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Abstract
Automated software testing is a frequently studied
topic in specialized literature. Search-based soft-
ware testing tools, like EvoSuite, can generate test
suites using genetic algorithms without the devel-
oper’s input. Large Language Models (LLMs) have
recently attracted significant attention in the soft-
ware engineering domain for their potential to au-
tomate test generation. UTGen, a tool integrating
LLMs with EvoSuite, produces more understand-
able tests than EvoSuite; however, the generated
tests suffer a coverage drop.
To streamline bug detection by developers, we pro-
pose UTGenCov, a concept that focuses on improv-
ing the understandability of EvoSuite-generated
tests without compromising on coverage. This ap-
proach builds upon UTGen by thoroughly analyz-
ing the reasons behind the decrease in coverage and
proposing an alternative approach.
Our investigation determined that the leading cause
of coverage reduction in UTGen is LLM hallu-
cination in the Understandability phase. UTGen-
Cov aims to address hallucinations by providing the
source code of the methods used in the test to the
LLM. Yet, our experiment results indicate inconsis-
tent performance and a further decrease in branch
coverage of 0.74% compared to UTGen.

1 Introduction
Effective software testing is an integral part of the software
development lifecycle. Search-based software testing (SBST)
tools, such as EvoSuite [1], use generic algorithms to gener-
ate test suites that can achieve adequate coverage [2]. The
growing popularity of Large Language Models (LLMs) is be-
coming increasingly evident, and researchers are actively pur-
suing techniques to automate test generation with the help of
LLMs [3; 4]. Nonetheless, LLMs struggle to reach high cov-
erage, and SBST produces tests that are not very readable [5].

To the best of our knowledge, limited research has been con-
ducted on integrating SBST with LLMs to produce more un-
derstandable tests that can achieve high coverage. This re-
search extends the work conducted by Deljouyi [6] on com-
bining LLMs with SBST. This combined approach, which
uses EvoSuite as a foundation, is called UTGen, for which
the paper has not yet been published. However, the average
branch coverage of the test suite generated by UTGen is 1%
lower than EvoSuite’s.

The goal of this research is to investigate and address the de-
ficiencies in UTGen’s achieved coverage, thereby developing
automated test generation capable of producing meaningful
tests with high coverage while remaining understandable and
usable to developers.

Thus, our key research objective is to identify the causes be-
hind coverage shortages in LLM-guided SBST compared to
conventional SBST and, thereafter, address these shortfalls.

This central objective is divided into the following research
questions:

RQ1 Which of UTGen’s phases impact the test suite cov-
erage?

RQ2 How can the factors contributing to inferior coverage
in UTGen be mitigated?

Our key contribution was identifying several critical areas
negatively affecting the coverage of UTGen’s generated tests
as a result of two individual studies looking at eleven Java
projects. Moreover, with a new proposed approach, UTGen-
Cov, we deployed and evaluated a grounding technique [7]
aimed to address these factors.

2 Background and Related Work
Literature serves as a valuable starting point for our research.
Fan et al. [8] conducted a comprehensive literature survey
outlining different use cases of LLMs in software engineer-
ing. When examining how LLMs can be used for software
testing, one of the surveyed studies reports an increase in cov-
erage of up to 80% [9], although “neither the studied LLMs
could achieve more than 2% coverage on the EvoSuite SF110
dataset“, which is the basis for our evaluation.

2.1 Search-based software testing
Search-based software testing (SBST) has proven to be a ro-
bust technique in software quality assurance by using genetic
algorithms to generate test cases that achieve high code cov-
erage and reveal faults [10; 11; 12].

One notable tool in this field is EvoSuite, an automated unit
test generation framework for Java [1]. EvoSuite optimizes
the generation of test cases by using evolutionary algorithms
to maximize code coverage and minimize the number of test
cases. This tool has been extensively evaluated, outperform-
ing other testing methods in coverage metrics [13].

2.2 Large Language Models
Large Language Models (LLMs) like OpenAI’s GPT and
Meta’s Code Llama are remodeling software testing prac-
tices. These models, trained on vast amounts of text data,
show complex natural language understanding capabilities,
making them suitable for generating and improving test
cases [14].

Researchers are exploring the integration of LLMs with
SBST to automate and enhance the test generation pro-
cess [15]. While there have been promising advancements,
there are still challenges in effectively integrating LLMs with
SBST. One concern is ensuring that the improved tests do not
negatively impact the generated test suite, such as reducing
coverage or causing tests not to compile [5].

2.3 UTGen
UTGen combines EvoSuite with LLMs to improve the under-
standability of the generated test cases [6]. The LLM utilized
by UTGen is Meta’s Code Llama 7b Instruct, specifically
trained for instruction-following code-related tasks [16].



Figure 1: Overview of the stages of UTGen.

Figure 1 illustrates the phases that UTGen undergoes:
• EvoSuite uses a generic algorithm to produce a test suite

for a given Java class.
• UTGen’s Test Data improvement step (1 in Figure 1) en-

hances test data, such as the parameters (e.g., Strings)
used in method calls.

• UTGen’s Understandability improvement phase (2 in Fig-
ure 1) focuses on adding descriptive comments and im-
proving variable names.

• UTGen’s Test Name improvement stage (3 in Figure 1)
aims to give a descriptive name to each test.

3 UTGen Analysis (RQ1)
The initial phase of the research investigated the factors that
negatively affect the coverage of the generated test suite in
UTGen. This section will discuss the setup and results of our
investigation.

3.1 Study setup
The dataset used as a basis for our analysis is a subset of Evo-
Suite’s SF110 [17]. The subset was chosen based on the re-
sults of the UTGen experiments. In particular, classes that
manifested a decrease in coverage in UTGen compared to
EvoSuite were included in our investigations.

Table 1: List of projects from the SF110 dataset used in the Manual
inspection and Phase isolation studies, and the difference in branch

coverage between EvoSuite and UTGen.

Project Branch coverage
difference (in %) Used in study

12 dsachat 1.3 Both
13 jdbacl 8.2 Manual inspection
15 beanbin 6.4 Manual inspection
17 inspireto 8.3 Manual inspection
19 jmca 0.2 Manual inspection
26 jipa 7.5 Both
33 javaviewcontrol 0.4 Manual inspection
45 lotus 26.61 Both
60 sugar 3.3 Manual inspection
68 biblestudy 16.7 Manual inspection
93 quickserver 1.5 Both
101 netweaver 5.7 Phase Isolation

To understand the reasons for the decrease in coverage, we
conducted two studies: Phase isolation and Manual inspec-
tion. Multiple classes were used in the investigations. Table 1

1For this project, we considered the instruction coverage; the
branch coverage was slightly higher in UTGen than EvoSuite.

shows the classes used in both studies and the branch cover-
age difference between EvoSuite and UTGen. We will now
discuss the setup of each study individually.

A) Phase isolation
As a first step, we investigated which of UTGen’s phases af-
fects coverage. To achieve this, we ran each phase of UTGen
in isolation. Figure 2 details the setup: for each class under
test, we ran EvoSuite once and used the generated tests as
a basis in four independent runs of UTGen: only Test Data,
only Understandability, only Test Name, and full UTGen. We
then analyzed the coverage of each approach while also com-
paring it with EvoSuite as a baseline.

Figure 2: Study setup for running each of UTGen’s phases in
isolation, using the same test population as the foundation.

B) Manual inspection
To further understand the causes of the coverage drop, we
manually compared the test suites generated in the initial UT-
Gen experiment. These test suites were created for numer-
ous projects from the SF110 dataset, preserving the EvoSuite-
and UTGen-generated tests. Using JaCoCo reports as a start-
ing point, we identified the methods and constructors with
lower coverage in UTGen. We then looked for the EvoSuite-
generated tests that used these methods or constructors,
searched for similar test cases generated by UTGen that were
missing them, and finally classified the changes into several
categories based on the reason believed to cause the coverage
drop.

3.2 Results
We will now discuss the results of each investigation individ-
ually and provide a summary of the UTGen analysis.

A) Phase isolation
Of the five projects in this stage, project 45 exemplified de-
viant behavior. The coverage increased when running Test
Data and Understandability in isolation but decreased when
running full UTGen. Upon manual inspection, we noticed a
line had been removed from one test in both isolated runs of
UTGen for the mentioned phases. The removal of this line
covered an edge case, which led to increased coverage. For
this reason, the aggregated results presented below exclude
this project.



Figure 3: Coverage difference between EvoSuite and each phase of
UTGen: Test Data, Understandability, Test Name, and full UTGen.

Figure 3 highlights that the biggest negative impact on cov-
erage is caused by the Understandability phase of UTGen,
with a 2.2% decrease in branch coverage compared to Evo-
Suite. The Test Data phase has a minor impact on the cover-
age, with a decrease of 0.03% in branch coverage. Lastly, the
Test Name phase does not impact the test suite coverage.

B) Manual inspection

Figure 4: Manual inspection results: The 47 tests, part of 11
projects, identified to have a negative impact on coverage were

categorized into groups based on the cause of the coverage drop.

Figure 4 shows the results of the manual inspection of the
tests generated during UTGen’s experiment. Out of all in-
spected tests, 47 of them from 11 projects had a negative im-
pact on coverage. These tests have been classified according
to the cause of the coverage drop. We categorized them based
on the following criteria:
• Test removed: one of EvoSuite’s phases (running both

before and after UTGen) removes tests that are unstable
and do not compile. 47% of the time, a coverage drop is
generated by removed test cases.

• Method call removed: The test improved by UTGen was
missing one or more method calls or constructors. About
25% of the flagged tests presented this behavior. An ex-
ample of such a test can be seen in listing 1, where UT-
Gen’s Understandability phase added the comments on
lines 3-4 and 9-10, but line 8 was removed compared to
the EvoSuite test case.

• Test data changed: Parameters used for method calls are
changed by UTGen, leading to a corner case no longer
being covered by the test. These tests counted for about
17% of test cases. Listing 2 provides an example where
line 3 was replaced by line 4. The missing nested quotes
in the new String no longer covered the corner case.

• Content greatly differs: In this group, test logic was
significantly changed in UTGen compared to EvoSuite;
namely, different objects were instantiated, and assertions
were different. 11% of test cases exemplified this behav-
ior.

1 @Test
2 public void testRun1() throws Throwable {

3 // Create a new instance of BlockingClientHandler

4 // and add an event to it

5 BlockingClientHandler blockingClientHandler = new
BlockingClientHandler();↪→

6 ClientEvent arg0 = ClientEvent.READ;
7 blockingClientHandler.addEvent(arg0);

8 blockingClientHandler.run();

9 // Run the handler and verify that it will

10 // clean up the resources

11 assertTrue(blockingClientHandler.getWillClean());
12 }

Listing 1: Diff showing a test generated by EvoSuite compared to
the UTGen-improved version. The comments, highlighted in green,

were added, and the line highlighted in red was removed by
UTGen.

1 @Test
2 public void testProcessInstruction1() throws Throwable {

3 Main.processInstruction(''qBSfJjW\''b 7\''QIe,*'');

4 Main.processInstruction(''jump to next element'');
5 }

Listing 2: Diff showing a test generated by EvoSuite compared to
the UTGen-improved version. The string used as a parameter for

the method call was changed.

In summary, from the two studies on the behavior of UTGen
on 11 projects, we can draw the following conclusions: from
the Manual inspection results, we can assess that the biggest
factors negatively impacting coverage are tests, or lines from
tests, being removed while the LLM attempts to improve un-
derstandability. As for the Phase isolation study, the Un-
derstandability phase, which replaces the entire test body, is
shown to cause the biggest difference in coverage.

4 Factor mitigation (RQ2)
Based on the findings of RQ1, we constructed UTGenCov,
an extension of UTGen. In this section, we will discuss this
approach in detail and present the experiment setup and the
results of our evaluation.

4.1 The UTGenCov Approach
To improve the coverage of the tests generated by UTGen,
we employed a grounding technique [7], which aims to limit
LLM hallucinations. Specifically, in the LLM prompt, we
provided the source code of the methods called in the test to
be improved.



<<SYS>>
You are a Java developer optimizing JUnit tests to increase

clarity.↪→
<</SYS>>
Your task is to make a previously written JUnit test more

understandable without changing test behavior. The returned
understandable test must be between the [TEST] and [/TEST]
tags.

↪→
↪→
↪→
Add comments to the code which explain what is happening and the

intentions of what is being done. Only change variable names
to make them more relevant, leaving the test data untouched.

↪→
↪→
Overall, it is the goal to have a more concise test that is both

descriptive as well as relevant to the context.↪→
The previously written test to improve is between the [CODE] and

[/CODE] tags.↪→
The source code is between the [SOURCE] and [/SOURCE] tags.

[CODE]
The test code to be improved.

[/CODE]

[SOURCE]

The source code of all methods used in the test above.

[/SOURCE]

Listing 3: Improved LLM prompt that provides the source code and
the test. The changes to the original (UTGen) prompt are

highlighted in light blue.

Based on the results of RQ1, we have decided to deploy this
grounding strategy only in the Understandability phase of
UTGen and not in the Test Data phase, which only had a
marginal impact on coverage. The updated prompt can be
seen in listing 3, where the addition is highlighted.

4.2 Experiment setup

To assess the impact of the changes outlined in section 4.1,
we have set up an experiment where we look at the coverage
of EvoSuite, compared to UTGen’s Understandability phase
ran in isolation and the new UTGenCov approach. To ensure
the experiment was not affected by the other phases of UT-
Gen, we disabled the Test Data and Test Name phases when
running UTGenCov. Similar to the setup of RQ1, we use the
same SB test population as the foundation for the two inde-
pendent runs, as presented in Figure 5.

Figure 5: Experiment setup for comparing UTGen’s
Understandability phase with the improved approach from section

4.1, using the same test population as the foundation.

We attempted to run the experiment on all classes we iden-
tified as susceptible to a coverage drop from the Manual in-
spection phase. However, some classes resulted in EvoSuite
errors and were removed. The classes used for this experi-
ment are listed in Table 2.

Table 2: Classes selected for the experiment of RQ2

Project Class
12 dsachat Handler

17 inspirento XmlElement
19 jmca JMCAAnalyzer
26 jipa Main
45 lotus Game

68 biblestudy Queue

93 quickserver NonBlockingClientHandler
BlockingClientHandler

4.3 Results
We will now analyze the results of our experiment per project.
Figure 6 shows the difference in branch coverage between
UTGen’s Understandability phase and EvoSuite and between
UTGenCov and EvoSuite. In Table 3, we look at the number
of generated tests in each experiment, which will be used for
further analysis of the results.

Figure 6: Branch coverage difference between UTGen’s
Understandability phase and UTGenCov compared to EvoSuite for

all projects in the experiment

Table 3: Number of tests generated, tests with no comments added,
and tests rolled back for each approach.

Project Run type # tests
# tests with no

comments
added

# tests
rolled
back

12 dsachat
EvoSuite 1 - -

Understandability 1 0 1

UTGenCov 1 0 1

17 inspirento
EvoSuite 62 - -

Understandability 64 3 5

UTGenCov 62 7 6

19 jmca
EvoSuite 4 - -

Understandability 4 0 1

UTGenCov 4 1 1

Table continues on next page



Continuation of table

Project Run type # tests
# tests with no

comments
added

# tests
rolled
back

26 jipa
EvoSuite 60 - -

Understandability 61 28 1

UTGenCov 61 28 1

45 lotus
EvoSuite 8 - -

Understandability 6 4 0

UTGenCov 6 4 0

68 biblestudy
EvoSuite 17 - -

Understandability 17 17 0

UTGenCov 17 17 0

93 quickserver
EvoSuite 66 - -

Understandability 66 40 0

UTGenCov 66 11 2

For the classes from projects 12, 26, and 68, the addition of
source code had no impact on the generated test and, there-
fore, no impact on the coverage. For project 12, EvoSuite
generated one test. In both approaches, the improved test was
rolled back to EvoSuite. This happens if the LLM-improved
test fails to compile multiple times. In project 26, both UT-
Gen and UTGenCov produced identical test suites, with 28
out of the 61 tests having no comments added. This behavior
happens when the LLM fails to improve the test case, mean-
ing that the LLM response is either in the incorrect format or
the LLM call times out. For project 68, all 17 tests in both
approaches concluded without added comments.

One class, Game, part of project 45, showed a coverage in-
crease in both the UTGen and UTGenCov generated tests
compared to EvoSuite. Upon manual analysis of the gen-
erated tests, we observed that both UTGen and UTGenCov
presented the same behavior: one line of code was removed
from the original test case, leading to an edge case being cov-
ered. It is worth noting that out of the eight tests that EvoSuite
generated, both UTGen and UTGenCov produced only six
tests, of which four had no comments added. Because of the
coverage increase, project 45 is excluded from the average in
Figure 6.

For project 19, the branch coverage of the UTGen tests de-
creased by 1% compared to EvoSuite, while UTGenCov had
the same coverage as EvoSuite. While this is a favorable re-
sult, it should be noted that from the total of four tests gener-
ated by EvoSuite, both approaches resulted in one rolled back
test, and UTGenCov had one test with no comments added,
while UTGen did not, meaning that the improved prompt,
with source code, lead to too many re-prompts.

UTGenCov performed worse regarding coverage in both
projects 17 and 93. In project 17, branch coverage decreased
by 4.3%, from 98.7% in EvoSuite to 94.3% in UTGenCov,
while UTGen coverage was the same as EvoSuite. For the
two classes from project 93, branch coverage was 1.2% lower
in UTGenCov compared to UTGen. In 60% of UTGen’s
tests, no comments were added, while only 17% of UTGen-
Cov’s tests manifested this behavior. This means that while
UTGenCov successfully improved the understandability of
more tests, the improved tests’ coverage was inferior.

In summary, the experiment showed mixed results across
projects. Adding source code had no impact on projects 12,
26, 68, and 45 compared to UTGen. On project 19, UT-
GenCov had identical coverage to EvoSuite, but it could have
been caused by a test that failed to be improved. How-
ever, UTGenCov had reduced coverage in projects 17 and
93 compared to EvoSuite and UTGen. Although UTGenCov
successfully enhanced test understandability more frequently
than UTGen, it resulted in, on average, 0.74% lower branch
coverage than UTGen.

5 Discussion
In this section, we will discuss our results further, examine
this research’s limitations, and assess the threats to validity.

5.1 Revisiting the Research Questions
RQ1: Which of UTGen’s phases impact the test suite cover-
age? Based on the Phase isolation study, we established that
the Understandability phase is the primary cause of the cov-
erage drop. These results align with our expectations based
on the prompts given to the LLM for each phase:

• Test Data: In this phase, the LLM is tasked to “Improve
the test data by changing the primitive values and Strings“
and is only provided with one line of code; thus, it is im-
probable that the line is removed altogether or that hallu-
cinations could affect it.

• Understandability: For this stage of UTGen, the entire
method body is replaced with the improved code as a re-
sult of prompting the LLM with the following: “Your task
is to make a previously written JUnit test more under-
standable“. This prompt gives the LLM a lot of liberty
in what it should do, which makes it more prone to hallu-
cination errors.

• Test name: For this phase, only the test name is changed,
not the method body, which makes it impossible for the
phase to affect the coverage.

Furthermore, the Manual inspection has categorized the af-
fected test cases into several groups. We observed that tests
being removed were the most common cause of coverage
drop, followed by changes in test content. Since a direct map-
ping between each inspected test and how much it affected
the coverage is impossible, the impact was estimated based
on the number of tests exemplifying the behavior.

It is noteworthy that from the Manual inspection, five of the
tests exhibited clear signs of hallucination. This was evident
from the presence of method calls not existent in the given test
case or in the method under test, the latter not being provided
to the LLM in any case.

However, the underlying cause remains uncertain. We hy-
pothesize that all issues stem from hallucinations within the
LLM, potentially arising from insufficient contextual infor-
mation or the inherent constraints of the chosen LLM model.
To this extent, RQ2 aims to address hallucinations by provid-
ing more context to the LLM via the method bodies of the
methods used by the test.



RQ2: How can the factors contributing to inferior coverage
in UTGen be mitigated? Our chosen approach to mitigat-
ing UTGen’s coverage shortfall, likely generated by hallu-
cination, was to use a grounding technique, more precisely,
adding the source code of the methods under test to the LLM
prompt. While theoretically promising, this approach had no
positive impact on coverage in most classes used in our ex-
periment. Thus, as the result variation indicates, including
the source code in the prompt may not always be beneficial.

We hypothesize that the selected LLM, Code Llama 7b In-
struct, hallucinates due to inherent limitations, such as an in-
sufficient context window (16k tokens) or model size (with
only 7 billion parameters). A potential solution includes em-
ploying a different LLM with increased capabilities, such as
Codestral2, which features 22 billion parameters and a 32k
token window, or GPT-4o3, which has 175 billion parameters
and a 128k context window. Alternatively, integrating ad-
vanced grounding techniques like Retrieval Augmented Gen-
eration (RAG) [18] could help with hallucinations.

5.2 Limitations
The scope of our research was limited by the short time frame
and resource constraints. In the Phase isolation study, running
one class took between two and six hours due to the substan-
tial resource requirements of the LLM. Similarly, the Manual
inspection phase required considerable time, particularly for
test files containing over 80 tests that required analysis. These
limitations could affect the findings by not presenting a suffi-
ciently comprehensive overview.

5.3 Threats to validity
We will discuss two types of threats to the validity of this re-
search: external validity, which looks into the generalizability
of our research, and internal validity, which addresses other
potential factors that can impact the outcomes of our research.

External validity An important threat to research is its gen-
eralizability. Given the nine-week project timeline, we at-
tempted to mitigate this threat to the best of our ability. The
main concern here is the size of the dataset used for our in-
vestigations. The number of selected classes is low compared
to the size of the SF110 dataset used in the initial UTGen ex-
periment. Nonetheless, they have been manually chosen to
have the highest coverage difference, thus producing results
relevant to our research questions.

We should likewise consider the temporal validity of this re-
search. With the rapid advancements in the field of LLMs,
it is important to consider that current research may be-
come outdated as LLMs with superior capabilities become
available. One such advancement is Codestral2, a newly re-
leased LLM advertised to “outperform all other models in Re-
poBench, a long-range eval for code generation“ [19].

Internal validity One principal factor that could have im-
pacted our results is the nondeterminism of EvoSuite’s ge-
netic algorithm and of the LLM.

2https://mistral.ai/news/codestral/
3https://openai.com/index/hello-gpt-4o/

To mitigate this threat in EvoSuite, we used the same seed
for all experiments, and for the Phase isolation study, as well
as the UTGenCov experiment, the same test population was
used as a basis for all runs on one class, as presented in Fig-
ures 2 and 5.

However, the nondeterminism of the LLM could not be mit-
igated. Sometimes, the LLM does not fully comply with the
instructions, leading to an incorrectly formatted answer that
UTGen cannot parse. This leads to a re-prompt of the LLM.
If the LLM were deterministic, the answer would always be
in an incorrect format, making improvements impossible.

6 Responsible Research
In this section, we will discuss the reproducibility of our re-
search, examine the privacy and ethical implications of using
LLMs, and address the use of generative AI for the project.

6.1 Research reproducibility
First, we should address the dataset used for this research,
SF110, a publicly available dataset containing 110 open-
source Java projects from SourceForge [17]. For the scope of
our analysis, we have selected a subset of projects that exhib-
ited the most significant reduction in coverage from EvoSuite
to UTGen based on the results of the UTGen experiments.
The paper about UTGen has not yet been published; however,
it will include a replication package containing all experiment
results, thus making the project selection reproducible. We
can now discuss the reproducibility of each undertaking sep-
arately.
Phase isolation For this study, we adapted UTGen to run
each phase separately. Although implementation details are
deliberately not provided, section 3.1 provides a thorough de-
scription of the behavior of the revised approach using the
same EvoSuite test population as the basis for all isolated runs
of UTGen. This description offers substantial detail to ensure
that the adaptation can be replicated.
Manual inspection As with the previous study, we describe
the method used for this study in section 3.1 and further ex-
plain the criteria for the categorization used, along with ex-
amples in section 3.2. Of course, we must acknowledge that
this is still a manual inspection, which may be subjective or
biased. To the best of our ability, we sought to be objective
and consistent for all inspected test suites. We deem sufficient
detail was provided to ensure the reproducibility of this study.
UTGenCov experiment For this experiment, we adapted
UTGen to include the source code of the methods used in the
test case to be improved by the LLM. Section 4.1 explains
the modified approach, which we call UTGenCov. Section
4.2 contains the classes used for the experiment and the ex-
periment setup, where the same EvoSuite test population was
used for both runs. Therefore, sufficient information about
the setup is offered to make this experiment reproducible.

6.2 Privacy and ethical implications
For privacy, UTGenCov never stores user data or the class un-
der test. However, the LLM is often deployed on a dedicated
service, requiring data transfer to an outside party, potentially



with unclear or unfavorable privacy practices. To prevent any
privacy concerns, users can run both the tool and the LLM
locally, ensuring the confidentiality of their data.

One ethical factor is ensuring the quality and safety of the
generated test cases. While attempting to enhance under-
standability, the LLM might generate code that does not fol-
low good coding practices or overlooks security vulnerabil-
ities. The developer is always responsible for performing
thorough security reviews and code quality checks to mitigate
such risks.

Another aspect we should consider is the potential misuse of
the tool. Although UTGenCov aims to help developers detect
bugs in their code by automatically generating understand-
able tests, it does not mean it could not be misused to create
misleading tests. For instance, through a backdoor attack,
the LLM might generate deceptive code comments or tests
that could introduce vulnerabilities or malicious behaviors.
To prevent this issue, the utilized LLM, Meta’s Code Llama,
is open source and allows developers to verify its behavior.

6.3 Use of AI
Generative AI tools, such as ChatGPT and Grammarly AI,
were used to facilitate this research. In this section, we will
discuss their usage.

Grammarly was used as a writing aid for proofreading. Gram-
marly automatically analyzes the text and suggests improve-
ments. Additionally, its AI feature allows tone improvement
with prompts such as “Improve it“ and “Make it sound for-
mal“. Grammarly AI does not generate new ideas and was
never used on more than one sentence at a time. Addition-
ally, all responses were checked and modified accordingly.

ChatGPT was used for data analysis, error fixing, and cre-
ating visualizations. A list of prompt types can be found in
Appendix A. For data analysis, all content produced by Chat-
GPT was manually verified for accuracy and correctness be-
fore it was used in the research process. ChatGPT was never
used to produce new ideas, and its textual responses were
never used verbatim.

7 Conclusion
This research investigated two key questions in the domain of
automated software testing: which phases of UTGen, a tool
combining Large Language Models with search-based soft-
ware testing, impact test suite coverage, and how the factors
contributing to inferior coverage in UTGen can be mitigated.
Our study revealed that the Understandability phase of UT-
Gen, which uses LLMs to improve test readability, is the pri-
mary cause of coverage reduction. This decline is primarily
attributed to LLM hallucinations, where the model generates
incorrect, incomplete, or irrelevant code.

To address this issue, we developed UTGenCov, an extension
of UTGen that provides source code as context to the LLM
during the Understandability phase. This grounding tech-
nique aims to reduce hallucinations and maintain coverage
while improving test understandability. Our experiment with

UTGenCov across multiple Java projects yielded mixed re-
sults. While it maintained or slightly improved coverage in
some cases, it led to decreased coverage in others. On aver-
age, UTGenCov resulted in a 0.74% lower branch coverage
than UTGen.

Our key contributions include analyzing coverage impacts
in LLM-enhanced test generation, developing and evaluat-
ing UTGenCov, and highlighting the complexity of leverag-
ing LLMs in software testing. While LLMs show potential in
test understandability improvements, maintaining high code
coverage remains a significant challenge. Our findings sug-
gest that simply providing more context to LLMs may not be
sufficient to mitigate coverage issues consistently.

These results emphasize the need for more refined techniques
in LLM-guided test generation. Future work should consider
experiments with a broader scope that use more projects to
help strengthen the results and potentially reveal new insights.
Additionally, an analysis of the impact on coverage of using
different LLMs, such as Code Llama 70b Instruct or Code-
stral, should be performed. Given the inherent size difference
of the LLMs mentioned earlier compared to the one currently
used by UTGen and UTGenCov (Code Llama 7b Instruct),
they could help with hallucinations and provide more under-
standable tests.

A LLM Prompts
The list below provides an overview of the types of prompts
used for ChatGPT. Although this is not an exhaustive list, we
covered all prompt templates. We did not include follow-up
prompts in the list, as those only contained further informa-
tion or questions related to the same topic.

• Please help me to format ⟨data⟩ in LaTeX.

• How can I fix this LaTeX/Python/Maven error: ⟨error⟩?
• Given this ⟨data⟩, can you perform an in-depth analysis?

Please focus on ⟨request⟩ in your analysis.

• Can you please explain this piece of code: ⟨code⟩?
• I want to visualize this ⟨data⟩. Please provide the Python

code to create a visualization for it.

• I am writing a section on ⟨context⟩ for my research pa-
per. Is this structure logical?: ⟨structure⟩ How would
you adjust it? Only provide a bullet point list of ideas.
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