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Abstract
Oncolytic virotherapy is known as a new treatment to employ less virulent viruses to
specifically target and damage cancer cells. This work presents a cellular automata
model of oncolytic virotherapy with an application to pancreatic cancer. The funda-
mental biomedical processes (like cell proliferation, mutation, apoptosis) are modeled
by the use of probabilistic principles. The migration of injected viruses (as therapy)
is modeled by diffusion through the tissue. The resulting diffusion–reaction equation
with smoothed point viral sources is discretized by the finite difference method and
integrated by the IMEX approach. Furthermore, Monte Carlo simulations are done to
quantitatively evaluate the correlations between various input parameters and numeri-
cal results. As we expected, our model is able to simulate the pancreatic cancer growth
at early stages, which is calibrated with experimental results. In addition, the model
can be used to predict and evaluate the therapeutic effect of oncolytic virotherapy.

Keywords Cellular automata · Computational modeling · Cancer treatment ·
Virotherapy · Monte Carlo simulations

1 Introduction

Oncolytic virotherapy is a novel cancer treatment where natural or genetically modi-
fied viruses infect cancer cells and then self-replicate until the host cancer cells lysis
(see Fig. 1). Ruptured cancer cells release chemicals like tumor antigens, which make
cancer cells easily recognizable by the immune system.Moreover, the released viruses
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Fig. 1 A schematical figure of oncolytic virotherapy. The viruses can specifically infect cancer cells and
then replicate themselves until cancer cells rupture. Subsequently, the newborn viruses are released to infect
more cancer cells

Fig. 2 Historical milestones in the development of oncolytic virotherapy

can infect more cancer cells to trigger a chain reaction and effectively act as a follow-
up treatment. As early as in 1912, De Pace (1912) observed a tumor regression after
inoculation of an attenuated rabies vaccine in a patient with uterine cervical carcinoma.
Later on, an animal-based test (Levaditi and Nicolau 1922) and a human trial (Pack
1950) were conducted in 1920 and 1940, respectively, where both experiments yielded
an obvious partial tumor regression (Kasuya et al. 2005). In the subsequent decades,
moreworks (Kirn 2001; Gil et al. 2013, 2014) demonstrated that oncolytic virotherapy
lead to tumor attenuation. Some milestones in the development of oncolytic virother-
apy are shown in Fig. 2 (De Pace 1912; Martuza et al. 1991; Xia et al. 2004; Fukuhara
et al. 2016).

Pancreatic ductal adenocarcinoma (PDA), recognized as the most common pancre-
atic cancer, is a lethal disease due to late detection, a low resectability rate, medication
resistance and poor prognosis (Korc 2007; Gore and Korc 2014). Currently, pancreatic
cancer is the seventh leading cause of cancer death worldwide and its 5-year survival
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rate is less than 5% (Feig et al. 2012; Bray et al. 2018). Compared with other types of
cancer, PDA has more cancer-associated fibroblasts (CAFs) resulting in abundantly
desmoplasitic stroma that constitutes up to 90% of a solid tumor volume (Moir et al.
2015; Öhlund et al. 2017). The profuse desmoplasia in stroma produced by CAFs acts
as a physical barrier for drug delivery and leads to medication resistance (Provenzano
et al. 2012; Jacobetz et al. 2013). However, CAFs make cancer cells more susceptible
to be infected by oncolytic viruses. Ilkow et al. (2015) experimentally demonstrated
that the cross-talk between cancer cells and CAFs facilitates the oncolytic virus-based
therapies. Therefore, oncolytic virotherapy offers an avenue for the treatment of pan-
creatic cancer.

The ideal oncolytic virus should be able to selectively replicate itself in cancer cells
without damaging normal somatic cells (see Fig. 1). A couple of studies (Sunamura
et al. 2004; Kasuya et al. 2005; Wennier et al. 2011) summarized advantages and
disadvantages of various replication-competent oncolytic viruses proposed for pan-
creatic cancer therapies, e.g., adenoviruses, herpesviruses, poxviruses, parvoviruses,
reoviruses and paramyxoviruses. A few types of viruses have been tested in animal-
based xenograft models; however, only a few kinds of viruses have reached clinical
trials. In particular for pancreatic cancer, relevant studies are rare, among which Fu
et al. (2006) observed that a type of oncolytic virus produced antitumor effects in
human pancreatic cancer xenografts. In addition, Sunamura et al. (2004) carried out
adenovirus therapy in immunodeficient mice with human pancreatic cancer xenografts
that resulted in a remarkable inhibition of tumor growth under consecutive injections
of the virus. Typically, if animal testing is successful, the new drug will reach clinical
trials that are classified into four phases: (1) phase I is a safety test for healthy vol-
unteers; (2) phase II demonstrates whether a drug can have any efficacy against the
disease; (3) phase III checks in a randomized multicenter tests if a drug has the right
therapeutic effect; and (4) phase IV post-marketing surveillances its efficacy and side
effects after extensive use. Regarding the clinical applicability, Kasuya et al. (2005)
stated that a clinical trial of viruses adenovirus ONYX-015 (phase I and II) has been
conducted in pancreatic cancer patients, where half of the patients (phase II) exhib-
ited either tumor reduction or stabilization. In contrast, a phase I trial of the efficacy
of several oncolytic herpes viruses (such as G207, 1716 and OncoVEX GM-CSF)
have tested against various tumors and the herpesvirus exhibited a good tolerance at
all dosages. Although oncolytic virotherapy has been proposed for decades, a thor-
ough understanding of the interactions of virus, tumor and microenvironment in vivo
is still needed to be further researched, like a proper viral dose for a specific virus,
how to control of virulence and etc. Therefore we develop a three-dimensional (3D)
spatial Markov Chain cellular automata model to mimic pancreatic tumor (pancreatic
cancer at early stages) progression and subsequent regression under the interference
of oncolytic virotherapy. In addition, the model can be used to quantify the impact
of virotherapy with different viral doses, viral infectivity and levels of immunity in
patients with pancreatic cancer.

Cellular automata models are lattice-based models that facilitate analysis of the
spatiotemporal dynamics based on the interplay between cells and their microenvi-
ronment. The cellular automata model has been introduced as a computer model of
self-reproduction by John von Neumann and Stanislaw Ulam (Langton 1984). In the
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past decades, cellular automata models, in addition to self-reproduction, have been
extended to other model applications successfully within a wide range of spectrum
from biology, physics, chemistry to other sciences (Deutsch et al. 2005). Regarding the
cancer modeling in cellular automata, Reis et al. (2009) proposed a model that could
capture the Gompertzian behavior of tumor growth. Hatzikirou et al. (2008) developed
a model of tumor invasion dynamics. In addition, a couple of studies demonstrated
applications of cellular automata in cancer therapy, e.g., radiotherapy (Enderling et al.
2010), and chemotherapy (Pourhasanzade and Sabzpoushan 2019). In terms of com-
putational models on oncolytic virotherapy, Wodarz et al. (2012) studied the distinct
patterns of oncolytic viral spreading through tumor cell population both experimen-
tally and computationally. Furthermore, Paiva et al. (2009) developed a multiscale
cellular automata model for oncolytic virotherapy, where authors found that a solid
tumor can be either eradicated completely or keeps on growing. The resulting behavior
depends on the input parameters, which represent the biological circumstances around
the tumor. Malinzi et al. (2017) developed a partial differential equation-based model
for oncolytic virotherapy. For the one-dimensional case, they assessed the stability of
traveling wave solutions and the rate of tumor progression by means of the minimal
traveling wave speed. One of their most important conclusions is that the combination
of chemotherapy and virotherapy most successfully removes tumors.

The 2Dmodel in Paiva et al. (2009) revealed an oscillatory behavior of cancer cells
and virus population, which hints a strong host immune response is necessary. As an
extension of this model, we develop a 3D model to phenomenologically show pan-
creatic cancer initiation at early stages and its subsequent regression under oncolytic
virotherapy, where the various levels of host immune responses and toxicities of resid-
ual viruses are taken into account. To the best of our knowledge, it is the first description
of a hybrid cellular automata model with an application to pancreatic cancer. In addi-
tion, this model also shows the pattern of virus spreading by using partial differential
equations in a spatial domain. One of the advantages is its efficacy in evaluation of
therapeutic outcomes based on injected dose of viruses, viral infection potent and
personal immune strength. Next to the development of the model, we calibrate the
model to experimental outcomes and we carry out an uncertainty quantification by
using Monte Carlo simulations in terms of assessment of the likelihood of success of
the treatments. Therefore, therapeutic effects as well as toxicities of residual viruses
are predicted, which is expected to be helpful for viral administration and the patient-
specific treatment.

2 Mathematical Formalism

Cellular automata models consist of a class of lattice-based models, where lattice
approaches are classified as: (1) a single lattice site is occupied by one cell only; (2)
a single lattice site is occupied by a cluster of cells; (3) one cell takes many lattice
sites. They are all capable of investigating biological processes with single cell or
multiple cells, where division, death or other biomedical phenomena are modeled by
stochastic processes (Van Liedekerke et al. 2015). In contrast, the first two categories
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Fig. 3 A specified lattice i at
position xi = [xi , yi , zi ] with its
neighborhood in the 3D
simulations

are typically used to describe volume effects, whereas the last category is able to
capture the morphological evolution of cells.

In our simulations, each lattice represents a volume element filled with multiple
cells in a bounded 3D computational domain � ⊂ R

3, which is divided into a set
of lattice points N = {1, . . . , n}. The boundary of � is denoted by �. The lattice
point i has a finite number of discrete states Si that indicates the state of cells in the
corresponding volume, which reads as

Si =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, lattice point i is in unoccupied state/necrotic cell state

1, lattice point i is in epithelial cell state

2, lattice point i is in uninfected cancer cell state

3, lattice point i is in infected cancer state

. (1)

Assigning an initial state for each lattice point, and subsequently adjusting the state of
the specified lattice at position xi = [xi , yi , zi ] at subsequent times is correlated with
the states of its neighborhood marked in Fig. 3.

Subsequently, we consider fundamental biological processes like cell division,
mutation, infection and death modeled as stochastic processes. The likelihood of
changing a state of a lattice i to another state satisfies a memoryless exponential
distribution which is given by f (λi , t)�t during a time period (t0, t0 + �t). Here λi
is the probability rate per unit of time, which is determined by biological mechanisms
like cell division, mutation, infection and death. The f (λi , t) reads as,

f (λi , t) = λiexp(−λi (t − t0)), (2)

and hence the transition probability P within a time interval of length �t is given by

P =
∫ t0+�t

t0
f (λi , t)dt � 1 − exp(−λi�t). (3)

In the work by Vermolen and Pölönen (2020), it is proved that the likelihood of
changing state depends on a simple binary states of the neighbors, which has been
applied to modeling the progression of skin cancer. All lattice points in the domain are
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initialized to the epithelial cell state {Si = 1} or unoccupied state {Si = 0}. During
the growth of epithelial cells, cancer mutation happens as a result of exposure to
carcinogenic factors like genetic inheritance, chemical carcinogens, electromagnetic
radiation, or viral infection. The very complicated biological process is simplified by
the application of a transition probability from epithelial cells to uninfected cancer
cells, that is from {Si = 1} to {Si = 2} over a time interval �t with a likelihood
following

{
P(Si (t0 + �t) = 2 | Si (t0) = 1) � 1 − exp(−λmu�t)

P(Si (t0 + �t) = 1 | Si (t0) = 2) = 0
. (4)

Here λmu represents the mutation probability rate per unit of time and the second part
of Eq. (4) reflects that this transition is irreversible. Since both epithelial cells and
cancer cells are able to proliferate and to migrate, lattice points are allowed to change
their states from {Si = 0} to {Si = 1, 2}. The likelihood for these transitions over a
time interval �t are given by

P(Si (t0 + �t) = {1, 2} | Si (t0) = 0) � 1 − exp(−λpro�t), (5)

where λpro denotes the probability rate of transition from ‘not occupied by any cells’
to being ‘occupied by either epithelial cells or uninfected cancer cells’. Note that the
probability rate λpro is determined by the number of neighbors that are in cancer/
epithelial cell state. That is λpro = λmax

n12
h , where n12 denotes the number of lattice

points that are either in state 1 or in state 2. The distance between two lattice points
is represented by h and λmax is a constant to regulate the overall growth rate of cells
(including epithelial and uninfected cancer cells). Whether a free lattice point will be
occupied by multiple epithelial cells or uninfected cancer cells depends on the states
of the surrounding lattice points. Consider an unoccupied node i at time t , that is
Si (t) = 0. We denote the number of neighboring lattice points that are in state 1 by
n1. We further denote the likelihood that the lattice point i , given that it changes state,
by α = α0 · n1

n12
, where α0 ∈ [0, 1] is a constant. This fraction α is used to determine

the transition probability of node i , which is given by

{
P(Si (t0 + �t)=1 | Si (t0)=0)=αP(Si (t0 + �t) = {1, 2} | Si (t0) = 0)

P(Si (t0 + �t)=2 | Si (t0)=0)=(1 − α)P(Si (t0 + �t) = {1, 2} | Si (t0) = 0)
.

(6)

Apoptosis is programmed death of cells, however, uninfected cancer cells are able to
proliferate uncontrollably and to resist cell apoptosis. In the current model, oncolytic
viruses are incorporated to infect and damage cancer cells. We let cancer cells jump
from state {Si = 2} (uninfected cancer state) to state {Si = 3} (infected state) as soon
as the virus concentration exceeds ĉ. Hence, we have

P(Si (t0 + �t) = 3 | Si (t0) = 2) = 1, if ci > ĉ, (7)
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If the viral concentration does not exceed the threshold ĉ, then we disregard the release
of viruses. Therefore, the likelihood of a lattice point i to be infected by viruses, which
is the state transition from {Si = 2} to {Si = 3}, depends on the released viruses from
the neighborhood and the local concentration of viruses. Subsequently, infected cancer
cells are, like epithelial cells, subject to possible cell death. Hence a node i is allowed
to change from a cell state {Si = {1, 3}} to an unoccupied state {Si = 0}, which is
given by the following likelihood

P(Si (t0 + �t) = 0 | Si (t0) = {1, 3}) � 1 − exp(−λde�t). (8)

Here λde denotes the probability rate that an infected cancer or an epithelial cell dies.
Oncolytic virotherapy is initiated when the fraction of tumor constitutes up to

100% of the computational domain (that is the tissue). In animal-based experiments,
the viruses are given by injections (Sunamura et al. 2004). Therefore, we consider
one or multiple injections, denoted by V(t), as source points at position xp by using
the Dirac delta function δ(x) at time t . After the injection, the delivery of viruses is
simulated by the reaction-diffusion equation written as

⎧
⎪⎨

⎪⎩

∂c
∂t − D�c =

∑

p∈V(t)

γ δ(x − xp) + u(x), for x ∈ �

D ∂c
∂n + T c = 0, on ∂�

, (9)

where c, D and γ denote the concentration, diffusivity and injection rate of virus in
this domain. Note that u(x) is utilized to model an increase in production of viruses
released by necrotic cancer cells. Moreover, T represents the mass transfer rate coef-
ficient between the computational domain � and its environment. Since viruses infect
cancer cells and copy themselves until host cells lysis, infected cancer cells act as
sources where newborn viruses originate. We define �ic(t) to denote the portion of
the computational domain that is occupied by virally infected cancer cells. The func-
tion u(x) in Eq. (9) increases as

u(x) =
{

βc(1 − c
Nv

), if r ∈ �ic(t)

0, else
, (10)

where β and Nv denote the proliferation rate of virus and a burst size of viruses from
a necrotic cancer cell. The function u(x) is a hypothetic function that accounts for the
regeneration of virus particles as long as the cancer cell has been infected. We assume
that the carrying capacity of the viral particles is determined by the availability of
limited amounts of resources in the cancer cell. This assumption translates into the
above logistic differential equation. This function can be revised easily if experimental
observations require this.

Since most clinical data are not available and some parameters have even never
been measured, we estimate some of the input parameters, which are listed in Table 1.
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Table 1 Input values

Parameters Notation Value and Units Source

Virus diffusivity D 0.01 mm2/h Bajaj et al. (2001)

Injection rate γ 1E4 pfu/(mm3 · h) Aghi and Martuza (2005)

Probability rate of cell mutation λmu 5 h−1 Estimated

Probability rate of cell death λde 5 h−1 Estimated

New burst size of viruses Nv 100 –

Viral infection threshold ĉ 10 pfu/mm3 Estimated

3 Numerical Method

3.1 Discretization

We first consider a 2D or 3D that is occupied by uninfected cancer cells, where a dose
of oncolytic viruses is injected into the computational domain as part of the therapy.
Subsequently, viruses diffuse and thereby spread throughout the domain. The change
in concentration of viruses is modeled by the reaction diffusion equation

{
∂c
∂t = D�c + γ δ(x − xp) + βc(1 − c

Nv
), for x ∈ �

D ∂c
∂n + T c = 0, on ∂�

. (11)

Note that the above equation is a combination of Eqs. (9) and (10), in which we only
take one injection source into account. The numerical method is described for the
case of only one injection source since our simulations are only carried out for one
source only. We note that incorporating multiple injection sources would not change
the numerical method conceptually.

To solve the problem in 2D, the Laplace operator is discretized by the finite differ-
ence method (FDM) as,

�c(x, y, t)

� c(x + h, y, t) + c(x − h, y, t) + c(x, y + h, t) + c(x, y − h, t) − 4c(x, y, t)

h2
,

(12)

where h is the distance between adjacent lattice points. If the computational domain
is extended to 3D, the above equation needs to be revised to

�c(x, y, z, t)

� 1

h2
(c(x + h, y, z, t) + c(x − h, y, z, t) + c(x, y + h, z, t) + c(x, y − h, z, t)

+ c(x, y, z + h, t) + c(x, y, z − h, t) − 6c(x, y, z, t)).
(13)
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If a lattice point on boundary �x=0, then the point (−h, y, z) is assumed as a virtual
point out of the computational domain. The Robin boundary condition in Eq. (11) is
dealt with the FDM as,

c(−h, y, z, t) − c(h, y, z, t)

2h
= − T

D
c(0, y, z), (14)

and thereby the viral concentration at the virtual point is calculated by,

c(−h, y, z, t) = c(h, y, z, t) − c(0, y, z, t)

(

1 − 2T

D
h

)

. (15)

Analogously, the viral concentration on the other virtural points can be obtained by

{
c(x,−h, z, t) = c(x, h, z) − c(x, 0, z, t)

(
1 − 2T

D h
)
, on �y=0

c(x, y,−h, t) = c(x, y, h) − c(x, y, 0, t)
(
1 − 2T

D h
)
, on �z=0

. (16)

Similarly, if a lattice point is located on boundary �x=xn , �y=yn or �z=zn , the viral
concentration at the corresponding virtual point is estimated by

⎧
⎪⎨

⎪⎩

c(xn + h, y, z, t) = c(xn − h, y, z, t) − c(xn, y, z, t)
(
1 − 2T

D h
)
, on �x=xn

c(x, yn + h, z, t) = c(x, yn − h, z, t) − c(x, yn, z, t)
(
1 − 2T

D h
)
, on �y=yn

c(x, y, zn + h, t) = c(x, y, zn − h, t) − c(x, y, zn, t)
(
1 − 2T

D h
)
, on �z=zn

.

(17)
Furthermore, the injection of viruses is simulated by a point source that is mathemati-
cally inspired by the Dirac Delta function δ(x), which is mollified by using the normal
distribution,

δ
(
x | xp, ε2

)
=

(
1

2πε2

)d/2

exp

(

−‖ x − xp ‖2
2ε2

)

, (18)

where ε and d, respectively, denote the source width and the dimensionality.

3.2 Time Integration

To update the concentration of virus on each lattice at the next time step, an IMplicit-
EXplicit(IMEX) time integration is utilized, where the linear parts and nonlinear parts
are treated by a Euler backward method and a Euler forward method, respectively.
Thereby the concentration of virus c is updated by

cn+1 = cn + �t

(

D�cn+1 + γ δ
(
x − xp

) + βcn
(

1 − cn+1

Nv

))

. (19)

Note that this IMEX approach avoids the need of inner iterations to solve a nonlinear
problem at each time step. We have used the finite difference scheme on several mesh
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sizes and time steps and we find that enlarging the resolution dose not yield any
significant changes in the approximation for the current numerical setting (see Table
2).

3.3 Monte Carlo Simulation

Monte Carlo simulations are widely used in many quantitative probabilistic and sta-
tistical investigations that permeates much of finance, engineering and contemporary
sciences (Kroese et al. 2014). To obtain quantities of interest, such as (cumulative)
probability distributions of output variables and correlations, Monte Carlo simulations
enable random sampling of input parameters from predefined probability distributions
and extensive repetitive experiments.

Due to the variety of viruses and variations from patient to patient, many vari-
ables can hardly be determined or measured. For instance, the dose of a virus γ may
depend on its effectiveness and toxicity, which varies among viruses. In addition,
some variables, such as the concentration threshold at the time of viral infection ĉ, the
reproductive rate of the virus in cancer cells α and human immune strength β, may all
depend on patient lifestyle, gender and genetic pattern, and hence vary from patient
to patient. However, the above-mentioned variables may be quantitatively correlated
to viral treatment outcomes, and thereby Monte Carlo simulations are performed on
X ∈ {γ, ĉ, α, β}. We assume that X follows a normal distribution X ∼ N(μ, σ 2)with
the mean value μ and the standard deviation σ . Therefore, the stochastic variable X
with a number of samples Ns follows

X ∼ μ + σN(0, 1). (20)

Taking the computational time into account, Monte Carlo simulations are performed
in two-dimensional simulations. Furthermore,Monte Carlo algorithms tend to be scal-
able and rely less on computational dimensionality. Referring to our previous work
in (Chen et al. 2018a), the accuracy of Monte Carlo simulation is proportional to the
reciprocal of the square of the number of samples Ns , therefore 5000 samples are
chosen to guarantee a small error.

4 Numerical Results

To perform the simulations, themost numerical parameters have been listed in Table 2.

4.1 Cancer Progression

We consider a cubic domain to represent the tissue in the pancreas. The 3D domain
� has been divided into Nl lattice points. Each lattice point is occupied by multiple
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Table 2 Numerical parameters

Parameters Notation Value and Units

Computational domain � 15 × 15 × 15mm3

Lattice points Nl 30 × 30 × 30

3D domain volume Vol(�) 3375 mm3

2D domain volume Vol(�) 225 mm2

Time step �t 0.1h

Mesh resolution h 0.5 mm

Proliferation rate of viruses β 1 h−1

cells and the volume of the solid tumor V (t) at time t can be easily calculated by

V (t) = Nc(t) × Vol(�)

N 3
l

(mm3), (21)

where Vol(�) is the domain volume and Nc(t) denotes the number of lattice points
in cancer state {Si = 2} at time t . To model cancer mutation occurring at the edge of
a tissue or organ and its competitive growth with epithelial cells, a small number of
lattice points are generated randomly in one octant of the domain only (see Fig. 4a).
Those lattice points are initiated with epithelial cell state indicated by blue color. Due
to mutation, several lattice points change their states from {Si = 1} to {Si = 2} that
are visualized by the red dots (see Fig. 4a). Typically, normal cells stop dividing once
they contact with each other during division as a result of contact inhibition, which
can prevent excessive proliferation. Contrarily, mutated cancer cells often show unin-
terrupted growth that is called ‘autonomous growth’. Moreover, cancer cells disperse
more easily and invade the neighborhood tissue. Therefore, they have a larger growth
and division rate despite limited space and nutrient supply. In the current simulation,
the probability of mutation, proliferation and death is based on Eq. (3) and several
consecutive snapshots are shown in Fig. 4.

After 1400 hours (approximate 58 days), cancer cells occupy the entire computa-
tional domain and its corresponding growth curve with the respect of time indicated
in red color is shown in Fig. 5a. According to Eq. (8), the growth of cancer cells is
influenced by α, which can be decided by α = α0 · n1

n12
. To investigate the impact

of α0 on the tumor growth curve, multiple values (i.e., 0.75, 0.95, 0.98, 1) are used
and the results show that growth of tumor volume slows down with the increase of α0
value. Therefore, small variations of α0 value facilitate our numerical model fitting
experimental results.

As an example, Fig. 5b shows experimental results of tumor growth curve from
the work by Durrant et al. (2015), where pancreatic cancer cells are inoculated into
immunodeficient mice, where the inoculation site is subcutaneous. Implanted cancer
cells are allowed to grow during two weeks before the initiation of gemcitabine drug
treatment (100µg/kg) and its growth curve is indicated by the blue curve in Fig. 5b.
As a control experiment, the black curve in Fig. 5b exhibits the growth of inoculated
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Fig. 4 Consecutive snapshots of cancer progression, where blue color and red color are visualized as
epithelial and cancer cells, respectively. The 3D domain 15 × 15 × 15mm3 meshes into 30 × 30 × 30
lattices. As a result, cancer cells occupy the entire computational domain when t = 1400 h.

tumor without treatment. To mimic the tumor progression in this situation, we set up
a model with a number of cancer cells initially in the domain. With minor variations
of λi in Eq. (4), our model is able to simulate various growth modes of pancreatic
tumor (indicated by the red lines in Fig. 5b), which fits the experimental results well.
Over 50 days, our numerical results regarding the increase in tumor volume show a
consistency with the experimental work (Durrant et al. 2015).
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Fig. 5 Growth curves of pancreatic tumor under different situations. a A comparison of growth curves
of pancreatic tumors with various α0 value (see Eq. (6)), where λmax = 5 × 10−3; b A comparison of
numerical results with experimental results referring to (Durrant et al. 2015), where control and gem in the
legend denote tumor growth without drug and with gemcitabine drug, respectively. In the simulation with
curve 1, λmax and α0 are equal 1 × 10−3 and 0.94, respectively. However, to calibrate the model to curve
2, λmax decreases to 5.5 × 10−4 and α falls to 0.85

4.2 Oncolytic Virotherapy

Oncolytic virotherapy has been recognized as a promising cancer treatment approach.
We first develop a phenomenological model of oncolytic virotherapy in 3D, where the
intratumoral injection of the virus is taken into consideration. The spread of viruses is
simulated by the reaction-diffusion equation that is solved by using the FDMmethod.
As a result, the diffusion of viruses in two different situations at time t = 50 h are
compared in Fig. 6. Due to the very different doses of virus administration (Aghi
and Martuza 2005; Wollmann et al. 2012), we assume that the injection is carried
out during a time span of 0.5 h with a total dose of approximate 3.6 × 105 pfu viral
particles. Figure 6a shows viruses spread with the absence of cancer cells and new
breeding viruses, whereas Fig. 6b gives the distribution of viruses at time t = 50 h
with the viral infection and newly generated viruses. A few isosurfaces are plotted
with a color bar indicating the concentration of viruses. In contrast, viruses remain in
the core of the computational domain and the highest concentration of viruses is up to
9.4×102 pfu mm3 in Fig. 6a. This is mainly due to a slow viral diffusivity (Bajaj et al.
2001) and insufficient viruses supply. The isosurface in Fig. 6b indicates that a small
amount of viruses has spread near the boundary. Note that irregular isosurface in grey
color has a concentration value of slightly less than 100 pfu mm3, since the new burst
size of viruses from a lysed cancer cell is 100 pfu mm3 in the current model. Due to
viral infection, the highest concentration of viruses in the core is 1.69×102 pfu mm3.

In addition, viral diffusion with the time evolution (when t = 1, 10, 50, 100 h) of
each situation is shown by slices in Figs. 7 and 8, respectively. The slices are taken
from the angle of a z-axis top view, which is located in the middle of the computational
domain. Figure 7 presents a slow and relatively smooth diffusion phenomenon, with
no viruses on the computational boundary at t = 100 h. However, viral spread in
Fig. 8 is faster as a result of the supply new breeding viruses from necrotic cancer
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Fig. 6 A comparison of viruses diffusion by using the FDMmethod with a color bar indicating the concen-
tration of viruses, where red color represents a high concentration of virus, dark blue hints a neglectable viral
concentration and other colors denote values in between. a No cancer cells are present and viral infection is
not simulated, which means no new proliferating viruses. Therefore, most viruses are mainly concentrated
in the center; b In the presence of cancer cells, viral infection ensues, viruses replicate leading to rupture
of cancer cells, which then releases the viruses. The viruses are thus found also at distant locations. The
isosurface in grey color has a concentration value of slightly less than 100 pfu mm3

cells and seems to be more random, which we think to be more in line with the
infection and spread of viruses in reality. Eventually, some viruses spread to the edge
and are dissipated from the border of the domain. Dissipated or remaining viruses
after treatment might be removed by immune cells or, in worse cases, be virulent to
healthy tissue. Therefore, it is vital to assess the toxicity of the remaining viruses after
treatment.

To visualize the modeling progression of oncolytic virotherapy, some consecutive
snapshots are shown in Fig. 9. An extension of the model in Fig. 4, where the com-
putational domain � = 15× 15× 15mm3 has been divided into Nl = 30× 30× 30
lattices. The domain is filled with cancer cells at time t = 0 h, see Fig. 9a. Typically,
viruses are injected intratumorally if cancer occurs under the epidermis (Rehman et al.
2016), otherwise, intravenous injection is themain approach for virotherapy (Aghi and
Martuza 2005). However, the intravenous injections could causemany viruses to infect
other tissue outside of the tumor, or be removed by the immune system or be dissipated
before reaching the cancer area. To make the problem tractable, we consider one dose
of intratumoral injection, which is given at the center of the domain. Subsequently,
internal cancer cellswill start to get infected, indicated in black color, and subsequently
die, which is indicated by the white color, see Figs. 9b, c. Local cells at lattice point i
may get infected once the local concentration of viruses exceeds the threshold, which
is ĉ = 10 pfumm3. Afterward, infected cancer cells (black color in Fig. 9) are able to
die (unoccupied grid nodes in white color) and release new breeding viruses with a
burst size Ns = 100 pfumm3. The dead lattice sites at state S = 0 are reminiscent to
a wound. Then a chain reaction is triggered such that the virotherapy speeds up. Since
internal lattice points are released after the death of infected cancer cells, we suppose
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Fig. 7 Consecutive slice plots of viral spread. No cancer cells are present and viral infection is not simulated,
which means no new proliferating viruses. The slices are taken from the angle of a z-axis top view, which
is located in the middle of the computational domain. A color bar indicates the concentration of viruses

that the normal constitutive cells around the cancer region will migrate to this area
and fill the wound by proliferation, see Fig. 9d–f.

The model describes an ideal virus type with a small dose to kill cancer cells,
however, the role of the viral dose remains unclear. Since some viruses, like NDV, lead
to a significant therapeutic benefit at high doses, whereas other viruses do not (Aghi
and Martuza 2005). However, different types of viruses have different side effects (Yu
and Fang 2007). The risk could be tiny symptoms, such as flu or fever (Cripe et al.
2015), and also could be severe like fatal muscle toxicity or neurotoxicity (Russell
et al. 2012). Therefore, the evaluation of residual viruses after treatment is crucially
important. In our model, according to the boundary condition in Eq. (9), viruses
will dissipate from the boundary to other tissues or organs. Thereby we estimate the
remaining viruses in the modeled area and ignore the dissipated viruses when t = 100
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Fig. 8 Consecutive slice plots of viral spread. In the presence of cancer cells (cancer cells are not shown
for clarity), viral infection ensues, viruses replicate leading to rupture of cancer cells, which then releases
the viruses. The slices are taken from the angle of a z-axis top view, which is located in the middle of the
computational domain. A color bar indicates the concentration of viruses

h. Figure 10a, b show changes in total viruses and cancer volume over time in the
domain, respectively. At the beginning, a total dose 0.18× 105 pfu (injection rate γ =
0.5×104 pfu/h) is given (see the enlarged view in Fig. 10a), where the domain is fully
occupied by uninfected cancer cells with a volume as large as 3375mm3 (see Fig.
10b). Once cancer cells get infected by viruses, successful viruses begin to replicate
themselves until the host cancer cells rupture, which results in a significant increase
in viral quantity and decrease in cancer volume. When time approaches 80 h, the
number of viruses in the domain have accumulated to a peak (see Fig. 10a), whereas
most cancer cells are damaged (see Fig. 10b). Furthermore, Fig. 10a shows that the
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Fig. 9 Consecutive snapshots of oncolytic virotherapy. The blue, red and black colors are visualized as
epithelial, cancer and infected cancer cells, respectively. In addition, white color means the dead cells or
unoccupied lattice points. A small scale of cancerous tissue that returns to normal tissue by cell reproduction
or migration under the oncolytic virotherapy after t = 110 h
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Fig. 10 a Changes in viral quantity in the computational domain; b Changes in cancer volume with time

Fig. 11 a Changes in viral quantity as the evolution of time with an injection rate γ = 1 × 104 pfu/h; b
Changes in viral quantity as the evolution of time with an injection rate γ = 0.5× 105 pfu/h; c Changes in
viral quantity as the evolution of time with an injection rate γ = 1 × 105 pfu/h

number of viruses gradually decreases after 80 h and this is mainly because a fraction
of viruses escapes from the domain boundary. Note that there is a minor decline in
the number of viruses (see the enlarged view in Fig. 10a), which may be due to the
fact that the actual number of viruses present exceeds the carrying capacity of viruses.
In order to investigate whether there is a maximum capacity of viruses in a limited
domain, various injection rates (i.e., 1× 104, 0.5× 105, 1× 105 pfu/h) are compared.
The results given in Fig. 11 show that a larger viral dose leads to a greater decline
in total particles after injection and do not affect the eventual result because of the
maximum capacity of viruses in the computational domain. The results suggest that
if a certain threshold is exceeded for the amount of injected viruses, then its temporal
evolution is more or less the same.

4.3 Monte Carlo Simulations

Kelly and Russell (2007) showed that immunosuppressed patients normally have a
better therapeutic benefit than those who have an intact immune system in oncolytic
virotherapy. However, a defective immune system would lead to a large number of
viruses, which is associated with unacceptable toxicity in most cases (Russell et al.
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Table 3 Mean and standard deviation in the Monte Carlo simulation sampling

Parameters γ ĉ η

Value (1 × 104, (0.4 × 104)2) (15 52) (1 × 10−2, (1 × 10−2)2)

2012). To make our model applicable to a wide range of virus species, the antiviral
immune response is incorporated in the Monte Carlo simulations as one of the input
variables,whichwe sample fromaprobability distribution.Therefore, Eq. (9) is revised
slightly to

⎧
⎪⎨

⎪⎩

∂c
∂t − D�c =

∑

p∈V(t)

γ δ(x − xp(t)) + βc(1 − c

Nv

) − ηc, for x ∈ �

D ∂c
∂n + T c = 0, on ∂�

, (22)

The injection is modeled by Dirac delta function δ(x) with source points at position
xp. Moreover, β and Nv define the proliferation rate and a burst size of viruses from a
necrotic cancer cell. On the domain boundary ∂�, T again represents the mass transfer
rate. Note that ηc represents the neutralization process by immune cells where η

denotes the neutralization rate. Therefore, the antiviral immune strength is investigated
by variation of the η parameter. Since the appropriate dose of a specific virus is still
unclear, the total dose of viral injection is considered by varying the injection rate γ .

Moreover, the infection threshold ĉ is used to evaluate the ability of viral infectivity
regarding its impact on the final total particles of the remaining viruses and cancer area.
To perform theMonteCarlo simulations, 5000 samples are chosen for the injection rate
γ , infection threshold ĉ and immune strength η, where sampling parameters follow
the normal distribution. The mean and variance of the sampling parameters have been
listed in Table 3. Taking CPU time into consideration, we limit each simulation up to
50 h and then compare total particles of the remaining viruses and cancer area in the
computational domain. Based on 5000 samples, Fig. 12a, b show the histograms of the
total particles of the remaining viruses and cancer area, respectively, in 2D simulations
with a total area of the domain of 225 mm2 (15mm × 15mm). Of 5000 samples, 700
simulations end with few residual viruses, see Fig. 12a and thereby there are around
700 cases with a cancer area above 200mm2 in Fig. 12b. This may be caused by a
combination of low injection rate, high infection rate and a strong antiviral immune
response.

Since the simulation is limited to 50 h, most cases end with a large cancer area
compared with the original area, which is from 100 to 200mm2. Correspondingly,
there is a large portion of simulations that have the remaining viral quantity ranging
from 1E4 to 3E4 pfu at t = 50 h. To see the correlations between variables and the
numerical results, several scatter plots are shown in Figs. 13, 14 and 15. The role of
viral dose is tested by using the injection rate γ in Fig.13, which shows that there is no
obvious correlation between the injected virus dose and the remaining viral quantity
and cancer area. This is probably because of an insufficient simulation time period or
the maximum capacity of viruses in a limited domain (see Fig. 11 as an illustration
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Fig. 12 a Histogram of the total number of remaining particles of the viruses in Monte Carlo simulations
on parameters γ , ĉ and η; bHistogram of cancer area in Monte Carlo simulations on parameters γ , ĉ and η

Fig. 13 a Scatter plot of injection rate γ and total particles of the remaining viruses. The corresponding
correlation coefficient is R = 0.0665; b Scatter plot of injection rate of γ and the final cancer area with a
correlation coefficient R = −0.0668

for this claim). Since the viral particles are not necessarily contained in the domain of
computation, but are leaving the considered region as a result of diffusion (possibly also
as a result of being transported by the blood vessel network). The ‘loss’ of particles is
modeled by the Robin boundary condition. This is the reason why that once all cancer
cells have been neutralized, like happens in some of the Monte Carlo simulations, the
viral particles concentration will tend to zero in the computational domain, and hence
a flattening behavior takes place along the ‘no residual viruses axis’, see Fig. 13a. The
flattening behavior that is shown in Fig. 13b reflects the Monte Carlo runs for cases
that the viral particles are already transported away from the domain of computation
and hence the cancer cells are not reached by which the viral doses are not able to
reproduce sufficiently and hence the entire region (15 × 15 × 15mm2 = 225mm2)
remains full with cancer cells.

In contrast, the infection threshold, which is used to represent the ability of viral
infectivity, shows a significant correlation with the remaining viral quantity and cancer
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Fig. 14 a Scatter plot of infection threshold ĉ and the total particles of the remaining viruses. The corre-
sponding correlation coefficient is R = −0.8413; b Scatter plot of infection threshold ĉ and the final cancer
area. The correlation coefficient of infection threshold ĉ and the final cancer area is R = 0.9210

Fig. 15 a Scatter plot of immune strength and the remaining viral quantity. The correlation coefficient of
immune strength and the remaining viral quantity is R = −0.4320; b Scatter plot of immune strength and
the final cancer area. The correlation coefficient of immune strength and the cancer area is R = 0.2978

area in Fig. 14. The higher the threshold value, the higher the concentration of the
virus is needed to infect the cancer cells, which hints at a lower ability of the viral
infectivity. From Fig. 14a, the number of residual viruses decreases with increasing
infection threshold since viruses with low infection ability are not able to damage
cancer cells, but they can be eliminated by the antiviral immune response. Therefore,
antiviral immune and insufficient newborn viruses facilitate cases with few residual
viruses after 50 h. Certainly, the cancer area will not reduce significantly if the viral
infection ability is weak. Viruses with a good infectivity (ĉ ≤ 5) are able to neutralize
cancer cells within a period of t = 50 h. Based on Eq. (22), the term ηc(r) reflects
the immune strength, therefore, the immune strength is investigated through variation
of immune reduction rate η. Note that the value of c(r) is quite large and thereby the
η is chosen very small (from 0 to 0.06) to guarantee a simulation with a likelihood
of success. A large η denotes a strong antiviral immune response that would result in
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the death of most viruses. According to Fig. 15a, in the case of immunodeficiency,
the residual viruses could accumulate to a large amount, while the amount falls as the
immunity increases. When the antiviral response is strong like η > 0.04, viruses will
be eliminated by immune cells completely in the domain. On the contrary, the cancer
area has declined with the intervention of residual viruses if the antiviral immune is
defective (see when η approaches to 0). However, the cancer area is more likely to
be large in size when the immune response is strong, like η > 0.04. This indicates
that patients with a weaker immune response may benefit from a larger reduction of
the tumor size. However, at the same time, patients with a weak immune system are
sensitive to have large amounts of residual viruses in their bodies.

5 Conclusions

Many animal-based experiments and clinical trials yielded a noticeable tumor attenua-
tion by using oncolytic viruses (De Pace 1912;Kasuya et al. 2005). However, currently,
viruses are not deemed as a useful means to stop or inhibit cancer since there is no
effective way to control the virulence and retaining their replication capability in can-
cer cells (Kelly andRussell 2007).We have developed a cell-basedmodel in pancreatic
cancer at early stages (Chen et al. 2018b), which is subsequently extended to therapy
model in (Chen et al. 2019). However, compared to classical treatments for pancreatic
cancer like surgery, radiotherapy, chemotherapy, virotherapy has its own limitations,
which needs further scientific assessment. In particular, the limitations include antivi-
ral immune responses, inefficient delivery of virus as well as the poor virus spread
in tumor area (Wennier et al. 2011). Therefore, more research in terms of oncolytic
virotherapy is needed.

In the present study,wedevelop a 3Dcellular automatamodel for oncolytic virother-
apy. As we expected, the model is able to simulate cancer progression at early stages,
which include the biological processes such as mutation, proliferation and death.
Within 1400 h (appropriate 58 days), cancerous cells mutate from healthy somatic
cells and then colonize the computational domain as big as 15 × 15 × 15 mm3. Cer-
tainly, the model is scalable and the speed of cancer progression can be adjusted by
variation of input parameters. Therefore, different growth trends have been compared
and one numerical result of our model could fit experimental results very well. Subse-
quently, oncolytic virotherapy is phenomenologically simulated in the same domain
that is completely occupied by cancer cells. The migration and proliferation of the
virus is modeled by using a reaction-diffusion equation, which is solved by a FDM
method. Since viruses specifically infect and damage cancer cells, the model predicts
cancer attenuation as time evolves. Eventually, normal somatic cells fill in the gap
through migration and proliferation.

In addition, Monte Carlo simulations are performed in a 2Dmodel to quantitatively
investigate the correlations between several input variables and numerical results.
Among 5000 samples, there are 700 simulations ending with few residual viruses
and large cancer area, which dues to failed virotherapy probably as results of the
extreme parameter values. The results indicate an insignificant correlation between
the injection dose of viruses and simulated results (total residual viruses and cancer
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area), and that is probably because of an improper value range of injection rate, an
insufficient simulation time period or a limited computational domain. However, we
believe that this result is acceptable, since somevirus species, such asNDV, showahigh
correlation between given doses and therapeutic benefits, whereas others do not (Aghi
and Martuza 2005). Further, the viral infection threshold has a significant correlation
with total amount of remaining viruses and with the final cancer area, which means
that viruses with low viral infectivity likely allow a large cancer area with just few
viruses left. Moreover, the anti-viral immune response presents an obvious correlation
with the numerical results. Specifically, most simulations end up with relatively fewer
viruses if the anti-viral reaction is strong and thereby the corresponding residual cancer
area is also larger.

Due to gene mutation (i.e., RAS, TP53), the anti-viral infection ability of cancer
cells is weakened, which gives the oncolytic viruses a chance (Chiocca 2002) to infect
the cancer cells. Research in oncolytic viruses is not limited to cancer therapy research,
also in studies that combine other treatments, such as immunotherapy (Bommareddy
et al. 2018) and chemotherapy (Molnar-Kimber et al. 2002). In order to optimize the
viral therapy in terms of fighting cancer, and leaving as few viral particles post-therapy
as possible, further experimental studies are necessary. The required quantification in
order to optimize viral therapy implies that mathematical modeling is a necessary and
very helpful step.
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