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Abstract

One of the most important steps in formulating and solving a multiattribute decision-

making (MADM) problem is weighting the attributes. Most existing weighting

methods are based on judgments by experts/decision-makers, which are prone to

several cognitive biases, making it necessary to examine these biases in MADM

weighting methods and develop debiasing strategies. This study uses experimental

analysis to look at equalizing bias—one of the main cognitive biases, where decision-

makers tend to assign the same weight to different attributes—in MADM methods.

More specifically, we look at AHP (analytic hierarchy process), BWM (best-worst

method), PA (point allocation), SMART (simple multiattribute rating technique), and

Swing methods under two structuring formats, hierarchical and non-hierarchical. To

empirically examine the existence of equalizing bias in these methods, we formulate

several hypotheses, which are tested using a public transportation mode selection

problem among 146 university students. The results indicate that AHP and BWM

have less equalizing bias than SMART, Swing, and PA, and that the hierarchical

problem structuring leads to a reduction in the equalizing bias in all five methods and

that such a reduction significantly varies among the methods. Our findings prove

some debiasing strategies suggested in existing literature, which could be used by

real decision-makers (when selecting a method) as well as researchers (when

developing new methods).

K E YWORD S

cognitive bias, equalizing bias, experimental analysis, multiattribute decision-making,
weighting

1 | INTRODUCTION

Decision-making involves evaluating and choosing among alternative

actions (Simon et al., 1987), which means that decision-makers

compare these alternatives based on various aspects called ‘attri-
butes’. These attributes are of different importance for different

decision-makers, which could lead to different decision-makers ending

up with different best choices when considering the same set of alter-

natives. People usually rely on their own judgments when considering

the importance of different attributes, in what is known as ‘judgment

of importance’ (Pajala et al., 2019) and they usually use strategies,

which are called ‘heuristics’ (Tversky & Kahneman, 1974). Generally

speaking, heuristics are helpful, but their use can sometimes lead to

severe errors (Bazerman & Moore, 2012) (also known as bias, or
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cognitive bias). For instance, anchoring and adjustment is a heuristic

that involves starting from an initial value and adjusting that value to

arrive at the final estimate. These adjustments are usually insufficient,

because different starting points yield different estimates that are

biased toward the initial values (Kahneman et al., 1982; Tversky &

Kahneman, 1974). According to Bazerman and Moore (2012), becom-

ing aware of the potential adverse impact of using heuristics makes it

possible to determine when and where to use them. In other words,

it provides the possibility of controlling and managing the occurrence

of biases discussed above in the decision-making process.

In many real-world decision-making problems, decision-makers

face multiattribute decision problems. Multiattribute decision-making

(MADM) methods have been developed to deal with these kinds of

problems. One of the most important steps in formulating and solving

an MADM problem is attribute weighting. Researchers have devel-

oped a number of MADM weighting methods, most of which are

based on judgments by experts/decision-makers to deal effectively

with real-life problems that are not characterized by objective

measures. Human judgments are prone to several cognitive biases,

which could lead to suboptimal or even nonfeasible solutions, making

it necessary to examine these biases in MADM weighting methods.

According to Marttunen et al. (2018), Rezaei (2021), and

Montibeller and von Winterfeldt (2015a), there are a few researchers

who have discussed cognitive biases in MADM. In one of the earliest

studies in this area, Gabrielli and von Winterfeldt (1978) examined the

sensitivity of the weights of the attributes to the changes of

alternatives range in an experimental study, using the SMART (simple

multiattribute rating technique) weighting method. The results

showed that people have plausible ranges in mind when weighting

attributes and are unwilling to adjust weights after relatively spurious

changes occur in the set of alternatives. von Nitzsch and

Weber (1993), Fischer (1995), Pöyhönen and Hämäläinen (2000), and

Lin (2013) conducted similar experiments involving range insensitivity

bias. Fischer et al. (1987) examined and confirmed the hypothesis that

the proxy attributes gain more weight than the fundamental

attributes. They proposed several debiasing strategies. Weber

et al. (1988), Borcherding and von Winterfeldt (1988), Pöyhönen and

Hämäläinen (1998), Pöyhönen and Hämäläinen (2000), Pöyhönen

and Hämäläinen (2001), Jacobi and Hobbs (2007), and Hämäläinen

and Alaja (2008) examined splitting bias, in which presenting an attri-

bute in greater detail may increase the assigned weight. Buchanan

and Corner (1997) and Rezaei (2021), in their examination of anchor-

ing bias, had as their main finding the role the structure of the solution

method played in relation to the incidence of anchoring bias. Lahtinen

et al. (2020) proposed four debiasing strategies to be embedded in

MADM methods to reduce the effects of framing effect, loss aversion,

and status quo-type cognitive biases.

In addition to the studies listed above, some researchers,

including Montibeller and von Winterfeldt (2015a), Montibeller and

von Winterfeldt (2015b), Hämäläinen (2015), Montibeller and

von Winterfeldt (2018), Montibeller (2018), and Marttunen

et al. (2018), have conducted comprehensive reviews of this area and

described all cognitive biases that can occur in each of the MADM

steps, and recommended a number of debiasing strategies to mitigat-

ing the potential biases. They considered equalizing bias (the tendency

of decision-makers to assign the same weight to different attributes)

to be one of the main cognitive biases in weighting methods. In cases

involving equalizing bias, the weights do not reflect the decision-

makers (DMs) judgments that could lead to a nonsatisfactory result

for decision-makers. As such, their expert opinions become less useful

when applying MADM weighting methods. Despite the adverse

consequences of equalizing bias, it has yet to be studied in an experi-

mental setting and has only been mentioned in the studies mentioned

above.

As such, the aim of this study is to examine equalizing bias in

MADM weighting methods. The main contribution of this study is to

examine equalizing bias in the eliciting of attribute weights in five

MADM methods, namely, AHP (analytic hierarchy process)

(Saaty, 1977), BWM (best-worst method) (Rezaei, 2015, 2016), PA

(point allocation) (Doyle et al., 1997), SMART (Edwards, 1977), and

Swing (von Winterfeldt & Edwards, 1986), by conducting an experi-

mental study. We also compare these methods to demonstrate how

methods with different characteristics could lead to a lower or higher

level of equalizing bias, and we examine the impact of problem struc-

turing (hierarchical vs. non-hierarchical) on the occurrence of equaliz-

ing bias. In doing so, we want to help decision-makers who are

selecting an MADM weighting method by making them aware of

potential bias and its effect on final attributes weight and to help

researchers consider the issues raised in this study when developing

new methods, allowing them to minimize the risk of this bias occur-

ring. We also think that the findings of this study could help

researchers find ways to improve the existing methods in order to

make them less vulnerable to equalizing bias.

In Section 2, we discuss equalizing bias. In Section 3, the five

MADM weighting methods are outlined. The research hypotheses are

formulated in Section 4. An experimental analysis conducted to test

the research hypotheses and check the equalizing bias of the methods

discussed in Section 5. Section 6 contains the data analysis and

discussion, and Section 7 contains the conclusion and future research

suggestions.

2 | EQUALIZING BIAS

In the context of multiattribute weighting, equalizing bias can be

defined as a tendency among decision-makers to express (about)

equal judgment of importance for a set of n attributes, which can also

be defined as the 1/n rule (Jacobi & Hobbs, 2007; Montibeller & von

Winterfeldt, 2015b). Such a bias can also be due in part to the

features of the weighting method involved. Although it is clear that

there are problems where a decision-maker is truly indifferent to the

importance of the attributes in question (which also results in equal

weights), if we systematically encountered this phenomenon among a

relatively large sample of subjects when using different weighting

methods, we could draw conclusions about the source of equalizing

bias in relation to the features of the procedure of the weighting
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method. Some studies have discussed equalizing bias in relation to

MADM, most of which are included in the literature review papers

presented below.

Montibeller and von Winterfeldt (2015a, 2015b, 2018) conducted

a comprehensive literature review involving cognitive bias in MADM

methods. They argued that equalizing bias is a relevant cognitive bias

in the elicitation of attribute weights task of multiattribute analysis

and proposed some debiasing strategies, including ranking of events

or objectives first, then assigning ratio weights, and eliciting weights

hierarchically. Marttunen et al. (2018) conducted a meta-analysis

study including 61 environmental and energy cases to examine

whether earlier findings regarding MADM-related cognitive biases can

be found in real-world applications. In one of their investigations, they

analyzed support for the equalizing bias and compared the lowest and

highest weights of top-level objectives, and found no evidence of the

equalizing bias. Marttunen et al. (2018) indicated that some weighting

methods, for instance PA, may be more prone to equalizing bias than

others. Also, in cases where there are large differences in the impact

ranges over the objectives, equalizing bias can significantly distort the

results. Tervonen et al. (2017) reviewed and critically assessed similari-

ties and differences of Swing weighting and DCE (discrete choice

experiments) to elicit patient benefit–risk preferences, and argued that

the direct matching task involved in the Swing method makes it more

prone to equalizing bias. Jacobi and Hobbs (2007) used equalizing bias

as a starting point in their model for estimating and correcting

objectives hierarchy induced biases in their study about quantifying

and mitigating the splitting bias and other value tree-induced

weighting biases. Their result showed flatter, less varied weights for

non-hierarchical assessments. Stillwell et al. (1987) and Pöyhönen and

Hämäläinen (1998) compared hierarchical and non-hierarchical

weighting methods for eliciting multiattribute value models in experi-

mental research, one of their findings being that hierarchical weights

were steeper than non-hierarchical weights.

The literature review presented above shows that, despite the

importance of equalizing bias in MADM weighting, its presence in

MADM weighting methods has yet to be examined empirically.

3 | MULTIATTRIBUTE DECISION-MAKING

Multiattribute decision-making (MADM) involves evaluating a number

of alternatives (options) that are characterized by a number of

attributes. The evaluation can be conducted for different purposes,

like selecting, ranking or sorting the alternatives. In most MADM

problems, the aim is to identify and quantify the relative importance

(weight) of the attributes. For a better understanding of the way

theses attribute weights are used in MADM methods, here we use

the example of multiattribute value theory (MAVT) (Keeney &

Raiffa, 1976) as one of the most widely used methods to solve

MADM problems (Weber & Borcherding, 1993). Under different

conditions, additive, multiplicative or other nonadditive value

functions can be used to aggregate the preferences. Suppose that we

have m alternatives (i = 1, 2, …, m), n attributes ( j = 1, 2, …, n) and

ak = (ak1, ak2, …, akn) be alternative outcomes with respect to

n attributes. Let v(ak) be a decision-maker's additive value function of

alternative ak, then the overall value of alternative ak can be found as

follows (Keeney & Raiffa, 1976):

v akð Þ¼
Xn
j¼1

wjυkj akj
� �

, ð1Þ

where vkj(akj) is the normalized value of akj, and wj is the importance

weight of attribute j, and wj >0,
Pn

j¼1wj ¼1. Comparing two alterna-

tives, an alternative is preferred to another alternative if and only if its

additive value (equation 1) be greater than that of the other alternative.

The additive value function can be used if the attributes are

(i) mutually preferentially independent and (ii) difference independent

(the definitions are from Keeney and Raiffa (1976), Currim and

Sarin (1984), and Dyer and Sarin (1979)).

Definition 1. The attributes X1, …, Xn, are mutually

preferentially independent if any subset of attributes is

preferentially independent of the remaining attributes.

Definition 2. The attribute Xj is difference independent

of the remaining attributes if the preference difference

between two levels of Xj is not affected by the fixed

levels on the other attributes.

If a weaker condition holds (mutually preferentially independence

and weak difference independence), we could use a multiplicative or

other nonadditive value functions (Dyer & Sarin, 1979).

Definition 3. Xj is weak difference independent of the

remaining attributes if the ordering of preference differ-

ences on Xj does not depend on the fixed levels of the

remaining attributes.

As stated before, calculating the importance weight of the attri-

butes (wj in equation 1) is one of the most important steps in MADM

problems, which is the reason several MADM weighting methods

have been developed in literature, including the SMART, Swing, Tra-

deoff (Keeney & Raiffa, 1976), AHP, ANP (analytical network process)

(Saaty, 1996), and BWM, which are among the most common and

widely used weight elicitation methods.

The weights obtained through these methods are based on judg-

ments provided by people who are prone to cognitive biases. For the

aim of this study, we decided to include AHP, BWM, PA, SMART, and

Swing, which allowed us to appropriately cover several important

features of the area under examination. AHP and BWM are represen-

tatives of pairwise comparison methods with different approaches

and computational efficiency, while PA, SMART, and Swing represent

scoring-based methods. SMART has a lower bound limitation, while

Swing has an upper bound limitation and PA has no scoring limitation.

In addition, Swing considers the range of attributes (the difference

between the lowest and highest level of an attribute considering the
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set of all alternatives). van Ittersum et al. (2007), presented a frame-

work proposed that what methods measure which specific dimensions

of attribute importance. The three dimensions of attribute importance

proposed in their framework are salience, relevance, and determinance.

Salience refers to the attributes that come to mind more easily when

someone is evaluating an alternative in cases where no attribute has

been identified in advance for the evaluation, and the attributes that

come to mind more easily are deemed more important. This dimen-

sion is not relevant to the aim of our study, because we do have a

defined list of attributes for all the methods under study. Neverthe-

less, the other two dimensions are relevant. While relevance shows

the importance of an attribute based on individual's ‘personal values
and desires’, determinance shows the importance of an attribute

based on ‘judgment and choice’. Relevance does not consider the

range of an attribute, while determinance does. Based on this frame-

work, we can conclude that AHP, BWM, SMART, and PA infer the

weights of attributes following the relevance dimension, and none of

them systematically consider the range of attributes. The Swing

method, on the other hand, elicits the attribute weights based on

determinance dimension as it systematically takes the range of

attribute into account. From a different perspective, we can also see

that, while Swing systematically considers the range of attributes,

other methods, of which AHP and BWM are based on pairwise

comparisons and PA and SMART on the direct assignment of impor-

tance, do not. To summarize, the methods considered in this study

cover a diverse spectrum of MADM methods.

Another reason for choosing this particular set of MADM

methods has to do with their potentially different behavior with

respect to equalizing bias (as discussed in greater detail in Section 4),

which is analyzed on the basis of the comprehensive literature review

we conducted in this study, based mainly on generic strategies

designed to reduce equalizing bias found in literature. Two of the

strategies involved are ‘rank and ratio’ methods and ‘hierarchical
weighting’. From the methods listed above, two use the rank and ratio

strategy (AHP and BWM), while the other three do not, which will

help us determine which type of method is better at controlling

equalizing bias. In addition, we consider all the five methods in two

structural formats (hierarchical and non-hierarchical), to identify

potential differences in the effect of structuring format on equalizing

bias (more details in Section 4).

Finally, four of the selected methods (AHP, PA, SMART, Swing)

are relatively old, very popular and have been used in many studies,

including cognitive bias studies, while BWM is an emerging method

that has attracted considerable attention among researchers and

practitioners, making them all suitable for our study.

Below, we briefly discuss the five MADM methods used in this

study.

3.1 | SMART

With this method, the decision-maker first ranks the attributes in

order of importance, after which the least important attribute is

assigned the value of 10. Other attributes then take values greater

than or equal to 10, respectively, from low to high importance. Finally,

the attribute weights are calculated by normalizing the values into

one by equation 2 (Pöyhönen & Hämäläinen, 2001). Suppose we have

n attributes ( j = 1, 2, …, n), sj is the score that decision-maker assigns

to attribute j, and wj is the importance weight of the attribute j. Then

the weight of attribute j is obtained by normalizing the scores as

follows.

wj ¼ sjPn
j¼1sj

,8j: ð2Þ

There are versions of this method that consider the range of

attributes, but in this paper, similar to Rezaei (2021) and Bottomley

and Doyle (2001), we intentionally use the original version of SMART,

and the ranges of attributes were not described to the subjects, which

we already do in Swing (see Section 3.2), providing a more diverse set

of methods.

3.2 | Swing

According to this method, knowing all the alternatives, the decision-

maker first identifies the best and worst level of each attribute and

then is asked to consider a situation with a hypothetical alternative

characterized by the worst level of all attributes, and to think about

changing an attribute from its worst level to its most satisfactory level.

That attribute is assigned a score of 100. The decision-maker should

then find a second attribute which has the second rank of satisfaction

and assign that attribute a score less than or equal to 100 (in relation

to the first swing) and so on, until the worst attribute is scored. Similar

to the formula used for SMART (Equation 2), the scores are

normalized and then interpreted as the weights (Pöyhönen &

Hämäläinen, 2001). In this paper, similar to Lin (2013) and Pöyhönen

and Hämäläinen (2001), we use the original version of Swing. As

becomes evident, Swing is different from SMART in two aspects: the

starting point (SMART starts with the least important attribute, while

Swing starts with the most important one) and the fact that SMART

does not consider the range of attributes, while Swing does.

3.3 | Point allocation

In this method, the decision-maker assigns scores to attributes

without following a structure like the one used in SMART or Swing.

Literature suggests different ways to make these assignments. In one

commonly used approach, a decision-maker is asked to divide a fixed

number (say, 100) among the attributes, while another approach is

simply to assign scores to attributes based on their importance,

without limiting the total value (Pöyhönen & Hämäläinen, 2001). In

this study, similar to Pöyhönen and Hämäläinen (2001), the second,

unlimited version of this method is used. The main reason we chose

the unlimited version is that we intend to make it as different as
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possible from the other two score assignment methods (SMART and

Swing), which do have limitations (either as a lower limit: SMART with

a 10, or with an upper limit: Swing with a 100). For this method, the

range of attributes is not described to the subjects. The same

equation as equation 2 should be then used to normalize the scores

which are interpreted as weights.

3.4 | AHP

Following AHP (Saaty, 1977), the pairwise comparison matrix of the

attributes is formed by the decision-maker using a pairwise

comparison scale containing the numerical values between 1 to

9 (Table 1). Pairwise comparison matrix A (see equation 3) is

made such that the attribute in row i, (i = 1, 2, …, n) is compared to all

attributes in columns j, ( j = 1, 2, …, n). In this matrix aji ¼ 1
aij
. Assume

that the problem has n attributes. For this problem, n� n pairwise

comparisons are required. From this, n comparisons are aii=1. The

rest is n(n�1), while the other half is made up of the first half's

reciprocals. Finally, AHP needs n(n�1)/2 pairwise comparisons.

A¼
a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

2
664

3
775: ð3Þ

The relative weights of attributes are calculated by solving

equation 4, the eigenvector (W) corresponding to the largest

eigenvalue (λmax).

AW¼ λmaxW: ð4Þ

Consistency ratio (equation 5) is used to check the extent to

which the decision-maker has been consistent in providing the

pairwise comparisons:

CR¼CI
RI
, ð5Þ

where, random index (RI) values are given in Table 2 for different sizes

of the pairwise comparison matrix (n is the number of attributes), and

consistency index (CI) is calculated by equation 6:

CI¼ λmax�n
n�1

: ð6Þ

A consistency ratio not greater than 0.1 is positive evidence for

informed judgment (Saaty, 1994).

3.5 | BWM

Based on the BWM, the decision-maker first identifies a set of

n attributes {c1, c2, …, cn}, after which best and worst attributes are

determined by the decision-maker, and a pairwise comparison is

made between these two attributes (best and worst) and other

attributes by using a number between 1 to 9 (see Table 1). These

pairwise comparisons, which are called Best-to-Others and Others-

to-Worst vectors, are shown respectively as AB = (aB1, aB2, …, aBn)

and AW = (a1W, a2W, …, anW)
T. aBj indicates the preference of

attribute B (best attribute) over attribute j and ajW indicates the

preference of attribute j over the worst attribute W. Then a

min-max problem is formulated and solved to determine the weight

of the attributes (Rezaei, 2015) as follows (equation 7).

min maxj
wB

wj
�aBj

����
����, wj

wW
�ajW

����
����

� �
,

s:t:
X
j

wj ¼1,wj ≥0,8j:
ð7Þ

This model can be solved by transferring it to the following model (8):

minξ,

s:t:
wB

wj
�aBj

����
����≤ ξ,8j,

wj

wW
�ajW

����
����≤ ξ, 8j,X

j

wj ¼1,wj ≥0, 8j:

ð8Þ

While model (8) is a nonlinear model with possible multiple optimal

solutions, there also exists a linear BWMmodel that provides a unique

set of solutions, presented as follows (equation 9) (Rezaei, 2016).

TABLE 1 Scales used for AHP pairwise comparisons (Saaty, 1977)

Intensity of
importance Definition

1 Equal importance

3 Weak importance of one over another

5 Essential or strong importance

7 Demonstrated importance

9 Absolute importance

2, 4, 6, 8 Intermediate values between the two adjacent

judgments

TABLE 2 Random consistency index
(Saaty, 1994)

n 0 1 2 3 4 5 6 7 8 9

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

REZAEI ET AL. 5



minξL,

s:t: wB�aBjwj

�� ��≤ ξL, 8j,
wj�ajWwW

�� ��≤ ξL,8j,X
j

wj ¼1,wj ≥0, 8j:
ð9Þ

In this study, the classic linear BWM version of this method

(Rezaei, 2016) was used, because it provides a unique solution,

making it suitable for the comparison purposes in this study.

Consistency ratio of the results and its threshold to check the

reliability of provided pairwise comparisons came from Liang

et al. (2020). Equations 10 and 11 show the input-based consistency

ratio CRI for BWM comparisons.

CRI ¼max
j

CRI
j , ð10Þ

where,

CRI
j ¼

aBj�ajW �aBW
�� ��
aBW �aBW �aBW

, aBW >1,

0, aBW ¼1:

8<
: ð11Þ

CRI is the global input-based consistency ratio for all criteria, while CRI
j

represents the local consistency level associated with the criterion cj.

Liang et al. (2020) obtained the consistency thresholds for combina-

tions that range from 3 to 9 criteria (Table 3). For example, the thresh-

olds in the combinations with 3-criteria and with 3-scale (scale is the

largest evaluation grade from 3 to 9 in each comparison vector) is

0.1667. In this example, the provided pairwise comparison that its CRI

is lower than 0.1667 has an acceptable consistency.

4 | HYPOTHESES DEVELOPMENT

As stated in Section 2, equalizing bias refers to a situation where a

decision-maker tends to assign (about) the same weight to all the

decision-making attributes. Some researchers have argued that some

weighting methods may be more prone to equalizing bias than others

(Fox & Clemen, 2005; Marttunen et al., 2018; Tervonen et al., 2017),

more specifically, that 'ranking events or objectives first, and then

assigning ratio weights', is one of the debiasing strategies that can be

used to mitigate this bias (Montibeller & von Winterfeldt, 2015a,

2015b, 2018). Methods like AHP and BWM are based on these

mechanisms. On the other hand, researchers have also argued that

the equal weight distribution of direct rating methods such as Swing,

PA, and SMART is greater than in other methods (Marttunen

et al., 2018; Pöyhönen & Hämäläinen, 2001; Tervonen et al., 2017).

Moreover, we know that the procedures in some methods are based

on the explicit pairwise comparison that compares relative importance

of one attribute to that of other attributes in one or more turns by

ratio scale (Rezaei, 2015, 2016; Saaty, 1977), assigning a ratio to each

of the comparisons. Some of these methods rank attributes explicitly

(for example identifying the best and worst attributes in BWM), while

others (like AHP) do so implicitly. This makes it possible to compare

the attributes, which ultimately leads to a greater distinction in the

importance of attributes. However, methods like PA, SMART, and

Swing use direct rating methods, making them more prone to

equalizing biases (Tervonen et al., 2017). In other words, methods in

which the importance is assigned directly to attributes (SMART,

Swing, and PA) would suffer more from equalizing bias than those that

use ratio scales (AHP and BWM). Based on these arguments, we want

to test the following hypothesis:

Hypothesis 1. AHP and BWM have less equalizing bias

than SMART, Swing, and PA.

In addition, several researchers have proposed eliciting weights

hierarchically as a debiasing strategy for mitigating the equalizing bias

(Jacobi & Hobbs, 2007; Montibeller & von Winterfeldt, 2015a, 2015b,

2018; Sayeki & Vesper, 1973; Stillwell et al., 1987). Hierarchical

weighting (Figure 1a) means that a decision-maker evaluates the

attribute at each level and each cluster (the green circles compose

one cluster at the first level; red circles and blue circles compose two

clusters at the second level) of decision tree separately. The sum of

the weights of each cluster is one. Global weights of the lowest level

of the decision tree (blue and red attributes in Figure 1a) are then

calculated by multiplying the weight of subattributes by their

associated higher level attribute weight. The sum of weights of all

global weights then becomes one. On the other hand, non-hierarchical

weighting (Figure 1b) means that the decision-maker evaluates all the

subattributes only and no evaluation is conducted for the higher levels

TABLE 3 Thresholds for consistency
of a BWM problem with different
combinations of criteria and scales (Liang
et al., 2020)

Criteria

Scales 3 4 5 6 7 8 9

3 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

4 0.1121 0.1529 0.1898 0.2206 0.2527 0.2577 0.2683

5 0.1354 0.1994 0.2306 0.2546 0.2716 0.2844 0.2960

6 0.1330 0.1990 0.2643 0.3044 0.3144 0.3221 0.3262

7 0.1294 0.2457 0.2819 0.3029 0.3144 0.3251 0.3403

8 0.1309 0.2521 0.2958 0.3154 0.3408 0.3620 0.3657

9 0.1359 0.2681 0.3062 0.3337 0.3517 0.3620 0.3662
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of the hirarchy. It is evident that no further calculation is needed and

the sum of the weights of all the subattributes (black circles in

Figure 1b) is one.

In hierarchical weighting, the 1/n rule does not affect the entire

set of attributes, because the decision-maker focuses on one cluster

at a time, which could increase the chance of assigning nonequal

weights to the attributes. However, with non-hierarchical weighting,

the decision-maker focuses on all the subattributes, which now

belong to one unified set and could increase the chance of being

affected by the 1/n rule and equalizing bias. Also, researchers have

argued that the number of objectives influences the distribution of

weights due to the normalization of weights so that they add up to

one (Marttunen et al., 2018; Pöyhönen & Hämäläinen, 1998, 2001;

Weber et al., 1988). We know that non-hierarchical weighting has

more objectives than hierarchical weighting (as in hierarchical the

procedure is applied each time to one cluster), leading to more

equalizing bias occurrence. Because of these arguments, we want to

test the following hypothesis:

F IGURE 2 Location of lines and stations and
the problem decision matrix [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 1 Hierarchical vs. non-hierarchical
weighting [Colour figure can be viewed at
wileyonlinelibrary.com]
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Hypothesis 2. The hierarchical structuring of the prob-

lem leads to a reduction in the equalizing bias in all five

methods (AHP, BWM, PA, SMART, and Swing).

5 | EXPERIMENTAL STUDIES

5.1 | Decision problem scenario

This study uses a public transportation mode selection problem,

the main aim being to weight the attributes and subattributes of

the evaluation and selection of intra-city public transportation

modes in Tehran. The problem is described to the participants as

follows:

On a Tuesday, with a normal temperate at 10 a.m., the

subject plans to visit a friend who has already made an

appointment with him/her. The origin and destination

of the subject and the lines and stations' locations are

fixed and showed in Figure 2. The decision matrix (the

performance of each transportation mode with respect

to each subattribute) considered as the input of the

model. Also, subjects only have the right to choose one

of the four mentioned modes of transport (Bus Rapid

Transit (BRT), Bus, Taxi, and Metro).

For all subjects, both the transportation modes and the numbers

in the decision (performance) matrix are the same. They are referred

to in the same way in Figure 2. Besides, the attributes and

subattributes of the problem (Table 4) are described for all subjects.

These attributes and subattributes are extracted by a comprehensive

literature review (for more details see Appendix A).

This problem was chosen to control some other biases as much

as possible: (i) as a subject is imposed to a fixed and similar perfor-

mance matrix for different tasks, range insensitivity (the sensitivity of

the weights of the attributes to the changes of alternatives range) can

be controlled, (ii) the problem has a fixed number of attributes and

subattributes, and the structure is the same for all the tasks, which

could control the splitting bias (presenting an attribute in greater

detail [subattributes] and may increase the assigned weight), (iii) the

attributes and subattributes of the problem were extracted by a

comprehensive review of transportation literature, with the aim of

making sure that all selected attributes are fundamental attributes

that characterize different modes of transportation, and as such, the

proxy bias (proxy attributes gain more weight than the fundamental

attributes) is controlled, (iv) as we will discuss in more detail, the

experimental design we choose for our study is a within-subjects

design with randomization, which means that each subject can be

treated as their own control.

Although it is not the focus of our study, we also tested the value

function conditions for the attributes following Keeney and

Raiffa (1976), Currim and Sarin (1984) and Dyer and Sarin (1979)

using a sample of eight subjects, and it appeared that the two

conditions of an additive value function hold for this example (mutual

preferential independence and difference independence). We think

that one of the main reasons behind having the two conditions is that

the range of attributes in our case experiment is small (for more

explanation, see von Winterfeldt and Edwards (1986) and Watson

et al. (1987)).

5.2 | Participants

Subjects selected from MSc students, MSc graduates and PhD candi-

dates in the fields of Industrial Engineering, Management, and other

fields in Tehran city familiar with MADM methods and willing to par-

ticipate in the research. We selected respondents familiar with

MADM methods to control the learning effect, which is one of the

main concerns of within-subjects studies (Keren, 2014). In other

words, the learning effect that would play a role with people who

were not familiar with MADM could affect the reliability of the

TABLE 4 Attributes and subattributes of the research problem

Attribute Subattribute

Subattribute

description

Cost (C1) Travel cost (C1–1) Total payment for travel

from origin to the

final destination

Time (C2) Travel time (C2–1) The total time elapsed

from the time the

vehicle began to

move until it reached

its destination

Waiting time (C2–2) The total waiting time of

the person at the

station before the

arrival and movement

of the vehicle

Reliability and

punctuality of

vehicles mode runs

come on schedule to

the destination (C2–3)

Nontime deviation of

reaching the

destination according

to the pre-determined

or expected plan for

that vehicle

Environment

friendly

(C3)

Pollution (C3–1) The amount of air

pollution emitted by

the vehicle

Comfort (C4) The passenger density

in the vehicle (C4–1)
Population and

congestion within the

vehicle

Ease of accessibility to

vehicle stop station

(C4–2)

The ease and short

distance to achieve

the desired means of

transportation

Air condition and other

equipment in the

vehicles (C4–3)

Existence, use, and

effectiveness of

heating and cooling

facilities in the vehicle
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findings. The channels for achieving these subjects were: public call in

the LinkedIn, ResearchGate and then screening based on resume, tak-

ing advantage of the top national researchers in this field, entrusting

them to the same subjects to introduce other subjects (snowball), and

taking advantage of the opinions of professors at significant universi-

ties and introducing the subjects by them and the use of students is

very common for this type of research (see, for instance, Buchanan

and Corner (1997), Hämäläinen and Alaja (2008), Rezaei (2021)). Sub-

jects participated voluntarily with no bonus for their participation,

which reduced the chance of participation by unmotivated subjects

(Rezaei, 2021). Although the necessary number of subjects for a reli-

able within-subjects experiment design is relatively small, due to its

high-level controllability, to generate external validity, 158 question-

naires were sent to subjects, out of which 149 participants started the

survey and 3 were dropped out due to incompleteness resulting in a

collection of 146 correct and complete ones. This sample size is larger

than similar studies such as Lin (2013), Hämäläinen and Alaja (2008),

Pöyhönen and Hämäläinen (2000), Buchanan and Corner (1997),

Fischer (1995), von Nitzsch and Weber (1993), and also larger than

the sample size calculated by GPOWER 3.11 (2020) software for each

statistical test we conduct in this study. Table 5 shows the character-

istics of the subjects of this study.

5.3 | Experimental design

Generally speaking, there are two approaches in designing

experiments: between-subjects design, and within-subjects design.

While in the former case, each subject is assigned to a single treat-

ment/task, in within-subjects design, each subject is assigned to all

treatments/tasks. In this study we chose within-subjects design as

it is more appropriate for the aim of our study. One of the main

advantages of within-subjects design is that ‘differences observed

among conditions are not confounded with individual differences’
(Keren, 2014, p. 258). Furthermore, it provides a greater degree of

freedom, while at the same time making it possible to use a

considerably smaller number of subjects in the experiment

(Keren, 2014, p. 260). Within-subjects design can also be con-

ducted in two different forms: either a subject is assigned to the

same treatment/task several times, or a subject is never assigned

to the same treatment/task more than once. In our study, we

chose the latter option, because in that case, the subjects serve as

their own control. Within-subjects design also has its drawbacks,

however, one of the most important ones being the possible

dependencies of the treatments/task, which could affect the

findings. A possible remedy to handle such dependencies would be

to randomize the order of treatments/tasks. In our study, we use

counterbalancing (meaning that we created almost equal number

of different order combinations) as our randomization method,

and we used familiar subjects with MADM methods to reduce

the learning effect. We also provided small examples in the

beginning of each task which creates some time between con-

ducting different tasks that could reduce the carryover effect

(Greenwald, 1976).

5.4 | Response tasks and procedure

Subjects in this experiment completed all of the five MADM

weighting methods (BWM, AHP, PA, SMART, and Swing) in hierarchi-

cal as well as non-hierarchical structures in a random sequence to

minimize any possible carryover effect. We used the Gorilla platform

(https://gorilla.sc) for data collection. This is one of the newest plat-

forms for conducting experimental research virtually, which already

has attracted many researchers (see, for instance, Daniel-Watanabe

et al., 2020; Lavan et al., 2019; Love & Robinson, 2020). The main rea-

sons for this choice are the existence of a flexible and comprehensive

experiment design mechanism, questionnaire design, randomization

mechanisms, data completion time storage, comprehensive manage-

ment of subjects, and appropriate and easy user interface (Anwyl-

Irvine et al., 2020). For a comprehensive study on the advantages

of Gorilla in comparison with other platforms, see Anwyl-Irvine

et al. (2020). Due to the specific application of MADM methods in the

experimental research literature, it was impossible to construct

specific questionnaires for each method in a pre-prepared manner.

Therefore, the HTML programming language was used to overcome

this limitation.

Subjects were randomly assigned (without replacement) in Gorilla

to five methods questionnaires in hierarchical and non-hierarchical

formats (10 tasks: 5 methods * 2 formats). We used counterbalancing

method for randomization, which implies that we have an almost

equal number of all possible order combinations of the methods and

the two formats. The descriptions of each experiment task are pro-

vided briefly with a numerical example on each method page. There

was no time limit for the subjects. In addition, the possibility of going

back to the previous step in experimenting is disabled in all stages.

Each subject on average spent 43 min (s.d. = 25) finishing the

entire experiment. We checked the average time subjects spent on

TABLE 5 Subjects' characteristics (n = 146)

Characteristics Levels/categories

Number

(percent)

Education

level

Master student 20 (13.7%)

Masters 65 (44.5%)

Ph.D. student 61 (41.8%)

Major Management and industrial

engineering

141 (96.6%)

Miscellaneous (computer

engineering, accounting, etc.)

5 (3.4%)

Age [23,27) 21 (14.4%)

[27,31) 61 (41.8%)

≥31 64 (43.8%)

Gender Male 81 (55.5%)

Female 65 (44.5%)
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different methods (in two hierarchical and non-hierarchical formats),

which is as follows (all numbers are rounded). AHP: mean = 13 min

(s.d. = 10); BWM: mean = 12 min (s.d. = 9); Swing: mean = 9 (s.d.

= 8); SMART: mean = 5 (s.d. = 6); PA: mean = 4 (s.d. = 4). We think

the difference between time spent on different methods, which are all

statistically significantly different from each other (p < 0.05) is due to

the amount of effort these methods require.

To check the subjects' level of tiredness, which can be partly

reflected in the time they spend on a method when approaching the

end of the experiment, we conducted some statistical tests to check

the difference between the time subjects spend on a particular

method when the method is their first randomly assigned test to sub-

jects who have done that particular method as their fifth (last) ran-

domly assigned method. We conducted the test for all five methods

and found that the differences were not statistically significant, except

for AHP. More specifically, those who performed AHP as their last

method finished it relatively more quickly than those who performed

it as their first method. This might be because the method is more

popular, compared to other methods, amongst the respondents, which

means that the time is mainly spent to understand the problem not

the mechanism of the method. Therefore, those who were doing AHP

as their last method had already become familiar with the problem

and they were able to conduct the pairwise comparisons more

quickly. This does not apply to the other methods. We proceeded to

check the consistency ratio of those who performed AHP as their last

method, to see if their consistency (on average) is different and we

found that there is no statistically significant difference between the

consistency ratio of the two groups, which means that them doing

AHP more quickly at the end has no effect on the reliability of the

weights.

TABLE 6 Pairwise comparisons of methods' equalizing bias for level 1

(I) Methods (J) Methods
Equalizing bias index
mean difference (I–J)

Std.
error Sig.a

95% confidence interval for
differencea (lower bound)

95% confidence interval for
differencea (upper bound)

AHP BWM 0.005 0.005 1.000 �0.011 0.020

PA 0.086** 0.005 0.000 0.071 0.102

SMART 0.055** 0.005 0.000 0.041 0.069

Swing 0.107** 0.005 0.000 0.092 0.122

BWM PA 0.082** 0.006 0.000 0.066 0.097

SMART 0.051** 0.005 0.000 0.037 0.064

Swing 0.102** 0.005 0.000 0.087 0.118

PA SMART �0.031** 0.004 0.000 �0.043 �0.018

Swing 0.021** 0.004 0.000 0.009 0.032

SMART Swing 0.052** 0.004 0.000 0.040 0.063

aAdjustment for multiple comparisons: Bonferroni.
*p < 0.05;
**p < 0.005.

TABLE 7 Pairwise comparisons of methods' equalizing bias for level 2

(I) Methods (J) Methods
Equalizing bias index
mean difference (I–J)

Std.
error Sig.a

95% confidence interval for
differencea (lower bound)

95% confidence interval for
differencea (upper bound)

AHP BWM 0.010** 0.003 0.003 0.002 0.018

PA 0.048** 0.002 0.000 0.041 0.055

SMART 0.034** 0.002 0.000 0.027 0.041

Swing 0.053** 0.002 0.000 0.047 0.060

BWM PA 0.038** 0.002 0.000 0.031 0.045

SMART 0.024** 0.002 0.000 0.017 0.030

Swing 0.043** 0.002 0.000 0.036 0.050

PA SMART �0.015** 0.002 0.000 �0.020 �0.009

Swing 0.005* 0.002 0.015 0.001 0.009

SMART Swing 0.019** 0.002 0.000 0.014 0.025

aAdjustment for multiple comparisons: Bonferroni.
*p < 0.05;
**p < 0.005.
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6 | DATA ANALYSIS AND DISCUSSION

This section contains the analysis based on the collected data and the

calculated normalized weights of each method. In this way, after

collecting completed experiment tasks, all of the five methods in two

problem structure formats solved by Excel solver that was developed

especially for this experiment and global weight of all subattributes of

each method calculated for each subject. Then a bias index is required

to analyze the equalizing bias occurrence in these methods, which is

defined in our study as follows.

Definition 4. The equalizing bias of participant

s following method m, ems , is calculated using the

following formula:

ems ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 wm

js � 1
n

� 	2

n

vuut
,8s� S,m�M, ð12Þ

where, wm
js is the weight of attribute j ( j=1,2, …, n) for participant

s (s=1, 2, …, S) in the method m (m=1, 2, …, M); 1
n¼wm

s is the mean

of attributes weight in the method m for participant s (as the number

of attributes is equal for all methods and all participants and as the

sum of weights is one, wm
s ¼ 1

n).

This bias index is similar to the standard deviation in statistics

and plays a vital role in almost all statistical inference procedures,

especially measures of variability. A low bias index (close to 0)

indicates that the weights tend to be close to the mean (high equaliz-

ing bias incidence). By contrast, a high bias index indicates that the

weights are spread out over a wider range (low equalizing bias

incidence).

After calculating the equalizing bias index for each method, all

of these data were analyzed with SPSS version 26.0 to test the

hypotheses listed in Section 4.

6.1 | Test of Hypothesis 1

To test Hypothesis 1, repeated measures analysis of variance

(ANOVA) was used to examine differences for each bias index ems for

the two levels of the decision tree. During the initial testing of

assumptions, Mauchly's test of sphericity indicated that the assump-

tion of sphericity had not been met for the methods' effect on the

equalizing bias index (χ2≥36.47, p<0.05) for level 1 and (χ2≥64.12,

p<0.05) for level 2. Therefore, the Greenhouse–Geisser correction

was used to calculate a conservative comparison of equalizing bias

index means for both levels. Bonferroni post hoc analyses were

conducted to determine the ranking of methods' bias. A test of

within-subjects effects shows that there was a significant main effect

of methods on equalizing bias index (F(3.56, 516.74)=185.77,

p<0.05) for level 1 and (F(3.381, 490.28)=213.60, p<0.05) for

level 2.

Hence, to identify the exact differences of the above findings,

Bonferroni post hoc analyses were conducted. The results show that

there are statistically significant differences between the equalizing

bias index means at the first level except for AHP and BWM (Table 6)

and for equalizing bias index of all methods for level 2 (Table 7). Also,

ranking the methods by equalizing bias index means for the two levels

(Table 8, Table 9 and Figure 3) shows that AHP (equalizing bias mean:

0.207 for level 1 and 0.116 for level 2), BWM (equalizing bias

mean: 0.202 for level 1 and 0.106 for level 2), SMART (equalizing bias

mean: 0.151 for level 1 and 0.083 for level 2), PA (equalizing bias

TABLE 8 Estimates of methods' equalizing bias for level 1

Methods
Equalizing bias
index mean Std. error

95% confidence interval for
difference (lower bound)

95% confidence interval for
difference (upper bound)

AHP 0.207 0.005 0.198 0.216

BWM 0.202 0.005 0.193 0.212

PA 0.121 0.005 0.112 0.130

SMART 0.151 0.003 0.145 0.158

Swing 0.100 0.004 0.092 0.108

TABLE 9 Estimates of methods' equalizing bias for level 2

Methods
Equalizing bias
index mean

Std.
error

95% confidence interval for
difference (lower bound)

95% confidence interval for
difference (upper bound)

AHP 0.116 0.002 0.112 0.121

BWM 0.106 0.002 0.102 0.111

PA 0.068 0.002 0.064 0.072

SMART 0.083 0.002 0.079 0.086

Swing 0.063 0.001 0.060 0.066
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mean: 0.121 for level 1 and 0.068 for level 2), and Swing (equalizing

bias mean: 0.1 for level 1 and 0.063 for level 2) have less to more

equalizing bias, respectively, which means that this hypothesis is

supported.

AHP and BWM displayed less equalizing bias than SMART, Swing,

and PA, which was in line with the debiasing strategy presented by

Montibeller and von Winterfeldt (2015b), Montibeller and von

Winterfeldt (2015a), and Montibeller and von Winterfeldt (2018) to

use 'rank and ratio-based methods' in weighting the attributes. These

methods are working based on pairwise comparison that compares

the relative importance of one attribute to other attributes in one or

more turns and assigning a ratio to each of the comparisons. Despite

several criticisms to AHP (see, for instance, Barzilai (1997) for ‘rank
reversal’, Salo and Hämäläinen (1997) for ‘judgement scales’, and
(Dyer, 1990) for ‘accuracy of results’), not directly assigning impor-

tance scores to the attributes by this method and comparing attri-

butes to each other results in a more significant distinction in the

relative importance of the attributes. In BWM, the use of pairwise

comparison also leads to more distinction in the weights.

In BWM, the decision-maker explicitly ranks the attributes in

Best-to-Others and Others-to-Worst vectors. Although this is not

done explicitly in AHP, the decision-maker needs to consider the

ranking of the attributes implicitly, to make a pairwise comparison

of each attribute with the other attributes. On the other hand,

despite the initial ranking procedure of attributes in SMART and

Swing methods, these methods, together with the PA method, are

direct rating methods in which the decision-maker directly assigns

the importance of each attribute and does not compare the

relative importance of the attributes, making them more prone to

equalizing, as indicated in some papers, including Marttunen

et al. (2018), Pöyhönen and Hämäläinen (2001) and Tervonen

et al. (2017).

F IGURE 3 Estimated marginal means of methods' equalizing bias
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 11 Estimates of the structure of the problem's equalizing bias

Structure of
weighting

Equalizing bias
index mean

Std.
error

95% confidence interval for
difference (lower bound)

95% confidence interval for
difference (upper bound)

Hierarchical 0.101 0.002 0.097 0.105

Non-hierarchical 0.074 0.001 0.071 0.076

TABLE 10 Pairwise comparisons of the structure of the problem's equalizing bias

(I) Structure
of weighting

(J) Structure
of weighting

Equalizing bias index
mean difference (I–J)

Std.
error Sig.a

95% confidence interval for
differencea (lower bound)

95% confidence interval for
differencea (upper bound)

Hierarchical Non-hierarchical 0.027** 0.002 0.000 0.024 0.031

aAdjustment for multiple comparisons: Bonferroni.
*p < 0.05;
**p < 0.005.

6.2 | Test of Hypothesis 2

Here, we first tested the effect of problem structuring (hierarchical,

non-hierarchical) on equalizing bias, considering all methods
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together, after which we examined the difference between the

various methods in this respect. Initially, repeated measures

ANOVA was used to examine differences for each bias index.

Bonferroni post hoc analyses were conducted to determine the

ranking of the problem structuring formats bias. A test of within-

subjects effects (considering all five methods together) shows that

there was a significant main effect of hierarchical/non-hierarchical

structure of problem on equalizing bias (F(1.145) = 234.59,

p < 0.05).

Hence, to determine the exact differences in the findings out-

lined, Bonferroni post hoc analyses were conducted. The results show

that there was a significant difference between the hierarchical/non-

hierarchical structuring of the problem in equalizing bias index (mean

difference 0.027, p < 0.05) (Table 10), proving that hierarchical

structuring (equalizing bias mean: 0.101) is statistically significantly

less prone to equalizing bias than non-hierarchical structure (equaliz-

ing bias mean: 0.074) (Table 11 and Figure 4).

The hierarchical structuring of the problem leads to a reduction

in the occurrence of equalizing bias, which was in line with

the debiasing strategy presented by Montibeller and von

Winterfeldt (2018), Montibeller and von Winterfeldt (2015a),

Montibeller and von Winterfeldt (2015b), Stillwell et al. (1987),

where the use of a hierarchical approach in weighting the attributes

leads to fewer occurrences of equalizing bias. Hierarchical weighting

is a comparison of attributes/subattributes that are on a similar level

of a decision tree and in the same cluster. This leads to comparing

attributes in smaller subsets and finally mitigate the splitting bias

(Hämäläinen & Alaja, 2008), because the distribution of weights is

F IGURE 4 Estimated marginal means of the structure of the
problem's equalizing bias [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 12 The interaction effect of the structuring of the problem on the equalizing bias among all five methods estimates

Methods
Structure of the
problem

Equalizing bias
index mean

Std.
error

95% confidence interval for
difference (lower bound)

95% confidence interval for
difference (upper bound)

AHP Hierarchical 0.131 0.004 0.124 0.139

Non-hierarchical 0.101 0.002 0.097 0.105

BWM Hierarchical 0.124 0.003 0.118 0.131

Non-hierarchical 0.088 0.002 0.084 0.092

PA Hierarchical 0.078 0.002 0.073 0.083

Non-hierarchical 0.058 0.002 0.054 0.063

SMART Hierarchical 0.097 0.002 0.092 0.102

Non-hierarchical 0.068 0.001 0.065 0.071

Swing Hierarchical 0.073 0.002 0.070 0.077

Non-hierarchical 0.053 0.002 0.049 0.056

F IGURE 5 Estimated marginal means of the interaction effect of
the structuring of the problem on the equalizing bias among all five
methods [Colour figure can be viewed at wileyonlinelibrary.com]
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influenced by the number of objectives due to the normalization of

weights, so that they add up to one (Marttunen et al., 2018;

Pöyhönen & Hämäläinen, 1998, 2001; Weber et al., 1988). Subjects

have a response bias against large weight ratios. Since relatively flat

higher level weights can still produce steep lower level weights, this

response bias would affect non-hierarchical weights more than

hierarchical weights and leads to flatter weights in the non-

hierarchical structure (Stillwell et al., 1987).

Furthermore, to test the interaction effect of the hierarchical

structuring of the problem on equalizing bias among all five

methods, repeated measures ANOVA was used to examine differ-

ences for each bias measure. During the initial testing of assump-

tions, Mauchly's test of sphericity indicated that the assumption of

sphericity had not been met for the effect of the structuring of the

problem on the equalizing bias index among all five methods

(χ2 ≥ 64.12, p < 0.05). Therefore, the Greenhouse–Geisser correction

was used to calculate a conservative comparison of the equalizing

bias index means. Bonferroni post hoc analyses were conducted to

determine the ranking of methods formats' bias. A test of within-

subjects effects shows that there was a significant main effect of

the structuring of the problem on the equalizing bias among all five

methods (F(3.24, 470.17) = 10.19, p < 0.05).

Hence, to determine the exact differences in the findings out-

lined above, Bonferroni post hoc analyses were conducted. The

ranking of methods in each problem structuring by equalizing bias

index means show (Table 12 and Figure 5) the hierarchical AHP

(equalizing bias index mean: 0.131), hierarchical BWM (equalizing

bias index mean: 0.124), non-hierarchical AHP (equalizing bias index

mean: 0.101), hierarchical SMART (equalizing bias index mean:

0.097), non-hierarchical BWM (equalizing bias index mean: 0.088),

hierarchical PA (equalizing bias index mean: 0.078), hierarchical

Swing (equalizing bias index mean: 0.073), non-hierarchical SMART

(equalizing bias index mean: 0.068), non-hierarchical PA (equalizing

bias index mean: 0.058), and non-hierarchical Swing (equalizing bias

index mean: 0.053) demonstrated from less to more equalizing bias,

respectively.

In addition, the paired samples t test was used to examine dif-

ferences for the effect of hierarchical viewing of the problem on

the equalizing bias in each method. Similar to the results of

repeated measures ANOVA, the results show that all methods

equalizing bias index significantly differ in view of problem struc-

ture. The hierarchical problem structuring leads to a reduction in

equalizing bias in all the five methods, although to a significantly

different degree. The BWM and AHP show more hierarchical differ-

ences from the non-hierarchical structure (0.0363 and 0.0300,

respectively) than the other methods (Table 13). It can be said that,

the lower the occurrence of equalizing bias in a method, the greater

the difference of this bias index in the hierarchical and non-

hierarchical structure of the same method.

6.3 | Implications of our findings for splitting bias

This section discusses an additional finding of this study. A part of

Section 6.1 focused on checking the equalizing bias for the first level

of the tree for the five different methods. We conducted the analysis

based on the weights obtained by hierarchical weighting. It is also

possible to calculate the weights of the first level attributes by adding

the weights of the subattributes of a main attribute when the weights

have been calculated non-hierarchically. In this section, we calculate

the weights this way and check the equalizing bias for the methods.

Following the same approach as in Section 6.1, we found the equaliz-

ing bias index means for the five methods that are presented in

Table 14. As can be seen, this approach yields different results, in par-

ticular for PA, SMART, and Swing. We think that this is related to

another bias called splitting bias, which has been studied by

Borcherding and von Winterfeldt (1988), Jacobi and Hobbs (2007),

Pöyhönen and Hämäläinen (1998), Weber et al. (1988) and others. It

is defined as ‘the phenomenon where dividing an existing attribute

into subattributes in a branch of a value tree produces an increase in

the overall weight of that branch when non-hierarchical weighting is

used’ (Hämäläinen & Alaja, 2008). Experimental studies on splitting

TABLE 13 Effect of hierarchical viewing of the problem on the equalizing bias in each method

Pair

Equalizing
bias index
mean

Std.
deviation

Std. error
mean (paired
differences)

95% confidence
interval for paired
difference (lower
bound)

95% confidence
interval for paired
difference (upper
bound) t Df

Sig.
(2-tailed)

AHP hierarchical—AHP

non-hierarchical

0.030** 0.040 0.003 0.024 0.036 9.166 145 0.000

BWM hierarchical—BWM

non-hierarchical

0.036** 0.035 0.003 0.031 0.042 12.552 145 0.000

PA hierarchical—PA

non-hierarchical

0.020** 0.029 0.002 0.015 0.024 8.243 145 0.000

SMART hierarchical—SMART

non-hierarchical

0.030** 0.029 0.002 0.025 0.034 12.471 145 0.000

Swing hierarchical—Swing

non-hierarchical

0.021** 0.027 0.002 0.016 0.025 9.206 145 0.000

*p < 0.05; **p < 0.005.
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bias are limited to Swing (Borcherding & von Winterfeldt, 1988;

Hämäläinen & Alaja, 2008; Pöyhönen et al., 2001; Pöyhönen &

Hämäläinen, 2000; Weber et al., 1988), PA (Jacobi & Hobbs, 2007),

Tradeoff (Borcherding & von Winterfeldt, 1988), Pricing out

(Borcherding & von Winterfeldt, 1988), Otto (Weber et al., 1988),

Conjoint (Weber et al., 1988), and Ratio (Borcherding & von

Winterfeldt, 1988; Weber et al., 1988). If we compare the index bias

for the first-level attributes using the two hierarchical and non-

hierarchical weighting, we see very interesting results (see Table 14

and Figure 6). As can be seen, the difference between equalizing bias

indexes of the two hierarchical and non-hierarchical weightings for

PA, SMART, and Swing are statistically significantly different.

For AHP the difference, although significant, the equalizing bias

indexes are not too far from each other and for BWM they are not

statistically significantly different and as we see in Figure 6, they have

a significant overlap. Based on this observation, we would conclude

that methods that are more prone to equalizing bias are also more

prone to splitting bias, and that splitting bias is not necessarily always

a phenomenon in the case of non-hierarchical weighting, for instance,

when using BWM. However, our findings confirm that splitting bias

occurs with non-hierarchical weighting, but not for all methods, so we

think more research is needed in this area.

7 | CONCLUSION AND FUTURE RESEARCH

Attribute weighting is one of the most important steps in a mul-

tiattribute decision-making (MADM) problem. Most MADM weighting

methods are based on the assessments of experts/decision-makers,

which are prone to several cognitive biases and lead to suboptimal

results. Therefore, it is necessary to examine these biases to improve

the methods and develop debiasing strategies. To date, however, few

studies have addressed this issue from an analytical-experimental

perspective. Our study is one of a few experimental studies to exam-

ine the existence of the equalizing bias in MADM weighting methods.

In this research, five MADM weighting methods AHP, BWM,

SMART, Swing, and PA, under two structuring formats, hierarchical

and non-hierarchical, were selected for the experiment. The hypothe-

ses were developed and then tested by an experiment design. We

found that the hierarchical structuring of the problem leads to a signif-

icant reduction of equalizing bias in all methods under examination, a

result that is in line with Jacobi and Hobbs (2007), Montibeller and

von Winterfeldt (2015b), Montibeller and von Winterfeldt (2015a),

Montibeller and von Winterfeldt (2018), Sayeki and Vesper (1973)

and Stillwell et al. (1987), who suggested hierarchical weighting as a

strategy for eliciting the weight of the attributes equally. Also, this

result is indirectly in line with Pöyhönen and Hämäläinen (2001),

F IGURE 6 Equalizing bias among all five methods for the five
different methods for the first level attributes' weight (hierarchical
vs. non-hierarchical problem structuring) [Colour figure can be viewed
at wileyonlinelibrary.com]

TABLE 14 Effect of hierarchical and non-hierarchical viewing of the problem on the equalizing bias of first level attributes in each method

Pair

Equalizing
bias index
mean

Std.
deviation

Std. error
mean (paired
differences)

95% confidence

interval for paired
difference (lower
bound)

95% confidence

interval for paired
difference (upper
bound) t Df

Sig.
(2-tailed)

AHP hierarchical—AHP

non-hierarchical

�0.021** 0.075 0.00617 �0.033 �0.008 �3.351 145 0.001

BWM hierarchical—BWM

non-hierarchical

�0.005 0.058 0.00478 �0.014 0.005 �0.987 145 0.325

PA hierarchical—PA

non-hierarchical

�0.075** 0.043 0.00359 �0.082 �0.068 �20.845 145 0.000

SMART hierarchical—SMART

non-hierarchical

�0.359** 0.107 0.00889 �0.377 �0.342 �40.420 145 0.000

Swing hierarchical—Swing

non-hierarchical

�0.419** 0.088 0.00725 �0.433 �0.404 �57.766 145 0.000

*p < 0.05;
**p < 0.005.
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Pöyhönen and Hämäläinen (1998), Marttunen et al. (2018) and Weber

et al. (1988) who described the 1/n rule and the number of attributes

as a factor affecting the distribution of the weights. In this way, the

hierarchical structuring of the problem has fewer attributes to be

considered together, because the attributes are clustered in smaller

subsets (compared to non-hierarchical situation, where all sub-

attributes are evaluated together) and reduces equalizing bias. In

addition, AHP and BWM have less equalizing bias than SMART,

Swing, and PA, which proves the efficiency of the debiasing strategies

that have been proposed in the existing studies to use 'rank and ratio-

based methods' in weighting the attributes. This result was in line with

Montibeller and von Winterfeldt (2015b), Montibeller and von

Winterfeldt (2015a), and Montibeller and von Winterfeldt (2018). It

was also in line with Pöyhönen and Hämäläinen (2001), Tervonen

et al. (2017), and Marttunen et al. (2018), who suggested direct rating

methods such as Swing, PA, and SMART lead to equal weight distribu-

tion more than other methods. The findings suggest that SMART,

Swing, and PA are more suitable for hierarchical structures (than non-

hierarchical structures) and that if the questions being asked in these

methods are changed to some explicit ratio questions, the conclusions

may be less prone to equalizing bias. The findings also help

researchers consider debiasing strategies to counter equalizing bias

when developing new methods.

This study has a number of limitations. First of all, we collected

the data via a virtual platform, but feel that collecting data in a labora-

tory setting would be more desirable, because in that case, we could

better control the condition of the experiments. The experiment we

designed was a within-subjects design with ten different tasks, which

is a bit long, and subjects may have become tired towards the end of

the experiment, based on which we recommend reducing the number

of tasks for the participants. In an extreme scenario, the experiment

can be designed based on between-subject design, which has its own

advantages and disadvantages (e.g., a main disadvantage is that it

requires more participants, while a main advantage is that it is natu-

rally not affected by learning effect, carryover effect, and dependency

between the treatments/tasks). As argued above, choosing between

within-subjects design and between-subjects design is in itself a mul-

tiattribute decision-making problem! Finally, while, like almost all ear-

lier studies in this area, we focused on one cognitive bias (equalizing

bias), and we think that some of biases may be interconnected and

that future research could examine such possible connections. For

instance, we think that equalizing bias and anchoring bias may have

some associations, for instance, when a weighting method could bet-

ter handle the anchoring bias (for instance by using multiple anchors),

it is most likely less prone to equalizing bias too. We think that, if we

identify such a relationship among cognitive biases in MADM

weighting methods, we could better formulate debiasing strategies,

because when we suggest debiasing strategies for a particular cogni-

tive bias and ignore all other biases, such a debiasing strategy may not

be very effective. Finally, while we identified equalizing bias in MADM

weighting methods in an experimental setting, as the real decision-

making involves a close interaction between the analyst and the

decision-maker, the analyst could help the decision-maker overcome

such a bias, which can a subject for future research.

ENDNOTE
1 One of the most common and powerful software programs for estimat-

ing the number of subjects required for research based on statistical

tests (Faul et al., 2007, 2009)
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APPENDIX A

The attributes and subattributes of the research problem

Attribute Subattribute References

Cost (C1) Travel cost (C1–1) (Celik et al., 2013; De Oña et al., 2013;

Dirghayani & Sutanto, 2020; Eboli &

Mazzulla, 2011; Mavi et al., 2018;

Nassereddine & Eskandari, 2017)

Time (C2) Travel time (C2–1) (Deveci et al., 2019; Dirghayani & Sutanto,

2020; Errampalli et al., 2020; Hsu, 1999;

Mavi et al., 2018; Nassereddine &

Eskandari, 2017; Zak, 2011)

Waiting time (C2–2) (Celik et al., 2013; Dirghayani & Sutanto,

2020; Hsu, 1999; Nassereddine &

Eskandari, 2017; Zak, 2011)
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Attribute Subattribute References

Reliability and punctuality of vehicles mode

runs come on schedule to the destination

(C2–3)

(Celik et al., 2013; De Oña et al., 2013;

Eboli & Mazzulla, 2011; Errampalli

et al., 2020; Kuo & Liang, 2012; Lee,

2018; Mavi et al., 2018; Zak, 2011)

Environment friendly (C3) Pollution (C3–1) (Celik et al., 2013; Deveci et al., 2019; Eboli

& Mazzulla, 2011; Errampalli et al., 2020;

Kuo & Liang, 2012; Lee, 2018; Mavi et al.,

2018)

Comfort (C4) The passenger density in the vehicle (C4–1) (Celik et al., 2013; De Oña et al., 2013;

Deveci et al., 2019; Dirghayani &

Sutanto, 2020; Eboli & Mazzulla, 2011;
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Ease of accessibility to vehicle stop station

(C4–2)
(Celik et al., 2013; Cui et al., 2020; De Oña

et al., 2013; Dirghayani & Sutanto, 2020;

Errampalli et al., 2020; Hsu, 1999; Lee,

2018; Nassereddine & Eskandari, 2017)

Air condition and other equipment in the

vehicles (C4–3)
(Celik et al., 2013; Eboli & Mazzulla, 2011;

De Oña et al., 2013; Deveci et al., 2019;

Kuo & Liang, 2012; Lee, 2018; Zak, 2011)
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