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Abstract

In this thesis, networks of coupled quantum harmonic oscillators are studied.
The dynamics of these networks are determined by single-frequency vibrations
of the entire network called normal modes. We study the behavior of the nor-
mal modes when the network is coupled to a thermodynamical heat bath by
looking at the Lindblad Master Equation of the system. From this equation, we
determine the rate at which the normal modes decay. Certain normal modes
decay very slowly, and some do not decay at all. These normal modes are called
quasi-noiseless and noiseless clusters respectively.

We determine what happens to the noiseless clusters when the network pa-
rameters are very slightly perturbed. We have found that two distinct types
of noiseless clusters can be identified. The first type disappears with even the
slightest perturbation, making it useless in practice. The second type instead be-
comes quasi-noiseless, making it a viable candidate for applications. We show
how to determine the degree to which these noiseless clusters become quasi-
noiseless by looking at the other normal modes of the network.

We also explain how a network of oscillators, including an optional heat bath,
can be simulated with an optical setup as described in [3]. We suggest this setup
can be used to verify our findings.
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1 Introduction

The harmonic oscillator is one of the simplest physical systems with interesting
dynamics. Despite its elegant simplicity it shows up in many different situa-
tions, from a simple mass on a spring to the vibrations of atoms in a lattice.
In fact, particle physicist Michael Peskin is said to have stated that ”Physics
is that subset of human experience which can be reduced to coupled harmonic
oscillators.” It is no wonder then that the quantum mechanical version of this
system has been extensively studied. In this thesis, we study the dynamics of
networks of coupled quantum harmonic oscillators.

In their paper ’Synchronization, quantum correlations and entanglement in
oscillator networks’, Manzano et. al. [2] demonstrated that these networks
show interesting behavior when introduced to a thermodynamical environment.
Specifically, they show that some vibrations in the network decay slower than
others, which can lead to synchronization. Furthermore, some vibrations do not
decay at all! These vibrations are called noiseless clusters. Noiseless clusters are
a specific instance of decoherence-free subspaces, which are essential to produce
long-lived optical states which can be used for quantum memory.

We study the occurrence of these noiseless clusters in networks which are ran-
domly generated. Our focus lies on what happens to noiseless clusters when the
network is slightly perturbed.

First, we explain the theoretical background behind network of quantum har-
monic oscillators. This includes the dynamics of the oscillators, the generation
of the random network, and some results from the perturbation theory of eigen-
value problems. We also explain how symmetry can affect the occurence of
noiseless clusters, and describe an optical setup due to Nokkola et. al. [3] with
which a quantum network of oscillators can be simulated. After that, we exam-
ine how noiseless clusters behave when the network is perturbed. We identify
two types of noiseless clusters: degenerate and sporadic, and look at their quali-
tative differences. For a given noiseless cluster, it is possible to determine what
its type is by looking at the other normal modes in the network.

We find that the degenerate clusters vanish without a trace when even the
slightest perturbation is present in the network. On the other hand, the spo-
radic clusters are well-behaved: they become quasi-noiseless when the network
is perturbed. We derive an equation which describes exactly how quasi-noiseless
they become.

This thesis is part of the bachelor programs Applied Physics and Applied Math-
ematics at the Delft University of Technology.
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2 Theoretical background

In this section, the theoretical background required for the rest of the thesis is
laid out. First, the harmonic oscillator is introduced. We then transition to the
quantum mechanical version of the harmonic oscillator. After that, we explain
the dynamics of a network of coupled quantum harmonic oscillators, as well as
their behaviour when introduced to a thermodynamical environment. Then we
introduce the concept of a noiseless cluster. We then briefly summarize how
a system of oscillators can be simulated with an optical setup, as described
by Nokkola et. al. [3] Next, we introduce the Erdös-Renyi model of random
networks, and explain how such a network can be interpreted as a network of os-
cillators. We also discuss how noiseless clusters arise when symmetry is present
in the network. Finally, we state some theorems from the perturbation theory
of eigenvalue problems, which are required for some of our results.

We assume that the reader has a basic working knowledge of linear algebra,
ordinary differential equations, probability theory, abstract algebra and quan-
tum mechanics.

2.1 Oscillators and their dynamics

2.1.1 Classical harmonic oscillators

The harmonic oscillator is one of the most fundamental physical systems. It can
be described in several (equivalent) ways, one of which is following differential
equation:

ẍ(t) = −ax(t) (1)

where a is some constant. The reason this system is called a harmonic oscillator
is because the general solution to the equation is x(t) = A sin(

√
at+ φ), where

A and φ are constants determined by the initial conditions. x(t) is just a sine
wave, so it is described by harmonic motion.

This differential equation frequently arises when looking at the motion of some
object when it is nearly at equilibrium. Consider a particle with mass m in
some potential V (x), and assume that V has a local minimum at the origin If
we furthermore assume that the particle always remains very close to the origin,
the potential in this region can be a approximated by the first few terms of its
Taylor series.

V (x) ≈ V (0) + xV ′(0) +
1

2
x2V ′′(0) (2)

Since 0 is a local minimum of V , V ′(0) must be 0. We are then left with the
quadratic potential V (x) ≈ V (0) + 1

2x
2V ′′(0). Using Newton’s second law, we

get differential equation (1) with a = V ′′(0)
m .

The above derivation is very general, and implies that every system sufficiently
close to equilibrium can be approximated by a harmonic oscillator.
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In this thesis, we concern ourselves mainly with the quantum mechanical ver-
sion of such systems. Therefore from now on, the terms ’quantum harmonics
oscillator ’, ’harmonic oscillator ’ and ’oscillator ’ are used interchangeably, and
all refer to the quantum mechanical version.

2.1.2 One-dimensional Quantum Harmonic Oscillators

The one-dimensional quantum harmonic oscillator is described by a quadratic
potential, conveniently centered at the origin. If we describe this system in
Cartesian coordinates, the Hamiltonian takes the following form [9].

Ĥ = − ~2

2m

∂2

∂x2
+

1

2
ω2mx2 (3)

The constant ω is referred to as the frequency of the oscillator. The Schrödinger
equation for this Hamiltonian can be solved exactly, which results in the energy
levels

En = ~ω(n+ 1/2) (4)

where n is nonnegative positive integer.

2.1.3 Higher-dimensional Oscillators and Multiple oscillators

Now we consider an N-dimensional quantum harmonics oscillator. We use the
Cartesian coordinates x1, x2, ...xN . The potential is still quadratic in all the
coordinates, which results in the following Hamiltonian.

Ĥ =

N∑
i=1

− ~2

2m

∂2

∂x2
i

+
1

2
ω2mx2

i (5)

From this equation we see that we can write Ĥ as the sum of the Hamiltonians
of N independent one-dimensional oscillators. Since there are no cross-terms,
this means that one N-dimensional quantum harmonics oscillator is equivalent
to a system of uncoupled N one-dimensional oscillators. Therefore, the energies
are now given by

En1,n2,...nN
= ~ω(

N∑
i=1

ni + 1/2) (6)

where every ni is a nonnegative integer.

Comparing equations (4) and (6) we see that the allowed energies are exactly
the same. However, all energies except the ground state of the N -dimensional
oscillator are degenerate, since there are many ways for N nonnegative integers
to sum up to the same result. For example if we take N = 2 and describe
the states as a two-tuple (n1, n2), the states (1, 1), (2, 0), (0, 2) all have energy
5/2~ω.
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2.1.4 Coupled oscillators

Going one step further, we can consider a system of oscillators and add linear
interaction terms to (5) to make couplings between the oscillators. Note that
here we interpret (5) as N independent uncoupled oscillators instead of one N -
dimensional oscillator. These interaction terms take the form −λijxixj , where
λij is strictly positive.

Since our system only consists of terms like x2
i and xixj , we can write the

potential as a quadratic form. Writing x = (x1, x2, ..., xN )T , we can see that

V (x1, ..., xN ) =
1

2
x>Mx (7)

where Mii = mω2, and Mij = Mji = −λij . We will almost exclusively use this
description of the system. Any system of linearly coupled harmonic oscillators
has a matrix M , and any symmetric matrix M defines a system of linearly cou-
pled harmonic oscillators. From now on, we will call M the network matrix of
the system.

A convenient feature of this way of writing V is that M is symmetrical by
construction. Combining this potential with the momentum term written as a
vector, we get the following Hamiltonian.

Ĥ =
1

2m
p>p+

1

2
x>Mx (8)

This way of writing Ĥ makes it possible to elegantly solve the dynamics of
the system by a change of variables. Since M is real symmetric, let Q be an
orthogonal matrix for which D = Q>MQ is diagonal (the fact that such a Q
exists is a well-known result from linear algebra [10]). Then change variables to
x = QX and p = QP . This results in

Ĥ =
1

2m
(QP )>(QP ) +

1

2
(QX)>M(QX)

=
1

2m
P>(Q>Q)P +

1

2
X>(Q>MQ)X

=
1

2m
P>P +

1

2
X>DX

because of the properties of Q. Since D is diagonal, the new Hamiltonian de-
scribes n uncoupled harmonic oscillators. These uncoupled oscillations in the
network are called normal modes, and their frequencies are determined by the
eigenvalues of M , which are encoded in D.

From now on, we use the term ’normal mode basis’ when writing equations
using the X and P variables, and the term ’standard basis’ when writing equa-
tions with the x and p variables.
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2.1.5 Heat Bath of Oscillators

Now we examine a system of oscillators coupled to a common heat bath. We
construct the heat bath and system-bath interactions as in [2]. To construct
this system, we begin with the hamiltonian of the bath itself. Our bath consists
of infinitely many uncoupled oscillators, which are described by the following
Hamiltonian.

ĤB =
1

2

∞∑
j=1

(
P2
j

Mj
+ sjX2

j ) (9)

Here Xj and Pj are the position and momentum operators of the j-th oscillator.
Mj and sj represent the mass and the ’spring constant’ of the oscillator.

The interaction between the system and the bath is modelled by linearly cou-
pling (as in section 2.1.4) the network oscillators to the bath oscillators. Each
bath oscillator gets a parameter λi which determines how strongly it interacts
with the network. γ determines the overall strength of the couplings. In this
model, all the network oscillator couple equally strong to a given bath oscillator.
The system-bath interaction Hamiltonian is

Hsb = −√γ
∞∑
j=1

λjXj(
n∑
i=1

xi) (10)

which can be rewritten by changing the order of summation to

Hsb = −
n∑
i=1

xiB̂ (11)

where B̂ =
√
γ
∑∞
j=1 λjXj . In equation (11), we see from the symmetry in

the xi’s that every node in the network is coupled equally strong to the bath.
However, this is not true for the normal modes, as can be seen by changing
to the normal mode coordinates X and P . In these coordinates, x = QX and
therefore xi =

∑n
j=1QijXj . Hence, the system-bath interaction Hamiltonian

is:

Hsb = −
n∑
i=1

(

n∑
j=1

QijXj)B̂ (12)

After changing the order of summation and rearranging the terms, we get:

Hsb = −
n∑
j=1

Xj(

n∑
i=1

Qij)B̂ (13)

Equation (13) tells us that the strength of the coupling between the j-th normal
mode and the bath is determined by kj =

∑n
i=1Qij . This fact was first noted

by Manzano et al. in [2]. kj is equal to the inner product of the j-th normal
mode with the center of mass coordinate, xcm =

∑n
i=1 xn. From now on, we
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will call xcm the ’dissipative mode’ (even when it is not a normal mode), and we
will call kj the ’overlap with the dissipative mode’. kj is also equal to the sum
of the coefficients of the (normalized) normal mode vector in the standard basis.

Remarkably, when kj = 0, the normal mode is not coupled to the heat bath at
all. This has important consequences for the dynamics of the system.

2.1.6 Dissipation

Now that we have described the Hamiltonians of the system, the bath, and their
interaction, it is possible to describe how dissipation occurs. Since the quantum
heat bath represents the thermodynamical environment of the system, its state
is fully unknown. On the other hand, the initial conditions of the system are
within our control. But since the system and the bath evolve together, our
ignorance about the state of the environment ’infects’ the system.

To be able to describe uncertainty about the quantum state of a system, den-
sity matrices were invented. Note that this is not the same uncertainty as in
Heisenberg’s principle. ’Normal’ quantum uncertainty says something about the
measurements performed on a (in theory completely known) wavefunction. In
the density matrix formalism, the state of the quantum system itself is modelled
probabilistically. The system is said to be in a mixed state rather than a pure
state.

The density matrix is defined as follows:

ρ =
∑
i

pi|ψi〉〈ψi| (14)

In this equation, i is an index which ranges over the possible states of the system
(after choosing an orthonormal basis). pi represents the (classical) probability
that the system is in the state |ψi〉. We can contrast equation (14) to the way
in which the state of a quantum mechanical system can be described as a linear
combination of basis states.

ψ =
∑
i

ai|ψi〉 (15)

where |ai|2 is the probability that, if measured, the system will collapse to state
|ψi〉.

When the system states is described as |ψ〉, the evolution is the system is gov-
erned by the Schrödinger equation [9].

∂

∂t
|ψ〉 = −~

i
H|ψ〉 (16)

Similarly, as can be straightforwardly derived by using the Schrödinger equation,
the density matrix evolves with the von Neumann equation:

d

dt
ρ = − i

~
[H, ρ] (17)
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where [·, ·] denotes the commutator bracket.

Now we must consider our network of oscillators as a subsystem of a larger
(closed) system, which includes the heat bath. Since the state of the environ-
ment is in principle completely unknown, it is no easy feat to determine the
evolution of our subsystem. It is possible to derive a Lindblad master equation
for this system, which approximates the dynamics of the subsystem when cer-
tain assumptions hold. The derivation of this equation is beyond the scope of
this thesis, and we refer to [2] for more information.

dρ(t)

dt
=− i[Hs, ρ]

− i

4

N∑
n=1

Γn([Qn, {Pn, ρ}]− [Pn, {Qn, ρ}])

− 1

4

N∑
n=1

Dn([Qn, [Qn, ρ]])− 1

Ω2
[Pn, [Pn, ρ]])

(18)

In this equation, ~ is set to 1, the curly brackets are anticommutators ({a, b} =

ab + ba), Γn = γk2
n, and Dn =

γk2nΩn

tan (Ωn/2kBT ) . Qn and Pn are the position and

momentum operators of the n-th normal mode, respectively. Ωn is the eigenfre-
quency of the n-th normal mode.

The validity of equation (18) depends on the following assumptions [15]. Firstly,
the coupling between the system nodes and the bath nodes is weak compared
to the couplings of the system nodes to each other. Secondly, we assume the
system state and the bath state are at all times uncorrelated. This is a unrealis-
tic assumption in physical systems, but it can be justified as an approximation
if the correlations between the system and the bath are weak and short-lived
[15]. Thirdly, the environment at t = 0 is assumed to be in thermal equilibrium.
The final approximation required is the rotating wave approximation. In this
approximation, terms which oscillate much faster than the system as a whole
are neglected. There is also the implicit assumption that the system evolution
is Markovian, meaning that the density matrix at time t determines completely
how the system evolves at that time.

Examining equation (18) closely, we see that it is equation (17) with a bunch
of extra terms added. To make some sense of (18), we can take a look at
the expecatation values of Qn and Pn and their time-evolution. The relevant
equations are stated below, and are derived in appendix A.

d

dt
〈Qn〉 = 〈Pn〉 −

1

2
Γn〈Qn〉

d

dt
〈Pn〉 = −Ω2

n〈Qn〉 −
1

2
Γn〈Pn〉

(19)
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The first term in each equation originates from the [Hs, ρ] term in equation
(18). These terms considered alone describe a harmonic oscillator. The second
term in each equation only dampens Qn and Pn, since Γn is never negative.
From this system it is clear that Γn, which is equal to γk2

n, controls the speed
at which the oscillator decays to a state where 〈Qn〉 = 〈Pn〉 = 0. Furthermore,
when kn = 0, Dn and Γn are both also zero. In this case, the normal mode n
evolves as if no heat bath were present at all.

(a) Γ = 0 (b) Γ = 0.5

(c) Γ = 0 (d) Γ = 0.5

Figure 1: Phase diagram of 〈Q〉 and 〈P 〉 (a and b) and time evolution of 〈Q〉
(c and d). Ω = 1 in all figures. Initial conditions are Q(0) = 1, P (0) = 0. In all
figures, t goes from 0 to 20.

Figure 1 shows how the expectation values of P and Q evolve in two scenar-
ios. In the case of Γ = 0, the phase diagram shows that the evolution is periodic
with period. In the case of Γ = 0.5, the expectation values quickly decay to 0.
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We have seen that Γn greatly influences the rate at which a normal mode de-
cays. Also, we have seen that for kn close to zero, Γn and Dn are very small.
This motivates the following definition.

Definition 1. A noiseless cluster of a linearly coupled network of quantum
harmonic oscillators is a normal mode which has kn = 0. A quasi-noiseless
cluster is a normal mode for which kn is very close to 0.

The definition of a quasi-noiseless cluster is somewhat ambiguous because
of the phrase ’very close to’. In our case, we will perturb network matrices
which have noiseless clusters. The strength of the perturbation is controlled
with a parameter ε. We deem a normal mode a quasi-noiseless cluster if kn(ε)
is continuous in some interval around 0 and if kn(0) = 0.

2.2 Experimental implementation of oscillator networks

A lot of research done on complex quantum networks has been theoretical in
nature. Among others, complex quantum networks have been studied in the
contexts of delocalization in networks with high clustering [4], phase transition
of light [5], quantum random walks [6], and determining connectivity with a lo-
cal probe [7]. However, not many physical experiments have been performed on
these networks. This might be because creating an arbitrary physical complex
quantum network seems to be a daunting task. It requires precise control over
the interactions between all the nodes in the network, and the number of nodes
must be sufficiently large if one wants to study networks with complex features.

However, Nokkola et al. have found a way to ”create and control complex
quantum networks with arbitrary topology in a single setup” [3]. They describe
an optical setup which makes it possible to simulate the evolution of a complex
quantum network of oscillators just like the ones in section 2.1.4. In this section,
we describe how their setup works and how it could be applied to verify our
results.

Before the setup can be created, some things must be calculated: first we must
determine the network matrix M which is to be simulated, and choose a time
t. This matrix could be a that of a network found ’in the wild’ or it could be
designed for some purpose. We orthogonally diagonalize M to find the normal
modes of the network Q = T−1

1 q, P = T−1
2 p, and their frequencies Ωi. Using

these, we calculate the matrix S which maps the initial state of the normal mode
quadratures (Q(0), P (0))> to their final state (Q(t), P (t))>.

S =

(
DΩ
cos DΩ

sin

−DΩ
sin DΩ

cos

)
(20)

The equation above shows the block form of S. The i-th diagonal entry of DΩ
cos

is cos(Ωit), and DΩ
sin is similar. With this matrix and the expressions q = T1Q,

12



p = T2Q, we compute the matrix Sv which maps (q(0), p(0))> to (q(t), p(t)),

Sv =

(
T1 0
0 T2

)
S

(
T−1

1 0
0 T−1

2

)
(21)

This final matrix Sv is then decomposed with a Bloch-Messiah decomposition
into Sv = R>1 ∆sqR2, where R1 and R2 are symplectic and orthogonal, and
∆sq is a diagonal squeeze matrix. The matrices R1, R2 and ∆sq determine the
building blocks of the optical setup. For our purposes, the initial state of the
system is unimportant, which means we can neglect the R2 matrix.

2.2.1 Optical setup

In the experimental setup, a large number of entangled photons is produced
with a mode-locked laser. These photons are then filtered and amplified by a
frequency comb. The optical modes produced by this comb will perform the
role of the normal mode oscillations.

When the optical modes have been generated, they need to be ’put through’ the
matrix Sv. First the modes must be squeezed according to ∆sq. This is done
by controlling the spectral shape of the frequency comb so that it decreases or
increases the amplitude of the optical modes appropriately. The spectral shape
of the comb is controlled by a parametric process, of which the parameters are
optimized so that the comb closely matches ∆sq.

The only thing left is to apply the matrix R1 to the squeezed optical modes.
This is done by modifying the basis along which the modes are measured. The
measurement is performed by using homodyne detection with a local oscilla-
tor as described in [8]. By choosing the appropriate pulse shape for the local
oscillator, any node in the network can be addressed.

2.2.2 Results of the simulation

Figure 2 shows two of the networks which Nokkola et. al. simulated. Figure 3
shows the result of their simulation of the networks. In the lower part of each
box, the theoretical (brown line) and experimental (black line) mean number
number of photons in each optical mode can be compared. The relative errors
in the left and right boxes are 5.3% and 5% respectively. The mean number of
photons 〈n〉 in the optical modes is directly analogous to n in equation (4), and
determines the energy in each oscillator. The figure shows that the measured
values of 〈n〉 are close to the theoretical values for every node in both networks.
This gives reason to believe that the simulation approximates the network well.
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Figure 2: Two simulated networks from [3]. In network A, the green connections
are 0.6 times as strong as the red connections. Network C is an Erdös-Renyi
network with 50 nodes. All the connections in network C are equally strong.

Figure 3: Results of optical simulation of two networks at t = 50 from [3]. The
left and right boxes use networks A and C from figure 2 respectively. The top
part of each box shows how well ∆sq was approximated. In red are the diagonal
entries of ∆sq, in blue is the approximation by the parametric pump. The
middle part of the boxes shows the pulse shape used to address the 26-th node.
The color plot is the amplitude, and the grey line is the phase. The bottom
part shows the theoretical (brown) and experimental (black) expectation values
of the number of photons in each node
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2.2.3 Application

The optical setup described is very versatile since the network matrix used is,
in principle, arbitrary. The limiting factors are the number of optical modes
available, how well ∆sq can be approximated, and how well a given node can
be addressed. The setup can even be used to simulate the thermodynamical
heat bath described in section 2.1.5, since the bath also consists of harmonic
oscillators.

We suspect therefore that it is possible to verify our results, in particular the-
orem 6, with this setup. We can imagine creating a network matrix with a
sporadic noiseless cluster, and simulating perturbed versions of the network
with the optical setup to see how quickly the noiseless cluster decays. A pos-
sible problem is that simulating the heat bath requires infinitely many optical
modes. We are unsure if the number of optical modes available is large enough
to approximate such a heat bath to a sufficient degree.

15



2.3 Random Networks and Symmetry

2.3.1 Erdös-Renyi networks

A random graph is a graph which is also a random variable. There are many
ways to generate random graphs, but one of the simplest models is called the
Erdős–Rényi (ER) model [12]. There are two versions of this model, but we will
only consider the N, p version. This model has two parameters: N and p.

A graph is generated as follows: first, create an empty graph with N vertices.
Then, for each possible edge, add the edge to the graph with probability p.
Once all the edges have been considered, we are done.

Since we want to consider random networks of coupled oscillators, we must
also have some way to translate a random graph to a network matrix. This can
be done by considering the adjacency matrix A of the graph. This matrix will
satisfy Aij = 1 if there is an edge between nodes i and j, and 0 otherwise. Mul-
tiplying this matrix by the desired strength of the couplings λ, and setting the
diagonal entries to mω2, we obtain a network matrix which represents the graph.

Note that the previous section three extra parameters have been introduced.
The model for random oscillator networks now has 5 parameters: p, N , ω, m
and λ. However, the parameters m and ω do not affect the normal modes,
since subtracting mω2 from the diagonal of the network matrix only results in
a global eigenvalue shift. Similarly, the λ parameter does not affect the normal
modes, since multiplying a matrix by a constant leaves its eigenvectors unaf-
fected. Regardless, we include them in the model.

Of course, many other methods of generating the network matrix are possi-
ble. The only restrictions are that the network matrix must be real symmetric,
and that it the off-diagonal entries must be nonpositive.

2.3.2 Noiseless clusters from degeneracy

A common way through which noiseless clusters arise in random networks is via
degeneracy. The following theorem shows how.

Theorem 1. Let M be the network matrix (as described in section 2.1.4) of a
network of oscillators. If M has two linearly independent eigenvectors with the
same eigenvalue, then the network has a noiseless cluster.

Proof. Suppose v and w are two linearly independent normal modes of the
network with the same frequency ω. Express v and w in the node basis {x1...xn},
so that v =

∑n
i=1 vixi and w =

∑n
i=1 wixi. Now consider the following linear

combination of v and w:

u = v −
∑n
i=1 vi∑n
i=1 wi

w (22)
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v and w are linearly independent, so u cannot be the zero vector. Furthermore,
u is also a normal mode with frequency ω. The j-th coefficient of u is:

uj = vj −
∑n
i=1 vi∑n
i=1 wi

wj (23)

Summing all the coefficient of u to compute k gives:

k =

n∑
j=1

uj =

n∑
j=1

(vj −
∑n
i=1 vi∑n
i=1 wi

wj) =

n∑
i=1

vi −
∑n
i=1 vi∑n
i=1 wi

n∑
i=1

wi = 0 (24)

This shows that u is a normal mode of M of which the coefficients (in the
standard basis) sum to zero, making it a noiseless subspace.

2.3.3 Permutations

Degeneracies in the spectrum of M can be found by examining the symmetries
of the network. These symmetries are permutations of the nodes which do not
affect the dynamics of the system.

In our context, permutation are described by permutation matrices. A per-
mutation can be associated with a linear transformation by letting it permute
the basis vectors of a vector space. So if σ is a permutation of {1..n}, and
{e1...en} is a basis of an n-dimensional vector space, then σ can be associated
with the linear transformation Pσ which sends ei to eσ(i).

If we express P in the basis {e1...en}, then P has a exactly one 1 in every
row and every column, and all the other entries are 0. Also, multiplication
of matrices is compatible with the composition of permutations. If σ and ρ
are permutations, then Pσ(Pρei) = eσ(ρ(i)) = eσ◦ρ(i) = Pσ◦ρei. Since matrices
are uniquely defined by their action on the basis vectors and i was arbitrary,
PσPρ = Pσ◦ρ.

Symmetries in the network are described by permutation matrices which com-
mute with M .

MP = PM (25)

This equation effectively states that relabeling the nodes and applying the net-
work dynamics is the same as first applying the dynamics and then relabeling
the nodes.

It turns out that symmetries of this kind can very easily ’force’ degenerate
eigenvalues to be present. This is proven in the following theorem.

Theorem 2. Let M be an n-dimensional hermitian matrix, and let ρ be a per-
mutation of 1...n. Let P be the permutation matrix corresponding to ρ. Suppose
that P commutes with M , and that ρ has a cycle of length 3 or greater. Then
M has a duplicate eigenvalue.
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To prove this theorem, we need the following lemma’s. The proof of lemma
1 is fairly elementary and can be found in [17], for example.

Lemma 1. Let ρ be a permutation written as a product of k disjoint cycles,
and let li be the length of the i-th cycle of ρ. Let P be the permutation matrix
corresponding to ρ. Then the eigenvalues of P are exactly

k⋃
i=1

{z ∈ C|zli = 1} (26)

Proof. Let let σ be an arbitrary cycle of ρ with length l. Then there are numbers
nk for k ∈ {1..l} which σ permutes cyclically. Correspondingly, there are basis
vectors vectors ek which are permuted cyclically by P . Now consider the vector

v =
n∑
k=1

ek exp(2πimk/l) (27)

for any m ∈ {0..l− 1}. Since P sends ek to ek+1 (and el to e1), Pv is the same
as exp(2πim/l)v, and therefore the l-th roots of unity are eigenvalues of P .

In this way, we obtain l eigenvectors for each cycle of length l. Since the sum of
the lengths of the disjoint cycles (including trivial ones) is equal to the dimension
of the matrix, we have found all eigenvalues and eigenvectors.

Lemma 2 is a basic result from linear algebra, which can be found in [10] or
many other textbooks.

Lemma 2. Let P and M be diagonalizable matrices in Cn2

. Then if PM =
MP , there exists a basis of Cn consisting of simultaneous eigenvectors of P and
M .

Now for the proof of the theorem. The first lemma explicitly shows that P
is diagonalizable. Since PM = MP by assumption, this means P and M are
simultaneously diagonalizable (over C) by lemma 2.

Assume by contradiction thatM has no duplicate eigenvalues. Then the eigenspaces
of M are all 1-dimensional, which forces every eigenvector of M to be an eigen-
vector of P . And since M is real and symmetric, is has real eigenvalues and
eigenvectors. Therefore, P has an eigenbasis of purely real vectors. Also, P
has at least one complex eigenvalue by lemma 1. The contradiction follows by
noticing that P has only real entries, so it cannot have a real eigenbasis together
with a complex eigenvalue.

Using theorems 1 and 2 together we conclude that all but the most trivial sym-
metries in the network necessarily give rise to noiseless clusters. However, these
exact symmetries generally only occur in theoretically constructed networks.
To figure out if approximate symmetries also give rise to approximate noiseless
clusters, we need to find out what happens to the eigenvalues and eigenvectors
of a matrix when it is slightly perturbed.
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2.4 Perturbation Theory of Eigenvalue Problems

In this section, we state (without proof) some results from perturbation theory
of finite-dimensional eigenvalue problems. For more information, including the
proofs of the theorems, we refer to [11].

The first theorem concerns the eigenvalues of a perturbed matrix.

Theorem 3. Let A ∈ Rn2

be symmetric with eigenvalues λi, and let A(ε) be
a small perturbation of A which is symmetric for every ε. Then there exist
functions λi(ε) which are power series in ε convergent for small |ε| for which
λi(0) = λi.

This theorem means that if we keep proper track of which eigenvalue is
which, the eigenvalues of the perturbed matrix are ’close to’ the eigenvalues of
the original matrix.

The second theorem tells us about the eigenvectors of a perturbed matrix.

Theorem 4. Let A ∈ Rn2

be symmetric. Suppose A(ε) is symmetric for every ε
with A(0) = A, and suppose the entries of A(ε) are power series in ε convergent
for small |ε|. Suppose λ is an eigenvalue of A with multiplicity k. Then there
exist power series
λi(ε) for i = 1..k
v1
i (ε)..vni (ε) for i = 1..k

convergent for small |ε| such that (v1
i (ε), ..., vni (ε))> is an eigenvector of A(ε)

with eigenvalue λi(ε).

This theorem tells us that for an analytic perturbation of A, the coeffi-
cients of the eigenvectors can be written as a power series in ε. Furthermore,
theorems 3 and 4 permit us to calculate the eigenvalues and eigenvectors of a
perturbed matrix to a first order approximation. The following derivation fol-
lows [9] roughly.

Suppose a hermitian n by n matrix A is given, along with the analytic per-
mutation εB, where B is also hermitian. The eigenvalue problem we must solve
is

(A+ εB)v = λv (28)

Now, the preceding theorems allow us to write v = v0 + v1ε + v2ε2 + ... and
λ = λ0 + λ1ε+ λ2ε2 + .... Plugging this into equation (28) gives:

(A+ εB)(v0 + εv1 + ...) = (λ0 + ελ1 + ...)(v0 + εv1 + ...) (29)

Writing this out, collecting like terms of ε, and dropping any terms of order ε2

or higher gives

Av0 + ε(Bv0 +Av1) = λ0v0 + ε(λ1v0 + λ0v1) (30)
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We can further simplify this equation by noting that Av0 = λ0v0 must hold.
This can be seen by settings ε = 0 in equation (29). Therefore, the first terms
on both sides cancel out. Simplifying this further by dividing by ε on both sides
results in the following expression:

Bv0 +Av1 = λ1v
0 + λ0v

1 (31)

Next, take the inner product of (31) with v0 from the left to get:

〈v0|Bv0〉+ 〈v0|Av1〉 = λ1〈v0|v0〉+ λ0〈v0|v1〉 (32)

Using the fact that A is hermitian, and that Av0 = λ0v
0, this equation can be

simplified to:
λ1 = 〈v0|Bv0〉 (33)

We now work out an expression for v1. Let v0
i be the set of eigenvectors of A,

with corresponding eigenvalues λi.

Note that λi is the i-th order correction to the eigenvalue of (A+ εB), while λi
is the i-th eigenvalue of A.

A is symmetric, so the v0
i vectors form a basis of Rn. We can therefore write v1

as a linear combination of the v0
i vectors.

v1 =

n∑
i=1

civ
0
i (34)

We also rewrite equation (31).

(A− λ0)v1 = (λ1 −B)v0 (35)

Now plug (34) into (35), and use that Av0
i = λiv

0
i .

n∑
i=1

ci(λi − λ0)v0
i = (λ1 −B)v0 (36)

Taking the inner product of v0
m with (36), and rewriting gives

cm(λm − λ0) = λ1〈v0
m|v0〉 − 〈v0

m|Bv0〉 (37)

Since v0 is an eigenvector of A, we can assume, without loss of generality, that
v0 = v0

n and λ0 = λn. Substituting this in (37), as well as substutiting for λ1

using (33) gives

cm(λm − λn) = 〈v0
n|Bv0

n〉〈v0
m|v0

n〉 − 〈v0
m|Bv0

n〉 (38)

For m = n, the equation results in 0 = 0. However, we are free to choose cn to
be equal to 0. If a vector a satisfies equation (35), then so does a+ cv0.
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For m 6= n, we can solve for cm.

cm =
〈wm|Bwn〉
λm − λn

(39)

Using this expression for cm, we the final expression for the first-order correction
to the eigenvector is:

v1 =
∑
m6=n

〈wm|B|wn〉
λm − λn

wm (40)

2.4.1 Degeneracy

Note that care must be taken in the above derivation. Theorem 4 does not
guarantee that any eigenvector of A will be analytically perturbed, only that
there exist n eigenvectors for which this is the case. In the case of only 1-
dimensional eigenspaces this is not a problem, because there is only one possible
choice for the eigenvector basis (up to scalar multiplication). But when the
multiplicity of λ is 2 or greater, expression (40) is only valid for the proper
choice(s) of v0. In this case, the extra terms where λm = λn drop out of (40)
exactly like the cnv

0
n term did.
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3 Results

As we have seen, noiseless clusters can arise from various symmetries in ER
networks. But there is no reason to assume all noiseless clusters are the result
of symmetry. We have found that a distinction can be made between two types
of noiseless clusters, and the types behave very differently in the presence of
small perturbations.

3.1 Occurence of noiseless clusters in homogeneous net-
works

Cabot et al. [1] numerically determined the probabilities of noiseless clusters
arising in Erdos-Renyi networks. We were able to reproduce their result, which
is shown in figures 4 and 5. Only the left half of the figure is reproduced, since
the figure must be symmetrical around p = 0.5. The following theorem indicates
why.

Theorem 5. If G is a network with a noiseless cluster, then the complementary
network (which has edges exactly where G does not) also has a noiseless cluster.

Proof. Denote the complement of G by Gc. Let M be the network matrix of G
(as described in section 2.3.1). Then M has an eigenvector v with eigenvalue
ωn of which the coefficients in the standard basis sum to 0. Let M c be the
network matrix of Gc. Then M c = λT − (mω2 − λ)I −M , where T is a matrix
in which every entry is 1. Since the coefficients of v sum to 0, it must be true
that Tv = 0. Therefore:

M cv = λTv−Mv+(mω2−λ)Iv = 0−ωnv+(mω2−λ)v = (mω2−ωn−λ)v (41)

and so v is also a normal mode of the complement of G, which makes v a
noiseless cluster of Gc.

From the figures, it is clear that noiseless clusters occur much more frequently
for small N . This is likely because small networks are often symmetrical in some
way, and therefore are likely to have noiseless clusters by theorems 1 and 2.

The larger networks with p close to zero have fewer edges, making them more
likely to contain multiple small disconnected components. These smaller sub-
networks can then contain noiseless clusters with a greater probability. The case
for p close to 1 follows by symmetry.
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Figure 4: Frequency of ER networks with a noiseless cluster. N and p are the
ER parameters. Figure created by Cabot et. al [1]

Figure 5: Reproduction of the left half of figure 4

23



3.2 Inhomogeneous networks

Instead of considering networks where the network matrix is exactly known, we
now apply a perturbation to the strength of the couplings and or frequencies.
The perturbation is modelled in the following way.

ωi = ω0 + δωi (42)

λij = λji = λ0 + δλij (43)

In these equations, δωi and δλij are Gaussian random variables, and their vari-
ances are small compared to ω0 and λ0. We denote the variances of δωi and
δλij by σω and σλ.

The following sections apply to any network matrix where the entries are per-
turbed as specified above. If we imagine physically constructing a given network
of oscillators, the perturbations can be interpreted as small deviations from the
specification.

3.3 Effect of perturbations on noiseless clusters

Even when σω and σλ are very small, the perturbations can have a profound
influence on the presence of noiseless clusters. Firstly, the entries of any reali-
sation of the network matrix are now continuous random variables. Since the
eigenvalues of a matrix depend continuously on the entries of the matrix (see
theorem 3), they too become continuous random variables. It is a basic proba-
bilistic fact that the chance that two random variables are exactly equal is zero
[13]. This means that the chance of duplicate eigenvalues is zero. Therefore,
the method of finding noiseless subspaces described in section 2.3.2 in no longer
applicable.

We now examine if networks with noiseless clusters become networks with quasi-
noiseless clusters when they are perturbed. Unfortunately, this is not true in
general, although it can occur. We identify three different outcomes, demon-
strated by the following three networks.

N(ε) =

(
1 + ε 0

0 1

)
(44)

M(ε) =

(
1 ε
ε 1

)
(45)

K(ε) =

(
2ε2 − 4ε+ 3 1− ε

1− ε 2ε2 − 2ε+ 3

)
(46)

N(ε) represents a network of two uncoupled nodes, where the frequency of the
first node is perturbed by ε. M(ε) represents a network of two uncoupled nodes,
where the perturbation is a small coupling between the nodes. K(ε) represents
a network where the coupling strength and the frequencies of the nodes are both
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perturbed.

N(0) and M(0) are the identity, so by inspection 1√
2
(1,−1)> is a noiseless

cluster present in both unperturbed networks. This same vector is also an
eigenvector of K(0), as can be verified by inspection. All three networks have a
noiseless cluster when unperturbed.

For ε 6= 0 however, the eigenvalues of N are 1+ε and 1, with eigenvectors (1, 0)>

and (0, 1)> respectively. Neither of these normal modes are quasi-noiseless clus-
ters. In fact, their values of k are independent of ε (as long as ε 6= 0). Thus,
even for the smallest nonzero perturbation, the noiseless cluster is completely
destroyed.

The eigenvalues of M(ε) become 1+ ε and 1− ε with eigenvectors 1√
2
(1, 1)> and

1√
2
(1,−1)> respectively. The second of these is a noiseless cluster, regardless of

ε.

Now consider K(ε). It can easily be verified that v = (1, ε − 1)> is an eigen-
vector of K(ε). The sum of the coefficients of the normalization of v is then
k = ε√

1+(ε−1)2
. This expression is zero when ε = 0, and is continuous and

differentiable at 0. Therefore, for ε very small, the noiseless cluster of K(ε)
becomes quasi-noiseless.
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Figure 6: k plotted as a function of ε

Unfortunately, the behaviors of K and M are exceptions, while that of N
is the rule. Numerical simulation confirms that networks with noiseless clusters
arising exclusively from degeneracy of the spectrum show no signs of quasi-
noiseless clusters when a small perturbation is present. These numerical results
are described in section 3.5.

This is problematic for any physical applications, since no physical experiments
can be calibrated to infinite precision. Therefore, noiseless clusters which arise
from degeneracy are useless in practice.

3.4 Types of noiseless clusters

In our numerical simulation, we found that sometimes degenerate clusters occur
when M has no degenerate eigenvalues. We now give these noiseless cluster a
name, and specify how to identify them.

Definition 2. Sporadic noiseless clusters
Let M be a network matrix. A sporadic noiseless cluster of M is an eigenspace
of M in which the coefficients of every eigenvector sum to zero.

This definition includes noiseless clusters which live in a 1-dimensional eigenspace.
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Definition 3. Degenerate noiseless cluster
Let N be a network matrix. A degenerate noiseless cluster of N is a noiseless
cluster which is not sporadic.

Looking again at the previous example, we now see that the noiseless clus-
ters in N(0) and K(0) are degenerate, since the vector 1√

2
(1, 1)> is in the same

eigenspace as 1√
2
(1,−1)>, but is not a noiseless cluster.

In the next section, we shall see that these types of noiseless clusters behave
very differently when the network is perturbed. It is interesting that whether
or not a noiseless cluster is degenerate or sporadic is only dependent on the
unperturbed network matrix.

3.5 Perturbation of a degenerate noiseless cluster

To find out how the two types of noiseless clusters respond to perturbations,
we simulated them numerically. This section describes what happened to the
degenerate clusters.

Figure 7 was created in the following way.

1. Generate an ER networks with p = 0.1 and N = 50

2. Compute the network matrix M

3. Compute a perturbed version M ′ by adding an N(0, 10−10) variables to
every entry of M

4. Diagonalize M ′ and find the smallest k of its eigenvectors. Store k

5. Repeat 3-4 as many times as desired

6. Plot a histogram of the stored values of k

Figure 7 is a realization of just of one (arbitrary) network, but is representative
of networks with only degenerate noiseless clusters. Other simulations gave dis-
tributions with the same general shape and with a mean value of k of the same
order of magnitude.

Figure 8 shows the same simulation performed on a network which had no
noiseless clusters of any type. Remarkably, the two figures look very similar.
They have the same general shape, and the mean of the smallest k is within the
same order of magnitude. By comparing many realization of the two figures, we
concluded that there was no distinguishable difference between networks with a
degenerate cluster and networks with no noiseless clusters. It appears that with
even the smallest perturbation, a degenerate noiseless cluster is just as good as
no noiseless cluster at all.
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Figure 7: Histogram of smallest k after perturbation of a network which had
only a degenerate noiseless cluster. The number of simulations was 5000.

Figure 8: Histogram of smallest k after perturbation of a network which had no
noiseless clusters. The number of simulations was 5000.
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3.6 Perturbation of sporadic noiseless cluster

It turns out that a perturbation of a network with a sporadic noiseless cluster
is guaranteed to produce a quasi-noiseless cluster. We back up this claim with
numerical evidence, as well as the following theorem. Note that this theorem
holds for any network matrix, not just those generated by an Erdös-Renyi model.

Theorem 6. Let N be the network matrix of a network which has a sporadic
normal mode. Let the coefficients of N are perturbed by normal random vari-
ables with mean 0 and standard deviation σ. Denote the normal modes of N
by ψi, and denote their frequency by ωi. Denote the sum of the coefficients of
the n-th normal mode by kn. Without loss of generality, assume the sporadic
noiseless cluster is the n-th normal mode.

Then the distribution of absolute value of the sum of the coefficients of the
perturbed noiseless cluster is (to first order) a folded normal distribution with

σ2
1 = σ2

∑
m6=n

(
1

ωn − ωm
km)2 (47)

Proof. We start using the equation for the perturbed eigenvector from section
3.5. Let H be the matrix with the perturbing entries. Write Hxy for the
component in row x and column y of H. Then each Hxy is normally distributed
with mean 0 and standard deviation σ.

ψ′n =
∑
m 6=n

〈ψm|H|ψn〉
ωn − ωm

ψm (48)

Now sum over the coefficients of each term

k′n =
∑
m 6=n

〈ψm|H|ψn〉
ωn − ωm

km (49)

Now split the inner product into its individual components. Denote by ψx the
x-th component of ψ.

k′n =
∑
m6=n

km
ωn − ωm

∑
x

∑
y

ψxmH
xyψyn (50)

Interchange the summation and rearrange

k′n =
∑
x

∑
y

Hxy
∑
m 6=n

ψxmψ
y
n

ωn − ωm
km (51)

Since each Hxy is N(0, σ2) distributed, each of the terms in the sum over x and

y is also normally distributed, but with standard deviation σ
∑
m 6=n

ψx
mψ

y
n

ωn−ωm
km.
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The sum of all these terms is then also normally distributed (since the Hxy’s
are independent). If we call the standard deviation of this distribution σ1, then

σ2
1 =

∑
x

∑
y

(σ
∑
m6=n

ψxmψ
y
n

ωn − ωm
km)2 (52)

We now expand the quadratic term using the multinomial formula. We split
the quadratic terms and the cross-terms into two seperate sums.

σ2
1 = σ2(

∑
x

∑
y

(
∑
m 6=n

(
ψxmψ

y
n

ωn − ωm
km)2 + 2

∑
(i 6=n,j 6=n,i 6=j)

ψxi ψ
y
nψ

x
j ψ

y
n

(ωn − ωi)(ωn − ωj)
kikj))

(53)
Rearranging the terms, and interchanging the summation, we can rewrite the
second sum to

2σ2
∑

(i 6=n,j 6=n,i 6=j)

1

(ωn − ωi)(ωn − ωj)
kikj

∑
y

(ψyn)2
∑
x

ψxi ψ
x
j (54)

Now notice that the rightmost part is just the inner product between ψi and ψj .
But since they are both eigenvectors of a hermitian matrix, this inner product
is zero. This causes the whole sum to vanish. Therefore, σ1 becomes

σ2
1 = σ2

∑
x

∑
y

∑
m6=n

(
ψxmψ

y
n

ωn − ωm
km)2 (55)

Now interchange the summation and rearrange once more to get

σ2
1 = σ2

∑
m6=n

(
km

ωn − ωm
)2
∑
x

(ψxm)2
∑
y

(ψyn)2 (56)

Notice that the last part of the equation is just the `2 norms of ψm and ψn.
Since ψm and ψn are normalized, this is always 1. We are therefore left with

σ2
1 = σ2

∑
m6=n

(
km

ωn − ωm
)2 (57)

Since k′n is normally distributed with this standard deviation, the result follows
by taking the absolute value of k′n.

Theorem 6 has two important implications. Firstly, it is proof that a spo-
radic noiseless cluster becomes quasi-noiseless when the network is perturbed
slightly. This means we can find or construct a network which contains a spo-
radic noiseless cluster and, unlike in the case of a degenerate noiseless cluster,
be assured that a physical realization of the network (which will have slight
perturbations) contains a normal mode with a long decoherence time.

Secondly, for a given network with a sporadic noiseless cluster, we can determine
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exactly how resistant it is to a perturbation. This can be evaluated using the
ratio between σ2

1 and σ2. We will call this ratio the structure factor and denote
it by S, since it is determined by the structure of the network.

S =
∑
m6=n

(
km

ωn − ωm
)2 (58)

In a way, S represents how strongly a perturbation is amplified by the network.
From equation 58 it is clear that S is determined by the eigenfrequencies of the
network ωi and by the k’s of the other normal modes. Apparently, the normal
modes which are close in frequency to the noiseless mode have a big influence
on S, whereas the modes with a big frequency difference have a small impact.

Since the result of theorem 6 is only valid to first order in perturbation the-
ory, we verify it using numerical simulations. Figure 9 shows the result of the
exact same simulation as those used to produce figures 7 and 8, but performed
on a network with a sporadic noiseless cluster. The figure demonstrates that
the half-normal distribution fits neatly onto the observed data.

Figure 9: Smallest k after perturbation of a network which had one or more
sporadic noiseless clusters. The number of simulations was 10000.

A big contrast can be seen between figure 9 on the one hand, and figures 7
and 8 on the other hand. Firstly, the shape of the distributions is completely
different. Figure 9 is well-fitted by a half-normal distribution, while figures 7 and
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8 more closely resemble some type of skewed normal distribution. Furthermore,
the observed values of |k| for the degenerate clusters are roughly 6 orders of
magnitudes greater than those of the sporadic clusters.

3.7 An upper bound on S in Erdös-Renyi networks

Since there are only a finite number of possible (homogeneous) ER networks
with N nodes, there are a finite number of possible values which ωi can take for
each N . This means there exists a lower bound on |ωn − ωm|, and thus there is
an upper bound on S.

First, we bound km by considering that the normal mode vector of the net-
work must be normalized. We can then see that for a normal mode v with
components vi in a network with N oscillators the following holds.

k = |
N∑
i=1

vi| ≤
N∑
i=1

|vi| ≤
√
N

N∑
i=1

|vi|2 =
√
N (59)

where we have used a basic inequality from real analysis [14].

The lower bound on |ωn−ωm| is much more difficult. The best we were able to
find is a theorem about the distance between the roots of polynomials.

Theorem 7. [16] Let P (X) be a separable polynomial with integer coefficients
of degree n ≥ 2. For any distinct zeros α and β of P (X) it holds that

|α− β| ≥
√

3(n+ 1)−(2n+1)/2H(P )−n+1 (60)

In this equation H(P ) is the height of the polynomial, which is defined as the
maximum of the absolute value of the coefficients of the polynomial.

Since all the oscillators in our ER network have the same frequency and
mass, we may just as well set all diagonal entries to 0, since this shifts all
(eigen-)frequencies equally. Furthermore, the off-diagonal entries of the net-
work matrix are either −λ or 0. This means we can factor out −λ and consider
a matrix in which the entries are either 1 or 0, and multiply the bound by −λ
afterwards. It can easily be verified that the characteristic polynomial of such
a matrix can only have coefficients −1, 0, or 1. Therefore, H(p) = 1 for this
polynomial.

The characteristic polynomial is only separable if all eigenvalues of the net-
work matrix are distinct. If this is not the case, we cannot apply theorem 7.
Therefore, the upper bound on S is only valid for networks with no degenerate
eigenvalues.
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We now put everything together.

S =
∑
m 6=n

(
km

ωn − ωm
)2

≤
∑
m 6=n

(

√
N

λ
√

3(N + 1)−(2N+1)/2
)2

≤ (N − 1)N

3λ2
(N + 1)2N+1

(61)

Unfortunately, this bound is not very helpful, since it grows as NN . By the
time N = 10, the upper bound is already 2.2 ∗ 1023λ−2. The bound on ωn−ωm
is responsible for this, because of that is where the NN term originates. We
were unable to find a better lower bound for the seperation of the eigenvalues.
In our simulations, S never even got close to this bound.
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4 Conclusion

In this thesis we have investigated noiseless clusters in complex quantum net-
works. A network of quantum harmonic oscillators can be described in terms of
its normal modes and frequencies. When all nodes in the network are coupled
to a common heat bath, the normal modes decay at different rates. The rate
of their decay is determined by a k, which is the sum of the components of
the normalized normal mode vector when described in node coordinates. When
k = 0 for a certain normal mode, the network is said to have a noiseless cluster.
When |k| is very small, the network has a quasi-noiseless cluster.

We have shown that there are two different types of noiseless clusters. A degen-
erate cluster is one that arises from a duplicate eigenfrequency of the network.
If a network has a degenerate eigenfrequency, the normal modes corresponding
to that frequency can be combined to form a normal mode with k = 0. We have
demonstrated that when the network is slightly perturbed, these noiseless clus-
ters do not transform into quasi-noiseless clusters. We have numerically shown
that networks with only degenerate noiseless clusters and networks without any
noiseless clusters are indistinguishable when looking at the smallest values of
|k| present in the perturbed network. We therefore conclude that degenerate
noiseless clusters are unusable in any physical experiment, since experimental
variables can in general never be exactly measured or controlled.

We have called the other kind of noiseless cluster sporadic. Sporadic noise-
less clusters do become quasi-noiseless when the network is slightly perturbed.
We have demonstrated this numerically, and formulated a theorem which shows
how |k| is distributed when the coupling strengths and frequencies of the net-
work are perturbed by i.i.d. Gaussian random variables. The distribution of
|k| depends only the variable S, which is determined by the values of k of the
other normal modes, and the difference in frequency between the other normal
modes and the sporadic noiseless cluster.

S =
∑
m6=n

(
km

ωn − ωm
)2

When S is very small, the perturbed values of |k| are also very small. A limi-
tation on our finding is that the theorem is only applicable if the perturbation
of the coupling strengths and of the frequencies of the nodes is equal in size.
In practice, it is unlikely that the perturbations in these physically different
variables have the same distribution.

We have also determined an upper bound on the value of S for Erdös-Renyi
networks of size N with no degenerate normal modes. However, this upper
bound blows up incredibly quickly, as it contains of term in the order of NN .
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Appendix: Derivaton of expectation values

In this appendix, we derive equation (19) from the Lindblad Master equation
(18) of the system. We work in the normal mode coordines, i.e. Qn and Pn are
the position and momentum operators of the n-th normal mode. We also set
~ = 1.

We begin by stating the commutation relations of the normal mode coordinates.

[Qn, Pm] = iδmn

[Qn, Qm] = 0

[Pn, Pm] = 0

(62)

The starting point of the derivation is equation (18), repeated here.

dρ(t)

dt
=− i[Hs, ρ]

− i

4

N∑
i=1

Γi([Qi, {Pi, ρ}]− [Pi, {Qi, ρ}])

− 1

4

N∑
i=1

Di([Qi, [Qi, ρ]])− 1

Ω2
i

[Pi, [Pi, ρ]])

(63)

In this equation Hs is the hamiltonian of the system of oscillators. In normal
mode coordinates, this hamiltonian is

Hs =
1

2

N∑
i=1

(P 2
n + Ω2

nQ
2
n) (64)

We first show that for a time-independent operator T , d
dt 〈T 〉 = tr(T dρ

dt ).

d

dt
〈T 〉 =

d

dt
tr(Tρ) =

d

dt

N∑
i=1

〈ψi|Tρ|ψi〉 =

N∑
i=1

d

dt
〈ψi|Tρ|ψi〉

=

N∑
i=1

〈ψi|
d

dt
(Tρ)|ψi〉 =

N∑
i=1

〈ψi|T (
d

dt
(ρ)|ψi〉 = tr(T

dρ

dt
)

(65)

In this derivation, we have used the fact that dT
dt = 0, as well as the dψi

dt = 0,
since the ψi are stationary basis states of the relevant Hilbert space.

Since the trace is linear, we can compute the terms separately and add ev-
erything up afterwards. We may also cyclically permute any term we like, since
the trace is invariant under cyclic permutation.

We start with the first term of equation (63) for tr(Qn
dρ
dt ). For readability,
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we omit the taking of the trace from now on. From now on the ’=’ symbol must
be interpreted as ’has the same trace’ until we specify otherwise.

− iQn[Hs, ρ] = −i(QnHsρ−QnρHs) = −i(QnHsρ−HsQnρ)

= −i[Qn, Hs]ρ = −i[Qn,
1

2
P 2
n ]ρ = (

−i
2

[Qn, Pn]Pn + Pn[Qn, Pn])ρ

=
−i
2

(iPn + iPn) = Pnρ

(66)

The first term for tr(Pn
dρ
dt ) is very similar, so we skip to the part where the

branching occurs.

− iPn[Hs, ρ] = ... = −i[Pn, Hs]ρ = −i[Pn,
1

2
Ω2
nQ

2
n]ρ

=
−iΩ2

n

2
[Pn, Qn]Qn +Qn[Pn, Qn]ρ =

−iΩ2
n

2
(−iQn +−iQn)ρ

= −Ω2
nQnρ

(67)

We derive the second and third term for Qn and Pn simultaneously. Let T
be either Qn or Pn.

We first consider the third term of equation (63). We only consider the part
with Qi, since the derivation is also valid when Pi is substituted for Qi.

T [Qi, [Qiρ]] = T [Qi, (Qiρ− ρQi)]
=TQiQiρ− TQiρQi − TQiρQi + TρQiQi

=(TQiQi −QiTQi −QiTQi +QiQiT )ρ

=([T,Qi]Qi +Qi[Qi, T ])ρ

=([T,Qi]Qi −Qi[T,Qi])ρ = 0

(68)

The final step is valid because [T,Qi] is a constant (either 0, −1 or 1), and so
the terms cancel. Therefore, the third term of (63) drops out completely.

Now to compute the second term of equation (63). We first show all the terms
with i 6= n evaluate to zero. In this case T commutes with Qi and Pi. Again, we
only consider the first part of the second term of (63). The second part follows
by swapping Pi and Qi in the derivation.

T [Qi, {Pi, ρ}] = TQiPiρ+ TQiρPi − TPiρQi − TρPiQi
= T (QiPi + PiQi −QiPi − PiQi)ρ = 0

(69)

Now consider the case i = n. For now, we leave out the constant −i4 Γi for
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readability.

T [Qi, {Pi, ρ}]− T [Pi, {Qi, ρ}]
= T (QiPiρ+QiρPi − PiρQi − ρPiQi − PiQiρ− PiρQi +QiρPi + ρQiPi)

= (TQiPi + PiTQi −QiTPi − PiQiT − TPiQi −QiTPi + PiTQi +QiPiT )ρ

= (2PiTQi − 2QiTPi + TQiPi − PiQiT − TPiQi +QiPiT )ρ

= (2PiTQi − 2QiTPi + T [Qi, Pi] + [Qi, Pi]T )ρ

= (2PiTQi − 2QiTPi + 2iT )ρ

= 2(PiTQi −QiTPi + iT )ρ
(70)

We bifurcate depending on T , starting with T = Qi:

= 2(PiQiQi −QiQiPi + iQi)ρ

= 2([Pi, QiQi] + iQi)ρ

= 2([Pi, Qi]Qi +Qi[Pi, Qi] + iQi)ρ

= 2(−iQi − iQi + iQi)ρ = −2iQi

(71)

The case T = Pi goes similarly:

= 2(PiPiQi −QiPiPi + iPi)ρ

= 2([PiPi, Qi] + iPi)ρ

= 2(Pi[Pi, Qi] + [Pi, Qi]Pi + iPi)ρ

= 2(−iPi − iPi + iPi)ρ = −2iPiρ

(72)

In both cases, we ended up with −2iTρ. We still have to multiply with iΓi

4 ,

which leaves us with −Γi

2 Tρ.

We now put everything together. From this point, the ’=’ symbol should be
interpreted in the ordinary sense.

d

dt
〈Qn〉 = tr(Pnρ)− tr(Γn

2
Qn) = 〈Pn〉 −

Γ

2
〈Qn〉

d

dt
〈Pn〉 = tr(−Ω2

nQnρ)− tr(Γn
2
Pn) = −Ω2

n〈Qn〉 −
Γ

2
〈Pn〉

(73)

This concludes the derivation.
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