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Abstract
In the expanding field of generative artificial intelli-
gence, the integration of robust watermarking tech-
nologies is essential to protect intellectual prop-
erty and maintain content authenticity. Tradition-
ally, watermarking techniques have been devel-
oped primarily for rich information media such
as images and audio. However, these methods
have not been adequately adapted for graph-based
data, particularly on molecular graphs. Latent 3D
graph diffusion(LDM-3DG) [23] is an ascendant
approach in the molecular graph generation field.
This model effectively manages the complexities of
molecular structures, preserving essential symme-
tries and topological features. To protect this so-
phisticated new technology, we adapt the Gaussian
Shading [22], a proven performance lossless wa-
termarking technique, to the latent graph diffusion
domain. Our adaptation simplifies the watermark
diffusion process through duplication and padding,
making it adaptable and suitable for various mes-
sage types. We conduct several experiments using
the LDM-3DG model on publicly available datasets
QM9 [17] and Drugs [2], to assess the robustness
and effectiveness of our technique. Our results
demonstrate that the watermarked molecules main-
tain statistical parity in 9 out of 10 performance
metrics compared to the original. Moreover, they
exhibit a 100% detection rate and a 99% extraction
rate in a 2D decoded pipeline, while also showing
robustness against post-editing attacks.

1 Introduction
Diffusion models are extensively used to generate graphs,
playing a pivotal role in various domains [25]. In the realm of
molecular generation, these models are pioneering state-of-
the-art advancements, addressing diverse tasks from molecule
property prediction to structure-guided protein design. By
enabling more efficient exploration of molecular interactions,
diffusion models can accelerate the identification of promis-
ing drug candidates, thereby revolutionizing the pharmaceu-
tical industry. Capitalizing on these advantages, the Latent
3D Graph Diffusion (LDM-3DG) [23] model leverages dif-
fusion generative models to effectively capture the complex
distributions of 3D graphs. It achieves this by diffusing in
a low-dimensional latent space, which not only enhances the
ability to handle molecular complexities but also maintains
essential symmetries and topological features. This model
utilizes cascaded 2D-3D graph autoencoders to learn this la-
tent space, which not only reduces reconstruction errors but
also maintains symmetry group invariance. This approach not
only improves the quality of generation but also significantly
speeds up training, demonstrating great potential in applica-
tions such as drug discovery.

The absence of robust safeguards for diffusion model-
generated data can lead to substantial challenges, including
misinformation and conflicts over intellectual property. En-
suring the traceability and accountability of these models

is essential for two main reasons. First, a powerful diffu-
sion model requires substantial computational resources and
meticulously annotated data for its creation, it must be pro-
tected from being exploited by unauthorized entities offering
paid services. Second, unverified Artificial Intelligence(AI)
generated content can spread misinformation, undermining
public trust and potentially causing harm. For instance, in the
pharmaceutical industry, the unauthorized use of those gen-
erated molecular designs could result in untested and poten-
tially harmful compounds.

Addressing these issues requires a focused approach to
authenticating the source of content generated by diffusion
models. Prior research has extensively explored watermark-
ing for diffusion models, mainly focusing on multimedia car-
riers such as images [21] and audio [5] where abundant in-
formation allows for effective watermark embedding. These
studies have demonstrated the feasibility of embedding water-
marks to protect intellectual property and verify authenticity.
However, these techniques have not been adequately adapted
for graph-based data which often contains less overt data per
unit and operates in smaller latent spaces. This project seeks
to fill this gap by developing effective watermarking meth-
ods tailored to molecular graphs, ensuring the integrity and
traceability of graphs generated by diffusion models.

We address this issue by adapting Gaussian Shading—a
technique originally developed for image diffusion mod-
els—to graph-based models. Our adaptation includes adding
padding bits after watermark duplication to handle that 500
latent space length of LDM-3DG is not a multiple of bytes(8
bits). Furthermore, Instead of using the fixed watermark ca-
pacity in the original Gaussian Shading approach, we sim-
plify this process by directly replicating the watermark mes-
sage. According to ablation studies from Gaussian Shad-
ing [22], the length of the watermark capacity minimally
impacts detection rates. The adaptations allow our method
to effectively embed watermark messages of various lengths
and make the technique flexible for different shapes and sizes
of latent spaces, demonstrating its potential for robust water-
mark protection across various data modalities.

This research focuses on developing small-molecule gen-
erative models using the latent diffusion model architecture.
These models are lightweight and should be suitable for de-
ployment on personal computers. The datasets employed,
QM9 [17] and Drugs [2] from Nature publications, are pub-
licly accessible and widely utilized in computational chem-
istry and drug discovery.

The main contributions of our work are:

1. We successfully adapt Gaussian Shading to the LDM-
3DG molecular graph diffusion model, demonstrating
the technique’s applicability beyond its initial image-
focused context.

2. We benchmark the performance of the generated
molecules using various metrics, which demonstrate that
the watermarking does not impair the model’s perfor-
mance while achieving a high detection rate.

3. We pioneer unique attack methods on watermarks in the
domain of graph-based molecular generation and prove
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Figure 1: Architecture of the latent diffusion model. The left half
represents the training phase where data is encoded to latent space
and diffused to Gaussian noise. The right half represents the in-
ference phase where noise is denoised to latent representation and
decoded to data.

the robustness of our watermarking against modifica-
tions to the generated data.

2 Related Work
Graph diffusion models Diffusion models have become
a critical component in the field of graph generation deep
learning, offering a robust framework to facilitate the spread
of information across a graph’s nodes and edges. Diffusion
models enhance the scalability and efficiency of graph neu-
ral networks, especially for managing large-scale graphs [11].
Additionally, they integrate global information into the learn-
ing process, which leads to enhanced precision in predictions
and improves overall performance [1].

Building upon the foundational concepts of graph diffu-
sion models, traditional discrete diffusion approaches such as
DiGress meticulously modify graph structures step-by-step,
allowing for precise control during generation [19]. This ar-
chitecture, while detailed, often requires complex computa-
tion. Building on discrete diffusion models, Latent Diffusion
Models (LDM) offer a streamlined approach[1] by encoding
graph structures into a compact latent space. This latent rep-
resentation undergoes a controlled diffusion process, simpli-
fying the graph’s complex properties before reconstructing it
into its original form.

This method underpins innovative architectures such as
EDM and NGG, EDM [10] specifically addresses the genera-
tion of 3D molecular structures with physical accuracy by ac-
commodating SE(3) transformations, which presents a rigid
body motion in three-dimensional space, consisting of a ro-
tation and a translation. It ensures that generated molecules
are not only structurally accurate but also physically plausi-
ble. Conversely, NGG exploits a variational autoencoder [7]
alongside a latent space diffusion process to adeptly manage
the conditioning on specific graph properties, demonstrating
not only efficiency but also adaptability in generating detailed
graphs with desired attributes.

Watermarking diffusion models Digital watermarking
serves as a powerful tool for copyright protection and con-
tent verification by allowing the embedding of copyright or
traceable identifiers directly into the data. This technique
ensures that ownership information is seamlessly integrated
with the content, making it easier to track and manage rights.
Watermarks for diffusion models can be categorized into two
primary approaches: embedding watermarks in the data and
fine-tuning the model.

Watermark Diffusion Model (WDM) [16] and Stable Sig-
nature [8] are typical approaches to fine-tuning the model.
WDM incorporates a distinct Watermark Diffusion Process
(WDP) into the standard diffusion process used for generative
tasks. During the embedding phase, the model is trained such
that it modifies the standard diffusion process to include char-
acteristics specific to the watermark, using a special optimiza-
tion objective that ensures the watermark’s properties are pre-
served. Stable Signature embedding the watermark by fine-
tuning the decoder, evaluations confirm that the method effec-
tively identifies the source of generated images, maintaining
high detection accuracy even when images are cropped or un-
dergo other transformations.

For data embedding methods there is DiffusionShield [6]
which uses “pattern uniformity” to embed consistent water-
mark patterns throughout the training dataset. The water-
marks are divided into basic patches that represent binary
messages and are uniformly applied, which improves de-
tection accuracy and reduces image distortion. And Tree
Ring [21] embeds the watermark in the initial latent noise
during sampling, This watermark is constructed in Fourier
space, and the process of extracting the watermark involves a
reverse diffusion step, and then checking whether it contains
the embedded signal.

Fine-tuning-based watermarking methods require retrain-
ing the model, which can be resource-intensive and inflex-
ible. Data embedding methods typically alter the data for-
mat, which can affect model performance. There is a crit-
ical need for a more lightweight, low-overhead, plug-and-
play method that does not compromise model performance
and can be easily distributed and utilized by individuals. In
response to these challenges, the method of Gaussian Shad-
ing [22] emerges as a promising solution. We opt for Gaus-
sian Shading (GS) over Tree Ring due to its theoretically loss-
less nature and its broader applicability across various latent
space dimensions. Unlike Tree Ring, which requires a two-
dimensional or higher latent space, GS naturally adapts to any
shape or size of the latent space.

3 GUISE Framework
In this research, we develop an algorithmic framework, which
feature two primary functionalities: embedding and detec-
tion. During the embedding process, a string msg which rep-
resents the watermark message is integrated into the graph
generation model. This integration ensures that the graphs
sampled from the model inherently carry the information con-
tained in msg For the detection process, the objective is to
accurately identify the presence of the watermark msg within
the generated graphs. Additionally, we address a relaxed ver-
sion of this problem, where given the watermark message
msg, the algorithm determines whether a generated graph
contains the embedded msg without explicitly reconstructing
the message.

We adapt Gaussian shading [22] as a solution to this prob-
lem. The overall watermark architecture architecture is illus-
trated in Figure 2. Gaussian shading utilizes a pseudo-random
algorithm to generate Gaussian noise. This noise corresponds
bit-by-bit with each bit of the watermark message m within
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Figure 2: GUISE Framework. the watermark is duplicated and encrypted to generate a random bitstream, then we use Gaussian noise
sampling to generate the latent, DDIM-sampling, and decode it to create a watermarked molecule. The watermark is extracted by reversing
these operations and detected by comparing Hamming distances between bitstreams.

the latent space representation. This noise is then processed
through a Denoising Diffusion Implicit Model (DDIM) [18]
and a decoder to create a graph representation, thereby em-
bedding the watermark into the graph. The embedding algo-
rithm is provided in Algorithm 1

Subsections 3.1 to 3.4 provide a detailed description
of the watermarking process, 3.5 provides and its in-
verse(extraction) process and detection process.

Algorithm 1 Watermark Embedding Algorithm

Require: Message m, Key k, Nonce n
Ensure: Watermarked latent variables z

1: Repeat the message m to form m′, where |m′| = 500
bits.

2: Let m′
b be the byte representation of m′.

3: Encrypt m′
b using ChaCha20 to obtain the ciphertext c:

c = ChaCha20(m′
b, k, n)

4: Initialize l← 1 and an empty list z.
5: for each bit y in c do
6: Generate u ∼ U(0, 1).
7: Compute zi = ppf

(
y+u
2l

)
.

8: Append zi to z.
9: end for

10: return z

3.1 Watermark Duplication and Aggregation
To address the disparity between the fixed dimensionality
of the model’s latent space, n dimensions, and the variable
length of the watermark, m bits, the watermark message is
extended to match the latent space’s capacity. This is done
through a process of replication followed by padding with
zeros. The diffusion process, which adapts an m-bit message
into an n-bit message, can be expressed in Eq. 1, where ⊕
denotes concatenation.

P = (m,m, . . . ,m︸ ︷︷ ︸
n/m times

)⊕ (0, . . . , 0︸ ︷︷ ︸
n%m times

) (1)

The aggregation process recovers the original m-bit water-
mark from the extended n-bit version. This is achieved by
computing a weighted majority for each bit in the original
message based on its replicas. The reconstructed bit mi is
calculated using Eq. 2,

mi =

 1
x

x∑
j=1

vij

 , (2)

where x = ⌊ nm⌋ is the number of replicas per original bit, vij
represents the value of the j-th replica for the i-th bit. This ag-
gregation ensures that the watermark is seamlessly integrated
and retrievable despite variations in length and dimensional-
ity constraints. The voting mechanism makes the watermark
detection method resistant to the loss of information in the
DDIM-inverse and encoding process.

3.2 Watermark Randomization
After the process of watermark diffusion, we obtain a plain-
text bitstream P . Our next objective is to randomize this bit
sequence so that each bit has an equal probability of being
0 or 1. This randomization facilitates the subsequent gener-
ation of Gaussian noise. If the original message is not en-
crypted to achieve a uniform distribution, direct processing
through Gaussion noise sampling may result in matrices that
do not conform to a Gaussian distribution. Watermark data
concentrated in specific areas can produce perceptible noise
or irregularities in the generated content, adversely affecting
the generation quality. Furthermore, non-uniform distribution
of watermark data could create detectable statistical features
in the generated graphs, making them vulnerable to discovery
and removal by attackers.



The chosen method for achieving this is the use of the
ChaCha20 [3] stream cipher. ChaCha20 is an encryption
algorithm that enhances security by thoroughly mixing in-
put bits using additions, XORs, and rotations across multiple
rounds. It builds upon the design principles of its predeces-
sor, Salsa20, but with improved dispersion per round, making
it resistant to cryptanalysis while maintaining low-overhead.
The watermark extraction process involves decryption. If the
key and nonce are the same, the ChaCha20 encryption and
decryption processes are deterministic and invertible. This
ensures that the original bitstream P can be accurately recov-
ered during the extraction phase.

3.3 Guassion Noise Sampling
To further generate the Gaussian noise latent from ciphertext
C, we use Eq. 3 for sampling,

zi = ppf
(
bi + u

2

)
, (3)

where u ∼ U(0, 1) is a uniformly chosen random variable,
bi is the i-th bit of the ciphertext, and zi is the corresponding
Gaussian-distributed latent variable in latent space. Specif-
ically, we divide the Gaussian range into two regions: one
for 0 bits and the other for 1 bits. 0 bits correspond to nega-
tive values and 1 bits correspond to positive values. The ppf
function maps the cumulative probability to the value of the
Gaussian variable. Since the cumulative probability is uni-
formly distributed between 0 and 1, we only need to ensure
that the parameter of ppf is randomly distributed within range
(0, 1) to guarantee that our sampling result follows a Gaussian
distribution. The transformation bi+u

2 precisely converts the
discrete distribution of 0 and 1 into a continuous distribution
within (0, 1). Therefore, our watermark embedding process
is lossless

To get ciphertext from latent, we perform reverse sampling
in Eq. 4,

bi = ⌊2 · cdf(zi)⌋ , (4)
where the cdf function converts the latent Gaussian value zi
back into the bit bi. Moreover, the Gaussian noise regions can
also be divided into N parts instead of just two, where each
part corresponds to log2(N) bits in the ciphertext. This pro-
vides a more granular approach to embedding and extracting
bits.

3.4 DDIM and Autoencoder
After sampling, the random latent Zt is transformed into the
latent representation Z0 using DDIM. DDIM (Denoising Dif-
fusion Implicit Models) is a method that iteratively denoises
the latent variables, effectively transforming them into a more
stable representation [18] The reason for choosing DDIM
over DDPM sampling is that DDIM is deterministic and can
be reconstructed. The DDIM process can be described in
Equation 5, where zt represents the state at time t, α are
redefined variance scaling coefficients, θ(t)(zt) is the noise
estimation model at time t given the state zt, ∆t represents
the time step interval. ∆t and α are affected by the schedul-
ing policy and sampling steps, Common scheduling strategies
include Linear, Cosine, Quadratic, or Exponential.

zt−∆t =
1

√
αt−∆t

(zt
√
αt

+
1

2

(√
1− αt

αt
−

√
1− αt−∆t

αt−∆t

)
θ(t)(zt)

)
(5)

zt+∆t =
1

√
αt+∆t

(zt
√
αt

+
1

2

(√
1− αt

αt
−

√
1− αt+∆t

αt+∆t

)
θ(t)(zt)

)
(6)

The Autoencoder then translates this latent representation
into the graph. Different architectures may employ various
types of encoders; Many graph diffusion models employ Vari-
ational Autoencoders (VAE), a generative model that learns to
encode and decode data while capturing the underlying data
distribution, and it uses Graph Neural Networks (GNN) [14]
as the backbone for the encoder and decoder. In autoen-
coders, the encoding and decoding stages are designed to
be reciprocal, this symmetry is achieved through training the
network to minimize the reconstruction error.

Algorithm 2 Watermark Detection Algorithm

Require: Latent variables z, Key k, Nonce n, Threshold τ ,
Message m

Ensure: Boolean detection result
1: Compute the bits ci from the latent variables z:

ci =
⌊
2l · cdf(zi)

⌋
2: Compute secondary ciphertext c′ using Algorithm 1 steps

1-3:
c′ = Algorithm 11−3(m, k, n)

3: Determine if the watermark m is contained using the
Hamming distance:

If detected = (H(c, c′) ≤ τ)

4: return If detected

3.5 Detection and Extraction
Watermark Detection and Extraction first involves encoding
the graph into its latent representation, followed by applying
the DDIM-inverse to obtain Z0 using Equation 6. We then
employ reverse sampling on the latent vector z to generate
the ciphertext c, as explained in Section 3.3.

For the detection of watermarks as described in Algo-
rithm 2, since the message m is assumed to be known, the
goal is to verify whether the generated output contains the
watermark of m. We re-encrypt m according to steps 1-3 of
Algorithm 1 to produce a bitstream c′. We then measure the
Hamming distance between c and c′. If this distance is no
more than a specified threshold τ , it is inferred that the graph
contains the watermark. The relationship between τ and the



Table 1: Comparison of molecular generation performance between original and watermarked models on QM9 and GEOM-drugs datasets.
Valid: proportion of (POF) chemically valid molecules; Valid&Uni: POF chemically valid and unique molecules; AtomSta: POF atoms with
correct valency; MolSta: POF molecules without unstable atoms. The higher the better. t-statistic: t-value under the hypothesis of equality
mean value

Methods QM9 GEOM-drugs
Valid ↑ Valid&Uni ↑ AtomSta ↑ MolSta ↑ Valid ↑ Valid&Uni ↑ AtomSta ↑ MolSta ↑

Original 1.00(0) 97.83(0.04) 94.5(0.20) 81.01(0.30) 1.00(0) 99.99(0) 79.75(0.11) 4.21(0.27)
Watermarked 1.00(0) 98.10(0.22) 94.41(0.27) 80.84(0.24) 1.00(0) 1.00(0) 79.64(0.11) 4.23(0.40)
t-statistic - 2.09 0.46 0.77 - - 1.23 0.07

Table 2: Distribution discrepancy metrics between original and watermarked models on QM9. MW: Molecular weight; ALogP: Octanol-
water partition coefficient; PSA: Polar surface area; QED: Drug likeness; FCD: Frechet ChemNet distance; Energy: Conformer energy,
Hartree as unit. Other metrics represent total variation distances (×1e-2) of certain molecular properties. The lower the better. t-statistic:
t-value under the hypothesis of equality mean value

Methods MW ↓ ALogP ↓ PSA ↓ QED ↓ FCD ↓ Energy ↓
Original 4.30(0.28) 1.84(0.25) 2.19(0.35) 2.16(0.06) 147.15(5.09) 3.36(0.50)
Watermarked 4.38(0.29) 1.88(0.38) 2.65(0.22) 2.43(0.25) 180.65(8.57) 3.15(0.24)
t-statistic 0.34 0.15 1.93 1.58 5.82 0.66

Algorithm 3 Watermark Extraction Algorithm

Require: Latent variables z, Key k, Nonce n
Ensure: Extracted message string m

1: Compute the bits ci from the latent variables z:

ci =
⌊
2l · cdf(zi)

⌋
2: Convert the bit array c to bytes and decrypt using

ChaCha20:

p = decrypt(packbits(c), k, n)

3: Apply majority voting across each n bits of p to obtain
the final extracted message bits m:

m = majority vote(p)

4: return m

false positive rate (FPR) is analyzed to demonstrate the theo-
retical viability of this method, as detailed in Appendix A.

For extraction as described in Algorithm 3, we decrypt the
ciphertext c to obtain plaintext p, and then apply the aggre-
gation method outlined in Section 3.1 to implement majority
voting to determine each bit of m.

We conclude that the technique introduced by Guassion
Shading achieves 100% detection and extraction accuracy be-
cause Algorithm 1 and Algorithm 3 are deterministic and mu-
tually reversible. However, these two algorithms cannot func-
tion independently as they rely on the graph sampling method
and its reverse sampling. The efficacy of Gaussian Shading is
rather inherently dependent on the performance of the follow-
ing components and assumptions within the latent diffusion
model:

1. The reconstruction capability of the autoencoder, so that
Z0 ≈ Enc(Dec(Z0)).

2. The denoising performance of the diffusion model, so
that Z ′

t ∼ N (0, 1). If Z ′
t is scaled or shifted, ciphertexts

c will be biased and lead to a higher bit error.

3. The reversibility of sampling methodology of the diffu-
sion model, so that Z ′

t ≈ Zt.

Section 4.4 conducts experiments about how inversion
quality affects the performance of Gaussian shading.

4 Experimental Results
Here we present the experimental analysis to assess the im-
pact of watermarking on the quality of graph generation.
First, we outline the experimental setup employed. Follow-
ing, we evaluate the performance of models that incorporate
watermarks relative to their unmarked counterparts. We then
simulate various attacks on the generated graphs to ascertain
the robustness of the watermark detection mechanism under
diverse conditions.

4.1 Experimental Setting
In this paper, we explore watermarking techniques within the
context of 3D molecular graph generation, utilizing the LDM-
3DG model [23]. LDM-3DG is an innovative latent diffusion
model for generating molecular structures, distinguished by
its approach of separately handling the topology (connectiv-
ities) and geometry (spatial coordinates) of molecules. This
is achieved through two cascaded decoders. The model’s au-
toencoder component consists of a 2D encoder employing a
Variational Autoencoder with a Hierarchical Message Pass-
ing Network (HierMPN) architecture, and a 3D encoder using
a Graph Neural Network (GNN) based on Multilayer Percep-
trons (MLP). The autoencoder is trained on large-scale public
databases such as ChEMBL [9] and PubChemQC [15].

We perform 500 steps of unconditional sampling using
DDIM and DDIM-inverse. Gaussian shading was employed



with the window value l=1. All experiments are conducted
using the PyTorch 1.13.1 framework, running on a single
RTX 4080 GPU and a Ubuntu 22.04 operation system.

4.2 Model Performance
We conduct performance tests on two distinct datasets to eval-
uate the performance of the model after our watermarking
method in 3D molecular graph generation. The first dataset,
QM9 [17], comprises approximately 134,000 small organic
molecules with up to nine heavy atoms. The second dataset,
GEOM-drugs [2], contains 450K larger molecules up to 181
atoms, and it’s typically found in drug discovery datasets.
Those datasets are computationally feasible for chemistry cal-
culations and are extensively used for benchmarking molecu-
lar generation models.

Our evaluation metrics include the quality of generated
molecules and the distribution discrepancy. The quality met-
ric assesses the chemical validity and stability of the gener-
ated molecules, ensuring that they comply with established
chemical rules and possess realistic molecular configurations
The distribution discrepancy metric measures how closely
the properties of generated molecules match those of real
molecules in the test dataset, considering aspects like molec-
ular weight, polarity, and pharmacological potential. Detailed
explanation of all matrics used in this section and it’s genera-
tion methods are in Appendix B.

We benchmark molecules generated under two conditions:
with and without the “Watermark” string embedded. We per-
form a 3-fold test using a set of 30,000 generated molecules to
ensure the reliability and consistency of our evaluation. We
subsequently conduct t-tests on all the metrics, assuming a
null hypothesis (H0) of no difference between the original
distribution and watermarked distribution and an alternative
hypothesis (Ha) that a significant difference exists. We cal-
culate the t-statistic for each matric. The results are contained
in Table 1 2

Given that we use 3-fold validation and set the significance
level α = 0.05, the critical threshold from the t-distribution
should be t0.05(4) = 2.13. We accept the null hypothesis
if the computed t-value is less than 2.13. For all metrics
except FCD, all metrics adhere to the null hypothesis (H0)
of no significant difference between the original and water-
marked distributions. This implies that watermarking does
not adversely affect the molecular generation model’s perfor-
mance statistically. Notably, the model showcases robust per-
formance across both QM9 and GEOM-drugs datasets, sug-
gesting that our watermarking method is effectively general-
izable. It should be noted that since both the watermarked
and non-watermarked models achieved perfect performance
(100%) on some indicators, the statistical tests performed on
these indicators are not of practical significance.

In terms of distribution discrepancy, apart from the Frechet
ChemNet Distance (FCD), no significant differences were
found in other metrics, which aligns with the theoretical ex-
pectation that Gaussian shading should be lossless. The sig-
nificant variance observed in FCD may suggest that the model
has not yet converged with the sample size provided, resulting
in greater fluctuation.

4.3 Watermark Robustness
In this section, we assess the robustness of our graph wa-
termarking scheme against various attacks, which notably
involve common modifications to the molecular topology.
Specifically, we conduct these attacks by modifying the
SMILES (Simplified Molecular Input Line Entry System)
representations of the molecules. SMILES is a notation that
allows a user to represent a chemical structure in a way
that can be used by the computer. It encodes the structure
of a molecule using short ASCII strings. For example, the
SMILES representation of water is “O”, while ethanol is rep-
resented as “CCO”. This system is widely used for its sim-
plicity and ability to efficiently describe complex molecular
structures [20]. The three attacks are illustrated in Figure 3.

Figure 3: Illustation of molecule “C#CCCOC(C)=O” and it’s Equiv-
ariant Smiles, Addition of Hydrogens and One Less Decoding rep-
resentation

Equivariant Smiles SMILES enumeration is a tech-
nique that takes advantage of the fact that a single molecule
can be represented by multiple different SMILES strings.
This method involves generating multiple SMILES represen-
tations for the same molecule, thereby augmenting the dataset
and potentially improving the robustness and performance
of machine-learning models-[4]. We utilize this technique
to modify the SMILES generated by the LDM-3DG model.
For example, the SMILES string “CCCC(CO)CO” can be
changed to “C(C(CO)CO)CC”. Both SMILES represent the
same molecular structure from a chemical perspective, but the
different representations arise due to variations in the starting
atom and the order of atom connections.

Addition of Hydrogens In most organic structures rep-
resented by SMILES, hydrogen atoms are typically implied
rather than explicitly noted, adhering to the normal va-
lence rules without specific mention in the SMILES string.
we explicitly specify hydrogen atoms within the molecu-
lar structure. For instance, a simple molecule like ethane,
normally represented as “CC” in SMILES, is modified to
“C([H3])C([H3])” to explicitly show all hydrogen atoms at-
tached to each carbon. This alteration tests our watermarking
system’s capability to handle and recover watermarks from
these denser, more detailed molecular descriptions.

One Less Decoding In the context of the LDM-3DG’s
iterative decoder structure, our approach exploits the inherent
step-by-step motif-based graph generation. During the de-



coding process, the model utilizes a depth-first search (DFS)
mechanism, where each motif is selected and expanded in se-
quence. This hierarchical, iterative generation is crucial as
it allows the integration of complex molecular structures se-
quentially, ensuring that each part of the molecule is correctly
positioned in relation to its predecessors [12]. In our specific
attack method, we capitalize on this sequential generation by
intercepting and storing intermediate molecular graphs at var-
ious stages of the decoding process. Instead of completing the
full sequence of motif additions, we halt the process prema-
turely, thus obtaining a molecular structure that is one step
less decoded than the final intended structure. For example,
if the fully decoded structure is “C#CCCOC(C)=O”. Halt-
ing one step earlier could yield “C#CCCOCC”. This strategy
tests the watermark’s resilience not only to modifications of
the molecule’s intended structure but also evaluates how well
the watermark can be preserved and recognized in partially
generated or interrupted synthesis scenarios.

The robustness results are contained in Figure 4. We create
a dataset of 1,200 molecules, each embedded with the string
“watermark” as a watermark. To test the robustness of the
watermark against structural perturbations, we apply the pre-
viously described attacks—Equivariant SMILES, Addition of
Hydrogens, and One Less Decoding—to this dataset. Each
attack generated an additional 1,200 modified molecules, re-
sulting in a total of 4,800 watermarked molecules.

Figure 4: The watermark detection rate against theoretical false pos-
itive rate under the watermarked molecule set and three modified
molecule sets

We employ a 6-fold cross-validation method, each fold
consists of 200 randomly selected molecules from each
dataset. We vary the theoretical false positive rate(TFPR)
to calculate the detection rates for the watermark across
these four groups (original and attacked watermarked
molecules). The relationship between threshold and TFPR is
threshold = binom.ppf(TFPR) binom ∼ Bin(n, 0.5)
where n is the length of the latent space. To assess the statis-
tical reliability of our watermark detection rates, we compute
the confidence intervals around the mean detection rates for
each set of molecules. These intervals are determined using a
standard deviation-based approach, typically denotes as µ±σ
where µ represents the mean and σ represents the standard

deviation of the detection rates.
For comparative analysis, we also include a control group

of 1,200 not watermarked, regular molecules to calculate the
experimental false positive rate(EFPR) we construct a Re-
ceiver Operating Characteristic (ROC) curve and calculate
AUC in Figure 5.

Figure 5: The detection rate of watermarked and modified datasets
against the detection rate of none watermarked datasets, Area under
the ROC Curve is reported in legends

Despite the detection rate being negatively affected due
to the attacks, the watermark detection rates remained dis-
tinctly higher compared to the control group(not watermarked
molecules), underscoring the robustness of our watermark-
ing approach. This substantiates the practical utility of our
method in safeguarding molecular data against typical adver-
sarial modifications.

4.4 Inversion Quality as Impact Factor
In this section, we conduct an analysis of how the compo-
nents of the latent diffusion model (LDM) affect the detec-
tion and extraction accuracy of Gaussian Shading. We design
four detection pipelines that utilize different components of
the LDM-3DG architecture:

1. Diffusion only: We replace Z ′
t with Zt. In this pipeline,

only the DDIM-inverse is operational, bypassing any au-
toencoder, emphasizing the role of the diffusion process
alone in watermark detection.

2. 2D decoded: We use concat [Z ′
t[0 : 250], Zt[250 :]] to

replace Z ′
t. This pipeline solely utilizes the 2D au-

toencoder, extracting the watermark from the topolog-
ical molecular structure, while the conformational infor-
mation of the molecule in the latent space is presumed
known.

3. 3D decoded: We use concat [Zt[0 : 250], Z ′
t[250 :]] to

replace Z ′
t. This setup exclusively employs the 3D au-

toencoder, where the latent space representation of the
molecular topological structure is considered known.

4. Fully decoded: An end-to-end detection pipeline that
employs all components of the LDM, retrieving water-
mark information directly from the 3D molecular graph.



We embed a single-byte watermark “X” into 800 molecular
samples and evaluate the detection performance using Zt ∼
N(0, 1) as the baseline. We calculate the detection rates at
theoretical false positive rates (FPR) of 1% and 5%. We also
report the extraction rate and bit accuracy. The results are
presented in Table 3.

Method TPR@1% FPR TPR@5% FPR Extraction Bit Acc.
Diffusion only 1.000 1.000 1.000 0.944
2D decoded 0.999 1.000 0.990 0.693
3D decoded 0.001 0.006 0.000 0.494
Fully decoded 0.000 0.000 0.000 0.488

Table 3: Detection rates at 0.01 and 0.05 FPR, extraction rates, and
bit accuracy for four proposed pipelines

The diffusion-only pipeline has a relatively low bit error
rate, which leads to outstanding detection and extraction per-
formance. The 2D decoded pipeline demonstrates a high tol-
erance for bit errors, maintaining near-perfect detection per-
formance (TPR at 1% and 5% FPR) despite introducing more
bit inaccuracies (Bit Accuracy of 0.693). This indicates that
the watermark detection process is robust to bit perturbations
to some extent. In contrast, the 3D decoded pipeline shows
significantly poorer reconstructive ability, with a bit accuracy
rate close to random guessing (0.494). This low accuracy
severely compromises the watermark detection, resulting in
drastically low TPRs and indicating that the watermark in-
formation is effectively lost. The bad 3d autoencoder sig-
nificantly affects the good quality of 2d autoencoder, mark-
ing Gaussian shading ineffective on a fully decoded pipeline.
This outcome underscores the ineffectiveness of Gaussian
Shading when the autoencoder’s performance is inadequate.

Consequently, our research is confined to the 2D encoder.
The robustness tests focused exclusively on modifications to
the molecular geometric structure while disregarding the spa-
tial structure of the molecules.

Based on a 2d encoded pipeline, we also conduct exper-
iments on how the reversibility of the sampling method af-
fects the detection process of Gaussian shading. We intro-
duce two additional sampling methods, bi-directional integra-
tion approximation (BDIA) [24] and DPMSolver [13]. Com-
pared to DDIM, DPMSolver emphasizes rapid convergence
to generate high-quality samples efficiently, whereas BDIA
focuses on precise diffusion inversion through bi-directional
updates for accuracy. We measure the Mean Squared Er-
ror (MSE) between zT and its reconstructed sample through
inv sample(sample(zT )) to evaluate the reconstruction per-
formance of these sampling techniques. We compute the bit
accuracy as the probability of identical bits in ciphertexts c
and c′. The results are summarized in Table 4.

Method DDIM BDIA DPMSolver
Bit Acc. 0.70 0.67 0.67
MSE 0.12 0.40 0.26

Table 4: MSE loss and bit accuracy of different sampling methods.

Despite the variations in reconstruction performance

among different sampling methods, as reflected by the MSE
values, the bit accuracy remains relatively consistent. This in-
dicates that Gaussian shading is resilient to information loss
during the sampling and inverse sampling processes, and it is
adaptable to various sampling techniques without significant
impact on detection quality.

5 Discussion
We identify a significant limitation in the use of Gaussian
Shading for large-scale watermarking applications, the Ran-
domness of Gaussian shading watermarked content depends
on the Randomness of key and nonce. We employ the same
key and nonce for watermarking 30,000 samples, and the
QM9 Validity and Uniqueness (Valid&Uni) metric in Table 1
significantly dropped from 98.10% to 56.71%. this concludes
that when a uniform watermark message is applied across a
batch of molecules, it becomes necessary to store a random-
ized key and nonce for each molecule to maintain uniqueness.
Without this measure, the uniqueness of the model generated
content is greatly compromised.

Responsible Research This study strictly adheres to
ethical guidelines with all datasets being sourced from Na-
ture under a CC BY license, ensuring open and accessible
data use. The autoencoder and diffusion models used in this
study are provided by the authors of LDM-3DG under the
GPL-3.0 license. Additionally, the Gaussian Shading method
and its implementation are under the MIT License. No poten-
tial conflicts of interest were identified in this study. Detailed
methodologies and all original data and code are available for
replication purposes on GitLab: https://gitlab.ewi.tudelft.nl/
dmls/courses/cse3000/watermark/graph-diffusion.

6 Conclusions and Future Work
In this study, we adapt Gaussian Shading, originally de-
signed for image diffusion models, to graph diffusion models,
demonstrating its efficacy without compromising the genera-
tive performance of the original models. Our experiments
on the LDM-3DG molecular generation diffusion architecture
confirm the high adaptability of Gaussian Shading to LDM-
based architectures. This method proves to be universally
applicable across different shapes and sizes of latent spaces
within the LDM framework. However, the performance of
Gaussian Shading is highly contingent upon the reconstruc-
tion capabilities of the specific models, indicating that its
effectiveness is directly influenced by the quality of model
training.

Looking ahead, we aim to extend our testing to other graph
structures, such as Erdős-Rényi random graphs and social
network graphs, to broaden the applicability of our method.
Additionally, the robustness tests currently employ relatively
trivial attack techniques. We plan to develop more sophisti-
cated and realistic attack methodologies that are tailored to
different domains of graph structures.
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A Watermark Statistical Test
A key desideratum for a reliable watermark detector is that
it provides an interpretable P-value that communicates to the
user how likely it is that the observed watermark could have
occurred in the data by random chance. In addition to making
detection results interpretable, P-values can be used to set the
threshold of detection, i.e., the watermark is “detected” when
p is below a chosen threshold α. By doing so, one can explic-
itly control the false positive rate α, making false accusations
statistically unlikely.

We assume a null hypothesis H0 in which the ciphertext
from the latent space c has an equal chance to be 0 or 1 in each
bit. To test this hypothesis, we define η as the bitwise differ-
ence between the watermarked ciphertext and the ciphertext
from the molecule. The bitwise difference η follows a bino-
mial distribution B(n, 0.5), where n is the number of bits in
the ciphertext.

We declare data to be watermarked if the value of η is too
small to occur by random chance. The probability of observ-
ing a value as small as η is given by the cumulative distri-
bution function of the binomial distribution. The P-value is
thus calculated as the false positive rate (FPR) if we set the
threshold as η:

p = Pr (B(n, 0.5) ≤ η)

Using this analysis, we show the calculated P-values in 6
for samples drawn from various conditions:

• Watermarked: The watermarked molecule with the de-
tection key

• Watermarked Another: The watermarked molecule
with another key

• Not Watermarked: Not watermarked molecule

• Attacked: Watermarked hydrogenation molecules

Figure 6: P-value of samples of watermarked, not watermarked,
falsely watermarked, and attacked molecules

B Evaluation Metrics
Matrics in Table 1 2 are calculated under the support of RD-
Kit. RDKit is an open-source cheminformatics and machine
learning software library widely used for handling and an-
alyzing chemical data. It supports tasks such as molecular
modeling, visualization, and computation of chemical prop-
erties. All the proposed functions are valid under RDkit ver-
sion 2019.03.4.0.

Valid The proportion of chemically valid molecules,
a molecule is considered valid if its SMILES
representation smi throws no exception under.
rdkit.Chem.MolFromSmiles(smi)

Valid&Uni The proportion of unique and valid
molecules among all the generated molecules,
two molecules smi1 and smi2 is considered the
same if rdkit.Chem.Chem.CanonSmiles(smi1) =
rdkit.Chem.Chem.CanonSmiles(smi2)

AtomSta The proportion of atoms in the generated
molecules that have the correct valency. An atom is
considered stable If the number of its bonds matches
the expected valency for that atom type. The expected
valency of all possible atoms are: ’H’: 1, ’C’: 4,
’N’: 3, ’O’: 2, ’F’: 1, ’B’: 3, ’Al’: 3,
’Si’: 4, ’P’: [3, 5], ’S’: 4, ’Cl’: 1,
’As’: 3, ’Br’: 1, ’I’: 1, ’Hg’: [1, 2],
’Bi’: [3, 5]

MolSta The Proportion of generated molecules in which all
atoms maintain stable configurations. Atom stability is
calculated the same as “AtomSta”

MW Molecular weight, calculated via rdkit.Chem
.rdMolDescriptors. CalcMolWt(mol)

ALOGP Octanol-water partition coefficient, calculated via
rdkit.Chem.Crippen.MolLogP(mol)

PSA Polar surface area, calculated via
rdkit.Chem.MolSurf.TPSA(mol)

QED Drug likeness, calculated via
rdkit.Chem.QED.qed(mol), it maps a molecule’s
physicochemical properties through the ADS function,
weighting and summing their logarithmic values.

Energy GFN2-xTB level energy of a molecule. It’s a semi-
empirical quantum chemistry method used for efficiently
estimating electronic structures and energies. The cal-
culated is via xtb.interface.Calculator under xtb-
python module.
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