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ABSTRACT

Due to increasingly efficient engineering of the last decades, the design process for civil structures is heading
in the direction of optimal solutions. Among other things, the reduction in self-weight enhances the suscep-
tibility to dynamic loads. As the process for the determination of realistic modal parameters from a digital
model often diverges from the reality, the uncertainties should be investigated. This research aims to gain
knowledge on the accuracy and stability of such modal parameter estimates.

A case study is investigated to determine modal parameters for a realized tied-arch railway bridge. The
desired modal properties include the natural frequencies, mode shapes and damping parameters. The fre-
quency domain decomposition (FDD) method is applied on a set of accelerational measurements to deter-
mine the modal parameters. Four dominant frequencies are identified and investigated, from which the most
dominant operational deflection shapes are extracted. The overall response of the structure shows great sim-
ilarities with the expected mode shapes for similar bridge types. The computed modes show signs of complex
behaviour, due to the characteristics of the load or the structure. An effective method to reduce uncorrelated
noise is the application of an autocorrelation function (ACF) to the time domain signals, before execution
of the FDD. Prior to the computation of the final results related to the case study, a simplified test case is
considered to validate correctness of the FDD implementation.
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2 1. INTRODUCTION

S TRUCTURAL vibrations are common phenomena in in civil engineering. Structural vibrations are induced
by dynamic loads, such as wind-, wave- or traffic loads (ambient vibrations). In extreme cases, the exci-

tations become harmful and can result in structural damage. Gaining insights on the dynamic behavior of
structures can enable a robust validation and assist in the improvement of the digital model at hand.

The dynamic behavior of structures is becoming increasingly important, as structures are becoming lighter
due to more efficient engineering (Blok et al., 2018, Craveiro et al., 2017). Slender structures with reduced self-
weight are known to be more susceptible to dynamic loads (Zhang et al., 2016, Avci et al., 2022). This means
that full dynamic analyses will have to be considered to design a safe structure. In order to perform a dynamic
analysis, a digital model of the structure is created. The acting loads on the structure are modelled as well.
By means of a dynamic simulation, the response of the structure to the ambient vibrations can be replicated.
The response is dependent on the model characteristics and parameter values. The challenge in a dynamic
analysis concerns accurate model assumptions for a realistic representation.

In theory, the dynamic (modal) parameters of a structure can be derived through fundamental mechan-
ics. In practice however, the results often diverge from the initial derivation due to great uncertainty of the
current mechanical properties, boundary conditions, ambient loads, interaction properties etc. which influ-
ence dynamic behavior (Soroushian, 2014, Derife et al., 2022). Feedback on the initial design, also known as
model updating (MU), can be used to calibrate the model with representative parameter values (Mottershead
& Friswell, 1993). This will allow structural engineers to make more accurate assumptions on the dynamic be-
havior of a structure (Soroushian, 2014).

Capturing the dynamic response of structures provides a starting point, to be able to assess the current
performance and deterioration of a structure (Frangopol & Kim, 2022), also known as Structural Health Mon-
itoring (SHM). Measurement data can be obtained through controlled testing or during the operational stage
of the structure. When working with data from measurements, additional challenges emerge which influence
the accuracy of the determination of modal parameters (Derife et al., 2022). The computed modal parameters
are never equal to the actual parameters due to a variety of imperfections. Instances which cause such dis-
crepancies are the strict fundamental assumptions on the response of the structure, continuous shortage of
data and measurement noise (Gre et al., 2021). Parameters describing modal characteristics of a structure are
recognized as valuable indicators for evaluating structural performance (X.-M. Yang et al., 2021). These char-
acteristics can be determined more accurate and realistic, when data is collected on the dynamic behaviour.
This research aims to determine modal parameters based on vibrational data.

A case study is performed on an operational tied-arch railway bridge, from which data is collected prior
to the start of the research project. Identifying dynamic properties through vibrational data provides several
challenges. This research aims to investigate these challenges, by providing an in-depth analysis of the most
governing interferences when using measured signals to determine dynamic properties. The goal of the re-
search is to provide an analysis to accurately extract reliable dynamic properties of a structure with sufficient
stability and reliability from measurement data.

1.1. PROBLEM STATEMENT
In the preceding paragraph, the importance of addressing dynamic behavior of a structure is mentioned. In
this section, the relevance of the analysis of dynamic behavior is elaborated on. In Section 1.1.1, concepts of
structural vibrations are defined. In Section 1.1.2 the importance on the derivation of modal parameters are
being discussed. Finally in Section 1.2, the research questions for this research project are presented.

It is likely that an increased amount of future structures will require a full dynamic analysis. For this
dynamic analysis, accurate modal parameters should be determined, to which the digital model can be cal-
ibrated by applying MU techniques. The values to which the model will be updated should be realistic and
representative, and being obtained through reliable methods.

In the introduction it is stated that in order to be able to accurately simulate the behaviour of structures,
realistic model parameters are required. It was also stated that several challenges arise when using vibrational
data to identify dynamic properties. Challenges such as non-compliant structural behaviour to the funda-
mental assumptions, computationally expensive operations to evaluate time signals of significant length,
and sufficient interdisciplinary knowledge on structural behaviour, signal processing and statistics & proba-
bility to confidently apply and verify the used methods. In addition, measurement signals contaminated with
artifacts such as noise or non-structural behaviour increase the complexity to accurately determine struc-
tural behaviour from measurement signals. The current research aims to define modal parameters based on
vibrational data through reliable methods.
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The process of modal analysis to determine structural dynamic properties can be time consuming, which
is a problem in itself. Even after computing the modal parameters, an engineer should feel confident that
the derived properties are accurate, to effectively design a structure. The influential parameters which are
included in the analysis and reliability of the results are further investigated.

1.1.1. STRUCTURAL VIBRATIONS
Loads can be classified in three categories, being static loads, quasi-static loads and dynamic loads. In civil
engineering, the majority of structures are designed to carry extreme loads in a static sense. However, as
mentioned in the previous section, with the increase of use of lightweight materials, it becomes increasingly
important to consider the effects of dynamic loads.

A dynamic load implies that the response of the structure is dependent on the change in magnitude of the
load over time (Hwang & Nowak, 1991). How quick the magnitude of the load changes over time, influences
the response of the structure. This phenomenon can be described through periodic loads and responses.
Periodic loads are said to have repeated characteristics after some time length T . The amount of periods
to fit in a specified period of time is described by the frequency f . When the response of the structure is
characterized as periodic, the structure is vibrating. The amount of vibration over time is based on the output
frequency response and the amount of damping, further explained in Chapter 2 (Literature review).

If the acting force is periodic with a frequency considerably close to any of the natural frequencies of the
structure, resonance can occur. Resonance ensures amplification of the deflections during the time-period
over which the periodic load is acting on the structure. The increasing amplitudes for the deflections of the
structure can result in serious structural damage (Bhandary et al., 2021), and should therefore be avoided.

1.1.2. MODAL PARAMETERS
When a structure is susceptible to dynamic loading, knowledge on its natural frequencies is essential. Infor-
mation on the influential parameters, concerning dynamic properties, is accounted for in the modal param-
eters. The circumstances at which a structure is dynamically loaded in the most unfavorable way, is when
resonance can occur. Resonance can be avoided by designing a structure where the natural frequencies do
not coincide with the frequencies of the acting periodic loads. Additionally, resonance can be counteracted by
introducing significant damping in the structure (e.g. through the application of dampers). Damping ensures
the dissipation of energy from the system, and is able limit the dynamic amplification caused by resonance.

The natural frequencies of the structure can be derived theoretically, but model uncertainties are high
(Zhu & Au, 2020), meaning the chance of inaccurate results is high as well. Therefore, in practice, measure-
ments on the modal properties should be performed supplementary to the theoretical derivation (Cawley &
Adams, 1979).

After measurements have been performed, data has to be processed, to provide the correct and realistic
parameter values. Issues that arise when computing accurate parameter values can be solved by deploy-
ing automated techniques (Sun et al., 2017). The automated techniques become increasingly important for
seamless implementation of SHM tools (Sun et al., 2017). Therefore, this research will investigate the possi-
bility to automate the process, which takes a set of vibrational data as input and provides the correct dynamic
parameters as output.

1.2. RESEARCH QUESTIONS
To perform this research, the following research questions are formulated. The research questions will be
answered after the results from the case study are presented and discussed, in the conclusions (Chapter 8).

How can the dynamic properties be obtained for an arch-railway bridge based on measurement data with
appropriate stability and reliability?

1. What methods are commonly used in the analysis of vibrations?

2. How to assess the quality of the measured data?

3. What methods can be used to improve the usability of the signal?

4. Is it possible to distinguish closely spaced natural frequencies in the measured signal?
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6 2. LITERATURE REVIEW

T HIS chapter includes the necessary fundamental knowledge for the ability to comprehend and assess
the methods that will be elaborated on. To be able to compute modal parameters, sufficient knowledge

on the theory should be mastered, as modal analysis is an ongoing interdisciplinary physical issue, which
requires knowledge in multiple fields (Bao et al., 2015).

First, the theory on the response (behaviour) of structures when subjected to dynamic loading, are pre-
sented. Secondly, elaborations are given on methods to describe and analyse these responses in the frequency
domain. Subsequently, the literature with respect to signal processing and dealing with random signals in
general is presented. This section includes fundamental concepts for a statistical representation of random
signals, to prepare the reader for Chapter 4 (Methods). Finally, a short description is given on the particular
response regarding arch bridges and dynamic train loading.

2.1. STRUCTURAL RESPONSE
For this case study, the dynamic response of the structure is investigated through modal analysis to be able
to describe the behaviour of the structure. The equations of motion of a multi degree-of-freedom (MDOF)
system is presented in Equation 2.1.

Mü(t )+C u̇(t )+K u(t ) = F (t ) (2.1)

TRANSFORMATIONS

The common techniques for an analysis of the dynamic behaviour of a structure can be divided in two cate-
gories, namely, frequency domain and time domain methods (Magalhães & Cunha, 2011). The most common
way to gather data is, like in the case of this case study, through accelerational data in the time domain. How-
ever, this is not the best way to represent dynamic properties of a structure numerically. When considering the
dynamic response, a clear depiction to represent the modal characteristics of a structure is in the frequency
domain. In order to be represented in the frequency domain, the measured data will have to be transformed

2.2. FREQUENCY RESPONSE
When considering modal analysis, a linear framework is adopted to represent the response of the structure.
This representation implies a linear superposition, according to Fourier’s series. In Equation 2.2, An and Bn

represent the Fourier constants, and ωn represents the frequency.

u(t ) =
∞∑

n=−∞
An cos(ωn t )+Bn i sin(ωn t ) (2.2)

When representing the signal in the frequency domain, the Fourier transform of the signal can be de-
picted using an alternative representation, in order to simplify the general understanding. Instead of using
the Fourier constants in cosine and sine form (equation 2.2), the two terms are merged into a single cosine
term with a distinct amplitude and a corresponding phase shift, and can be represented in the form:

u(t ) =
∞∑

n=−∞
Cn cos(ωn t +φn) (2.3)

In the above equation, the amplitude (Cn) and phase shift (ϕn), derived from equation 2.2, are computed in
the following way:

Cn =
√

An
2 +Bn

2 (2.4a)

ϕn = arctan

(
Bn

An

)
(2.4b)

2.2.1. MODE SHAPES
In theory, the total behaviour of the structure can be decomposed into the superposition of all individual
and orthogonal modes. The considered modes adopt standing wave characteristics, which are amplified and
attenuated in the periodic behaviour, in the case of real modes.

NORMAL MODES

When describing a dynamic system, the modal behaviour can be described as the superposition of funda-
mental (non-dependent) modes. If the modes are independent, the modes are considered normal modes
(Erlicher & Argoul, 2007).
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Modal Assurance Criterion When defining mode shapes through statistical properties, the chances of de-
termining an identical mode shape when considering a different data set is relatively low. The same holds
for the dominant mode shapes corresponding to neighbouring frequencies in the system power spectrum.
To quantify comparability of two modes, the Modal Assurance Criterion (MAC) can be determined. The MAC
value is most sensitive to large difference and relatively insensitive to small differences in mode shapes (Pastor
et al., 2012). The MAC value can be determined by taking the inner product of the two vectors which repre-
sent the mode shapes (equation 2.5). The result is a scalar value, which can vary between 0 (no correlation
between the two modes) and 1 (full correlation between the two modes).

M AC (ϕi ,ϕ j ) = (ϕT
i ϕ j )2

ϕT
i ϕiϕ

T
j ϕ j

(2.5)

In equation 2.5, ϕi and ϕ j represent the mode shape vectors to be compared.

NOISE MODES

Noise modes are modes which do not have any substantial relation to the response of the structure. The
noise modes are merely the side-product of the uncertainties in the response of the structure. “However, it is
still difficult to sort out noise modes, which requires the experience and judgment to use sorting tools (such
as stability diagrams) effectively” (Bao et al., 2015, p. 1). Stability diagrams are mostly used in time domain
methods, such as ERA. The MAC value of two noise modes should be close to zero, as they are uncorrelated.

NON-CONSERVATIVE SYSTEMS

A free vibration is a vibration where the mass is able to vibrate freely after being subjected to an initial dis-
placement. In this system, the initial energy is preserved (or the energy is said to be conserved). When a
system is introduced to damping, this system is not able to conserve the energy, as damping in the system
inherently introduces energy dissipation. When energy is dissipating from the system, the system can no
longer preserve the initial energy.

DAMPED SYSTEMS

First, the linear system of equations 2.1 could only possesses normal modes if C = 0, M = M T and K = K T ,
where the entries of the damping matrix are equal to zero. The first analytical model to be used to study damp-
ing for an MDOF system is proportional damping (He & Fu, 2001b). The concept of proportional damping
was first introduced by Rayleigh, 1894. He presented that passive non-conservative systems can posses nor-
mal modes as well, therefore implying normal modes when C ̸= 0. However, the damping is assumed low and
the damping matrix should be proportional to the mass and stiffness matrix (Erlicher & Argoul, 2007). If the
damping matrix is proportional to mass and stiffness matrix, the system possesses normal modes (Ahmadian
& Inman, 1984).

COMPLEX MODE SHAPES

A structure, when excited by a load, will displace in a certain shape. If the load possesses dynamic charac-
teristics, the response of the structure adopts dynamic behaviour as well (Spijkers et al., 2005). In common
engineering practice, every DOF of the system is assumed to either move in-phase or anti-phase (φ = 0 or
φ = π, respectively). This way, the excitations will share extreme positions at corresponding points in time.
However, in more realistic cases, the relative phase angles are not completely opposite. In this case, a cer-
tain complex mode shape is considered. The complex mode is dependent on time and will not include of
a discrete moment where all the displacements are at their extremes. A cause of a complex mode is non-
proportional damping or load dependency of the observed operational deflection shape (ODS). In the latter
case, the ODS can not be considered a mode.

MODE SHAPE PROPERTIES

To quantify the system and noise modes, two accuracy indicators have been developed by Juang and Pappa,
1985. The two indicators are the modal amplitude coherence (MACoh) and modal phase collinearity (MPC),
which are represented by γ j and µ j , respectively, for mode j . Both indicators return a scalar value between
0 and 1. The MACoh value determines a distinction between a system mode (when close to 1) and a noise
mode (when close to 0). Juang and Pappa, 1985 also state that further investigation is required to be able
to clearly distinguish a system mode from a noise mode. The MPC value indicates the strength of the linear
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functional relationship between the real and imaginary parts of the mode shape for each individual mode.
The two indicators are developed for the eigensystem realization algorithm (ERA), which is a time domain
method. However, the concepts of these indicators can be translated to fit the needs that correspond to
the considered frequency domain methods. By applying such an algorithm, the quality of the data can be
quantified.

γ j =

∣∣∣ϕ̄H
j ϕ j

∣∣∣(
|ϕ̄H

j ϕ̄ j ||ϕH
j ϕ j |

)1/2
(2.6)

In equation 2.6, the symbol ϕ represents the considered mode shape vector. It is clear to see the the MACoh
indicator is almost identical to the determination of the MAC value (Equation 2.5), being the dot-product of
two vectors, to define a coefficient.

Modal Phase Colinearity When in the process of determining mode shapes for damped systems, the out-
come can be a complex mode (Oke et al., 2019). To check if this is the case, the MPC can be computed
following Gre et al., 2021, where the determination is implemented using slightly different equations w.r.t.
Juang and Pappa, 1985. The MPC is a quantification method to assess the linear relation between the real
and imaginary part of the mode. It is a method to determine non-linear components in Equation 2.1, which
is most sensitive to large differences and relatively insensitive to small differences (Pastor et al., 2012). The
MPC value ranges from 0 to 1, where 0 indicates low accuracy (therefore a noise mode or a complex mode)
and 1 indicates high accuracy of the mode shape. The MPC can be derived by solving matrix S for its eigen-
values:

S =
[

Sxx Sx y

Sy x Sy y

]
∈R2x2 (2.7)

Where input values of the matrix S are determined as described in equations 2.8a, 2.8b and 2.8c:

Sxx = Re(ϕ)T Re(ϕ) (2.8a)

Sy y = Im(ϕ)T Im(ϕ) (2.8b)

Sx y = Sy x = Re(ϕ)T Im(ϕ) (2.8c)

To compute the MPC value for a frequency:

MPC (ϕ)≜
(λs

1 −λs
2)2

(λs
1 +λs

2)2 (2.9)

Again, the symbol ϕ represents the considered mode shape vector. The symbols λs
1 and λs

2 represent the
eigenvalues of matrix S. The result quantifies the complexity of the considered mode shape. When the com-
plexity increases for low MPC values, the relative phase delays in the considered mode are becoming less
in-phase, therefore introducing a greater significance in time dependency. Oktav, 2020 reflects on this be-
haviour, being identical to a non-proportional damping (NPD) case, as he states that the out-of-phase com-
ponent implies the relative phase delay, not being an integer multiple of π/2, for the DOF’s of the system.

2.3. OPERATIONAL MODAL ANALYSIS
When performing modal parameter estimation (MPE), the modal parameters are determined based on a set
of measured data. The modal parameters can be obtained by performing operational modal analysis (OMA)
(Grocel, 2014). Unlike experimental modal analysis (EMA), which is performed in a lab-like setup, OMA can
be performed on a structure during the operational stage. It is currently the most economically viable and
often more appropriate method for obtaining in-situ dynamic properties for large scale civil structures (S.-K.
Au et al., 2021, Reynders et al., 2012). A combined approach can also be used, where both the measured
and unmeasured forces are accounted for, and yields an optimal approach: operational modal analysis with
exogenous inputs (OMAX) (Reynders et al., 2012). Magalhães and Cunha, 2011 states that output-only MPE
of dynamic systems are classified as time domain or frequency domain methods.
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LINEAR TIME-INVARIANT SYSTEM

To be able to describe the structures’ dynamic behaviour, a model (system) is required which defines fun-
damental principles related to the response. For this research project, a mechanical system model for the
structure is adopted. The structure is represented as a linear time-invariant (LTI) system model. When the
LTI model is adopted, basic computations regarding convolution and linear multiplication can be used to de-
scribe the system, due to the principle of superposition and the principle of homogeneity which inherently
imply the commutative, distributive, and associative properties (Saini, n.d.). The fact that the system is con-
sidered linear, implies that if we think of the input as the sum of different input functions, then the output is
equal to the sum of different output functions (Shin & Hammond, 2008).

“Linear time-invariant systems respond to complex exponentials or eigenfunctions in a very special way:
their output is the input complex exponential with its magnitude and phase changed by the response of the
system” (Chaparro & Akan, 2018, p.167).

FREQUENCY RESPONSE FUNCTION

In engineering practice, the properties of a system can be described through a so-called transfer function.
The system takes an input signal and transforms this to an output signal. The system characteristics, which
transform the input signal, are introduced through a transfer function. When expressing the transfer func-
tion in the frequency domain, it is identified as the frequency response function (FRF). For LTI systems, the
definition of the FRF is best to be described by the ratio between output and input of the signal (Shin & Ham-
mond, 2008). This provides straightforward multiplication (in the frequency domain) of the FRF with the
input signal to determine the output signal.

H̃(ω) = d̃(ω)

p̃(ω)
(2.10)

In Equation 2.10, H̃(ω), d̃(ω) and p̃(ω) represent the FRF, frequency output signal and frequency input signal
of the system, respectively. In the frequency domain, the time-domain convolution operation becomes a
product operation. The FRF is the Fourier transform of the impulse response function. Figure 2.1 depicts the
definition of the FRF for different domains.

Figure 2.1: This image shows the relation between the impulse response [h(t )], the transfer function [H(s)] and the FRF [H(ω)] (source:
Shin and Hammond, 2008, p. 78).

Lack of input signal The relation between the input- and output signal for an LTI system are presented in
Equation 2.10. If both signals are obtained, the system characteristics can be derived. However, for large
scale civil structures, the acquisition of the input signal (ambient loads) can be rather challenging to acquire.
Therefore, alternative methods for the derivation of the FRF will have to be investigated to resolve for the lack
of input signals.

OUTPUT-ONLY SYSTEMS

OMA is an output-only method that is applied when the input signal is unknown. The structure can be mod-
elled as an output-only system. The principles of this type of system adopt similar characteristics from the
LTI system. However, additional assumptions concerning the properties of the ambient loads should be taken
into account. Chapter 4 presents the methods to analyse the output signal of the structure to determine the
modal parameters.
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ASSUMPTIONS

The OMA method is based on various assumptions (Grocel, 2014, p. 131), which are listed below:

• Linear system

• Properties of the system are not dependent on time

• White noise characterized input load

• Measurements provide possibility for MPE

The latter assumption is rather straightforward, however originates mainly from a practical standpoint (e.g.
proper sensor placement to capture the desired dynamic properties).

TIME DEPENDENCY

The fundamental assumptions of the OMA method regarding time dependency can be described through
stationarity. As the input signal is unknown, the characteristics of the structure and the ambient loads are
assumed to remain similar over time. Hereby, being able to compare the output signals, which then can
be linked to the characteristics of the structure. In Equations 2.11 to 2.12c, p(. . .) represents the probability
distribution of a random variable. If the recorded output signals do not fully comply with the stationarity, the
results of the MPE will be affected.

Ergodicity Ergodicity describes the dynamic property of a system, which states that the average behaviour
over time generally corresponds to the average behaviour over all the states the system may present itself in,
over time. The mathematical definition of ergodicity, as stated in Shin and Hammond, 2008:

p(x, t ) = p(x) (2.11)

Stationarity With respect to ergodicity, stationarity defines three properties that should hold to ensure full
stationarity, namely:

p(x, t ) = p(x) (2.12a)

p(x1, t1; x2, t2) = p(x1, t1 +T ; x2, t2 +T ) (2.12b)

p(x1, t1; x2, t2; . . . ; xk , tk ) = p(x1, t1 +T ; x2, t2 +T ; . . . ; xk , tk +T ) (2.12c)

Equation 2.12a implies that the mean µx (t ) and variance σx (t ) are constant over time. Equation 2.12b
implies that the probabilities do not change over a single time shift T . If only the first two equations are
satisfied, the signal is said to be weakly stationary. If the stationarity holds over every point in time, the signal
is said to be fully stationary (Shin & Hammond, 2008, p. 224). This is implied by the third equation (Equation
2.12c).

2.3.1. FREQUENCY DOMAIN DECOMPOSITION
The frequency domain decomposition (FDD) is used in modal analysis for MPE. It is a user-friendly method
which decomposes a summed frequency response spectrum, and represents the contributions for the most
dominant modes (Brincker et al., 2001). The method can be implemented and used to describe an MDOF
model, however the accuracy of the algorithm depends on the recording and signal processing parameters
(Hadianfard & Kamali, 2020).

SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) is an effective and practical tool to apply model dimension reduc-
tion. Besides the FDD, other OMA algorithms make use of the SVD to decompose data matrices (Magalhães
& Cunha, 2011). In Chapter 4 (Methods), a comprehensive explanation is presented on the application of the
FDD. The method includes a sequence of steps to be taken. The singular value decomposition is also reflected
on.

ENHANCED DECOMPOSITION

The enhanced frequency domain decomposition (EFDD) is a method, which is used to determine structural
damping. The EFDD incorporates a logarithmic decrement damping estimation (LDDE).
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Figure 2.2: Example of singular values plot for FDD. In this plot, the contributions for the dominant modes are represented. Each colour
in the spectrum contributes to a single mode, and together represent the total response of the strucutre. (source: Hadianfard and

Kamali, 2020)

PEAK-PICKING

The peak-picking method is one of the most straightforward MPE methods to determine the natural frequen-
cies of a system. This method is not preferred due to the lack of automation, and susceptibility to human
errors. However, this method can be fully automated if implemented correctly (Jin et al., 2021). This is pre-
ferred in the case of highly damped systems or noisy data (Pioldi & Rizzi, 2017).

2.4. SIGNAL PROCESSING
When considering digital signals, the continuous time domain is recorded and registers a collection of dis-
crete samples. To be able to describe continuous phenomena in the discrete domain brings forth several
points of attention. In this section of the report, the concepts of the discrete domain will be briefly described.
Fundamental theories regarding (digital) signal processing, described in Shin and Hammond, 2008, Smith,
2003, Parker, 2017, Brincker and Ventura, 2015 and others are presented.

DISCRETE FREQUENCIES

An Analogue-to-Digital Converter (ADC) is used to convert the continuous-time signal to the discrete-time
domain. The discrete-time domain signal can be transformed to the discrete-frequency domain by the use of
a discrete Fourier transform (DFT). A highly optimized implementation of the DFT is the fast Fourier trans-
form (FFT) (Parker, 2017). Inherently, the FFT derives a discrete number of frequencies for the discrete-time
domain signal. The lowest frequency in the range is identified as the fundamental frequency ( f0). Every
measured frequency can be considered as an integer multiple of the fundamental frequency.

u[t ] =
N /2−1∑

n=0
A[n]cos(ω0nt )+B [n]sin(ω0nt ) with ω0 = 2π f0 (2.13)

FREQUENCY RANGE

The frequency range is the bandwidth of the frequencies that are included in the analysis. A distinction is
being made between the continuous domain and the discrete domain. From now on, the domain of the
digital transform of the signal will be referred to as the discrete domain.

Sampling frequency The sampling frequency describes the frequency at which the discrete samples are
taken.

Nyquist frequency The Nyquist frequency describes the highest measurable harmonic and is dependent
on the sampling frequency. For a harmonic to be recognized by the FFT, the record must contain at least
2 discrete samples of that specific frequency. If a sampling frequency of 1000H z is taken, then the Nyquist
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(a) Continuous domain (b) Discrete domain

Figure 2.3: The difference in domains

frequency is at 500H z. This implies that the highest measurable harmonic is also 500H z.

fnyq = fs

2
(2.14)

Fundamental frequency The fundamental frequency is the lowest measurable frequency. This is directly
related to the length of the recorded time signal.

f0 = 1

Tmeas
(2.15)

Frequency resolution The frequency resolution describes the horizontal distance between the discrete fre-
quencies, which are presented in the frequency spectrum.

Phase distortion When a low-, high-, or bandpass filter is being applied, the filter characteristics can pro-
duce (non-linear) phase delays. Therefore, a phase correction is recommended to ensure an undistorted
phase. Phase correction can be performed by applying a forward-backward filtering. This will apply a filter
twice, which will be responsible for rectification of the phase distortion.

2.4.1. MEASURE OF LINEAR RELATIONSHIP

Correlation When describing two random variables with respect to each other, the correlation is a useful
parameter to present a value for both the strength and direction of a linear relationship (Shin & Hammond,
2008). The correlation presents a measure of similarity.

Cor r (X ,Y ) = E [X Y ] = RX Y (2.16)

Covariance Comparable to the correlation, the covariance is used as a tool to show the relation between
two random variables. What differentiates the covariance from the correlation is that the covariance requires
to subtract the corresponding mean before multiplication of the random variable.

Cov(X ,Y ) = E [(X −µx )(Y −µy )] (2.17)

Correlation coefficient When two random variables are fully correlated, the correlation coefficient is equal
to 1. If the two variables are uncorrelated, the computed correlation is equal to 0. The correlation coefficient
includes the standard deviation of each variable, to normalize the result.

ρX Y = Cov(X ,Y )

σX σY
(2.18)
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AUTOCORRELATION FUNCTION

The autocorrelation function (ACF) is used in time-analysis. The main variable of the function is the time lag
(τ). It represents the shifted time signal with respect to itself.

Rxx (τ) = E [x(t )x(t +τ)] (2.19)

= lim
T→∞

1

T

∫T

0
x(t )x(t +τ)dτ

Cxx (τ) = E [(x(t )−µx )x((t +τ)−µx )] (2.20)

= lim
T→∞

1

T

∫T

0
(x(t )−µx )(x(t +τ)−µx )dτ

Cxx (τ) = Rxx (τ)−µ2
x (2.21)

In equation 2.19, Rxx (τ) represents the ACF for time lag τ. The period over which the signal is auto-
correlated is represented by the parameter T . Equation 2.20 gives the autocovariance function Cxx (τ), with
µx as the mean value of the time series x(t ). In equation 2.21, the relation is given between the ACF and the
autocovariance function. Furthermore, there is a relation between the total variance of the spectrum and the
ACF. It is clear to see that the autocorrelation for lag 0 is equal to the variance of the spectrum (Equation 2.22).

Rxx (0) = E [x(t )2] =σ2
x (2.22)

Considering autocorrelation to be a measure of association, the maximum value of the ACF is located at time
lag 0. To normalize the ACF, the variance will have to be factored out.

Random signal For general understanding, it is quite intuitively to presume that random signals are uncor-
related. When considering the ACF of a random signal, time lag 0 yields the time signal squared, therefore
an autocorrelation of 1 (fully correlated). As the time lag increases, the correlation decreases. The correlation
approaches 0, the greater the time lag grows. This behaviour describes the correlation of a random signal. An
example of a random signal is white noise.

Periodic signal The correlation of a random signal decreases when the time lag increases. However, con-
sidering a periodic function (e.g. sinusoid): at time lag 0 the correlation is equal to 1 (fully correlated). When
increasing the time lag, the correlation starts to decrease. After increasing the time lag for a certain period, the
correlation will start to show an increase. Due to the periodic properties of the signal, the ACF also becomes
a periodic function with respect to the time lag.

Figure 2.4: A sinusoid buried in noise (Shin & Hammond, 2008)

In Figure 2.4, a time series of a signal is presented. The total signal y(t ) consists of a signal s(t ) and noise n(t ).
By computing the ACF, the correlation between the total signal and a lagged version of itself is presented.
When the time lag increases, the noise becomes less correlated. therefore, the contribution of the noise starts
to diminish for increasing values of τ. The contribution of s(t ) will remain in the ACF Ry y . The ACF is a useful
tool to filter out the uncorrelated noise (Shin & Hammond, 2008).

Autocorrelation & autocovariance In Section 2.4.1, a distinction is made between the correlation and the
covariance, where the dissimilarity between the two involves the mean of the signal. The correlation is de-
scribed as the product of two terms premultiplied by the probability, whereas the covariance requires the
mean value to be subtracted from the signal before taking the product. During this project, the signals are
assumed to be zero-mean (due to a linear detrending computation) and therefore, the autocorrelation and
autocovariance are identical.
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Figure 2.5: Autocorrelation function with dying noise (Shin & Hammond, 2008)

Wiener-Khinchin theorem The Wiener-Khinchin theorem states that the auto spectral density function
can be computed by taking the Fourier transform of an autocorrelated time signal (James, 2011). Taking
the ACF of a time series results in attenuation of the uncorrelated behaviour, whilst the periodic part re-
mains present. By applying the Wiener-Khinchin theorem, relaxed assumptions on the stationarity and non-
linearity can be assumed (Zbilut & Marwan, 2008). As described with recurrence quantification analysis, the
periodic trends remain present in the computed signal. Keep in mind that the absolute magnitude of the
ACF, which is used in the Fourier transform, is not directly representative when compared to results from
other (linear) methods. (Zbilut & Marwan, 2008).

Sx ( f ) =F {Rxx (τ)} (2.23)

When dealing with digital finite-length signals, the envelope of the ACF decreases for greater values of the
time lag. This is presented in the correlogram of Figure 2.6. The (auto)correlation function can contain sig-
nificant noise for greater time lags. Tarpø et al., 2017 addresses this phenomenon and presents methods
to effectively truncate the noise tail of the correlation functions, whilst maximizing the preservation of the
fundamental frequency.

Figure 2.6: Example of a discrete signal as a function of time t (left) and a correlogram as a function of time lag τ (right) (source:
Wikipedia contributors, n.d.)

2.5. DYNAMIC RESPONSE CHARACTERISTICS FOR SIMILAR BRIDGES
Arch bridges are a widely used type of bridge due to their advantages, like large span capacity and aesthetic
characteristics (Pellegrino et al., 2010). Through basic mechanics, the deflections of structural elements, due
to acting loads, increase significantly when considering larger spans (Chen et al., 2015). For arch bridges, this
property also holds. When considering dynamic loading, the imposed deflections propose consequences in
the dynamic behaviour as well (Lu et al., 2017). Therefore it is essential to determine dynamic properties for
larger span arch bridges.

In this section of the report, a brief introduction to arch bridges and railway bridges is presented to give
sufficient background knowledge on the dynamic behaviour of such structures, as the case study covers a
similar structure. The consideration of specific loading types is well outside the scope of this research project.
However, to be able to make a distinction between computation- and structural- or load-related results, a
quick overview is presented on common characteristics for both arch bridges and railway bridges.

The dynamic properties of a structure, like natural frequencies, are not load dependent. That is, the nat-
ural frequencies and eigenmodes of the bridge will be determined on the characteristics of the bridge only.
Besides modal parameters, the structure will most certainly adopt a dynamic response when it is subjected
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to forced vibrations (Spijkers et al., 2005). This response can be described as an operational deflection shape
(ODS). The ODSs are not solely determined by the dynamic properties of the bridge. By analysing the total re-
sponse of the bridge for slight variations in loading during several loading periods, a distinction can be made
between load- and structure-related responses. The homogeneous response is inherent to the structure and
the particular response is inherent to the load. In general, train loads consist of significant axle loads with
periodic motions (X.-M. Yang et al., 2021). In section 2.5.2, the characteristics of train loads will be discussed.

Figure 2.7: Modal analysis (FEM) of an arch element in Ansys for the first 4 modes. (source: ANSOL, 2015)

2.5.1. ARCH BRIDGES
By static analysis, the main load bearing component is the arch, which is predominantly loaded in axial pres-
sure. The arch also experiences a bending moment and shear force. The maximum values of the bending
moment and shear force are located at the middle and base of the arch, respectively. The horizontal thrust
of the arch rib imposes some engineering challenges due to the great horizontal forces that are introduced
at the base of the arch. When considering tied arch bridges, a possible solution to counteract the horizontal
thrust is to introduce prestressing forces into the beams which thereby overcome the deficiency of traditional
arch bridges (Jiang et al., 2019).

Identification of the modes in the arch bridge give various options for the operational deflection shapes
of the arch bridge. The first vertical in plane bending mode shape, determined through FEM software (Jiang
et al., 2019, Kong et al., 2006, Lonetti et al., 2016), shows the second expected bending mode for a traditional
beam. This mode shows a sagging- and a hogging shape over the total span (Figure 2.8).

When considering damping, F. T. Au et al., 2001 states that the influence of damping on impact factors is
significant but depends on the type of load effect considered and the location (F. T. Au et al., 2001, p. 461).

Figure 2.8: Asymmetrical loaded arch bridge for typical deflection shape (source: Zwingmann, 2010)

2.5.2. RAILWAY BRIDGES
When considering dynamic properties of a structure, the input loads are of significant importance to be able
to determine (or approach) an accurate transfer function. However, when the concepts of OMA are being
applied, certain assumptions are made to simplify the determination process. For most general cases of
OMA techniques, assumptions to present the input load as white noise (or broadband random) are used.
When this assumption is taken into account, it will inherently point out that every single amplification in the
output signal is caused by the structure itself. However, the axle spacing of a train load are far from random.
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Figure 2.9: First 6 mode shapes (a → f) for a digital analysis (source: Lonetti et al., 2016)

Figure 2.10: First 3 mode shapes for a digital analysis multiple arch bowstring bridge (source: Kong et al., 2006)

If the bridge is mainly excited by the train loads, modal parameters become difficult to identify due to the
regularly spaced and highly energetic axle loads (X.-M. Yang et al., 2021). This is contrary to the general
assumption of a white noise loading scheme. Therefore, it does not comply with this general assumption
when regarding OMA. Y.-B. Yang et al., 1997 states that the moving loads can be assumed as moving loads
with regular non-uniform intervals.

When comparing railway bridges to standard highway bridges, the heavy concrete decks are not present.
This results in lesser dead load and corresponding decrease in inertial forces (Khan, 2013, pp. 230-231). Al-
though the decrease in self weight will preserve additional capacity to support the moving loads, the structure
will be more susceptible to dynamic behaviour imposed by the moving load, precisely due to its lesser iner-
tial properties. It is observed that, in almost all cases, the impact effects of a solitary locomotive are more
significant than those of an entire train (F. T. Au et al., 2001, p.461). At the tower (support), the impact effects
are moderate, the cables close to the support show large impact effects, whereas the cables far away from the
supports show low impact effects (F. T. Au et al., 2001, p. 461). Probably due to stiffness related appearances.

A moving train will portray specific load characteristics. These characteristics are dependent on a vast
variety of parameters, like train velocity, axle spacing, gross train weight and axle weights (Wang et al., 2019,
p. 263). Regarding the deflection shape, for a long span stay cable bridge the vertical response of the car body
seems to be only slightly higher than the lateral response (Xia et al., 2000, p. 274). The velocity of the train
plays a role in the dynamic response of the bridge. It is seen that the train responses increase significantly
with the increasing train velocity (Xia et al., 2000, p. 275). From observations, the maximum impact factors
are mostly concentrated around a specific velocity range where one may be led to think that such pronounced
impact effects are due to the excitation of the lower vibration modes (F. T. Au et al., 2001, p. 455). Literature
shows that the response of the forced steady-state vibration reaches its maximum values when the period of
the moving load is equal to an equivalent period of the structure, or an integer multiple of it (Frýba, 1972).
The period T = d/v of the moving loads has been identified as a key parameter, where d and v represent the
length of the uniform intervals between wheel bases and constant speed, respectively (Y.-B. Yang et al., 1997).

When a computer model is used during an analysis, imperfection parameters are taken into account as
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well. This may lead to pseudo-dynamic behaviour which should be included in the calculation. However, this
can not entirely be modelled realistically. An example of such imperfections is/are track irregularities (F. T. Au
et al., 2001) and/or stiffness deviations.

Castellanos-Toro et al., 2018 states that the estimation of operational frequencies, to provide evidence on
the current dynamic behaviour of bridges, is possible through OMA. However, the estimation of damping ra-
tio’s for the considered operational frequencies did not present clear relations between the geometric and/or
material properties of bridges. In this study, also a railway bridge is considered.
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F OR the derivation of the dynamic bridge properties, a case study is investigated on the Bert Swart bridge.
The location of the bridge is near Zuidhorn, which is a small town in the northern part of the Nether-

lands. The bridge is constructed explicitly for railway traffic between the cities Leeuwarden and Groningen.
The Bert Swart bridge is an arch bridge with a span length of approximately 120 meters to cross the Van
Starkenborghkanaal (Figure 3.1). During the case study, only the relevant natural frequencies will be taken
into account. The focus will be on the natural frequencies, located at the lower end of the frequency spec-
trum.

Figure 3.1: A plan view of the location of the bridge. In the figure A represents the location of the bridge, B represents the nearest station
(Zuidhorn). Leeuwarden is situated to the west, Groningen to the east. (source: Google Maps)

DATA ACQUISITION

For the acquisition of the data, 5 accelerometers are utilized. The accelerometers are equally spaced along
the span of the bridge deck (each about 30 meters apart). Two sensors are applied above the supports, two at
a quarter and three quarters of the span and a single sensor at midspan. See Figure 3.2 for a visual represen-
tation of the bridge, the deck and the sensor locations.

Figure 3.2: Overview of the locations of the sensors, with corresponding girder numbers
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The type of accelerometer which is used during the measurements, is the PCL Model 338B35 from PCB
Piezotronics (Fugro, 2021). This sensor is capable of measuring in 3 orthogonal directions. Each direction
registers to a separate channel, and is connected to a collective mainframe. The mainframe registers all sensor
channels for corresponding discrete time, until the 20 second time mark is reached and the accelerometers
stop recording, after which the data-file is constructed and saved. A preview of such a data file is presented
in Figure 3.3. The channels of the data-file correspond to the channels of the Figure 3.2.

Figure 3.3: Preview of the data-file

Besides the accelerometers, two additional sensors are placed, to indicate a passing train, and have been
used to determine the average train velocity over the bridge. Determination of the average velocities is done
by registering the time length between two measurement locations, spaced approximately 500 metres apart,
on each side of the bridge. The computed average velocities are presented in Figure 3.5.

During the time of the measurements, the train types and velocities have been recorded (Fugro, 2021).
Only a single train type is registered to pass over the span of the bridge during the time of data acquisition.
The train type to have passed is the Stadler GTW 2/8. This is determined by combining description and
photographs that are included in the measurement report of Fugro, 2021. Specifications of this train type are
presented in Table 3.1. An overview of the train configuration is depicted in Figure 3.4.

The acquired measurements have been performed on the 31st of August 2021 from 11:09 to 13:04. Each
recording is performed with a samping frequency of 1000H z and a total time duration of 20s.

Stadler GTW 2/8
No. carriages 3 pc.
No. axles 8 pc.
Mass (no passengers) 91 tons
Length over coupling 55.94 m
Centered axle base 15.05 m
Vehicle width 2.95 m
Vehicle height 4.035 m
Axle arrangement 2’ Bo 2’ 2’
Max. velocity 140 km/h
No. seatings 163 pc.
Suspension type Air suspension

Table 3.1: Specifications of Stadler GTW 2/8 (source: W. contributors, 2022)

Figure 3.4: Overview of Stadler GTW 2/8 (source: R. contributors, n.d.)
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Figure 3.5: Train velocities per recording (original version from report Fugro, 2021). The numbers on the vertical lines represent the
recording number, which will be used in Section 4.4.1.

3.0.1. BERT SWART BRIDGE - DIGITAL MODEL
Prior to the start of this research project, an extensive FEM model is constructed to identify modal parameters.
The model is constructed by an external firm and commissioned by Arcadis. The results are presented in the
report of SFF Ingenieure, 2021. It includes results which determine the first dynamic modes of the bridge.
The first three mode shapes are presented in Figure 3.6.

(a) First mode shape ( fn = 1.566) (b) Second mode shape ( fn = 2.181) (c) Third mode shape ( fn = 3.712)

Figure 3.6: First three mode shapes, determined by extensive FEM model in report (source: SSF Ingenieure, 2021, pp. 12-13)
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T HIS chapter presents an overview of the methods used to produce the desired results. First, the necessary
preprocessing related subjects are being discussed. Subsequently the details regarding SVD, FDD and

EFDD algorithms are presented. Finally, rounding up to present the cases, which will be used for the FDD to
determine the modal parameters of the structure. The results will be presented in Chapter 6 and Appendix A,
and discussed in Chapter 7.

4.1. PREPROCESSING OF THE DATA
A sequence of preprocessing computations is applied prior to the estimation of the modal parameters. The
following computations are performed on the set of input data:

1. Import records

2. Detrend individual signals

3. Apply low- or band-pass filter (main focus on the natural frequencies at low end of frequency spectrum)

4. Downsample to improve on required computational effort

5. Return detrended, filtered and decimated records in data frame for corresponding time domain

Figure 4.1: Example of the original, filtered, filtered & downsampled results. The preprocessing parameters for this example do not
relate to the true preprocessing parameters for the results of the case study. The true preprocessing parameters are presented in Table

4.4.

Remark downsampling It is important to check whether the down-sampling process makes use of an anti-
aliasing filter. If this is not the case the filter will have to be applied manually. This can be explained by an
example, shown in Figure 4.2.

The graphs represent a time domain signal with varying signal-to-noise ratios. Whenever the signal-to-
noise ratio is high, decimation will not necessarily be a problem. But when regarding a low signal-to-noise
ratio, the chances of the discrete point taken at the wrong instance is very likely, which will produce non-
acceptable results after the decimation. When first applying a low-pass filter, decimation can be performed
without negative side effects.
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Figure 4.2: high signal-to-noise ratio (l), low signal-to-noise ratio (m), low signal-to-noise ratio with applied low-pass filter (r)

4.2. FREQUENCY DOMAIN DECOMPOSITION
To perform an FDD from a set of measurement signals, the data will be prepared by making distinct segments,
transforming the segments, summing the signals in the frequency domain and computing the outer product
to form a spectral matrix, finally performing an SVD. By performing the SVD, the spectral matrix is decom-
posed into a set of frequency domain functions, with corresponding mode shapes. This result is almost exact
in the case of white noise loading, minimal damping and orthogonal mode shapes for closely spaced modes
(Brincker et al., 2001). If deviations from these assumptions are present, the results will have to be interpreted
accordingly. The FDD presents the contributions of a collection of dominant operational deflection shapes.

OPERATIONAL DEFLECTION SHAPES, MODE SHAPES & CLOSELY SPACED MODES

When combining the data of multiple accelerometers, an overall ODS can be determined. However, the main
goal of MPE is not to identify the ODSs, but to separate the mode shapes (native to the structure), as forced
vibration responses are not considered modal parameters. When a forced vibration response is measured,
often multiple modes are amplified, whereas for a structural mode, only a single mode will be amplified. This
behaviour is observable through the singular values plot (Figure 2.2).

A major advantage of the FDD method is the ability to identify the contributions of multiple modes,
present at a discrete frequency. In theory (and practice), the response of the structure is a superposition
of all the individual eigenmodes (Spijkers et al., 2005). These modes are determined through the SVD and the
contribution of each mode is determined by its corresponding participation factor (singular value).

4.2.1. PRINCIPAL COMPONENT ANALYSIS
Principal component analysis (PCA) is a concept that is applied during the SVD. PCA is often used for di-
mension reduction of (data) matrices (Nanga et al., 2021). In the case of the FDD, it is responsible for the
extraction of the mode shapes. The mathematical term for mode shape is eigenvector. The eigenvectors hold
the information on the relative amplitude and phase angle between the DOFs of the system. The eigenvectors
of a symmetric matrix are orthogonal vectors, which implies that they are linearly independent. The number
of eigenvectors determines the amount of required modes to construct all the structural behaviour, included
in the data matrix. PCA determines the eigenvectors through an eigenvalue decomposition.

4.2.2. SINGULAR VALUE DECOMPOSITION
The SVD makes use of PCA to determine the mode shapes. However, these parameters will remain estimates,
due to the contribution of noise and the lack of system input signals, as discussed before in subsection 2.3.
The original eigenvalue decomposition can only be performed on square matrices. However, the SVD can
also be performed on non-square matrices, which makes it a powerful tool (Chengwang, 2010). In short, the
SVD takes a single data matrix (spectral matrix) as input and, after decomposition, returns three matrices
(U , Σ and V ), which represent the left singular vectors-, singular values- and right singular vectors matrix,
respectively. In the case of a Hermitian data matrix, the returned left and right singular vector matrices are
also each Hermitian transform. These matrices contain the eigenvectors (mode shapes) of the structure. The
Σ matrix contains the eigenvalues (singular values). The eigenvalues represent the scalar value to which the
corresponding eigenvectors can be linearly scaled and can hereby be represented as a ‘participation factor’.
It presents how much the corresponding mode contributes to the total response. Further elaboration on the
properties of the SVD is presented in the following paragraphs, together with some fundamental concepts to
cover the application of the SVD.
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Norm of a vector The norm (or length) of a vector ϕ is a scalar value and is evaluated by the following
formula:

∥ϕ∥ =
√√√√ k∑

n=0
ϕnϕ̄n (4.1)

Equation 4.1 is used to determine the norm of a complex vector. The bar symbol represents the complex
conjugate of the vector. When dividing a vector by its norm, the vector will have a length equal to unity. If the
norm for every eigenvector in the set of orthogonal vectors is equal to one, the collection of vectors span an
orthonormal basis, which can be grouped to form an orthonormal matrix.

Decomposition When considering the complex data matrix A: the eigenvectors of A AH constitute U , and
the eigenvalues of it constitute ΣHΣ. Additionally, the eigenvectors of AH A constitute V , and the eigenvalues
of it constitute ΣΣH . Because the matrix Σ is a diagonal matrix, the product of matrices ΣHΣ is identical to the
product of the matrices ΣΣH (He & Fu, 2001a). In this notation, the superscript H represents the hermitian
transform. Decomposition of the matrix A can be represented by Equation 4.2. Although the matrices U and
V are complex, the singular values matrix Σ contains only real values.

A =UΣV H (4.2)

Rank The rank of A is equal to the amount of non-zero singular values, which is therefore also the rank
of the matrix Σ (He & Fu, 2001a). Due to computational properties, residual values remain present in the Σ

matrix. To disregard these residuals, a threshold value is taken into account which sets the residual values to
zero (Figure 6.1).

“If the information about the uncertainties of the measurement is minimum, the rank of the system, which is
determined by the SVD, becomes larger than the number of excited and observed system modes. Hereby forcing
the algorithm to describe the presence of noises in modal space” (Juang & Pappa, 1985, p. 622).

In this sentence, Juang and Pappa, 1985 describe the presence of non-existent modes in the form of ad-
ditional singular values to account for the noise in the signal. The noise can be filtered out if the information
on the uncertainties is completely known.

Sorting After performing the SVD, the data is returned in an ordered fashion. As described in the subsec-
tion regarding PCA, the derived eigenvectors represent the orthogonal mode shapes of the structure. The
accelerations for dominant modes are greater than for non-dominant modes. Therefore, the norm of the
dominant eigenvectors is also greater. However, the returned eigenvectors of the SVD are normalized. The
magnitude, or participation factor, is therefore directly related to the singular value. Which are collected in
the real valued, diagonal Σ matrix.

The singular values are sequentially ordered (λ1 > λ2 > . . . > λn), sorted from largest to smallest, posi-
tioned on the diagonal of the Σ matrix. The left and right singular vectors are positioned accordingly, based
on the position of the corresponding singular values, for the U and V matrices respectively. u11 u21 u31

u12 u22 u32

u13 u23 u33

  λ1 0 0
0 λ2 0
0 0 λ3

  v̄11 v̄12 v̄13

v̄21 v̄22 v̄23

v̄31 v̄32 v̄33


In the depiction above, the matrices U , Σ and V H are presented, respectively (for matrix size 3x3). The

colours in the matrices show the relation between the singular values and corresponding singular vectors.
The bar symbol represents the complex conjugate of the matrix values. The singular values will be sorted
from largest to smallest (significant contribution to admissible contribution). The amount of non-zero sin-
gular values indicate how many orthogonal components are contributing to the total response at a certain
frequency. The singular vectors indicate the amount of contribution each DOF has w.r.t. the total mode.

4.2.3. STEPS
As mentioned at the beginning of this section, the FDD consists of several steps to prepare the data for a linear
decomposition in the frequency domain, followed by the SVD. This subsection presents a compact analytical
description on the sequence of steps to execute the FDD method.
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The raw data matrix is compiled after the preprocessing sequence. After compiling, it can be represented
in the form of Table 4.1 (comparable to Figure 3.3). The input values ai j k are the discrete recorded accel-
erations, where i , j and k represent the segment number, channel number and time position respectively.

r1

Time c1 c2 · · · cn

0 a111 a121 · · · a1n1

ts a112 a122 · · · a1n2

2ts a113 a123 · · · a1n3

: : : :
(m −1)ts a11m a12m · · · a1nm

Table 4.1: Raw data matrix overview

ANALYTICAL FORM

1. Split data record into discrete segments to form c-vector. Each column with a header c in table Table
4.1, is split up into separate time segments of equal length. For the current example, the number of
segments is taken equal to 2. The amount of segments should be taken at least equal to the amount of
modes to be identified in the system. The maximum rank of the Σ matrix after decomposition is equal
to the number of segments, due to the number of expected linear dependencies. Please note that the
length of the segment, will determine the fundamental frequency ( f0).

c1(t ) =
(

c11(t )
c12(t )

)
c2(t ) =

(
c21(t )
c22(t )

)
c3(t ) =

(
c31(t )
c32(t )

)
(4.3)

2. Restructure for corresponding time to ensure corresponding time between the collection of channels
in the di vector. This vector holds the time domain functions of all channels for segment i .

di(t ) =
 c1i (t )

c2i (t )
c3i (t )

 (4.4)

3. Compute Fourier transform for each individual segment and form frequency-domain vector. The tilde
symbol represents the signal in the frequency domain. By transforming the signal to the frequency
domain, the result can become complex, meaning the transform of the signal can consist of a real part
and an imaginary part.

c̃1i (ω) =F {c1i (t )} (4.5a)

c̃2i (ω) =F {c2i (t )} (4.5b)

c̃3i (ω) =F {c3i (t )} (4.5c)

d̃i(ω) =
 c̃1i (ω)

c̃2i (ω)
c̃3i (ω)

 (4.6)

4. Compute Hermitian transform of the di-vector in the frequency-domain. By computing the Hermitian
transform of the vector, the complex conjugate is taken and the vector is transposed from a column-
vector to a row-vector. In equation 4.7, the bar symbol represents the complex conjugate.

d̃i(ω)
H = (

¯̃c1i (ω) ¯̃c2i (ω) ¯̃c3i (ω)
)

(4.7)

5. Construct spectral matrix by taking the summed multiplication as presented in equation 4.8. The
product of the frequency-domain vector di with its conjugate transpose, is a cross-spectral matrix. This
is a Hermitian matrix, meaning the real part of the matrix is symmetric and the imaginary part of the
matrix is anti-sign symmetric (ai j = ā j i ). By transforming a complex number to its conjugate, and
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taking the product with a different complex number, will yield a magnitude and relative phase angle.
The relative phase angle is an important property when describing (complex) mode shapes. The phase
delay indicates the delay of a single DOF w.r.t. the other DOFs in that mode. For real modes, the phase
is close to π or an integer multiple of it, whereas for complex modes this can be any value between 0
and 2π.

S̃dd (ω) =
Ns∑

i=1
d̃i(ω)d̃i(ω)

H
(4.8)

The S̃dd matrix contains every auto- and cross-spectrum for each of the data segments with corre-
sponding time. The doubled letters represent the auto- and cross spectrum of the matrix. Parameter
Ns is an integer and represents the total number of segments. By using the sum operator, a linear de-
pendency can be formed. As Ns is responsible for the number of summations, the maximum amount
of identified linear combinations can never be greater than this value.

6. Perform SVD. The first step of the SVD is to compute the matrices containing the left- and right singular
vectors (U and V matrices respectively). These vectors are orthogonal to each other because the matrix
from which they are derived is symmetric. Steps 4 & 5 ensure that the matrix is (square Hermitian)
symmetric.

SPECTRAL MATRIX

In Figure 4.3a, the compiled spectral matrix in presented. The spectral matrix is constructed by columns,
where a single column of this 3D matrix represents one auto- or cross spectrum. Over the height of this matrix,
the discrete frequencies are represented. The auto- and cross- spectra share identical discrete frequencies,
which are represented as slices.

In this example, a 3 DOF system is considered. The slices depict a 3x3 matrix, with data points si s j [ fk ],
which represents the frequency domain multiplication of DOF i with DOF j at discrete frequency k (see
Figure 4.3b). This is where the information regarding the amplitude and relative phase between two DOFs for
various frequency domain signals is stored.

During the SVD, the spectral matrix is solved for every discrete frequency. The singular values and singu-
lar vectors for that specific frequency are determined. The results are stored in three new slices which sub-
sequently compose the U , Σ and V matrices (3D matrices). The dimensions of the three computed matrices
are similar to the dimensions of the Sdd matrix.

4.3. ENHANCED FREQUENCY DOMAIN DECOMPOSITION

The enhanced frequency domain decomposition (EFDD) method is an addition to the original FDD method.
The original FDD can present dominant frequencies and is able to identify multiple modes, or even distin-
guish an apparent harmonic from a structural mode. The EFDD method takes the current results and elab-
orates further on these results. This method provides an option to identify structural damping through an
inverse Fourier transform (IFT) and logarithmic decrement. This computation is known as the logarithmic
decrement damping estimation (LDDE).

When the natural frequencies of the system are identified, the corresponding mode shape is taken into
account. The MAC value is determined for the mode shape of neighbouring frequency w.r.t. the mode shape
at the location of the natural frequency (dot product of two eigenvectors). If the two modes are similar, the
MAC value will be close to 1. If the two mode shapes are dissimilar, the MAC value will be considerably
lower. If the determined MAC value is greater than the predefined MAC limit value (MAClim), the next MAC
value (for second neighbouring frequency with corresponding mode shape) will be evaluated. This process
is continued for neighbouring frequencies (left and right) until the computed MAC value is lower than the
MAClim value. The total set of collected neighboring frequencies will be transformed to the time domain
using inverse discrete Fourier transform (IDFT). A visual representation of the damping according to the
EFDD method is presented in Figure 4.4.
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(a) Spectral matrix Sdd
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(b) Two slices of the spectral matrix at discrete frequency f1
and f2

Figure 4.3: Overall representation of the spectral matrix

Figure 4.4: Determination of damping trough LDDE (this image is taken from the explanatory web page of the PyOMA package. This
package includes methods to process OMA algorithms using Python, source: “PyOMA”, n.d.)
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4.4. SETUP RESULT CASES
For the MPE of the Bert Swart bridge, various cases are considered to maximize the effectiveness for the de-
termination of modal parameters. For this research project, discrete measurement recordings are acquired.
Each recording can be considered a segment. Generally, the response of a structure is continuously moni-
tored, which results in a single extensive measurement recording. The long signal should be segmented to
be able to identify linear dependencies whilst simultaneously making the MPE process less computationally
expensive. However, for this research project the data is already segmented during the acquisition process.
Therefore, the data will not require any additional segmentation. Keep in mind that the segmentation pro-
cess will inherently affect the fundamental frequency ( f0), due to shortening of the time signal. Figure 4.5
presents the time domain recordings from the data acquisition. The various colors in the plots represent
different measurement channels (Figure 3.2)

Figure 4.5: Overview of data segments, where each train passing represents a segment due to the data acquisition method(
Tmeasur e = Tseg ment = 20s = 1

f0

)
.

4.4.1. TRAIN DIRECTION
For the current case study, the acceleration recordings are previously segmented. Therefore, additional seg-
mentation of the data will not have to be applied. The train directions can be divided into the two main
directions. Dependent on the direction, input signals can be included in the MPE process. The train direc-
tions are derived from Figure 3.5, which display the train velocities. Table 4.2 presents the included recordings
for each train direction.

Direction Included records Amount

Leeuwarden 09, 12, 14, 16, 18, 20 6
Groningen 08, 10, 11, 13, 15, 17, 19 7
Both 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 15

Table 4.2: Overview train directions

Records ’06’ and ’07’ are not included in the set of input signals for any single direction analysis, due to its
poor measurement properties. When both train directions are included, the total set of recordings is used in
the MPE process. By doing so, the quality of the results can be investigated when all recordings are included.
This is scenario is most interesting as it does not require any prior knowledge on the quality of the data-set.
However, it may not produce the most promising results.

4.4.2. SENSOR DIRECTION
As depicted in Figure 3.2, the data is collected through various channels, on which the accelerations are reg-
istered. Each channel represents a unique combination of sensor location and acceleration direction. The
exact location of each sensor is presented in Figure 3.2. The channels for each acceleration direction are
presented in Table 4.3.
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Direction Description Channels

X Parallel to the longitudinal bridge axis 3, 6, 9, 12, 15
Y Perpendicular to the longitudinal bridge axis (horizontal) 2, 5, 8, 11, 14
Z Perpendicular to the longitudinal bridge axis (vertical) 1, 4, 7, 10, 13

Table 4.3: Sensor directions with corresponding channels

4.4.3. CASES
For the determination of the natural frequencies, two main preprocessing methods are considered:

1. Original
The unprocessed time signals are used for the computation, no preprocessing is applied.

2. Autocorrelated
First, the time domain signals are preprocessed according to the characteristics in Table 4.4, and sub-
sequently an ACF is applied.

Two separate cases are considered. The goal is to gain a better understanding on the influential param-
eters and to be able to quantify the benefits of the preprocessing techniques. The ACF will attenuate uncor-
related noise and preserve the periodic trends in the measured signals, preparing the input signals for the
Fourier transform.

Case fs q fcuto f f nseg n f f t

[H z] [−] [H z] [−] [−]

Original 1000 1 [-, -] 1 20,000
Autocorrelated 50 20 [0, 10] 1 20,000

Table 4.4: Case specifications for MPC values

When in the process of determining the mode shapes, the ACF is not applied for case 2 does due to the
amplitude- and phase distorting properties. The computed modes will not be representative due to the dis-
torted phase delays. The remaining preprocessing techniques will be applied to the data. The values of the
preprocessing parameters are displayed in Table 4.4. In this table; fs and q represent the sampling frequency
and downsampling factor respectively. fcuto f f gives the boundaries of the cutoff frequency where an attenu-
ation of −3dB is achieved. nseg and n f f t represent number of segments from a single recording and number
of output points (for zero-padding), respectively.

4.4.4. DETERMINATION NATURAL FREQUENCIES AND MODE SHAPES
For the determination of natural frequencies and mode shapes, identical preprocessing techniques cannot
be applied due to the phase distorting properties of the ACF. A distinction is made in the identification for
the natural frequencies (part 1) and the mode shapes (part 2). For part 2, the FDD will be performed slightly
different for the autocorrelated case. Namely, with application of the preprocessing techniques, except for
application of the ACF.

After the dominant frequencies in the singular values plots are identified, a selection on relevant mode
shapes, with corresponding case specifications, can be made. Defining the selection of mode shapes to in-
vestigate prior to the identification of dominant frequencies is not practical due to the large amount of pos-
sibilities (combination of train directions, acceleration directions, discrete frequencies and order singular
vector).

The determination process is split in two parts, where the results from the first part affect the results of
the second part. Additionally, the cases which produce the most clear results can be used, whereas the cases
where the results are of no use, can be left out of the inspection.



32 4. METHODS

No. Train direction
Acceleration
direction

Autocorrelated

1.1.1 Leeuwarden Z No
1.1.2 Groningen Z No
1.1.3 Both Z No
1.2.1 Leeuwarden Y No
1.2.2 Groningen Y No
1.2.3 Both Y No
1.3.1 Leeuwarden Y Z No
1.3.2 Groningen Y Z No
1.3.3 Both Y Z No

2.1.1 Leeuwarden Z Yes
2.1.2 Groningen Z Yes
2.1.3 Both Z Yes
2.2.1 Leeuwarden Y Yes
2.2.2 Groningen Y Yes
2.2.3 Both Y Yes
2.3.1 Leeuwarden Y Z Yes
2.3.2 Groningen Y Z Yes
2.3.3 Both Y Z Yes

Table 4.5: Overview input signals included for determination of natural frequencies through FDD
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T O be able to verify the reliability of the results, a validation case is considered. First the natural frequencies
and mode shapes of the validation case are determined through analytical derivation. Subsequently, the

dynamic properties of the system are computed through FDD, taking the registered output response of the
system to a forced vibration.

5.1. ENGINEERING MODEL
For this case, an undamped 3 DOF beam model is designed (Figure 5.1). The span is divided into four parts
of equal length. Both ends are supported through hinged supports. At a quarter, halfway and three quarters
of the span, masses are located which can displace in a single direction (3-DOF system). In this model, the
gravity force is not taken into account.

Figure 5.1: Overview 3DOF model

The undamped beam element is modelled as a collection of masses, which are connected through a series of
springs (Figure 5.2).

Figure 5.2: Representation of the system spring configuration

SYSTEM MATRICES

The mass, damping and stiffness matrices for the validation case are derived after determination of the equa-
tions of motion:

M =
 m1 + m2

2 0 0
0 m2 0
0 0 m2

2 +m3

 C =
 0

 K =
 ka +kb −kb 0

−kb kb +kc −kc

0 −kc kc +kd


System parameter values To numerically determine the natural frequencies and mode shapes of the vali-
dation case, the following parameter values are taken into account:

m1 = m2 = m3 = 1kg (5.1)

ka = kb = kc = kd = 1000N /mm (5.2)
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5.2. ANALYTICAL SOLUTION
To determine the dynamic properties of the system, the solution to the free vibration case is required (Equa-
tion 2.1). By solving for the eigenvalues and eigenvectors of the system, the natural frequencies and corre-
sponding mode shapes can be determined. The values for the determined natural frequencies are:

f1 = 3.43H z (5.3)

f2 = 5.81H z (5.4)

f3 = 8.52H z (5.5)

The analytically determined mode shapes are presented in Figure 5.3.

Figure 5.3: Mode shapes determined through the analytical derivation

5.3. FDD SOLUTION
To be able to determine the dynamic properties of the system, the structure is subjected to a Gaussian white
noise load at each DOF:

F1(t ) ∼ N (0,1) (5.6)

F2(t ) ∼ N (0,1) (5.7)

F3(t ) ∼ N (0,1) (5.8)

POWER SPECTRUM

A simulation is performed on the validation case with the random loads, applied to each DOF. The output
response of the system during the simulation is registered and subsequently used as input signals for the
FDD. In Figures 5.4 and 5.5 the results from the FDD case are presented. The peaks in the singular values
plots for both cases show sufficient local increase to be able to manually identify the natural frequencies of
the system.

Figure 5.5: Power spectrum for displacements validation case (autocorrelated)
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Figure 5.4: Power spectrum for displacements validation case (original)

MODE SHAPES

The mode shapes are evaluated at the locations of the identified natural frequencies. Figure 5.6a displays
the first classical in-phase bending mode, whereas Figure 5.6b shows the second classical anti-symmetric
bending mode. Figure 5.7a displays the anti-phase third bending mode. All computed modes are real, due to
the MPC value being approximately 1.

(a) Mode plot for validation case, natural frequency f1 (b) Mode plot for validation case, natural frequency f2

Figure 5.6: Mode plots for the validation case (1/2)

(a) Mode plot for validation case, natural frequency f3

Figure 5.7: Mode plots for the validation case (2/2)
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5.4. COMPARISON
The natural frequencies and mode shapes, computed through FDD are compared to the natural frequencies
and mode shapes, obtained from the analytical solution. The results from the FDD correspond to the deter-
mined modes from the analytical solution. Therefore, correct implementation of the FDD is confirmed.
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I N this chapter, the results of the FDD method are presented. The goal of the research is to be able to deter-
mine modal parameters with significant accuracy and stability. The results are presented in a collection of

figures, tables and additional descriptions throughout this chapter and Chapter 7. In the latter, an interpre-
tation on the presented results is discussed.

First the natural frequencies of the structure are considered through a series of singular values plots. The
characteristics of these plots show close similarities with estimated power spectral density (PSD) plots. Sec-
ondly the results regarding mode shapes are considered, which are obtained from the left singular vectors
matrix. As the right singular vectors matrix is merely the hermitian transpose in the case of FDD, identical
modal behaviour is stored both the singular vectors matrices. Finally, the computed singular vectors are in-
vestigated to determine the mode complexity (MPC value). The MPC values are presented by means of two
tables, which can be used to determine the complexity of the deflection shapes.

6.1. POWER SPECTRA
The FDD is able to identify recurring patterns in the measured data. However, when the amount of input
signals (included in the computation) increases, the result will not necessarily present convergence in the
results. Dependent on the level of correspondence between the input signals, the computed results can either
become clearer, or the desired results can be attenuated. To be able to identify corresponding behaviour, the
train direction over the bridge, as well as the accelerations in 3 euclidean orthogonal directions (X, Y and Z)
at the locations of each sensor are registered. The results are depicted accordingly.

6.1.1. SINGULAR VALUES PLOTS
To represent the estimated power spectrum, use is made of singular values plots. As mentioned in Section
4.2, the various lines in the singular values plots show the contributions of the dominant ODSs in the total
response of the structure. On the horizontal axis, the frequency domain is presented. The vertical axis depicts
the magnitude of the singular values. This is a real value, and can be regarded as a proportional scaling
factor for the corresponding singular vector. The total response of the structure, at a specific frequency, is
obtained when taking the superposition of each contributing singular vector, scaled by its corresponding
singular value. Remember that the total response of the structure is indirectly equivalent (proportional) to
the superposition of each individual transformed measurement signal (before decomposition).

The main goal of this project is to determine relevant modal parameters. These are oriented in the lower
end of the frequency spectrum. Therefore, the lower end of the frequency spectrum will be investigated.

The results for the identification of the natural frequencies for the original- and autocorrelated cases are
presented using the singular values plots. For each set of cases, the results are presented whilst varying in
sensor orientation and train direction. The set of included input signals for each case are varied to gain a
valid understanding of the characteristics of the data. The results are presented in sets of 3, as described in
Table 4.5.

In each singular values plot (SVP), the included channels (orientation), records, preprocess details, max
singular values (together with tolerance threshold) are presented. The records describe the train passing,
which can be used to retrace the corresponding train velocity (Figure 3.5), and/or other characteristics of
the regarded train passing. A visual representation of the explanation is presented in Figure 6.1. The FDD is
computed for 2 distinct cases which are:

Original No computations to the input time signals are applied.

Autocorrelated The autocorrelated case makes use of preprocessing techniques. The preprocessing pa-
rameters are defined in Table 4.4 (autocorrelated case). After preprocessing, the time signal is autocorrelated
for positive time lags only. By applying the ACF, the most dominant and periodic behaviour is amplified,
whilst uncorrelated noise is reduced. The absolute amplitude after application of the ACF is not relevant
and/or should not be directly compared to the results of the original case, due to the magnitude distorting
properties. However, the relative amplitudes show local increase in power when comparing it to neighbour-
ing frequencies of that same case.

ORDER SINGULAR VALUES PLOT

The singular identities (singular values with corresponding singular vectors) are sorted from highest to lowest
magnitude of the singular value, due to the properties of the SVD. Throughout the following chapters, the
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Figure 6.1: Explanation of singular values plot

order of the singular identities is mentioned. The order defines the position it holds within the sequence of
singular identities. That is, the first order singular identity corresponds to the singular value with the highest
absolute magnitude. The second order singular identity corresponds to the singular value with the second
largest absolute magnitude. This sequence repeats all the way down to the last singular value.

The order of the singular identities is not to be confused with the matrix order (rank), which is also deter-
mined during the SVD. The order of the matrix describes the total amount of singular identities, whereas the
order of the singular identity describes the location in the sequence of singular identities.

The SVPs are presented, where each order is displayed in its own colour. In chapter 7, a reflection is given
regarding the SVPs up to the fourth order. Table 6.1 presents the order and the colour of the corresponding
SVP.

Order Name Colour

1 First singular values plot Blue
2 Second singular values plot Yellow
3 Third singular values plot Green
4 Fourth singular values plot Red

Table 6.1: Description singular values plots

6.2. MODE SHAPES

The mode shapes, which are computed through the FDD, are presented in this section of the report. As the
definition clearly states, only the mode shapes should be considered, whereas non-mode shapes (such as
forced vibrations) should be omitted. This task introduces supplementary assessments, therefore, a distinc-
tion in deflection shapes can not be presented yet. The computed plots will be presented as mode plots, after
which an elaboration on the distinction of deflection types will be presented in Section 7.2.

The challenge to distinguish mode shapes from operational deflection shapes arises when the data does
not fully comply with the prerequisite assumptions of OMA. Keep in mind that this might be the case for some
of the presented mode shapes.

The computation of the results for the mode shapes take two cases into account (original and prepro-
cessed), as described in Table 4.4 (Chapter 4). The results for the autocorrelated case are not considered
during elaboration of the mode shapes, due to the properties of the ACF which affect the phase delay, thereby
making the results unrepresentative.
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6.2.1. MODE PLOTS

For the computation of the mode plots, only the recordings for the train direction towards Groningen is in-
cluded. This choice is made due to the fact that the results from the power spectra estimations are most clear
for this case. When considering the computed SVPs, the majority of the cases showed a significant increase in
the first SVP, and little to none increase for the remaining orders of the SVPs. The relevance of these remaining
SVPs is not significant and is therefore not included in the report. The total collection of significant modes
are presented in Appendix A, using two columns to describe the original case (left) and the preprocessed case
(right). Remarkable results are discussed in Section 7.2. An explanation for the mode plots is presented in
Figure 6.2.

The computed mode shapes are presented in the mode plots, consisting of two subplots that visually rep-
resent the dynamic behaviour of the singular vector. The mode plots are computed through the FDD and
represent a certain mode at a specific frequency, which indicates a proportional contribution to the total
response of the structure. The title of the mode plot includes mode number (order of the singular vector), re-
garded frequency and MPC value. Additional information which describes included acceleration directions,
recordings and preprocessing parameters are also included in the figure. The graphs show a normalized mode
shape plot and a phase angle plot. For both plots, a shared horizontal axis depicts the longitudinal axis of the
bridge deck. As mentioned in Chapter 3, the accelerometers are equally spaced over the span of the bridge.

The mode plot depicts the normalized amplitudes and relative phase delays of the accelerations. The
former includes the obtained ODS (solid line) and the DOF extremes (envelope). Equation 6.1 represents the
response of each DOF. In this equation, Ai and φi represent the maximum amplitude and phase angle for
DOF i . If the DOFs with non-zero magnitude posses relative phase angles in the phase angle plot the are
not approximately spaced by π (or an integer multiple of it), the mode shape will show signs of complexity.
Complex modes do not possess a single point in time, where all DOFs are simultaneously in their extreme
positions. The depicted mode shape represents a realistic ODS for a specific point in time. The considered
point in time corresponds to the DOF with greatest absolute magnitude, in its extreme position. The envelope
is based on the maximum amplitude for each DOF, and mirrored over of the horizontal axis.

ai = Ai cos(2π fn t +φi ) (6.1)

As a 3 dimensional plot does not provide a clear and comprehensive understanding of the mode shapes
in this report, a 2 dimensional representation is used for the mode plots. For every acceleration direction,
a graph is included in the plot areas to account for a 3 dimensional representation. The normalized mode
shape plot takes the total mode shape into account, therefore normalizes over the maximum value of the total
singular vector. Possible relative differences in horizontal versus vertical modal amplitudes can be observed.
The phase plots are also considered to be relative to each other, when considering more than one acceleration
direction. The MPC value is also computed over the total mode shape.

Figure 6.2: Explanation of mode plots
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The computed mode shapes represent the accelerations at the locations of the sensors, not the displace-
ments. In theory, a scaled double integration of a sinusoidal function transforms the recorded accelerations
to displacements. However, in practice, this simple computation presents a variety of inaccuracies, due to the
non-stationary tendencies and presence of noise. Also the initial conditions are not included in the available
data, and can therefore not be used to accurately determine the displacements of the bridge deck.

COMPLEXITY OF MODE SHAPE

The tables regarding the MPC values are presented in Section 7.2, where Table 7.6 presents the MPC values for
the original case, and Table 7.7 for the preprocessed case. The tabulated values correspond to the MPC values,
which are mentioned in the title of the mode plots (Appendix A). The tabulated values describe the mode
complexity for the considered singular vector. In the tables, MPCi represents the modal phase colinearity for
the i th order singular vector. For the MPC close to 1, the identified mode is considered real, where for low
MPC values, the mode is considered to be complex.

VISUALIZING (COMPLEX) MODES

In some cases a 2 dimensional static representation, such as presented in Appendix A, is not sufficient to
clearly and accurately describe the computed mode shape. Therefore, a tool is developed to visually present
the dynamic behaviour of the structure. Besides a 3 dimensional representation of the mode shape, the sin-
gular vectors are also represented in an animation to display the behaviour of the computed mode. This gives
greater visual assistance to comprehend the presence of complex modes in a structure. A screen snap of this
tool is presented in Figure 6.3. The SVPs and mode plots, as presented in this chapter, are realised using this
mode visualization tool.

Figure 6.3: Mode visualization tool

6.3. RECORDS INCLUDED AND PREPROCESSING TECHNIQUES
For the determination of dominant frequencies, the singular values plots are computed for the entire data
set, as described in Section 4.4. Due to the properties of the ACF, the results for the mode plots for this case do
not present representative results. Therefore, after determination of the dominant frequencies through the
SVPs, the results for the autocorrelated case will be computed again, only this time without application of the
ACF, which will be referred to as the preprocessed case.

As will be mentioned in the chapter 7, the measurements show great correspondence in the overall dy-
namic behaviour of the bridge, between the various cases for train directions, but with better distinction in
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the results for the train directions towards Groningen. Therefore, only the recordings for the train directions
towards Groningen will be presented in the mode plots. This subcase presented the most clear results.

Figure 6.4 presents an overview of the records which are included, as well as the preprocessing techniques
for the determination process of the natural frequencies and mode shapes.
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I N this chapter the results from the FDD are discussed and reflected on. The aim is to present a clear inter-
pretation of the results, based on substantiated arguments. First the power spectrum estimates for identi-

fied orthonormal modes will be discussed, after which the mode shapes with corresponding natural frequen-
cies are determined, through the results from the mode plots. Finally, the interpretation of the MPC values to
consider complexity of the modes are discussed.

7.1. POWER SPECTRUM ESTIMATES
After observation of Figures 7.1 to 7.18, the 4 dominant frequencies are identified in the lower end of the
frequency spectrum. The identified dominant frequencies are ranked from f1 to f4, sorted on frequency
(from lowest to highest). The power spectra do show similarities for frequencies higher than f4, however,
the scope excludes the necessity to investigate these higher frequencies. Table 7.1 presents the dominant
frequencies with the corresponding value.

The collective subcases (acceleration direction Y, Z and YZ) are each presented in sets of three figures.
Each individual figure in the subcase represents the SVPs for different train directions (Leeuwarden, Gronin-
gen and both). The SVPs of these three discrete train directions will be investigated to identify potential cor-
respondence and deviations in the overall response w.r.t. the different train directions. As the realistic loading
scheme is different for the moment where the train is present on the bridge versus when it has left the bridge.
So is the train direction towards Leeuwarden a different loading scheme from the train direction towards
Groningen. By investigating the response of the bridge for different train directions, the total response of the
bridge can be determined more accurately. If the different train directions show significant correspondence
in the response, but a single train direction presents more clear results. Then this specific train direction can
be considered representative for the total data-set, but with increased accuracy. Later on, the identification
process in the response of the bridge for different train directions will lead to a narrow selection of the total
collection of cases to accurately determine the mode shapes.

In the ideal case, the bridge displays identical results for each train direction. However, this expectation
is not entirely realistic, as shown in Chapter 6. Sections 7.1.1 and 7.1.2 reflect on the different cases, as a
preparation to Section 7.2, where the corresponding mode shapes to the dominant frequencies are discussed.

First the results per subcase will be considered, after which a brief reflection is given on the subcases with
respect to each other. This is presented for the original case and the autocorrelated case. Finally the results
from the original and autocorrelated case will be compared to each other. Remarkable results and described.

f1 f2 f3 f4

Frequency 1.60 2.25 3.30 5.45 [H z]

Table 7.1: Dominant frequencies

LOCAL INCREASE

Through visual inspection, any significant local increase in the SVPs (for each subcase) is registered and pre-
sented in a table. The local increase of the SVP indicates an increase in energy at that specific frequency. The
local increase is identified by use of the SVD, and implies an amplified ODS. The response of the structure to
the load is amplified due to the presence of an alleged natural frequency (fundamental assumptions of OMA,
Section 2.3), in the case of white-noise loading.

The interpretation of the results for the estimation of the power spectra and its dominant frequencies,
for the original and autocorrelated cases, are presented in Tables 7.2 and 7.3, respectively. For both cases
the first 4 SVPs are considered. The first column of these tables correspond to the scenarios from Table 4.5.
The second column refers to the order of the SVP. In columns 3 to 6, the identified dominant frequencies
are presented. Each value in the table indicates a local increase at the specified location of the decomposed
power spectrum. ’Y’ indicates an identified local increase, whereas an ’N’ represents no observation of any
significant local increase. Table 7.2 also includes ’-’, which indicates a possible faulty result, on which further
elaboration is presented in Section 7.1.1.

7.1.1. ORIGINAL CASE

Z ACCELERATIONS

The results for the considered subset are presented in Figures 7.1, 7.2 and 7.3, respectively.
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• Case 1.1.1 displays no significant behaviour in the first SVP. The second SVP shows an increase at f1,
f2 and f4. The remaining SVPs also show no local increase in the response of the structure. The most
dominant structural response of the bridge does not correspond to any spectral features. The distin-
guishable increase in the second SVP implies a modal response of a magnitude, not as dominant, but
still present when compared to the random behaviour of the first SVP.

Figure 7.1: Case 1.1.1 - Power spectrum for z accelerations with trains towards Leeuwarden

• Case 1.1.2 shows distinctive peaks at f1 and f2, and even local increase at dominant frequencies f3 and
f4 for the first SVP. The second SVP shows a single peak at f2, which implies the presence of a second
mode, although it is not as dominantly present as the first SVP. The rest of the plots do not show any
local amplification.

Figure 7.2: Case 1.1.2 - Power spectrum for z accelerations with trains towards Groningen

• Case 1.1.3 represents the combined case where both train directions are included in the computation.
In these plots, both the first and second SVPs show an increase at the locations f1, f2 and f4. The third
and fourth SVPs do not show any local increase.

Figure 7.3: Case 1.1.3 - Power spectrum for z accelerations with trains in both directions
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The results from Cases 1.1.1 to 1.1.3 present corresponding amplification for accelerations in Z direc-
tion around frequencies f1 and f2, although, the local increases are not convincingly clear. The case which
presents the most distinctive results is for the train directions to Groningen (Case 1.1.2), the case where the
train velocity is relatively higher, which could excite the structure more than in the case of the train direction
to Leeuwarden, or both train directions due to the apparent averaging properties.

Y ACCELERATIONS

The results for the considered subset are presented in Figures 7.4, 7.5 and 7.6, respectively.

• Case 1.2.1 shows an indistinguishable first SVP. An explanation for this behaviour could be a noise
mode, which implies non-representative data is included in the computation. Table 7.2 does not con-
sider local amplifications for this order of the singular identity (hence ’-’ for corresponding row). It is
observable that the first SVP shows a noticeable decrease in the signal nearby frequency f1. It seems
that the singular value at this frequency approaches a value, which is close to the value of the second
SVP. The second SVP however, shows expected modal behaviour, in the form of local increases at the
dominant frequencies f1, f3 and f4. The remaining SVPs do not show any local increase.

Figure 7.4: Case 1.2.1 - Power spectrum for y accelerations with trains towards Leeuwarden

• Case 1.2.2 displays local increases for the first SVPs at f1, f3 and f4. The second SVP also shows a
significant local increase at f1. Even in the lower SVP 3, the decomposed spectrum shows an local
increase around frequency f2. SVP 4 does not present any significant local increase close to dominant
frequencies f1 to f4.

Figure 7.5: Case 1.2.2 - Power spectrum for y accelerations with trains towards Groningen

• Case 1.2.3 combines the Y accelerations for both train directions. The noisy mode from Case 1.2.1 is
easily identifiable. Although there is a local peak present in the first SVP at f1, the reliability of the
signal does not seem to be sufficient to take the results from the computation for the first SVP into
account (even though the plot seems to comply around frequency f1). Again the second SVP displays
the increase around f1 and f3. Plots 3 and 4 do not show significant local increase around any of the
dominant frequencies.
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Figure 7.6: Case 1.2.3 - Power spectrum for y accelerations with trains in both directions

Figures 7.4 to 7.6 show an amplification at dominant frequencies f1 and f3. These figures represent the
accelerations in Y direction.

The presence of an accurate modal peak within the noisy signal (Case 1.2.1) could be explained by a dom-
inant mode presenting itself near this frequency. If this is the case, the signal-to-noise ratio can change sig-
nificantly and shape the SVP near this frequency. However, this can only be speculation, and the computed
data is acquired during field tests (operational data), which in itself can experience all kinds of faulty mea-
surements. Independent of the explanation, this behaviour shall not be included in the manual analysis for
the mode shape determination, as it shows no compliant behaviour to what is expected over the remaining
part of the decomposed power spectrum estimate. The noisy signal can also be identified in the combined
case (Case 1.2.3), as it includes all recordings for both train directions. The corresponding signal is included
in the computation, as it is consecutively summed (due to the superposition principle of the FDD) in the total
frequency response.

The first SVP for the train directions to Leeuwarden (Figure 7.4) shows a general non-distinctive white-
noise-like behaviour. This behaviour is also identifiable in Figures 7.6, 7.7 and 7.9. This behaviour does
not correspond with the behaviour as identified in the spectra regarding the results from computations for
the train directions for Groningen only. Therefore, it can be assumed the behaviour is mainly induced by
train traffic towards Leeuwarden. This behaviour should be attenuated, however, this is not the case due
to the limitations of the FDD method, as it makes use of an unsophisticated method where the individually
computed frequency spectra are summed without scaling or normalization before decomposition.

YZ ACCELERATIONS

The results for the considered subset are presented in Figures 7.7, 7.8 and 7.9, respectively.

• Case 1.3.1 displays identical noisy behaviour for the first SVP, due to the inclusion of the same alleged
faulty measurement signal (Case 1.2.1). The second SVP shows strong similarities with the indistinctive
first SVP from Case 1.1.1. The third SVP shows the modal properties as expected from the structure with
spectral content present at dominant frequencies f1, f2, f3 and f4. For this order singular values, all
dominant frequencies are present, as both Y and Z accelerations of Cases 1.1.1 and 1.2.1 are included in
the computation. The result is the superposition of both cases. The singular vectors include the mode
shapes (as eigenvectors), which will now include data from both acceleration directions.

• Case 1.3.2 shows clear peaks for f1, f2, f3 and f4 in the first SVP. The second SVP shows local increase
of the signal for frequency f1. The third SVP again shows a peak at dominant frequency f2. However,
this mode will be scaled by a negligible value (singular values), where no other dominant frequencies
present, therefore it can be considered non-existent. The fourth SVP shows shows no significant local
increase to consider distinct frequency content at any dominant frequency.

• Case 1.3.3 shows the combined behaviour between Case 1.3.1 and 1.3.2. The first SVP will not be con-
sidered, due to the noisy signal. The second SVP shows a combination between the indistinctive first
SVP from Case 1.1.1 and the clear first SVP from Case 1.1.2. The third SVP begins to show frequency
content, from the third SVP of Case 1.3.1 and the third SVP of Case 1.3.2. The third SVP is not a great
result due to the attenuation of the most significant portion of the trains towards Groningen. The in-
formation is already lost in the first two SVPs of the train directions towards Leeuwarden.



50 7. DISCUSSION

Figure 7.7: Case 1.3.1 - Power spectrum for yz accelerations with trains towards Leeuwarden

Figure 7.8: Case 1.3.2 - Power spectrum for yz accelerations with trains towards Groningen

Figure 7.9: Case 1.3.3 - Power spectrum for yz accelerations with trains in both directions

Figures 7.7 to 7.9 show an amplification at 1.60H z, 2.25H z and 3.30H z. This corresponds with the find-
ings of the individual analyses (Case 1.1.1 to 1.1.3 and Case 1.2.1 to 1.2.3), where the two acceleration direc-
tions are investigated in discrete cases. However, the YZ power spectra can be considered as a summation
of the two individual cases. The goal is to identify a corresponding dominant frequency in both individual
cases. The frequency of 1.60H z is a recurring frequency in both directions. This would imply a mode shape
worth consideration.

REMARKS ORIGINAL CASE

• The results do not show large corresponding behaviour. The variation in train direction mainly shows
more distinctive peaks for the train directions towards Groningen and less distinctive peaks for the
train directions towards Leeuwarden. The cases where both train directions are included in the com-
putations show an averaged result between the more clear peaks for direction Groningen and less clear
peaks for direction Leeuwarden.
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• Case 1.3.1 and 1.3.3 depict the deficiency of the FDD method. It relies strongly on the magnitudes of the
individual frequency spectra. If 1 or 2 signals show great absolute magnitude during the superposition
of the composed frequency spectra, the decomposition will predominantly pick up the signals with
great absolute value and combine these into the primary SVP(s).

RESULTS SVP - ORIGINAL CASE

No. Order f1 f2 f3 f4

1.1.1

1 N N N N
2 Y Y N Y
3 N N N N
4 N N N N

1.1.2

1 Y Y Y Y
2 N Y N N
3 N N N N
4 N N N N

1.1.3

1 Y Y Y Y
2 N Y N Y
3 N N N N
4 N N N N

1.2.1

1 - - - -
2 Y N Y Y
3 N N N N
4 N N N N

1.2.2

1 Y N Y Y
2 Y N N N
3 N Y N N
4 N N N N

1.2.3

1 - - - -
2 Y N Y N
3 N N N N
4 N N N N

1.3.1

1 - - - -
2 N N N N
3 Y Y Y Y
4 N N N N

1.3.2

1 Y Y Y Y
2 Y N N N
3 N N N N
4 N N N N

1.3.3

1 - - - -
2 Y Y N Y
3 Y Y Y Y
4 N N N N

Table 7.2: Local increase of singular values plots for the original case

7.1.2. AUTOCORRELATED CASE
Additional attention is required when reflecting on the autocorrelated cases, as the singular vectors on which
the SVPs are determined, are not fully representative, due to the phase distortion properties and the uncor-
related noise attenuation.
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Z ACCELERATIONS

The results for the considered subset are presented in Figures 7.10, 7.11 and 7.12, respectively.

• Case 2.1.1 shows the frequency spectrum for the Z accelerations with train direction to Leeuwarden,
for the autocorrelated case. Here, the first SVP folds around the dominant frequencies f1, f2 and f4.
Dominant frequency f3 does not show any local increase.

Figure 7.10: Case 2.1.1 - Power spectrum for z accelerations with trains towards Leeuwarden, from an autocorrelated time signal

• Case 2.1.2 presents significant frequency content around f1, f2 and f4 for the first SVP. The second
and third SVPs show local increase around f1, however, around the dominant frequency f2, no signs of
a local increase are present and only a slight local increase around f4, so around these frequencies a
structural mode can be considered. The slight increase of the second SVP for dominant frequency f4

can be caused by increased frequency response due to the general amplification, so an alleged mode
can not be ruled out.

Figure 7.11: Case 2.1.2 - Power spectrum for z accelerations with trains towards Groningen, from an autocorrelated time signal

• Case 2.1.3 suggests a single mode at frequency f2, and the contribution of multiple modes at f1 and f4.

Figure 7.12: Case 2.1.3 - Power spectrum for z accelerations with trains in both directions, from an autocorrelated time signal
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The SVPs for the different cases in train directions show great similarities. The three cases all show the
presence of multiple modes for frequencies f1, and considerable single modes around f2 and f4.

Y ACCELERATIONS

The results for the considered subset are presented in Figures 7.13, 7.14 and 7.15, respectively.

• Case 2.2.1 shows a clear peak in the SVP for dominant frequency f1, and small local increases for fre-
quencies f3 and f4. Each identified peak is accompanied by multiple orders of the singular values,
which implies the lack of a discrete structural mode.

Figure 7.13: Case 2.2.1 - Power spectrum for y accelerations with trains towards Leeuwarden, from an autocorrelated time signal

• Case 2.2.2 presents a peak at f1, an apparent double peak at f3 and increased frequency content at fre-
quency f4. The differences between the various orders of singular values for corresponding frequencies
separate more distinctively when compared to Case 2.2.1.

Figure 7.14: Case 2.2.2 - Power spectrum for y accelerations with trains towards Groningen, from an autocorrelated time signal

• Case 2.2.3 describes the combined case, for train directions both ways. The spectrum shows an av-
eraged result betweeen Case 2.2.1 and 2.2.2, where the closely spaced peaks around f3 for the latter
remain present, but are accompanied by a greater contribution of multiple modes.

When closely inspecting the SVPs of Case 2.2.1 and 2.2.2, the identified peak around f2 is shifted slightly
to the higher end of the spectrum for Case 2.2.2. This could imply a double mode. Although, the presence of
a closely spaced mode around this frequency should be visible through the local increase of a different order
SVP.

Dominant frequency f3 is only present when the Y accelerations are included in the FDD, which implies
a dominant horizontal mode. The presence is not clearly identifiable in the original case. Furthermore, the
peaks in the spectrum at dominant frequencies f1 and f4 are also clearly identifiable, and correspond to the
identified peaks of the cases in the Z direction. Therefore, the first and fourth dominant frequency most
certainly correspond to a dominant ODS in both the Y and Z accelerations.
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Figure 7.15: Case 2.2.3 - Power spectrum for y accelerations with trains in both directions, from an autocorrelated time signal

YZ ACCELERATIONS

The results for the considered subset are presented in Figures 7.16, 7.17 and 7.18, respectively.

• Case 2.3.1 combines the Y and Z accelerations into a single case. The previously distinguished eigen-
modes are not as distinct in the current case.

Figure 7.16: Case 2.3.1 - Power spectrum for yz accelerations with trains towards Leeuwarden, from an autocorrelated time signal

• Case 2.3.2 presents clear distinctions of a single mode at frequencies f2, f3 and f4. Frequency f1 dis-
plays a local increase for all the SVPs.

Figure 7.17: Case 2.3.2 - Power spectrum for yz accelerations with trains towards Groningen, from an autocorrelated time signal

• Case 2.3.3 presents a great amount of SVPs to show local increase around dominant frequencies f1 and
f3, whilst dominant frequencies f2 and f4 only show local increase for the first SVP.

The singular values cases for train directions to Leeuwarden present less high local peaks, and distinction
of the first SVP w.r.t. the higher order SVPs, when compared to the results of the train directions to Gronin-
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Figure 7.18: Case 2.3.3 - Power spectrum for yz accelerations with trains in both directions, from an autocorrelated time signal

gen, just like in the original case. Significant contribution of another mode is only visible around dominant
frequency f1.

The case where train directions to Groningen are included separately present the greatest difference be-
tween the first and following orders for the SVPs. As if the increased train velocity amplifies the dynamic
response of the bridge significantly, and corresponds to greater magnitudes for the modal behaviour. When
velocity of the train is lower, the bridge seems to not present any significant modal characteristics.

The last case combines the responses which again results in averaged SVPs. Therefore, the most clear
distinctions are made for Case 2.3.2.

REMARKS AUTOCORRELATED CASES

• The autocorrelated SVPs show, in comparison to their non-autocorrelated equivalents, much clearer
peaks at the dominant frequencies. Also separation of the SVPs become more significant for the auto-
correlated case. The distinction in dominant acceleration directions become identifiable as well (with-
out inspection of the mode shape plots), when comparing the peaks in the SVPs for the different accel-
eration directions (peak at f2 for Z direction and peak at f3 for Y direction).

• The majority of the identified dominant frequencies show corresponding local increases across the
various orders of the SVPs. The only dominant frequency in the SVPs for the autocorrelated case which
does not show a combined local increase in the SVP is dominant frequency f2. In the general sense, this
would be identified as the only structural mode to the structures’ natural frequencies. The dominant
mode originates from the recordings that include the Z accelerations. This implies a predominance in
the Z directions for the identified mode.

• The first dominant frequency f1, shows a great peak in most of the frequency response spectra, for
all orders of the SVPs. This behaviour indicates a harmonic which does not originate from the modal
characteristics of the bridge, but seems to have significant relations to the input load, for Y and Z ac-
celeration directions. However, due to the distorting properties of the ACF, the computed modes might
not be representative. Therefore, from this information only, the distinction between forced vibration
and structural mode can not be made with sufficient confidence.

• Dominant frequency f3 is mainly present in cases where the Y accelerations are included in the com-
putations. This implies a dominant presence in the Y plane at this specific frequency.

• The dominant frequency f4 shows great separation from the higher order SVPs in Case 2.1.2 and iden-
tifiable separation in Case 2.2.2, which implies a structural mode shape, predominantly in the Z plane,
but also slightly present in the Y plane.

• Because the identified peaks for the train directions to Leeuwarden and Groningen (individually and
combined) show correspondence, it is safe to assume the ODS is loading and/or structure dependent
(and not random). The location of these amplified frequencies also correspond to the results from the
original cases.

• The global indistinctive behaviour, as identified in the original case when including the Y accelerations
(Cases 1.2.1, 1.2.3, 1.3.1 and 1.3.3) is not present in the signal, when incorporating an autocorrelation
function before performing the FDD. This implies low correlation for the indistinctive behaviour.
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RESULTS SVP - AUTOCORRELATED CASE

No. Order f1 f2 f3 f4

2.1.1

1 Y Y N Y
2 Y N N Y
3 Y N N Y
4 Y N N Y

2.1.2

1 Y Y N Y
2 Y N N Y
3 Y N N Y
4 Y N N Y

2.1.3

1 Y Y N Y
2 Y N N Y
3 Y N N Y
4 Y N N N

2.2.1

1 Y N Y Y
2 Y N Y Y
3 Y N Y N
4 N N N N

2.2.2

1 Y N Y Y
2 Y N N Y
3 Y N N N
4 Y N N N

2.2.3

1 Y N Y Y
2 Y N Y Y
3 Y N Y Y
4 Y N Y Y

2.3.1

1 Y Y Y Y
2 Y N Y Y
3 Y N Y Y
4 Y N N Y

2.3.2

1 Y Y Y Y
2 Y N N Y
3 Y N N Y
4 Y N N Y

2.3.3

1 Y Y Y Y
2 Y N Y Y
3 Y N Y Y
4 Y N N Y

Table 7.3: Local increase of singular values plots for the autocorrelated case

7.1.3. SUMMARY SVPS

Table 7.4 shows a summary of possible natural frequencies, identified through the FDD for the original- and
the autocorrelated case. The sensor direction describes per case, which of the acceleration directions are
included in the computation. The dominant modes are presented in the header of the table, from which the
mode shape can be determined.

For f1 and f4, the acceleration directions of the ODS will most likely be in both Y and Z directions. For
frequency f2 the mode will predominantly be in-plane for the Z direction, and the accelerations for the fre-
quency f3 will predominantly be in-plane for the Y direction (for the autocorrelated case). The results for
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Case
Sensor
direction

f1 f2 f3 f4

Original
Z Y Y Y Y
Y Y N Y Y
YZ Y Y Y Y

Autocorrelated
Z Y Y N Y
Y Y N Y Y
YZ Y Y Y Y

Table 7.4: Identification operational deflection shapes for the original- and the autocorrelated case. ’Y’ represents a possible identified
natural frequency, whereas ’N’ represents no possible identified natural frequency.

both cases show a single discrepancy regarding dominant frequency f3 which will be investigated further.

When carefully observing dominant frequency f3 for the various SVPs, the original case presents a peak
at this dominant frequency for the Z accelerations (Case 1.1.2), whereas the autocorrelated cases do not pick
up this frequency content for the Z accelerations (Case 2.1.2), but does pick up frequency content for the Y
accelerations (Case 2.2.2). The autocorrelated case also presents a distinctive double peak around dominant
frequency f3 (Case 2.2.2 and 2.3.2), which could imply closely spaced modes. Investigation of the mode plots
around dominant frequency f3 can give additional information on the response characteristics.

Further investigation is performed to accurately identify the type of mode (shape) in Section 7.2. The
cases are considered where the results are clearly identifiable, which is predominantly present for the train
direction towards Groningen.

7.2. MODE SHAPES
In this section, the results of the mode plots are discussed. During derivation of the mode shapes, only
the measurements for the train directions towards Groningen are included, as these measurements showed
greatest signs of convergence for the SVPs. The SVPs showed significant variation for the different cases of ac-
celeration directions. Therefore, this section will elaborate on the computed mode shapes for the discrete and
combined cases of acceleration directions. For the determination process of mode shapes, two different pre-
processing cases are considered, namely, the original (unprocessed) case and the autocorrelated case (Table
4.4). However, by applying the ACF, the results are affected by its magnitude- and phase distorting properties.
This results in the computation of non-representative modes. Therefore, the ACF will not be applied in the
determination process of the mode shapes. From now on, the autocorrelated case will be referred to as the
preprocessed case, as the preprocessing parameters are still applied without the ACF, in order to investigate
the influence of such preprocessing computations.

As mentioned before, the FDD presents the ability to identify closely spaced modes. During the determi-
nation process, for a second mode to be considered, the first and second order SVPs will both have to display
a local increase (Tables 7.2 and 7.3). If this is the case, the mode plot for the first and second singular vector
will be presented. The mode plots which are not relevant will not be reflected on.

Corresponding to the results of the power spectrum estimates, the relevant mode plots are computed.
The relevant mode plots which will be considered are presented in Table 7.5.

Acceleration
direction

f1 f2 f3 f4

Z 1 1 1 1
Y 1 - 1 1
YZ 1, 2 1 1* 1

Table 7.5: Considered cases for the mode plots. The tabulated values represent the order of the singular vectors which are included in
the consideration for the mode shapes. The ’*’ symbol represents elaborate investigation due to the discrepancies, which are identified

during the derivation of the relevant frequencies.
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For most cases, only the first singular vector is considered. The dominant frequency f1 shows local in-
creases for the first and second SVPs in the YZ accelerations (Case 1.3.2). For Y accelerations, dominant
frequency f2 is not taken into account. At f3, the first SVP of the YZ accelerations presents a double peak at
3.30H z and 3.40H z, so both singular vectors are presented.

7.2.1. ORIGINAL VS. PREPROCESSED CASE

Due to the magnitude- and phase distorting properties of the ACF, only the preprocessing computations, as
described in Table 4.4, are applied when considering mode shapes. When comparing the results from the
original case, to the results of the preprocessed case no significant differences can be identified (Figure 7.19).
This relation holds for the majority of the results.

Due to the nearly identical results between the two preprocessing techniques, only the results of the orig-
inal case will be discussed. The comments on the mode shapes are close to identical for the preprocessed
case w.r.t. the original case.

The total collection of computed mode shapes, which include all mode plots from the original- and pre-
processed case are presented in Appendix A.

(a) Original case (b) Preprocessed case

Figure 7.19: Sensor direction Z, dominant frequency f1

7.2.2. RESULTS ORIGINAL CASE

Z ACCELERATIONS

The ODS accelerations in Z directions for the original case are displayed in Figures 7.20a to 7.20d.

• f1 = 1.60Hz - Mode 1 The mode plot of the first dominant frequency displays an anti-symmetric shape,
due to the relative phase delay (of π) between a quarter and three quarters of the span. The non-integer
multiple of π for the phase angle of the point at midspan does not add significant complexity due to the
negligible amplitude.

• f2 = 2.25Hz - Mode 1 The mode plot of the second dominant frequency displays considerable acceler-
ations at midspan and anti-phase accelerations at a quarter and three quarters of the span.

• f3 = 3.30Hz - Mode 1 The mode plot of the third dominant frequency displays the largest accelerations
at a quarter of the span, from the southside. The point at three quarters of the span does not show
significant accelerations.

• f4 = 5.45Hz - Mode 1 The mode plot of the fourth dominant frequency displays an overall in-phase
acceleration over the unsupported points along the span. Keep in mind that at this frequency, the
identified mode is dominant in both the Y and Z direction for the accelerations.
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(a) Dominant frequency f1 (b) Dominant frequency f2

(c) Dominant frequency f3 (d) Dominant frequency f4

Figure 7.20: Mode plots for the original case, sensor direction Z

Y ACCELERATIONS

The ODS accelerations in Y directions for the original case are displayed in Figures 7.21a to 7.21c.

• f1 = 1.60Hz - Mode 1 The first mode plot of the first dominant frequency displays an in-phase response
where for every point along the span, the unsupported points are accelerating horizontally. This ODS
shows great comparison with the first classical bending mode of a simply supported beam.

• f3 = 3.30Hz - Mode 1 The first mode plot of the third dominant frequency displays an anti-symmetric
ODS with extremes at a quarter and three quarters along the span. The accelerations for the point at
midspan remain low.

• f4 = 5.45Hz - Mode 1 The first mode plot of the fourth dominant frequency displays in-phase be-
haviour, comparable to the identified ODS for the first dominant frequency for the Y directions, how-
ever, for this mode the point at midspan does not display the largest accelerations.

YZ ACCELERATIONS

The YZ accelerations give clear insights on the relative amplitudes between the vertical and horizontal com-
ponents in the identified mode shape. The ODS accelerations in YZ directions for the original case are dis-
played in Figures 7.22a to 7.24b.

• f1 = 1.60Hz - Mode 1 & 2 The first and second mode plots of the first dominant frequency display
comparable absolute extreme accelerations for the Y and Z directions. The vertical direction shows
the first classical bending mode for an arch bridge, and is combined with a horizontal direction first



60 7. DISCUSSION

(a) Dominant frequency f1 (b) Dominant frequency f3

(c) Dominant frequency f4

Figure 7.21: Mode plots for the original case, sensor direction Y

classical bending mode for a simply supported beam. These modes are also identified in the discrete
cases for Y and Z accelerations. This combined mode however, displays significant complexity due to
the relative phase delay between the Y and Z accelerations with respect to their individual cases.

The mode plots for mode 1 and mode 2 are closely related, however, the relative phase angle for the Z
direction is shifted by π for the second mode w.r.t. the first mode. This implies a corkscrew motion,
where the direction of motion is inverted for mode 2 w.r.t. mode 1. As the shape of both ODSs is
identical, and only the direction of motion varies, the two identified ODSs can be considered as a single
dominant ODS.

• f2 = 2.25Hz - Mode 1 The first mode plot for the second dominant frequency displays an in-phase ODS
with governing Z accelerations with extremes at midspan. The horizontal component at this dominant
frequency is negligible.

• f3 = 3.30Hz - Mode 1 At this frequency, the SVP (Case 2.3.2) displays double peaks at 3.30H z ( f3.1) and
3.40H z ( f3.2). The former amplifies the structure in both acceleration directions, whereas the latter
displays dominant behaviour in the Y directions. f3.1 shows increased complexity w.r.t f3.2, as the MPC
value is lower at the former frequency. The vertical motion is predominantly present for f3.1, located at
a quarter of the span from the southside support. The accelerations in Z direction at three quarters of
the span are negligible. The horizontal motion is predominantly present at f3.2 and displays an anti-
symmetric bending mode. The horizontal accelerations at the supports are also greatly present, when
compared to other ODSs.

• f4 = 5.45Hz - Mode 1 The last dominant frequency displays in-phase symmetric behaviour with dom-
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inance in Z accelerations at the unsupported locations along the span. The Y accelerations again show
non-negligible amplitudes at the locations of the supports.

(a) Dominant frequency f1, first mode plot (b) Dominant frequency f1, second mode plot

Figure 7.22: Mode plots for the original case, sensor direction YZ (1/3)

(a) Dominant frequency f3.1 (b) Dominant frequency f3.2

Figure 7.23: Mode plots for the original case, sensor direction YZ (2/3)

REMARKS MODE PLOTS

• The majority of the maximum accelerations are present along the span of the bridge. The maximum
absolute value for the accelerations are considerably lower at the locations of the supports.

• The mode shapes for separate Y and Z cases show identical behaviour in the combined YZ cases, over
corresponding frequencies.

• The mode shapes show significant correspondence to the expected mode shapes from literature and
the digital model (Sections 2.5 and 3.0.1, respectively).

• The double peak at dominant frequency f3 is investigated in Figures 7.23a and 7.23b. The former de-
scribes a significant acceleration around a quarter of the span in the Z directions, and a lesser anti-
symmetric behaviour in the Y direction. The latter peak describes a dominant anti-symmetric mode in
the Y direction. This corresponds to the expected second mode for a classical simply supported beam.

• Separate acceleration directions show negligible complexity, however, combining orthogonal acceler-
ation directions for a single mode can result in a constant shift in phase delay (e.g. π/2, for a single
acceleration direction), making the mode shape significantly complex. An example is the corkscrew
behaviour (mode 1, f1).
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(a) Dominant frequency f2 (b) Original case, sensor direction YZ, dominant frequency f4

Figure 7.24: Mode plots for the original case, sensor direction YZ (3/3)

7.2.3. COMPLEXITY THROUGH MPC
The complexity of the derived mode shape is determined through the MPC and presented in tables 7.6 and
7.7 for the original- and preprocessed case, respectively. The mode complexity is low for MPC values close
to 1, and high for values close to 0. A low MPC value indicates significant damping for that specific mode, or
forced vibrations induced in the structure.
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Frequency
Sensor
direction

Train
direction

MPC1 MPC2 MPC3 MPC4

1.60

Z
Leeuwarden 0.9695 0.9756 0.9105 0.7909
Groningen 0.9803 0.8882 0.3121 0.7068
Both 0.9894 0.9538 0.6877 0.5912

Y
Leeuwarden 0.9823 0.9674 0.1200 0.4022
Groningen 0.9953 0.9108 0.3806 0.4385
Both 0.9981 0.9802 0.5489 0.5365

Y Z
Leeuwarden 0.4426 0.3438 0.1489 0.4946
Groningen 0.2311 0.2122 0.8323 0.5453
Both 0.5198 0.4826 0.7963 0.9298

2.25

Z
Leeuwarden 0.8724 0.8452 0.6864 0.3295
Groningen 0.9567 0.9479 0.5862 0.3043
Both 0.9626 0.9447 0.5380 0.8819

Y
Leeuwarden 0.9979 0.4243 0.5752 0.5152
Groningen 0.8729 0.6749 0.3682 0.6037
Both 0.9985 0.6377 0.2052 0.2164

Y Z
Leeuwarden 0.9595 0.7521 0.7406 0.2015
Groningen 0.8521 0.6220 0.0822 0.1207
Both 0.9750 0.9284 0.8677 0.3188

3.30

Z
Leeuwarden 0.9691 0.4839 0.6913 0.6289
Groningen 0.9416 0.3762 0.2106 0.3569
Both 0.9918 0.4645 0.6717 0.2063

Y
Leeuwarden 0.9752 0.9503 0.9125 0.7486
Groningen 0.9088 0.2889 0.0619 0.0174
Both 0.9752 0.9428 0.2985 0.0633

Y Z
Leeuwarden 0.9712 0.9202 0.8449 0.1486
Groningen 0.7083 0.4912 0.3717 0.0175
Both 0.9708 0.9381 0.8610 0.4498

5.45

Z
Leeuwarden 0.9928 0.8635 0.9031 0.8856
Groningen 0.9843 0.4953 0.0201 0.0296
Both 0.9914 0.9008 0.6614 0.7335

Y
Leeuwarden 0.9978 0.7225 0.4486 0.3187
Groningen 0.9347 0.6107 0.1776 0.0048
Both 0.9979 0.8962 0.9048 0.7918

Y Z
Leeuwarden 0.9780 0.9487 0.7067 0.1819
Groningen 0.9789 0.1485 0.0558 0.1665
Both 0.9687 0.9546 0.8268 0.0482

Table 7.6: MPC values of the dominant frequencies for the original case
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Frequency
Sensor
direction

Train
direction

MPC1 MPC2 MPC3 MPC4

1.60

Z
Leeuwarden 0.9696 0.9760 0.9133 0.7906
Groningen 0.9804 0.8892 0.3046 0.6852
Both 0.9894 0.9545 0.6864 0.5864

Y
Leeuwarden 0.9821 0.9674 0.1066 0.3933
Groningen 0.9953 0.9111 0.3844 0.4410
Both 0.9980 0.9803 0.5476 0.5364

Y Z
Leeuwarden 0.4426 0.3384 0.1450 0.4943
Groningen 0.2294 0.2106 0.8322 0.5381
Both 0.5183 0.4812 0.7959 0.9299

2.25

Z
Leeuwarden 0.8688 0.8419 0.6938 0.3241
Groningen 0.9568 0.9472 0.5606 0.3065
Both 0.9627 0.9452 0.5394 0.8817

Y
Leeuwarden 0.9979 0.4188 0.5774 0.5127
Groningen 0.8724 0.6765 0.3713 0.6079
Both 0.9985 0.6367 0.1993 0.2118

Y Z
Leeuwarden 0.9597 0.7504 0.7393 0.2021
Groningen 0.8520 0.6322 0.0898 0.1194
Both 0.9752 0.9286 0.8693 0.3225

3.30

Z
Leeuwarden 0.9239 0.7048 0.0696 0.5698
Groningen 0.9894 0.4251 0.5810 0.7809
Both 0.9946 0.7098 0.9651 0.8096

Y
Leeuwarden 0.9851 0.9100 0.5042 0.5547
Groningen 0.9815 0.1739 0.4881 0.4727
Both 0.9849 0.9680 0.5635 0.2117

Y Z
Leeuwarden 0.9824 0.7792 0.7542 0.2422
Groningen 0.6916 0.4890 0.2733 0.3758
Both 0.9810 0.6956 0.6816 0.0494

5.45

Z
Leeuwarden 0.9934 0.8594 0.9016 0.8804
Groningen 0.9846 0.4817 0.0180 0.0350
Both 0.9914 0.8949 0.6600 0.7471

Y
Leeuwarden 0.9978 0.7211 0.4490 0.3204
Groningen 0.9352 0.6165 0.1833 0.0058
Both 0.9978 0.8967 0.9063 0.8003

Y Z
Leeuwarden 0.9782 0.9495 0.7033 0.1732
Groningen 0.9792 0.1452 0.0551 0.1668
Both 0.9690 0.9549 0.8162 0.0520

Table 7.7: MPC values of dominant frequencies for the preprocessed case.
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When investigating the result tables, it is visible that the MPC values for the first singular vector (MPC1)
is relatively high. The MPC value decreases for higher order singular vectors (MPC2 to MPC4). This implies
that complexity mainly appears in the less dominant modes (corresponding to a lower singular value) for that
specific frequency.

If the MPC values are low, the expectations to accurately determine structural damping through the EFDD
can not be satisfied, due to chances of high structural damping, or describing a non-structural mode. In the
former case, the results do not comply with the assumption of proportional damping. If the certainty of the
results can not be confirmed, the damping coefficients can not be considered as accurate, and therefore,
representative.

Table 7.8 summarizes the MPC values for the mode plots, which are considered in the section above. The
separate Y and Z cases show greater MPC values, when compared to their equivalent combined YZ cases.

Acceleration
direction

Dominant
frequency

MPC1 MPC2

Z

f1 0.9803 -
f2 0.9567 -
f3 0.9416 -
f4 0.9843 -

Y

f1 0.9953 -
f2 - -
f3 0.9088 -
f4 0.9347 -

YZ

f1 0.2311 0.2122
f2 0.8521 -
f3.1 0.7083 -
f3.2 0.9350 -
f4 0.9789 -

Table 7.8: Considered relevant mode shapes with corresponding MPCi values, where i represents the order of the singular vector.

The determined MPC values describe low complexity for the separate acceleration direction cases. How-
ever, when including both acceleration directions in the computation of the FDD, the complexity of the de-
termined mode shape increases.

The mode visualization tool (Figure 6.3) includes a 3 dimensional animation plot, to intuitively represent
the dynamic behaviour of a specific mode shape over time. This provides the user with a better interpretation
of the dynamic modes, in particular for the complex modes.

REMARKS DETERMINATION MODE SHAPES

• The results from the original case w.r.t. preprocessed case are close to identical. This implies that
certain preprocessing will not influence the results for the considered cases.

• Only for dominant frequency f3, the results between the original and preprocessed case diverge slightly
in the Z acceleration direction (Figures 7.20c in the report or A.3a and A.3b in the appendix). The dis-
crepancy between the original and autocorrelated case is also identified in Table 7.4. The main contrast
is identifiable in the relative phase delay, however, due to the negligible amplitude for the regarded ODS
in Z direction, the discrepancy can be considered non-relevant.

• The normalized magnitude plots are represented as a continuous line through the locations of the
DOFs. However, the realistic modes can deviate from the suggested mode shape, due to deficient spa-
tial density of the sensors.

• Due to the low number of available measurement recordings, chances to converge to accurate and
realistic mode shapes are debatable.
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• When the characteristics of the load play a significant role in the dynamic response of the bridge, the
behaviour will not necessarily converge to a certain structural mode, but tends to converge to the modal
characteristics of the input load (the train).

7.2.4. APPARENT MODES
During the evaluation of the mode shapes, a small collection of apparent mode types are identified which
require some additional explanations.

Noise modes For Cases 1.2.1, 1.2.3, 1.3.1 and 1.3.3 the result of the most dominant mode (first order), seems
to be an indistinctive frequency domain plot, highly contaminated with noise. Around frequency f1, where
a higher signal-to-noise ratio is expected, the noise mode seems to be attenuated. However, the singular
value of a another plot does not have significant magnitude to become the first order mode. The noise mode
behaviour does not seem to be as present in the power spectrum of the same recording channels for the train
direction to Groningen (Figure 7.5). The high noise mode is surely a contribution from the records for the
train directions towards Leeuwarden.

The FDD is being used to determine the modal properties of the bridge. Due to the prerequisite assump-
tions of OMA methods, some boundary conditions, with respect to the input load must be taken into account.
As mentioned in Section 2.5.2, the train loads are far from random. The loads also show significant impact,
as the computed power spectra vary greatly when including different input signals in the computation.

Forced vibrations When the response of the structure is dominantly governed by the characteristics of the
input load, the computed mode might show signs of complexity. The amount of complexity is determined
through the MPC value. This parameter can assist during the determination between a structural mode of a
forced vibration.

Corkscrew mode In Figures 7.22a and 7.22b, two separate modes are identified by the FDD. After inspec-
tion, the modes seem to describe the same mode shape, however for the opposite direction of motion, there-
fore, making it dependent on the point in time. Due to the time dependency, the complexity increases, even
though the separate Y and Z cases (Figures 7.20a and 7.21a) show negligible complexity. The determination of
a structural mode is still plausible, as the two acceleration directions (Y and Z) are spatially orthogonal, and
both showing insignificant complexity for their discrete cases (embodying standing wave characteristics). By
orthogonality, each acceleration direction can be investigated separately. Theoretically the one acceleration
direction will not influence the other (no linear dependency). When investigating the discrete Y and Z mode
plots, a mode shape at dominant frequency f1 would be determined for both directions. If at this frequency,
a single mode is identified in the Y direction and a single mode is identified in the Z direction, with both dis-
crete modes showing almost no complexity, then the mode for the combined case will also represent a mode,
independent of the combined significant complexity.
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T HE conclusions, which are based on the results of the FDD for the considered case study are presented in
this chapter. Subsequently, the conclusions regarding the research cases and remarkable properties are

determined. Finally, to conclude the research on the analysis of signals to determine modal parameters, the
answers to the research questions are presented.

8.1. CASE RESULTS
For the research project, a case study is investigated to determine the natural frequencies and corresponding
mode shapes of an arch railway bridge.

First the dominant frequencies are determined through the peaks of the SVPs. The ODSs are determined
from the left singular vectors matrix to their corresponding singular value, at the location of the dominant
frequency. An attempt is made to make a distinction between the structural modes and the forced vibrations
by elaborate examination of the results.

As reliability of the results is preferred during this research project, the choice is made to include only
a subset of the available data, which tend to show convergence during the computations. During evalua-
tion of the locations of the natural frequencies, a vast amount of combinations for the input signals, together
with preprocessing techniques is considered to assess the quality and characteristics of the measurements.
The cases that showed the greatest convergence included the train directions towards Groningen. There-
fore, only these signals are included during determination of the mode shapes. The remaining cases showed
corresponding behaviour, only less clear. Therefore, tese results are not included during the determination
process of the mode shapes.

The computed mode shapes showed signs of complexity, when the MPC value of the regarded mode shape
is lower than 1. Physically, a complex mode can represent a forced vibration with complex characteristics, or
implies significant structural damping. This does not correspond with the prerequisite assumptions of the
OMA techniques, for the determination of reliable results.

8.1.1. NATURAL FREQUENCIES & CORRESPONDING MODE SHAPES

After investigating the singular values plots (Section 7.1) and mode plots (Section 7.2), the Table 8.1 is com-
puted. This table concludes the analysis of the computed mode shapes. For the identified dominant frequen-
cies, the mode type with corresponding mode shape and MPC value is presented.

Dominant
frequency

Frequency Mode type Shape
Dominant
direction

MPC

f1 1.60H z Structural mode Horizontal symmetric
Vertical anti-symmetric

Y
Z
YZ

0.99
0.98
0.23

f2 2.25H z Structural mode Vertical symmetric Z 0.96

f3.1 3.30H z Forced vibration Horizontal anti-symmetric
Vertical non-symmetric

Y
Z
YZ

0.91
0.94
0.71

f3.2 3.40H z Structural mode Horizontal anti-symmetric Y 0.93

f4 5.45H z Structural mode Vertical symmetric
Horizontal symmetric

Y
Z
YZ

0.98
0.93
0.97

Table 8.1: Mode types for dominant frequencies

In Table 8.1, the identified mode shapes and forced vibrations are presented. In the last 2 columns, the
acceleration directions are presented together with their MPC values. For the mode shapes that do not domi-
nate a single acceleration direction, the MPC values are presented for the discrete acceleration directions and
the combined case.

Dominant frequency f1 displays a corkscrew-like mode shape (Section 7.2.4), which is not classified as a
complex mode due to the expected in- and anti-phase behaviour and MPC values close to 1, for the discrete
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acceleration directions. At dominant frequency f3.1 a forced vibration is identified, due to the non-symmetric
mode shape, together with the low MPC values for the combined case. For dominant frequency f4, the in-
phase accelerations describe an off-axis structural mode, which is slightly more dominant in the vertical di-
rection (Figure 7.24b).

8.2. CONCLUSIONS RESEARCH
Inclusion of data records For the determination of the natural frequencies, three cases are considered.
Each case represents the inclusion of the recordings for the train directions towards Leeuwarden, Groningen
and both. The results for the train direction towards Groningen show significantly better results, when com-
pared to the results towards Leeuwarden. For the case considering both train directions, the results showed
an average between the first (Leeuwarden) and the second (Groningen) case. This was not different for the
cases regarding Y and Z accelerations separately.

Train velocity The average train velocities show higher values for the train directions towards Groningen,
when compared to the train directions towards Leeuwarden. The results from the FDD show indistinguish-
able modal behaviour for lower train velocities. When the average train velocities increase, the modal be-
haviour becomes easier to identify, as the increased dynamic response of the bridge consists a higher contri-
bution of this modal behaviour.

Autocorrelated case The SVPs that represent the autocorrelated case, show better performance through
the more clearly distinguishable peaks for the determination of the natural frequencies. Due to the noise
reduction property of the ACF, the existent noise is attenuated, therefore increasing the signal-to-noise ratio.
The remaining part in the signal, after application of the ACF, includes an amplified representation of the
periodic components in the dynamic response of the bridge. The location of the peaks correspond to the ex-
pected frequencies, which are derived in the original case. A significant increase in the relative amplification
w.r.t. neighboring frequencies is identified, therefore making the peaks clearly visible. However, the absolute
values of the power spectra are not directly representative to derive any scalar value for the accelerations,
due to the magnitude altering properties of the ACF. The downside of the ACF is that the phase of the deter-
mined modes is not representative. The relative amplitudes in the singular vectors are squared, which will
not present accurate absolute amplitudes for the mode shapes.

Preprocessing results For the determination of the mode shapes, the computed singular vectors do not
show correspondence between the original case and the ACF case. Therefore, when regarding the mode
shapes, the results of original case are compared to the results of the preprocessed case. The results displayed
almost identical behaviour. The preprocessing parameters did not show great influence on the results for the
derivation of the mode shapes.

RESEARCH QUESTIONS
For comfort of the reader, the research questions will be repeated, before concluding with an answer for every
question.

How can the dynamic properties be obtained for an arch-railway bridge based on measurement data with
appropriate stability and reliability?

1. What methods are commonly used in the analysis of vibrations?

2. How to assess the quality of the measured data?

3. What methods can be used to improve the usability of the signal?

4. Is it possible to distinguish closely spaced natural frequencies in the measured signal?

COMMON METHODS

The analysis of vibrations is a multidisciplinary field of engineering, as it brings together three fundamen-
tal areas of expertise. Namely, data science, modal analysis and signal processing. The former is related to
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identifying correlations, trends and other useful properties from data (often in vast amounts). The second de-
scribes dynamic characteristics of structural elements and the latter concludes the altering of digital signals
to increase accuracy and reliability. In the specific case of this research project, the subjects are combined to
determine modal parameters of a dynamic system. Fundamental concepts from these fields are combined,
such as the singular value decomposition and the Fourier transform, to represent the dynamic behaviour of
a structure. A frequency domain method, known as the frequency domain decomposition is applied to de-
termine the dynamic characteristics. Other procedures describe time domain methods and hybrid methods.
A supplementary variation on the frequency domain decomposition is presented, where the input signals
are reconstructed using an autocorrelation function, prior to the decomposition. The autocorrelation func-
tion is a common tool, which is widely applied in recurrence quantification analysis. There exist numerous
additional methods, however, these methods are not included in this research project.

Overall, it is a robust method of solving for the modal parameters. The majority of the computational
effort is concentrated in the SVD itself, but the FDD method gives a clear description to prepare the data for
modal decomposition. This is what makes it user-friendly (Brincker et al., 2001). It is an effective solution
when the data records are of significant length, and they remain to have a decent initial spectral resolution
(without zero padding). Also the ability to distinguish the presence of multiple modes is very powerful.

ASSESS QUALITY OF THE MEASURED DATA

Post computational assessment on the quality of the measurements can be performed manually, by exam-
ination of the results. As operational modal analysis makes use of output-only systems, the predefined as-
sumptions, related to the statistical properties of the system or input signals, such as ambient forces, are
often inaccurate. Assumptions regarding white noise loading or stationarity of the system are never fully met
in a realistic case. The characteristics of the results are dependent on the characteristics of the input signals.
This property can be used to reflect on the quality of the measured data. By varying the input parameters and
signals, a general understanding on the basic cases and influential parameters can be acquired. Faulty mea-
surements can be identified. However, the process of evaluating different cases and reflecting on the results
to present for preliminary interpretation requires human interaction. It will not be easily implemented into
an algorithm without fundamental understanding on the data.

During the research project, the quality of the data is assessed by deriving convergence of the data. When
the assumptions of OMA are met, any signs of non-convergence are related to the quality of the measured
data.

IMPROVE USABILITY OF SIGNAL

To improve the usability of the signals, the adverse characteristics of the input signals, such as uncorrelated
noise, should be investigated. The aim is to identify the unwanted characteristics, so a suitable solution can
be applied. A selection of these characteristics of the signals can be (partially) omitted through prepossessing
computations. However, there is only so much the preprocessing techniques can achieve. It is important to
keep in mind that operational data will always display signs of noise, which can not be entirely separated
from the signal. Then the goal is to minimize the contribution of such negative behaviour.

The ACF presents a clear method to attenuate noise in a periodic signal. Additionally, application of
an ACF for detrending purposes is also effective. For longer discrete finite-length digital signals, the ACF
can become computationally expensive. To reduce the time of computations, the considered signal can be
downsampled to reduce the amount of discrete data points, without sacrificing spectral resolution through
the fundamental frequency. Downsampling influences the highest measurable frequency, by the Nyquist
frequency.

CLOSELY SPACED MODES

Through the FDD, closely spaced modes can be identified. When considering a discrete frequency in the
first singular values plot, the corresponding singular vector can be retrieved. The singular vector represents a
dominant operational deflection shape (ODS). The second singular values plot holds its own singular vector,
which can be described as the second most dominant ODS for that discrete frequency. When two singular
values plots are considered, the contribution of each dominant ODS is visually represented. Even if the two
shapes are closely spaced, the ability to distinguish the two separate shapes remains present. However, the
ODS can only be considered as structural modes if the a local amplification of a single mode is clearly visible,
meanwhile the other mode will remain at its normal amplitude around the specific frequency. This brings
along major advantages over a time domain method or the ordinary frequency domain representation where
the multiple modes merge into a single peak.



9
RECOMMENDATIONS

71



72 9. RECOMMENDATIONS

D URING this project, predictive research is conducted to investigate the possibilities to derive modal pa-
rameters from vibrational data. A case study is investigated to extract modal parameters from a set of

vibrational measurements. This chapter describes certain subjects which can be investigated further to im-
prove on the current methods. Additional recommendations are presented regarding improved data acquisi-
tion and progressive steps which can be taken to continue research for modal analysis based on operational
measurements.

9.1. PRACTICAL RECOMMENDATIONS FOR DATA ACQUISITION
Additional measurements This research argues that the measuring of dynamic properties should be per-
formed more frequently, to gain the ability to make more accurate assumptions on the dynamic behavior
of structures in the future. When working with experimental data, not all acquired data can be considered
useful. A portion of the signals can be contaminated with noise or other measurement artefacts, or just not
show sufficient convergence to produce reliable results. Therefore acquisition of additional measurements is
recommended.

Train velocities In the literature study it is mentioned that the dynamic response of a railway bridge in-
creases for greater train velocities. The input data, together with the results from this research project confirm
that statement. Therefore, if additional tests can be performed on the bridge, it is recommended to vary the
train velocities, to be able to reflect on its impact, mostly for the higher train velocities.

Length of time recordings When accurately determining natural frequencies and corresponding mode
shapes, a clear distinction between the neighbouring frequencies in the estimated power spectra is desired.
The spectral resolution can be increased by zero-padding, however, this will not influence the fundamental
frequency of the output frequency response. It will make no difference in the ability to distinguish neigh-
bouring frequencies, but only smoothen the output spectrum. To ensure an effective spectral resolution,
recordings of significant length are recommended. If the measurement signals are of extreme length, there-
fore making the process computationally expensive, segmentation of the data can be applied.

Increase state space sensor density For the current case study, only the dynamic behaviour for the discrete
points in space at the locations of the sensors is registered. All structural behaviour between the sensors
can only be approximated and therefore, not accurately determined. Additionally, the maximum amount
of distinguishable modes is dependent on the amount of applied sensors. When the fundamental modes
are determined, the integer multiples of the computed modes show little to no differences, and can not be
identified. An increased amount of sensors to be applied is recommended at the locations of interest, to
increase accuracy on the determined mode shapes of the structure.

9.2. RECOMMENDATIONS FOR INCREASE OF RELIABILITY
Correspondence over absolute magnitude The decomposition during frequency domain decomposition
(FDD) shows preference for independent absolute magnitude over level of correspondence between multiple
input signals. In other words, the useful measured characteristics can easily be buried when a single noisy
signal is present. The singular values plots which contain important modal information will be attenuated,
but remain present in the lower singular values plots. Therefore, it is recommended to consider these lower
order singular values plots as well.

Normalized frequency spectrum The frequency spectrum is obtained after applying a Fourier transform
on the time domain signal. Subsequently, the individual frequency transforms will be super-positioned and
form the spectral matrix. If the absolute magnitude of any individual signal before decomposition is signifi-
cantly higher (exponentially larger), than the modal information of the other signals will be attenuated during
the singular value decomposition (SVD). However, if the frequency transform of each time domain signal is
normalized (over the total power) before adding to the spectral matrix, the absolute magnitudes do not re-
main relevant. The relative local peaks in the frequency spectra will remain preserved and can be identified
during the SVD.

When only a small portion of the frequency spectrum is relevant to consider, such as in the case of this
research project, it is recommended to apply a low-pass or band-pass filter to increase the accuracy of the
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normalization process. In total, the normalization process of such frequency domain signals can be chal-
lenging. It is recommended to perform additional research in supplementary normalization methods.

Reverse mode comparison After computation of the mode shapes through FDD, the singular vector ma-
trices can be used to reflect on the contribution of a specific mode in each of the individual measurement
signals.

As mentioned in Section 7.1.1, the FDD shows its deficiency when a single noisy measurement contributes
to the total response with a mode containing significant amplitudes w.r.t. the other measurement signals,
included in the FDD. Because no normalization is applied before summation in the frequency domain, the
computed singular value which corresponds to the faulty mode will be identified as the most dominantly
present mode. It will present itself in the first singular values plot of the total response. Keep in mind that the
first singular values plot should present the natural frequencies of the system. In Equation 9.1, the subscript
s represents the modal matrices for the total response (all measurement signals included).

S̃dd ,s =UsΣsV H
s (9.1)

After the FDD has computed the 3 modal matrices (based on the total response), they can be used to
decompose each individual measurement signal (individual response). If only a single measurement shows
great correspondence to the determined dominant mode at the alleged natural frequency, whereas the ma-
jority of the measurement signals show no correspondence to this dominant mode, than the faulty mode
can be identified and the measurement signal from which the faulty mode originates, can be excluded from
further computations. In Equation 9.2, the subscript i represents the case where only a single measurement
signal is included. The computed matrix Σi includes the contributions of the system modes, to this specific
measurement signal.

(Us )−1 S̃dd ,i
(
V H

s

)−1 =Σi (9.2)

This method can be used to assess the quality for each individual measurement signal.

Programming improvements In Python, the forward-backward filter can be applied using the signal.filtfilt
command, which is included in the scipy package. Due to stability issues, the time signal cannot always be
filtered to attenuate specific frequencies. Therefore, it is recommended that during filtering the second order
sections (output=’sos’) output type is computed, for the digital filter parameters. This way, the results will
converge stability related issues can be omitted from the process.

9.3. AUTOCORRELATION FUNCTION
The autocorrelated case does present the Fourier transform of the signal without the magnitudes of noise
w.r.t. the original case. Therefore, the implementation of the autocorrelation function (ACF) is recommended
to be primarily used up until the decomposition (identification of dominant frequencies).

The autocorrelated case also makes use of a normalization step, so the contribution in the decomposition
for every signal is about equal. The contribution of a faulty signal with relative unproportionally high mag-
nitudes will not influence the super-positioned frequency domain and the faulty signals’ frequency domain
transform will be attenuated, therefore, not influencing the summed spectrum.

Phase correction When applying an ACF, the phase characteristics do not remain representative. How-
ever, the noise reduction properties are useful when in the process of determining the natural frequencies.
Therefore, it is recommended to investigate the possibilities to reduce the phase distorting properties when
applying an ACF.

9.4. FEM MODEL
The current research concludes on the determination of modal parameters through measurement data. For
now, only a single data type is included in the determination process. However, as mentioned in the intro-
duction, if a digital model is connected, so the computed parameters can be updated, this could be used as
feedback for both the digital model and the determination of modal parameters. The connection can work
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both ways, namely to calibrate the digital model, as well as include custom assumptions (boundary condi-
tions) to ensure accurate determination of structural behaviour. Therefore, it is recommended to investigate
the possibilities of connecting a digital model of the structure to the measurement data.

Train characteristics Further investigations on the dynamic characteristics of the train are recommended.
The specifications of the train carriages are known and could be determined. The carriage can be tested in
an experimental setup. If any natural frequency of the train carriages can be identified around the dominant
frequency f3.1, then the results can be confirmed, which can assist in the reliability quantification.

9.5. TIME DOMAIN METHODS
As mentioned in Chapter 2, the majority of the OMA methods can be considered as time domain or frequency
domain methods. For the current research project, the main method which is considered is the FDD method,
which is a frequency domain method. Although this method shows great strength when describing mode
multiplicity for closely spaced modes, the possibility to describe structural damping is rather limited. To be
able to consider structural damping, it is recommended to investigate the possibilities for the application of
time domain methods.
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A.1. Z DIRECTIONS

(a) Original case (b) Preprocessed case

Figure A.1: Sensor direction Z, dominant frequency f1

(a) Original case (b) Preprocessed case

Figure A.2: Sensor direction Z, dominant frequency f2

(a) Original case (b) Preprocessed case

Figure A.3: Sensor direction Z, dominant frequency f3
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(a) Original case (b) Preprocessed case

Figure A.4: Sensor direction Z, dominant frequency f4

A.2. Y DIRECTIONS

(a) Original case (b) Preprocessed case

Figure A.5: Sensor direction Y, dominant frequency f1

(a) Original case (b) Preprocessed case

Figure A.6: Sensor direction Y, dominant frequency f3
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(a) Original case (b) Preprocessed case

Figure A.7: Sensor direction Y, dominant frequency f4

A.3. YZ DIRECTIONS

(a) Original case (b) Preprocessed case

Figure A.8: Sensor direction YZ, dominant frequency f1, first mode plots

(a) Original case, sensor direction YZ, dominant frequency f1 (b) Preprocessed case, sensor direction YZ, dominant frequency f1

Figure A.9: Sensor direction YZ, dominant frequency f1, second mode plots
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(a) Original case (b) Preprocessed case

Figure A.10: Sensor direction YZ, dominant frequency f2

(a) Original case (b) Preprocessed case

Figure A.11: Sensor direction YZ, dominant frequency f3.1

(a) Original case (b) Preprocessed case

Figure A.12: Sensor direction YZ, dominant frequency f3.2



86 A. MODE SHAPES

(a) Original case (b) Preprocessed case

Figure A.13: Sensor direction YZ, dominant frequency f4
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