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Voxel-Based Extraction and Classification of 3-D
Pole-Like Objects From Mobile LiDAR Point
Cloud Data

Zhizhong Kang *“, Juntao Yang

Abstract—The digital mapping of road environment is an im-
portant task for road infrastructure inventory and urban plan-
ning. Automatic extraction and classification of pole-like objects
can remarkably reduce mapping cost and enhance work efficiency.
Therefore, this paper proposes a voxel-based method that auto-
matically extracts and classifies three-dimensional (3-D) pole-like
objects by analyzing the spatial characteristics of objects. First,
a voxel-based shape recognition is conducted to generate a set of
pole-like object candidates. Second, according to their isolation
and vertical continuity, the pole-like objects are detected and in-
dividualized using the proposed circular model with an adaptive
radius and the vertical region growing algorithm. Finally, several
semantic rules, consisting of shape features and spatial topologi-
cal relationships, are derived for further classifying the extracted
pole-like objects into four categories (i.e., lamp posts, utility poles,
tree trunks, and others). The proposed method was evaluated using
three datasets from mobile LiDAR point cloud data. The experi-
mental results demonstrate that the proposed method efficiently
extracted the pole-like objects from the three datasets, with extrac-
tion rates of 85.3%, 94.1%, and 92.3%. Moreover, the proposed
method can achieve robust classificationresults, especially for clas-
sifying tree trunks.

Index Terms—Classification, detection, mobile LiDAR, principal
component analysis (PCA), vertical pole-like objects.

1. INTRODUCTION

RBAN road environment contains a variety of pole-like
U objects such as street signs, lamp posts, utility poles, tree
trunks, and so on. Mapping of these vertical pole-like objects
is of significance for robot navigation, autonomous driving,
detailed three-dimensional (3-D) map generation, road
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infrastructure inventory, and monitoring [1]. For example, the
positions of these pole-like objects might provide the naviga-
tion information needed for autonomous driving, especially in
the area where global positioning system signal is weak. How-
ever, manual visual inspection is time-consuming and laborious
since there are a large number of pole-like objects along road
corridors. Thus, it is necessary to develop an automatic pole-
like object detection and classification method to reduce manual
inspection time and obtain the pole-like object information.

With the development of mobile mapping systems, many ap-
proaches for extracting pole-like objects from optical images
or videos have been developed [2] and have the advantages of
high-level automation. Nevertheless, these optical image based
methods usually rely on the visibility of pole-like objects, which
is easily affected by illumination changes and weather condi-
tions (such as fog and rain) [3]. Compared with optical images or
videos, mobile LiDAR data have become increasingly popular
for automatically detecting pole-like objects since it can avoid
several inevitable problems from which optical images suffer,
such as variant illumination and background confusion, which
can effectively reduce the error extraction rate.

To date, a large number of methods for pole-like object detec-
tion and classification from mobile LiDAR point cloud data have
been presented. For pole-like object detection, most of the exist-
ing methods consist of two steps: segmentation and recognition.
The segmentation step generates a set of connected clusters of
points as object candidates, while the recognition step further
distinguishes these object candidates into the pole-like objects
or others. In the literature involving pole-like object detection,
several segmentation methods, such as the region growing based
methods [1], the clustering-based methods [4]-[6], the slicing-
based methods [7], the density-based methods [8]-[11], the scan
line based methods [12], [13], and the voxel-based methods
[14]-[16], have been proposed and they all partitioned the orig-
inal point cloud data into connected segments, each of which
comprises the same type of points, for the subsequent recog-
nition step. As a matter of fact, the integrated segmentation
methods, such as combining the slicing-based method with the
region growing based algorithm [1], combining the Euclidean
distance clustering method with normalized cut segmentation
method [4], as well as combining the scan line based segmenta-
tion method with the clustering method [12], were usually used
to robustly obtain the accurate pole-like candidates, particularly
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in overlapped regions. Then, the object-based geometric fea-
tures were calculated for the representation of these segmented
objects candidates that were further identified into pole-like ob-
jects or others using knowledge-based [5], [10], [12], [14], [15],
[17], [18] or machine learning based approaches [1], [11]. In
terms of these detection methods, the main challenge is how
to robustly and efficiently segment and recognize the pole-like
objects in the overlapped regions.

After detecting the individual pole-like objects, some research
works also attempted to further classify these pole-like objects
as lamp posts, street signs, utility poles, tree trunks, and so on.
Yan et al. [5] calculated ensemble of shape functions and geo-
metric features of the target objects and classified them using a
random forest classifier. Rodriguez-Cuenca et al. [17] computed
roughness and scattering degree and then labeled the vertical el-
ements as man-made poles or trees. Yokoyama et al. [19] used
shape features and context features for classifying utility poles,
lamp posts, and street signs. Fukano and Masuda [20] subdi-
vided a pole-like object into five point sets and then computed
the feature vector for each subset, which served as the input of
a random forest classifier. Riveiro et al. [21] extracted shape
descriptors to classify retro-reflective traffic signs from mobile
LiDAR data. Li et al. [22] decomposed the pole-like objects
into different components according to their spatial relations
and proposed a method to evaluate the decomposition results.
However, due to the shape similarities among different types
of pole-like objects, these existing classification methods also
have some limitations of requiring a lot of training data or only
using the shape features.

Aiming at addressing these challenges raised from the state-
of-the-art of the pole-like object detection and classification, this
paper proposes a voxel-based method for automatic extraction
and classification of 3-D pole-like objects from mobile LiDAR
point cloud data. The pole-like objects, especially in the over-
lapped regions, might not be segmented accurately. Instead of
directly segmenting the individual and isolated point clusters
for further identification, the voxel-based shape recognition is
first conducted to generate a set of linear voxels as the pole-like
object candidates based on the unique characteristics that the
local parts of the pole-like objects are still pole-like. Second,
according to their isolation and vertical continuity, the pole-like
objects are detected and individualized using the proposed cir-
cular model with an adaptive radius and the vertical region grow-
ing algorithm. Third, due to the similar shape features among
different types of pole-like objects, the spatial topological re-
lationship is also introduced to assist in the pole-like object
classification.

The rest of this paper is organized as follows. Section II
describes our proposed method in detail. Section III presents
experimental results and analysis for evaluating the proposed
method. This paper concludes with a discussion of future re-
search considerations in Section IV.

II. METHODOLOGY

In this paper, we detect and classify the pole-like objects from
mobile LiDAR point cloud data through voxel-based analysis.

Mobile LiDAR point cloud
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Fig. 1.  Workflow of the proposed method.

As shown in Fig. 1, the proposed method consists of the follow-
ing steps.

1) Generating a set of linear voxels as the pole-like object

candidates through the voxel-based shape recognition.

2) Identifying voxels that belong to pole-like objects using

the proposed circular model with an adaptive radius.

3) Extracting the individual pole-like objects based on the

vertical region growing algorithm.

4) Further classifying the extracted pole-like objects by sev-

eral semantic rules.

As a result, the pole-like objects are extracted and classified
into four categories, i.e., tree trunks, utility poles, lamp posts,
and others (e.g., street signs). Key algorithms of the proposed
method are given in more detail below.

A. Voxel-Based Shape Recognition

The parts of the pole-like objects exhibit the linear pattern,
whereas those of others (such as buildings and tree crowns)
usually present the planar or spherical characteristics. Thus,
in this section, we conduct the voxel-based shape recognition
with a successive scheme, which includes voxelization, voxel-
based dimension analysis, and MRF-based shape recognition
optimization. As a result, a set of linear voxels is generated and
serves as the input of the subsequent modules.

1) Voxelization: Mobile LiDAR point cloud data contain a
large number of points and the distribution of these points is
generally heterogeneous. Consequently, to reduce the data vol-
ume, we construct 3-D voxels as primitives based on the XYZ
coordinates alone. The space is divided into a regular 3-D grid
and each voxel is in the shape of a cuboid and its geometry is
defined by length (1), width (w), and height (k). The location
of a voxel is indexed by column (7), row (j), and layer (k). Ac-
cording to the minimum coordinate (Xyin, Yimin, Zmin ), and
the length (), width (w), and height (h) of the 3-D voxel, the
index (i, j, k) of each point in the point cloud can be calculated
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Fig. 2.

Voxelization of the scattered point cloud.

using (1). As a result, numerous points are grouped together to
form 3-D voxels. As shown in Fig. 2, a number of points are
grouped together to form 3-D voxels:

1 = floor(X — Xy ) /1
j =floor(Y — Y )/w ()
k = floor(Z — Znin)/ .

2) Voxel-Based Dimension Analysis: After voxelization, we
use principal component analysis (PCA) [24] to analyze the
dimension of voxels, since PCA is a well-accepted approach
for dimension analysis and is widely used to infer the objects
in point cloud data into three types of shape: linear, planar, and
spherical [25].

Voxel dimensional analysis is a procedure that analyzes the
local shape of points inside a voxel. It is well-known that the
voxel size directly determines the number of points it contains,
which probably affects the validity of the dimensional analysis.
Alternatively, we carry out the dimensional analysis based on the
geometric center p of the query voxel and its neighbors within
a predefined radius R. For describing the geometric structure
around p, the covariance matrix C,, can be derived from the
query geometric center p and its neighbors using

C, = ﬁ > i-p)pi—p)" )

pi CN

where |N| denotes the number of neighboring points, p =
ﬁ > pi- Let 41 > Ao > A3 > 0 be the normalized eigen-
cN

p? =
values of C,,. Following the idea of the previous work [24], we
identify the geometric structure of points using linear (a14), pla-
nar (as, ), and spherical (a3, ) characteristics, shown as follows:

aaq = %ﬂ . 3)

However, the performance of the dimensional analysis is eas-
ily affected by the predefined radius R. For example, the geo-
metric structure of points may be incorrectly estimated if the
predefined radius R is too small, whereas the identification
might be affected by noises when the predefined radius R is
too large. Thus, in this paper, we adopt an entropy function [26]
to adaptively determine the predefined radius R for inferring the

TABLE 1
LOCAL SHAPE INFERENCE ACCORDING TO EIGENVALUES OF THE
COVARIANCE MATRIX

Local shape Values Predominant direction
Linear a, >a, and a, > a,, v,
Planar a,, > a,and a,; > a,, v,
Spherical a,, > a,, and Ay, > Ay non-direction

Fig. 3. Voxel-based shape recognition. Linear: red, Planar: green, and Spher-
ical: blue.

Fig.4. Some typical illustrations of linear voxels that are not parts of pole-like
objects. Linear: red, Planar: green, and Spherical: blue.

geometric structure of points, as follows:

Ef(VpR) = —ajgIn(—ayq) — agqg In(—asg) — azq In(—azq).
“)

Let Ryin and Ry, ., be the minimum and maximum radius,
respectively. The predefined radius R is iteratively increased
by R.qq for minimizing the entropy function £ (VPR). For the
query geometric center p, the predefined radius R, the eigenval-
ues A1, Ag, and A3, and the corresponding eigenvectors vy, v,
and w3 are stored. Then, a4, asy, and agy are calculated and
compared (see Table I). When a; 4 has the largest value, the point
set within the voxel shows a linear shape and its predominant
direction is the direction of the eigenvector v;, which is aligned
with the direction of the linear object. When as, has the largest
value, the point cloud within the voxel presents a planar shape
and its predominant direction is the direction of the eigenvector
v3, which is the normal direction of the plane. Finally, when a3
has the largest value, the point cloud within the voxel exhibits
a spherical shape and no predominant direction. Fig. 3 exhibits
the voxel-based shape recognition results.

3) MRF-Based Shape Recognition Optimization: As shown
in Fig. 4, the linear voxels identified in Section II-A2 are prob-
ably linear parts of tree branches or buildings rather than the
pole-like objects because of the complex and incomplete scenes,
occlusions, and noises. Furthermore, we also observe that unlike
the pole-like objects, most parts of other ground objects, such as
buildings and tree crowns, are planar and spherical. To address
this issue in Fig. 4, an MRF model is commonly used to model
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the contextual information for obtaining locally continuous and
globally optimal results. Therefore, in this section, we aim to
optimize the shape recognition results by introducing contex-
tual information for the subsequent detection and classification
modules and formulate the optimization problem into a binary
labeling problem (i.e., voxels of linear and nonlinear type).

MRF model [27] is a weighted undirected graph G = (V| E),
where V' denotes a set of nodes corresponding to the vox-
els, and E represents a set of undirected edges between the
neighboring nodes. In this paper, the weighted undirected graph
also contains two additional terminals V; and V;, correspond-
ing to linear and nonlinear type, respectively. For a point
cloud D, let ¢ = {¢1,{s,...,(x} denote a set of voxels, let
Q = {linear, nonlinear} be a set of labels, and let L = {l =
(leysleysosley ), € Q,i=1,2,..., N} denote all possible
label configurations of voxels. As a result, the set of nodes
V={V,li=1...N}U{V,,V;} and the set of edges E =
(Vi Vi b AV, Vi L AV, Vil by € {Gli = 1... N} In the
field of computer vision, finding the optimal label configura-
tions L* can be naturally formulated into the energy function
minimization as follows:

ED(L) = Endata(L) + A Ensmooth(L) 4)

where data term Eng,, (L) measures the disagreement between
L and the observed data, smooth term Eg,,00t1 (L) measures the
extent to which L is not piecewise smooth, and A denotes the
weight parameter.

The form of data term Eng,, (L) is typically defined as

Engaia (L) = Y Dy(l) (6)

ueV
where D, (I,) quantitatively measures the degree of “fit” be-
tween the label /,, and the observed data, and is calculated using
(7). The larger the value of a; 4, the smaller the data term D, (1, ):

1 —e®4 if uislabeled as nonlinear
D, (lu ) = e . . - (D
et if uislabeled as linear

To generate locally continuous and globally optimal la-
bel configurations, the smooth term Egp,o0¢n (L) is generally
defined as

Ensmooth(L) = Z Su,v(luvlv) (8)
{u,v}eR
where R denotes a 26 neighborhood system, S, ,

i1, #1,
otherwise g(u7 U)

(lus bo) = g(u,v) - 6(L, 1), 0 (L, 1) = {

_Pac .
=e ~» ,and D¢, ¢, denotes the distance between (, and ¢, .

p denotes the expectation of all neighboring distances [28]. As
defined in (8), the smoothness penalty term is zero for the neigh-
boring voxels with the same label. With regards to the adjacent
voxels with different labels, the smaller the distance between
them, the larger the smoothness penalty term. Consequently,
the smooth term Engyo0tn (L) encodes the extent to which the
adjacent voxels belong to the same label. Table II lists the weight
definition of edges in the weighted undirected graph. Finally, the
energy function in (5) is minimized by the o — (3 swap algorithm
[29], since it approximately minimizes the energy function for

TABLE II
'WEIGHT DEFINITION OF EDGES

Edges Weights
rl DO T S, 60) w1 = 1Ny
rf DO 58, (h) ue i, |i- 1.V}
rl S, 0u0) u, vy ELC li=1..N}
z
@7 voxel(i, j,k+n,)
L
o | [fe— %(i,j,k)
[‘ﬁlj% voxel(i, j,k—n,)
A =
Fig. 5. Voxels of the pole-like objects. Each voxel can be indexed using
(4,4, k).
o wpmm Slice plane
Slice plane aner circle
L
LiDAR Outer circle
points F—da—t—r—
T
(a) (b)
Fig. 6. Schematic diagram of the circular model with an adaptive radius.

(a) Slice the point cloud and the circular model. (b) Detailed projective point
distribution of a slice (partial).

an arbitrary finite set of labels, which not only demonstrates
improved computational efficiency but also obtains the globally
optimal solution.

B. Identifying Voxels of Pole-Like Objects Using a Circular
Model With an Adaptive Radius

According to the procedure described in Section II-A, each
voxel is labeled as linear, planar, or spherical type. It is noted
that the pole-like objects are generally individual and isolated,
and their predominant direction is approximately parallel to the
Z-axis. As shown in Fig. 5, voxels within the single poles exhibit
a linear arrangement in the vertical direction and no planar or
spherical voxels exist in the horizontal direction. In contrast,
other ground objects, such as tree canopies, low vegetations,
and building facades, might have multiple continuous voxels
in the horizontal direction and most of these voxels are planar
or spherical. Hence, we follow the slicing strategy [7] and use
a circular model with an adaptive radius [13] for identifying
voxels that belong to the pole-like objects.

As illustrated in Fig. 6(a), we first divide the non-ground
points into slices according to the selected interval (e.g., the
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Fig. 7. Examples of detecting voxels of pole-like objects using the circular
model with an adaptive radius. Point cloud data in the first row are rendered from
blue to red as the height value increases. The red squares denote linear voxels,
and the gray squares denote non-linear voxels. (a) Utility poles. (b) Street trees.
(c) Buildings.

size of a voxel in this paper). After slicing, the linear voxels
generated in Section II and its adjacent linear voxels within
the same slice are clustered [30]. Then, the clustered points are
projected onto the associated slice plane [see Fig. 6(b)]. As a
matter of fact, the single pole-like objects should be narrow and
elongated point clusters that are surrounded by empty space in
the LiDAR point cloud data. Thus, we build a circular model
with an adaptive radius consisting of two concentric circles.
As shown in Fig. 6(b), let the geometric center p of the query
cluster be the center of two concentric circles, let the maximum
horizontal distance d,,,, between the geometric center p and
any point inside the query cluster be the search radius of inner
circle, let dy,, .« + 7, where r is a threshold value that controls the
search radius, be the search radius of outer circle. Theoretically,
the number of points (/Vy,.x) inside the outer circle is equal
to the number of points (Nyi,) inside the inner circle if the
query cluster is part of a pole-like object. Considering a possible
scenario in which the points of some non-pole-like objects such
as boards of street signs might exist, we label the query cluster
as a pole-like object if Nyax — Nmin < Nihreshold 1S satisfied
(where Ninreshola 1S a threshold value that controls the number
of non-pole-like object points).

Fig. 7 illustrates real examples of the circular model for de-
tecting voxels of different ground objects. Utility poles are pri-
marily composed of linear voxels without nonlinear voxels in
the vertical direction and there is an almost empty space around
them in the horizontal direction, whereas street tree canopies

g

,,,,,,,,,, g ‘ !

Fig. 8. Some typical linear voxels belonging to the pole-like objects. Linear
voxels belonging to the pole-like objects: red, Other voxels: gray.
Fup
Region 3D line
growing constraint
@Down
(a) (b) (c)

Fig. 9. Schematic diagram of extracting each individual pole-like object. Lin-
ear voxels belonging to the pole-like objects: red, Other voxels: gray.

and buildings present relatively complex structures and mostly
have planar or spherical voxels in the vertical and horizontal
directions.

C. Pole-Like Object Extraction Based on Vertical
Region Growing

For each slice, voxels belonging to the pole-like objects are
identified, which will be used as seed voxels for detecting the
individual pole-like objects. As shown in Fig. 8, some compo-
nents within a pole-like object might not be pole-like. To obtain
the individual pole-like objects, in this section, a vertical region
growing algorithm [10] is conducted within a pillar structure
for matching and merging the pole-like voxels, that is, the same
pole-like objects. As a result, all the individual pole-like ob-
jects are extracted. As shown in Fig. 9, the specific process of
conducting the vertical region growing algorithm is as follows.

1) The vertical growing starts from one of the voxels be-
longing to pole-like objects to create the first individual
pole-like object.

2) Vertically growing from seed voxels inside a pillar struc-
ture, the nearest voxels belonging to pole-like objects are
added to the query segmented object.

3) The growing continues until the distance between the
query segmented object and the next nearest voxel be-
longing to pole-like objects exceeds a threshold of 0.5 m.
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This threshold is determined by the minimum distance
between any two pole-like objects in the experimental
scene.

4) The previous steps are repeated until all the voxels be-
longing to pole-like objects are traversed. As a result, each
group of points denotes an individual pole-like object.

Due to the non-pole-like components within the pole-like

objects, some of the individual pole-like objects extracted by
only using the vertical region growing algorithm might not be
vertically continuous [see Fig. 9(b)]. For these broken pole-
like objects, we use a random sample consensus (RANSAC)
algorithm [31] to fit the query individual pole-like object into
a 3-D line, since it uses initial data that satisfy as few fitting
conditions as possible and then adopts a consensus to expand
the dataset, which is robust to noises. Then, the points at the
broken parts whose distances to the 3-D fit line are less than the
maximum radius are also added to the query individual pole-like
object for obtaining the complete pole-like object [see Fig. 9(c)].

D. Pole-Like Object Classification Based on Semantic Rules

Road environment might consist of various types of pole-like
objects, such as lamp posts, street signs, traffic lights, utility
poles, and tree trunks. These different types of pole-like objects
usually exhibit different morphological characteristics and spa-
tial topological relationships. Therefore, after identifying all the
individual pole-like objects generated in Section II-C, several
semantic rules can be derived in terms of the morphological
characteristics of an object and its spatial relationship with oth-
ers and used to classify these extracted pole-like objects into
four categories, i.e., tree trunks, utility poles, lamp posts, and
others (e.g., street signs).

Height [32] is an important characteristic of pole-like objects
and usually varies from one type to another, which can be used
as criteria to classify different pole-like objects. For example,
the heights of pole-like objects such as lamp posts, street signs,
traffic lights, and utility poles, normally have explicit speci-
fications, whereas those of tree trunks vary according to tree
ages and species. Utility poles should be the highest objects to
ensure the safety of power line and the reliable distribution of
electricity.

As shown in Fig. 10, different pole-like objects exhibit
different two-dimensional (2-D) projected point distributions
and the red 2-D grids are positions of the individual pole-
like objects extracted Section II-C. For example, tree trunks
should connect to tree crowns, which can be used for identi-
fying tree trunks. More specifically, we accumulate the num-
ber of 2-D grids containing points within 24 neighbors of
the query red grids. If the number of 2-D grids containing
points exceeds the threshold value, the query pole-like object is
labeled as tree trunks. As a result, tree trunks are distinguished
from other type of pole-like objects. For the subsequent clas-
sification procedure, utility poles, lamp posts, and others are
classified based on their heights. Generally, the height ranges of
utility poles and lamp posts in a specific area can be retrieved
from municipal departments. In our implementation, the nor-
malized height of each pole-like object (N},) is calculated. If

Legend
13.1m
| ]
I I
g -
l ' T I 0.0m
Lamp posts Tree trunks Others Utility poles
+ ‘
4 o
L 3
Fig. 10.  2-D projected point distributions among different pole-like objects.

Point cloud data are rendered from blue to red as the height value increases. The
red 2-D grids are positions of the extracted pole-like objects.

Fig. 11.  Three experimental datasets of mobile LiDAR point clouds. Points
are colored from blue to red as the height value increases. (a) City block (dataset
I). (b) Residential area (dataset II). (c) Street scene (dataset III).

Nj, > hytility, the query pole-like object is labeled as utility
poles. If Nj > hjamp, the query pole-like object is labeled as
lamp posts. If neither of these two conditions is satisfied, the
query pole-like object is labeled as others.

III. EXPERIMENTATION AND ANALYSIS

To verify the effectiveness and robustness of the proposed
method, we performed both qualitative and quantitative eval-
uations using three experimental datasets from mobile LiDAR
point cloud data.

A. Experimental Data and Evaluation Criterion

In dataset I, a city block covered approximately 282 x 302 m?
and was scanned by the ROAMER system developed by the
Finnish Geodetic Institute [see Fig. 11(a)]. The total number of
points in dataset I was 2 128 736 points, with the point den-
sity of approximately 274 points/m”. Dataset I contained large
number of structures i.e., street lights, utility poles, street trees,
buildings, and vehicles. In dataset II, a residential area covered
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approximately 447 x 365 m? and was scanned by the Lynx
Mobile Mapper system developed by Optech [see Fig. 11(b)].
The total number of points in dataset II was 8 068 188,
with the point density of approximately 1063 points/m?.
Dataset II comprised buildings, lamp posts, utility poles, and
a very small number of street trees. In dataset 111, a street scene
covering approximately 430 x 165 m”> was provided by Delft
University of Technology [see Fig. 11(c)]. The total number
of points in dataset III was 17 466 607, with the point den-
sity of approximately 756 points/m?. Dataset III mainly con-
sisted of buildings, lamp posts, street trees, vehicles, and street
signs.

To quantitatively evaluate the performance of the extraction
of tree trunks, lamp posts, and utility poles, the experimental
data were marked manually and used as the ground truth data, to
which the results of the proposed method were compared. Then,
the efficiency for extracting 3-D information about tree trunks,
lamp posts, utility poles, and others was analyzed and evaluated
based on the confusion matrix. This paper uses the recall (Re)
and precision (Pr) as the detection evaluation indexes. The
recall rate represents a measure of completeness or quantity and
the precision rate represents a measure of exactness or quality.
Let us assume that the original samples include positive samples
and negative samples. Then, we have

TP
TP

where TP denotes the number of pole-like objects that are cor-
rectly extracted as pole-like objects, FN represents the number
of pole-like objects that are incorrectly extracted as others, and
FP denotes the number of others that are incorrectly extracted
as pole-like objects.

B. Effect of Point Density Change on the Recognition Results

For the reflectors with different distances from the emitter, the
number of points each voxel (with equal size) contained might
vary with its distance from the emitter. The further the sensor
from the reflectors, the sparser the scanned point cloud (i.e., the
smaller the number of points each voxel contains). Although
the point cloud becomes sparse, the local geometric character-
istic inside each voxel is constant. For reflectors with the same
distance from the emitter, the resolution of point clouds is al-
most consistent. To investigate the effect of point density on
the shape detection, we performed a stimulated experiment. In
our implementation, a set of cylinder-shaped point clouds with
different sampling intervals were derived to calculate the linear,
planar, and spherical characteristics. Fig. 12(a)—(c) shows part
of stimulated data. The relationship between the sampling inter-
val and linear (planar or spherical) characteristics is presented
in Fig. 12(e). Stimulated experiment results suggested that the
change of point density barely affected the detection of the local
linear structure.

(®)

(C))
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Fig. 12.  Effect of point density change on the recognition results. (a) 0.001
m. (b) 0.01 m. (c) 0.05 m. (d) 0.1 m. (e) Relationship bewteen sampling interval

and local geometric characteristics.
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Fig. 13.  Shape recognition optimization comparison using contextual infor-
mation. Linear: red, Planar: green, and Spherical: blue. (a) Shape recognition
without context. (b) Shape recognition with context.

C. Effect of the MRF Model on Voxel-Based Shape
Recognition

As described earlier, the performance of voxel-based shape
recognition directly affected the subsequent detection and clas-
sification of pole-like objects. Thus, we used the MRF model
to optimize the results of PCA since some pole-like parts
might belong to other ground objects, especially buildings and
tree branches [see Fig. 13(a)]. Through contextual information
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Fig. 14.

®

Voxel-based shape recognition results of three experimental data after optimization. Linear: red, Planar: green, and Spherical: blue. (a) Overview of

voxel-based shape recognition (dataset I). (b) Details of typical parts (dataset I). (c) Overview of voxel-based shape recognition (dataset II). (d) Details of typical
parts (dataset II). (e) Overview of voxel-based shape recognition (dataset III). (f) Details of typical parts (dataset I1I).

constraint, the isolated linear parts could be smoothed if they
were surrounded by planar and spherical parts. To evaluate the
advantage of the MRF model, we compared the shape recog-
nition results between context and noncontext [see Fig. 13(a)
and (b)]. Experimental results indicated that pole-like parts be-
longing to other ground objects could be removed from the
candidates, which would efficiently reduce the error rate at
the subsequent extraction procedure. Fig. 14 demonstrates the
voxel-based shape recognition results of the three experimen-
tal datasets after optimization, which suggested that the linear
structures in scenes could be correctly inferred.

D. Pole-Like Objects Extraction Results

As shown in Fig. 14, it is also noticed that the identified linear
voxels would not always be the parts of pole-like objects, such as
power lines, tree branches, and linear parts of buildings. More-
over, as mentioned earlier, some components within a pole-like

object might not be pole-like, which might result in the vertical
noncontinuity [see Fig. 14(f)]. Thus, the circle model was used
to recognize the linear voxels belonging to the pole-like ob-
jects and the vertical region growing algorithm was conducted
to individualize the pole-like objects for matching and merging
the same pole-like objects. To verify the effectiveness of the
proposed method for extracting the individual pole-like objects,
we used the three experimental datasets as examples. In our
experiments, the size of the voxels was set to 0.6 m. Fig. 15
illustrates the overview of the extracted pole-like objects from
datasets I-III. When a lamp post cuts through a tree canopy,
some of the lamp post points coincide with those of the tree
trunk. In this situation, the proposed detection method would
extract parts of the pole-like object above and below the tree
canopy and then obtain the individual pole-like objects by up-
ward and downward growing [see Fig. 15(b)]. Furthermore,
parts of buildings and tree branches were eliminated from the
extraction results [see Fig. 15(f)] because they did not satisfy the
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(2) (®)

© (d) ‘

O] ®

Fig. 15. Results of the extracted polo-like objects from three experimental data. The individual pole-like objects in (a), (c), and (d) are randomly colored. The
pole-like objects in (b), (d), and (f) are colored in red, whereas the non-pole-like objects are rendered in gray. (a) Overview of the individual pole-like objects
(dataset I). (b) Details of typical examples (dataset I). (c) Overview of the individual pole-like objects (dataset II). (d) Details of typical examples (dataset II). (e)
Overview of the individual pole-like objects (dataset III). (f) Details of typical examples (dataset III).

circular model. As shown in Fig. 15(f), the broken pole-like ob-
jects were reconstructed by the RANSAC-based method to ob- . ‘
tain whole individual pole-like objects. Nevertheless, there were ‘

several limitations to our proposed extraction method. Some of |
the pole-like objects failed to be extracted for the following rea- / ; (@
sons. First, the point cloud data of the tree trunk were missing

[see Fig. 15(b), (d), and (f)] due to occlusions. Second, PCA | | {
might not locate the pole-like parts, such as tree trunks with ’ ] J

large diameters [see Fig. 15(f)]. Third, the pole-like objects
were close to each other, such as tree trunks [see Fig. 15(b)]. )

Fourth, the pole-like objects were completely surrounded by ;

street tree crown, such as utility pole [see Fig. 15(d)]. Despite ‘

e

these limitations, the proposed method showed robust detection
results, especially for not only detecting lamp posts through tree
crown [see Fig. 15(b)] and utility poles with power lines [see ©
Fig. 15(d)], but also removing the pole-like parts of other ground
objects such as buildings [see Fig. 15(f)]. i ‘

E. Pole-Like Objects Classification Results @

TO. evalgate the effectiveness and robustnes.s of our proposed Fig. 16.  Some typical classification results of the extracted pole-like objects
classification method, we conducted the experiments using three  from three datasets. The classified pole-like objects are colored in red whereas
datasets. Fig. 16 shows some typical classification results of  the non-pole-like objects are rendered in gray.
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TABLE III
CONFUSION MATRIX OF POLE-LIKE OBJECTS CLASSIFICATION (DATASET I, EXTRACTION RATE: 85.3%)

Manual interpretation

Pr
Tree trunks Lamp posts Utility poles Others Sum
Tree trunks 226 0 0 3 229 98.7%
Lamp posts 1 6 0 0 7 85.7%
Utility poles 0 1 3 0 4 75.0%
Proposed method Others 0 1 0 3 4
Missing extraction 38 0 1 3 42
Sum 265 8 4 9 286
Re 85.6% 75.0% 75.0%
TABLE IV
CONFUSION MATRIX OF POLE-LIKE OBJECTS CLASSIFICATION (DATASET II, EXTRACTION RATE: 94.1%)
Manual interpretation Pr
Lamp posts Utility poles Others Sum
Lamp posts 17 1 1 19 89.5%
Utility poles 2 9 0 11 81.8%
Others 0 0 2 2
Proposed method Missing extraction 0 1 1 2
Sum 19 11 47 34
Re 89.5% 81.8%
TABLE V
CONFUSION MATRIX OF POLE-LIKE OBJECTS CLASSIFICATION (DATASET III, EXTRACTION RATE: 92.3%)
Manual interpretation Pr
Tree trunks Lamp posts Others Sum
Tree trunks 66 0 1 67 98.5%
Lamp posts 1 44 4 49 89.8%
Others 0 7 34 41
Proposed method Missing extraction 11 0 2 13
Sum 78 51 41 170
Re 84.6% 86.2%

the extracted pole-like objects from the three datasets, which
indicated that the proposed classification method was efficient
and robust to classify most of the extracted pole-like objects.
Tables III-V list the confusion matrix of the pole-like objects
classification. Fig. 17 presents some typical examples of error
and missing classification.

As shown in Table III, the city block dataset (dataset I) con-
tained a total of 286 pole-like objects. Of these, the proposed
method detected 226 as tree trunks, 6 as lamp posts, and 3 as
utility poles. As defined in (9) and (10), the recall rates for
tree trunks, lamp posts, and utility poles are 85.6%, 75.0%, and
75.0%, respectively, and the precision rates are 98.7%, 85.7%,
and 75.0%, respectively. Some of the tree trunks were labeled
as others due to the missing point cloud data of tree crown [see
Fig. 17(a)]. A total of 244 pole-like objects were extracted from
dataset I, while 42 were missing, yet an extraction rate of 85.3%
was achieved for pole-like objects.

As shown in Table IV, the residential area dataset (dataset IT)
comprised a total of 34 pole-like objects, of which the proposed
method correctly detected 17 as lamp posts (recall rate: 89.5%;
precision rate: 10.5%) and 9 as utility poles (recall rate: 81.8%;

precision rate: 18.2%). Since the residential area dataset con-
tained no structures related to street tree trunks, the proposed
method extracted no street tree trunk. As shown in Fig. 17(c),
the missing data of tree trunks fail to be detected and further
classified. Consequently, 32 out of 34 pole-like objects were
correctly labeled by the proposed method from dataset II, with
a detection rate of 94.1%.

As shown in Table V, the street scene dataset (dataset III)
consisted of a total of 170 pole-like objects, where the proposed
method correctly extracted 66 as tree trunks (recall rate: 84.6%;
precision rate: 1.5%) and 44 as lamp posts (recall rate: 86.2%;
precision rate: 10.2%). In the street scene dataset, some of the
lamp posts were classified as street crown since their topmost
part was close to the street tree crown [see Fig. 17(b)]. In ad-
dition, the shape recognition procedure failed to locate some
street trunks with large diameters, which also resulted in the
missing extraction [see Fig. 17(d)]. Furthermore, the missing
tree crowns might result in the wrong classification of the tree
trunk. As a result, the proposed method correctly extracted 157
out of 170 pole-like objects from dataset III, with a detection
rate of 92.3%.
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@) T )

(c) (d)

Fig. 17.  Some typical examples of error and missing classification. The clas-
sified pole-like objects are colored in red, whereas the non-pole-like objects
are rendered in gray. (a) Error classification #1. (b) Error classification #2.
(c) Missing classification #1. (d) Missing classification #2.

IV. CONCLUSION

This paper developed a voxel-based method for automatic
detection and classification of pole-like objects from mobile Li-
DAR point cloud data. PCA and MRF-based optimization were
first used for the voxel-based dimension analysis to generate a
set of linear voxels. The voxel-based shape recognition could
efficiently address the problem of detecting a pole-like object
in an overlapped region, from which most existing detection
methods suffered. Second, the proposed circular model and the
vertical region growing approach were conducted to extract and
individualize the pole-like objects, which could also remove the
linear voxels that did not belong to the pole-like objects. Finally,
both the shape features and the spatial topological relationships
were used to further classify these extracted pole-like objects.
The proposed method achieved a detection accuracy of 85.3%,
94.1%, and 92.3% in the extraction of pole-like objects from
three different experimental datasets.

However, voxel-based shape recognition as the first step di-
rectly affects the performance of pole-like object extraction and
classification at the subsequent steps, since it might fail to lo-
cate some of the pole-like objects with large diameters, such as
old tree trunks. How to be robust for finding these pole-like ob-
jects with large diameters will be the focus of our future work.
Moreover, we attempt to further classify the extracted pole-like
objects based on several semantic rules. Future research works
will focus on introducing more information for assisting classi-
fication by integrating multisource data and exploiting machine
learning algorithms.
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