QUuTAF:

A TEST AUTOMATION FRAMEWORK FOR
QUANTUM APPLICATIONS

FERNANDO BETANZO SANCHEZ

%
TUDelft

Delft University of Technology

Electrical Engineering, Mathematics and Computer Science
Quantum & Computer Engineering
Quantum Information and Software

Master Thesis

QuTAF: a Test Automation Framework for
Quantum Applications

Fernando Betanzo Sanchez

Committee Members ~ Dr. David Elkouss

EEMCS
Delft University of Technology

Dr. Przemystaw Pawetczak

EEMCS
Delft University of Technology

Supervisor ~ Prof. Dr. Stephanie Wehner

November, 2020

Fernando Betanzo Sanchez

QUTAF: a Test Automation Framework for Quantum Applications
Master Thesis, November, 2020

Reviewers: Dr. David Elkouss and Dr. Przemystaw Pawetczak

Supervisors: Prof. Dr. Stephanie Wehner

Delft University of Technology

Quantum Information and Software

Quantum & Computer Engineering

Electrical Engineering, Mathematics and Computer Science
Postbus 5

2600 AA and Delft

oo,

QuTech

'-

4
PVl
l,"“\
00 oe® ™" "o
000®®"®qno
@ 00® ™ ™0 g,
PRI
® 6 0o © ® o o o

Abstract

The testing of quantum applications can be approached from three perspectives. The
first one concerns the certification of the accuracy of the quantum device where
the application is run. The second one has to do with the classical verification of
the result output by the application. Yet a third one addresses the problem from
the software engineering perspective. As new quantum applications that run in
Noisy Intermediate-Scale Quantum devices are developed, there is an increasing
need for tools that can help to find bugs and verify that these applications work as
expected. In this thesis we design and develop such a tool. We introduce QuTAF,
a test automation framework for quantum applications that is based in the robot
framework. To the best of our knowledge, this is the first test automation framework
software developed and used for testing quantum applications in a real quantum
node. We prove that our QUTAF is capable of detecting minor deficiencies in current
state-of-the-art quantum hardware, by running tests for small quantum applications
executed in a networked quantum node. We also simulate and test two different
failure scenarios to validate the capabilities of our QUTAF. We simulate quantum
devices affected by depolarizing and dephasing noise, and find that our QuTAF is
able to detect errors introduced by an increase in the depolarization probability, but
is otherwise insensitive to the errors produced by the dephasing of quantum states.
We also simulate bugs present in the quantum programs, and prove that our QUTAF
is able to correctly identify these as failing test cases.

Acknowledgement

This Master thesis is the culmination of my research activities conducted at QuTech
and the Technical University of Delft, during the year of 2020. It is a milestone that
I set as my goal a little more than three years ago. Of course, this would not have
been possible to achieve without the support of all the people, in Mexico and in The
Netherlands, that stood beside me either physically or virtually.

Personally speaking, my first and deepest thank goes to my partner, Danny, the love
of my life. Without your love, your kindness, your bravery, your understanding,
your support, your incentive, and even your pressure, none of this would have been
possible. I hope I can spend the rest of my life trying to pay you back. Thank you
Sabina, my daughter, for reminding me that life is not always as hard as it seems
to be. Thank you for pushing me to be a better person everyday. Thanks to you
too, Joaquin, my baby boy. Thank you for bringing so much light and joy to our life.
Thanks to Ravish Budhrani, Quint van Velthoven, Claudia Vazquez, and Gustavo
Lépez, for the good nights of entertainment and amusement. Last but not least, I
want to thank my mother and father, Alicia and Felipe. There are just not enough
words to thank you for all the support and motivation you have always provided.
Without your teachings and your love, I would not be who I am.

Academically speaking, my first and deepest thank goes to my advisor, Stephanie
Wehner. I would like to thank you for the opportunity of working on a project that
combined two of my academic and professional passions, quantum computing and
software testing. Thank you also for your understanding and flexibility, and for
putting my well-being in front of everything else. Huge thanks to Wojciech Kozlowski
for the countless discussions, the non-stopping guidance, the unfathomable patience,
and for being there while it seemed that everything was going astray. I am truly
grateful to have had you as my daily supervisor. Thanks Carlo Delle Donne and
Ingmar te Raa for your work on the software of the networked quantum node, and
for the willingness to debug and use my testing framework, even when the time for
doing so was short. Thanks to Bas Dirkse for the lengthy discussions about testing
quantum computers, and for always being quick in pointing me to the right direction.
Thanks to Przemystaw Pawelczak for the guidance, the willingness to collaborate,
and for the nice encouragement words in moments of need. And thanks to Tina Nane

Vii

for helping me put the hypothesis testing part of the thesis in solid mathematical

ground.

Finally, I would like to thank the Foundation Justus & Louise van Effen for financially
supporting international students through their Excellence Scholarship, without it,
it would have been impossible for me to pursue the Master program of my dreams
here in The Netherlands. Likewise, thanks to the Fondo para el Desarrollo de Recursos
Humanos (Fund for the Development of Human Resources), from Banco de México,
for their timely and outstanding financial support.

viii

Contents

1

Introduction

1.1

Thesis Structure

Background

2.1

2.2

Quantum Computing
211 Qubit . ..o
2.1.2 Pure Multi-qubit Quantum States . . .

2.1.3 Statistical Mixture of Multi-qubit Quantum States

214 QuantumGates
2.1.5 Quantum Measurements
2.1.6 Quantum Errors
Software Testing
2.2.1 What Is Software Testing?
2.2.2 Levelsof Testing
2.2.3 Testing Techniques
2.2.4 Test Automation

Testing Quantum Applications

3.1
3.2
3.3
3.4

Verification of Quantum Hardware
Verification of Quantum Computations
Verification of Quantum Applications
Testing Classical vs. Testing Quantum
3.4.1 Probabilistic Nature of Quantum Tests
3.4.2 Debugging of Quantum Applications .

Hypothesis Testing

4.1
4.2

4.3

Modeling the Testing Process
Hypothesis Testing
4.2.1 Step 1. State the Hypothesis

4.2.2 Step 2. Collect Data and Calculate a Test Statistic

4.2.3 Step 3. Compute the p-value
4.2.4 Step 4. Make a Verdict
Hypothesis Testing in Practice
4.3.1 The Binomial Inverse Survival Function

10
10
11
12
13

15
16
17
18
19
19
20

23
23
24
24
25
25
26
27
27

4.3.2 The Binomial Proportion Confidence Interval

5 A Test Automation Framework for Quantum Applications

5.1 Requirements i e

5.2 Design

5.3 Implementation e e e e
5.3.1 RobotFramework.
5.3.2 NetSquid
5.3.3 QuTAF Architecture v ..
5.3.4 Test Definition Example

6 Validation

6.1 TestingaReal QuantumNode
6.1.1 A Networked Quantum Node

6.1.2 1

ntegration Testso

6.1.3 Results. e
6.1.4 Qubit Initialization: a Failed TestCase
6.2 Simulating Fail Scenarios.

6.2.1 Configuration of the Simulated Quantum Node

6.2.2 Scenario 1: Basecase

6.2.3 Scenario 2: Defective Quantum Devices

6.2.4 Scenario 3: Quantum Programming Errors

7 Conclusion

7.1 Keylearnings o i i e

7.2 Results
7.3 Outlook

Bibliography

31
31
33
35
35
37
38
39

43
43
43
44
47
51
54
54
55
58
61

69
69
70
70

73

Acronyms

BPP Bounded-error Probabilistic Polynomial time. 18

BQP Bounded-error Quantum Polynomial time. 18
CDF Cumulative Distribution Function. 27

IP Interactive Proofs. 18

ISF Inverse Survival Function. 28, 34, 52, 69

NetSquid Network Simulator for Quantum Information with Discrete events. 37
NISQ Noisy Intermediate-Scale Quantum. 1, 15, 70
NOS Network Operating System. 32, 33

NV Nitrogen-Vacancy centres in Diamond. 37, 43, 44, 54
PMF Probability Mass Function. 24, 25, 69
QuTAF Test Automation Framework for Quantum Applications. 31, 69

SF Survival Function. 27

SUT System Under Test. 13, 31, 35, 38, 70

TAF Test Automation Framework. 14

Xi

Introduction

Experience is not what happens to a man; it is
what a man does with what happens to him.

— Aldous Huxley
Writer and philosopher

The quantum applications that will be run in the near future, in the so-called Noisy
Intermediate-Scale Quantum (NISQ) computers, give us already the possibility of
tackling classically intractable problems of moderate size [25]. Examples of these
are the simulation of medium sized quantum-many body systems [27], optimization
problems like community detection in networks[28], or some quantum machine
learning tasks [31].

As these applications are developed and run in different quantum back ends, there
is a need for tools and mechanisms that can help us in verifying that they work as
expected. These tools are required not only for attesting the quality of the quantum
hardware, or the validity of the quantum computations performed, but also for
detecting issues in the quantum programs themselves.

Moreover, almost all of the NISQ-era applications are based on hybrid quantum-
classical algorithms, where classical and quantum computers work together in
order to solve a problem. Thus, there exist the demand for validating also the
complex interactions happening between the classical and the quantum software
components.

During the early ages of the quantum computing field, most emphasis was given to
the development of techniques for the certification of the accuracy of the quantum
hardware, and the certification of the results of a quantum computation. For the
former, methods such as quantum state tomography [14], randomized benchmarking
[21], or self-testing of quantum systems [29], helped to corroborate the first quantum
computing platforms. For the latter, the field of quantum interactive proof systems
[12] was created to put in mathematical terms the question of how to use a classical
computer to verify the result of a quantum computation.

2

Now, as the quantum devices improve and more quantum applications for small
quantum computers are developed, it is time to look at the problem from a different
perspective. In this work, we address the topic of testing quantum applications from
the software engineering point of view. We implement a test automation framework
that can be used for finding defects in quantum applications, and for verifying it
works as per the requirements. The main contributions of listed below:

* We model the testing of quantum applications as a stochastic process. More
specifically, it is modeled as a Bernoulli process that consists of a series of
Bernoulli trials that succeed with probability p, and fail with probability 1 — p.

* We use the Hypothesis Testing technique in order to compare the distribution
of the observed testing outcomes with an expected probability distribution.
Furthermore, the Binomial Inverse Survival Function and the Binomial Pro-
portion Confidence Interval, are proposed as practical ways of performing the
Hypothesis Testing.

* We design and develop a test automation framework that can perform func-
tional tests on quantum applications. We base its development in an existing
open source framework, the robot framework.

* We use our test automation framework for verifying the development of the
Network Operating System of a networked quantum node. In particular, the
framework is used for testing small quantum applications and verifying the
integration between the classical software and the quantum hardware. We
find that the framework is capable of detecting real deficiencies present in the
quantum devices.

* We simulate different failure scenarios using the NetSquid tool, in order
to showcase the capabilities and limits of our test automation framework.
Scenarios like the lack of quality from the quantum devices, or programming
errors found in the quantum programs, are simulated and tested.

1.1 Thesis Structure

Chapter 2

In this chapter we provide the background required for understanding this thesis.
The first section is a recap of quantum information concepts such as qubits, quantum
gates, quantum measurements and quantum errors. The second section runs through
the subject of software testing, reviewing topics such as testing techniques, testing
levels, and software test automation.

Chapter 3

Chapter 1 Introduction

Here, the question what does it mean to test a quantum application?, is discussed
at length. Related works on the subjects of quantum hardware certification, the
formal verification of quantum programs, and the testing of quantum applications,
are considered. Then we debate about the differences between testing quantum and
classical applications, and look at how much of the current testing knowledge can
be applied, or adapted, to the testing of quantum software.

Chapter 4

This chapter deals with the topic of Hypothesis Testing. We introduce the stochastic
process used for modeling the testing process, and then describe how to apply the
Hypothesis Testing technique in order to test quantum applications. Here, we also
depict how the Binomial Inverse Survival Function and the Binomial Proportion
Confidence Interval can be used for achieving the same result.

Chapter 5

In this chapter we present QuTAF, the first (to the best of our knowledge) test
automation framework for quantum applications. We first look at the requirements
that any test automation framework that aims to test quantum applications, should
meet. Then, we recount the design decisions made for developing QuTAF. We
explain the selection of the robot framework as the basis for our test automation
framework, and the use of NetSquid for performing the quantum simulations.

Chapter 6

Here we present the results of using QuTAF for testing quantum applications run on
both a real and a simulated quantum node. We describe the tests conducted for the
first use case, and discuss in detail an interesting example of a failing test case. Later,
the simulations performed as part of the second use case and the results obtained,
are also explained in detail.

Chapter 7

We conclude this work with a presentation of the key takeaways gathered from the
development of QUTAF and a discussion of the main results obtained. An outlook of
future research work is also given.

1.1 Thesis Structure

Background

We know very little, and yet it is astonishing that
we know so much, and still more astonishing
that so little knowledge can give us so much
power.

— Bertrand Russell
Polymath

2.1 Quantum Computing

2.1.1 Qubit

We know classical information is treated in terms of bits. In the case of quantum
information, we use qubits. A single qubit is a two-level quantum system expressed
in terms of any orthonormal basis, for example the excited |e¢) and ground |g) states
of an electron. In general, it is customary to use the computational basis {|0),|1)}
as the de-facto basis, where:

Unlike classical bits, however, a qubit can be in state |0), state |1), or in a superposition
of both. Mathematically, this means that an arbitrary qubit can be written as a linear
combination of the states |0) and |1) as such:

|¢>=a|0>+6|1>=< 5) 2.1

Where « and § are the amplitudes of the basis states, «, § € C, and we have a
normalization restriction on these amplitudes such that |||* +||8||* = 1 . A qubit is,
then, a vector in a two-dimensional complex vector space. For reasons that will be

6

clear in the next sections, the qubits that can be expressed like this, are also called
pure quantum states.

2.1.2 Pure Multi-qubit Quantum States

We can also have multi-qubit pure quantum states, and we express the joint state of
two or more qubits as a tensor product of the individual states. For example, for |¢)
defined above and |¢) = 7 |0) + J |1), we get:

) @1¢) = [$d) = ay[00) + ad [01) + S [10) + 55 [11) (2.2)

Hence, with n qubits a space C?" is spanned. These types of systems are called
separable quantum states. Any multi-qubit quantum state that is not separable, is
said to be entangled.

2.1.3 Statistical Mixture of Multi-qubit Quantum States

When thinking about quantum systems whose state is not completely known, for
example when we have an imperfect quantum source that generates a state |0) with
probability p and state |1) with probability 1 — p, we see that the use of vector states,
or their tensor products, is not sufficient. Hence, when we want to talk about an
ensemble of quantum states, we use something called the density operator or density
matrix, defined as:

P=>palte) (ul (2.3)

The density matrix has the following properties:

1. p >0, it is positive semidefinite.

2. tr(p) = 1, the sum of the diagonal entries is 1.

3. rank(p) = 1, for pure states.

4. rank(p) < 1, for mixture of states.
As we can see, using density matrices we can correctly account for situations where
there is a lack of knowledge on the actual state of a quantum system. It is important
to remark the distinction of the statistical randomness of a mixture of quantum states,

from the intrinsic randomness arising from quantum mechanical behavior, captured
in the amplitudes used in the vector state representation. It is also important to

Chapter 2 Background

notice that, given the above definition, different ensembles of quantum states can be
described by the same p.

2.1.4 Quantum Gates

We transform and operate on the qubits by applying quantum gates. These are
reversible logic gates that are used in the quantum circuits to perform a quantum
computation. They are analogous to the classical logic gates used in classical circuits.
However, they have a key distinction: all the quantum gates are reversible. This
is to make sure that the information contained in the « and 3 coefficients in (2.1),
i.e., the quantum information, is maintained throughout the computation. These
quantum gates are usually represented as unitary matrices. For this work, the main
single qubit quantum gates that we will use are the so-called Pauli and rotation gates,
presented in Table 2.1.

2.1.5 Quantum Measurements

The simplest kind of measurement that can be performed on a pure quantum state
is a projective measurement. For a single qubit, this can be interpreted as the
probability of finding it in any of two orthogonal states. The post-measurement
state would be one of these orthonormal states, i.e., a quantum state collapses after
measurement. Recalling the normalization restriction on the « and § complex
amplitudes of a single qubit, then the probability of finding [¢)) from Eq. (2.1) in
|0) is simply the squared norm of the amplitude associated with it: |a/|?, while it is
||8]|* for finding it in state |1).

On the other hand, there are cases where the post-measurement state is not of
interest or when we want to perform a measurement on a fraction of qubits of a
bigger subsystem. For these cases, the Positive Operator-Valued Measure formalism
is used. We can construct a measurement operator M, to find the probability of
outcome k, so: p(k) = (Y| M ng |1). If we define now a positive operator like:

Where >, Ey, = I, then the set of E,,, operators completely determines the probabil-
ities of the k£ measurement outcomes.

We can apply the same measurement operator to a quantum state expressed as a
density operator. In this case, the probability of obtaining outcome k is:

2.1 Quantum Computing

8

Tab. 2.1: Single-qubit quantum gates.

Description Gate

Identity gate 1= [1 O]
.o 0 1
NOT or bit-flip gate X = []

Phase-flip gate Z = L0 1

0 -1
: . 1 —i
Bit-and-phase-flip gate Y = i 0]
. [cos @ —isin &
Rotation around X by ¢ R,(0)=| . .2, PR
_*Z Sin 5 COS b}
Rotation around Z by 6 R.(0) = 1 0
y 2100 exp(if)
. [cos? —sin?
Rotation around Y by 0 R,(0)=| . 3 6>
_Sll'l bl COS 5

p(k) = Tr(MypM,") = Tr(My Myp) = Tr(Eyp) (2.5)

2.1.6 Quantum Errors

Similarly to classical information where we have different communication channels
that model the loss of the information, like the binary symmetric channel or the
erasure channel, there exist three main quantum channels that model the loss of

quantum information:

1. Amplitude damping channel. This channel models the loss of quantum
information that happens when a qubit loses energy do to its entanglement

with the environment.

2. Phase damping channel. In this channel the loss of information happens
when a qubit decoheres without losing energy, i.e., it dephases.

3. Pauli channel. It models the decoherence by approximating the combined
amplitude and phase damping using the Pauli operators I, X, Y, and Z.

Chapter 2 Background

In this work, we will model the quantum errors using two special classes of Pauli
channels, namely, the depolarizing and dephasing channels.

2.1.6.1 Quantum Depolarizing Channel

A regular Pauli channel Np maps an input state |¢)) into a linear combination of the
original state (I operator), the bit-flipped state (X operator), the phase-flipped state
(Z operator), and the bit-and-phase-flipped state (Y operator):

Np(p) = (1 = pz — po — py)Ipl + pu XpX + p.ZpZ + p,Y pY (2.6)

Where I, X, Z, and Y are the Pauli operators or Pauli gates; p,, p., and p, are the
probabilities of encountering the respective Pauli errors; and p is the density matrix
of the quantum state, which for pure quantum states is p = [¢))(¢)].

The depolarizing channel, in turn, simply models the worst-case scenario by assuming
that the three Pauli errors that can affect the qubit are equally likely, i.e., p, = p, =
py. Then, the depolarizing channel Nppy, is:

Nppr(p) = (1—p)p+ g(XpX + ZpZ +YpY) 2.7)

The depolarizing channel is hence characterized by a probability p, and it has a £
chance of causing a bit-flip, phase-flip, or bit-and-phase-flip error on the state p, and
a (1 — p) chance of leaving it unaffected.

2.1.6.2 Quantum Dephasing Channel

The quantum dephasing channel is a simpler Pauli channel model where the only
error applied to a quantum state is a phase-flip, i.e., . It is also characterized by a
probability p, and this value indicates the chance of applying a change in the base,
i.e., a Z, to the state p. Likewise, 1 — p is the probability of applying the identity
operator instead. The dephasing channel Nppp is then:

Nppu(p) = (1 —p)p+p(ZpZ) (2.8)

2.1 Quantum Computing

10

2.2 Software Testing

This section serves the purpose of being a brief introduction to the topic of Software
Testing. It will address it from the Software Engineering perspective.

A discussion on what does it mean to test quantum applications and/or hardware,
as well as the different approaches when testing classical vs quantum software, is
deferred to the next section 3.4.

2.2.1 What Is Software Testing?

The concept of software testing has changed as much as the ideas and notions of
software development have also evolved throughout the years. One of the first
standards on software testing, the Standard for Software Test Documentation from
the IEEE (IEEE Std 829-1983) [16] says that testing is:

“The process of analyzing a software item to detect the differences
between existing and required conditions (that is, bugs) and to evaluate
the features of the software items.”

From the beginning, software testing was thought of as a process whose primary
aim was to detect differences between the expected and observed functioning of
a system, in order to make some evaluation about it. A few years later, the IEEE
Standard Glossary of Software Engineering Terminology (IEEE Std 610.12-1990)
[17] remarks that testing is:

“The process of operating a system or component under specified condi-
tions, observing or recording the results, and making an evaluation of
some aspect of the system component.”

We can observe that, besides the previously identified activities, now the recording
of the results was included as part of the testing process. Nowadays, testing is
thought of as a an integral part of the systems development life cycle (SDLC), and
the International Software Testing Qualifications Board (ISTQB) defines it as [13]:

“Testing is the process consisting of all life cycle activities, both static
and dynamic, concerned with planning, preparation and evaluation
of software products and related work products to determine that they
satisfy specified requirements, to demonstrate that they are fit for purpose
and to detect defects.”

Chapter 2 Background

As we can see, the modern definition of software testing involves a wider set of
activities, and does not focus only on testing the system, but other related products
around it. One thing that has not changed over the years is the main goal of software
testing: finding defects or bugs in the system. But the analytical reader might
have noticed already that the previously quoted definitions are rather vague when
mentioning what are the tests actually validating. This is because there is a rather
long list of characteristics or properties of a system that we might want to verify. In
general, we can group these into two categories: functional and non-functional.

The tests that evaluate whether a system is behaving as per the requirements, in
other words, that check what the system is doing is correct, are called functional
tests. On the other hand, when we assess the security, reliability, performance, or
maintainability of a software, i.e., how the system is doing it, we are conducting
non-functional tests. In the rest of this work we will only focus on functional tests,
so the testing of the non-functional qualities of a quantum application is left as an
open problem for further research efforts.

2.2.2 Levels of Testing

Any sufficiently large and complex software system is composed of several parts,
or modules, that interact and communicate between each other in order to solve a
problem. Each of these modules is usually in charge of a single task and comprised
of one or more subroutines that help to accomplish the task. In order to completely
test a system we need to make sure that all of its components behave correctly, both
in isolation and when put together. This translates into a need of identifying distinct
testing levels that check the correct functioning of the subroutines, the modules,
groups of modules, and finally the whole system. We will follow the categorization
presented in the IEEE Software Engineering Body of Knowledge (SWEBOK) [3]: unit
testing, integration testing, and system testing. It is important to mention that other
standards and entities follow a similar line of reasoning when talking about testing
levels.

The first level is the unit testing. It deals with the validation of individually testable
components, or units. The answer to the question of what makes a unit of software
varies from project to project, where it goes from a single subroutine or a whole
module, to even a cohesive group of modules. In any case, unit tests verify the
functionality of a single piece of software, in isolation from other pieces. Of course,
making sure that all the components work independently does not ensure that the
whole system will behave correctly, hence we need other higher levels of testing.

2.2 Software Testing

11

12

The next level of testing is called integration testing. As the name suggests, this
level focuses on verifying the interaction among the previously tested units of
software. It usually focuses on the interfaces between the components and the
communication happening between them. One way this is accomplished is by
following a systematic integration. In this approach, groups of related components
are incrementally integrated, according to the specifics of the software architecture
or a set of identified core functions. Then, more groups are gradually added until
the whole system is tested. The other integration approach is called big bang, where
all the components are integrated at once.

Finally, the last level of testing is the system testing. Here, we verify the behavior
of the system as a whole and check that it meets the specified requirements. If the
previous two levels of tests were executed correctly, then most of the defects and
bugs of the system would have been caught by now. So, this last level of testing
is better suited for assessing the non-functional requirements of the system, like
security, reliability, or performance. Again, given that in this work we are focusing
on functional tests, the two levels that will have more prevalence are unit and
integration tests.

2.2.3 Testing Techniques

We have identified the distinct levels of testing needed in so we can properly verify
the functionality of a software system. Furthermore, there is also a set of testing
techniques that can be employed in order to perform the required tests. These
techniques are based on how the test cases are generated, and in general are
grouped in three main categories that cover a spectrum of the amount of information
about the internal workings of a system used: white-box, black-box and gray-box
testing.

On one side we have white-box testing, also called glass-box or structural testing.
This is a testing approach that verifies the internal workings of a component, based
on information about its design and implementation. It usually takes a look at the
source code in order to design test cases that exercise the different logical paths of
the system. This approach is more suited for performing tests at the unit level, as the
communication and integration of components is often only available in specification
documents, and not in the form of code. One limitation from this technique is that
missing requirements, or even unimplemented functions, are difficult to catch, as
they are not present in the source code of the software.

On the other side of the spectrum we find the black-box testing. This technique
relies only on the specification of the requirements of a system, and does not look

Chapter 2 Background

at how a component is implemented. It works by giving the component an input,
observing the output, and comparing it against the expected one. It is suited
for performing checks across all the testing levels, but it is particularly useful for
integration and system tests. For example, trying to cover all paths that a specific
piece of data follows, by using a white-box testing approach, is usually infeasible due
to the sheer volume of options and combinations. However, the final value of the
data has usually a known or expected value, which can then be tested using the black-
box approach. Then, by changing the input provided, we can test other relevant or
important paths without having to enumerate all of them. The disadvantage of this
approach is, of course, that some parts of the system might never be tested or that
they might be unnecessarily over tested.

Standing in the middle we have the gray-box testing. This is, as expected, a
combination of both black-box and white-box testing techniques. Here, the test cases
are designed with partial information about the internal workings of a system, for
instance the data structures or algorithms used, in order to derive better suited tests.
Then, they are run in a black-box fashion, where the input is also better chosen
given the knowledge about the underlying structure of the system. So, gray-box
testing can alleviate some of the shortcomings of the black-box testing technique
while requiring less information than white-box testing.

2.2.4 Test Automation

The topic of test automation is so broad that it would deserve its own section. Since
we are, however, limited in space, in this subsection we will focus on answering
those questions relevant the present work: what is test automation, why is it needed,
what are the benefits and drawbacks of automating tests, and finally what is a test
automation framework. For a more complete treatise on the subject, we refer the
reader to [8].

Automating a test means to translate it into a form, usually as code, so that the test
can be automatically executed as if it was performed by a human tester. It involves
the automation of all the actions taken by the tester and all the elements needed by
the test. So, it includes: the set up of the System Under Test (SUT), the set up of
the preconditions, exercising the SUT, the observation and collection of the output,
and the verification against the expected output. While the term test automation
might be thought of as a type of testing, it is better described as a separate activity
or a separate skill, needed in order to improve the testing of a system. In essence,
performing a test manually or in an automated fashion should have no impact on its
effectiveness, i.e., the capacity of the test to detect defects in the software.

2.2 Software Testing

13

14

The main reason behind test automation is an economic one. It is generally agreed
that automating a test costs more, in terms of time and effort, than running it
manually. However, if the test ought to be run repeatedly, it is actually more cost-
effective to automate it than to run it manually. Another advantage of the automation
is the ability to test scenarios or cases that are infeasible with a manual approach,
for example: subtle changes in a graphical user interface, or the simulation of
the input from hundreds of users. Other benefits obtained when automating are:
consistency and repeatability of the tests, the reduction of human errors, and the
ease of performing cross-platform testing.

On the other hand, there are some risks and caveats that we need to consider before
immediately jumping into the automation bandwagon. The most important one is
that we should only automate good tests. With good tests we mean those that have
been proven to exercise the software to cover all the requirements. Remember that
automation makes us be able to perform controlled and fast repeated checks, but
does not change the qualities of the original test executed. Now, since automating a
test usually means to create software that test other software, we need ways to make
sure that the testing code is also working correctly. Furthermore, the maintainability
of the testing software is crucial for being able to reuse and expand the tests, since
otherwise the pay-off of the automation is diminished. Lastly, it is important to
mention that having tests that run automatically and do not fail, does not necessarily
mean that our system has no defects. If there is a change in the requirements, or the
automated tests do not have the sufficient coverage, then we would get a false sense
of confidence.

Finally, in order to answer the last question, i.e., what is a Test Automation Frame-
work (TAF), we need to know first what a testing framework is. According to
Ghanakota [11], a testing framework is a set of assumptions, concepts, practices,
and rules that form a platform for developing tests. Operationally, the main respon-
sibilities of a testing framework are: providing a common way of expressing the
expectations, creating a mechanism to run or drive the system under test, executing
the actual tests, and reporting the results. When possible, the framework should
be application-agnostic, easily expandable, and easily maintainable. So, a test au-
tomation framework should cover all of the mentioned responsibilities and qualities
of a testing framework, but with a focus on providing a suitable mechanism for
automating the execution and reporting of the tests.

Chapter 2 Background

Testing Quantum Applications

At the heart of quantum mechanics is a rule that
sometimes governs politicians or CEOs — as long
as no one is watching, anything goes.

— Lawrence M. Krauss
Theoretical physicist

If you were to give a talk with the title "Quantum Computing: Testing", in a quantum
computing related forum or conference, there would be at least three different
themes that people would think about when reading the title of the presentation.
If the people have a background in the design of quantum computing platforms,
they might think about the verification of the quantum hardware, asking how to
certify if a quantum device is functioning accurately. If, on the other hand, the
people are more related to the computer science area, they might think instead of
the validation of a quantum computation. They would probably relate the topic to
how to test if a computation was performed in an actual quantum computer, or how
to verify a quantum computation if the problem solved is not classically tractable.
Lastly, another small percentage of the people might think about it from the software
engineering point of view, thinking on how to test quantum applications and find
bugs on them.

This work tries to provide a better understanding on how to test quantum appli-
cations, from the last mentioned point of view, i.e., from the software engineering
perspective. So, in section 3.4 we discuss what does it mean to test quantum
software, and how much of the classical software testing knowledge presented in
the previous chapter, can we apply to the testing of quantum applications. Still,
we know that we need to account for the deficiencies and particularities of the
quantum hardware, as these quantum applications are currently run in the so-called
Noisy Intermediate-Scale Quantum (NISQ) machines. Hence, in section 3.1, we
also explore the techniques available for verifying the accurate functioning of a
quantum device, and how to incorporate them into the testing process. For complete-
ness, in section 3.2, we also include a brief review on the verification of quantum
computations from the computer science perspective.

15

16

3.1 Verification of Quantum Hardware

Generally speaking, when we verify a quantum device by testing the accuracy of its
output, we say that we certify the device. When certifying a quantum device, we
usually want to compare it against another one, or to a different version or configu-
ration of the same device. For this, we have developed the notion of benchmarks,
which are certification methods that assign a common performance measure that
is reproducible and allows us to do the comparison. These benchmarking methods,
also called certification protocols, are limited by the very same feature that makes
a quantum computer more powerful than its classical counterpart: its ability to
perform computations on exponentially larger state spaces.

The benchmarking tools available range from the full blown quantum state tomogra-
phy [14] that completely reconstructs a quantum state by performing measurements
on several copies of the same state, to the fidelity estimation technique [9] that
gives an estimate of the fidelity between an ideal quantum state and the actual state
produced. In [7], Eisert et al. provide a comprehensive account of the certification
protocols currently available. Figure 3.1 shows the classification they do of the
tools, based on the amount of information gained, and how weak or strong are the
assumptions made about the quantum device.

More information gair} ~
Gate set Region
estimators
RB Full
tomography tomography

tomography
Self-calibrating [Compressed

tomography sensing tomographg siseatirts
tomography

Hamiltonian
learning

|IHI|III

Weaker = . Stronger
i = Randomized -
assumptions =" benchmarking (RB) assumptions
Blind verified | | = Direct fidelity
computing = estimation —
= Building trust
= Cross
Self- Fidelity validation
testing witnessing

;{Less information gain} y,

Fig. 3.1: Classification of some of the quantum certification protocols currently available.
Taken from [7].

Chapter 3 Testing Quantum Applications

Another important characteristic of a benchmark is how complex it is, in terms of
classical and quantum computational effort. Usually, when a certification protocol
offers more information gain, then it also requires more time and power to compute.
If we want to test quantum applications in practice, then we would need to choose
those tools that provide a good trade off between the information gain and the
computation complexity.

Note also that almost all of the benchmarks shown in Figure 3.1 make use of the
same measures of quality for comparing a target ideal density matrix (p;) with the
experimentally or physically created one (p2): the Trace Distance D(p1, p2), and the
Fidelity F'(p1, p2). A complete explanation of these metrics is found in [24].

The benchmarks so far discussed are all used for gaining confidence about the quality
of the quantum hardware, as they give us a comparable and reproducible measure
of its performance. However, when testing quantum applications, we often take
this for granted. In other words, before the tests are run, we already trust that the
quantum device is performing as accurately as possible, and we go on to verifying
that the quantum application functions correctly. Hence, due to the computational
complexity of the protocols and the fact that they focus on the verification of the
accuracy of the device, we will not make direct use of any of the benchmarks.

3.2 Verification of Quantum Computations

If the benchmarking tools from above are used for certifying the accuracy of trusted
devices, the methods discussed in this section then focus on the verification of the
computation performed on an untrusted quantum computer. The techniques outlined
here focus on answering the following question: how do we check that a quantum
computer produces the right results, when the problem, and even sometimes the
verification of the solution, is considered to be intractable in a classical computer.
In order to answer the question, first we need to formulate it in more complexity
theoretical terms. Scott Aaronson, in his renowned quantum computing blog, puts it
like this [1]:

“If a quantum computer can efficiently solve a problem, can it also effi-
ciently convince an observer that the solution is correct? More formally,
does every language in the class of quantumly tractable problems (BQP)
admit an interactive proof where the prover is in BQP and the verifier is
in the class of classically tractable problems (BPP)?”

3.2 \Verification of Quantum Computations

17

18

The key idea is to bring the question into the realm of the interactive proof (IP)
systems. An interactive proof system is simply a model that consists of two entities:
a verifier and a prover. In this case, the verifier is a machine in the Bounded-error
Probabilistic Polynomial time (BPP) class, the class of decision problems that can be
solved efficiently by a probabilistic classical computer. The prover is in the Bounded-
error Quantum Polynomial time (BQP) class, the quantum equivalent of BPP, and is
considered more powerful than the verifier. The verifier wants to check a reported
solution, so he interacts with the prover by exchanging messages, until the verifier
is convinced of the solution is correct. For quantum interactive proof systems, the
verifier should accept or reject a valid solution with high probability.

This remained an open question since its conception, until in 2018 Mahadev proposed
the first protocol allowing the verification of quantum computations through purely
classical means [22]. Before that, some weaker formulations had already been
solved, like the case where the verifier has access to a quantum computer limited
in power, or where the verifier interacts with a pair of entangled quantum provers.
Another recent key result is from Ji et al., where it is shown that MIP* = RE, i.e., the
class of languages that can be decided by a classical verifier interacting with multiple
all-powerful quantum provers (MIP*) that share entanglement, is equal to the class
of recursively enumerable languages (RE) [18].

3.3 Verification of Quantum Applications

The topic of testing quantum programs and quantum applications from a software
engineering perspective has also been researched already. The most explored theme
is that of the verification of quantum programming languages, which aims to verify
a quantum application by performing an analysis of the semantics of the source
code. Here, a collection of formal methods have been developed for validating that
a quantum program is able to produce an expected result, without actually running
the application. An excellent account of this topic is found in this PhD thesis from
Robert Rand [26].

A common understanding derived from the works on quantum programming formal
verification techniques, is that a quantum program is necessarily a probabilistic
program. Then, the knowledge so far acquired in regards to the verification of
classical probabilistic systems, can be used as a basis for the development of new
methods for verifying quantum applications. An example of this is in [32], where
Ying et al. model quantum programs as quantum Markov chains, in order to be able
to prove some properties about them.

Chapter 3 Testing Quantum Applications

On the other hand, we also have works that have researched the requirements for
testing quantum applications looking at some more typical classical software testing
topics. For instance, in [23], Miranskyy and Zhang discuss how to define a set of
software engineering practices that can be applied to the testing of quantum software.
They explore the applicability of the software testing approaches like black-box and
white-box testing, illustrate the difficulties associated with them, and outline some
potential solutions. Furthermore in [15], Huang and Martonosi classify the type of
errors that a programmer can incur in, when creating a quantum program.

In both of the works mentioned above, the debugging of quantum applications is
found to be considerably more challenging than the debugging of classical programs.
This is due to two main factors: the no-cloning theorem that stop us from creating
copies of a qubit, and the fact that measuring a qubit ultimately destroys the
quantum information it contains. Hence, it is not possible to debug a quantum
program interactively as is usually done for classical applications.

3.4 Testing Classical vs. Testing Quantum

Here, we summarize the particularities and difficulties about testing quantum appli-
cations identified in the previous sections, and discuss how they can be approached
and solved bye the software testing topics outlined in section 2.2. Then, we arrive at
a first set of general requirements that our test automation framework for quantum
applications should meet.

3.4.1 Probabilistic Nature of Quantum Tests

The most important difference between a quantum test and a classical test, is that
the first one is a probabilistic process. This probability comes from the intrinsic
probabilistic nature of quantum mechanics. We observe it in the decoherence of
a qubit, in the outcomes of a quantum measurement, or in the errors introduced
by the application of noisy quantum gates. The fact that the testing process is a
probabilistic process, means that we need to perform several repetitions of a test, in
order to arrive at a conclusion. Thus, the outcome of a quantum test is a probability
distribution obtained from the observed outcomes of all the repetitions executed.

This also implies that, in order to know whether a test passed or failed, the expected
outcome of a test needs to be expressed as a probability distribution too. Comparing
a single value or realization with a probability distribution is almost meaningless.
Hence, the verdict about the final result of a quantum test involves the comparison
of two probability distributions. In the next chapter, we will see how to model the

3.4 Testing Classical vs. Testing Quantum

19

20

testing of a quantum application as a probabilistic process, and how to compare two
distributions using the statistical inference technique known as Hypothesis Testing.

3.4.2 Debugging of Quantum Applications

When testing a system, we do not only want to identify if there is an issue or
not, but also find out the root cause of the problem, if it exists. This is referred
to as debugging or triaging, and as discussed in section 3.3, doing it for quantum
applications is harder than for classical ones. This is due to the no-cloning theorem
and the destructive nature of quantum measurements.

The debugging process starts with making sure that the reported failure is not the
result of an issue in the test definition or the testing tools used, but a real problem
in the quantum application being tested. For classical applications we have a set of
procedures we can follow in order to discard this source of errors. We may, or may
not, be able to apply or adapt these for the debugging of quantum applications.

The first thing we usually do is simply repeat the failing test case. By doing this, we
can get rid of probable temporary or intermittent issues that were present in the sys-
tem when the test was run. Unfortunately, repeating a test of a quantum application
translates into making hundreds, if not thousands, of executions. Depending on the
type of test, or the availability of the quantum device, this might not be possible to
do.

If we are able to repeat the test, the next step is to compare the failed execution with
the new one. If the test fails again, we can try to compare the test execution logs to
find the reason for it. When repeating the test is not possible, we can also compare
the failed test case against a similar one, or to a previous run of the same test. All
of these approaches assume that the test tools used are capable of generating the
given execution logs. More importantly, logs from the quantum operations actually
executed by the quantum

A different approach for the debugging would be to execute the same test in a simu-
lated environment, that closely resembles the real physical one. The effectiveness of
this is determined by how well characterized the quantum device is, and how well
we can simulate it. From section 3.1 we know that fully determining the quality
of the quantum hardware is computationally hard. Additionally, the simulation
is not always a viable option, as we know that some quantum applications are
classically intractable and so impossible to be simulated efficiently. Then, we can
resort to performing a formal validation of the program with the methods described

Chapter 3 Testing Quantum Applications

in section 3.2. However, it is not clear how to compare the results obtained using
these techniques, with the ones from the failed test.

3.4 Testing Classical vs. Testing Quantum

21

Hypothesis Testing

In practical life we are compelled to follow what
is most probable; in speculative thought we are
compelled to follow truth.

— Baruch Spinoza
Philosopher

4.1 Modeling the Testing Process

Suppose we are given a quantum black-box that receives as input the description
of a quantum state, for example "|0)" or "|+)", prepares the specified qubit, and
then measures it in the Z basis, giving as output a description of the measurement
outcome: "0" or "1", depending on whether a |0) or a |1) was found. If we want to test
this device, we just need to provide a known input and compare the resulting output
with the expected one. Following our example, giving a "|1)" as input, we would

expect a "1" as output. However, as we have seen in section 3, this is not so simple.

Because of factors like imperfect measurements and the inherent decoherence of the
qubits, even if the quantum state is correctly prepared, we would sometimes see a
wrong output. Likewise, the same factors could make a wrongly prepared quantum
state be measured and give the right answer. This means that, in order to derive a
conclusion, we need to test the quantum black-box more than once.

Lets say we apply 10 times the previous test of giving a "|1)" as input, and we get
as output "1" eight times, and "+0" two times. If we mark a successful test with a
1 and a failed test with a 0, and assume that the test realizations are completely
independent, then we have a Bernoulli process composed of 10 Bernoulli trials. This
means that each test realization can be thought of as a random variable that takes
on the values 1 and 0 with a probability of success p.

1 with Probability =
X:{ with Probability = p 4.1

0 with Probability =1 —p

23

24

We can make an estimation of the p parameter of a Bernoulli process by taking the
ratio between the number of successes and the total number of trials. In the case of
our example, the proportion of successes would be 8/10 or 80%. Of course, if we
repeat the same test another 10 times, we might get a different outcome. So, the
question is now how likely are we to actually obtain a different result, or in other
words, what is the real probability of success p of the analyzed Bernoulli process.
Assuming that each of the test executions is independent of each other and has the
same probability of success, a series of Bernoulli trials can be characterized by a
Binomial distribution, usually denoted by B(n,p). The Probability Mass Function
(PMF) of the Binomial distribution is:

f(k,n,p) = Pr[k;n,p] = Pr[X = k] = (Z)pk(l —p)"F (4.2)

The PMF of the Binomial distribution gives us the discrete probability of getting
exactly k successes in n independent Bernoulli experiments. Then, the problem of
comparing an expected output with an obtained one, translates into the problem of
comparing two probability distributions. In order to know if the quantum box that
we are testing is functioning correctly, we need a way of comparing the distribution
of the series of test realizations with the expected distribution. For this, we will use
a method of statistical inference called hypothesis testing.

4.2 Hypothesis Testing

Hypothesis testing is a statistical inference technique for testing a claim or hypothesis
about a parameter in a population using data measured in a sample, i.e., it is a
systematic way of knowing whether a group or population matches a certain criteria.
The method of hypothesis testing consists of four steps. The steps are now explained
by applying them to our example.

4.2.1 Step 1. State the Hypothesis

The first step is to identify the claim or hypothesis that we would like to test. In
our case, we want to know whether the proportion of successful tests is the one we
expect, according to the specifics of the quantum box being tested. Say the claim is
that the quantum black box can produce a |1) state and measure it in the Z basis,
with a fidelity of 0.98. Then, we would expect the proportion of correct tests to
be around 98%. More specifically, we would like to know if the ratio is actually at
least 0.98, since it is fine if the fidelity is better, but not if it is worst. Following the

Chapter 4 Hypothesis Testing

hypothesis testing technique we start by stating a null hypothesis, denoted by Hy,
which is something presumed to be true. In this case our null hypothesis would
be that the proportion of correct tests is at least 98% or, in other words, that the
probability of success p of the testing procedure is > 0.98. On the other hand, in the
alternative hypothesis, or H,, we directly contradict the null hypothesis and state
what we think it is wrong about it. So, our null and alternative hypothesis are:

Hy:p>0.98
Hy:p<0.98

(4.3)

4.2.2 Step 2. Collect Data and Calculate a Test Statistic

The next step is to perform measurements from a sample to collect data and define a
test statistic to use. A test statistic is, in essence, a mathematical formula that allows
us to summarize the data collected. This will be used as the evidence for the test. A
natural test statistic to use is the sum of the outcomes, simply expressed as > i ; x;
for a series of Bernoulli random variables. Another option of test statistic is the mean
number of successes, expressed like % ", x;, when a success is marked with 1 and
a fail with 0, as we are doing. For our example we will use the first one. We will
then imagine that we performed 100 tests on the quantum black box, of which 93
were successes, S0 > i x; = 93.

4.2.3 Step 3. Compute the p-value

Once we have collected the data, we can proceed to answer the question: is the
evidence (the test statistic) good enough to reject the Hy? This is accomplished
by calculating the p-value. The p-value is defined as the likelihood of obtaining an
outcome, given that the null hypothesis is true. Then, in order to make a decision, we
compare the p-value against something that quantifies the notion of a good enough
evidence. This is called the level of significance of the test, denoted by «, and it
tells us when we are going to accept or reject the null hypothesis. For example, a
typical o = 0.05 level of significance means that when the probability of obtaining
the test statistic measured in a sample is less than 5%, i.e. p-value < «, then we can
conclude that the outcome is too unlikely, and consequently we reject Hy.

In the previous subsection 4.1 we have already established that for a series of
Bernoulli random variables, the probability of seeing exactly k& successes is given
by the Probability Mass Function (PMF) of the Binomial distribution. Then, using

4.2 Hypothesis Testing

25

26

equation (4.2) we can calculate the probability of obtaining the observed outcome
given that the null hypothesis H is true, by setting p = 0.98. Following our example,
knowing that £ = 93, we calculate the p-value as:

p-value := f(93,100,0.98) = Pr(X = 93)

= <19030> 0.98%%(1 — 0.98)'00~%

4.4
= <1OO> 0.98%3(0.027)

93
~ 0.00313

4.2.4 Step 4. Make a Verdict

We can now proceed to make a verdict about the null hypothesis. If the p-value is not
sufficiently small, in other words, if p-value > «, then the data is consistent with the
null hypothesis and we fail to reject Hy. The expression fail to reject Hy can be a bit
misleading, yet it is used to make clear the notion that when not enough evidence
has been gathered against Hj, we can safely say that H is not rejected, but not that
Hy is accepted. On the other hand, when p-value < «, we do have strong evidence
against the null hypothesis, so we can safely say that we reject Hy in favor of Hj.
Hence, given that the p-value of our example is ~ 0.0.003, if the significance level is
set at « = 0.05, we conclude that the data is not consistent with the null hypothesis
and we reject H.

It is important to mention that, whenever we perform a hypothesis test, we can incur
in errors when deriving the conclusion of rejecting or not the null hypothesis. The
first error happens if we reject the null hypothesis when it was actually true, this is
called a false negative or TYPE I error. The maximum probability of committing this
type of error is «, while 1 — « is called the confidence level of the test. Conversely, we
can also accept the null hypothesis when it was actually false, this is a false positive
or TYPE II error. The maximum probability of committing this type of error is 3,
and 1 — S is the power of the hypothesis test. When using the hypothesis testing
technique, it is important to set suitable values for both the « and 3, depending on
the objective of the test and the context or domain of the problem. Table 4.1 shows
a summary of these errors.

The « and parameters are closely related. In general, if we want to increase the

power of the test, i.e., reduce (3, we need to increase the parameter «. In our case,
we want the power of the testing procedure to be as high as possible, or equivalently,

Chapter 4 Hypothesis Testing

the parameter (3 to be as close to 0 as possible, since we do not want to wrongly
conclude that the proportion of successes is above the expected one. It is worth
noting that another way of increasing the power of a hypothesis test is by increasing
the number of samples used for the test.

Tab. 4.1: Types of errors for the Hypothesis Testing.

Decision
Retain the Reject the
null hypothesis null hypothesis
Truth True Correct TYPE I error
in the 1-a a
. TYPE II error Correct
population False 3 -3

4.3 Hypothesis Testing in Practice

In the previous section we outlined the theoretical background and formal procedure
that needs to be followed for using the hypothesis testing technique. The first step
of the process is to select a null and an alternative hypothesis. For our purposes,
the null hypothesis contains the information of the expected or desired probability
distribution. And the evidence for its rejection comes from the observed data,
i.e., the test outcomes. However, the same objective of comparing two probability
distributions via the hypothesis testing technique can be accomplished by using other
functions of the Binomial distribution.

4.3.1 The Binomial Inverse Survival Function

First, we need to introduce the Binomial Cumulative Distribution Function (CDF),
F(k,n,p), which indicates the probability that the Bernoulli random variable X will
take a value less than or equal to k:

k]
Fk,n,p) = Pr[X <k =3 (",‘>pi<1 — p)n (4.5)

Where | k| means the greatest integer less than or equal to k. Furthermore, we can
also define the Survival Function (SF) of the Binomial distribution, which is in turn
the probability that the random variable will take a value strictly larger than &:

S(k,n,p) =1— F(k,n,p) = Pr[X > k] (4.6)

4.3 Hypothesis Testing in Practice

27

28

Finally, we arrive at the Inverse Survival Function (ISF) of a Binomial distribution:

Z(a,n,p) = S~ (a,n,p) 4.7)

This Inverse Survival Function returns the smallest non-negative integer k for which
F(k,n,p) > 1 — a, or conversely the smallest non-negative integer k£ for which
S(k,n,p) < a. Is in this last interpretation where we can notice the relation between
the hypothesis testing process and the Binomial ISF. Note that the « of the Z(a, n, p)
has a similar meaning as the significance level chosen for the hypothesis testing: it is
the probability of observing an outcome. Then, using the Binomial ISF we can get a
number k,,;, that represents the minimum expected number of successful outcomes,
that guarantees that the probability of observing more than k,,;, successes is > «,
which is what the step 3 of the hypothesis testing technique does.

We will exemplify the use of the ISF with the same previous test of the preparation
of the |1) quantum state. In this case, suppose we performed 1000 repetitions of
the test, and that the expected fidelity is still 0.98. Also, the same significance level
of a = 0.05 is chosen for the hypothesis test. Using the Binomial ISF, we can get a
minimum number of expected successful outcomes k,;, that is consistent with the
null hypothesis:

kmin = Z(Oé, n,p)
= 7(0.05,1000, 0.98) (4.8)
= 987

The value k,,,;;, = 987 is the minimum expected number of successful outcomes,
where a significance level of 0.05 and a population of 1000 outcomes is chosen. Then,
for deriving a conclusion about the null hypothesis, i.e., whether the proportion
of actual observed outcomes is > 0.98 or not, we simply count the number of
observed successful outcomes, k.5, and compare it against the minimum expected.
If kops > Ekmin, we fail to reject the null hypothesis, otherwise, if ko5 < kpmin We have

sufficient evidence to reject the null hypothesis.

4.3.2 The Binomial Proportion Confidence Interval

Another approach for performing the hypothesis testing is to calculate the binomial
proportion confidence interval from the observed outcomes. This is an interval
estimate of the probability of success of a Binomial distribution. Remember that
in chapter 3 we recognized that when testing quantum states in superposition, we
would need to specify the expected proportion of successes as a range. Hence, this

Chapter 4 Hypothesis Testing

alternative approach can help us to compare the specified expected interval with the
estimated one obtained from the test outcomes.

Since the Binomial distribution is a discrete probability distribution, it is computa-
tionally hard to calculate when the number of trials is large. In consequence, when
calculating the confidence interval, we actually only approximate the real Binomial
distribution using different techniques. Each of these vary in accuracy and computa-
tional intensity. For a detailed comparison we refer the reader to [30], where Vollset
compares 13 methods for computing binomial confidence intervals. We list here the
most used approximation techniques: the asymptotic normal approximation, the
Wilson score interval, the Jeffreys interval, the Clopper-Pearson interval, and the
Agresti-Coull interval.

Irrespective of the approximation method chosen, the calculation of a binomial pro-
portion confidence interval requires only the following information: the number of
trials run, the number of successes observed, and a confidence level. The confidence
level of the interval is how certain we want to be that the probability of success of
the Binomial distribution actually lies within the calculated interval. We illustrate
the usage of the binomial proportion confidence interval with an example.

Imagine we have a test that verifies the preparation and measurement of a qubit
in superposition. Specifically, the |+) = %OO) + |1)) quantum state is prepared,
and it is measured in the computational basis. We know that in a perfect setting,
if we measure |+) in the Z basis we have an equal probability of having a 0 or a
1 as output, as half of the times the measurement would find the state in |0), and
the other half in |1). But since there is no such thing as a perfect quantum device,
instead of a single value like p = 0.5, we are given a range for the probability of
observing a |0): p = [0.48, 0.55], with a confidence of 95%.

Say that after running the test 1000 times, the outcome is 0:511 and 1:489, meaning
that the output was 0 in 511 occasions, and 1 the rest of the time. Since we were
given the range for the probability of the 0 outcomes, the number of observed
successes is 511. Note that we could also have been given an interval for the 1
outputs, in which case we would say that the number of successes is 489. Given the
provided confidence level of 95%, we know that the significance level of the test
needs to be o = 0.05, as confidence = 1 — . Then, using the normal approximation,
the binomial proportion confidence interval is calculated to be [0.480017,0.541982].
Since this estimated interval calculated from the test outcomes, lies within the
expected one and has the same confidence, we can say that the test passes.

4.3 Hypothesis Testing in Practice

29

A Test Automation Framework for
Quantum Applications

Without ambition one starts nothing. Without
work one finishes nothing. The prize will not be
sent to you. You have to win it.

— Ralph Waldo Emerson
Essayist, philosopher and poet

In chapter 2 we discussed the general responsibilities that any test automation
framework should fulfill. There, also, we identified that the main advantage behind

the automation of a test was being able to run it repeatedly, in a controlled fashion.

Later, in chapter 3, we compared the requirements for testing classical and quantum
programs, where the probabilistic nature of quantum phenomena was the key
difference between the too. Putting this together, it is not difficult to conclude
that the only feasible solution for testing quantum applications is the use of a
test automation framework. This framework should allow us to perform several
repetitions of a single test, gather the results, and perform the necessary statistical
checks on them, to conclude whether the test passed or failed. This chapter presents
QUuTAF, a test automation framework for verifying quantum applications. In section
5.1 we describe the requirements for the QuTAF, while in sections 5.2 and 5.3 we
detail its design and implementation, respectively.

5.1 Requirements

We have seen that the main responsibilities of a classical test automation framework
are: providing a common language for defining the tests, driving the System Under
Test (SUT), executing the tests, and reporting the results. We derive the requirements
for our automation framework from this set of operational responsibilities, dealing
with the particularities of testing quantum applications outlined in section 3.4. It is
also important to mention that the proposed test automation framework is designed
with two main use cases in mind:

31

32

A) Testing a networked quantum node. Our framework will be used for the
verification of the Network Operating System (NOS) developed for a networked
quantum node. The NOS software stack includes all the components that
provide the usual functionalities required from any networked system, like
scheduling, routing, memory management, and others. These are, of course,
all classical software components that can be tested with any classical test
automation tool. Hence, the QuTAF will be used, instead, for testing the
integration between the classical software and the quantum hardware, by
verifying that small quantum applications are run correctly.

B) Testing simulated fail scenarios. Here we will validate the capabilities of the
QUuTAF itself, by testing quantum applications that are purposefully simulated
to fail. These fail scenarios simulate problems coming from the quantum
hardware, as well as issues introduced in the quantum programs by the pro-
grammers.

From this, we can conclude that one of the main requirements for the QuTAF is that
it should work for the verification of quantum programs running on both simulated
and real quantum nodes.

The first requirement actually coming from the mentioned responsibilities, is that
the automation framework must provide a standard way of defining the tests. This
means that the tester using the TAF, should be able to write test cases using a
common set of rules and terms, so that the tests are easily understandable and
maintainable. For QuTAF, however, the two use cases mentioned above add more
demands for this test specification language.

In use case A), for example, we run quantum applications to verify the integration
and communication between the classical software stack and the quantum device.
In this case, the quantum program to run is actually defined as part of test case
itself. Furthermore, the same test definition language will be used for specifying the
failing test scenarios in B). Thus, the requirement for the QuTAF is that it should
let us easily specify small quantum circuits, along with the pertinent checks and
verifications associated to them. Crucially, it should provide a way for specifying the
expected result of a test as a probability distribution. At the end, as we know, we
will compare this distribution with the one calculated from the test execution.

This takes us to the next responsibility of a classical TAF: driving the SUT and
executing the tests. For the case of testing quantum applications, there are actually
no extra demands to fulfil this requirement. This is not surprising if we take into
account that any quantum node is already controlled by a classical system that
executes the quantum gates and measurements on the physical qubits. Therefore,

Chapter 5 A Test Automation Framework for Quantum Applications

there is no difference between driving a classical system directly, or a quantum
system through a classical interface. For the QuTAF in particular, in A) we will drive
the SUT via an API exposed by the NOS. Additionally, we can safely assume that
a similar method will be available for B), as the majority of quantum simulation
tools provide an API for simulating full quantum circuits, or individual quantum
operations.

Now, executing the tests also implies comparing the obtained output with an expected
one, and in section 3.4 we saw that due to the probabilistic nature of the quantum
tests, this comparison is not trivial. In fact, the result of a quantum test run is a
probability distribution, instead of a simple integer or string value. So, we selected
the statistical hypothesis testing technique as the solution for comparing the obtained
probability distribution with an expected one. The use of the hypothesis testing
technique introduces the following requirements for the QUTAF: being able to execute
the test cases for a configurable number of times, gather the outcomes, and calculate
their probability distribution.

Finally, for a better understanding of the test results, the report generated by our
QUTAF should include not only the final decision of whether a test passed or failed,
but also: the probability distribution calculated from the outcomes, the actual
number of times that the test was executed, and the significance level («) chosen for
the hypothesis testing.

5.2 Design

From the previous section we can conclude that, although there are indeed some
extra requirements when testing quantum applications, the main functionalities of
our QuTAF will actually be those of a regular or classical test automation framework.
This means that we can look into the list of existing test automation softwares, and
choose one to serve as the basis for our QuTAF. These solutions are flexible and
extensible enough to cover diverse testing needs, however, there does not exist one
that can cover the testing requirements of all possible software systems. So, during
the design phase, we put the requirements from section 5.1 into more technical terms,
so that we can find the test automation solution that best fit the requirements.

As usual, the first question to answer is how are we going to define our test cases. For
classical software, this refers to the programming languages and testing approaches
supported by the test automation software: data-driven, keyword-driven, or behavior-
driven. In our case, the requirement of being able to specify a quantum circuit as
part of the test case, can be fulfilled by a TAF that employs either the keyword-driven

5.2 Design

33

34

or the behavior-driven approach. Using the keyword-driven approach, we can define
keywords for each quantum operation, and then reuse them in all the test cases, as
shown in Figure 5.1. On the other hand, using the behavior-driven approach, we
can provide a description of the quantum circuit in plain text, as depicted in Figure
5.2.

1 # Keywords
2 Initialize Qubit qubit=<int>

3 Apply Gate qubit=<int> gate=['X','Y','Z','H']
4 Measure Qubit qubit=<int>
5 Verify Outcome outcome=[0, 1]

7 # Test Case
8 Initialize Qubit qubit=0

9 Apply Gate qubit=0 gate='X'
10 Measure Qubit qubit=0
11 Verify Outcome outcome=1

Fig. 5.1: Example of a quantum program defined and tested using a keyword-driven ap-
proach.

1 Given that I initialize qubit O

2 And I apply the X gate to qubit O

3 And I measure qubit O

4 When I run this quantum program

5 Then I expect to observe the outcome: 1

Fig. 5.2: Example of a quantum program defined and tested using a behavior-driven ap-
proach.

The next question is about the actual execution of the tests. From the requirements,
we see that the test runner of the underlying TAF should be easily configurable.
This is because the test cases will specify the number of repetitions to perform,
the parameters of the expected probability distribution, and the hypothesis testing
settings selected. The test runner must also calculate the probability distribution
of the observed outcomes and use the hypothesis testing technique for comparing
it against the expected probability distribution. Explicitly, it ought to be able to
calculate both the Binomial Inverse Survival Function (ISF) described in section
4.3.1, and the proportion confidence interval outlined in section 4.3.2.

Now, given that none of the available TAFs is actually prepared to simulate quantum
applications out of the box, we need to pick a separate tool that takes care of this task.
This is complicated by the fact that the number of quantum simulation platforms is
probably as high as the number of existing test automation solutions. Luckily, the

Chapter 5 A Test Automation Framework for Quantum Applications

requirements from the failing test scenarios of B), described in detail in section 6.2,
help us prune the list.

The most important requirement is that the chosen software should be able to
simulate noisy qubits and imperfect quantum operations. Talking about the quantum
gates, it should be able to apply the two most common quantum error models: the
quantum depolarizing channel and the quantum dephasing channel. For the case of
the qubits, it should allow to apply error models that incorporate relevant quantum
physical parameters like the 77 and 775 times. Finally, we would like the simulation
software to easily interface with the selected test automation solution.

The last question is how are the test results going to be presented. Almost all the
test automation softwares already incorporate one or more ways of reporting the
test results. But, for the reports from our QuUTAF, we want to include relevant
information from the test cases, like the parameters chosen, or the calculated
probability distribution. Hence, the test automation software should provide an API
or a way of personalizing and extending the final test reports.

5.3 Implementation

Given all the requirements and design considerations from above, we opted for using
the robot framework [10] as the test automation solution that would be the basis
for the implementation of our QuTAF. Also, we chose NetSquid [4] as the tool to
perform the classical quantum simulations for use case B). In this section, we first
give a brief description of both the robot framework and the NetSquid tool, along
with the reasons for choosing them. Later, the overall architecture of the solution is
set forth. We end with an example of how a qubit initialization test case is defined.

5.3.1 Robot Framework

The robot framework is an open source test automation framework, initially devel-
oped at Nokia Networks, that has been successfully used for the testing of a variety of
software projects. It is an extensible keyword-driven automation framework based in
Python, with a rich ecosystem consisting of libraries and tools developed as separate
projects by the community [10]. The framework works by processing the test data,
executing the corresponding test cases, and generating logs and reports. In general,
the robot framework has no information about the System Under Test (SUT), and
the interaction is handled entirely by the test libraries, which drive the SUT either
directly or by means of test tools. The modular architecture of the robot framework
is shown in Figure 5.3.

5.3 Implementation

35

36

Test Data

--------------------------------- -- Test data syntax

------------------------------- - - Test library API

Test Libraries

Test Tools

----------------------------------- Application interfaces

System Under Test

Fig. 5.3: Architecture of the robot framework.

By providing an extensible syntax with human-readable keywords, the framework
allows us to define test steps and combine them to create more complex test scenarios.
This can be used to create quantum circuits that are agnostic of the back end they are
run in. We start by defining keywords for quantum operations like qubit initialization,
quantum gates, and quantum measurements, like we saw in Figure 5.1. Then,
we create other keywords that represent quantum programs, by simply using the
keywords of the quantum operations associated to them. We can also define other
keywords that take care of the necessary validations. Finally, we generate the test
cases by mixing the quantum program with the validation keywords. Furthermore,
we can run the same test cases on different quantum systems, by selecting the
appropriate testing libraries.

This last characteristic, the possibility of running the same test cases on different
systems, in one of the key factors behind the selection of the robot framework. As
we can see from Figure 5.3, this is possible due to the modular architecture of the
framework, where the test data is independent from the test libraries, which are
the ones that dictate how to interact with the SUTs. In section 5.3.3 we provide the
details of how this is actually implemented in our QuTAF.

Another reason for choosing the robot framework is that it provides an API that
exposes its internal reporting mechanism. The framework creates, by default, logs
and reports that include the essential information. However, there exist several tools
and plug-ins that generate better or more detailed test reports, by taking advantage
of this exposed API.

Chapter 5 A Test Automation Framework for Quantum Applications

The final property that closed the case for choosing the robot framework over other
solutions, is that it is Python-based. Remember that the quantum node from use case
A) provides a Python API interface for specifying the quantum instructions to run on
the quantum node. Further, the chosen tool for performing the quantum simulations,
NetSquid, detailed in the next section, is also available as a Python package. Hence, a
Python-based automation framework was key for easily implementing our QuTAF.

5.3.2 NetSquid

NetSquid is the Network Simulator for Quantum Information with Discrete events,
a platform for simulating all aspects of quantum networks and quantum computing
systems. It is based on a generic discrete-event simulation engine that allows to
accurately simulate quantum systems that are subject to physical non-idealities. It
does this by keeping track of the quantum state decoherence, based on the elapsed
time between events [4].

Although specifically designed for the simulation of complex quantum networks, the
NetSquid platform has been successfully used for the modelling of quantum devices
based on Nitrogen-Vacancy centres in Diamond (NV), like in [5]. Hence, we can
be sure that the simulations run for the use case B), will be comparable to the test
results obtained from A), as the quantum device attached to the networked quantum
node uses NV-based qubits.

Another advantage of using NetSquid, is that it offers four quantum state representa-
tion options: ket vectors, density matrices, stabiliser tableaus, and graph states with
local Cliffords. The one that we are interested in is the density matrix representation.
This representation allows for the accurate simulation of the evolution of noisy
quantum states, and the errors introduced by applying imperfect quantum gates and
quantum measurements.

Additionally, the NetSquid Python package supports the following quantum error
models (in netsquid.components.models.qgerrormodels): a phenomenological
noise model based on the 7} and T times of the qubit (T1T2NoiseModel), the
depolarizing noise model (DepolarNoiseModel), and the dephasing noise model
(DephaseNoiseModel). The last two models receive a depolarizing or dephasing
rate that can be applied in two ways: as the probability that the qubit will see the
corresponding error with the passing of time, or as the exponential error rate per
unit time.

Lastly, it also allows to define custom noisy quantum measurement operations, using
the netsquid. components.instructions.IMeasureFaulty component. The noise

5.3 Implementation

37

38

model in this case is a classical probabilistic error model, where we specify the
probabilities of committing an error while measuring and observing the outcome 0
(p0) or outcome 1 (p1).

5.3.3 QuTAF Architecture

The final architecture of our QuTAF is depicted in Figure 5.4. As it is expected, the
architecture is largely determined by the test automation software used as basis.
There, we can see that the robot framework provides the mechanisms for carrying
off the main operational responsibilities of the QUTAF: processing the test scripts,
executing the tests by driving the System Under Test (SUT), and gathering the results.
The robotmetrics tool is used to generate a report that includes the expected and
calculated proportion of successful outcomes. The NetSquid package is used in the
SimulationLibrary.py test library file. We now describe each of the components
of our QuTAF in detail.

Simulation
Library.py

Libraries

Quantum *
Node

Library.py N

Test Runner

Simulation
Keywords

Resources ¢
4
.robot

Quantum
Node
Keywords ’
.robot ’

| Simulation |
Tests

! Integration
(=]

robotmetrics

Results
Gatherer

A

robot framework

Fig. 5.4: General architecture of QuTAF, the proposed test automation framework for
quantum applications.

Libraries. The testing libraries provide the means for driving the SUT. In prac-
tical terms, they are Python classes instantiated by the robot framework, either
at the start of each test suite, or for the whole test run. In our case, we have
two classes corresponding to the two use cases or two SUTs to be used. The

Chapter 5 A Test Automation Framework for Quantum Applications

QuantumNodeLibrary.py allows us to test the networked quantum node. And
the SimulationLibrary.py lets us test a simulated quantum device by using the
NetSquid package. In these libraries we do the translation from the quantum opera-
tions specified as keywords, to the actual operations available in the systems tested.
Here we also specify how the validations are performed. So, it is also in the testing
libraries where the the statistical packages that help us calculate the probability
distributions, namely scipy.stats and statsmodels.stats, are loaded.

Resources. In the robot framework, resource files provide a mechanism for sharing
keywords and variables among tests. In our case, it is in the *Keywords.robot files
where we define those keywords that are relevant only for testing a specific system.
These files include keywords for common tasks such as test initialization or test tear
down, as well as keywords related to the validations performed for each SUT.

Tests. As the name suggests, these are the files that contain the actual steps executed
as part of a test. In the robot framework, each test.robot file is a test suite that
is composed of one or more test cases. The test suites consist of a test set up and at
least one test case. It can also contain definitions of local variables and keywords.
An example of a test suite with a single test case that verifies the initialization of a
qubit is shown in Figure 5.5.

Test runner and results gatherer. While they are depicted as separate entities in
Figure 5.4, these components are actually parts of the the same core of the robot
framework. The core uses the libraries and resources to run the tests on a given
SUT. It is also in charge of keeping track of the test outcomes, and of creating an
output.xml log file that contains the information about a test run. The core is,
hence, the one that makes everything work.

Reporter. The robot framework has a built-in test reporter that creates HTML
reports based on the XML log file generated by the core. However, in order to
extend the final report, we use the robotmetrics tool [2]. This software parses
the output.xml log file using the API provided by the robot framework, and gen-
erates a dynamic HTML dashboard report. By modifying the source code of the
robotmetrics, we are able to present the obtained and expected proportions for
each of the test cases, in the Test Metrics tab of the dynamic dashboard report.

5.3.4 Test Definition Example

Figure 5.5 shows an example of how a qubit initialization test case is defined in our
QUuTAF. The first thing we notice are the distinct sections that compose the test file.
At the top we have the *** Settings #*** section, where the global characteristics

5.3 Implementation

39

40

1 *%x Settings ¥k

2 Documentation Qubit initialization and measurement test

3 Library SimulationLibrary.py
4 Resource SimulationKeywords.robot
5 Test Setup Start Simulation

6 Suite Teardown End Simulation

8 **x Test Cases **x*

9 Initialize qubit and measure in Z

10 [Documentation] Initialize qubit O and measure in the Z basis.
11 [Tags] initialization simulation

12 Append Op To Quantum Program op=INI qubit=0

13 Append Op To Quantum Program op=MSR qubit=0 basis=Z

14 Simulate Program And Verify runs=1000 proportion=0.98

15

16 *** Keywords *x*x

17 Simulate Program And Verify

18 [Documentation] Simulate a quantum program using NetSquid and

19 500 verify that the calculated proportion of successes
20 is greater than or equal to the expected one

21 [Arguments] ${runs} ${proportion}

22 Simulate Quantum Program repetitions=${runs}
23 Verify Outcomes Proportion expected=${proportion} alpha=0.05

Fig. 5.5: Example of a .robot test suite file that contains a single qubit initialization test
case.

of the test are designated. After a documentation string we find the selection of the
SimulationLibrary.py, which tells us that we will run the tests using the simulated
quantum node testing library. We also see that the SimulationKeywords.robot is a
resource file. This resource file contains definitions of the keywords used throughout
the test suite. Remember that in the robot framework, each .robot test file is
actually a test suite.

The next section, labeled as *x* Test Cases ***, is where all the test cases that
are part of this suite are specified. Each test case starts with a title, it has an optional
documentation string and optional tags, and then it contains a list of keywords that
are the actual test steps to be executed. These keywords are defined either in the
resource files, or in the current test file, in the corresponding *** Keywords **x
section. The local keywords, however, have a scope that is limited to the current test
suite.

Using the Simulate Program And Verify keyword as example, we see that the
keywords have a mandatory name and an optional documentation string. They can
also receive positional or key-valued arguments, as observed in line 21. And, more

Chapter 5 A Test Automation Framework for Quantum Applications

importantly, they are created out of other existing keywords that are local, built-in,
or found in the resource files.

5.3 Implementation 41

Validation

Failure is the condiment that gives success its
flavor.

— Truman Capote
Writer and actor

The test automation framework for quantum applications presented in the previous
chapter was developed with two main use cases in mind: A) verifying the software
developments for a networked quantum node, and B) validating the workings of the
QUuTAF itself. In section 6.1 we present the results obtained for A), where our test
automation framework was used for testing the integration of the classical software
stack with the control software of the quantum device. The results from B) are in
section 6.2, where three failure scenarios were simulated: a base case, tests that fail
due to the quality of the quantum hardware is worse than expected, and tests that
fail because of errors introduced by the programmers of the quantum programs.

6.1 Testing a Real Quantum Node

6.1.1 A Networked Quantum Node

The networked quantum node tested is an integrated system that serves as the
basis for a first quantum internet prototype that will connect a few cities in The
Netherlands. It provides the capabilities of running both local and distributed
quantum applications. The system is composed of a classical compute node, a
quantum compute node based on Nitrogen-Vacancy centres in Diamond (NV), as
well as classical and quantum networking interfaces. The classical board is in charge
of performing the required computations for the application, transport, network,
and link layers of the system. While the quantum node is responsible for the physical
layer, and it is controlled by another classical board that can receive instruction
messages from the compute board, and as send measurement results and status
messages back. More details about the general architecture of the software stack for
the networked quantum node can be found in [20] and [19].

43

44

Classical communication
with application instance
at other end-nodes

Classical communication

‘o Routing with routing/TE/signalling
Application Traffic Engineering| Protocols at other nodes
(end-node only) . .
Signalling
A A A
0s zr- Generate

g § i entangled pairs i Populate data plane tables
E
<8 Classical communication
% g Quantum Network thh _Qt:]?)ntur_n Net\néork Stack

£ at neighbouring nodes
EX Stack 9 9
§ w
g ¥
% Network layer operations (e.g. entanglement swap)
3 Link layer operations (e.g. attempt entanglement)

Memory management (alloc/free qubits)
uantum Memory
uantum Task Scheduler Q :
Q Management Unit
A
Hardware Physical instructions
) 4
Quantum - Memory
Devi - Processor
evice - Network interface

Fig. 6.1: Proposed architecture for the components of a networked quantum node. From
[19].

In Figure 6.1 taken from [19], we see an example of the architecture for a general
networked quantum node. In our case, the quantum device at the bottom of the
figure is the quantum compute node, and everything that is above the hardware
pointed line, is part of the classical compute board. The physical instructions are
sent as messages between the compute board and the quantum device, or more
precisely, between the compute board and the classical controller of the quantum
device. It is worth mentioning that, by the time the integration tests were performed,
the networked quantum node had only a single NV memory qubit attached, and
no actual quantum networking interface. So, only single-qubit quantum operations
were tested. It is also worth recalling that, ultimately, the QuUTAF sees the whole
networked quantum node as a black-box, and uses its python API to execute the
tests.

6.1.2 Integration Tests

The tests run for the networked quantum node have two goals in mind. The first one
is certifying a proper communication between the compute node and the quantum
device. This is easily accomplished by observing the messages transmitted, and
counting the number of errors happening. Nevertheless, knowing that a quantum
instruction message has been successfully transmitted, does not certify that the

Chapter 6 Validation

operation is correctly performed. Hence, the second goal of the tests is to verify
that the quantum instructions, i.e. the qubit initialization, single-qubit gates, and
quantum measurements; are also properly executed.

For the first goal, the networked quantum node is capable of reporting back the
number of sent and failed messages. So, calculating the proportion of successfully
transmitted messages is straightforward. For all the test cases, the threshold is set
to 0.9999. Consequently, if at least 99% of the messages are correctly transmitted
between the compute node and the quantum device, then the communication test is
considered a pass.

On the other hand, for verifying the correct application of a quantum instruction, we
have to run a small quantum circuit, and then validate the quantum state produced.
For example, if we want to test that a X gate is correctly applied, we initialize a qubit
in |0), apply the X gate, and measure the qubit in the Z basis. Then, according to the
particularities of the quantum hardware, like the 77 and 75 decoherence times of the
qubits, and the errors induced by the quantum gates and measurement operations,
we define the expected probability distribution of successful measurements.

The QuTAF can then calculate the probability distribution of the test outcomes, and
compare them using the hypothesis testing technique. Since the testing process
can modeled as a Bernoulli process whose probability distribution is determined
by the probability of success, then the tests for the quantum instructions are also
characterized by a proportion: the expected probability of success of the testing
process.

Notice that depending on the operations tested, and more properly on the produced
quantum state, we need to specify the expected proportion either as a single number
or as a range. For the previous example, given that we are measuring in the Z basis,
we can say that we expect 0.90 or 90% of successful measurements. Then, if the
proportion calculated from the test outcomes is lower than that, we say that the
test fails. However, if we prepare the state |[+) and we measure it in the Z basis,
then ideally we would expect a 0.50 or 50% of successful measurements. Then, we
could say that getting any distribution different than this one from the test outcomes,
means that the test failed. In reality, though, this number will change due to the
inherent quantum errors previously described. So, we resort to say that the test
passes if the probability of success calculated from the observed outcomes, falls
within an expected range.

Another option for testing the |+) state, or any superposition quantum state, is to

perform the measurement in a different basis. Nonetheless, depending on the type of
quantum hardware tested, this is not always possible. For example, the underlying

6.1 Testing a Real Quantum Node

45

46

NV-based quantum device used by the networked quantum node can only perform
measurements in the computational basis. There, measurements in different basis
are accomplished by rotating the qubit towards the axis of the selected basis. These
pre-measurement rotation gates are run as part of the quantum circuit tested. This,
in turn, makes it difficult to know if a test failed because of a problem in the quantum
instruction that is being verified, or because the pre-measurement rotation gates
were incorrectly applied.

Table 6.1 lists all the integration tests run in the networked quantum node. Each
test case has an associated set of quantum operations performed, as well as the
number of times the test was executed. The number of 30000 repetitions is chosen
in order to have a greater confidence on the calculated probability of success, while
keeping the significance level at 0.05. It is also selected to get an outstanding
number of messages for verifying the communication. The only exceptions to this
are the negative test cases, with ids T.2.a to T.2.c, that are only repeated 10 times.
As mentioned before, the expected proportion of successful messages is set to 0.99
for all the test cases. On the other hand, the expected proportion of successful
measurement outcomes is calculated individually for each of the test cases, based on
the calibration of the quantum hardware. These values are listed in table 6.2, along
with the calculated proportion, and the test verdict.

Tab. 6.1: Description of the integration tests run on the networked quantum node.

Id Description Operations Repetitions

State |0) initialization 1. Initialize qubit O
T.1) : 30,000
and measurement in Z 2. Measure qubit O

Initialization of invalid L .
T.2.a . 1. Initialize qubit 1 10
qubit

1. Initialize qubits 0, 1
Unsupported 2-qubit 2. Apply CNOT with qubit O

T.2.b : 10

gates as control and qubit 1 as

target
T2 Unsupported move 1. Initialize qubits 0, 1 10
2.c
qubit operation 2. Move qubit O to qubit 1
. 1. Initialize qubit O
State |1) preparation ro-)
. 2. Apply 7 rotation around X

T.3.a tating around X and 30,000

. on qubit 0
measurement in 2 .
3. Measure qubit 0

Continues on next page...

Chapter 6 Validation

Id Description Operations Repetitions
. 1. Initialize qubit O
State |1) preparation ro-)
) 2. Apply = rotation around Y
T.3.b tating around Y and) 30,000
) on qubit 0
measurement in Z .
3. Measure qubit 0
Rotation by k x 4% 1. Initialize qubit O
T.4.a .
. around X and mea- 2. Apply k x {; rotations 30.000
T: surement in Z (k = around X on qubit O ’
0 1,2,...,15) 3. Measure qubit 0
s Rotation by k x ¢ 1. Initialize qubit O
‘t.a around X and mea- 2. Apply k x {; rotations 30.000
TSO surement in Z (k = around X on qubit 0 ’
20 —1,-2,...,—15) 3. Measure qubit 0
T6 Rotation by k x % 1. Initialize qubit O
't.a around Y and mea- 2. Apply k x {; rotations 30.000
T g surement in Z (k = around Y on qubit 0 ’
.6.0
1,2,...,15) 3. Measure qubit 0
.7 Rotation by k x q{; 1. Initialize qubit O
/% around X and mea- 2. Apply k x {; rotations
to .) 30,000
.7 surement in Z (k = around Y on qubit 0
/0 -1,-2,...,—15) 3. Measure qubit 0
1. Initialize qubit O
2. Apply 7 rotation around Y’
Stat ti bit 0
1.8 ate |+) prepar.a ion on qubi ' 30,000
and measurement in Y 3. Apply 7 rotation around X
on qubit 0
4. Measure qubit 0
.. 1. Initialize qubit O
State |1) preparation in .
. 2. Apply 2 x q{ rotation
small rotations around)
T.9 . around X on qubit 0 30,000
X and measurement in i
P 3. Repeat step 2 for 7 times
4. Measure qubit 0
6.1.3 Results

Before delving into the test results, it is worth mentioning that due to a tight schedule
and the limited resources available, it was not possible to use the QuTAF to execute

6.1 Testing a Real Quantum Node

47

48

the test cases listed in 6.1. This means that the QuTAF was not used to drive the
networked quantum node, and the tests were performed by direct execution on the
classical compute node. For each test case, a test log was generated. Nevertheless,
the QUTAF was later used for performing the analysis of the outcomes, so the
different techniques discussed in section 4.3.1 and section 4.3.2 were indeed used
for deriving the results presented in Table 6.2.

Looking at the Table 6.2, we immediately see that the only test case that is deemed
as failed is the one with id T.1. This was caused by a miscalibration of the quantum
device. A detailed analysis about this test case is deferred to section 6.1.1. Then,
it is also easy to notice that the tests T.2.a, T.2.b, and T.2.c, have no expected
or calculated probability of success, but they are marked as PASS or SKIP. This
is because these are negative tests whose goal was to verify that the system was
capable of returning an error when receiving an invalid request. The T.2.b test is
marked as SKIP since the functionality was not available by the time the tests were
performed.

If we focus on the column that shows the expected probability of success, we can
observe that the test cases that prepare |1) states, or states close to |1), have an
expected proportion of success that is closer to 1.0, compared to those that test
states prepared as |0). The reason for this is that the measurement operation in the
quantum device has an asymmetric probability of failure. By this we mean that,
when doing a quantum measurement, the quantum node is more likely to commit
an error when measuring |0) states, than when measuring |1) states.

The test cases that prepare a |1) can also give us some information about the quality
of the rotation gates applied by the quantum device. For instance, comparing the
calculated probability of success from test T.3.a and test T.3.b, we can conclude that
the X and Y rotation gates have a similar performance, since both prepared a |1)
with almost the same probability of success. On the other hand, if we compare the
calculated probabilities between tests T.3.a and T.8, we see then that the X rotation
is not error free, since when we apply the gate 8 times instead of only 1, the success
probability drops from ~ 0.943 to ~ 0.921.

In Figure 6.2 we show the dashboard of the dynamic report generated by the QuTAF,
as a different way of presenting the same results listed in Table 6.2. We see that all
the communication messages were successfully transmitted, and there is only one
test case marked as failed.

Chapter 6 Validation

&

@ Dashboard

== Suite Metrics

[= Test Metrics

EE Instruction Metrics

= Logs

& Dashboard Execution Time: 00:09:48 Date: 20/04/2020

Test Suite Statistics Test Case Statistics

66

< Communication Messages

2430001 S)

2430001 0 5 0 67 1

= Communication Messages Status Test Suite Status Test Case Status

Fig. 6.2: Dashboard of the test report generated by the QuTAF after analyzing the outcomes
of the integration tests run on the networked quantum node.

Tab. 6.2: Results of the integration tests run on the networked quantum node. Each test
case has an expected probability of success calculated based on the parameters of
the quantum hardware, and an actual probability of success calculated from the
test outcomes.

1d Details Probability of success Test
Expected Actual Result
T.1 State |0) initialization 0.91 0.8919 FAIL
T.2.a Unsupported initialization - - PASS
T.2.b Unsupported 2-qubit gate - - SKIP
T.2.c Unsupported move operation - - PASS
T.3.a Rotation around X to |1) 0.93 0.9433 PASS
T.3.b Rotation around Y to |1) 0.93 0.9464 PASS
T.4.a 7/16 rotation around X [0.85,1.00] [0.8625,0.8757] PASS
T.4.b 27/16 rotation around X [0.80,0.95] [0.8403,0.8543] PASS
T.4.c 37/16 rotation around X [0.75,0.85] [0.8061,0.8213] PASS
T.4.d 47/16 rotation around X [0.70,0.80] [0.7367,0.7537] PASS
T.4.e 57/16 rotation around X [0.65,0.75] [0.6815,0.6997] PASS
T.4.f 67/16 rotation around X [0.55,0.65] [0.6171,0.6361] PASS
T.4.g 7n/16 rotation around X [0.50,0.60] [0.5192,0.5388] PASS
T.4h 87/16 rotation around X [0.40,0.50] [0.4399,0.4595] PASS
T.4.1i 97/16 rotation around X [0.35,0.45] [0.3765,0.3955] PASS
T.4.j 107 /16 rotation around X [0.25,0.35] [0.2856,0.3034] PASS
T.4.k 117/16 rotation around X [0.17,0.27] [0.2082,0.2244] PASS
T.4.1 127/16 rotation around X [0.09,0.19] [0.1530,0.1674] PASS
T.4.m 137/16 rotation around X [0.03,0.13] [0.1036,0.1158] PASS

Continues on next page...

6.1 Testing a Real Quantum Node

49

50

) Probability of success Test

Id Details

Expected Actual Result
T.4.n 147/16 rotation around X [0.00,0.10] [0.0626,0.0724] PASS
T.4.0 157/16 rotation around X [0.00,0.10] [0.0471,0.0557] PASS
T.5.a —x/16 rotation around X [0.00,0.10] [0.0716,0.0820] PASS
T.5.b —27/16 rotation around X [0.05,0.15] [0.0968,0.1086] PASS
T.5.c —37/16 rotation around X [0.10,0.20] [0.1489,0.1631] PASS
T.5.d —47/16 rotation around X [0.15,0.25] [0.2080,0.2242] PASS
T.5.e —57/16 rotation around X [0.20,0.30] [0.2691,0.2867] PASS
T.5.f —67/16 rotation around X [0.30,0.40] [0.3515,0.3703] PASS
T.5.g —7n/16 rotation around X [0.35,0.50] [0.4253,0.4447] PASS
T.5.h —8n/16 rotation around X [0.45,0.55] [0.5056,0.5252] PASS
T.5i —97/16 rotation around X [0.55,0.65] [0.5841,0.6033] PASS
T.5,j —107/16 rotation around X [0.65,0.75] [0.6775,0.6957] PASS
T.5.k —117/16 rotation around X [0.70,0.80] [0.7389,0.7559] PASS
T.51 —127/16 rotation around X [0.75,0.85] [0.7974,0.8130] PASS
T.5.m —137/16 rotation around X [0.80,0.90] [0.8359,0.8501] PASS
T.5.n —147/16 rotation around X [0.80,0.95] [0.8684,0.8814] PASS
T.5.0 —157/16 rotation around X [0.85,1.00] [0.8734,0.8862] PASS
T.6.a 7/16 rotation around Y [0.85,1.00] [0.8623,0.8755] PASS
T.6.b 27/16 rotation around Y [0.80,0.95] [0.8429,0.8569] PASS
T.6.c 37/16 rotation around Y [0.75,0.85] [0.8049,0.8201] PASS
T.6.d 47/16 rotation around Y [0.70,0.80] [0.7456,0.7624] PASS
T.6.e 57/16 rotation around Y [0.65,0.75] [0.6882,0.7062] PASS
T.6.f 67/16 rotation around Y [0.55,0.65] [0.6085,0.6275] PASS
T.6.g 77/16 rotation around Y’ [0.50,0.60] [0.5219,0.5415] PASS
T.6.h 87/16 rotation around Y [0.40,0.50] [0.4512,0.4708] PASS
T.6.i 97/16 rotation around Y [0.35,0.45] [0.3744,0.3934] PASS
T.6.j 107 /16 rotation around Y [0.25,0.35] [0.2992,0.3174] PASS
T.6.k 117/16 rotation around Y [0.17,0.27] [0.2040,0.2200] PASS
T.6.1 127/16 rotation around Y [0.09,0.19] [0.1564,0.1710] PASS
T.6.m 137/16 rotation around Y [0.03,0.13] [0.1026,0.1148] PASS
T.6.n 147/16 rotation around Y [0.00,0.10] [0.0638,0.0738] PASS
T.6.0 157/16 rotation around Y [0.00,0.10] [0.0447,0.0531] PASS
T.7.a —7/16 rotation around Y [0.00,0.10] [0.0609,0.0707] PASS
T.7.b —27/16 rotation around Y [0.05,0.15] [0.0945,0.1063] PASS
T.7.c —37/16 rotation around Y’ [0.10,0.20] [0.1375,0.1513] PASS
T.7.d —4n/16 rotation around Y’ [0.15,0.25] [0.1933,0.2091] PASS

Continues on next page...

Chapter 6 Validation

) Probability of success Test
Id Details
Expected Actual Result

T.7.e —57/16 rotation around Y [0.20,0.30] [0.2577,0.2751] PASS
T.7.f —67/16 rotation around Y’ [0.30,0.40] [0.3509,0.3697] PASS
T.7.g —7n/16 rotation around Y [0.35,0.50] [0.4307,0.4501] PASS
T.7.h —8n/16 rotation around Y [0.45,0.55] [0.4877,0.5073] PASS
T.7.i —97/16 rotation around Y [0.55,0.65] [0.5777,0.5969] PASS
T.7j —107/16 rotation around Y [0.65,0.75] [0.6678,0.6862] PASS
T.7k —117n/16 rotation around Y [0.70,0.80] [0.7332,0.7504] PASS
T.71 —127/16 rotation around Y [0.75,0.85] [0.7816,0.7976] PASS
T.7.m —137/16 rotation around Y [0.80,0.90] [0.8310,0.8454] PASS
T.7.n —147/16 rotation around Y [0.80,0.95] [0.8578,0.8712] PASS
T.7.0 —157/16 rotation around Y [0.85,1.00] [0.8712,0.8840] PASS

State |+) preparation and
T.8 . [0.40,0.50] [0.4507,0.4620] PASS

measurement in Y

State |1) preparation in small
T.9 rotations around X and mea- > 0.92 0.9210 PASS

surement in Z

6.1.4 Qubit Initialization: a Failed Test Case

As we saw in section 2.2.2, tests at the integration level are usually run following a
systematic approach, where the components of a system are gradually integrated. If
small groups of components are already verified, then we can proceed to test a more
complex or bigger integration, without needing to test again the already validated
behaviors. Having this in mind, it was striking to find that the only test case that
failed was the simplest one, the one that served as the basis for all the other test
cases: the initialization of a qubit.

This test case simply initializes a qubit in |0), and then measures it in the Z basis.
These two operations are further used as building blocks for creating test cases that
verify other operations. It is clear that testing any single-qubit gate requires, always,
the initialization and measurement of a qubit. We cannot test a quantum gate in
isolation. Hence, if the test that verifies these basic operations do not pass, we can
suspect that the results obtained from the more complex test cases are wrong. It is
then imperative to know the root cause of the failure.

Sadly, in our case, it is not possible to follow the process for debugging failures in
quantum programs outlined in section 3.4.2. This is because the QuTAF was not

6.1 Testing a Real Quantum Node

51

52

used for the execution of the test cases, but only for the analysis of the test outcomes
and the generation of the test results. Hence, there is no test execution log available
for scrutiny. This also means that the source of the problem cannot be an incorrect
or incomplete test case definition. On the other hand, we do have the outcomes of
the measurements performed by the test. So, we can definitely perform checks on
the way the test result is derived from them.

Before moving forward, though, it is important to recall what does it mean for a
test to fail. Broadly speaking, we say that a test fails if the probability distribution
of the outcomes is different than the probability distribution expected by the test.
In the QUTAF we make a more precise formulation, and say that the test fails if the
probability of success calculated from the test outcomes p.., is strictly less than
the expected probability of success peyp, i.€., if Deaic < Peap- SO, a failing test case
does not necessarily mean that the qubit initialization is not working at all. This is
confirmed by checking the results table, and observing that the calculated success
probability is actually close to the expected one, but certainly not higher.

One probable source of error can be the way this probability of success is calculated
from the measurement outcomes data. For the failing test case, this calculation
is done by using the Binomial Inverse Survival Function (ISF), which specifies
a minimum number of expected successful observations k,,;, given an expected
probability of success, a significance level (a), and the total number of observations,
as detailed in 4.3.1. In our case, the expected probability of success is 0.91, an
a = 0.05 is chosen, and we perform a total of 30000 repetitions. Hence, the &,
is:

kmin = Z (o, n,p) = Z(0.05,30000,0.91) = 27381 6.1)

This number is compared with the actual number of successful outcomes observed,
which in this case is k., = 26861. Thus, given that k., = 26861 < ki = 27381,
the test is correctly marked as a fail. Given the high number of repetitions, relaxing
the confidence level, i.e., increasing the o, makes no difference in the final verdict
for the test.

Now, in section 4.3.2 we saw there is another way of calculating the probability
of success: the binomial proportion confidence interval. Even when this is an
approximation of the true Binomial probability distribution, the fact that we have
30000 observed outcomes, gives us confidence that the approximation is going to be
accurate. For calculating the binomial proportion confidence interval we can choose
different approximation methods. However, as we can see in Table 6.3, with all the
available methods, the confidence interval calculated from the data is in accordance

Chapter 6 Validation

with the value obtained using the Binomial ISF. From these results, we can then be
sure that the probability of success was indeed correctly calculated.

On the other hand, we know that the testing of a quantum program is a random
process. As such, it can happen that the test fails simply because the test realizations
were just unlucky. Nevertheless, this uncertainty can easily be reduced by increasing
the number of observations made. For the failing test case that concerns us, having
30000 observations allows us to calculate binomial proportion confidence intervals
for the probability of success, with a high confidence. Remember that setting
a = 0.001 is equivalent to a confidence level of 0.999, which means that we can be
99.9% sure that the true probability of success of the test lies within the calculated
interval. As observed in Table 6.3, the confidence intervals calculated from the
outcomes of the failed test, never go beyond 0.9012.

After discarding sources of error coming from the QuTAF or the testing assumptions,
the only possibility left is that the failure is indeed caused by a malfunctioning
quantum node. Upon further discussion with the team in charge of the NV-based
quantum device, the reason for the failure was found to be a miscalibration of the
quantum hardware.

During the execution of the test cases, there were different calibrations applied to
the quantum device. Due to various experimental constraints like laser power drifts,
or possible ice forming in the lab set up, the values can change over the course of
the days. A first calibration was done some days before the tests were run, and the
failed qubit initialization test was the first one to be run. Subsequent calibrations
were done in between the test runs, which explains why the rest of the tests did not
fail. Finally, the fact that during the calibrations the probability of success for the
initialization of a qubit was not maximized, as it was not the scope of the integration
tests, further explains the failure observed.

Tab. 6.3: Binomial proportion confidence intervals for the probability of success of the
failed qubit initialization test. The intervals are calculated from the observed
measurement outcomes, using two different significance levels («). The different
approximation methods are detailed in [30].

Approximation Confidence Interval
Method a=0.05 a = 0.001
Normal [0.891903, 0.898830] [0.889552, 0.901181]

Agresti-Coull [0.891852, 0.898780] [0.889407, 0.901041]
Clopper-Pearson [0.891848, 0.898808] [0.889435, 0.901098]
Wilson [0.891852, 0.898780] [0.889408, 0.901039]
Jeffreys [0.891865, 0.898792] [0.899452, 0.901082]

6.1 Testing a Real Quantum Node

53

54

The fact that the QuTAF was capable of identifying this problem is something
that we cannot stress enough. It proves that our test automation framework for
quantum applications is certainly capable of uncovering tangible and real issues in
the functioning of the quantum devices tested. It also gives us the confidence to
continue with the next use case, where specific failure scenarios will be simulated
and verified using the QuTAF.

6.2 Simulating Fail Scenarios

In this section we showcase the capabilities and limits of the proposed QuUTAF by
exploring how it performs when executing testing scenarios purposefully designed
to fail. We use the NetSquid package in order to simulate a quantum device that
closely resembles the quantum hardware from the previous use case. This is done so
that we can compare the test results from the simulations and those obtained from
the real quantum device, if needed. It also ensures that the parameters chosen for
the simulations are indeed physically attainable.

We first describe the configuration of the simulated quantum node in section 6.2.1.
Then, an example of what a simulated test run looks like is presented in section
6.2.2. From this example we derive some key parameters used for the test runs of
the failure scenarios explored. The first actual fail scenario is given in section 6.2.3.
This scenario is based on our experience with the failed qubit initialization test case
from the first use case. So, its failure premise is that the quality of the quantum
device is worse than expected. Test cases for the quantum depolarizing and quantum
dephasing error models are simulated and discussed. Finally, section 6.2.4 contains
the test cases and results for the scenario where a quantum programming mistake is
simulated: the application of an extra rotation gate inside a loop.

6.2.1 Configuration of the Simulated Quantum Node

As mentioned in section 5.3.2, the NetSquid package provides various options
for the noise models that can be applied to the qubits and quantum operations.
From these, we will choose those that allow us to replicate, as closely as possible,
the quantum hardware from the networked quantum node tested for use case A).
The quantum device in question is based on Nitrogen-Vacancy centres in Diamond
(NV), and has a single electron qubit. The noise model used for the electron qubit
is the T1T2NoiseModel, while the qubit initialization operation is subject to the
DepolarNoiseModel where the rate represents the probability that the qubit will
depolarize with time. The single qubit gates are deemed as perfect, while the
quantum measurements use a classical probabilistic error model where p0 and

Chapter 6 Validation

Tab. 6.4: Physical parameters used for the simulation of the NV-based quantum device.
Based on [5].

Error .
Duration
Parameter Value
. Ty time 2.86 ms -
Electron qubit Ty time 1.0 ms]
Electron qubit initialization ~Depolarization prob. 0.025 2 us
Single qubit gate - - 5ns
. Prob. of error |0) 0.05
Qubit measurement Prob. of error [1) 0.005 3.7 us

pl are the probabilities of incurring in an error when measuring a |0) or a |1),
respectively.

The actual parameters used for the error models above, shown in Table 6.4, are taken
from Table 6 of the Appendix D.2 in [5]. Here, Dahlberg et al. use the NetSquid
package to accurately simulate a similar quantum node based on NV centres. For a
detailed discussion about the physics of NV-based platforms, and the reasons behind
the values and error models chosen, we refer the reader to the same Appendix D of
the cited work.

Besides the physical parameters of the simulated quantum device, we also need to
define the parameters related to the tests executed as part of the failure scenarios.
The two outstanding test parameters are: the number of repetitions or executions of
each test case, and the chosen significance level («) for calculating and comparing
the probabilities of success. Given that the goal of these tests is to validate the
workings of the QUTAF and explore its limits, we will actually use different values
for these two parameters to see if, and how, they impact the test results.

6.2.2 Scenario 1: Base case

This first test scenario is a basic qubit initialization and measurement test, where a
qubit is first set to |0) and then measured in the Z basis. It allows us to showcase
what a test run with a vanilla configuration, i.e., one that uses the parameters and
values shown in Table 6.4 with no modifications, looks like. From these parameters,
we calculate that the expected probability of success for the test is 0.93. Also, the test
is configured to perform 10,000 repetitions and uses a significance level of o = 0.05
for estimating the probability of success from the actual outcomes.

6.2 Simulating Fail Scenarios

55

56

Scenario 1. Qubit initialization and measurement:
test progression example 1

1.00
--=- Expected probability
§ Test FAIL
§ Test PASS
0.98 A
&
(]
o
5 0.96 4
wn
‘G
2
P
Q
I
L e) e S
0.92 A
0.90

2000 4000 6000 8000 10000
Number of repetitions

Fig. 6.3: Simulated qubit initialization test - test progression 1: test results and estimated
success probabilities shown every 500 repetitions.

Figure 6.3 shows what the result of the test would be if it was stopped after 500,
1000, 1500, and so on, repetitions. The error bars correspond to the estimated
interval for the probability of success, calculated with a 95% confidence. As we can
see, the interval narrows down as the number of repetitions increases, even when
the significance level, or confidence level, is not changed. This confirms our claim
that a way of having more confidence on a test is to simply increase the number of
repetitions performed.

Now, looking at Figure 6.3 it seems that after around 4000 repetitions, the estimated
probability of success does not fluctuate anymore. So, we could get the impression
that we only need to repeat our tests that much in order to get a meaningful result.
However, we have to remember that testing quantum applications is a random
process, and as such, we can not base our conclusions on a single test run.

In Figure 6.4 we find another realization of the same qubit initialization test. Again,
the test result and the estimated confidence intervals for the probability of success
are taken after every 500 repetitions. There, we see that if we stopped the test after
anywhere between 500 and 6000 repetitions, the result of the test would be a pass.
However, the test outcomes between 6500 and 7500 are such that make the test fail.
This brings up the question of how much repetitions are actually needed in order to
have a valid test result.

In order to answer this question, we perform a series of 50 test realizations of
the same test with the same parameters. Each test realization consist of 10000

Chapter 6 Validation

Scenario 1. Qubit initialization and measurement:
test progression example 2

1.00
--=- Expected probability
§ Test FAIL
§ Test PASS
0.98 A
A
[0}
o
5 0.96 A
wn
G
2
2 0.94 1 ll}l[ll [I
Q
: f
SRS IRRNANE IRRRRRRES
0.92 A
0.90

2000 4000 6000 8000 10000
Number of repetitions

Fig. 6.4: Simulated qubit initialization test - test progression 2: test results and estimated
success probabilities shown every 500 repetitions.

repetitions. Again, we stop the tests after every 500 repetitions and count how many
of the tests result in a pass, and how many in a fail. The results are shown in Figure
6.5. As expected, the number of passed tests increases as we perform more test
repetitions.

Furthermore, it is also clear that if we want to be 100% confident in the result of
a test, then we must perform more repetitions. As we can see, from the 50 test
realizations, in 4 occasions the test was deemed as failed even after doing 10000
repetitions. Alas, due to time and resource constraints, no further explorations with
a higher number of repetitions were conducted.

Finally, Figure 6.6 shows the success probabilities grouped by passed and failed tests
averaged over 50 test realizations, as they would be reported if the test was stopped
after those many repetitions. It is interesting to observe that the error bars of the
success probabilities from the passed tests are about the same size, no matter the
number of repetitions so far executed. On the other hand, it is clear that the failed
tests have a high variability when a few repetitions have been conducted, but they
converge to a value that is less than 0.93 as the number of repetitions increases. The
expected probability of success is indicated with the black line, and we can see that
though some of the error bars of the passed tests fall below the line, the dot that
marks the calculated average, is always above 0.93.

6.2 Simulating Fail Scenarios

57

58

Scenario 1. Qubit initialization and measurement test:
passed and failed tests for 50 realizations

10000
9500
9000
8500
8000
7500
7000
6500
6000
5500
5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Number of repetitions

0 10 20 30 40 50
Im Test PASS W Test FAIL

Fig. 6.5: Number of passed and failed qubit initialization tests, from a total of 50 test
realizations.

6.2.3 Scenario 2: Defective Quantum Devices

In this scenario we explore how issues in the quality of the quantum device affect
the test results reported by the QUTAF. We already know that the QuTAF is capable
of detecting deficiencies in the quantum hardware, as it correctly did for the failed
test case from use case A) discussed in section 6.1.4. However, we do not know
if it can properly detect all types of errors observed in a quantum device, or how
sensitive it is to them. In this section, we give an answer to these questions.

The test case run in this scenario is the same simple qubit initialization test. We
inspect the sensitivity of the QUTAF to the deficiencies in the quantum hardware by
applying, independently, the quantum depolarizing and quantum dephasing noise
models to the quantum initialization operation. The parameters for the decoherence
of the memory qubit (7 and 7%), and for the probability of error of the measurement,
are left as in Table 6.4. The results shown below are obtained following a similar
approach as in scenario 1: by performing 50 test realizations each consisting of
10000 repetitions. We report, again, the average probability of success as well as the
number of passed and failed tests.

6.2.3.1 Scenario 2. a) Qubit initialization: depolarizing

We know that the quantum device being simulated is a noisy quantum node based
on NV-centres. This means that we are already applying noise to the qubits and

Chapter 6 Validation

Scenario 1. Qubit initialization and measurement test:
average success probabilities of 50 realizations

0.940

siiRRRERRRRERRRARERNNY

T

Probability of success
o o o
(e} o o
- N N
wv o w

0.910 A
--=- Expected probability
0.905 1 ¥ TestFAL
§ Test PASS
0.900 T T T T T
2000 4000 6000 8000 10000

Number of repetitions

Fig. 6.6: Probability of success of the qubit initialization tests simulated with the vanilla con-
figuration. The average and standard deviation from a total of 50 test realizations
is shown.

quantum gates, including the quantum initialization operation. According to Table
6.4, in our simulations the initialization of the electron qubit is subject to a quantum
depolarizing noise that is applied with a probability of 0.025. From this, the expected
probability of success of the qubit initialization test is calculated to be 0.93. In
this failure scenario we want to answer the following question: if we change the
depolarizing probability of the initialization operation to a different value, how
different are the results reported by the QUTAF?

For this, we run test cases where we increase the depolarizing probability from
0.005 to 0.045, almost the double of the 0.025 probability value used for the vanilla
simulations. In the base case in scenario 1, we saw that 46 out of the 50 realizations
passed the qubit initialization test. So, given that a lower value for the depolarizing
probability means a better qubit initialization operation, we would expect all the
test cases up to 0.020 to pass. Then, also, we would expect the QuTAF to report a
fail for those tests where the depolarization probability is higher than 0.025.

Figure 6.7 shows the number of passed and failed tests from a total of 50 test
realizations, simulated with different depolarizing probabilities. As expected, all the
test cases with a depolarizing probability < 0.2, pass all the time. Also, with the
vanilla 0.025 depolarizing probability, we get the same number of pass and fail as in
scenario 1 (see the results in Figure 6.5 for 10000 repetitions). Finally we see that
as we increase the value for the depolarization probability, in other words, when
the quality of the quantum device gets worse and worse, then the QuUTAF reports

6.2 Simulating Fail Scenarios

59

60

more and more failed tests. In quantitative terms, increasing the depolarization
probability by 0.5%, from 0.025 to 0.030, results in almost a 4-fold increase in the
number of failed tests, from 4 to 15. Thus, we can conclude that the QuTAF is indeed
sensitive to the quantum depolarization noise.

Scenario 2. a) Qubit initialization: depolarizing
passed and failed tests in 50 realizations

0.045

0.04

0.035

ity

0.03

0.025

0.02

Depolarizing probabil

o
o
bt
o

0.01

0.005

0 10 20 30 40 50

N Test PASS W Test FAIL

Fig. 6.7: Number of passed and failed qubit initialization tests, from a total of 50 test
realizations, while increasing the initialization depolarizing probability.

6.2.3.2 Scenario 2. b) Qubit initialization: dephasing

The other type of noise that we explore is the quantum dephasing noise, applied
again to the qubit initialization operation. We use the same methodology as in
a), where the values are varied from 0.005 to 0.045, but they correspond to the
probability of applying the quantum dephasing noise. In figure 6.8 we see the failed
and passed tests in 50 test runs, for each of the simulation dephasing probabilities.

As observed, for each of the tested dephasing probabilities, all the 50 test runs pass.
This can be explained in two ways: either the probability values chosen are too
low that they do not affect the quality of the quantum initialization operation, or
the QUTAF is incapable of detecting this type of quantum error. In order to know
the root cause, we can look at Figure 6.9 where the average probability of success
from the 50 test runs is shown, and the error bars denote the standard deviation of
the estimated probabilities. Immediately, we note that the average of the estimated
probability does change as the dephasing probability is increased, which means that
the values do affect the performance of the quantum device. However, these values
fluctuate around 0.945, and that is why all the tests pass.

Chapter 6 Validation

Scenario 2. b) Qubit initialization: dephasing
passed and failed tests in 50 realizations

0.045

0.04

0.035

0.03

0.025

0.02

Dephasing probability

0.015

0.01

0.005

0 10 20 30 40 50

N Test PASS W Test FAIL

Fig. 6.8: Number of passed and failed qubit initialization tests, from a total of 50 test
realizations, while increasing the initialization dephasing probability.

The alternative is, then, that the QuTAF is not capable of detecting the quantum
dephasing noise introduced to the system. This is exactly the root cause, and it
has to do with the way the quantum dephasing channel noise acts on the quantum
states. As described in section 2.1.6.2 applying the quantum dephasing noise to a
quantum state changes its phase, but crucially, it does not alter the magnitude of the
Z component. Given that the test is always measuring the qubit in the computational
basis, then this change in the phase goes unnoticed. The fluctuation in the success
probabilities that we observe in Figure 6.9, can be attributed to the decoherence
suffered by the qubit and the noise in the quantum measurement operations.

Thus, we conclude that when using the QuUTAF for testing applications run in systems
dominated by the quantum dephasing noise, we need to run test cases that do
quantum measurements in basis different than the computational basis. If no other
quantum measurements are supported by the SUT, then the test results reported by
QuTAF can not be taken as conclusive.

6.2.4 Scenario 3: Quantum Programming Errors

Besides the intrinsic quality deficiencies of the quantum device, a quantum applica-
tion can also behave incorrectly due to errors introduced in the quantum program
itself. Think of a quantum application that initializes a qubit in |0), and applies small
quantum rotations in a loop in order to produce a different state that is measured in
Z. Now, imagine that the programmer makes a common mistake and starts the loop

6.2 Simulating Fail Scenarios

61

62

Scenario 2. b) Qubit initialization: dephasing
average success probabilities of 50 test realizations

0.950

S I AR AR R A A

o
©
B
o
)

Probability of success
o
o
w
w

o
©
w
S
.

0.925 1 ==~ Expected probability
¥ TestFAIL
§ Test PASS

0.920

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045
Dephasing probability

Fig. 6.9: Probability of success of the qubit initialization tests simulated with various depo-
larization probability values. The average and standard deviation from a total of
50 test realizations is shown.

in 0 where it should have been 1, or uses a < instead of a <, effectively applying
one extra rotation to the qubit. If we test this quantum program, then we would
expect it to fail, as it has a bug in it. In the test cases presented below, we explore
the ability of the QUTAF to detect these types of quantum programming errors.

Before delving into the results, it is important to mention that the simulations
performed in all the cases used the vanilla configuration from Table 6.4. Also, since
this simulations are based in the quantum device of the networked quantum node
from use case A), the single-qubit gates were made to operate in the same way as in
the mentioned device. In particular, it limits the angles of the rotation gates, where

the full range of rotation 27 is divided into 32 steps. Then, the angles can only be

or
320

w27 157r]
167 162" 16 1°

multiples of 7, i.e., they take the values |

6.2.4.1 Scenario 3. a) Rotation around X to |1)

In this test case we rotate the qubit around the X axis to prepare |1). Since we are
limited to rotation angles of {; steps, then the correct number of rotations to apply
would be 16. The expected probability of success of the program, when correctly
preparing and measuring a |1), is 0.98. In order to see how sensitive the QuUTAF is to
the quantum programming errors, we simulate tests that apply 14, 15, 16, 17, and
18 rotations. We again perform 50 test runs and report the number of passed and
failed tests, along with the average success probabilities.

Chapter 6 Validation

Figure 6.10 shows that when the wrong number of rotations are used, the 50 tests
executed as part of the test run, fail. This is a clear indication that our QuTAF is
indeed able to detect this type of bugs in a quantum application. Interestingly, not

all of the tests for the non-failure case, where 16 rotations are performed, succeed.

However, the proportion of failed and passed tests (6/44) is in line with what we
observed when testing the qubit initialization (4/46).

Since in our simulations the quantum gates are practically error free, the two extra
failed tests that we see in Figure 6.10 can be a result of the decoherence suffered
by the qubit while the 16 rotations are applied. Also, by looking at the average
probability of success reported in Figure 6.11, we attest that the failed tests for the
16 rotations have an average that is still closer to the expected 0.98 value, than the
other tests that failed due to an incorrect number of rotations being applied.

Scenario 3. a) Qubit rotation around X to |1)
passed and failed tests in 50 realizations

18

17

16

Number of /16 rotations

15

14

0 10 20 30 40 50
N Test PASS W Test FAIL

Fig. 6.10: Number of passed and failed tests for the rotation around X to |1), from a total
of 50 test realizations. Steps of 14, 15, 16, 17, and 18 { angles are shown.

6.2.4.2 Scenario 3. b) Rotation around X to |:)

Here we also test the R, quantum rotation gate, but instead of |1), we prepare the
superposition state |i) = \/Ai(‘m +4|1). The right amount of rotations is 8, as we are
preparing an equal superposition of |0) and |1). The expected probability of success
is specified as an interval, and it is calculated to be [0.45,0.5]. We inspect again the
sensitivity of our QUTAF by simulating cases where 6, 7, 8, 9, and 10 rotations are
applied.

6.2 Simulating Fail Scenarios

63

64

Scenario 3. a) Qubit rotation around X to |1)
average success probabilities of 50 test realizations

0.99
--=- Expected probability
§ TestFAIL
0.98 mmmmm e §---- T Testpass
0.97 1 I 1

Probability of success
o
o
[e)]

0.95 1

0.94 A

0.93

140 145 15.0 155 16.0 16.5 17.0 175 18.0
Number of /16 rotations

Fig. 6.11: Probability of success of the rotation around X to |1) tests. The average and
standard deviation from a total of 50 test realizations is shown.

Once more, we find that all the tests where a wrong number of rotations is applied
are correctly signaled as failed, as reported in Figure 6.12. Interestingly, unlike
the previous failure test case, here all the tests succeed when the correct number
of rotations are applied. One reason for this could be that the estimated success
probabilities do not vary as much as in the failure test case a). But this is quickly
discarded by comparing the standard deviations from both scenarios. For a), the
standard deviation of the average probability of success for the non-failure test
case is ~ 0.001086. While for b), it is ~ 0.005111. Thus, the estimated success
probabilities deviate more from the mean in this case.

By looking at Figure 6.13, we can derive the true reason why all the tests with 8
rotations pass. As it is evident, the calculated expected interval for the probability
of success of [0.45,0.5], is too big. This makes all the tests for the non-failure test
case to pass. Still, even when the expected interval is bigger than necessary, it is
important to note that none of the actual failure tests is incorrectly deemed as a pass.
This means that our QuTAF will correctly identify bugs in a quantum program, even
if the specified expected interval was overestimated.

6.2.4.3 Scenario 3. c) Rotation around Y to |1)

This third failure test case is similar to a). The state prepared is |1), but the rotation
is done around the Y axis, instead of the X axis, i.e., the quantum gate applied is

Chapter 6 Validation

Scenario 3. b) Qubit rotation around X to |i)
passed and failed tests in 50 realizations

10

Number of r/16 rotations
[ee]

0 10 20 30 40 50
m Test PASS W Test FAIL

Fig. 6.12: Number of passed and failed tests for the rotation around X to |), from a total
of 50 test realizations. Steps of 6, 7, 8, 9, and 10 {; angles are shown.

Scenario 3. b) Qubit rotation around X to |i)
o average success probabilities of 50 test realizations

Expected interval
§ TestFAIL
0.7 1 § TestPASS
X
I
3 0.6
1)
S =
w0
G
> 0.5 1
= z
©
S
& 0.4 A .
0.3 - -
0.2 T T T T T

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Number of /16 rotations

Fig. 6.13: Probability of success of the rotation around X to |i) tests. The average and
standard deviation from a total of 50 test realizations is shown.

R,. From the results shown in Figure 6.14, we arrive at the same conclusion as in
the previous two test cases, namely that our QuTAF is again able to detect the bug of
a wrong number of rotations applied.

However, in Figure 6.14, we note an important difference: the number of passed
tests for the non-failure case is considerably lower than in a). If we compare the

6.2 Simulating Fail Scenarios

66

calculated average success probabilities from the two, i.e., we compare Figure 6.11
with Figure 6.15, it is hard to see a difference. Moreover, as the simulations of all the
failure test cases use the same configuration, then the explanation for this would be
that the value of 0.98 for the expected probability of success is wrongly calculated.

6.2.4.4 Scenario 3. d) Rotation around Y to |+)

This failure test case is also the analogue of b), where the quantum gate used is
the R, instead of R,. The interval for the expected success probability is again
[0.45,0.50]. The results observed in Figures 6.16 and 6.17, and the conclusions
derived from said figures, are also in line with what has been commented already
for b). Hence, no further discussion is necessary for this test case.

Scenario 3. c) Qubit rotation around Y to |1)
passed and failed tests in 50 realizations

Number of rotations

0 10 20 30 40 50
m Test PASS W Test FAIL

Fig. 6.14: Number of passed and failed tests for the rotation around Y to |1), from a total
of 50 test realizations. Steps of 14, 15, 16, 17, and 18 { angles are shown.

Chapter 6 Validation

Scenario 3. c) Qubit rotation around Y to |1)
0 average success probabilities of 50 test realizations

0,98 fmmmmmmm e EGLEECEEE R R

i i

Probability of success
o o
O o
(o)) ~

o

©

vl
!

I t

0.94 1 ===~ Expected probability
¥ TestFAIL
§ Test PASS

0.93

140 145 150 155 16.0 16.5 170 175 18.0
Number of /16 rotations

Fig. 6.15: Probability of success of the rotation around Y to |1) tests. The average and
standard deviation from a total of 50 test realizations is shown.

Scenario 3. d) Qubit rotation around Y to | +)
passed and failed tests in 50 realizations

10

Number of /16 rotations

0 10 20 30 40 50
m Test PASS W Test FAIL

Fig. 6.16: Number of passed and failed tests for the rotation around Y to |+), from a total
of 50 test realizations. Steps of 6, 7, 8, 9, and 10 {; angles are shown.

6.2 Simulating Fail Scenarios

Scenario 3. d) Qubit rotation around Y to | +)
5 average success probabilities of 50 test realizations

Expected interval
¥ TestFAIL
0.7 4 { TestPASS
3
@
&0 0.6 1
o
5 x
(%]
G
> 0.5 A
= =
=
®
S
s 0.4 1 .
0.3 1 z

0.2 T T T T T T T T T
6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Number of /16 rotations

Fig. 6.17: Probability of success of the rotation around Y to |+) tests. The average and
standard deviation from a total of 50 test realizations is shown.

68 Chapter 6 Validation

Conclusion

It is good to have an end to journey toward; but
it is the journey that matters, in the end.

— Ursula K. Le Guin
Writer

In this chapter we conclude this work by summarizing the key learnings gathered
from the development of QuTAF, the first test automation framework for quantum
applications. We also discuss the main results from using QuTAF for testing quantum

applications in a real networked quantum node and a simulated quantum device.

Finally, some future research opportunities for expanding our understanding about
how to test quantum applications from the software engineering point of view, are
listed.

7.1 Key Learnings

The most important takeaway is that testing a quantum application is a stochastic
process. This is a consequence of the probabilistic nature of the quantum phenomena
exploited for performing a quantum computation. We modeled this process as a
series of i.i.d. Bernoulli random variables, where each trial succeeds with probability
p and fails with probability 1 — p. Since a quantum test has to be repeated several
times, we concluded that test automation was the only practical solution for testing
quantum software.

We saw then that the expected outcome of a quantum test is a probability distribution
with a known Probability Mass Function, that needs to be compared with the
distribution obtained from the individual test outcomes. For this, we used the
Hypothesis Testing technique. More specifically, we used the Binomial Inverse
Survival Function and the Binomial Proportion Confidence Interval for estimating
the probability of success of the test realizations.

We also identified that the test definition language of a test automation framework
for quantum applications should provide the ability to specify quantum circuits as

69

70

part of the test case. Furter, the framework should translate this quantum program
into the supported quantum instructions of the System Under Test (SUT). We saw
that the keyword-driven approach allows us to easily define keywords for each
hardware agnostic quantum instruction, and combine them into other keywords that
represent the quantum circuits.

7.2 Results

The highlight from the integration tests run on a real quantum node using the QuTAF,
is the failed qubit initialization test. This failure, which root cause was confirmed to
be a miscalibration of the quantum device, confirmed that the framework is able to
detect deficiencies in current state-of-the-art quantum hardware. Hence, a key result
is that our QUTAF can indeed be used for testing quantum applications run on Noisy
Intermediate-Scale Quantum (NISQ) devices.

Another result that we can derive from this use case is that, unlike the testing of clas-
sical software where the failure of the hardware is hardly considered, when testing
quantum applications we must take into account the infidelities and inaccuracies of
the quantum hardware. This is specially important when testing quantum applica-
tions in NISQ systems. It might, however, become irrelevant when full fault-tolerant
quantum computers are available.

The main result obtained from using the framework to test simulated failure scenarios
is that our QuTAF is not suitable for testing systems dominated by quantum dephasing
noise. To be fair, this would be the case for any testing framework where the
applications tested are run on quantum hardware that is limited to measuring in the
computational basis. On the other hand, if the system’s noise is better modeled by
the quantum depolarizing channel, then we observed that our QuTAF is sensitive
enough to detect small deviations in the quality of the hardware. Quantitatively, we
saw that a 0.5% increase in the depolarizing probability resulted in almost a 400%
increase in the number of failed tests.

7.3 Outlook

Even when the test automation framework proposed here was proved to be a viable
and useful tool for testing quantum applications, while developing this work, we
consciously left unanswered some valid and compelling considerations related to
the modeling of the testing process, and the design of the QuTAF itself. These serve

Chapter 7 Conclusion

as great research questions for further exploring the topic of quantum software
testing.

* Our framework focused on the functional testing of quantum applications.
Then, the whole topic of how to perform non-functional tests on quantum
applications remains open. These include testing the security, maintainability,
reliability, or performance of quantum software.

* The testing of quantum applications can be modeled as a different stochastic
process, for example a random walk. It would be interesting to compare if and
how the test results are affected by using distinct random process models.

* Another assumption made while modeling the testing process was the i.i.d. one,
i.e., that the random variables were independent and identically distributed.
This is a hard assumption that can not be guaranteed during the execution of
the tests. Then, another research venue is to use a model that does not assume
that the outcomes of the tests are independent and have the same distribution.
Similar methods like the ones proposed in [6], for the analysis of entanglement
witnessing experiments with correlated noise, can be used.

* All the quantum applications tested with our QUTAF included the measurement
of the qubit as part of the quantum program. However, this will not always
be the case. Think of a quantum teleportation subroutine that teleports an
arbitrary qubit to a remote quantum node. If we want to test this subroutine,
we need to measure the qubit in order to verify that it was correctly teleported.
The measurement operation in this case is, crucially, not part of the quantum
application tested. Then, another interesting question is how to make the
errors incurred during the measurement operation to be part of the test itself.

With the advances in the development of quantum computing platforms and quantum
algorithms, the need for mechanisms that allow to test those new applications will
grow. The aim of this work was to serve as a first stepping stone in the path to
building useful and attested tools that help with the testing, and development, of
the future quantum applications.

7.3 Outlook 71

Bibliography

[1]Scott Aaronson. The Aaronson $25.00 Prize. Oct. 2007. URL: https://www.scottaaronson.

com/blog/7p=284 (cit. on p. 17).

[2]Shiva Prasad Adirala. Robot Framework Metrics Report. Version 3.1.6. Mar. 14, 2020.
URL: https://github.com/adiralashiva8/robotframework-metrics (cit. on p. 39).

[3]Pierre Bourque, Richard E. Fairley, and IEEE Computer Society. Guide to the Software
Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. 3rd. Washington, DC, USA:
IEEE Computer Society Press, 2014 (cit. on p. 11).

[4]Tim Coopmans, Robert Knegjens, Axel Dahlberg, et al. NetSquid, a discrete-event sim-
ulation platform for quantum networks. 2020. arXiv: 2010.12535 [quant-ph] (cit. on
pp- 35, 37).

[5]Axel Dahlberg, Matthew Skrzypczyk, Tim Coopmans, et al. “A Link Layer Protocol
for Quantum Networks”. In: Proceedings of the ACM Special Interest Group on Data
Communication - SIGCOMM ’19 (2019). arXiv: 1903.09778, pp. 159-173. URL: http:
//arxiv.org/abs/1903.09778 (cit. on pp. 37, 55).

[6]Bas Dirkse, Matteo Pompili, Ronald Hanson, Michael Walter, and Stephanie Wehner.
“Witnessing Entanglement in Experiments with Correlated Noise”. en. In: Quantum
Science and Technology (Apr. 2020). arXiv: 2002.12400. URL: http://arxiv.org/abs/
2002.12400 (visited on Apr. 30, 2020) (cit. on p. 71).

[71J. Eisert, D. Hangleiter, N. Walk, et al. “Quantum certification and benchmarking”. In:
arXiv:1910.06343 [cond-mat, physics:quant-ph] (Feb. 2020). arXiv: 1910.06343. URL:
http://arxiv.org/abs/1910.06343 (cit. on p. 16).

[8]Mark Fewster and Dorothy Graham. Software test automation. Addison-Wesley Reading,
1999 (cit. on p. 13).

[9]Steven T. Flammia and Yi-Kai Liu. “Direct Fidelity Estimation from Few Pauli Measure-
ments”. In: Physical Review Letters 106.23 (June 2011). arXiv: 1104.4695, p. 230501.
URL: http://arxiv.org/abs/1104.4695 (cit. on p. 16).

[10]The Robot Framework Foundation. Robot Framework User Guide Version 3.2.2. 2020. URL:

https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.

html (cit. on p. 35).

[11]Gayatri Ghanakota. Testing Frameworks. URL: https : //www . cs . colorado . edu/
~kena/classes/5828/s12/presentation-materials/ghanakotagayatri .pdf (cit.
on p. 14).

73

https://www.scottaaronson.com/blog/?p=284
https://www.scottaaronson.com/blog/?p=284
https://github.com/adiralashiva8/robotframework-metrics
https://arxiv.org/abs/2010.12535
http://arxiv.org/abs/1903.09778
http://arxiv.org/abs/1903.09778
http://arxiv.org/abs/2002.12400
http://arxiv.org/abs/2002.12400
http://arxiv.org/abs/1910.06343
http://arxiv.org/abs/1104.4695
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://www.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/ghanakotagayatri.pdf
https://www.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/ghanakotagayatri.pdf

74

[12]Alexandru Gheorghiu, Theodoros Kapourniotis, and Elham Kashefi. “Verification of
Quantum Computation: An Overview of Existing Approaches”. en. In: Theory of Com-
puting Systems 63.4 (May 2019), pp. 715-808. URL: http://link.springer.com/10.
1007/s00224-018-9872-3 (visited on Mar. 3, 2020) (cit. on p. 1).

[13]Bernard Homes. Fundamentals of software testing. John Wiley & Sons, 2013 (cit. on
p. 10).

[14]Zdenek Hradil. “Quantum-state estimation”. In: Physical Review A 55.3 (1997), R1561
(cit. on pp. 1, 16).

[15]Yipeng Huang and Margaret Martonosi. “QDB: From Quantum Algorithms Towards
Correct Quantum Programs”. en. In: (2019). Artwork Size: 14 pages Medium: ap-
plication/pdf Publisher: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany Version Number: 1.0, 14 pages. URL: http://drops.
dagstuhl.de/opus/volltexte/2019/10196/ (visited on Oct. 14, 2020) (cit. on p. 19).

[16]“IEEE Standard for Software Test Documentation”. In: I[EEE Std 829-1983 (1983), pp. 1-
48 (cit. on p. 10).

[17]“IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE Std 610.12-
1990 (1990), pp. 1-84 (cit. on p. 10).

[18]Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. “Mip*=
re”. In: arXiv preprint arXiv:2001.04383 (2020) (cit. on p. 18).

[19]Wojciech Kozlowski, Axel Dahlberg, and Stephanie Wehner. “Designing a Quantum
Network Protocol”. In: arXiv preprint arXiv:2010.02575 (2020) (cit. on pp. 43, 44).

[20]Wojciech Kozlowski and Stephanie Wehner. “Towards large-scale quantum networks”.
In: Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing
and Communication. 2019, pp. 1-7 (cit. on p. 43).

[21]Benjamin Lévi, Cecilia C Lopez, Joseph Emerson, and David G Cory. “Efficient error
characterization in quantum information processing”. In: Physical Review A 75.2 (2007),
p. 022314 (cit. on p. 1).

[22]Urmila Mahadev. “Classical verification of quantum computations”. In: 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2018, pp. 259—
267 (cit. on p. 18).

[23]A. Miranskyy and L. Zhang. “On Testing Quantum Programs”. In: 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). 2019, pp. 57-60 (cit. on p. 19).

[24]Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. en. ISBN: 9781107002173 9780511976667 Library
Catalog: www.cambridge.org Publisher: Cambridge University Press. Dec. 2010 (cit. on
p- 17).

[25]John Preskill. “Quantum Computing in the NISQ era and beyond”. en-GB. In: Quantum
2 (Aug. 2018). Publisher: Verein zur Forderung des Open Access Publizierens in den
Quantenwissenschaften, p. 79. URL: https://quantum-journal.org/papers/q-2018-
08-06-79/ (visited on Mar. 4, 2020) (cit. on p. 1).

Bibliography

http://link.springer.com/10.1007/s00224-018-9872-3
http://link.springer.com/10.1007/s00224-018-9872-3
http://drops.dagstuhl.de/opus/volltexte/2019/10196/
http://drops.dagstuhl.de/opus/volltexte/2019/10196/
https://quantum-journal.org/papers/q-2018-08-06-79/
https://quantum-journal.org/papers/q-2018-08-06-79/

[26]Robert Rand. “Formally Verified Quantum Programming”. In: Publicly Accessible Penn
Dissertations (Jan. 2018). URL: https://repository.upenn.edu/edissertations/
3175 (cit. on p. 18).

[27]Mark B Ritter. “Near-term Quantum Algorithms for Quantum Many-body Systems”. In:
Journal of Physics: Conference Series. Vol. 1290. 1. IOP Publishing. 2019, p. 012003
(cit. on p. 1).

[28]R. Shaydulin, H. Ushijima-Mwesigwa, C. F. A. Negre, et al. “A Hybrid Approach for
Solving Optimization Problems on Small Quantum Computers”. In: Computer 52.6
(2019), pp. 18-26 (cit. on p. 1).

[29]Ivan Supi¢ and Joseph Bowles. “Self-testing of quantum systems: a review”. In: Quantum
4 (Sept. 2020), p. 337. URL: http://dx.doi.org/10.22331/q-2020-09-30-2337
(cit. on p. 1).

[30]Stein Emil Vollset. “Confidence intervals for a binomial proportion”. In: Statistics in
medicine 12.9 (1993), pp. 809-824 (cit. on pp. 29, 53).

[31]C. M. Wilson, J. S. Otterbach, N. Tezak, et al. Quantum Kitchen Sinks: An algorithm
for machine learning on near-term quantum computers. 2019. arXiv: 1806 . 08321
[quant-ph] (cit. on p. 1).

[32]Mingsheng Ying, Nengkun Yu, Yuan Feng, and Runyao Duan. “Verification of quantum
programs”. en. In: Science of Computer Programming 78.9 (Sept. 2013), pp. 1679-1700.
URL: http://www.sciencedirect.com/science/article/pii/S0167642313000774
(cit. on p. 18).

Bibliography

75

https://repository.upenn.edu/edissertations/3175
https://repository.upenn.edu/edissertations/3175
http://dx.doi.org/10.22331/q-2020-09-30-337
https://arxiv.org/abs/1806.08321
https://arxiv.org/abs/1806.08321
http://www.sciencedirect.com/science/article/pii/S0167642313000774

List of Figures

3.1

5.1

5.2

5.3
5.4

5.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Classification of some of the quantum certification protocols currently
available. Taken from [7]. 16

Example of a quantum program defined and tested using a keyword-

driven approach. 34
Example of a quantum program defined and tested using a behavior-

driven approach. 34
Architecture of the robot framework. 36

General architecture of QuTAF, the proposed test automation framework
for quantum applications. L. o 38
Example of a .robot test suite file that contains a single qubit initializa-
LONLESE CASE. . . . v v v v v e e e e e e e e e e e e e e 40

Proposed architecture for the components of a networked quantum
node. From [19]. e 44
Dashboard of the test report generated by the QuTAF after analyzing
the outcomes of the integration tests run on the networked quantum

Simulated qubit initialization test - test progression 1: test results and
estimated success probabilities shown every 500 repetitions. 56
Simulated qubit initialization test - test progression 2: test results and
estimated success probabilities shown every 500 repetitions. 57
Number of passed and failed qubit initialization tests, from a total of
50 test realizations. 58
Probability of success of the qubit initialization tests simulated with the
vanilla configuration. The average and standard deviation from a total
of 50 test realizationsisshown. 59
Number of passed and failed qubit initialization tests, from a total
of 50 test realizations, while increasing the initialization depolarizing
probability. 60
Number of passed and failed qubit initialization tests, from a total of 50
test realizations, while increasing the initialization dephasing probability. 61
Probability of success of the qubit initialization tests simulated with
various depolarization probability values. The average and standard
deviation from a total of 50 test realizations is shown. 62

77

78

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

Number of passed and failed tests for the rotation around X to |1), from
a total of 50 test realizations. Steps of 14, 15, 16, 17, and 18 { angles
areshown..
Probability of success of the rotation around X to |1) tests. The average
and standard deviation from a total of 50 test realizations is shown. . .
Number of passed and failed tests for the rotation around X to |é), from
a total of 50 test realizations. Steps of 6, 7, 8, 9, and 10 {5 angles are

Probability of success of the rotation around X to |i) tests. The average
and standard deviation from a total of 50 test realizations is shown. . .
Number of passed and failed tests for the rotation around Y to |1), from
a total of 50 test realizations. Steps of 14, 15, 16, 17, and 18 {; angles
are shOwn. e e e e e
Probability of success of the rotation around Y to |1) tests. The average
and standard deviation from a total of 50 test realizations is shown. . .
Number of passed and failed tests for the rotation around Y to |+),
from a total of 50 test realizations. Steps of 6, 7, 8, 9, and 10 {; angles
areshown.. e
Probability of success of the rotation around Y to |+) tests. The average
and standard deviation from a total of 50 test realizations is shown. . .

List of Figures

64

65

65

66

67

67

68

List of Tables

2.1

4.1

6.1
6.2

6.3

6.4

Single-qubit quantum gates. 8
Types of errors for the Hypothesis Testing. 27

Description of the integration tests run on the networked quantum node. 46
Results of the integration tests run on the networked quantum node.
Each test case has an expected probability of success calculated based
on the parameters of the quantum hardware, and an actual probability
of success calculated from the test outcomes. 49
Binomial proportion confidence intervals for the probability of success
of the failed qubit initialization test. The intervals are calculated from
the observed measurement outcomes, using two different significance
levels (o). The different approximation methods are detailed in [30]. . 53
Physical parameters used for the simulation of the NV-based quantum
device. Based on [5]. oo e e e 55

79

Colophon

This work is licensed under a Creative Commons @ @ @

“Attribution-ShareAlike 3.0 Unported” license.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

TONITONTHN
RS NN
MESERER
P PAL AL

