 ⊢ Σ′ [Δ1 := 𝑎]!𝛼 ⇝ (Δ′, Σ′′)
Σ𝑅 ⊢ Σ!(𝑀𝑎).𝛼 ⇝ (Δ2 → Δ′, Σ′′)

module𝑀 Δ = 𝑀′ 𝑢 ∈ Σ Δ1,Δ2 = split(Δ, 𝑎)
Σ𝑅 ⊢ Σ𝑅 !𝑀′ ⇝ (Δ′, Σ′) Δ′

1,Δ
′
2 = split(Δ′, 𝑢)

Σ𝑅 ⊢ Σ′ [Δ′
1 := 𝑢 [Δ1 := 𝑎]]!𝛼 ⇝ (Δ′′, Σ′′)

Σ𝑅 ⊢ Σ!(𝑀𝑎) .𝛼 ⇝ (Δ2 → Δ′
2 → Δ′′, Σ′′)

Σ𝑅 ⊢ Σ!𝜄 ⇝ (𝜖, Σ)

Figure 1: Signature lookup

Now that we have defined signature lookup, we can define the
typing judgements for qualified names inside terms and for check-
ing modules and module aliases. Typing qualified names is very
easy with this new system as we barely have to do any parame-
ter manipulations. We simply find the signature belonging to the
module qualifier and the type of our definition inside this signature.
We then have to wrap this type with the telescope of the modules
surrounding the signature and we will have the correct type. Due
to the parameters inserted by the scope-checker, we do not have
to worry about the parameters surrounding both the function call
and the target declarations. Agda’s current implementation instead

Σ!𝛼 ⇝ (Δ, Σ′) 𝑓 : 𝐴 ∈ Σ′

Σ; Γ ⊢ 𝛼.𝑓 : Δ → 𝐴

Σ; Γ ⊢ Δ Σ; Γ𝑀 (Δ) ⊢ 𝑑𝑒𝑐𝑙𝑠
Σ; Γ ⊢ module𝑀 Δ where 𝑑𝑒𝑐𝑙𝑠

Σ; Γ ⊢ Δ Σ ⊢ Σ!𝛼 ⇝ (Θ, Σ′)
module𝑀′ Θ′ ∈ Σ′ Σ; Γ𝑀 (Δ) ⊢ 𝑢 : ΘΘ′

Σ; Γ ⊢ module𝑀 Δ = 𝛼.𝑀 ′ 𝑢

Figure 2: Typing judgements

Improving Agda’s module system Conference’17, July 2017, Washington, DC, USA

Figure 3: Experiment 1: Only declarations

Figure 4: Experiment 2: Module argument size

has to deal with inserting the appropriate parameters during type-
checking, finding these parameters as well as undoing any previ-
ous lifting of declarations [33].

Typing modules and module aliases is also quite easy as we do
not have to worry about creating or modifying any declarations.
For modules, we simply check that the telescope is well-formed
and that the declarations are valid. For module aliases, we have to
look up the telescope belonging to the aliasedmodule to check that
the provided arguments are valid. This is much easier than the cur-
rent implementation of Agda that has to worry about lifting the
declarations to the top level and generating the correct declara-
tions when dealing with aliases [33].

4.4 The implemented type-checkers
A total of three different approaches to type-checking the module
system have been implemented. The first type-checker uses the
approach Agda takes and lifts all declarations to the top level at the
same time, removing all module features.This version will serve as
the baseline of our experiments and is referred to as version 0.

The next implementation, version 1, makes use of term-qualified
names and uses a structured signature, preserving modules and
module parameters. Module aliases will create new declarations,
similar to version 0, except these declarations will now be a part
of modules with module parameters.

Thefinal version, version 2, will make use of term-qualified names
and a structured signature supporting module aliases. This version
therefore no longer has tomake any changes during type-checking,
completely preserving the original source syntax.

While the above versions all take different approaches and have
to be evaluated for performance in the experiments, there is one
other version implemented, version 3.This version does not change
anything to the type-checker at all. Instead, it simply enables term-
qualified syntax for programmers. This does not require further
changes, but does allow us to fix the pretty-printing issues with
infix and mixfix operators [21]. An analysis of how other pretty-
printing issues could be addressed by the module system in future
work is discussed in section 5.3 of the full thesis [16].

Conference’17, July 2017, Washington, DC, USA Ivar de Bruin

5 EXPERIMENT RESULTS
This section will cover the experiments used to measure the per-
formance differences between the versions. The experiments were
executed for our implementations as well as on Agda itself to ver-
ify the accuracy of our baseline. We will only cover four of our
experiments in this paper, more can be found in chapter 7 of the
full thesis [16].

5.1 Experiment setup
For the experiments, it is important to isolate specific features of
the language, such as for example, the size of the arguments pro-
vided to a module alias. This is very hard to do with real-world
code so instead we created a generator that can generate files ac-
cording to some parameters, as explained in chapter 6 of the full
thesis [16]. Using this generator, we have generated 15 files for
each of our experiment configurations. These files were then con-
verted from Simple Agda to Agda to allow them to be run by Agda
as well.

The Simple Agda experiments were timed using the timestats li-
brary for Haskell [17], while the Agda experiments made use of the
Agda-2.6.2.2 executable and its built-in benchmarking features [4].

The experiments were all executed on a 6-core Intel i7-8750H
running at 2.20 GHz with 16 GB of RAM and each experiment was
repeated 50 times, after which all times were averaged. The run-
times for the different files were also averaged to create a single
set of timing data per experiment configuration.

5.2 Performance comparison
The first experiment to look at is an experiment using only declara-
tionswith nomodule parameters or aliases.This experiment, found
in figure 3, shows that the later type-checkers perform slightly bet-
ter, but that all implementations behave roughly the same. This
makes sense as there are no large differences between the imple-
mentations in this case. However, it is useful to observe that the
reduction in general complexity in the later versions has perfor-
mance benefits, even in cases where the complexity is not neces-
sary. This also explains why Agda needs multiple seconds to type-
check the files. Agda is a much more complex language and thus
the type-checker will always be slower.

The second experiment, shown in figure 4, shows the first clear
difference between the implementations. In this experiment, we
have created a module of 40 declarations and aliased it. We then
increase the size of the argument provided to the module. Both
versions 0 and 1, as well as Agda itself, see a significant increase
in serialization time. This makes sense as they are all copying the
module argument once for each declaration in the module. Version
2 is barely affected by the increasing size as it does not create these
copies. Furthermore, we can see that both Agda and version 0 are
also affected in their type-checking performance. The reasons for
this are not as obvious, but this is likely related to the increased
amount of parameter manipulations.

The third experiment, shown in figure 5, shows the clearest dif-
ference between the approaches. For this experiment, we have a
base module M0 with 5 declarations and a single module parame-
ter. We then add an increasing number of modules that look like
this:

module M1 (x : Bool) where
module M = M0
module N = M (f x)
module O = M (g x)

module M2 (x : Bool) where
module M = M1
module N = M (f x)
module O = M (g x)

. . .

This creates a number of nested aliases which will produce an ex-
ponential amount of declarations when aliases are expanded, as
is the case in all implementations except for version 2, which we
can see from the graph is the only version that does not show an
exponential increase in both serialization and type-checking time.

Not generating the new declarations does have some disadvan-
tages.When a declaration is usedmultiple times, the typewill have
to be generatedmultiple times as well, while if you generate all dec-
larations immediately, they will only be generated once. This ex-
periment, shown in figure 6, will increasingly make use of aliased
declarations in themost extreme case generating declarations such
as:
M'.d70 (M'.d59 (M'.d87 (M'.d91 (M'.d75 ((\x258. M'.d29
(M'.d40 (M'.d51 (M'.d60 (M'.d45 (M'.d85 (M'.d5 (M'.d68
(M'.d85 (M'.d55 (M'.d98 (M'.d75 (M.d5 (if d191 then x258
else True) (if True then d146 else False))))))))))))) :
Bool -> Bool) (if False then d120 else d212))))))
From the results, we can see that this does close the gap between
version 1 and version 2 a bit, but even in the worst case version 2
is still faster.

6 DISCUSSION
From the results in the previous section, it should be clear that
version 2 is a massive improvement compared to version 0. It has
no exponential growth problems and even in its worst case it is
still faster than the other versions. Furthermore, the comparison
to Agda shows that version 0 behaves the same or better as Agda
in the experiments. This means that if we implement the module
system of version 2 for Agda, it should also lead to significant im-
provements.

The performance argument is not the only reason to switch to
the new implementation.The system ismuch simpler to implement
and preserves more information to be used by the pretty-printer
or eventual compilers. This increase in information allows us to
improve the pretty-printing as the display form system can be en-
hanced [16] and it also allows us to resolve an interesting problem
with pretty-printing mixfix operators. At the moment, Agda does
not know which parameters are module parameters and which pa-
rameters are normal parameters, leading it to pretty-print incor-
rect terms:

module M (A : S e t 1) where
i f _ t h e n _ e l s e _ : Bool −> A −> A −> A

x : (b : Bool) −>

Improving Agda’s module system Conference’17, July 2017, Washington, DC, USA

Figure 5: Experiment 3: Nested module aliases

Figure 6: Experiment 4: Increased usage of module aliases

M. i f _ t h e n _ e l s e _ S e t b Bool Bool
x b = ?
Goal : (M. i f S e t then b e l s e Bool) Bool

Agda prints the module parameter as if it is the first argument pro-
vided to the if statement. With more knowledge, this bug could be
prevented and by using term-qualified names, as implemented in
version 3, we can even completely fix it:

module M (A : S e t 1) where
i f _ t h e n _ e l s e _ : Bool −> A −> A −> A

x : (b : Bool) −>
M. i f _ t h e n _ e l s e _ S e t b Bool Bool

x b = ?
Goal : (M Se t) . i f b then Bool e l s e Bool

Finally, implementing the changed module system is not very
difficult. It will be time-consuming, but for the most part, we are
removing complexity in the type-checker not adding complexity.
However, there are a lot of side-effects on the Agda codebasewhich

will take time to implement. Qualified names were always consid-
ered to be a literal, while now they will contain terms. This will
require a refactor, but it has no performance effects as those pa-
rameters used to occur somewhere else.

Similar sorts of refactors are required for many other systems
which assume that all declarations are global, while now there is a
local state as well. This is better, as it allows us to fix a number of
bugs, but refactoring all the different systems is time-consuming.

Given these reasons,We believe it is absolutelyworth it to switch
themodule system of Agda to the implementation proposed by ver-
sion 2. It has large performance benefits with few disadvantages
and the hardest part about the refactoring process is finding some-
one that has the time to do it, not actually doing it.

7 RELATEDWORK
This work started with an unpublished, early draft by my super-
visor Jesper Cockx [11]. Other than that there is no work that is
directly related. Instead, in the remainder of this section, We will
go over some other work that might seem related and explain how
Agda’s problems and our solutions differ.

Conference’17, July 2017, Washington, DC, USA Ivar de Bruin

Agda’s current implementation of modules is very similar to
how functors inML-like languages behave [30, 31].We have parametrised
modules that can be instantiated with arguments to create new
modules.We can even use records [5] tomake amodule parametrised
over another module.

Active research on improving these kinds of module systems
is looking to, for example, unify the module and term-level lan-
guages [35] or trying to implement better compiler techniques to
ensure things like easy incremental compilation [28, 12].

Agda has different problems. Agda’s module aliases can be used
to create functor-like behaviour but they are quite different. Mod-
ules can be used to instantiate records [5], thereby becoming an
object, but they themselves are not objects.

When exponential growth occurs with functors it is often due
to code duplication [37, 36]. This can be solved through the clever
insertion of let bindings to prevent generating duplicate code [37].

Agda technically has no code duplication as each of the decla-
rations generated has a different name and is thus distinct. How-
ever, these generated declarations barely contain any information
and there is thus no need to generate all these declarations when
most will likely never be used and they can be generated extremely
quickly when needed, as we only need to add or remove a couple
of parameters.

We could also compare Agda to something like Rust generics [6].
Rust [26] also has to create specialised functions for each instan-
tiation of a generic function. In Agda, there is no need to do this.
Generics can be seen as a limited form of dependent-typing which
Rust does not support. It, therefore, has to remove this dependency
by creating the concrete instances. Agda is dependently typed and
instantiating the module parameters is no different from calling a
normal function. There is therefore no need to specialize anything.

From these two comparisons, it should be clear that Agda en-
counters a somewhat unique problem as it is currently treating a
scope-checking issue in the type-checker, which is extremely inef-
ficient as we are using many unnecessary techniques.

The final distinction between other work and this work is that
we are working with the Agda type-checker whose output is only
used to type-check other files, not a compiler that is optimising
code to be executed. Some extra work and extra code being pro-
duced in a compiler is acceptable as long as it has benefits during
the execution of the compiled code. For a type-checker, this is not
the case. The type-checker itself should be very fast. The compiler
afterwards can deal with the efficiency of the final outputted code.

8 CONCLUSION
The main goal of this work was to improve the performance of
Agda’s module system. We have created a simpler language called
Simple Agda to evaluate the performance of three different ap-
proaches: Agda’s current approach, keeping modules and module
parameters intact and keeping modules and module aliases both
intact. We have introduced the concept of term-qualified names,
which allows us to implement these later versions with ease, by
realising that much of the difficulty of Agda’s module system can
be resolved by the scope-checker.

We have evaluated these approaches in a variety of scenarios us-
ing randomly generated files. These experiments showed that the

best approach is to keep modules and module aliases intact during
type-checking. This will perform better in all evaluated scenarios
and completely eliminates the exponential complexity of Agda’s
current system when aliases are nested.

Furthermore, we have seen that this change will allow for sev-
eral other problems to be addressed as well. The improved module
systemmakes use of term-qualified names internally: (M True).f.
Allowing this syntax to be used when programming in Agda will
remove a significant number of pretty-printing problems. The im-
proved performance of module aliases also means that open pub-
lic statements can be changed to a more intuitive implementation.
This was not yet possible due to the performance bottle-necks.

The performance benefits combinedwith the other benefitsmean
that making the proposed changes to Agda will massively improve
the user experience as some long-standing problems are eliminated.
The performance problems especially have hampered the develop-
ment of, for example, category theory proofs as these benefit mas-
sively from module aliases, which so far, could not be used exten-
sively.

8.1 Future work
There are two major areas related to Agda’s module system that
could be improved in future work. The first such area is pretty-
printing. For example, it will need to be decided how we want to
qualify terms. Do we keep the alias qualifier when evaluating, akin
to a sort of dynamic dispatch, or do we reduce it to the aliased
term and start fully reducing terms? Now that we maintain aliases
after type-checking, such questions and many others can start to
be analysed in much more detail.

The secondmajor area for futurework areAgda’s records. Agda’s
record functionality has been extended multiple times in the past
few years but this often occurred in an isolatedmanner.Thismeans
that it is unclear what the various interactions between the record
features are. Furthermore, there is also a lack of consensus on how
records should interact with themodule system. Now that themod-
ule system has been cleared up more, it is time to do the same for
the record system and see how it should interact with itself and
with modules.

REFERENCES
[1] Andreas Abel. 2022. Exponential module chain leads to infeasible scope check-

ing. Retrieved Mar. 31, 2023 from https://github.com/agda/agda/issues/1646.
[2] Andreas Abel. 2016. Not a splittable variable. Retrieved Mar. 31, 2023 from

https://github.com/agda/agda/issues/2181.
[3] Andreas Abel. 2019. Printer prefers (longer) qualified over (shorter) unquali-

fied name. Retrieved Mar. 31, 2023 from https://github.com/agda/agda/issues
/3240.

[4] [SW] Agda Community, Agda version 2.6.2.2, Mar. 27, 2022. uRl: https://gith
ub.com/agda/agda/tree/v2.6.2.2.

[5] Agda Language Reference. 2023. Record types. Retrieved May 4, 2023 from
https://agda.readthedocs.io/en/latest/language/record-types.html.

[6] Brian Anderson. 2020. Generics and compile-time in rust. PingCAP. (June 15,
2020). Retrieved Feb. 9, 2023 from https://www.pingcap.com/blog/generics-a
nd-compile-time-in-rust/.

[7] Henk Barendregt and Herman Geuvers. 2001. Proof-assistants using depen-
dent type systems. In Handbook of automated reasoning. Elsevier Science Pub-
lishers B. V., NLD, (Jan. 1, 2001), 1149–1238. isbn: 978-0-444-50812-6. Retrieved
Feb. 3, 2023 from.

[8] Jacques Carette. 2022. Switch to a structured signature? Retrieved Mar. 31,
2023 from https://github.com/agda/agda/issues/4331.

[9] Jacques Carette and Jason Hu. 2021. Formalizing Category Theory in Agda.
doi: 10.1145/3437992.3439922.

Improving Agda’s module system Conference’17, July 2017, Washington, DC, USA

[10] Liang-Ting Chen. 2022. Qualified names are printed if introduced by ‘open M
…‘ Retrieved Mar. 31, 2023 from https://github.com/agda/agda/issues/5632.

[11] Jesper Cockx. Mini modules: a structured module system with parametrized
modules and dependent types. (2020).

[12] Karl Crary. 2019. Fully abstractmodule compilation. Proc. ACMProgram. Lang.,
3, POPL, Article 10, (Jan. 2019), 29 pages. doi: 10.1145/3290323.

[13] Nils Anders Danielsson. 2019. Record constructors sometimes in record mod-
ules, sometimes not. Retrieved Mar. 31, 2023 from https://github.com/agda/a
gda/issues/4189.

[14] Nils Anders Danielsson. 2020. Shadowing parameters are sometimes renamed.
Retrieved Mar. 31, 2023 from https://github.com/agda/agda/issues/2018.

[15] N. G. de Bruijn. 1991. Telescopic mappings in typed lambda calculus. Informa-
tion and Computation, 91, 2, (Apr. 1, 1991), 189–204. doi: 10.1016/0890-5401(9
1)90066-B.

[16] Ivar de Bruin. 2023. Improving Agda’s module system. TODO. TODO, Delft,The
Netherlands. TODO. TODO.

[17] [SW] Facundo Domínguez, timestats version 0.1.0, July 13, 2022. uRl: https:
//hackage.haskell.org/package/timestats-0.1.0.

[18] Paolo G. Giarrusso. 2018. Regression with open public. RetrievedMar. 31, 2023
from https://github.com/agda/agda/issues/1985.

[19] Google Code Exporter. 2018. Change the semantics of open public in parame-
terised module. Retrieved Mar. 31, 2023 from https://github.com/agda/agda/i
ssues/892.

[20] Google Code Exporter. 2015. Copatterns do not work in parametrizedmodules.
Retrieved Mar. 31, 2023 from https://github.com/agda/agda/issues/940.

[21] Google Code Exporter. 2022. Printing of infix/mixfix operators defined in parametrized
modules. Retrieved Mar. 31, 2023 from https://github.com/agda/agda/issues/6
32.

[22] Google Code Exporter. 2015. Undeclared name accepted in fixity declaration.
Retrieved Mar. 31, 2023 from https://github.com/agda/agda/issues/329.

[23] Martin Hofmann. 1997. Syntax and Semantics of Dependent Types. In Seman-
tics and Logics of Computation. Andrew M. Pitts and P. Dybjer, (Eds.) Cam-
bridge University Press, 79–130. doi: 10.1017/CBO9780511526619.004.

[24] Arjen Jonathan. 2022. Unnecessary conversion checking due to parameterized
module slows type-checking (a lot). Retrieved Mar. 31, 2023 from https://gith
ub.com/agda/agda/issues/4517.

[25] Wolfram Kahl. 2015. Regression: Module parameters lost. Retrieved Mar. 31,
2023 from https://github.com/agda/agda/issues/1701.

[26] Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language. (1st
Edition ed.). No Starch Press, San Francisco, (June 26, 2018). 552 pp. isbn: 978-
1-59327-828-1.

[27] 2005. The λ-calculus. In Abstract Computing Machines: A Lambda Calculus
Perspective. Texts in Theoretical Computer Science. W. Kluge, W. Brauer, G.
Rozenberg, and A. Salomaa, (Eds.) Springer, Berlin, Heidelberg, 51–88. isbn:
978-3-540-27359-2. doi: 10.1007/3-540-27359-X_4.

[28] George Kuan. 2010. True Higher-Order Module Systems, Separate Compilation,
and Signature Calculi. Ph.D. Dissertation. University of Chicago, Chicago IL
USA, (June 2010). https://citeseerx.ist.psu.edu/document?repid=rep1&type=p
df&doi=07258e13737477d9ca682db338325ea98189bdc9.

[29] Xavier Leroy, Sandrine Blazy, ZaynahDargaye, Jacques-Henri Jourdan,Michael
Schmidt, Bernhard Schommer, and Jean-Baptiste Tristan. 2022. Compcert c
verified compiler. Retrieved Apr. 10, 2023 from https://compcert.org/compcer
t-C.html.

[30] David MacQueen. 1984. Modules for standard ml. In Proceedings of the 1984
ACM Symposium on LISP and Functional Programming (LFP ’84). Association
for Computing Machinery, Austin, Texas, USA, 198–207. isbn: 0897911423.
doi: 10.1145/800055.802036.

[31] David MacQueen, Robert Harper, and John Reppy. 2020. The history of stan-
dard ml. Proc. ACM Program. Lang., 4, HOPL, Article 86, (June 2020), 100 pages.
doi: 10.1145/3386336.

[32] Orestis Melkonian. 2023. Unsafe(?) irrelevant projections by ‘open‘ing. Re-
trieved Mar. 31, 2023 from https://github.com/agda/agda/issues/6359.

[33] Ulf Norell. 2007. Towards a practical programming language based on depen-
dent type theory. Ph.D. Dissertation. Chalmers University of Technology and
Göteborg University, Göteborg, Sweden. 166 pp. https://www.cse.chalmers.s
e/~ulfn/papers/thesis.pdf.

[34] [SW] Egbert Rijke, Elisabeth Bonnevier, Jonathan Prieto-Cubides, Fredrik Bakke,
et al., Univalent mathematics in Agda. uRl: https://github.com/UniMath/agd
a-unimath/.

[35] ANDREAS ROSSBERG. 2018. 1ml – core and modules united. Journal of Func-
tional Programming, 28, e22. doi: 10.1017/S0956796818000205.

[36] Yuhi Sato and Yukiyoshi Kameyama. 2021. Type-safe generation of modules
in applicative and generative styles. In Proceedings of the 20th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences.
GPCE ’21: Concepts and Experiences. ACM, Chicago IL USA, (Oct. 17, 2021),
184–196. isbn: 978-1-4503-9112-2. doi: 10.1145/3486609.3487209.

[37] Yuhi Sato, Yukiyoshi Kameyama, and Takahisa Watanabe. 2020. Module gen-
eration without regret. In Proceedings of the 2020 ACM SIGPLAN Workshop

on Partial Evaluation and Program Manipulation (PEPM 2020). Association for
Computing Machinery, New York, NY, USA, (Jan. 20, 2020), 1–13. isbn: 978-1-
4503-7096-7. doi: 10.1145/3372884.3373160.

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Dependently-typed languages
	Agda's module system
	Type-checking Agda

	The Problem
	Identifying the problems
	Addressing the problems

	Simple Agda
	Syntax
	Scope-checking
	Evaluation
	Type-checking
	Removed features

	Iteratively improving the implementation of the module system
	Problem 1 - Lack of structure
	Problem 2 - Module alias performance
	Problem 3 - Pretty-Printing

	Generating Agda files
	Why use a generator?
	Limitations of randomly generated files
	The Simple Agda Generator
	Setting parameters to realistic values

	Evaluation
	Simple Agda results
	Agda results

	Discussion
	The Simple Agda experiments
	Impact of the Agda experiments
	Remaining limitations of the experiments
	Advice for improving Agda's module system

	Related work
	Conclusion
	Bibliography
	Acronyms
	Full typing judgements for version 1
	Full typing judgements for version 2
	Paper for IFL

