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Abstract

In proton therapy the development of dose calculation methods is of great importance
to optimize the dose. In this work a method is presented to solve the Fokker-Planck
transport equation using ray-tracing techniques and �nite element methods.

The idea of the method is dividing the Fokker-Planck equation in two seperate equa-
tions, one without scattering and the other with scattering. The result of the unscat-
tered equation is then used to function as source for the second one. The equations
are discretized in all free variables: space, angle and energy. The spatial domain is
discretized such that each spatial element has its own angular and energy mesh. The
main solution technique is the discontinuous Galerkin (dG) method in combination
with ray-tracing techniques.

The results from the ray-tracing method for calculating the unscattered dose correspond
to known physical phenomena. The method for Gaussian sampling however shows a
great sensitivity to the number of sampling beams used and yields consistent results
only for a numer of sampling beams in the order of 103.

In future work the sampling needs to be done by using the quadrature method, which
results in a smaller error and uses only 4 sampling beams, resulting in a more favorable
computation time.



1 Introduction

In the last couple of decades cancer has been among the leading causes of death world-
wide. The most recent estimates, made by the International Agency for Research on
Cancer in 2012, state that there were more than 8 million cancer deaths worldwide
(International Agency for Research on Cancer, 2013). By 2030 this number is expected
to increase to 13 million. Various methods for treating cancer exist. Removing the can-
cerous cells physically during surgery has the highest survival rate. Surgery is usually
combined with radiotherapy for better results (Uilkema, 2012).

1.1 Radiotherapy

Radiotherapy is the use of high-energy radiation to shrink tumors and destroy cancer-
ous cells in a patient. The radiation damages the DNA of the cancer cells untill they
are beyond repair, which causes them to stop dividing. Hereafter the cells are broken
down by the body (Cancer Reasearch UK, 2017). This can take up to months after the
radiation procedure. However, radiotherapy does not only a�ect the cancer cells, but
normal cells surrounding the cancer as well, leading to side e�ects. Fortunately, normal
cells are better at repairing themselves than the cancerous cells and thus the cancer
can be treated, but still the aim is to minimize the amount of radiation received by the
normal cells, while maximizing it for the cancer cells.

There are two main types of radiotherapy, namely brachytherapy, where the radioac-
tive source is placed inside or near the area of the cancerous tumor, and external beam
therapy, where a radiation beam is placed outside of the body (Cancer Reasearch UK,
2017). An example of external beam therapy is proton beam therapy, where the charged
particles used are protons.
Proton therapy is a form of radiotherapy which is less known than the widely used
electron and photon therapy, but has seen a signi�cant increase of use in treatment
centers over the last two decades. Although it is more expensive than the conventional
therapies, it also o�ers some advantages over them.

1.2 Proton Therapy

1.2.1 History

In his 1946 proposal "Radiological Use of Fast Protons" (Wilson, 1946), Robert Wilson
suggested that energetic protons can be used as a treatment method on humans. The
�rst actual treatment followed in 1954, performed by the Berkeley Radiaton Center in
California. Between 1961 and 2002 Massachusetts General Hospital collaborated with
the Harvard Cyclotron Labarotory, designed by Wilson, to treat nearly 10000 patients.
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This collaboration paved the way for many new facilities and treatment centers. As
of January 2016 there are more than 45 active facilities around the world and close to
100,000 patients have been treated with proton therapy.

1.2.2 Bragg Peak

The main advantage of using proton therapy over photon therapy is the fact that the de-
posited photon has its peak dose deposition, the deposited energy per volume, at small
depths, which is favorable for skin cancers, but less useful for deeper laying tumors.
Also, when deeper laying tumors are treated with photon therapy, the surrounding,
healthy tissue receives high intensity radiation, which causes damage.

For protons the maximum energy deposition occurs in the last part of the penetra-
tion. This is called the Bragg peak. The di�erence between photon therapy and proton
therapy is depicted in �gure 1. The location and width of the Bragg peak can be modi-

Figure 1: The solid line with the modi�ed Bragg peak that occurs with proton energy
decay compared to a photon beam energy density decay, represented by the dashed line.

�ed by choosing di�erent initial energies of the protons, resulting in a spread out Bragg
peak. It is clear from the �gure that such a spread out Bragg peak is very useful: it
can be modi�ed such that the maximum deposition occurs only at the tumor, while it
is much lower in the healthy tissue.

1.3 Dose Calculation Methods

In the previous section it was made clear that energetic protons display a Bragg peak
when penetrating a patient's body. Also, it was demonstrated that the location of this
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Bragg peak can be modi�ed such that it �ts the tumor. To be able to do this accurately
and verify the results, it is of great importance to calculate the dose one receives. A
few dose calculation methods will be discussed below.

Monte Carlo method. Probably the most accurate way to calulate the dose is via
a Monte Carlo algorithm. In this method the movement of each individual proton is
tracked and the mean free path, i.e. the length between two ensuing interactions with
the material it is moving through, is sampled by using a random number generator
and probability densities. Although it is a very accurate method, most hospitals are
not working with it as it is tremendously time-consuming due to the tracking of every
proton individually.

Pencil beam algorithms. In this method, the proton beam is approximated by
a set of mathematical pencil beams. Each of these pencil beams then deposits dose
along its ray. Then the pencil beams are weighted and their contributions are summed.
While pencil beam algorithms are less accurate than Monte Carlo methods, they tend
to be much less time-consuming.

1.3.1 Research Question

As seen in the above, there are methods to calculate the energy density (dose) that is
deposited when a patient is being treated. Nevertheless, a method that is more time
e�cient and as accurate as the Monte Carlo algorithm is still much needed. Hospitals
will be able to calculate the dose a patient receives without needing the help of super-
computers and proton therapy may become more available and less expensive. Such a
method will be examined in this report. The aim is to solve the transport equation for
protons, known as the Fokker-Planck equation (introduced in chapter 2), by discretizing
it and then solving for the dose. Therefore, the research question of this thesis is:

Can the dose a patient receives during proton beam therapy be calculated by solving the
Fokker-Planck transport equation on a �nite element mesh and by using ray-tracing
techniques?

In addition to the research question, the solution methods and technniques will be
implemented in FORTRAN code.

To reach the goal of this thesis, �rst the Fokker-Planck transport equation will be
introduced and discretized in chapter 2. In chapter 3 the �nite element methods used
in this report will be introduced. After this, the equation will be solved in two separate
parts, chapters 4 and 5 respectively, whereafter the results will be analyzed in chapter 6.

This report concludes a bachelors thesis project of the Delft University of Technology
at the NERA department of the Reactor Institute Delft.
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2 The Transport Equation

As was mentioned earlier, one of the main di�culties in Proton Beam Therapy is cal-
culating the dose a patient receives. While it is possible to calculate the dose by using
Monte Carlo methods, it is very computationally expensive. Therefore, �nding an al-
ternative way to calculate the dose is of great importance. In developing a method
to solve for this dose, the �uence of protons inside the body of a patient is needed.
Of course, to say something about the �uence of the protons, one would have to un-
derstand how the protons move. As is the case for all of radiation transport, protons
obey a transport equation. For protons this equation is the Fokker-Planck transport
equation, which is an approximation of the Linear Boltzmann Transport Equation. In
the following section the Fokker-Planck equation will be introduced and manipulated
in such a way that it will be solvable.

2.1 Introductory concepts of proton movement

The �nal goal is to calculate the dose a patient receives. To achieve this, one would have
to understand the distribution of protons within the body. It is therefore important to
analyse which variables and entities describe the movement of the particles.

2.1.1 Cross Sections

When examining motion of a proton inside a body, or any particle for that matter, a
little needs to be said about the probability of collisions between said particle and the
atomic nuclei within the body. A quantity which describes this probability is called the
microscopic cross section σt and is de�ned (Duderstadt & Hamilton, 1976).

σt =
number of collisions/nucleus/s

number of incident protons/cm2/s
= [cm2] (1)

When the microscopic cross section σt is divided by the area of the total cross section
of the body A, it can be interpreted as(Duderstadt & Hamilton, 1976):

σt
A

= Probability per nucleus that a proton will interact with it (2)

Since this is the probability per nucleus, one needs to multiply the microscopic cross
section with the atomic number density N to get the macroscopic cross section Σt:

Σt = Nσt = [cm−1] (3)

The macroscopic cross section can then be interpreted as the probability per unit path
length traveled that the proton will interact with a nucleus.
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2.1.2 Proton �uence and Angular �uence

Now that the concept of the macroscopic cross section has been introduced, it is straight-
forward to de�ne the interaction frequency f as the product of the speed of the protons
v and the macroscopic cross section:

f = vΣt, (4)

where it is assumed that all protons within the body have the same speed v. As
a consequence it is possible to de�ne the reaction-rate density F (r) in terms of the
interaction frequency,

F (r)d3r = vΣtN(r)d3r (5)

with N(r)d3r the expected number of protons in d3r about r (i.e. the proton density).
This density can also be energy-dependent, N(r, E)d3rdE.
In the above, the term vN(r, E) is one of the most widely used terms in (proton)
radiotherapy and is called the proton �uence (or �ux) ψ(r, E):

ψ(r, E) = vN(r, E) (6)

Although the proton �ux is called a �ux, it is not a vector, like for example magnetic
�ux, but a scalar. It is therefore also referred to as the scalar �ux.

With the de�nition of the scalar �ux, it seems as if everything is set to solve an equation
which is satis�ed by ψ(r, E). Unfortunately however, such an equation does not exist
as describing the state of a proton just by its position r and energy E is not enough
and the direction of motion Ω̂ has to be taken into consideration as well. Hence the
proton density has to be extended to the angular proton density,

n(r, E, Ω̂) d3r dE dΩ̂ ≡
expected number of protons in d3 r about r,
energyE about dE,

and moving in direction Ω̂ in angle dΩ̂
(7)

The angular (proton) �uence Ψ(r, E.Ω̂) is then de�ned similarly to the scalar �uence,
by multiplying the angular density with the proton speed:

Ψ(r, E, Ω̂) = vn(r, E, Ω̂) (8)

Closely related to the angular �uence is the angular current density j(r, E, Ω̂), de�nend
by

j(r, E, Ω̂) = Ψ(r, E, Ω̂)Ω̂ (9)

And when considering a small area dA,

j(r, E, Ω̂) dAdE dΩ̂ =

expected number of protons passing through dA,
with energyE in dE,

and moving in direction Ω̂ in angle dΩ̂
(10)
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Also, note that
|j| = Ψ, (11)

which will be a useful property later on. In the above, all the terms have been de�ned
without a time dependence. A �ux however is always a time-dependent quantity:

j(r, E, Ω̂, t) ≡

expected number of protons passing through dA,
with energyE in dE,

and moving in direction Ω̂ in angle dΩ̂,
per second.

(12)

Despite this time-dependence, the angular �ux will be written as Ψ(r, E, Ω̂) because
the time t does not in�uence the �nal result and can be integrated out of the equation.

2.2 Linear Boltzmann Transport Equation

Now that the angular �uence has been introduced, it is possible to derive an equation
for the particle density, the linear Boltzmann Transport Equation. The derivation will
follow (Duderstadt & Hamilton, 1976) closely. As stated there, the equation follows
from balancing the stream of incoming and outgoing particles in an arbitrary volume
V within the body. The number of particles can increase due to:

• A particle source in V

• Particles streaming into V

• Particles su�ering a scattering collision inside V and changing a di�erent energy
E and direction Ω̂

In the case of this text, external radiotherapy is analyzed, which means that the source
of the protons is always outside of the volume V . This means that there is no source
term in the equation and only the two latter gaining mechanisms are in play.

Similarly, the number of particles can decrease due to:

• A particle colliding in V

• Particles streaming out of V

2.2.1 Streaming

Of course, the particles streaming in and out of the volume V can be analyzed together.
In the previous section the angular current density j(r, E, Ω̂) was introduced, which can
be used to describe the net rate at which particles leave volume V through a piece of
the surface dS:

j(r, E, Ω̂) dS = Ω̂Ψ(r, E, Ω̂) dS (13)
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which means that the total rate of leaving particles is given by:∫
S

Ω̂Ψ(r, E, Ω̂) · dS (14)

Applying Gauss' Theorem gives:∫
V

Ω̂ · ∇Ψ(r, E, Ω̂) dE dΩ̂ d3r (15)

2.2.2 Collisions

The rate at which particles su�er collisions in V is given by:

ΣtΨ(r, E, Ω̂) (16)

This then only needs to be integrated over the volume V to �nd the total colission rate:∫
V

ΣtΨ(r, E, Ω̂) dE dΩ̂ d3r (17)

2.2.3 Scattering

The main di�erence between the equations for charged particles and uncharged parti-
cles is in the scattering term. For that reason, the scattering term will not be derived,
but for now written as Qscat(r, E, Ω̂).

Now that all the terms that contribute to the incoming and outgoing particles have
been de�ned, the total rate can be de�ned as:

Rate of change of number of particles in V = Streaming - Collisions + Scattering
(18)

In physical notation this is:∫
V

[
Ω̂ · ∇Ψ(r, E, Ω̂) dE dΩ̂ + ΣtΨ(r, E, Ω̂) dE dΩ̂−Qscat(r, E, Ω̂)

]
d3r = 0 (19)

As V was chosen arbitrarily, the only way for the integral to be zero is for the integrand
to be equal to zero, yielding the Linear Transport Boltzmann Equation:

Ω̂ · ∇Ψ(r, E, Ω̂) + Σt(r, E)Ψ(r, E, Ω̂) = Qscat(r, E, Ω̂) (20)

where Ψ is the angular �uence at position r, with energy E and direction Ω̂(Ωx,Ωy,Ωz).
Σt is the macroscopic total cross section. Q

scat is the scattering source.
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2.3 The Fokker-Planck approximation

In the previous section the LBTE was derived and is shown in (20). However, the LBTE
in this form only holds for uncharged particles like neutrons. Of course, protons are not
uncharged particles, so equation (20) cannot be used. However, an extension, or rather
a simpli�cation, of the Boltzmann equation exists (Gi�ord, Horton Jr, Wareing, Failla,
& Mourtada, 2006), the Boltzmann-Fokker-Planck equation (BFP):

Ω̂ · ∇Ψ(r, E, Ω̂) + Σt(r, E)Ψ(r, E, Ω̂) =
α

2

{ ∂

∂µ

(
1− µ2

) ∂
∂µ

Ψ(r, E, Ω̂)

+
1

1− µ2

∂2

∂φ2
Ψ(r, E, Ω̂)

}
+

∂

∂E
S(r, E)Ψ(r, E, Ω̂).

(21)

In the above some new terms (i.e. S, α, µ and φ) have been introduced. These terms
will �rst be explained before continuing with examining equation (21).

2.3.1 Stopping Power

The term S in the Fokker-Planck equation is known as the stopping power and is de�ned
as the energy loss per unit path length:

S(E) = −dE

dr
(22)

This relation is known as the Continuous slowing down approximation and will be de-
rived from the Fokker-Planck equation in section 4.3. Solving this di�erential equation
cannot be done analytically because of the energy dependence of the stopping power.
Fortunately, there are tables of stopping power values corresponding to energy values
available (National Institute of standards and technology, 2017), making it possible to
solve the equation numerically. The relation between the stopping power and energy
that is used in this method is depicted in �gure 2.

2.3.2 Momentum Transfer Cross Section

In equation (21), α is known as the momentum transfer cross section. As was argued
in (Uilkema, 2012), calculating it leads to integrals which are hard to solve; therefore
here only the physical interpretation will be given. The cross section α represents the
average angular de�ection of the protons per unit distance travelled. It has an energy
dependency, which for protons incident on water is depicted in �gure 3 (Uilkema, 2012).
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Figure 2: Logarithmic plot of Stopping power S(E) vs. kinetic energy E of protons
in water. The values as seen in this �gure are the values which are used in the dose
calculation method.

Figure 3: The momentum transfer cross section α vs energy for protons incident on
water. Image taken from (Uilkema, 2012).

2.3.3 Direction Ω̂

The terms µ = cos (θ) and φ represent the direction Ω̂ in spherical coordinates, where
θ is the polar angle and φ is the azimuthal angle. Since Ω̂ is a unit vector, the radius
r of the spherical coordinates is equal to 1. The relation between the representation of
Ω̂ in spherical coordinates and cartesian coordinates can be found in �gure 4.
It can be seen then, that the �rst right-hand side term of equation (21) is the spherical

9



Figure 4: Relation between the direction Ω̂ expressed in cartesian coordinates
(Ωx,Ωy,Ωz) and in spherical coordinates (r, θ, φ)

Laplacian ∇2
s applied on Ψ:

α

2

{ ∂

∂µ

(
1− µ2

) ∂
∂µ

Ψ(r, E, Ω̂) +
1

1− µ2

∂2

∂φ2
Ψ(r, E, Ω̂)

}
=
α

2
∇2
sΨ(r, E, Ω̂). (23)

This term is the Fokker-Planck scattering term.

2.3.4 Physical interpretation

With the new terms of the Fokker-Planck equations de�ned, the physics of the two
right-hand side terms can abe explained.

For the proton beams in this text, which will be regarded as pencil beams (i.e. all
protons of the beam have the same direction, see section 4.1), this will mean that they
can be represented as a dot with in�nitely small radius. When te protons move through
the body, the direction in which they move changes. This change is represented by the
di�usion of the beam (dot) over the unit sphere. The Fokker-Planck scattering term in
equation (23) represents this process. The rate of the di�usion is then proportional to
the momentum transfer coe�cient α (Uilkema, 2012).

The second term on the right-hand side is known as the Continuously Slowing-down
approximation. Physically, it represents the energy transfer from the incident protons
to the electrond of the material's atoms.

2.4 Discretization

The �rst step of approximating the Fokker-Planck equation is discretizing the equation
in all variables: space, angle and energy. The discretization methods will be brie�y
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introduced below.

2.4.1 Angular Discretization

The angular mesh is constructed by mapping the edges and nodes of an octahedron
onto the unit sphere, creating 'patches', the elements of the angular mesh. Re�nement
of an element can be achieved by bisecting the sides of a triangle on the octahedron.
This process is shown in �gure 5. In �gure 6 a possible re�ned angular mesh is shown.
Local re�nement is done in the proton beam direction, i.e. it is most re�ned at the
place where the beam is represented on the sphere.

Figure 5: Construction of angular mesh by mapping from the octahedron to the unit
sphere and subsequently bisecting the triangles to obtain re�ned mesh.

Figure 6: Re�ned angular mesh. Re�nement has only occurred at one half of the sphere.

2.4.2 Energy Discretization

The method for discretizing the energy is called the multigroup method. This method
divides the energy range of the particle Emin ≤ Eparticle ≤ Emax into a �nite number
of intervals G and each interval has energy bounds Eg− 1

2
and Eg+ 1

2
and is ordered such

that the energy decreases as the energy group number g increases.
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Representing this discretization method graphically is straightforward and depicted
in �gure 7.

Figure 7: Discrete energy groups

2.4.3 Spatial Discretization

After the multigroup discretization method and the discretization of the sphere, the
transport equation is solved on hexagonal elements using a discontinuous Galerkin
�nite element method. As was the case with the angular mesh, the spatial mesh can be
re�ned as well. This is straightforward since the mesh consists of hexagonal elements,
and thus re�ning means dividing the volume of the element by 8. In �gure 8 an example
of a spatial mesh without any re�nement is depicted. For the spatial re�nement the

Figure 8: Unre�ned 10× 10 spatial mesh

following exponential relation will be used:

Ce−µ(xcenter−x0)2−λ(ycenter−y0)2−ζ(zcenter−z0)2

(24)

where (x0, y0, z0) depict the entry point of the beam in the mesh and (xcenter, ycenter, zcenter)
depict the center of each element of the mesh. C ∈ N is the level of re�nement (i.e.
how many times an element is divided into smaller elements) for the �rst element the
beam enters. The above equation is rounded to the nearest integer to determine the
level of re�nement for the remaining elements.

This re�nement procedure is chosen such that not all elements are equally re�ned and
the parts where less scattering occurs, further away from the beam, take less computa-
tional time. In �gure 9 the amount of re�nements for given a given mesh can be seen
for an example exponential relation. In �gure 10
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Figure 9: Level of re�nement vs mesh dimension in the x-direction. The parameters
used for the re�nement in this case are: C = 3, λ = ζ = 0.1, µ = 0.075. The grid lines
show the boundaries of the starting elements of the 10 × 10 × 10 mesh. The blue line
shows the value of the exponential.

Figure 10: Re�ned 10× 10 spatial mesh.The parameters used for the re�nement in this
case are: C = 3, λ = ζ = 0.1, µ = 0.075.

2.5 First Collision Source method

The discretization in angle from the previous section can lead to unwanted ray-e�ects
(buildup of �uence along the beam (Gi�ord et al., 2006)). These e�ects can be tempered
by de�ning the total angular �uence Ψ(r, E, Ω̂) to be the sum of the uncollided angular
�uence Ψu(r, E, Ω̂) and the collided angular �uence Ψc(r, E, Ω̂):

Ψ(r, E, Ω̂) = Ψu(r, E, Ω̂) + Ψc(r, E, Ω̂). (25)
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The uncollided angular �uence means the �uence of protons which only goes into the
target and does not scatter. The collided angular �uence is the �uence after all boundary
conditions are zero, but scattering occurs inside the patients body. See �gure (11).
Substituting equation (25) in equation (21) and then separating the equation in one

Figure 11: Left the uncollided angular �uence is shown, which has non-zero boundary
conditions, but no scattering occurs. On the right the collided angular �uence is shown,
which has only boundary conditions equal to zero, but does scatter inside the patient

uncollided part and one collided part yields

Ω̂ · ∇Ψu(r, E, Ω̂) + Σt(r, E)Ψu(r, E, Ω̂) =
∂

∂E
S(r, E)Ψu(r, E, Ω̂) (26)

with boundary conditions Ψu = ΨD(r, Ω̂) (Dirichlet boundary conditions) for incoming
rays, i.e. Ω̂ · n̂ < 0 and

Ω̂ · ∇Ψc(r, E, Ω̂) + Σt(r, E)Ψc(r, E, Ω̂) =
α

2
∇2
sΨ

c(r, E, Ω̂) +
α

2
∇2
sΨ

u(r, E, Ω̂) (27)

with ΨD = 0 for Ω̂ · n̂ < 0. The �rst right-hand side term of equation (21) is the
spherical Laplacian ∇2

s term in the above equation. The process of separating the
Fokker-Planck equation makes it easier to solve the Fokker-Planck equation analyti-
cally, as the boundary conditions are only non-zero for the uncollided part and zero for
the collided part.

It can be seen that equation (27) still has a term with the uncollided angular �u-
ence Ψu in it. This term can be calculated by solving for Ψu in equation (26) and
substituting it in equation (27), such that the uncollided angular �uence is a source for
the collided angular �uence. Hence the term is called the �rst collision source. So, the
next step of solving the Fokker-Planck equation (21) is solving equation (26) for Ψu,
which will be the topic of the chapter 4. Before continuing however, the next chapter
is dedicated to �nite element methods, as they form the basis of the dose calculation
method.
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3 Finite Element Methods

In the previous chapter it was introduced that the Fokker-Planck transport equation
will be separated in two equations. The �rst equation, with the uncollided angular
�uence as the unknown, will be solved by using ray-tracing in combination with the
discontinuous Galerkin (dG) projection on the �nite element mesh. This method will
be described in section 3.1 and performed in the next chapter for the given problem.
The second equation, with the collided angular �uence acting as the unknown, will
also mostly be solved with the dG method . For the second equation however, only
the source calculation will be discusses, as the implementation of the method in code
already exists and could be made use of(Lathouwers, D, 2017).

3.1 Galerkin Projection

The main assumption that is made in the �nite element method is that the solution to
a di�erential equation can be approximated by a linear combination of a �nite, �xed
set of basis functions hj. This is known as Ritz's method (van Kan, Segal, & Vermolen,
2005) and in 1D yields:

un(x) =
n∑
j=1

ajhj(x) (28)

with aj unknown coe�cients. Unless stated otherwise, the basis functions used in this
text are linear in each element for all variables. The n equations that arise can then be
written in matrix form by

Ma = f (29)

where M is known as the mass matrix and its elements mij are de�ned by:

mij =
1

V

∫
domain

hihj dx (30)

where V is the volume of the element. The vector a contains the coe�cients aj and the
vector f is the vector with elements fi which follows from the boundary conditions.

The Galerkin method is essentially a generalization of the Ritz method and can be
obtained by substituting the Ritz method in the weak formulation of the di�erential
equation. For the full derivation of the Galerkin method, see (van Kan et al., 2005).
The Galerkin method consists of:

• Approximate the solution by a linear combination of basis functions.

• Multiply above approximation by one of the basis functions.

• Integrate the expression over the domain of the element.

• Evaluate integral numerically.
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3.1.1 Energy discretization with Galerkin

Now that the Galerkin method has been introduced, it can be examined how it can
be useful in the discretization schemes introduced in the previous chapter. Recall that
the energy discretization was done by the multigroup, depicted in �gure 7. The �uence
within each group is then taken to be linear and can be written in terms of two basis
functions. One of these basis function's coe�cient then corresponds to the average
�uence within each group, whereas the other corresponds to the normalized slope of
the �uence:

Ψu
g (r, E, Ω̂) = Ψavg(r, Ω̂)hE1(E) + Ψslp(r, Ω̂)hE2(E) (31)

This means that there are two unknowns in each group and that two equations are
needed to solve for the unknowns. This can then be achieved by applying the Galerkin
method, and the numerical integral can be evaluated by an upwind scheme in the
slowing down term of the Fokker-Planck equation.

3.2 Angular discretization

The two coe�cients in equation (31) are still dependent on r and Ω̂. Similarly to
the energy discretization, these coe�cients can be written in terms of �nite element
methods, or patches in the angular mesh:

Ψavg/slp(r, Ω̂) =

nk∑
k=1

Ψ
avg/slope
k (r)hk(Ω̂) (32)

with hk(Ω̂) the angular basis function k, with a total of nk basis functions. The coe�-

cient Ψ
avg/slope
k (r) can then be calculated by the spatial discretization.

3.2.1 Spatial discretization

For the last coe�cient, Ψ
avg/slope
k (r), a similar �nite element method holds. For an

element i it then can be written as:

Ψ
avg/slp
i (r) =

nj∑
j=1

arhrj(rj) (33)

with ni the number of basis functions, ar the coe�cients and hrj the spatial basis func-
tions.

Integrals in the space domain can be approximated in the spatial mesh by a straight-
forward Gaussian quadrature with 8 quadrature points. Opposed to most quadratures,
the domain of each spatial element is de�ned as [0, 1] and not as [−1, 1].
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4 Uncollided Angular Fluence

In section 2.4 it was shown that the First Collision Soure method will be used to solve
the Fokker-Planck equation. The method consists of two equations, one in which the
uncollided angular �uence is the unknown, and one in which the collided angular �uence
is known and is driven by the uncollided one. In this chapter only the �rst, uncollided
equation will be examined and a way to calculate the uncollided dose will be presented.
Note that uncollided dose is a wrong term as the unscattered dose is meant. The pre�x
uncollided is solely used to indicate that it is the dose, resulting from the uncollided
equation (26).

Before continuing however, it is important to state that the proton beams are con-
sidered to be a summation of mathematical pencil beams. Because this is an important
assumption, the following section is dedicated to understanding the pencil beam.

4.1 Mathematical Pencil Beam

One of the main assumptions made in this dose calculation method is that the proton
beam consists of mathematical pencil beams, which means that the beam does not
scatter at all and is in�nitely thin. Although this may not seem like it has great
in�uence on the problem, it has very useful consequences.

4.1.1 One-dimensionality

One of the consequences of the proton beam consisting of pencil beams is the one-
dimensionality of the beam. It can always be described in local cartesian coordinates,
such that the direction Ω̂ of the beam alligns with one of the axes of the coordinate
system. As will be seen in section 3.2, this reduces the amount of math needed to solve
the uncollided angular �uence equation.

Because of the one-dimensionality note that equations (9) and (11) imply that the
uncollided angular �uence Ψu is now in fact the same as the angular current density j.

4.1.2 Dirac delta function

Another consequence of the pencil beam assumption is that the uncollided angular
�uence Ψu can be written as a Dirac delta function in all variables r, E and Ω̂. The
Dirac delta function, de�ned as

δ(x) =

{
+∞, if x = 0

0, if x 6= 0
(34)
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can basically be interpreted as a function which only has a value at one particular place.
It is easy to see that this is indeed the case for the pencil beam at the boundaries (!)
and thus the uncollided angular �uence can be written as

Ψu(r, E, Ω̂) = δ(r − rp)δ(E − E0)δ(Ω̂− Ω̂p), (35)

where rp is the point of the source, E0 is the initial energy of the proton beam, and Ω̂p

is the direction of the proton beam. Within the boundary, only the direction is still a
delta function. One of the fundamental properties properties of the delta function is∫ +∞

−∞
f(x)δ(x− a) dx = f(a). (36)

This property will be used often throughout this method, as in the �nite element method
many integrals are evaluated.

4.2 Ray-Tracing

Solving the uncollided equation requires knowing how the proton beam travels through
the spatial mesh elements. Therefore, a ray-tracing method is implemented, which will
be described brie�y below.

First of all, a line can be described in parametric form by:

ls + ldt, t ∈ R (37)

where ls is the starting point and ld is the direction of the line (or ray). The main
idea of the method is then to calculate how long the ray travels inside an element, i.e.
calculating the time of entering the element tin and the time of exiting the element tout
and then substituting these in equation (37) to �nd the start and end point of the beam
in each element.

Assuming that the mesh is always alligned with the axes of the cartesian coordinate
system and that the coordinate j of each j-plane is known, one can simply evaluate

lsi + lditj = j ⇔ tj =
j − lsi
ldi

,
i ∈ {x, y, z},
j ∈ {xmin, xmax, ymin, ymax, zmin, zmax}

(38)

to �nd the intersection between each plane and the ray. This process is depicted in
�gure 12. To make it more insightful, the ray is taken to be travelling parallel to the
z-direction. After the intersections with the faces of the cube have been found, the part
within the element, shown in bold in the �gure, is the part of the ray that is needed.
To �nd this part, the following needs to hold:

tin ≤ tout ⇒ si = lsi + tinldi ∧ ei = lsi + toutldi (39)
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Figure 12: A proton beam enters the mesh with direction ld from starting point ls. Then
the parametrization of the line is solved for tj :lsi + lditj = j. For sake of simplicity, in
this �gure the ray is taken to be travelling parallel to the z-direction

where tin = max{txmin , tymin , tzmin} and tout = min{txmax , tymax , tzmax}. The start point
of the beam in the bold element of the �gure is then (sx, sy, sz) and the end point is
(ex, ey, ez) .

In �gure 12 for example, tin is equal to tymin and tout is equal to txmax .

4.3 Continuous slowing down approximation

In section 3.1 it was stated that the one-dimensionality of the pencil beam will reduce
the amount of mathematics needed to solve for the uncollided angular �uence Ψu.
Certainly for the method of characteristics, the main solution technique used for the
uncollided equation, this proves to be the case as it can be applied on a 1D di�erential
equation.

4.3.1 Method of Characteristics

Because the beam is a mathematical pencil beam, the uncollided transport equation
(26) will be examined in one dimension. In 1D the equation reads

µ
∂Ψu(x,E)

∂x
+ ΣtΨ

u =
∂S(E)Ψu(x,E)

∂E
, (40)
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with µ the direction and x the spatial coordinate. S(E) is the stopping power. As the
direction of the beam used will always be aligned along the path, for the remainder of
this section µ = 1 will be used.

In the above form, however, the method of characteristics cannot be applied, so a
litte rewriting yields

∂Ψu(x,E)

∂x
+ ΣtΨ

u =
∂S(E)Ψu(x,E)

∂E
⇔

∂Ψu(x,E)

∂x
− S(E)

∂Ψu(x,E)

∂E
= (

∂S(E)

∂E
− Σt)Ψ

u,

where the product rule was applied for the derivative term on the right-hand side of
equation (40).

The method of characteristics then yields:

dx

dq
= 1 (41)

dE

dq
= −S(E) (42)

dΨu

dq
= Ψu

(
∂S(E)

∂E
− Σt

)
(43)

where q is the variable of the characteristics. Equation (41) are easily solved with basic
methods, yielding

x(q) = q + C1 (44)

Equation (42) is the formula for the stopping power. It is, as was introduced in equa-
tion (22) equal to the energy loss per unit path length (because of the q dependece of x).

Because of the energy dependence of the stopping power, both equation (42) and (43)
will be numerically integrated by means of the Euler method.

However, when taking a closer look to equation (43) without any collisions (i.e. Σt = 0),
something peculiar seems to be happening. The angular �uence decreaces due to the
stopping power term, so less protons are moving through the body, but no collisions
occur. Intuitively, this makes sense as the stopping power term in�uences the time in
which the angular �uence loses energy. In other words, the amount of energy lost has
to be the same for each energy interval, although this may not correspond to evenly
proportioned intervals. This means that the integral of the angular �uence over each
interval needs to be constant:

∫
interval

Ψu dE = C. However, the angular �uence is re-
garded as a delta function, which means the integral vanishes.For now, the equation will
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be taken in the form of (43), but for many of the calculations, the stopping power term
will not be taken into account. Then, of course, the equation is analytically solvable.

4.3.2 Euler method and stability

The numerical method that will be used to solve equations (42) and (43) is the Euler
(forward) method:

En = En−1 − hS(En−1), (45)

Ψu
n = Ψu

n−1 − h
(

∆S

∆E
− Σt

)
, (46)

where the subscript n denotes the integration points. The ∆S
∆E

term is the numerical
derivative, where ∆S and ∆E denote the gap between two integration points for the
stopping power en energy respectively.

The integration points are not equal to the element boundaries of the spatial mesh
as this is too large of an integration step at once. Therefore, the length of the proton
beam is divided within each elements in n intervals, corresponding to the integration
points. See �gure 13. Of course, when implementing this numerical method in code,

Figure 13: Within every element of the mesh, the proton beam is divided into n intervals.
In this example n = 11

not all energy values En will be available in the stopping power tables. An interpolation
routine is therefore necessary as well.

When applying the Euler forward method, one has to consider the stability of the
method. When the linear equation (47) with paramater λ ∈ C

y′ = λy (47)

is considered, it is known that for Reλ ≤ 0 the equation is stable. In this case, the
solution is exponentially decaying. In the case of equation (42) this is not the case. In
�gure 2 it can be seen that for lower energy the stopping power is increasing, which
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means that the Euler method solution of the equation will also increase. The conven-
tional stability analysis for the Euler method can therefore not be applied on this case.
Nevertheless there exist analyses for stability for increasing functions, where the main
idea is that the numerical method solution may not increase faster than the function
itself:

y(tn)− wn
y(tn)

≤M (48)

where M ∈ R is a constant, wn is the numerical solution at integration point n and
y(tn) is the function value at time tn. However, performing such analyses are beyond
the scope of this text.

As will be shown in the results, all solutions show a stable behaviour and therefore
the Euler method will still be used.

4.4 Dose calculation

The ultimate goal of this project is to calculate the dose a patient recieves. Up until
now, only the uncollided angular �uence has been analysed. In this section, it will be
examined how to calculate the dose.

4.4.1 Dose de�nition

As mentioned before, in this text the dose is simply de�ned as the energy per volume
a proton deposits:

D =
∆E

V
≡ Deposited energy∆E in volumeV (49)

Normally, the dose is de�ned as the energy deposited per mass, so the dose de�nition
that is used here is more an energy density. It is clear however, that when the density
of the material that is radiated is known, the two de�nitions are related.

4.4.2 Finite element method

The �nite element method with the Galerkin projection introduced in chapter 3 will
now be used to solve for the dose. In the �nite element method the dose, per element,
can be written as

D(r) =
∑
i

Dihi(r), (50)

with hi the basis functions of the element, and Di the dose coe�cients. The goal is now
to �nd the coe�cients Di. Applying the Galerkin method of multiplying both sides
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with basis function hj and integrating over the entire cell yields∫
cell

D(r)hj(r) dr =
∑
i

Di

∫
cell

hihj dr (51)

The right-hand side can now be written as a matrix productMD withM =
∫
cell

hihj dr,
known as the mass matrix in �nite element methods, such that

MD =


∫
cell

D(r)h1(r) dr
...∫

cell
D(r)hm(r) dr

 (52)

where M is an m×m matrix, D is a vector of size m.

In the previous section it was shown that within each element, the proton beam was
divided into n intervals, such that the energy deposited in each element i can be written
as

∆Ei =
∑
n

∆En (53)

Using de�nition (49), the vector on the right-hand side of equation (52) can then be
written as: Σn

∫
cell

∆En
Vn

h1(rn) dr
...

Σn

∫
cell

∆En
Vn

hm(rn) dr

 =

 Σn
∆En
Vn

h1(rn)Vn
...

Σn
∆En
Vn

hm(rn)Vn

 =

 Σn∆Enh1(rn)
...

Σn∆Enhm(rn)

 (54)

where Vn denotes the volume around the beam path at integration point n It can be
concluded that the vector D consisting of the coe�cients Di can be evaluated by

D = M−1

 Σn∆Enh1(rn)
...

Σn∆Enhm(rn)

 (55)

which is the vector with the coe�ciens for the total uncollided dose due to the proton
beam.

4.5 Modelling Gaussian beam

Until this point, the proton beam has been regarded as a single mathematical pencil
beam. In reality however, such a beam is not achievable; the beams are Gaussian
beams. Gaussian beams are beams whose transverse amplitudes are given by a Gaussian
function. To model a Gaussian beam, a number of mathematical beams with weights
wi are sampled, leading to a discretized 2D Gaussian distribution. How to choose the
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weights of the pencil beams can be found from probability and statistics, as it is known
that the area under the (2D) Gaussian distribution equals 1. For the weights of the
pencil beams this means:

Σiwi = 1

where wi is the weight of pencil beam i. Also, it is known that 99.73% of the population,
in this case the pencil beam energy, is contained within 3 standard deviations σ = σy =
σz of the mean µ = (µy, µz), where the subscripts y and z refer to the local Cartesian
coordinates, corresponding to the travelling direction x of the beam. This interval is
also known as the six-sigma interval. In this text however, the last 0.27% will be taken
as if they were in the six-sigma interval and thus the six-sigma interval will contain
all the energy of the pencil beams. The Gaussian beam will then be sampled in four
regions, see �gure (14):

• Region 1: [µ, µ+ σ
2
]

• Region 2: [µ+ σ
2
, µ+ σ]

• Region 3: [µ+ σ, µ+ 2σ]

• Region 4: [µ+ 2σ, µ+ 3σ]

Figure 14: Gaussian beam approximation using pencil beams. Multiple pencil beams are
used and given a weight to model a Gaussian beam.On the left a front view is seen with
an example sampling pattern. On the right the 3D depiction with the incoming pencil
beams can be seen. The Gaussian surface is divided into regions Rj with weights Wj

Now, the weight of every σ-region Wj=1...4 can be calculated by integrating the two-
dimensional Gaussian function f(y, z), given by

f(y, z) =
1

2πσyσz
e
−
(

(y−µy)2

2σ2
y

+
(z−µz)2

2σ2
z

)
=

1

2πσ2
e−

(y−µy)2+(z−µz)2

2σ2 (56)

over each of the above regions. With µ = (0, 0) this becomes:∫∫
Rj

f(y, z) d(y, z) =

∫∫
Rj

1

2πσ2
e−

y2+z2

2σ2 d(y, z)
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Performing a coordinate transformation to polar coordinates (y, z)→ (r, φ) and subse-
quently applying the substitution s = r

σ
yields

∫ rmax

rmin

∫ 2π

0

1

2πσ2
e−

r2

2σ2 r dφ dr = 2π

∫ rmax

rmin

1

2πσ2
e−

s2

2 σs σds =

∫ rmax

rmin

e−
s2

2 s ds =
[
−e−

s2

2

]rmax
rmin

.

Note that the choice of µ does not actually in�uence the outcome of the integral, because
it only depicts a transformation of the 2D Gaussian distribution, which has no e�ect
on the weight of the σ-regions.
The weight of each pencil beam wi is then the weight of the region it is in Wj, divided
by the number of pencil beams in the region nj,

wi =
Wj

nj
if beam i samples in region j.

Naturally, the number of σ-rings, the amount of pencil beams and their location can
be chosen arbitrarily, although the beams need to be distributed uniformly within each
region. Finally, the dose due to each pencil beam is calculated and summed to calculate
the total dose deposited by the Gaussian beam.
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5 Collided Angular Fluence

In chapter 3 the uncollided part of the Fokker-Planck equation was solved. It was also
argued that its result would be the source term for the collided part of the Fokker-
Planck equation. Before moving on to solving the collided part, it is interesting to take
a look at how much the uncollided �ux Ψu contributes to the total �ux Ψ. In (Drumm,
Fan, Lorence, & Liscum-Powell, 2007) the uncollided angular �uence for electron beam
transport was compared to the total �uence, evaluated by the ITS Monte Carlo method.
The results of this analysis are illustrated in �gure 15. In the �gure the extended un-
collided �ux is the uncollided �ux calculated by the same methods (continuous slowing
down an �rst collision source approximations) as in this text. The conventional uncol-
lided �ux is the result from di�erent methods and will not be discussed here. Desppite

Figure 15: Uncollided �ux for electrons in water compared with the total �ux computed
by the ITS Monte Carlo method. The extended uncollided �ux in this �gure corresponds
to the solution techniques used in this text. Picture taken from (Drumm et al., 2007).

the fact that the analysis was done for electron beam transport, it is safe to assume
that for proton beam transport the results will be similar, as the same equations and
approximations hold, although the uncollided angular �uence for protons is a greater
part of the total �ux, but still not equal to it.

Now that it is evident that the collided �ux is a signi�cant part of the total �ux,
it is time to recall the collided equation:

Ω̂ · ∇Ψc(r, E, Ω̂) + Σt(r, E)Ψc(r, E, Ω̂) =
α

2
∇2
sΨ

c(r, E, Ω̂) +
α

2
∇2
sΨ

u(r, E, Ω̂), (57)

with Ψu the uncollided angluar �uence, resulting from the uncollided equation. Before
moving on to actually solving equation (57), the source term will need to be analyzed
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and solved, which will be done in the following section.

5.1 Source term

The source for equation (57) is

α

2
∇2
sΨ

u(r, E, Ω̂) (58)

with the uncollided �ux Ψu now known from chapter 3. The constant α is the so-called
momentum transfer cross section. It indicates how much momentum is transferred from
a particle when a collision occurs. Its mathematical de�nition and deriviation are not
of importance here, but can be found in [source].

All that needs to be done now is taking the Laplacian of the uncollided anngular
�uence and solve equation (57). This may not seem very hard, however, recall that the
uncollided angular �uence was de�ned in terms of delta functions in angle.

Ψu(r, E, Ω̂) = Aδ(Ω̂− Ω̂p) (59)

where A is the amplitude of the �ux, resulting from solving equation (43). Applying
the Galerkin method in �nite element methods on the source term then yields:∫

cell

∫ Eg+1

Eg

∫
patch

α

2
∇2
s

{
Aδ(Ω̂− Ω̂p)

}
hrj(r)hEl(E)hΩk(Ω̂) dΩ dE dr (60)

with hr, hE and hΩ the basis functions for the space, energy and angle elements respec-
tively. Of course, the spherical Laplace operator ∇2

s only depends on the direction (i.e.
the polar and azimuthal angle) of the proton beam, as can be seen in equation (23).
This means that the integral in equation (60) can be written, in �nite elements as

α

2
A

nr∑
j=1

hrj(rj)

nk∑
k=1

hEl(El)

∫
patch

∇2
sδ(Ω̂− Ω̂p)hΩj(Ω̂) dΩ, (61)

Yet, the integral in (61) cannot be evaluated as the spherical Laplace operates on a
Dirac delta function and when the delta function is de�ned as in (34) its derivative is
non de�ned. Despite this property of the delta function, it will be shown in the next
section that with some manipulations one will be able to evaluate the angular integral
with the Laplacian term.

5.1.1 Delta function derivative

Partial integration will be the basis of manipulating the integral in (61). Partial inte-
gration for two functions f(x) and g(x) yields:∫

f(x)g′(x) dx = [f(x)g(x)]−
∫
f ′(x)g(x) dx (62)
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When f(x) and g(x) are compactly supported functions, meaning they are zero outside
of a compact set, partial integration becomes[bron]:∫

f(x)g′(x) dx = −
∫
f ′(x)g(x) dx (63)

Because the derivative of a δ(x) is not de�ned, it is useful to regard the Delta not as a
function but as a distribution, meaning it is only thought of in relation to the e�ect it
has on functions it is integrated against. This way, the Delta function can be de�ned
by the integral of the delta function against a test function ϕ. This is denoted as:

δ[ϕ] = ϕ(0) (64)

When seen as a distribution, the derivative of the delta function is the distribution δ′

de�ned on the compactly supported test functions ϕ by (Gel'Fand & Shilov, 2016)

δ′[ϕ] = −δ[ϕ′] = −ϕ′(0) (65)

This result can be found by applying equation (63) on (64):

δ′[ϕ] =

∫
δ′(x)ϕ(x) dx = −

∫
δ(x)ϕ′(x) dx = −δ[ϕ′]. (66)

This can easily be extended to the second derivative:

δ′′[ϕ] =

∫
δ′′(x)ϕ(x) dx = −

∫
δ′(x)ϕ′(x) dx =

∫
δ(x)ϕ′′(x) dx = δ[ϕ′′] (67)

So, a way is found to evaluate the angular integral in equation (61), as long as the basis
functions h

Ω
are compactly supported.

5.1.2 Test function cases

Even with the analytical way of evaluating the Laplacian of a delta function as described
above, the method still seems strange. When taking constant angular test functions,
meaning its second derivative is zero, the outcome of the analytical method yields δ[0].

A more logical outcome follows from test functions that are linear in Ω̂,

ϕΩ(Ω̂) = A+BΩx + CΩy +DΩz. (68)

Recall from �gure 4 how Ω̂ is de�ned. When taking a closer look at the components
(Ωx,Ωy,Ωz) it can be seen that they are actually spherical harmonics. For example,
Ωz = cos(θ) = Y 0

1 . The spherical harmonics are eigenfunctions of the Laplacian opera-
tor, with eigenvalue −l(l + 1) (Uilkema, 2012):

∇2
sY

l
m(θ, ϕ) = −l(l + 1)Y l

m(θ, φ) (69)
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In the case of (Ωx,Ωy,Ωz) the degree l is 1. This means that the Laplacian of linear
angular test functions is:

∇2
sϕΩ(Ω̂) = ∇2

s(A+BΩx + CΩy +DΩz) = −2(BΩx + CΩy +DΩz) = −2(ϕΩ(Ω̂)−A)
(70)

When this result is substituted in the angular source integral (61), combined with
property (36) the integral drops and the source can be evaluated by:

−2
α

2
A

nr∑
j=1

hrj(rj)

nk∑
k=1

hEk(Ek)h

nΩ∑
i=1

ϕΩ(Ω̂i − Ω̂p)hΩi(Ω̂i) (71)

Although this method seems to work for the linear test functions, it is still a very
abstract concept to take the second derivative of a delta function and one should be very
cautious in using it as it may cause some irregularities in the results. A more legitimate,
but non-analytical method of calculating the source integral is by approximating the
delta function by discretizing it.

5.2 Discretized Delta function

In the previous section an analytical method for calculating the source for the collided
equation (27) was argued. The method uses very abstract concepts and its validity in
practice is yet to be determined. For that reason, in this section, another approach is
introduced as an alternative to the analytical method.

The general idea of this method is projecting the Delta Dirac function (in angle) on the
angular basis function with use of the dG method. Then in a similiar way to the dose
calculation in 4.4.2 the matrix representation can be evaluated and thus obtaining the
�nite element coe�cients representing the delta function.
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6 Results and Discussion

6.1 Unscattered dose

In �gure 16, the unscattered dose is seen. The initial energy of the protons used is 100
MeV and the beam travels along the positive x-direction. The spatial mesh used here is
unre�ned and consists of 10×10×10 elements. The block dimensions are 15 cm in every
direction. The beam direction is chosen such that the beam goes through the exact
center of the elements on the lower-right side of the mesh:(ybeam, zbeam) = (0, 75, 0, 75).

In �gure 17 a 2D cross section, taken along the beam path is depicted and it shows the
Bragg peak.
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Figure 16: 3D depiction of the Bragg peak on a 10× 10× 10 spatial mesh. The proton
beam is chosen to travel along the positive x-direction, through the exact middle of the
elements.

In �gure 17, it is very clear that the mesh of 1000 elements is too coarse as the Bragg
peak is not smooth. The position of the Bragg peak however corresponds to other
studies that have been done, for example (Smith, 2015). In �gure and 18 again the
100MeV Bragg peak is shown, but on a �ner 50 × 50 × 50 mesh. In this �gure the
Bragg peak is much smoother than the peak in �gure 17. At the maximum of the peak
however, it can be still seen that the �nite element approximation still forces its linear
�t through the element. This is caused by the continuously slowing-down term, and
can be easiliy solved by locally re�ning the elements where the Bragg peak maximum
occurs. The ray-tracing combined with the �nite element Galerkin projection thus
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Figure 17: 2D cross section taken along the beam path of the previous �gure, resulting
in the Bragg peak. Due to the roughness of the mesh, the Bragg peak is not yet smooth

seems to be an accurate unscattered dose calculation method. The method has also
shown not to be computationally expensive.

6.2 Uncollided �uence

In the above it was shown that the method for calculating the unsccattered dose works.
The next step is solving for the uncollided �uence. Figure 19 depicts the uncollided �u-
ence Ψu without the stopping power term of equation (43) and without any interaction,
so Σt = 0. This time, a 3×3×3 mesh which is re�ned in the y-direction and z-direction
is used with re�nement parameters C = 6 and λ = ζ = 0.075 . With the sampling
of the Gaussian beam, it would be expected that the scalar �uence is high (red) for
the inner samples and gradually decreases going outward. It can be seen that this is
not the case and the Galerkin projection on the basis functions sometimes goes from
low (blue) to high (red). Also, it can be seen that negative values are being projected.
From the de�nition for the �ux in section 2.1.2 it follows that it can not be negative.

The scalar uncollided �uence not being correct is a signi�cant problem in develop-
ing the method, as it serves as a source for the scalar collided �uence and with the
results that are shown in �gure 19 it is impossible to calculate the collided and thus
the total scalar �ux and the total dose.
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Figure 18: 2D cross section taken along the beam path of the previous �gure, resulting
in the Bragg peak. The mesh is �ne enough as the Brag peak is much smoother than
before.

To verify that the problem is indeed with the projection onto the basis of the sampled
Gaussian beam, only the projection is plotted against one quartile of the analytical
Gaussian function in 2D in �gure 20. In this case the 6σ- interval was divided in 5
regions. The 5th region was sampled with 59 pencil beams. The standard deviation
σ = 0.5. This amount of beams is already signi�cantly more than the 17 beams in total
that were used for the �rst sampling of �gure 19.

It can be seen that the approximation is indeed not correct as the projection di�ers
greatly from the analytical function. Especially at the highest intensities, the projection
is only around 60% of the analytical intensity .

In �gure 21 the same �gure is plotted, but now the 6σ-interval consists of 20 regions,
with a total of 1246 pencil beams used for the sampling. The projection di�ers signif-
icantly less from the analytical function. It is clear that the method of sampling the
Gaussian beam is very sensitive to the amount of beams that are used and only for
very large numbers of beams the approximation approaches the analytical Gaussian
function. Having to use around 1250 sample beams means that the computation time
will be very high. As the method is supposed to decrease computation time, it can be
concluded that another approach must be taken.
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Figure 19: Uncollided scalar �uence on a re�ned mesh. The sampling beams of the
Gaussian beam are clearly visible. However, the projection onto the elements is wrong,
as it should be high (red) in the center and low (blue) at the edges. The projection in
some elements is the other way around. It also shows negative values for the �ux, which
is impossible with the way the �ux is de�ned.
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Figure 20: Sampling projection of the Gaussian beam onto the spatial basis functions,
compared to the analytial Gaussian function. Used parameters: 5 regions in the 6σ-
interval and σ = 0.5

6.3 Quadrature method

For future research, it may be useful to use the method where the quadrature points of
each element are used to sample the Gaussian beam. The idea is to aim pencil beams
in a way such that they pass through the quadrature points of the element. Instead
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Figure 21: Sampling projection of the Gaussian beam onto the spatial basis functions,
compared to the analytial Gaussian function.Used parameters: 20 regions in the 6σ-
interval and σ = 0.5 The number of pencil beam samples per ring varies between 3 in
the inner ring and 122 in the outer ring, with a total of 1246 sample beams.

of tracking the beam through the mesh, you then know the position of the quadrature
points and you can back-track the beam. The scalar �ux can then be written in terms
of the �nite elements:

ψ =
N∑
j=1

wjhj(rj) (72)

with N the total number of quadrature points, wj the weight of quadrature point j and
hj(rj) the value of the basis function at the coordinate of the quadrature points. This
projection is plotted in �gure 22 along the analytical Gaussian function (again with σ =
0.5). When comparing the pencil beam sampling of �gure 21 with that of the quadrature

= Quadrature sampling projection

= Analytical Gaussian function

x

y

Figure 22: Quadrature projection of the Gaussian beam on the analytical Gaussian
function.

sampling of �gure 22, it can be seen that the latter one approximates the analytical
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function better. Evaluating the root mean square error for the approximations yields:

• Sampling with weighted regions: RMSE = 0.3355

• Quadrature sampling: RMSE = 0.2091

Given the fact that the number of pencil beams to be sampled is tremendously lower
than that of the weighted regions and yields better results, in the future the quadrature
method should have the preference.

Although the ultimate goal of developing a dose calculation has not been reached,
with the quadrature sampling method a more precise method can be developed to solve
for uncollided �uence and therefore for the collided �uence.
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7 Conclusion

The main goal of this research was to investigate if a new dose calculation method based
on ray-tracing techniques and discrete �nite element methods could be obtained. For
the purpose of answering these questions, a code was developed and proton transport
and methods of solving the Fokker-Planck transport equation were analyzed. With the
code that was developed, two main results came forward.

First of all, it was shown that for the uncollided angular �uence, the ray-tracing tech-
niqques an Galerkin projection on a �nnite element mesh were very accurate in describ-
ing the uncollided dose a patient treated with proton therapy receives. The position of
the Bragg peak was shown to be at the expected place.

Secondly, it was shown that weight-sampling a Gaussian beam with too few mathe-
matical pencil beams proves to be disastrous for the remaining dose calculations as the
�nite element projection is only accurate for a very large amount of pencil beams. This
however is very computationally expensive and not a real alternative dose calculation
method for the future.

Due to the problems with the sampling method the question whether the analytical
source calculation method, where the Laplacian of a Delta Dirac function is taken,
yields consistent results needs future examination.

In future work, it is preferable to utilize the method of quadrature sampling instead of
the weighted region sampling for the Gaussin function, as it is more accurate and needs
less pencil beam samples than the aforemetioned method. If one uses this method,
reaching the main goal of developing a new dose calculation method may be realized
and a new, real alternative to Monte Carlo dose calculation methods can be utilized.
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