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Is riparian vegetation an adequate proxy for water storage in sand rivers?

by Luuk STREEFKERK

Southern Zimbabwe is an illustrative example where (increasing) water scarcity can
lead to food- and financial insecurity and hinder socio-economic development. Sand
rivers are a nature-based alternative to reservoirs, hosting shallow aquifers in their
sandy beds with potential for decentralized and clean water abstraction. However,
their extent and storage potential remain poorly understood, limiting awareness and
investment. Riparian vegetation, which depends on sand rivers and remains green
during the dry season, could serve as a valuable proxy for water storage.

This study uses a remote sensing approach to estimate and map the capacity of
sand rivers to store water across three sub-catchments of the Limpopo River Basin
(Shashani, Mzingwane, and Shashe), with two methods. Firstly, the sand river and
riparian zones were delineated. The minimum storage capacity was estimated and
mapped by summing WaPOR v3 evaporation data over the dry season. Secondly,
35 depth measurements were combined with spatial analyses to empirically predict
depth and geometric storage capacity for the whole study area.

The results showed that there is a significant water storage potential in the chan-
nels. The two estimates can be combined for an unconsumed water availability,
showing a significant sustainable potential (totaling 83 x106 m3 potentially irrigating
8300ha). Dry season evaporation was consistently exceeded by geometric storage at
medium to large evaporation rates, suggesting that these rivers unconsumed storage
potential. The maps suggest that most potential water storage is located in the main
river stems (the largest 10% hold 45-55% of water). Most tributares seemed to evap-
orate all water. Using water for irrigation would directly compete with vegetation.
However, some local hotspots were still observed at smaller rivers.

Although significant uncertainties remain and field validation is still needed, the
models show promise for wide-scale planning and development. The findings high-
light that sand rivers, with rough estimates of their decentralized, cost-effective, and
sustainable water storage, can be mapped remotely with minimal effort or field data.
This could open up possibilities to offer support to farmers in semi-arid regions and
pave the way for farmer-led irrigation initiatives.
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Introduction

1.1 Background

Water scarcity in dryland regions is becoming increasingly critical due to rising wa-
ter demand, population growth, urbanization and climate change (e.g., Scanlon et
al., 2006; Cuthbert et al., 2016). Water scarcity hinders the socio-economic devel-
opment of semi-arid to arid regions, where smallholders cannot afford the losses
caused by an unreliable water supply (A4store, 2024). An illustrative example is
the Northern Limpopo River Basin in Zimbabwe, where water resource availability
declined between 1980 and 2010, a trend that likely continues in terms of both total
annual availability and frequency (Love et al., 2010). Prolonged droughts can lead
to crop failure and livestock deaths (Blok et al., 2017). To increase the food- and
economic security of farmers, and to rehabilitate adjacent land, water supply must
become more reliable.

Currently, groundwater is the primary water source for socio-economic develop-
ment in semi-arid regions (Saveca et al., 2022). Deep wells typically provide clean
water during dry seasons. However, they can be costly, unsustainable, unreliable,
yield low outputs, may be difficult to access or get contaminated (Hussey, 2007,
Mpala et al., 2020). Dams and reservoirs can store large amounts of water, but they
face high evaporation rates and can negatively affect the ecological environment
and communities near them. In areas with hills or elevation changes, nature-based
solutions such as rainwater harvesting can be particularly effective due to efficient
collection of downhill runoff. This report focuses on a nature based solution in flat-
ter areas, namely sand rivers, which have untapped, distributed potential for water
storage and cheap abstraction (e.g. Moyce et al., 2006, Mpala et al., 2016).

Sand rivers are ephemeral rivers formed by sediment erosion, a process increased by
upstream land use changes during the 21st century. They host aquifers in their sandy
beds, underlain by bedrock, protected from evaporation after a depth of around
0.7m. Sand rivers flow only in response to rainfall, typically recharging annually
during floods (Mpala et al., 2020). Despite the surface being dry for most of the year,
a sub-surface water storage is present, which can continuously flow downstream
and supply clean water to well points (Love, 2013). The water is typically of good
quality as it is naturally filtered by sand, although exceptions exist, such as salinity
and contamination from animals (Hussey, 2007). Abstraction methods of the shal-
low aquifers are increasingly cheap and developed. A well-point with hand pump
can cost less than $100 to irrigate at least 1 ha (A4store, 2024). The use of sand river
aquifers is a form of private smallholder irrigation, which is acknowledged for its
capacity to adapt to local circumstances (Duker et al., 2020b). The sense of owner-
ship can intrinsically motivate farmers(Chauruka, 2022). Additionally, the fact that
farmers can reset and learn from mistakes and every year, is a nice finishing touch of
sand rivers as an option for water availability to address water scarcity, in particular
for irrigation.
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Sand aquifers are increasingly being used, as exemplified by the evaluation of
sand dams in Kitui, Kenya, which are essentially artificially created sand rivers. Ac-
cording to Lasage et al., 2008, an estimated 100,000 people gained better access to
water through these relatively low-cost sand dams between 1998 and 2008, and the
average income of farmers near the dams increased by 60%. Also in Zimbabwe,
NGO’s like Dabane (A4store, 2024), are increasingly using sand rivers to provide
water to stressed communities (Mpala et al., 2016). As of yet, still a large portion of
sand river storage remains untapped (Moyce et al., 2006). Expensive, deep ground-
water wells are being installed, when often sand rivers are in walking range.

The extent and capacity of sand rivers for irrigation, however, are not fully under-
stood. The irrigation potential of sand rivers in Sub-Saharan Africa is only roughly
estimated. It is 500 000 ha for 5 million people, when assuming 15% of Sub-Saharan
Africa is criss-crossed with sand rivers and 5% of households live close enough to
sand rivers (A4store, 2024). Other limitations to using sand rivers are the limited
investment options for farmers to afford e.g. fences Chauruka, 2022, the cost of site
selection due to long driving hours and the need to maintain abstraction systems.

Remote sensing offers an opportunity to map nature based water storage, pro-
moting the potential of sand rivers’ potential to funders and supporting irrigation
planning. However, sand river depths are not directly visible from space, making
storage volumes difficult to estimate. One previous study, Moyce et al. (2006), esti-
mated the potential of a catchment based on sparse depth measurements and chan-
nel width. Kenyon (2022) analyzed spatial environmental patterns of sand rivers
to gain insights on depth, but excluded vegetation. Pastora Estrada (2023) incorpo-
rated NDVI and canopy height to quantify transpiration in riparian vegetation using
WaPOR, but coarse resolution limited accuracy. Recent advances such as autmatic
sand river delineation by Bremer (2022), provide new opportunities to improve these
estimates.

Sand rivers are not random, as they are shaped by climatic, topological, and ge-
omorphological factors (Hussey, 2007). They exhibit distinct spatial patterns, with
riparian vegetation being one of the most observable. The ability of vegetation to
survive harsh dry seasons of up to 8 months highlights its reliance on water from
the sand river alluvium, making it a potential proxy for water storage. However, the
strength of this proxy remains unassessed. The extent and greenness of riparian veg-
etation vary with environmental factors such as climate, lithology, and topography,
all of which - including vegetation - may indicate storage depth and size. Additional
spatial patterns formed under these environmental factors could further clarify the
relationship between riparian vegetation and water storage capacity.

This MSc thesis focuses on identifying and understanding the water storage capac-
ity of sand rivers through its relationship with remotely sensed riparian vegetation
and other spatial patterns in two sub-catchments of the Limpopo River basin in Zim-
babwe; the Shashane and Mzingwane. The Shashe river was also included to have
a variety of river widths. Actual WaPOR evaporation over the dry season result in
map with conservative estimates of the water storage capacity. A second method
resulted in estimates of the geometric storage capacity. Water quality is beyond the
scope of this research; it is limited to water quantity. Understanding and mapping
water storage capacity could help targeting potential irrigation sites, decrease the
cost of site selection and encourage utilizing the potential of sand river aquifers for
irrigation.
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1.2 Objectives

The main objectives of this research are to:
1. Identify influences on the extent of riparian vegetation.
2. Map sand rivers.
3. Estimate water storage capacity (with two methods) to increase understanding of
the total potential and distribution of water storage.

The mapping methods can support irrigation project planning by identifying
suitable sites, reducing costs, and serving as promotional tools for sand rivers as
nature-based solutions.

1.3 Research questions

The main research question of this study is as follows:

Can remotely observed spatial patterns like riparian vegetation serve as a proxy
for the capacity of sand rivers to naturally store water, for irrigation and other hu-
man uses?

The research is subdivided into the following sub-questions:
1. What are key climatological, hydrological and geo-morphological factors that in-
fluence riparian vegetation?
2. How does riparian vegetation respond to rainfall patterns?
3. How can sand rivers and riparian vegetation be delineated?
4. How and can a minimum storage capacity be estimated with evaporation?
5. How can geometric water storage capacities be predicted with empirical relation-
ships?
6. What can the estimates teach about total water availability and suitable locations
for water abstraction?
7. What are the biggest uncertainties and can understanding them help us to reduce
them?

1.4 Report structure

The report begins hereafter with a literature review explaining the fundamental con-
cepts of sand rivers. The chapter Study Area presents relevant environmental char-
acteristics. The methodology explains the set of data necessary to delineate sand
rivers, perform statistical analysis and finally map water storage capacity. The re-
sults illustrate the behavior of riparian vegetation, statistical relationships between
environmental features, and includes the maps with estimates of water storage ca-
pacity. In the discussion chapter, mainly the usefulness and limitations of the maps
are discussed as well as broader implications. The report ends with a conclusion that
answers the research questions.
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Literature review
This chapter reviews the contextual and theoretical frameworks necessary to analyze
the environmental factors influencing riparian vegetation and the water storage ca-
pacity of sand rivers.

2.1 Formation of Sand Rivers

Sand rivers are dynamic systems shaped by erosional and depositional forces, in-
fluenced by topography, lithology, sediment transport, and hydrological processes.
Over time, erosion carves channels that fill with sediment, particularly in regions
with high susceptibility to erosion. In arid environments, little rain and harsh sun-
shine can increase erodability in two ways. First is the killing of organic matter, leav-
ing soil particles unbinded and without impact-absorbing protection layer against
raindrops. Secondly is compaction of soil, which reduces infiltration capacity re-
sulting in faster runoff (Hussey, 2007). Especially in steeper areas, soil particles can
be loosened by the impact of raindrops (figure 2.1 b) and transported to the river
channel by overland flow (figure 2.1 c) (Hussey, 2007). At higher rainfall intensities
(40–70 mm/h), runoff discharge (/sheet flow) becomes the dominant driver of soil
erosion, protecting the soil from direct raindrop impact (Vaezi et al., 2017).

(a) (b) (c)

FIGURE 2.1: Erosion process by raindrop on soil with low organic content, adapted
from Hussey, 2007. (a) A raindrop is about to hit a dry, compacted, unbinded and
unprotected surface (b) The raindrop impacts on the soil, it does not penetrate the soil
but rebounds and dislodges soil particles (c) Overland flow transports loosened and

saturated soil particles to a river

Sand deposition occurs in river channels (and floodplains) when the stream’s
transport capacity diminishes relatively to sediment supply, typically due to de-
creasing channel slope or flow velocity (Lane, 1955). Flow velocity diminishes fur-
ther due to high permeability of sand and due to meandering, in turn increasing
deposition (As cited by Kenyon, 2022; Nord, 1985). As slope decreases, first rocks
and boulders remain, followed by deposition of gravel, then coarse sand, fine sand,
silt and lastly clay. At a slope of around 1:250, sandy sediments begin to build up in
the depressions of the riverbed and behind boulders or bedrock outcrops(Hussey,
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2007). Thick sand sediment accumulation in the Mzingwane sub-catchment typi-
cally occurs at gradients of 1:500 or gentler Owen, 1989. The study area’s slopes av-
erage 1:400, with some locations reaching gradients as steep as 1:1000 (Moyce et al.,
2006). Natural levees form near river edges where heavier sediments, such as sand
and gravel, settle rapidly. In contrast, finer sediments like clay tend to accumulate
in the lower floodplains.

As cited by Moyce et al. (2006), the distribution of sand river aquifers is influ-
enced by several factors, including the river gradient, channel geometry, stream
power fluctuations (linked to evaporation and infiltration losses), and sediment in-
put rates due to erosion (richards1982geomorphology). Ephemeral rivers can me-
ander depending on local slope and geology, forming point bars that are sometimes
densely vegetated. Grain size distribution and hydraulic conductivity vary signif-
icantly with slope and sediment depth (Hussey, 2007). Seasonal sediment layers
further stratify these deposits, creating non-uniform alluvial structures. According
to Lane’s balance (Lane, 1955), sediment thickness in sand rivers remains relatively
stable over time if sediment supply and transport capacity are in equilibrium.

Human activities at the sand rivers can alter the formation and morphology of
river channels, for example by clearing riparian vegetation and constructing dams.
Removing vegetation exposes the soil, making it more susceptible to erosion, while
dams affect discharge and thus sediment dynamics, often limiting sediment connec-
tivity (Knight, 2022; Love et al., 2011).

2.2 Conceptual Cross Section and Abstraction Methods

Two conceptual models of sand rivers are illustrated in Figure 2.2. Water can be ab-
stracted from the channel, which may have porosities of up to 50% (Nissen-Petersen,
1998), and occasionally from the banks, provided they are wide and sufficiently per-
meable (Figure 2.2(a)).
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(a)

(b) (c)

FIGURE 2.2: Cross section examples of a sand river. (a) Adapted from Duker et al.,
2020a, simplified cross section of an alluvial aquifer including well point systems on
both the channel and banks. (b) Modified from Duker et al., 2020a simplified possible
cross section showing a bowl-like configuration of the bedrock layer with deep channel

and large RV extent. (c) The legend of the cross section (b)

The amount of abstractable water is determined by the aquifer’s depth, width
whether it is supplied by upstream subsurface flow and specific yield - the frac-
tion of water drained by gravity - typically ranging between 0.10 and 0.20. The
hydraulic conductivity in sand rivers is generally high, ranging between 25 and 250
m/d (Owen, 1994), allowing for high pumping rates. Aquifer depths vary from 0 to
40 m (Kenyon, 2022), with widths reaching up to 900 m. Even shallow aquifers ( 2
m) can suffice for irrigation purposes.

The banks and floodplains may be impermeable when composed of clay, con-
fined by bedrock, or permeable when consisting of loamy sand. The permeability
depends on variable factors such as bedrock configurations and clay layers, which
are often local, unpredictable, and unobservable. This heterogeneity requires lo-
cal investigations to determine suitable abstraction methods (e.g., Love, 2013). The
thickness of underlying regolith is also heterogeneous. Vegetation can access water
in regolith while well-points may not.

Figure 2.2(b) depicts one possible bedrock configuration. Over time, rivers erode
and carve a certain shape out of bedrock, before its channel and banks are filled
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with alluvial sediments. Although the shape of this bedrock varies unpredictably,
one possibly reoccurring shape is the depicted bowl-shaped valley. Such steadily
sloped configurations may allow substantial lateral water connectivity, benefiting
vegetation, provided the upper layers are permeable. This supports an hypothesis
of a correlation between lateral vegetation extent and channel thicknesses.

Water abstraction involves two main phases: filtering and lifting. One basic sys-
tem is a well-point with suction pump (figure 2.2 a). Every system has a screen that
controls and blocks sand particles. Screens for sand-abstraction come in the form
of infiltration galleries, well-points or part of a caisson or well shaft (Hussey, 2007).
Water is then brought to the surface using methods ranging from a simple bucket
to a solar-powered mechanical pump. A well-point can be easily installed by dig-
ging, driving or jetting it into the sediment. A small well-point system of under $100
can be constructed in a day and the supplied water can be used to irrigate small
agricultural plots up to around 1 ha (A4store, 2024).

2.3 Hydrology and Losses

The water availability, the extent riparian vegetation and its connectivity to the
aquifer are influenced by various fluxes. While most researches has focused on ab-
straction systems and social integration, some studies have concentrated on under-
standing these fluxes through hydrological modeling (see fig.1), including transmis-
sion losses and recharge rates, seepage losses and evaporation losses (e.g. Blok et al.,
2017; De Hamer et al., 2008; Love, 2013; Mansell et al., 2005,Mpala et al., 2020; Benito
et al., 2010; Owen, 1994.
An alluvial aquifer can be described as a groundwater unit, generally unconfined,
that is hosted in laterally discontinuous layers of sand, silt and clay, deposited by a
river in a river channel, banks or flood plain (Love, 2013). Aquifer dimensions are
determined by the extent and thickness of the alluvial fill in the river channel and, if
connected, the lateral alluvial plains. Figure 2.3 schematizes the in- and outflows of
aquifers, including recharge, downstream subsurface flow, and losses such as evap-
oration, vertical seepage, lateral seepage, and transpiration. These flows can be char-
acterized as pressure redistributions in three time scales; longitudinal/ downstream
flow (years to decades), transverse/lateral flow (weeks to months) and vertical flow
(days to weeks) Cuthbert et al., 2016.

Recharge to the channel alluvium occurs during the early rainy season. High
permeability of the sand allows little water to flow until the sediments are saturated
(Moyce et al., 2006). Although the river channel may be fully replenished, water
tables can lower quickly due to lateral leakage into the floodplains, especially if they
are not also recharged (Hussey, 2007). Therefore, surface flows from small catchment
areas are less likely to sufficiently recharge a river aquifer to maintain a year-round
water supply. Recharge of aquifers of the lateral plains depends on the permeability
of the aquifer, the distance from the channel and the duration of river flow (Owen,
1994). Alluvial aquifers can also be recharged by intermittent rainfall and during the
dry season by dam releases.

Evaporation is a major flux but only occurs at the near-surface; the extinction depth
lies between 0.6 and 0.9 m below surface (Mansell et al., 2005; Aerts et al., 2007).

Other fluxes differ unpredictably; vertical and lateral seepage depend on het-
erogeneous subsurface materials and their configurations. Vertical seepage, or bed



Chapter 2. Literature review 8

FIGURE 2.3: Idealized schematization of fluxes, adopted from Moula-
houm ().

infiltration, is highly dependent on local geology, such as the permeability of sed-
iments and the presence of confining layers, making it challenging to predict (see
Section Geology and Soils). For instance, De Hamer et al. (2008) estimated that ver-
tical seepage accounted for 86% of total losses, with the remaining 14% attributed to
evapotranspiration. Lateral seepage, on the other hand, is influenced by factors such
as clay content and the presence of heterogeneously configured rising bedrock and
bedrock outcrops. Saveca et al. (2022) highlighted the significance of lateral ground-
water flow, while other studies, such as Moulahoum, 2018 and Mansell et al., 2005,
assume aquifers to be fully bounded, excluding lateral seepage from their models.

The horizontal, downstream flow can influence riparian vegetation to receive wa-
ter from upstream and therefore influence spatial statistics if done on too small of
a scale. However, as it depends on hydraulic conductivity and water gradient, it
varies among studies, ranging from approximately 15-600m per 200 days dry sea-
son. It is acknowledged small by an extensive watershed-water balance coupled
model Mpala et al. (2020) (85m3/d), less than 3m/d by (Owen, 2000), and 0.07 to
0.33m/d (Mansell et al., 2005). However, Love et al. (2010), finds that alluvium out-
flow in the studied river was of the same order of magnitude as average abstraction
and is thus an important component of the water balance. Using average values of
slope (0.29%), hydraulic conductivity (30 m/d) and a porosity (0.35), with Darcy’s
equation result in 0.23 m/d or 46 m of traveling distance over 200 days.

Outcrops and subcrops can create barriers to downstream subsurface flow, split-
ting the alluvium into compartments (e.g. Morin et al., 2009; Love et al., 2011;
Hussey, 2007). This could quickly deplete a small alluvial aquifer unit when ab-
straction equipment is placed herein (Walker et al., 2018). Sub-surface flows are
argued to pressure downstream water up against these barriers, so that it flows over
the barrier further downstream, or raises the water level closer to the surface and in-
creasing evaporation rates. The result is flat water levels in compartments, as shown
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in figure (2.4).

(a)

(b)

FIGURE 2.4: Adapted from Mpala et al., 2020. Longitudinal side view of the active
channel of a sand river showing the influence of dikes and rock sills on the flow and

evaporation, (a) a few weeks after the rainy season, and (b) during the dry season

Gaining or losing conditions can influence the water quantity in the channel and
floodplains. While gaining conditions can occur when water levels in the channel are
lowered by abstraction, rivers are (arguably) more commonly losing systems. This is
because the sand channel fills quickly after surface flow, while the banks take longer
to recharge (Hussey, 2007), and the surrounding terrain is often too flat for signif-
icant lateral inflow. Additionally, water losses from extensive floodplains — via
transpiration and evaporation — can exceed those from the channel. Riparian vege-
tation contributes to these losses through deep tap roots and extensive lateral roots,
while floodplains experience higher evaporation due to capillary rise in fine-grained
sediments like silt and clay, which have greater adhesion and cohesion (Mpala et al.,
2020). Despite these losses, studies often find that abstractable water remains at the
end of the dry season (e.g. Blok et al., 2017, Moulahoum, 2018).

2.4 Geology and Soils

Geology and soils influence e.g. seepage, formation, and the thickness and extent of
the alluvial channel and floodplains.
The formation of sand rivers is affected by weathering of lithology and erodability of
soils, which govern sediment transport. For example, weathering of parent materials
like sandstone can provide more sediment in the same semi-arid environment than
granite (intrusive igneous, felsic rock) or gneiss (high-grade metamorphed granite),
with basalt (extrusive volcanic, mafic rock) providing slightly more (Kenyon, 2022).
Soil stability and erosion resistance depend on organic matter and vegetation cover
(European Commission, Joint Research Centre, 2013). Soils which are very shal-
low, stony and without much water-holding clay (leptosols), or soils which are more
acidic (acrisols) might host less organic matter than soils like luvisols (European
Commission, Joint Research Centre, 2013). Even soils with clay content, such as lix-
isols, can lack organic matter and structure, making them prone to erosion under
intense rainfall. Leaving the soils unprotected may result in crusts which prevents
rain from entering the soil, resulting in overland flow eroding the topsoil, which is
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the most fertile.
Soils are derived from their parent lithology through physical erosion (e.g. ther-
mal expansion and contraction), chemical erosion (e.g. hydrolisis, oxidation, car-
bonisation) and biological erosion (e.g. root weathering, microbial erosion). Heat-
ing/cooling cycles are the main erosion type when bedrock is close to the surface
(European Commission, Joint Research Centre, 2013). Resistant rock types can con-
tribute to straighter, less meandering rivers (Twidale, 2004). Geologic structures
such as faults, dikes or folds can, in addition to serving as preferential pathways
for water flow, shape and align rivers. This influences sinuosity, as for example
a fault can force a river in a bend due to sudden uplift or subsidence induced by
groundwater erosion (...).
At geological boundaries or lithology transitions, alluvial fill can be augmented in
width and thickness (Owen, 2000; Owen et al., 2005. When relatively soft rock is
upstream of more resistant rock, a wide and shallow meandering river channel can
occur (figure 2.5). Downstream of resistant rock, a waterfall and associated down-
stream plunge pool are buried and thus become focal points where alluvial sediment
is thicker (figure 2.6) (Owen et al., 2005).

FIGURE 2.5: (Lithology transition with downstream resistant lithology, adapted from
Owen et al., 2005. (a) The beginning of a narrow river channel (b) Meanders develop up-
stream of the transition (c) The meandering produces a wide and shallow valley which

is eventually filled with alluvial sediments

FIGURE 2.6: Lithology transition with upstream resistant lithology, adapted from Owen
and Dahlin (2005). (a) A small depression forms in the softer rock with subsequent
eddy currents further scouring out the softer rock (b) Further scouring may result in a

waterfall (c) After erosional processes, sedimentation can result in a thick alluvial fill

In older terrains that are more deeply weathered, seepage can be a substantial
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flux along boulders, fractures, and faults, creating significant groundwater loss path-
ways (De Hamer et al., 2008, Love et al., 2011). For example, granite and green-
stone, typically impermeable, can develop secondary porosity through weathering
and fracturing, creating preferential flow paths (Love, 2013, Blok et al., 2017). While
younger crystalline bedrock has minimal seepage, rocks like limestone and coarse-
grained sedimentary facies support high seepage losses (Moyce et al., 2006).

2.5 Quality of water

Water quality of sand rivers is generally high due to natural filtering processes in the
sand and regular flushing of recharge and dam releases (Hussey, 2007, Moyce et al.,
2006). It is typically considered safe for households uses and other uses like drinking
water for livestock. However, contamination can be an exception, for example due
to excessive fouling of animals near abstraction points.

2.6 Riparian vegetation

Definitions of riparian zones vary (Dufour et al., 2019; Zaimes et al., 2007). It is
agreed that they are transitional zones between aquatic and terrestrial ecosystems,
adjacent to a body of water and dependent on perennial or intermittent water. In
this study, the riparian zone is defined as vegetation that remains green in the dry
season. Temporal NDVI analysis, as demonstrated by Pace et al., 2021, provides in-
sights into vegetation health, including indicators of water stress such as reduced
leaf size, crown dieback, and limited root extension (Stella et al., 2013).

Riparian vegetation affects sand rivers by stabilizing soil and reducing erosion. Fur-
thermore, deep tap roots plants draw alluvial groundwater, consuming approxi-
mately 1 meter over 200 days (5 mm/day) (Benito et al., 2010).

Vegetation growth is limited by the scarcest resource. This can be for example
water availability, nutrient availability, soil structure, salinity, pests and light. In
(semi-) arid regions like Zimbabwe, water is likely the scarcest resource, as observed
in patterns of self-organization across the globe, caused by water-vegetation feed-
backs (Rietkerk et al. (2002)). This assumption is supported by the little rainfall, long
dry seasons and the evolution of vegetation to adapt to low nutrient levels Euro-
pean Commission, Joint Research Centre, 2013. However, nutrient bottlenecks, such
as in Miombo woodlands, require further study (Frost, 1996). Especially if forests
are cleared, the fragile nutrient cycle between e.g. the decay of litter, the roots of
plants and a type of fungus called mycorrhiza can quickly be destroyed European
Commission, Joint Research Centre, 2013.

Still, vegetation growth and its lateral extent depend greatly on water quantity
and permeability of the banks and floodplains. As discussed, three observable fac-
tors influencing permeability are soil type, sinuosity and lithology type.
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Study area

3.1 Topography and Climate

The spatial analysis will be performed on three rivers and some randomly selected
tributaries in the limpopo river basin; the Shashani and Mzingwane sub-catchment
in Zimbabwe, and part of the Shashe river in Botswana and Zimbabwe for wide
river data points (fig. 3.1). These three rivers capture 35 usable depth measurements
out of a total of 69 collected across 8 rivers researched in the Limpopo river basin
(LRB), compiled by Kenyon (2022)), see appendix A. The tributaries of tributaries
were cut off due to difficulties in calculating sinuosity and slope for short rivers, as
well as time limitations.

FIGURE 3.1: Study area. The Shashe river (west), Shashani river and some ran-
domly selected tributaries (middle) and the Mzingwane river and some randomly

selected tributaries (east)

As illustrated in Figure 3.2, the average slopes of the main stem of the Shashani
and the Mzingwane are 0.00276 (1:362) and 0.00232 (1:431), respectively. While the
Shashani has a relatively consistent slope, the Mzingwane shows more variety. For
example, the last stretch of the Mzingwane from 230 km onwards has a gentler slope
of 0.00159 (629). Large reservoirs can be spotted where the graph is flat. The vari-
ety of the Mzingwane is more clearly illustrated in Figure 3.2(b), where lithology
types are added in the background. From high to low elevation, steeper slopes oc-
cur at the headwaters (underlain by mainly metavolcanics), followed by very gentle
slopes (mainly older gneiss), a sudden steepening (metavolcanics and older gneiss),
a medium steep slope (paragneisses) and finally a more gentle slope (basalt, sedi-
mentary and paragneiss). Elevation ranges from around 1500m to 450m.
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(a)

(b)

FIGURE 3.2: (a) Elevation profile of the Shashani river by SRTM and MERIT. (b) Ele-
vation profile of the Mzingwane river by MERIT with georeferenced lithology types in
the background. The lithology types that are blank are mostly alluvial deposits (gravel,

sand and silts). Lithology data adapted from ()

The three rivers are ephemeral with flow generally restricted to periods of rain
from November to March, though not continuous. Most flow was recorded between
December and February, except where it has been controlled by dam operations. The
Mzingwane river contributes 9.3% of the mean annual runoff of the Limpopo Basin,
making it the third largest tributary to the Limpopo basin. The total sub-catchment
area of the Shashani and Mzingwane are 2.837 km2 and 15.987 km2, respectively.
The delineated main stems of the Shashe, Shashani and Mzingwane are 360 km,
166 km and 310 km long, respectively. The total length of the delineated rivers and
streams is 1550 km. Widths of the main stems range widely from around 15m to
850m. Upstream areas contain hills with slopes of valleys up to around 12%. Fur-
ther downstream, the terrain transitions into broad, flat-bottomed valleys Ashton
et al., 2001.
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Rainfall of Zimbabwe is highly erratic and varies between about 300 mm in a dry
year and 800 in a wetter year, and generally falls only between November/December
and February/March (Hussey, 2007; Rwasoka et al., 2011; love et al., 2006a). Inten-
sities reach over 100 mm/h. This is particularly evident in the arid and semi-arid
south and west. Like all semi-arid regions, potential evaporation rates greatly sur-
pass precipitation rates. The driest duo years of the Mzingwane are 1982 and 1983
(sum of 509mm). The sum of Mzingwane’s hydrological years 2022 and 2023 is
(716mm).

FIGURE 3.3: The sums of the hydrological years, summed over daily means of the Mz-
ingwane and Shashani sub-catchments by CHIRPS. The hydrological year of for example

2023 starts 1 Oktober 2022 (start of the rainy season) and ends at 30 September 2023.

3.2 Geology and soils

The study area lies mostly in the Zimbabwe Craton and partly the Northern Marig-
nal Zone (NMZ) of the Limpopo Mobile Belt (LMB) in the south, see Appendix (A.1).
The study area’s lithology consists mainly of a basement complex (Appendix A), that
consists of granites and gneisses, with smaller regions of basalt and paragneiss in the
lower Shashe and Mzingwane sub-catchment (see figure 3.4). The oldest gneisses in
the Zimbabwon craton are dated at 3̃.5 Ga (Wilson, 1990). The primary porosity
of these lithology types - important as they can cause significant vertical seepage
(\cite {love2011water}; De Hamer et al., 2008 - are very low. However, they are oc-
casionally accompanied with secondary porosity like weathered rock and fractures,
of which mostly faults and shear zones. Fracture lines occur mostly in the lower
regions of the Mzingwane and Shashe.

Soil formations across the Limpopo basin reflect the underlying parent lithology,
climate and biological activity (Ashton et al., 2001). The study area contains mostly
shallow, poorly developed, well-drained soils, like leptosols (Anderson et al., 1993).
Downstream of the Mzingwane, the leptosols become eutric, meaning a base sat-
uration of 50% or more in the major part between 20 and 100cm depth (European
Commission, Joint Research Centre, 2013). Mainly the depth and permeability of
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FIGURE 3.4: Georeferenced geology map, data adapted from IGRAC (International
Groundwater Resource Assessment Centre). The study area mainly consists of
gneiss (G), granite (Yg), mafic metavolcanics (Bv), paragneiss (Gn) and basalt (Ba)

the material that host riparian vegetation have an important influence on the aquifer
volume and the extent of riparian vegetation.

Permeability of soils found in the study area are all considered relatively low, but
LPeu lowest. Leptosols are shallow and often found on rocky or stony substrates,
with limited soil depth. Lixisols (LXha) do not hold much organic matter and lack
a well-developed structure, which could lead to moderate to low permeability. The
clay content restricts water movement, while there is not much variation in texture
to enhance permeability. Eutric Luvisols (LVeu) have a clay-enriched subsoil, but
"Eutric" suggests a high base saturation, which can be associated with better ag-
gregation and structure in the soil. This structure can allow for better permeability
compared to the other soils, especially if the clay particles are well-flocculated and
the soil has a good balance of sand, silt, and clay. Ferralic luvisols are also consid-
ered relatively permeable, but the "ferralic" qualifier indicates a high content of iron
and aluminum oxides which can act as binding agent and cement to soil particles.
This leads to lower permeability. Furthermore, compaction of any soil can lead to a
reduction in pore space, reduced plant growth and loss of soil structure.

3.3 Riparian vegetation

The study area lies partly in the Miombo woodlands, which is a tropical bushland,
wooded grassland and savanna biome of an estimated 2.7 million km2, dominated
by the Brachystegia and Julbernardia tree species (Frost, 1996). The most occur-
ing tree species in Zimbabwe, from most to least volume are Brachystegia spici-
formis, Baikiaea plurijuga and Julbernardia globiflora (FRA zimbabwe, 2020). One
characteristic feature of Miombo woodlands is their flush of new leaves 4-8 weeks
before the first spring rains. The leaves of this flush are red, particularly those of
Brachystegia spiciformis (Frost, 1996), affecting NDVI and transpiration estimates.
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FIGURE 3.5: Soil map, data adapted from ESDAC (European Soil Data Centre).
The study area mainly consists of Leptosols (chromic), Luvisols (eutric), Lixisols

(haplic) and Leptosols (ferralic)

This coloration reaches a peak about 3 weeks later. Producing a functioning canopy
before the rain enables the trees to begin production immediately once the rain ar-
rives. Miombo species have horizontally and vertically extensive root systems. Frost
(1996) mentions maximum recorded lateral distances of 27 m, and mentions that tap
roots of these species can exceed 5m in deep soils. Roots are expected to penetrate
substantially weathered regolith. Trees have evolved to preserve nutrients and wa-
ter. Still, the fact that potential evaporation greatly exceeds precipitation means that
dense vegetation plots have to retrieve water from sand rivers to survive.

3.4 Socio-economic situation / human activity

In 2002, around 375 thousand people lived in the Limpopo river basin part of Zim-
babwe, out of the then 13.1 million (Ashton et al., 2001). The main foreign exports of
Zimbabwe are minerals (gold, diamonds and platinum) and agriculture. The com-
mercial agriculture sector initially provided exports and jobs. However, the sector
has been damaged leading to Zimbabwe becoming a net importer of food products.

Because of the little and erratic rainfall, rain-fed irrigation is difficult in the south-
ern part of Zimbabwe. Pastoral activities are predominant (Hussey, 2007) and more
intensive in the communal areas than in the commercial areas. As a result of these
hydrological conditions, groundwater provides the main water supply for most ru-
ral areas, while urban areas rely on large dams (Hussey, 2007). A total of 36 reser-
voirs were identified in close proximity to the delineated rivers. 25 of these are
located in the Mzingwane sub-catchment.

Some of the sand river aquifers are being used to provide water for domestic
use, livestock watering and dip tanks, commercial irrigation and market gardening.
Agricultural plots are found further away from sand rivers as well as right next to
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them. It is occasionally visible from satellite images that riparian vegetation has been
cleared away and replaced by these plots.
The land cover cover map by the European Space Agency captures these crops very
well, even small plots, as depicted in (appendix A). Approximately a third of all
delineated 100m sand river segments (3581 out of 15676) lie nearby an agricultural
plot (+-500m).
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Methods

4.1 Overview and data requirements

In summary, two distinct sources of information were used to estimate the water
storage capacity of delineated sand rivers, resulting in the production of two main
maps. An overview of the methodology is illustrated in Figure ??. The first map rep-
resents the minimum water storage capacity, derived from the accumulated evapo-
ration of the dry season based on WaPOR v3 data. The second map contains es-
timates of the geometric volume of water stored within the channel, derived from
depth measurements. Depth was predicted for the study area based on empirical re-
lationships between environmental factors and the 35 suitable depth measurements.
The accuracy of the resulting model was assessed with a train-test validation. The
relationships were explored through a spatial, statistical analysis of 11 environmen-
tal attributes at the resolution of 100m river segments. In addition to predictions
of depth, the analysis identified factors influencing riparian vegetation. Both maps
required the delineation of sand rivers and their associated riparian zones. This was
achieved using Sentinel-2 data. The two maps were combined by subtracting and di-
viding the two estimates for complementary insights about the unconsumed water
availability.

Prior to these methods, the study area’s environment was investigated with an-
nual precipitation, elevation profiles and illustrations of bedrock configurations.
Lastly, the seasonal behavior of vegetation and its surroundings were investigated
through time series analysis of NDVI and transpiration data.
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FIGURE 4.1: Flowchart of methodology

4.1.1 Data requirements

Firstly, CHIRPS precipitation data ((Climate Hazards Group InfraRed Precipitation
with Station data) was downloaded mainly to choose the time period. It was down-
loaded from the Climate Engine (Climate Engine, 2023).

For delineation, NDESI (Normalized Difference Enhanced Sand Index) and NDVI
(Normalized Difference Vegetation Index) were calculated with Sentinel-2 data in
GEE. This specific sand index was chosen since sand and bare soil have very sim-
ilar reflectance properties. NDESI was successfully used by Bremer (2022) and is
argued to be able to discriminate sandy surfaces from soil and alluvium (Marzouki
et al., 2022). For the time series analysis, cloud-filtered NDVI was downloaded from
the Copernicus website. Canopy height was used as an alternative to compare with
NVDI. It is a 10x10m deep-learning-derived product fused from Sentinel-2 data and
sparse height data from the Global Ecosystem Dynamics Investigation LiDAR mis-
sion (Lang et al., 2023).

For estimation, WaPOR v3 data (Water Productivity through Open Access of Re-
motely Sensed Derived Data) was downloaded from the Food and Agriculture Or-
ganization (FAO). This was actual evaporation for the dry season evaporation es-
timates and transpiration for the time series analysis. The new WaPOR v3 has an
increased resolution of 100x100m which is beneficial for the relatively small riparian
zones, at dekadal time scale.

Channel depth was essential for the second estimate method, totaling 35 suitable
measurements, compiled by (Kenyon, 2022) (see Appendix A). Depths were mea-
sured in the channel or floodplains with electrical resistivity or probing.
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A DEM (Digital Elevation Model) by MERIT (Multi-Error-Removed-Improved-
Terrain) (Yamazaki et al., 2023) was used to calculate the slope attribute and ele-
vation profiles. Resolution and accuracy are important to calculate slope on smaller
scale. MERIT was chosen because it incorporates other DEM’s (NASA SRTM3 DEM,
JAXA AW3D DEM, Viewfinder Panoramas DEM) and tries to eliminate their major
error components.

A geology map provided the type of lithology and location of geological struc-
tures such as faults and dikes. The finest-resolution geology map found was georef-
erenced by the International Groundwater Resource Assessment Centre (IGRAC).
Coarser geology was retrieved from the African Goundwater Atlas. The soil map
was retrieved from the European Soil Data Centre (ESDAC).

4.2 Contextual investigation

This section consists of four types of preliminary investigation: precipitation, geo-
hydrology, longitudinal elevation profiles and the time series analysis.

Daily CHIRPS catchment means were downloaded for both the Mzingwane and
Shashani sub-catchment polygons. Precipitation was used to decide the driest year
and check for homogeneously dry seasons, as local rains could disturb the vegeta-
tion analysis. Additionally, the driest year likely improves the delineation of sand
rivers and riparian vegetation by reducing NDVI of non-riparian vegetation, high-
lighting riparian zones.

During the geohydrological investigation, relevant environmental factors and
possible causes of false positives and negatives were identified with the help of vi-
sual inspection of google earth imagery and literature. A False positives is a large
water storage estimate caused by large riparian zones (positive) while there is actu-
ally little water available for abstraction. False negatives occur when e.g. a small
vegetated zone (negative) causes underestimations of water storage. These errors
were illustrated as cross sections for intuition.

The longitudinal elevation profiles were created using QGIS. Manually edited
OSM river centerlines were used to extract the MERIT DEM values.

The time-series analysis illustrates the seasonal behavior of riparian vegetation
and its reliance on water from sand rivers. NDVI and transpiration were plotted of
vegetation zones and its surroundings. Additionally, it illustrates the NDVI contrast
of riparian zones for delineation. The data was downloaded for different plots (bare
soil, riparian vegetation, farming plots, non-riparian tree cover). This was repeated
in a second, spatially different region for comparison. Additionally, a temporal GIF
was made with the Copernicus website to visually compare riparian vegetation with
its surroundings.

4.3 Delineation of sand rivers and the riparian zone

4.3.1 Delineation of sand rivers

After choosing the year (2023) and period (Juli-September), sand rivers were delin-
eated using sentinel-2 in GEE. Compared to the workflow of Bremer (2022) which
aspires to delineate sand rivers fully-automatic, this study’s method is simplified for
feasible results within time-constraints. First, sentinel-2 data was downloaded for
the selected dry period, and cloud filtered by taking the temporal median of cloud-
filtered images. Consequently, the sand index NDESI was calculated to discriminate
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sand surfaces. Two versions of NDESI were developed by Marzouki et al. (2022), of
which only one is used. It uses the blue band (492 nm), the red band (664 nm), and
the short wave infrared bands, SWIR1 (1613 nm) and SWIR2 (2202 nm). The NDESI
equation of sentinel-2 can be written as:

NDESI =
red(665nm)− blue(490nm)

red(665nm) + blue(490nm)
− SWIR2(2190nm)− SWIR1(1610nm)

SWIR2(2190nm) + SWIR1(1610nm)
(4.1)

A static threshold was applied to filter non-sandy areas. The chosen thresh-
old value was visually fine tuned. Only a small difference is present in spectral
reflectance between sand and bare soil patches, causing a fine balance between high
threshold values (resulting in underestimating sand rivers) and low threshold val-
ues (resulting in many bare soil patches). The delineation in the dry season was
compared with the delineation in the rainy season.
Afterwards, the sand river was edited in Qgis. This consists of an automatic work-
flow model including the deletion of small bare soil areas and filling small sand river
holes (see appendix B). At a handful of places where delineation failed, soil patches
were manually deleted and sand river polygons were manually filled. These errors
were caused by three phenomena; vegetation or mossy features in the sand river,
flowing water, and outcrops. See appendix (B) for examples.

4.3.2 Delineation of the riparian zone

Similarly, a static threshold for NDVI was visually iterated towards in GEE, bal-
ancing between underestimation (patchiness) and overestimation (falsely including
non-riparian vegetation). Frequency histograms were made of the distribution of
NDVI and canopy height values. However, no optimal threshold was visible to dis-
criminate between riparian zones (see appendix (B)). Furthermore, the performance
of NDVI and Canopy Height were compared at a variety of sites to decide between
of them.
To limit unrealistic lateral lengths of the riparian zone, occurring on few occasions
in forested areas, the lateral riparian vegetation extent was limited. This limit var-
ied with the channel width per 5 categories ("width classes"): 250m for rivers up to
20m wide, 250m for 20-40m, 650m for 40-100m, 650m for 100-300m and 1000m for
300-900m.

4.4 Spatial, statistical analysis

4.4.1 Calculating attributes

The delineated rivers were cut in 100m segments, and environmental variables were
calculated and assigned per river segment. Every river segment forms a statistical
point for the analysis. Only the most influential and observable environmental vari-
ables were chosen:

Attribute Name Why/ Influence on Riparian
Vegetation or Water Storage
Volume

How / Calculation Methodology
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Lateral
Vegetation Extent

Indicates the water storage capacities
as it draws water from it, in two
manners: with the accumulated
evaporation and with the empirical
relation between vegetation extent
and depth or storage volume.
Additionally, vegetation can stabilize
soils from erosion.

Determined by counting 10x10m
delineated riparian zone pixels with
250-1000m wide "counting boxes",
perpendicular to the river.

Channel width Directly influences water storage
volume, which is average depth times
width. Width was also moderately
correlated with depth.

Calculated as the average width of a
100m delineated river polygon
segment, by dividing the area over
100m.

Slope Controls water flow rate and sediment
aggregation.

Derived from elevation data (MERIT
DEM). Calculated as the change in
average height over distance along the
channel; 800 and 2000m. For a
distance of 800m, an average height is
calculated in a window of 2*400m,
(forward and backward), resulting a
range of 2*800m for each point.

Sinuosity Reflects erosion and deposition
patterns and slope. It can influence
permeability, e.g. permeable sediment
deposition at point bars.

Sinuosity is calculated as the channel
length divided by the straight-line
distance, for the largest observed
meander wave within each of the 5
width-classes. The channel length is
chosen to avoid being too long (which
would lose spatial detail by averaging
sinuosity) or too short (which would
fail to capture full bends). For a more
detailed workflow see appendix B.

Drainage Area Influences sediment thickness. A
larger drainage area increases the
amount of sediment delivered to the
main river by tributaries during rain
and flow events. While the
water-to-sediment ratio may not
directly increase with drainage area,
and sediment may be partially
trapped in middle or upper reaches
with very gentle slopes, some of it is
still transported downstream during
high-energy flow events. In lower
reaches, this sediment can accumulate
as the flow energy dissipates,
especially where slopes are gentle.

Obtained from HYDROsheds
polygons by HYDRObasins,
calculated as the upstream area
contributing to a specific point (in this
case polygon) in the river or stream
network.

Lithology Type Controls soil composition and erosion
rates, influencing the level of
meandering and the shape of the bed
of the channel and the floodplains.
Rising- or heterogeneous bedrock can
block water flow to riparian
vegetation. Additionally, older
lithology types increase the chance of
leakage along fractured rock or faults.

Determined with geological maps in
shapefile format.
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Lithology
Transition
Presence

Influences erosion, meandering and
sedimentation processes 2.6. Greater
alluvial fill can occur upstream of a
resistant rock, while thicker alluvial
fill can occur downstream of resistant
rock.

Mapped by buffering the boundaries
of the lithologies of the georeferenced
geological map (300m wide).

Faults and Dikes
Presence

Influence water quantity by
potentially acting as seepage lines.
Values of leakage are reported
especially significant at older
lithologies.

Faults and dykes came as
approximately 500m wide polygons of
the georeferenced geological map.

Tributary
Presence

Due to the method, riparian
vegetation of tributaries was counted
as if it belonged to the main river.
Also, confluences can have increased
riparian vegetation.

Tributaries were manually marked if
they contributed towards counting
vegetation extent of the main stem.

Logging /
Woodland
Removal
Presence

Directly affects the amount of riparian
vegetation.

Farming plots, roads and buildings
were manually marked if they
replaced the natural riparian zone,
compared to the adjacent riparian
zones. Could also be automated.

Reservoir
Presence

Influence groundwater tables, trap
sediment and modify the downstream
water flow. Depending on the
controlled release, the sediment-low
water can increase downstream
erosion.

Polygons were downloaded from
Open Street Map. The length of
marking the presence of reservoir,
upstream and downstream, ranged
from 1 km for small reservoirs to 10
km for the largest reservoir. .

TABLE 4.1: Table with environmental variables chosen for the analy-
sis, including why and how they are calculated.

Table B.1 in Appendix B lists variables that were excluded and why.
Slope requires some additional explanation. For visualization, the safer 2×2000m

slope was used, but the 2×800m slope was chosen for statistical analysis as it retained
significantly more depth measurements. The 2×2000m slope excluded many mea-
surements due to coarse and inaccurate DEMs requiring averaging, which could not
be addressed within the available time.

For intuition, Figure (4.2) demonstrates how lateral vegetation extent was calcu-
lated in QGIS using "counting boxes". Some manual adjustments were necessary for
meandering rivers, as they occasionally overlap with other river sections.

Many of the attributes were partly automated with QGIS models; see appendix
(B.2.2) for the more detailed workflow.
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FIGURE 4.2: The delineated sand river is cut in river sections (brown) and the
counting boxes (yellow) count the number of pixels of riparian vegetation. The

boxes are longer for wider width classes.

4.4.2 Statistical analysis

All river segments and their attributes were analyzed with statistical methods like
(log-)linear regression and multiple linear regression (MLR).

The analysis was conducted at a 100m scale, balancing the following trade-offs.
A smaller scale allows depth measurements to represent its reach better due to high
variability, and to capture local phenomena like seepage or the impact of small point
bars on vegetation. A bigger scale however, minimizes the influence of upstream
sub-surface flows on vegetation and is less sensitive to autocorrelation and depen-
dency.

A zoomed-in version of the scatter plots of depth versus riparian vegetation was
created for depths up to 6 meters, as this is a common depth range for sand rivers
and is approximately the limit of a basic suction pump.

4.5 Estimating water storage capacity

4.5.1 Dry season evaporation, a minimum storage capacity

The dry season evaporation estimates assume that all water evaporated by the ripar-
ian zone comes from the sand river’s aquifer. Additionally, the evaporation from the
sand in the channel is added to the estimated storage capacity. Below is a simplified
workflow to create the map with dry season evaporation estimates. In summary, for
every 100m river section in Qgis, the evaporated volume was calculated (m3/100m)
by multiplying the area of the riparian vegetation and the sand river with the av-
eraged amount of meters evaporated by this combined area, over a 6 months dry
season.
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1)Download monthly raster images of WaPOR v3
2)Sum the monthly raster images to one dry season raster (april - october).
3)Filter out non-riparian and non-sand river pixels with the delineated RV zone and
delineated sand river zone.
4)Calculate the mean of the summed evaporation of the sand river and the riparian
zone of each 100m river section, with the help of the calculation boxes.
5)Calculate the evaporated volume by multiplying with the area.

Both the sand river area and its evaporation rates were included to ensure more
complete evaporation estimates. Many 100×100m WaPOR pixels overlap riparian
vegetation, sand rivers, and non-riparian areas. While pure sand river pixels have
evaporation of around 56mm (April to October), riparian vegetation pixels have
400–500mm of evaporation. Excluding sand river areas from overlapping pixels
would underestimate evaporation, especially in regions with small riparian zones
(see example in Appendix B).

4.5.2 Water Storage capacity, Calculated with Empirical Relationships

The empirical relations that emerged from the statistical analysis were summarized
in a correlation matrix plot. The most predictive environmental predictor variables
for depth were combined in multiple linear regression models. The models included
only a maximum of three predictor variables and one intuitive interaction factor to
avoid overfitting, reduce artifacts and ensure the model remains interpretable. The
interaction factor is the width times either evaporation or the extent of vegetation.
The models first predict depth which is converted to storage afterward. A multi-
ple linear regression model with three predictor variables without interaction terms
looks like the following:

Depth = β0 + β1 · X1 + β2 · X2 + β3 · X3 + ϵ (4.2)

Here, X1, X2 and X3 represent the calculated predictor variables, while the β coef-
ficients are parameters estimated by minimizing the sum of squared errors, between
predicted and measured depth. The depth was then converted to (abstractable) wa-
ter storage capacity, using width and a measured average specific yield of 0.15.

Water storage capacity = depth × width × length × specific yield (4.3)

To find the added performance per variable, the combinations were added in
a table in the order from most to least predictive (drainage area, evaporation, RV
extent, width).

All storage predictions were validated with repeated k-fold cross validation, ex-
plained below. The slope was excluded because the current calculations had gaps
and did not significantly improve models. The final water storage capacity was dis-
played as [m3/100m].

Validation

The depth predictions were evaluated using train-test validation. Specifically, using
repeated k-fold cross-validation. The chosen performance metrics were the coeffi-
cient of determination (R2) and the mean absolute percentage error (MAPE). The
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coefficient of determination was calculated as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

And the MAPE was calculated as follows:

Mean Absolute Percentage Error =
|Actual Value − Predicted Value|

|Actual Value| ∗ 100%

This relative metric helps with weighing errors across the different storage sizes,
helping to prevent large storage errors from disproportionately dominating the eval-
uation.

K-fold cross validation splits the data into k folds and evaluates the model’s per-
formance on different splits. The data was split into 5 folds, of which four were
used to train and one was used to test. This process was repeated k=5 times, so that
each fold was used once for testing. To reduce variance in performance estimation,
this entire process was repeated 200 times to calculate R2 and MAPE. K-fold cross-
validation ensures that all data points are used for both training and testing, increas-
ing data efficiency and reducing the potential bias introduced by random sampling.
This process was repeated for the best model with the 10 extra depth measurements
available nearby but outside the study area.

The residuals were plotted to visualize the difference in scales of errors and to
check whether they scatter around zero.

4.5.3 Comparing estimates

The two types of estimates were compared by dividing and subtracting them with/from
each other. In theory, this reveals the "unevaporated" or "unconsumed" water avail-
ability.

In addition, the costs were compared between using a reservoir and using sand
rivers to store the study area’s total water storage.
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Results
The maps with estimations are preceded by the time-series analysis, delineation of
sand river and vegetation spatial analysis.

5.1 Time-series analysis on vegetation

This section presents the time-series analysis to investigate seasonal behavior. Figure
5.1 illustrated the NDVI and transpiration responses of a tributary in the Mzingwane
sub-catchment. The site lies at the boundary between communal land (bare and
farming plots) and commercial land (tree cover), as can be seen in Figure 5.1(b).

A few key observations can be made. In terms of seasonal dynamics, NDVI
and transpiration roughly follow precipitation, going up in the rainy season and
decrease in the dry season. Riparian (and non-riparian) tree cover maintain signifi-
cantly higher NDVI values than bare soil and farming plots year-round. Although
in the rainy season of 2021, the NDVI values of farming plots come closer than usual
to those of riparian vegetation. Furthermore, the NDVI of non-riparian tree cover
has similar values to riparian vegetation until the start of the dry season, when it
starts to decrease quicker and a gap becomes visible. The difference in NDVI be-
tween riparian vegetation and its surroundings was more constant during the dry
season. This information was used to choose the dry period for delineation and a
corresponding threshold value of NDVI>0.42.

According to WaPOR, vegetation keeps transpiring even in the dry season, while
bare soil and farming plots decrease to zero or almost zero. During the dry season,
riparian vegetation plot 1 transpires more than tree cover.

The site with a wider river in the Shashani sub-catchment can be found in ap-
pendix (C).
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(a) (b)

(c)

(d)

FIGURE 5.1: Sentinel-2 NDVI and transpiration time series for five plots near a 20m
wide tributary of the Mzingwane. (a) Five plot polygons with WaPOR transpiration
pixels, color-coded to match plot lines. (b) Zoomed-out view of the site, between com-
munal land (north) and commercial land (south). (c) NDVI time series (2020–2023) with
daily precipitation, smoothed with LOESS, and raw data for bare and RV1 plots. (d)

Transpiration time series for the same plots.
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Snapshots of the temporal video of NDVI of riparian vegetation are shown in
Figure (5.2. It highlights that NDVI decreases over the dry season but clearly remains
greener than non-riparian surroundings all year round. For the GIF click the link in
the caption.

(a) (b) (c)

FIGURE 5.2: Snapshots of a Sentinel-2 NDVI GIF of the Shashani in 2023 at (a) a
few weeks after the start of the rainy season (November 20), (b) a peak in green-
ness (March 5), and (c) near the end of the dry season (October 11). Video link:

https://streamable.com/iutrdz.

5.2 Delineation of sand rivers and riparian zone

The delineation of sand rivers and their adjacent riparian zones lay the foundation
for understanding water storage capacity, the spatial extent of these features, and
performing the spatial analysis.

Delineation examples are illustrated in Figures (5.4) and (5.3). For a large ma-
jority of the targeted sand rivers and riparian zones, a large percentage of their area
was captured.

Especially in wider channels without bedrock outcrops, surface water or plant
features, almost the whole channel area was captured (see figure (5.3).

https://streamable.com/iutrdz
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(a) (b)

FIGURE 5.3: Example showing the delineation of a 370-430m wide sand river and its ri-
parian zones. (a) Google satellite image. The tributaries and the associated confluences
have increased extents of riparian vegetation. (b) Delineated pixels of the riparian zone

by NDVI (>0.42), and a wide sand river which area is largely captured.

There are two occurrences where the delineation of sand rivers worked less well.
The first is the disturbance of features with different colors. These are grey bedrock
outcrops, blue water and green tree cover or features that look like moss or weed,
illustrated in Figure (5.4). Other examples can be found in appendix (C). Secondly,
delineation failed for rivers smaller than 30m. For channels between 30m and 40m,
the delineation is very patchy. Tributaries with widths of 5-40m were therefore given
shape by buffering the centerline with their (manually inspected) average width.

(a) (b)

FIGURE 5.4: Example showing the delineation of a sand rivers and the riparian zone. (a)
Google satellite image of a sand river of the 100-300m width class, showing some surface
flow and mossy features. (b) The delineated results of the sand river and riparian pixels.
Water flows and mossy features cause a small amount of underestimation of the sand

river area.

The delineation of riparian zones worked better for large zones and for places
where its surroundings have browner, more bare-ish features like in communal lands.
Smaller riparian zones are harder to delineate as they often appear patchy and with
ambiguous boundaries; a challenge that persists also to the naked eye. The NDVI
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threshold (>0.42) was able to capture smaller zones than the Canopy Height thresh-
old (see Figure C.4 in Appendix (C). In commercial land, tree cover can sometimes
be so dense that some pixels surpass the NDVI threshold. This can be seen a little bit
in figure (5.4). Large vegetation zones often come with the occurrence of tributaries,
particularly in the confluences, as can be seen in figure (5.3). It is not uncommon for
tributaries to have greater riparian extents than main stems.

5.3 Spatial, statistical analysis

5.3.1 Calculating attributes

The values and resolution of the most dominant predictor variable, drainage area,
were visualized for the study area in Figure (5.5). The total drainage area of the
Shashani sub-catchment is smallest: 2834 km2. It is followed by the Mzingwane
sub-cachment with 15990 km2. The Shashe river had the largest drainage area of
29000 km2. Depth measurements were included in the figure. They range from 0.9m
in the middle of the (small) Shashani to 35 meters in the lower (large) Mzingwane
sub-catchments.

(a)

FIGURE 5.5: Visualisation of the data used for the drainage area attribute (km2), show-
ing the lvl12 HydroBASINS polygons. The rivers’ main stems are included in green.

The legend’s distribution is by equal count (quantile).

Other attributes, such as slope and sinuosity, are visualized in appendix C. Slope
ranges from mostly 0.005 m/m (1:200) in the upstream hills/headwaters to mostly
0.0012 m/m (1:833) in the lower sections of the sub-catchments (see Figure C.5) in
C. The gentlest slopes are present in the Shashe river and the lower reaches of the
Mzingwane.

High sinuosity values typically match with the level of meandering. However,
the sinuosity values match less well for river widths smaller than 25m.
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5.3.2 Statistical analysis

Relationships with depth and geometric storage

The relationships between the observed environmental variables were summarized
in a correlation matrix (Figure 5.6) and Table 5.1. Key relationships are further illus-
trated through scatter plots. They provided the basis for estimating water storage
capacity and mapping, which is presented in section 5.4.

The most significant correlated observable variables with the depth are drainage
area(r=0.66), dry season evaporation (r=0.64), riparian vegetation extent (r=0.59),
slope (r=0.41, p=0.01) and width (r=0.31) illustrated in Figure 5.6. All p-values were
below 0.05 except for links with sinuosity and slope. Depth explains a large percent-
age of the variation of the geometric storage volumes (r=0.96).

FIGURE 5.6: Pearson correlation coefficient matrix of the observed envi-
ronmental variables. Only the links with sinuosity had p-values higher

than 0.05.

Dry season evaporation is moderately correlated with measured geometric stor-
age volume (r=0.72, assuming a specific yield of 0.15), shown in Figure 5.7. Almost
all data points lie below the grey 1:1 line, where evaporated volume is smaller than
the channel’s geometric storage volume. As evaporation rates increase, geometric
water storage increases even more. This results in a gap of potentially unconsumed
water availability. The three exceptions have extensively vegetated point bars, fur-
ther discussed in the discussion chapter.
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FIGURE 5.7: Scatter plot of dry season evaporation and geometric wa-
ter storage capacity of the channel (assuming sy=0.15) derived from

measured depths. The pearson correlation coefficient is 0.72.

Depth and riparian vegetation were moderately correlated, as shown in Figure
5.8, with an overall correlation of r=0.59. This decreases to r=0.44 at smaller rivers
for depths up to 7m (see Appendix C. Nonetheless, some useful data gaps can be
observed: channel segments with more than 210m of riparian vegetation are at least
2m deep, and those with more than 100m of riparian vegetation are at least 1.5m
deep. The colored width classes indicate that the deepest rivers are consistently
wide and extensively vegetated, while the shallowest rivers are small with relatively
sparse vegetation (<100m).

(a)

FIGURE 5.8: Riparian vegetation versus measured channel depth, including width and
measurement type. A moderate Pearson correlation coefficient is present (r=0.59).
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Drainage area had the strongest relationship with depth, with a Pearson correla-
tion coefficient of 0.66 (see Figure (5.9). The shown by the colored depths, all mea-
surement locations with shallow depths (<2.4m) and small drainage areas lie in the
Shashani sub-catchment, while the deeper depths (>4m, averaging 15m) with large
drainage areas lie mostly in the Mzingwane. The depth measurements were incom-
plete; there were no depth measurements of the Mzingwane in upstream regions,
and no measurements of the Shashani in the downstream regions.

FIGURE 5.9: Scatter plot of depth versus drainage area, colored by
sub-catchment.

Other interesting relations were found with depth, like slope (r=0.44, see Figure
C.8 in Appendix C). While the correlelation coefficient is small, on average gentle
slopes had deeper channels (17 m) and steeper slopes had shallower channels (3
m). However, this relationship was influenced by two notable exceptions: a shallow
measurement on a gentle slope in the Shashani and a deep measurement on a steep
slope in the Mzingwane. Visual inspection of steep slopes consistently revealed
many bedrock outcrops while gentle slopes rarely had outcrops (see appendix C).

Furthermore, the abstractable storage capacity was moderately correlated with
vegetation extent (r=0.64), illustrated in Figure C.11) in Appendix C. Coloring by
lithology shows most small storages are underlain with older gneiss (Shashani). The
storages underlain with basalt are all greater than 15000 m3/100m.

See appendix (C) for more combinations of attribute coloring and multi linear
regression plots.

Influences on riparian vegetation

Understanding the influences on riparian vegetation can help explain their variation
and uncertainty of estimates.

In addition to water storage, correlated influences were width, drainage area and
slope. Width was moderately correlated with riparian vegetation (r=0.54), shown in
Figure (C.16) of appendix C. The predictive power does not seem large, but clear
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data gaps are present at the upper left and lower right quadrant. The drainage area
is positively correlated with riparian vegetation (r=0.44) and plotted in Figure (C.12)
in Appendix C. Lastly slope was not significantly correlated but showed a higher
average vegetation extent at gentle slopes.

The remaining influences on riparian vegetation are summarized in table 5.1,
which compares various variables with the overall mean vegetation extent (76m).
The largest observed influences on the extent of riparian vegetation were conflu-
ences/tributaries (299% of average), dikes (16%), Basalt (305%) and the presence of
a reservoir upstream (156%). Especially the Zovhe dam - also underlain by Basalt -
had increased vegetation upstream and downstream. As discussed in chapter dis-
cussion, collinearity should be kept in mind; other factors than reservoirs or Basalt
could be the actual cause of increase in riparian vegetation.

Variables that showed less impact were sinuosity, soil type and finer-scale geo-
referenced lithology. Human activity/logging had a small but frequently occurring
influence. For bar plots and illustrations of observed influences, see Appendix C.

TABLE 5.1: Mean Riparian Vegetation Extent (of both sides together)
Compared to the Overall Mean for Each Environmental Variable

Environmental Variable Mean Riparian
Vegetation Extent (m)

Extent as Percentage
of Overall Mean (%)

Overall Mean Riparian
Vegetation Extent

76 m 100%

Tributary / confluence 227 m 299%
Human activity / logging 68 m 90%
Down of Reservoir 116 m 156%
Upstream of Reservoir 89 m 119%
Dike 12 m 16%
Fault 51 m 67%
Lithology Transition 102 m 135%
Basalt 232 m 305%
Basement Complex 54 m 71%
Point Bars (Sinuosity > 1.5) 67 m 88%

5.4 Estimating and mapping storage capacity

5.4.1 Method 1: dry season evaporation

The final map with dry season evaporation estimates is shown in Figure (5.10). The
total estimated water storage capacity within the delineated rivers is 49.1 × 106 m3.
The values range from approximately 0 to 65000 m3/100m. This could irrigate 6.5
ha/100m if all water would be abstracted. These units were converted to irrigation
potential by assuming a crop needs 500mm over a dry season with 50% irrigation
efficiency, resulting in a water requirement of 10000 m3 per hectare.

Most tributary segments have a smaller storage capacity below 2500 m3/100m
(potentially irrigating 0.25 ha/100m). The lower reaches of the Shashe and the main
stem of the Mzingwane rivers contain between 5000 and 50000 m3/100m. As dis-
cussed in the chapter (??), this conservative estimate does not equal the amount of
water suitable for abstraction when the needs of riparian vegetation are considered.
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FIGURE 5.10: Map of sand rivers and the amount of volume (m3) the riparian vegetation
evaporated in the dry season (april-oktober) 2023 of each 100m river section in the study
area, as estimated by WaPOR v3. Assuming all riparian vegetation retrieve their water

from the sand river’s aquifer, this is the minimum water storage capacity.

5.4.2 Method 2: geometric water storage

Going beyond this conservative estimate, the geometric water storage capacities
were modeled and mapped. The models with different combinations of predictor
variables were compared in table (??).

Models that included drainage area performed consistently better, with rela-
tively little difference in performance when other predictors were added. However,
evaporation stood out slightly among the options.

Riparian vegetation extent and evaporated volume alone can provide estimates
of water storage capacity (as shown in Figure C.11 in Appendix C). However, when
including additional variables such as upstream area, width, and slope in a multiple
linear regression model, the contribution of vegetation extent diminishes, as shown
in statistic model summaries in Appendix C.

The best-performing combination, with a relatively limited amount of predictor
variables, was Model 8. It included drainage area, evaporation, width and the in-
teraction between evaporation and width, achieving an R2 of 0.64 and a MAPE of
61%. This model was chosen to compute the map of water storage capacity. The
final equation that predicts the depth goes as follows:

Depth = 0.8205 + 0.000796 · X1 − 0.026 · X2 + 0.0011 · X3

−0.00000224 · (X3 · X2)
(5.1)
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Where X1 is the drainage (upstream) area (km2), X2 the width (m) and X3 the dry
season evaporation (m3/100m). The intercept term 0.8205 provides the base depth
estimate when all predictors are zero. The negative coefficients for width and the
width-evaporation interaction likely adjust for the inter-correlation with drainage
area, reducing the estimated depth for wider rivers. As discussed later, these correc-
tions may reflect either an underlying pattern or an artifact tailored to this specific
dataset.

All multiple linear regression models demonstrated better predictive accuracy
when trained and tested on smaller storage capacities (below 30,000 m3 per 100m),
while single regression models using vegetation did not.
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TABLE 5.2: Model performance on predicting depth, using repeated k-fold cross validation, using different predictor variables and
interaction terms. The interaction factor is width x RV extent or width x evaporation for models using RV extent or evaporation,

respectively. "*" Means the model was trained and tested on smaller storage capacities (below 30,000 m3 per 100m).
Model Upstream Area Evaporation RV Extent Width Interaction factor R 2 MAPE (%)
Model 1 x - - - - 0.19 75
Model 2 x x - - - 0.23 77
Model 3 x - x - - 0.3 72
Model 4 x - - x - 0.46 72
Model 5 x x - x - 0.60 69
Model 6 x - x x - 0.60 73
Model 7 x - x x x 0.62 69
Model 7* x - x x x 0.76* 59*
Model 8 x x - x x 0.64 61
Model 8* x x - x x 0.81* 61*
RV Extent Linear - - x - - 0.40 132
RV Extent Linear* - - x - - 0.34* 96*
Evaporation - - x - - 0.32 113
Evaporation* - - x - - 0.37* 92*
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Figure 5.11 presents the actual versus predicted water storage capacities using
MLR model 8 and the residual plot using MLR model 8, with drainage area color-
coded for intuition. The residuals show no clear trend, although the model tends to
underestimate at larger actual values above 50,000 m3/100m and overestimates in
the smaller range of 10,000 to 35,000 m3/100m. This pattern closely resembles the
predicted depth results (see Appendix C), except that one small actual storage value
is also underestimated there. Predicted depths reach up to 25m, compared to the
measured maximum of 35m.

(a)

(b)

FIGURE 5.11: (a) Predicted versus actual water storage capacity (sy=0.15), calculated
with multiple linear regression (MLR) model 8. (b) Residuals of the predicted storage

volumes calculated with MLR model 8, averaging zero.

The resulting map is depicted in Figure 5.12. The total estimated water storage
capacity within the delineated river is 132 × 106 m3 (which could irrigate 13,200
ha). This is 0.0010% of total annual precipitation (as calculated by a total area of
45,000 km2 times a yearly average of 286mm). The map excludes water stored in
floodplains. Storage is primarily concentrated in the main stems, more so than dry
season evaporation. The values reach up to 220,000 m3/100m.
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FIGURE 5.12: Map of sand rivers and the abstractable storage capacity for every 100m
river section, calculated with MLR model 8, assuming a specific yield of 0.15.

5.4.3 Combining the two estimate methods

The maps can be combined to reveal insights about the unconsumed or unevapo-
rated water availability.

The total estimate by the MLR model 8 is nearly 3 times higher than the total dry
season evaporation. This is mainly due to the difference in the larger volumes, which
hold most water availability. For the MLR model, the top 10% contains approxi-
mately 55% of water, illustrated in the exceedance plot Figure C.31) in Appendix C).
Especially for the MLR model estimates, water is concentrated more in medium and
larger rivers. The smallest 60% of rivers contain only 5% of the water, compared to
17% for evaporation.

The fraction between the two estimates was calculated and plotted in Figure
(5.13). It shows the percentage of water that is evaporated from the estimated ge-
ometric storage volume. The most unconsumed water availability is located in the
main stems. This is also illustrated by the difference between the two estimates, de-
picted in Figure C.32 in Appendix C. At tributaries, geometric storage estimates are
frequently exceeded by evaporation.
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FIGURE 5.13: Map of delineated sand rivers and the fraction of water that is consumed.
Calculated by dividing dry season evaporation with the geometric storage volume, assum-

ing a specific yield of 0.15.

Lastly, is map with depths capped at 7m, considering the maximum depth of
standard suction pumps (see Figure C.30 in Appendix C). It totaled 75.2 x 106 m3,
with an unconsumed total of 26 x 106 m3. This could sustainably irrigate 2600ha,
which is approximately 0.16% of the area of the Shashani and Mzingwane sub-
catchments (4.5 x106 ha).

5.4.4 Cost comparison

The material costs of a well-point system up to 5 meters deep are $31.50 (Hussey,
2007), resulting in a water cost of approximately $0.0032 per m3. Assuming one
well-point can irrigate one hectare or 10,000 m3, this is about 300 times cheaper than
the median final reservoir costs of $1 per m3, as reported by Petheram et al. (2019).

Using reservoirs to store the total geometric estimate of 130 × 106 m3 would cost
around $130 million, whereas sand river well-points would cost just $0.4 million.
This comparison excludes water transport costs and labor costs of setting up the
well-point.

TABLE 5.3: Cost comparison of sand rivers and reservoirs

Description Hussey (2007) Petheram & McMahon (2019)
Installation/final cost $31.50 $86 x106

Cost per m3 (well-point) $0.0032 $1
Cost for 130x106 m3 $0.4 x106 $130 x106
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Discussion and recommendations
This study aimed to enhance understanding of the extent of sand rivers and their
nature-based capacity to store water through a remote sensing approach. The results
demonstrate that sand rivers and a rough indication of their water storage potential
can be mapped remotely with minimal field data. These findings could have signif-
icant implications for water management in semi-arid regions, although they also
raise questions about sustainability and their accuracy.

This chapter discusses the results, focusing on the vegetation’s behavior, the de-
lineation method, and an assessment of the predicted water storage capacities and
their uncertainties.

6.1 Seasonal Behavior of Riparian Vegetation

Prior to the mapping, the seasonal behavior of riparian vegetation was investigated
to help assess vegetation as indicator of water storage. In summary, the results
showed that riparian vegetation remained greener than its surroundings, contin-
ued to transpire during the dry season (more so than non-riparian tree cover), and
showed a drop in NDVI only several months after the dry season began.

These findings highlight the reliance of riparian vegetation on sand river aquifers.
The observed NDVI and transpiration declines could indicate water limitations, al-
though other possibilities exist. One possibility is that vegetation fully depletes the
available water in sand rivers during the dry season. Alternatively, water may re-
main in the channel but becomes inaccessible to plants, potentially due to limited
water connectivity, such as low water gradients from declining water tables or ob-
struction by bedrock. This aligns with some models that found vegetation used
significant amounts of water during the dry season, but water generally remained
available for abstraction (Moulahoum, 2018, Benito et al., 2010, Love, 2013).

Secondly, these declines may not solely reflect water scarcity. Plant species have
adapted to cycle their leaves annually, a form of phenology, shedding leaves in the
dry season to reduce water loss. This adaptation could explain reduced transpiration
and greenness, even in the presence of some accessible water. Additional factors
include lower dry-season temperatures which may further reduce evaporation rates,
and adaptations such as deep rooting and internal water storage may enable plants
to conserve water early in the season, further complicating interpretations.

Further investigation into the role of leaf cycling and other adaptations is nec-
essary to better understand riparian vegetation dynamics alongside sand rivers and
assess the water availability. Future research could extend this analysis to other lo-
cations to confirm whether riparian vegetation fully depletes available water. The
timing of NDVI and transpiration declines could possibly serve as an indicator of
water availability and inform abstraction practices. Additionally, assessing the re-
covery of vegetation after extremely dry years could provide insights into resilience
and the limits of sand river storage capacity.
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6.2 Delineation Method and Automation Potential

6.2.1 Sand Rivers

Delineation lays the foundation of indicating water storage. For sand rivers, the
results showed that the semi-automatic method was able to delineate large areas
(percentage wise) of sand rivers wider than +- 40m. Compared to Bremer (2022), the
only other automatic study, this method was simpler and less patchy, but did require
the manual editing of river centerlines.

Mostly small underestimations arose due to color differences (blue water, green
vegetation and grey bedrock). These could be manually corrected, though with some
ambiguity. The delineation process for connected rivers is especially fast for wider
rivers when OpenStreetMap (OSM) centerlines are available; however, it is slower
where these are missing or need manual adjustments, which is often the case for
rivers narrower than 50m.

For future studies in other areas, more complex delineation approaches might be
necessary if the materials of the channel - sand or otherwise - have a variety of colors.
Alternatively detecting flow in the rainy season, as done by Walker et al. (2019).
Alternatives like machine learning classifications have potential but would need to
be sophisticated, as performing supervised classification in GEE had poor results.
For example, the global land cover classification by ESA (European Space Agency,
2021) successfully delineates medium to large sand rivers at 10x10m resolution. This
product also successfully classifies small farming plots. It opens up the possibility to
automate the marking of disturbance or logging of riparian vegetation, or identify
untouched potential of sand rivers.

6.2.2 Riparian zones

While thresholds had to be visually fine-tuned to balance overestimation and un-
derestimation, both smaller and larger riparian zones were captured at least approx-
imately. While NDVI was more effective than Canopy Height for smaller zones,
Canopy Height may serve as a more conservative, less patchy predictor for larger
zones. Other studies that use (un)supervised classification (Nguyen et al., 2019) or
LiDAR and Object Based Image analysis (OBIA) (Johansen et al., 2011, Blaschke et
al., 2011) seem more powerful, but are not globally available or computationally
more intensive.

One notable limitation can occur at forest-like surroundings where non-riparian
tree-cover can occasionally pass the NDVI threshold. This was seen at a reach in the
upper/middle Mzingwane where the riparian zone had to be limited.

In future studies in other regions, whether for riparian zones or sand river chan-
nels, threshold values should be recalibrated, or dynamic thresholding methods
could be considered.

6.3 Maps: Dry Season Evaporation and Geometric Water Stor-
age Capacity

The two main estimate results differ in their levels of uncertainty and potential ap-
plications for water resource management. Together, they provide the most valuable
insights to support the development of climate-resilient livelihoods, such as farmer-
led irrigation systems.
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6.3.1 Applications and study comparison of Dry season Evaporation

This remote sensing approach offers an initial indication of water storage without
the need for field data. Estimated results totaled a 49x106m3 (enough to irrigate
4,900 ha). Most water was located at the main stems, with additional local hotspots.

With this method only, however, uncertainty remains about how much water is
available for abstraction without disrupting riparian vegetation and its ecosystem
services. This uncertainty is addressed by incorporating depth measurements and
geometric storage estimates.

Firstly, the depth measurements - converted to geometric storage - were almost al-
ways bigger than dry season evaporation (see Figure 5.7). This reaffirms that dry sea-
son evaporation serves as a conservative estimate. The four exceptions are mostly
small channels with large floodplains, where vegetated point bars caused higher
evaporation (Appendix C). Also, the moderate regression below the 1:1 line which
resulted in a gap - with sustainable irrigation potential - quickly becomes signifi-
cant. For example, a dry season evaporation estimate of 7000 m3/100m has on av-
erage around 25,000 m3/100m, leaving 22,000 of untapped water. The gap is more
consistent at higher values (>5000 m3/100m). The depth measurement studies vali-
date this result to some extent, reporting leftover water at the end of the dry season
in successful irrigation areas (e.g. Owen et al., 2005, Love, 2013, Blok et al., 2017).
For example, piezometer data from Love et al. (2011) in the lower Mzingwane and
Shashe regions showed water levels never dropped below 0.9m during the dry sea-
son, which also indicates minimal seepage losses. These findings roughly align with
the maps showing 10-30% water loss to evaporation. For an exemplary site in the
Shashani, this was 72% water loss at the end of the dry season, compared to the
maps showing 30-60% (Blok et al., 2017).

Future research could further validate the evaporation-storage gap, especially
in areas unaffected by suitability bias. As discussed in section 6.4, WaPOR’s uncer-
tainty - with a MAPE of around 40% - is notable but does not significantly undermine
its ability to capture local variations of dry season evaporation.

6.3.2 Applications and Study Comparison including Geometric Storage
Capacity

The geometric storage estimates complement dry season evaporation by enabling es-
timates of unconsumed water storage. While these estimates require depth measure-
ments and come with significant uncertainties (MAPE of 61% plus a bias in depth
measurements, see section 6.4), they provide a useful first approximation in a semi-
automatic way.

The unconsumed difference between dry season evaporation and geometric stor-
age estimates highlighted significant sustainable potential. With depths modeled to
25m, this was 75 x 106 m3 (potentially 7500ha, with 60% of total unevaporated). With
a depth capped the 7m reach of suction pumps, it totaled a 2600ha irrigation poten-
tial. While this represents only 0.16% of the total area, it could double the 2,600 ha
irrigated in 2011 in the lower Mzingwane valley (Love et al., 2011). Even a small
increase in irrigated area could meaningfully impact many smallholders in water-
stressed regions.

Estimates at tributaries suggests that many of them were emptied by evapora-
tion. Here, many people in decentralized rural areas could benefit. However, esti-
mates exclude floodplain storage and still show occasional hotspots with untapped
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water availability. More field data is needed in tributaries about unconsumed water
availabilities.

This approach is far cheaper than reservoirs (see Table 5.3) and offers a dis-
tributed water supply without negative ecological consequences.

Two other studies (Moyce et al., 2006, Love, 2013) have estimated geometric stor-
age by extrapolating limited depth measurements. These methods, which do not ac-
count for local depth variations, are less precise. While comparisons are challenging
due to differing study areas, Love (2013) estimated an unconsumed alluvial aquifer
potential for the Mzingwane Catchment that could support 1,250–2,800 ha, which
aligns with this study’s 2,600 ha (limited to 7m). Moyce et al. (2006) reported geo-
metric storage of 175,000–5.4 million m3 for the lower Mzingwane river, compared
to this study’s cap-less estimate of 40 x 106 m3 for entire Mzingwane. The discrep-
ancy largely stems from their use of a conservative depth, averaging approximately
3.5 m, compared to 15 m.

These studies also incorporate floodplain storage (delineated with riparian zones
and false color composites) and regional seepage risks (based on geology and field
data). Future research could integrate these elements for more complete estimates.

6.4 Estimate Limitations

A key limitation of the maps is their accuracy. In summary, both estimation methods
are affected mainly by data uncertainties: WaPOR has a 40% error margin, and the
geometric storage model has a 61% MAPE plus depth measurement bias. While
these uncertainties are significant on a local scale, they still allow the identification
of broad targets, such as main river stems and reaches with high evaporation.

6.4.1 Limitations of Dry Season Evaporation

The largest source of uncertainty for dry season evaporation is WaPOR data. Blatch-
ford et al. (2020) reported a bias of 0.1 mm/day and a MAPE of 36% in a savanna/woodland
biome, along with an overall mean bias of 0.6 mm/day and MAPE of 40% based
on data from 14 eddy covariance (EC) stations across Africa. Further validation is
limited due to a lack of eddy-covariance (EC) towers and due to variations in evalu-
ation methods (Blatchford et al., 2020, Tran et al., 2023). Despite these uncertainties,
the 40% error is unlikely to hinder the identification of key targets such as main
stems and high-evaporation reaches. The studies also suggest slight underestima-
tion during the dry season in Miombo woodlands (Zimba et al., 2023) and in areas
of relatively high local evapotranspiration (Blatchford et al., 2020).

Another notable uncertainty is the unconsumed or available water when the
method is not complemented by geometric storage estimates or measurements. Es-
pecially at smaller rivers with less evaporation, the unconsumed water availability is
uncertain. However, in this study area, larger rivers consistently have unconsumed
water. Whether this is the case for other areas, however, needs further validation.

Evaporation losses from the channel’s top layer ( 0.8m) early in the dry season
were not excluded from the total estimates. This water could still be used if ab-
stracted shortly after the last flow event.

Finally, a minor shared uncertainty is the imperfect delineation of areas, includ-
ing manual editing and threshold fine-tuning.
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6.4.2 Limitations of the geometric (MLR) storage estimates

In summary, the primary uncertainty is a local MAPE of 61%, along with potential
biases in depth measurements.

Data Uncertainties

Uncertainties stem largely from the depth measurements and the limited explana-
tory power of predictor variables.
Specifically, in addition to possible errors in the depth measurements themselves, a
sampling bias, dependency and insufficient coverage are present.

While predictors like vegetation may be less location-dependent than drainage
area, even a few depth measurements in these unmeasured regions could substan-
tially improve accuracy.

Depth measurements were unevenly distributed, with depth measurements com-
pletely missing in the middle/upper Mzingwane sub-catchment, lower Shashani,
and middle Shashe (Figure 5.5). As a result, the MLR model relied on data from
other areas, making the true depth and the depth-predictor relationships uncertain
at the sub-catchment level (Figure 5.9). The relationship between geometric water
storage and vegetation could be less location dependent than drainage area.

A sampling bias was likely introduced, as sites were selected based on irrigation
potential, possibly leading to overestimation. Additionally, measurements were of-
ten clustered, which could skew regressions.

Secondly, the predictor variables cannot fully explain depth. Although the sum of r2

of all individual predictors is large (>1), not all variety was captured due to multi-
collinearity between predictors. Uncaught errors are illustrated in section 6.4.3.

Multicollinearity can confuse MLR models. While it still allows for extracting
more information than a single predictor could, it makes the individual contribu-
tions of predictors harder to interpret. Despite multicollinearity, highly variable
depth data, and possible measurement errors, the negative terms in model 8 have
some rationale. For instance, they could compensate for the non-linear overempha-
sis of drainage area in the largest rivers. Since at the largest drainage areas - on
average - depth even decreases again.

Method

The residuals of the model average zero, possibly helping to reduce total estimates
with large amounts of calculations. However, the depth measurements may be bi-
ased, making predictions wrong regardless if the residuals cancel out. Additionally,
the model slightly overestimates medium-sized storages and underestimates large
ones.

Furthermore, slope calculations were incomplete, limiting the insights on its po-
tential influence.

6.4.3 Understanding (Invisible) Errors

Understanding errors or biases in the maps can help to reduce them.
False positives (vegetation but very little storage) and false negatives (underes-

timations) can occur. They could explain why dry season evaporation is exceeded
by geometric water storage. The main false negative is likely lateral confinement
(see Figure 6.1). Multiple studies report confinement by clay, rising bedrock or
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bedrock outcrops, such as (Moulahoum, 2018). The second is water flow limita-
tions induced by small gradients. Other causes of false negatives include limited
fertile bank/floodplain extent (restricting vegetation growth) and logging/clearing
riparian vegetation (regardless of water storage present).

FIGURE 6.1: The main suspected false negative (no RV but still storage) is lateral confine-
ment by rising bedrock or clay. While the channel aquifer can have large water storage, it

cannot reach and sustain riparian vegetation.

A main expected false positive is lateral seepage into regolith (see Figure C.36 in
Appendix C). Other causes of false positives include local gaining conditions (Lat-
eral groundwater flow sustains vegetation but never reaches the channel) and ripar-
ian vegetation consumes all available water.

Furthermore, water leakage, caused by faults, fractured rock or dikes is inacces-
sible to both vegetation and well-points. For geometric storage estimates this could
cause overestimation. Additional inaccuracies can result from recent sand mining
activities.
Some of the above errors might be deduced with remote sensing, though field in-
vestigations might be necessary. Possibly remotely deducible examples are surfaced
confining bedrock and clay, faults inducing seepage, logging of riparian vegetation,
floodplain materials indicating hydraulic conductivity (tried out by Moyce et al.
(2006)) and ( Mpala et al., 2016).

6.5 Insights from the Spatial Analysis

Drainage area and riparian vegetation are new (regression) predictors of water stor-
age. Available literature mostly mention slope, seepage lines, hard-soft boundaries
and erosion of soil (e.g. Hussey, 2007, Moyce et al., 2006.

The influence of slope is in reality greater than the results showed. Zooming in on
steep slopes consistently reveals bedrock outcrops (possibly dikes, C.39 in Appendix
C). A large amount of bedrock outcrops leaves little room for sand. Future research
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could improve the slope calculation method, by averaging over longer distances and
filling the data gaps by using adjacent values.

Unexpectedly, vegetated point bars were not statistically significant. This was
likely due to their inconsistent vegetation cover, their cover often balanced out by
the sparse vegetation typically found on the opposing cut banks, and imperfect cal-
culation of sinuosity (particularly for smaller rivers).

6.5.1 Limitations of the Statistical Analysis

The many possible (inter-correlated) causes of vegetation and depth complicate draw-
ing conclusions about the statistical links. A main example is the large storage vol-
umes and sudden increase in riparian zones at the lower Mzingwane. They can be
caused by (a combination of) large drainage areas, gentle slopes, Basalt, presence
of reservoirs and the presence of faults and dikes. Moyce et al. (2006) and Kenyon
(2022) partially account the increased sediment fill to hard-soft rock boundaries at
the many faults and dikes. While these may occur more at field scale, they were not
observed well with the coarse geological maps.

Similarly, soil maps were too coarse to assess their impact. Also, their appli-
cability is low as floodplains fall outside FAO’s category and they do not directly
represent erodability. Land cover is expected to better represent soil erodability and
is therefore recommended for future modeling.

6.6 Final Recommendations

The two current remote sensing methods are first trials that need further validation
and could still be improved.

First and foremost, when using the model(s) for targeted irrigation planning, it
is necessary to verify whether water is actually available. Ecosystem services should
be considered during site selection. This could imply recording water levels at the
end of the dry season and probing for depths.

To improve both estimates and understanding, fieldwork could investigate causes
of local variations in riparian vegetation, as well as other false positives and nega-
tives. This can include factors like soil quality or water connectivity (impermeable
clay, water gradients). Furthermore, automated adjustments could be made to help
correct for overestimated evaporation rates at confluences/tributaries and for de-
creased rates at human logging. On the other hand, increased vegetation and evapo-
ration could potentially improve predictions by extrapolating them to adjacent river
sections, provided that the river reach is known to limitedly vary in aquifer volume.
Just looking at slope over a sattelite image can indicate depth.

To improve the empirical (MLR) method, fieldwork should include simple prob-
ing to address data gaps and assess the universality of the empirical relationships.
Depth measurements are particularly needed in all smaller rivers (with smaller drainage
area), gentle slopes, and at downstream Shashani. This would help to assess the pre-
dictor variables at catchment-level, in particular drainage area. Future studies could
(better) incorporate slope, land cover (for erodability) and lastly faults and dikes.
The impact of faults and dikes could be better captured with remote detection, and
include the possible compartmentalizing effect they have on aquifers.
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6.6.1 Extrapolating to Other Areas

The method could be applied to other areas. For doing so, here is a summary with
some guidelines and key recommendations.

The delineation process is semi-automatic but requires specific conditions. Select
imagery from a homogeneous dry season to avoid local peaks in vegetation caused
by rain events, but avoid extreme dry years where vegetation may be completely
absent. Varying colors in sand river channels might require more complex methods
such as machine learning or dynamic thresholding. Optionally, manually draw river
centerlines.

Limited constraints are expected for estimating dry season evaporation, but in-
spections remain necessary about unconsumed water availability.

For estimating geometric water storage capacity in new areas, it is essential to
have some depth measurements to add to the training and validation of a new (MLR)
model, as the universality of the empirical relationships are not yet certain. They
are expected to vary with for instance soil erodability, and the influence of slope
along with interactions with other variables. It is recommended to spread these
measurements across different drainage areas, widths and vegetation extents and
slopes, also at catchment-level, so that the model represents the whole area.
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Conclusion
To obtain the objectives, the following research question and sub-questions were set
up:

Can remotely observed spatial patterns like riparian vegetation adequately indicate
the capacity of sand rivers to naturally store water, for irrigation and other human
uses?

1. What are key climatological, hydrological and geo-morphological factors that
influence riparian vegetation?

Riparian vegetation is influenced by a combination of water quantity and connec-
tivity, assuming the most scarce resource for (adapted) riparian plants is water.

Water quantity depends on amount and duration of rainfall, dry season duration,
influencing recharge of floodplain aquifers (Hussey, 2007). Geomorphological fac-
tors such as drainage area, slope (controlling flow velocity), sediment supply (land
use and erodability of soil), geology type and channel meandering affect vegetation
by shaping aquifer dimensions. Losses and inputs also affect water quantity like ver-
tical seepage (more likely at older lithology types) and subsurface flow (determined
by slope and subsurface material). Water connectivity depends on permeability (re-
duced by clay and rising bedrock) and water gradients, with limited connectivity in
shallow aquifers reducing vegetation extent.

2. How does the riparian vegetation respond to rainfall patterns?

The year-round higher NDVI and delayed decrease in NDVI during the dry sea-
son, suggest the vegetation’s dependence on the sand river’s aquifer. This is likely
true whether the drops in NDVI and transpiration mean the aquifer is fully depleted
or not, supplemented by riparian vegetation transpiring even at the end of the dry
season. However, influences such as the plants’ adaptation to cycle leaves annu-
ally, preserve water early, store water internally and the winter’s lower temperatures
complicate interpretation.

3. How can sand rivers and riparian vegetation be delineated?

The simple sand index threshold method effectively delineated most river channels
wider than 40m, except where channels were densely vegetated or contained out-
crops. While manual editing was necessary to obtain river centerlines and connect
sand river polygons, the method can be largely automated, especially in regions
with existing OpenStreetMap (OSM) river centerlines. NDVI thresholds were able
to capture small riparian zones (<20m), and bigger zones better.

4. How can a minimum water storage capacity be estimated with evaporation?
Using global WaPOR v3 evaporation data and the area of the sand river channel and
riparian zone, the evaporation can be summed over the dry season. This assumes
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all evaporated water comes from the sand river aquifer.

5. How can geometric water storage capacities be predicted with empirical rela-
tionships?

By using 35 depth measurements along with remotely sensed environmental at-
tributes — such as dry season evaporation, drainage area, and channel width —
empirical relationships can be developed. These relationships were integrated into
a multiple linear regression model, allowing for the prediction of depth across the
entire study area.

6. What can the estimates teach about total water availability and suitable locations
for water abstraction?

There is a significant nature based capacity to store water in the study area’s sand
river channels (totaling 123 × 106 m3 potentially irrigating 12,300 ha). The two esti-
mates can be combined for an unconsumed water availability, showing a significant
sustainable potential (totaling 83 x106 m3 potentially irrigating 8300ha). Depth mea-
surements showed that dry season evaporation was consistently exceeded by geo-
metric storage, suggesting that rivers with medium to large evaporation rates have
most unconsumed storage potential. The maps suggest that water storage is con-
centrated in the main river stems (the largest 10% hold 45-55% of water). Especially
reaches are promising with large vegetated areas and gentle slopes. All geometric
storage estimates at tributaries were relatively small. Most of them were exceeded
by dry season evaporation, suggesting that using their water would be in direct
competition with riparian vegetation. However, some local hotspots point towards
some water availability. This could potentially benefit many people living closeby
in decentralized rural areas. These estimates are uncertain since there is a shortage
of data at smaller rivers. While local uncertainties are still significant, they provide
a useful first approximation.

7. How uncertain are the estimates and can understanding them help us to reduce
them?

Both methods had large local uncertainties stemming mostly from the data. Wa-
POR has a MAPE of around 40%, but the dry season evaporation indicated limited
information about unconsumed water availability without the help of geometric es-
timates in smaller rivers. The MLR model’s depth measurements were not very
representative and the predictor variables were limited. The model’s uncertainty is
significant (R2 = 0.64; MAPE = 61%). However, the estimates are still very useful
for total estimates and first approximations. Identifying theoretically errors could
help us to reduce them, such as remotely sensing confining clay or bedrock, faults
indicating seepage and the extent and connectivity of floodplains

Although uncertainties remain and field validation is still needed, the models show
promise for wide-scale planning and development. The findings highlight that sand
rivers, with rough estimates of their decentralized, cost-effective, and sustainable
water storage, can be mapped remotely with minimal effort or field data. This could
open up possibilities for water management in semi-arid regions, offering support
for farmers and paving the way for farmer-led irrigation initiatives.
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Appendix A, Study area
The geology map at a part of the Limpopo river basin is depicted in figure A.1. G:
Older gneiss (high grade metamorphic, formed by metamorphosis of granite) of the
Craton of the post African and Pliocene Surfaces (pre-cambrian). Bv: Mainly mafic
metavolcanics with subordinate metasediments. (Bulawayan)
Yg: Younger intrusive (igneous) granites. Gn: Various paragneisses (gneiss derived
from sedimentary rock). Ba: Basalt. Fine-grained. extrusive igneous rock formed
by rapid near-surface cooling of (mafic) lava. Another map mentions this region is
sediments overlain by volcanics. St: Sandstone. S: Recent and older alluvial deposits
(gravel, sand, silt and clay). Mb: Various paragneisses of the Limpopo mobile belt.
Other, coarser, geology maps summarize G, Bv, Yg, Gn together as "basement", but
still in distinguish basalt and unconsolidated.

FIGURE A.1: Geology map with different rock types in the Zimbabwe Craton and
the location of the Northern Marginal zone (NMZ) and Central Zone (CZ) of the

LMB

Daily precipitation means of the Mzingwane sub-catchment and its dry dry sea-
son in the hydrological year 2023 are shown in Figure A.2

Depth measurements are depicted in figure A.3
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FIGURE A.2: Daily precipitation means of the Mzingwane sub-catchment of the
hydrological years 2021-2023

FIGURE A.3: Summarized depth measurements georeferenced from literature.
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Appendix B, method

B.1 Delineation

B.1.1 Delineating sand rivers

sand river workflow steps for one widthclass in Qgis:

-1 Draw or edit OSM centerlines manually (so that the automatic centerline prob-
lem is skipped)
-2 Buffer the centerline of interest to the biggest river width you can find
-3 Clip raster to buffer to exclude bare soil patches
-4 raster calculater where band=0 to exclude nodata
-5 Polygonize
-6 Buffer the centerline to the smallest river width you can find
-7 Merge polygonised raster with buffer to connect river reaches
-8 Dissolve
-9 Multipart to singleparts, so that bare soil patches don’t merge to sand river in next
step
-10 Buffer then debuffer (e.g. 20m) to fill river gaps
-11 Delete smaller singleparts with area < 10000 m2 (tool extract by expression)
-12 Manually add and delete sand river areas (vegetation and water makes it patchy)
-13 Dissolve
————————————————————–
Repeat for all width classes. Steps 2 – 11 could be automated in the python console
or model builder of Qgis.

B.1.2 Delineating riparian zones

Below are the frequency histograms of NDVI and canopy height of a site at the
Shashani and a site at the Shashe.

B.2 Statistical analysis

B.2.1 Choosing attributes

Other excluded attributes include Topographic Wetness Index (TWI), surface rough-
ness, Multi-Resolution Valley Bottom Flatness (MRVBF) and change in slope. These
were excluded because they are all derived from the same DEM and similar to slope,
thus likely decreasing parsimony. Planform curvature, profile curvature, change in
width and specific yield were proposed by Kenyon (2022). The increased informa-
tion adding one of these was not considered worth the added complexity of adding
another predictor value. Most of these are derived from DEM’s, the same source of
information as slope.
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FIGURE B.1: NDVI frequency histogram of southern Shashani. There is no obvious
minimum where riparian vegetation is seperated from other areas. NDVI of 0.42

was finally chosen.

FIGURE B.2: Canopy Height frequency histogram of southern Shashani. The seper-
ation between riparian vegetation and other areas seems clearer as a lot of non-
riparian areas have 0 height. Visually, however, a threshold of >(3-6m) best cap-
tured riparian zones. So also at canopy height, there was an ambiguous transition

and no clear optimum or threshold.

Attribute Name Why excluded What/relevance
Topographic
Wetness Index
(TWI)

All attributes, other than slope,
coming from a DEM likely have
limited unique added value compared
to slope. Left out considering
parsimony and time constraints.

Is commonly used to identify areas
with higher water accumulation
potential, therefore possibly sand too.
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Multi-Resolution
Valley Bottom
Flatness
(MRVBF)

All attributes, other than slope,
coming from a DEM likely have
limited unique added value compared
to slope. Left out considering
parsimony and time constraints.

Flatness could indicate the
accumulation of water and possibly
extent of floodplains, in addition to
gentle slopes.

surface
roughness

All attributes, other than slope,
coming from a DEM likely have
limited unique added value compared
to slope. Left out considering
parsimony and time constraints.

Retrieved from Kenyon, 2022. Could
indicate objects causing surface
roughness like bedrock outcrops and
vegetation in the channel.

profile curvature All attributes, other than slope,
coming from a DEM likely have
limited unique added value compared
to slope. Left out considering
parsimony and time constraints.
Additionally, requires high resolution
DEM data.

Is the longitudonal rate of change in
slope. Indicates shape (convex,
concave) and might indicate uniform
bed materials.

Planform
curvature

No known method to calculate well
with remote sensing. Even a wide
river (+-500m) would only have 5
measurement points due to a DEM’s
resolution (90x90m).

Retrieved from Kenyon, 2022. It is the
lateral rate of change in slope, positive
for ridges and negative for valleys.
Might inform about subsurface faults
and sediment load.

change in width Considering channels only
sporadically significantly change in
width, it was excluded due to time
constraints.

).

specific yield Not observable from space. Is somewhat correlated to slope as
calculated by Kenyon (2022).

TABLE B.1: Table with excluded environmental variables, including
why

B.2.2 Calculating attributes

B.2.3 Cutting sand rivers and calculating widths

1. smoothen centerline once
2. Points along geometry (100m interval)
3. create perpendicular lines with geometry by expression:
extend(make_line($geometry, project($geometry,40, radians("angle"-90))),40,0)
4. Insert id’s with rownumber in field calculator
5. clip sand river polygon with lines
6. Delete the first polygon reach of every river. (They will disturb the area calculation
since they will have the same ID as the second polygon)
7. Delete the last polygon reach of every river. (they are misformed)
8. Buffer perpendicular lines by 2.5m
9. Assign ID’s to cut river sections with tool join attributes by location (overlap, one-
to-one. Join ID’s of buffered perpendicular lines)
10. Dissolve by section ID to merge braided rivers to one area (dissolve field to ID)
11. Do a manual check and check if features are (chrono)logical
12. in attribute table: add width by area/100 (for 100m interval)

Manual editing is required after cutting sand rivers, namely merging braided
rivers and sections that are cut an extra time (see figures below). The solution was to
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FIGURE B.3: NDVI frequency histogram of south-eastern Shashe. There is no ob-
vious minimum where riparian vegetation is seperated from other areas. NDVI of

0.42 was finally chosen.

join attributes by a (shifted) line. In complete words, make shifted lines, give them
a row number, join attributes (row number of the lines) by location to the river sec-
tions, and then merge the river sections per row number.

FIGURE B.4: Braided river results in
separate polygons per transect that need

to be merged
FIGURE B.5: Cut section gets separated

and forms an extra polygon

B.2.4 Shifting points to hold information

All attributes are stored in points that are shifted by 50m, intersecting, lying in both
the river section and the corresponding calculation box (see below). This avoids the
problem that the "join attributes by location" tool mixes up points that touch two
river sections or calculation boxes.

B.2.5 Cutting and calculating riparian vegetation extent

1.Clip NDVI raster result with the dynamic buffer (farthest RV extent for every river
width of 20-40m, 40-100m, 100-300m, 300-900m)
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FIGURE B.6: Outcrops and vegeta-
tion cause underestimation in the delin-
eation of the sand river. Here it is clear

what to fix.

FIGURE B.7: The sand river gaps are
manually filled ar what to fix it is clear

what to fix

FIGURE B.8: Vegetation causes a large underestimation in the delineation of the sand river.
This is more ambiguous as one can choose to include the vegetation as sand river or not.
Automatic delineation often skips small of these vegetation plots, so this sand river is filled

except for the small vegetation plot.

2.Polygonize
3.Create longer perpendicular lines
4.Buffer perpendicular lines (40m)
5.Delete the lást buffered line of each river to later make sure vegetation is calculated
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downstream a river reach.
6.Manually clip buffered lines that fall into another river reach or its riparian vege-
tation, because of sharp bends.
7.Zonal statistics tool (count) to count the amount of 10x10m pixels of vegetation in
the buffer 8.If any “invalid geometries” occur, use the check geometries tool to iden-
tify and delete random invalid geometries.
9.Convert count to area by multiplying with 100 in attribute table.
10.Create interpolated points to store data in with offset 75m (To dodge a very an-
noying problem of not being able to match the right calculation box to the right river
section).
11.Combining attribute tables: join attributes by location (contain) 12.Select odd id1
features by expression: “id1" % 2 = 1
13.Delete odd numbered rows so that vegetation area’s are matched to the inter-
sected river section upstream

14. The result needs a few manual edits. The calculation boxes occasionally counted
riparian vegetation of another section. They were manually shortened.

FIGURE B.9: These are the cur river sections and the counting boxes that count
the number of pixels of riparian vegetation. The counting boxes are longer for
wider width classes and, when the river meanders, can occasionally intersect other

sections and count too many pixels. This was manually edited.

Then, below is a fix used for when calc boxes overlap multiple statpoints. The
average is taken of multiple rows in excel and are reduced to one row. Conditions
used are row number and width. =IF(AND(B2=B1, D2=D1), "", AVERAGEIFS(F:F,
B:B, B2, D:D, D2))

B.2.6 Automatic workflow overview

The following workflow with automatic Qgis models were used to calculate all at-
tributes and add them to the information-holding that represent river sections. Some
steps could be combined to one model in the future. Per river width class:
1. Run the model that cuts the river into 100m sections, calculates river width and
creates RV counting boxes. These are combined because the river sections and count-
ing boxes need a manual intermezzo.
2. Manually edit incorrectly cut river sections.
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3. Manually cut RV counting boxes that count RV of other river sections. 4. Run the
final model that:
4.1. Runs the model that counts riparian vegetation pixels.
4.2. Runs the model that copies elevation, averaged per river section.
4.3. Runs the model that copies drainage area, to the river section points.
5. Run the model that runs multiple models which calculate sinuosity, correspond-
ing to the current width class.
6. Add soil type, geology type, lithology transitions, geologic structures with the
join attributes by location tool. 7. Add depth data to the river sections and then the
river section points with the join by location tool.
8. Add anthropogenic interference and tributary interference using the join by loca-
tion tool.
9. Add widthclass identifier, riverID identifier and sub-catchment identifier using
the join by location tool.
10. Merge the information-holding river section points of all width classes. 11. Ex-
port to xlsx. Custom sort the data: RiverID lowest to highest, widthclass lowest to
highest and finally rownumber from lowest to highest. 11.1 Shift sinuosity since the
data is assigned to each beginning point instead of the middle. Do this with an SQL
function in DB manager (in qgis data manager) instead field calculator, because field
calculator randomly shifts the values:
SELECT row_nr, sinuosity_,
LAG(sinuosity_, 15) OVER (ORDER BY row_nr) AS shifted_sinuosity
FROM "40_100_Statpoints";
10.2 Fill sinuosity gaps in excell with helper columns:
sinu_fill1 fill value above: B=IF(A3=0, A2, A3)
sinu_fill2 fill value above: C=IF(B3=0, B4, B3)
12. Calculate slope in excel.
12.1 Calculate the moving average from elevation (column A) for 1200m slope for
a cell in row 9, with IF statements that check whether the river (ID) is the same
(B3=B15):
C=IFERROR(IF(B3=B15, AVERAGE(OFFSET(A9, -6, 0, 13)), ""), "")
12.2 Calculate the 1200m slope in column D for a cell in row 2:
D=IFERROR(IF(ABS(C14-C2)/1200<=0.1, (C14-C2)/1200, ""), "")
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B.2.7 Dry season evaporation

FIGURE B.10: Visualization example of dry season evaporation at the Shashani
river. Many pixels overlap sand river, riparian zones and non-riparian zones.

The calculation of the evaporated volume by the sand river (area in m), the riparian
zone (area count in 10x10m) and their mean evaporation (in mm):

_mean/1000_2*(area+("_count" /100))
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Appendix C, results

C.1 Contextual/preliminary investigation

FIGURE C.1: The CHIRPS daily precipitation means of the Mzingwane sub-catchment.
April till September of the hydrological year 2023 are completely dry, therefore hosting a

meteorological homogeneous setting
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(a) (b)

(c)

FIGURE C.2: Sentinel-2 NDVI time series of five plots in the Shashani sub-catchment.
(a) The polygons of the five plots, e.g. bare is brown and riparian vegetation is green.
(b) Zoomed out picture of the environment of the site; a boundary can be seen between
communal land in the north (bare and farming plots) and commercial land in the south
(tree cover) (c) NDVI time series of the five plots of the hydrological years 2020-2023,
with daily precipitation in the background. The NDVI data was smoothed with the

LOESS method. Original data can be seen of the bare and RV1 plots.
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FIGURE C.3: The transpiration time series of the same five plots in the Shashani sub-
catchment, with daily precipitation in the background. E.g. bare is brown and riparian

vegetation is green.
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C.2 Delineation

(a) (b)

FIGURE C.4: Example showing the delineation of a 100m wide sand river and its ripar-
ian zones. (a) Delineated sand river and its riparian zone by sentinel-2 NDVI (>0.42). A
small riparian zone is harder and more ambiguous to capture. It looks like some farming
plots have replaced riparian vegetation. (b) Google sattelite image and the delineated
riparian zone by Canopy Height (>4m). Canopy Height results in more inconsistent

blocks that sometimes overlap the sand river.

C.3 Spatial, statistical analysis

C.3.1 Calculating attributes

The calculated sinuosity attribute typically matches the level of meandering, espe-
cially for river reaches with a width above approximately 25m. This can be seen at
the meandering river in the lower left corner of figure (C.6 (b)). For widths smaller
than 25m, the sinuosity values match less well, as can be seen in the smaller at-
tributes in the right of Figure (C.6 (b)).
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(a)

(b)

FIGURE C.5: (a) Visualisation of the slope attribute (m/m). Each point is averaged over
4000m. (b) Zoomed in on the Shashani sub-catchment, including depth measurements.

(a)

(b)

FIGURE C.6: (a) Visualisation of the sinuosity attribute for the study area. (b) Zoomed
in on the Shashani sub-catchment, where at the left main stem the calculated sinuosity
matches real sinuosity well (river width of 100m). At the right tributary, the calculated
sinuosity matches real sinuosity less well (river width of 15m). The legend’s distribution

is by equal count (quantile).
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C.3.2 Statistical results

Relationships with depth and storage

Extra scatter plots are plotted here such as width, slope and versus riparian veg-
etation, as well as other coloring combinations and the bar plots of influences on
riparian vegetation.

The relationship between riparian vegetation extent and water storage capacity is
likely not completely linear. At large vegetation extents, the storage plateaued. Even
larger vegetation extents occurred near depth measurements (up to 700m) which
would lead to large overestimations. Furthermore, a triangular data gap can be ob-
served, more clearly in the log-linear plot.

(a)

FIGURE C.7: Riparian vegetation versus geometric water storage ca-
pacity per 100m, assuming a specific yield of 0.15.
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FIGURE C.8: Scatter plot of depth (m) versus slope (m/m, 2x800m
resolution), colored by lithology type, shaped by sub-catchment.
Pearson correlation coefficient is 0.51. The "0" lithology type means

no data.

Zooming in on depths up to 7m (C.9), the correlation coefficient decreases (to
r=0.44), suggesting high variation of vegetation for shallower rivers.

FIGURE C.9: Depth versus riparian vegetation extent for shallower depths
up to 7m only
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FIGURE C.10: Riparian vegetation versus storage capacity
(width*depth*length) per 100m, with extra data points, colored

with drainage area.
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(a)

(b)

FIGURE C.11: Riparian vegetation versus water storage capacity (ex-
cluding specific yield) per 100m. (a) With logarithmic x-axis, colored

with soil type. (b) Storage data limited to 10,000 cubic meter.

The drainage area versus riparian vegetation is plotted with a logarithmic x-axis
in figure (C.12), colored by width class. Small jumps occur whenever a new drainage
polygon starts. Big jumps occur whenever a tributary joined with significant up-
stream area. A data gap is visible at the 300-900m width class; rivers at 29000 km 2

have at least 50m riparian vegetation.
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FIGURE C.12: Riparian vegetation versus drainage area in km 2

FIGURE C.13: Scatter plot of lateral vegetation extent versus drainage
area (km 2)of the main stem of the Mzingwane

FIGURE C.14: Scatter plot of lateral vegetation extent versus drainage
area (km 2) of the main stem of the Shashani

Slope versus vegetation extent is depicted in figure (??. While slope was not sig-
nificantly correlated with riparian vegetation extent, the average vegetation extent
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is higher at gentle slopes (approximately 250m, >-0.03 m/m) than at steeper slopes
(approximately 70m, <-0.03 m/m).

(a)

FIGURE C.15: One of many examples where steep slope comes with
bedrock outcrops. When the slope becomes gentle, only smooth sand

is visible.

Influences on vegetation

Width versus riparian vegetation is moderately correlated (r=0.54), shown in Figure
(C.16). The predictive power does not seem large, but clear data gaps are present at
the upper left and lower right quadrant. River sections with underlying basalt have
the highest widths and highest lateral vegetation extents.
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FIGURE C.16: Riparian vegetation versus width of the channel segment.

FIGURE C.17: Width versus riparian vegetation, colored by lithology, without river widths
smaller than 40m
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FIGURE C.18: Bar plot of the average vegetation extent (m) of river
sections that are disturbed by human activities or not. All river sec-
tions were marked where it looked like human features had replaced
riparian vegetation or medium to large scale irrigation was present.

Features include mainly farming plots and roads.

FIGURE C.19: Bar plot of the average vegetation extent (m) of river
sections that are influenced by tributaries or not. All river sections
were marked whose counting box was including a significant amount

of a tributary’s riparian vegetation.

FIGURE C.20: Bar plot of the average vegetation extent (m) of river
sections that are upstream or downstream near a lithology transition.

Boundaries between lithologies were buffered to a width of 300m
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FIGURE C.21: Bar plot of the average vegetation extent (m) of river
sections with different (coarse) lithology types. Basalt has the most
riparian vegetation extent, the basement complex the least. Mind
collinearity; all of the sedimentary region lies in the lower Mzing-

wane, and Basalt is either lower Shashe or lower Mzingwane.

FIGURE C.22: Bar plot of the average vegetation extent (m) of river
sections with different (georeferenced) lithology types. The "0" lithol-

ogy type is no data.

FIGURE C.23: Scatter plot of sinuosity versus riparian vegetation.
The highest values of riparian vegetation, as well as the average, do

not seem to occur at meandering rivers.
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FIGURE C.24: Scatter plot of channel width (m) versus channel depth
(m), colored by sub-catchment. A weak Pearson correlation coeffi-

cient is present of 0.31

FIGURE C.25: Bar plot of the average vegetation extent (m) of river
sections that are upstream, downstream of a reservoir or not near one.
Distances taken range from 1000m from small reservoirs to 10000m at

big reservoirs.

FIGURE C.26: Bar plot of the average vegetation extent (m) of river
sections with and without geological structures. Dikes have less ri-

parian vegetation, fault lines and other fractures slightly less.
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FIGURE C.27: Bar plot of the average vegetation extent (m) of straight
rivers (sinuosity<1.1) or meandering rivers(sinuosity>1.5), or any-
thing in between. Riparian vegetation of both river sides are included

in the calculation.

C.3.3 Estimating and mapping water storage capacity.

Predicted vs actual depth by model 10 (C.28), shows one difference compared to
the predicted water storage capacity, namely an underestimation at a smaller actual
storage.

Figure C.29 displays the percentage of evaporation over geometric storage, show-
ing the (un)consumed difference in another manner. In contrary to the unconsumed
map, it shows that some yellow and green tributaries have unconsumed water avail-
ability.

FIGURE C.29: Fraction linemap, displaying evaporation / geometric
storage x 100%.

Figure C.30 shows the map with MLR estimated storage capacities with depths
capped to 7 meters, similar to the maximum of suction pumps.
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FIGURE C.28: Predicted vs actual depth

FIGURE C.30: Estimated geometric water storage capacities with
MLR model 8, capped to 7 meters, assuming a specific yield of 0.15.
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The model summary in Table C.1 provides information on the significance of
each predictor variable in a multi-linear regression model with slope and interaction
terms. The table can be read as follows. The Estimate column shows the regression
coefficient for each predictor variable, representing average change in the response
variable (depth) for a one-unit increase in the predictor variable, assuming all other
variables are held constant. The t value is the estimate divided by the standard
error. The p-value indicates the statistic significance (by comparing a t-statistic to
a t-distribution, depending on the sample size). Upstream area and with*upstream
area are most significant. Riparian vegetation is the most insignificant both with and
without slope (p=0.99 and p=0.88), but completely removing it would increase the
R-squared with 0.3 and the MAPE from 65% to 75%. When zooming in on smaller
storages, however, all p values decrease and slope becomes the most insignificant
with a high p value of 0.43.

TABLE C.1: Statistical Summary of Regression Model With Slope and
Interaction Terms, Predicting Storage from Environmental Factors

Variable Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.169e+00 6.356e+00 0.813 0.4235
width -2.631e-02 4.309e-02 -0.611 0.5468
upstream_area 1.298e-03 5.434e-04 2.388 0.0245 *
RV_extent2 4.342e-04 4.786e-02 0.009 0.9928
slope_800m 9.125e+02 1.068e+03 0.854 0.4009
width:upstream_area-2.438e-06 3.170e-06 -0.769 0.4487
width:RV_extent2 1.068e-04 2.649e-04 0.403 0.6901

TABLE C.2: Statistical Summary of Regression Model Without Slope,
Predicting Storage from Environmental Factors

Variable Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.853e+00 5.008e+00 0.370 0.7142
width -2.076e-02 4.238e-02 -0.490 0.6282
upstream_area 1.336e-03 5.388e-04 2.479 0.0197 *
RV_extent2 6.937e-03 4.701e-02 0.148 0.8838
width:upstream_area-2.785e-06 3.128e-06 -0.890 0.3811
width:RV_extent2 1.019e-04 2.635e-04 0.387 0.7020

TABLE C.3: Statistical Summary of Regression Model Trained On
Storages Smaller Than 25000 m3/100m, Predicting Storage from En-

vironmental Factors

Variable Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.043e+00 2.278e+00 1.336 0.20287
width -2.001e-02 1.508e-02 -1.327 0.20569
upstream_area 1.429e-03 4.389e-04 3.255 0.00575 **
RV_extent2 -2.818e-02 2.110e-02 -1.335 0.20305
slope_800m -3.184e+02 3.942e+02 -0.808 0.43271
width:upstream_area-6.310e-06 2.884e-06 -2.188 0.04616 *
width:RV_extent2 1.974e-04 1.197e-04 1.649 0.12134
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FIGURE C.31: Exceedence plot showing the distribution of the storage estimates. For ex-
ample, the biggest 10% of rivers contain 55% of all water storage.

FIGURE C.32: Map of delineated sand rivers and the unconsumed abstractable water stor-
age capacity for every 100m river section, calculated as the difference between the dry
season evaporation and the empirically calculated storage volume with MLR model 8, as-

suming a specific yield of 0.15.
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FIGURE C.33: Exception 1 with point bar and adjacent tree cover
where dry season evaporation exceeds geometric water storage

FIGURE C.34: Exception 2 with point bar and adjacent tree cover
where dry season evaporation exceeds geometric water storage

C.4 Exceptions where Dry season evaporation exceeds geo-
metric water storage

These exceptions can be explained by mainly the inclusion of floodplain water in the
dry season evaporation estimates, while the geometric storage calculation considers
only the channel’s area and depth. Other possible factors include subsurface flows
feeding downstream riparian vegetation, gaining conditions in slightly hilly loca-
tions, increased evaporation due to subcrops raising water levels near the surface,
data inaccuracies and including the evaporation of non-riparian vegetation.
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FIGURE C.35: Exception 3 with upstream reservoir where dry season
evaporation exceeds geometric water storage

C.5 False positives and negatives

FIGURE C.36: A main suspected false positive is fast lateral seepage/recharge. While a lot
of riparian vegetation may be present, water spreads laterally into the regolith of banks
after the rainy season, accessible to only tap roots of vegetation. The water gradient line
in blue shows that while tap roots can penetrate regolith and reach the water, a wellpoint

may not. (Replace with a version that has regolith and water gradient)

C.6 Slope illustration
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FIGURE C.37: Multi-resolution valley bottom flatness (MRVBF)

FIGURE C.38: Example of slope revealing many bedrock outcrops)
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FIGURE C.39: Slightly zoomed out example showing the MLR model
captured shallow depths at the bedrock outcrops. Both estimation

methods would need validation for the transition in the middle)
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