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Finite element modelling of creep cavity filling by solute
diffusion

C. D. Versteylen®®, N. K. Szymanski?, M. H. F. Sluiter® and N. H. van Dijk?

aFundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of
Technology, Delft, The Netherlands; byvirtual Materials and Mechanics, Department of Materials
Science and Engineering, Delft University of Technology, Delft, The Netherlands

ABSTRACT ARTICLE HISTORY
In recently discovered self healing creep steels, open-volume Received 17 October
creep cavities are filled by the precipitation of supersaturated 2017

solute. These creep cavities form on the grain boundaries oriented Accepted 12 December
perpendicular to the applied stress. The presence of a free surface 2017

triggers a flux of solute from the matrix, over the grain boundaries KEYWORDS
towards the creep cavities. We studied the creep cavity filling by FEM; modelling; creep;
finite element modelling and found that the filling time critically precipitation; steel;
depends on (i) the ratio of diffusivities in the grain boundary and self-healing

the bulk, and (ii) on the ratio of the intercavity distance and the

cavity size. For a relatively large intercavity spacing 3D transport

is observed when the grain boundary and volume diffusivities are

of a similar order of magnitude, while a 2D behaviour is observed

when the grain boundary diffusivity is dominant. Instead when

the intercavity distance is small, the transport behaviour tends

to a 1D behaviour in all cases, as the amount of solute available

in the grain boundary is insufficient. A phase diagram with the

transition lines is constructed.

1. Introduction

When metals are subjected to a load at high temperature, creep damage can
occur in the form of creep cavities. These cavities grow under the influence
of stress which can lead to failure. Generally, strategies are adopted to prevent
creep damage to form, or slow down its growth [1,2]. An alternative method
in the form of self healing has been proposed by Laha and coworkers [3]
and Shinya [4], where selective precipitation of supersaturated solute at creep
cavities hinders the creep cavity growth in stainless steels. This mechanism was
modelled by Karpov and coworkers [5]. Zhang and coworkers subsequently
demonstrated that precipitation of substitutional solute leads to the self healing of
creep cavities in Fe—-Au and Fe-Mo alloys [6-8]. The creep defects and repairing
precipitates were studied in detail for Fe-Au self-healing creep alloys, using
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X-ray nanotomography [9]. It was found that the creep cavity growth and the
precipitate growth directly affect the strain rate of the alloys. Additional scanning
electron microscopy studies indicated a close similarity between the precipitation
mechanism at the outer surface [10], compared to the precipitation on the creep
cavity surface within the material [9].

Creep cavity growth by the diffusional flux of vacancies over grain boundaries
has been described by Herring [11], and Hull and Rimmer [12], who propose that
the driving force for vacancies to migrate to the creep cavities is a function of
the applied stress. The effect of strain rate in the bulk material on the creep
cavity growth was treated in finite-element calculations by Needleman and
Rice [13]. The role of stress states around creep cavities, and the effect of the
intercavity distance implemented in the model proposed by Needleman and
Rice was investigated by van der Giessen [14]. In all of these studies, the vacancy
transport is solely along the grain-boundary, by grain-boundary diffusion.

Zener first treated the bulk-diffusion dominated growth of spherical precipi-
tates in a homogeneous bulk material [15]. In the case of precipitate growth on
grain-boundaries, both the diffusivity in bulk and on the grain-boundary play an
essential role. The fast diffusion along grain boundaries acts as a collector plate
to accumulate solute [16], or diffuse solute in the case of precipitate dissolution
[17,18].

The aim of the present paper is to quantitatively estimate the time required to
fill a creep cavity by solute precipitation as a function of several key modelling
parameters such as: the creep cavity size, the intercavity spacing, the concen-
tration of supersaturated solute, the grain-boundary diffusivity and the volume
diffusivity. We also aim to show the influence of the diffusivities and intercavity
distance on the 1D, 2D or 3D character of the diffusion field and therefore
its influence on the rate of filling. The growth rate of a precipitate can change
character during the life-time of a material. This change of character can play
a significant role in the behaviour of creep-resistant alloys, as they have long
service lives at high temperature.

2. Methods

The diffusional flux of substitutional solute towards the creep cavity is evaluated
using finite element modelling (FEM). The modelling was performed using the
Sepran software [19,20]. The diffusional flux J is modelled as,

J=—-=Vq (1)

where D is the diffusion constant, 2 is the atomic volume and c is the solute
concentration in atomic fraction. Assuming that the driving force for diffusion
originates only from a gradient in concentration (Vc), and that the atomic
volume of the solute atom is equal to the volume of an iron atom in the bcc
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lattice (£2). The diffusional flux of solute towards the volume of a lens-shaped
cavity is evaluated at the surface of the cavity S:

dN - -
E:—#}-ds. (2)
S

The diffusional flux arriving at the creep-cavity surface S results in a number
of ingressing atoms N per unit of time . The precipitate then grows inside the
creep cavity until the number of atoms that have ingressed is sufficient to fill the
volume V of the original creep cavity (N2 = V). The fraction of filling f then
corresponds to f = NQ/V (with f = 1 at complete filling).

As indicated in Figure 1, the simulation volume is a cylinder of radial di-
mension r and vertical dimension z. The simulation box has a radius A and a
box height H. The grain boundary thickness amounts to § = 0.5 nm, the creep
cavity radius is chosen to be a = 50nm and the atom volume of bcc iron is
Q = 0.0117 nm? (for a lattice parameter of 0.286 nm).

The boundary conditions are: (1) the concentration at the edge of the creep
cavity (r = a) is kept at a constant level c;, (2) the starting concentration in the
matrix and grain boundary is chosen to be equal to the nominal concentration ¢g
and (3) at the edge of the simulation box (r = A and z = H), the diffusional flux
is chosen to be zero. The box radius A corresponds to half the intercavity spacing
on the grain boundary (z = 0). A small box radius therefore corresponds to a
high cavity concentration on the grain boundary. The box height H, was chosen
to always be sufficiently large, so that the concentration remains equal to the
nominal concentration at the vertical box edge, for the times up until complete
filling.

The ratio A/a is a characteristic parameter in the modelling of the creep
cavity filling. In our simulations we used the following values for the intercavity
ratios: A /a = 2,3, 5,10, 20, 50, 100, 200 and 400. We varied the grain-boundary
diffusivity (Dgp) over 9 orders of magnitude and the volume diffusivity Dy in the
bulk of the matrix over 10 orders of magnitude. The shape of the cavities on grain
edges, corners and on precipitates has been analysed by Raj & Ashby [21]. The
creep cavities that form on the grain boundaries are found to be self-similar over
a large range of length scales. In this work, we will only consider the lens-shaped
cavities forming on straight grain-boundary edges perpendicular to the stress
direction. For such a lens-shaped cavity, the volume is given by Vegy = FVppere
with

3 1,
F=1- ECOS ) + 2 cos” (V), (3)

where ¥/ is the opening angle and Vippere = 4ma’®/3 is the volume of a sphere
with radius a. For metals the equilibrium opening angle v is estimated at 75°,
following the approach by Raj and Ashby [21], resulting in a scale factor of
F ~ 0.62. The height of the creep cavity directly scales with the cavity radius a
with h/a = (1 — cos )/ sin (¥) =~ 0.77.
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Figure 1. Lens-shaped creep cavity defined by an opening angle v, a height h and a radius a. The
creep cavity is formed on a grain boundary with width 8. The simulation box is a cylinder with a
radius A and a height H.

A

Throughout the simulations the nominal concentration is chosen to be ¢y =
0.01, with an edge concentration of c; = 0.0001, in order to reflect the experi-
mental situation for self healing in Fe-Au alloys [6,7,9]. As a consequence, the
supersaturation Ac is comparable to the nominal concentration cy.

3. Results

In Figure 2 the concentration profile at the time of creep cavity filling is shown for
A/a = 20and A/a = 2, and for three different ratio’s of D,/ Dy . It can be seen
that the character of the diffusional field where the solute is depleted critically
depends on both diffusivity and size ratio. The axially symmetric cavity can have
eithera 3D, 2D or 1D diffusion field, depending on A /aand Dy, /Dy . For the ratio
of A/a = 2 the diffusion field has a 1D character with a concentration gradient
towards the grain boundary and the creep cavity. For the ratio of 1 /a = 20,
the diffusion field has a 3D character for Dg,/Dy ~ 1, and a 2D character for
Dgy/Dy > 1.

In Figure 3, the filling time of the creep cavity as a result of the diffusional
solute flux towards the creep cavity is shown as a function of the grain-boundary
diffusivity and the volume diffusivity, for different ratio’s of A /a. For the smallest
ratio of A /a = 2, the filling time is only controlled by Dy. This is consistent with
the results of Figure 2, where the diffusion field always shows a 1D character for
AJa = 2.For A/a = 5and A/a = 20, in Figure 3, a clear transition is observed
for a specific ratio of diffusivities. For a relatively high grain-boundary diffusion,
the grain boundary is depleted faster, leading to a 1D diffusion for most of the
filling time. For A/a = 400, both the grain boundary and volume diffusivity
control the filling time.

Based on these observations it is useful to introduce a dimensionless time :

s @)

a2
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Figure 2. (colour online) Solute concentration around the cavity at the time of filling. (a) . /a = 20,
and Dgp/Dy = 108. (b) A/a = 20, and Dy /Dy = 10°. (c) A/a = 20, and Dgy/Dy = 1. (d)
A/a = 2,and Dgp/Dy = 108.(e) »/a = 2,and Dgy/Dy = 103.(f) »/a = 2,and Dgp /Dy = 1. All
data are forasupersaturation of Ac = 0.01.For A /a = 2, the grain boundary containsinsufficient
solute, and as a result, a quasi-1D profile is observed at the time of filling, independent of the
ratio Dgp /Dy .

In Figure 4, 77 is shown for different ratio’s of A /a. For the 1D and 3D conditions,
where the volume diffusion is rate-limiting, the dimensionless filling time g is
now independent of the volume diffusion Dy For large values of A /a, 77 is also
independent of A /a. For a large ratio of A/a and Dg,/Dy = 1, the diffusion field
has a 3D character. However, when the grain-boundary diffusivity is much larger
than the volume diffusivity Dg; >> Dy, the diffusion field shows a distinct 2D
character. In Figure 5, the dimensionless filling time (zf;) is plotted as function
of the geometric ratio (A/a) and the diffusivity ratio (Dg/Dy). 4y is found to
depend on both the ratio of diffusivities and the geometric ratio. For A/a > 50
only the diffusivity ratio defines the dimensionless filling time. In this case, for
high diffusivity ratios 77 scales as ¢4 o (ng /DV)_I, as t4 is then controlled
by Dy, only.

The diffusion profile can be 3D, 2D or 1D in nature. In order to evaluate
which of these occurs, one can use the diffusion length at the filling 2, /Dtg.
When the diffusion length for grain-boundary and/or volume diffusion exceeds
the box radius A, a cross-over in behaviour occurs. In order to further evaluate
the nature of the diffusion process, the amount of atoms ingressing in the creep
cavity as function of time can approximated by a power law;

N(t) = Kt", (5)

where N is the number of solute atoms collected in the cavity, K is a constant and
v is the time exponent, which can be obtained by fitting the simulation results
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Figure 3. (colour online) Filling time for different ratio’s of A/a (2, 5, 20, 400). The filling time
depends only on the volume diffusivity for small A /a, and evolves to the situation where both
diffusivities contribute. All data are for a supersaturation level of Ac = 0.01.
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Figure 4. (colour online) Dimensionless filling time 77, as function of the diffusivity ratio Dgy, /Dy
The ratio A /a defines at which diffusivity ratio the diffusion length impinges the edge of the box
atr = X. All data are for a supersaturation of Ac = 0.01.
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Figure 5. (colour online) Dimensionless filling time 77, as a function of A /a and Dg, /Dy . All data
are for a supersaturation of Ac = 0.01.

4 b o 5 o o o %
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NMa

Figure 6. (colour online) Time exponent v for cavity filling kinetics as a function of A/a and
Dgb/Dy . All data are for a supersaturation of Ac = 0.01.

for N(t) to Equation (5). N(t) is obtained by integrating the atom flux from
Equation (2).

The time exponent for the filling kinetics of the creep cavity depends on the
dimensional character: for 1D one finds v = 0.5, and for both 2D and 3D v starts
at 0.5 and gradually tends to 1.0 over time (see Appendix 1). As shown in Figure
6, a 1D character (v = 0.5) is observed for low values of 1/a, while a 2D/3D
character (with v & 0.85) is observed for high values of A/a. This is consistent
with the result from Figures 2-5.
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4. Discussion

The dimensional character of the solute transport towards the cavity has a large
effect on the filling time. For a small A /a ratio the solute transport is purely 1D
and is controlled by the diftusivity through the bulk towards the grain boundary
and creep cavity. The diffusion length required for filling, can be estimated from
the grain-boundary surface area (scaling as S oc A2). The resulting 1D diffusion
length 2/% scales as V /SAc, where the volume of the creep cavity scales as
V o a>. This leads to a dimensionless filling time of Thn o (A/ a)"*Ac™2. This
scaling behaviour can be observed for small 1 /a in Figure 4.

For larger A/a ratios, the filling time depends on Dg,/Dy. When Dy, = Dy,
the filling of the creep cavity takes on a 3D character. When the creep cavity is
assumed to be spherical, the exact solution for the solute flux on the creep cavity
boundary at r = a is (see Appendix 1):

DvAC 1
J(r=a) = - (1+ﬁ>' (6)

The filling fraction then corresponds to f(r) = 3Ac <‘E + \/‘;Z) The second

term represents the quasi-1D behaviour for short times (f o 4/7), and the
first term refers to the behaviour at large times (f o 7). Based on the long-time
contribution the dimensionless time to filling can be approximated as 74 ~ 3—36.

When the diffusivity ratio Dg/Dy increases (Dg,/Dy > 1), while the inter-
cavity distance A is large enough to provide the solute required to fill the cavity
from the grain boundary (A/a > 1), the diffusion is of 2D character. This means
that the filling time depends only on the grain-boundary diffusivity and the grain-
boundary width. For 2D diffusional behaviour, the grain-boundary diffusivity is
rate controlling, with a time exponent v & 1. A dimensionless filling time of the
following form is now expected;

1 aDy

T X — .
1= AcsDg,

(7)

In Figure 4, it is clear that only the grain-boundary diffusivity Dy, plays a role
in filling, then 74, o< Dy /Dg. For those cases where grain-boundary diffusion
is dominant until impingement occurs (such as in A/a = 5,10, or 20), the 2D
character of filling changes after impingement to 1D. After impingement, the
value of 7f;; becomes constant.

In Figure 7 the nature of the transport behaviour is indicated as function
of A/a and Dg/Dy. For a high A/a ratio, and for Dg,/Dy = 1, the character
of the solute transport is 3D. When the diffusivity ratio Dy /Dy increases, the
character changes to 2D, which is reflected by the cross-over in Figure 5. For a
small A/a ratio, an increase in the ratio Dg;/Dy, leads to a fast impingement.
This leads to a 1D character, where the filling time only depends on the volume
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Figure 7. Phase diagram for the diffusional character of creep cavity filling by supersaturated
solute, as a function of the diffusivity ratio Dg, /D, and the characteristic length scale ratio 1 /a.
3 different regimes with 1D, 2D and 3D diffusion are observed. The characteristic values for the
cross-over between these regimes are indicated.

diffusivity. This is clearly indicated by the change in time exponent v in Figure 6.
The phase diagram of Figure 7, schematically summarises the results of Figures
5 and 6. In order to predict the type of behaviour, we can estimate the transition
points between 1D, 2D and 3D behaviour. For A/a > 1 a cross-over between
2D and 3D behaviour is expected when the flux through the grain boundary
surface connecting the cavity Sg, = 27rad and the flux through the bulk surface
connecting the cavity Sy =~ 477 a* are balanced. From the flux balance DgpSep =
DySy a transition is expected for Dg,/Dy ~ 2a/§. For the present model
parameters this cross-over takes place at 2a/§ = 200. In the isotropic limit
where Dgy = Dy, a cross-over is expected when the solute-depleted region
impinges with the box radius L. Assuming for simplicity a complete depletion, a
mass balance gives %ncﬁ = Ac%n)ﬁ with a transition between the 1D and 3D
character for A/a ~ Ac™'/3. For Ac = 0.01, this corresponds to A /a ~ 4.6. For
Dy, /Dy >> 1 a cross-over is expected when the solute depleted region impinges
with the box radius A. Assuming for simplicity a complete depletion a mass

balance, then, results in %na3 = Acdm A2 with a transition between the 1D and

2D character for A/a = %. For our simulation parameters this occurs at
AJa ~ 115.

Precipitate growth inside a creep cavity is very similar to the heterogeneous
precipitate growth on a grain boundary. The difference between the case analysed
here and heterogeneous growth of precipitates on grain boundaries is in the
moving boundary. If the boundary is not static, the analysis of the growth of
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a precipitate is much more complicated. Glicksmann evaluated the moving-
boundary problem of 3D precipitate growth in relation to the static-boundary
case [22], and found that for small supersaturations the difference is negligible.
A similar analysis has been done by Aaron and coworkers in the context of
diffusional phase transformations [23].

The growth of a single precipitate on a relatively large grain boundary has
been evaluated by Aaron and Aaronson [16], and by Brailsford and Aaron [24].
Brailsford and Aaron [24] report the growth rate of the precipitate thickness
S and the radius R. The volumetric growth rate obtained from this analysis, is
equivalent to the filling rate in our analysis (f o tV). In the experimental data
of Brailsford and Aaron, this volumetric time exponent of precipitate growth
on a grain boundary is between 0.72 and 1.05. Aaron and Aaronson [16] found
an experimental volumetric time exponent of 0.85. These results are in excellent
agreement with our predicted time exponent for precipitate growth inside creep
cavities with a large intercavity distance A /a on grain-boundaries.

The transition between these two diffusion regimes; one dominated by grain-
boundary diffusion and one dominated by bulk diffusion, has been observed by
Yi and coworkers [25]. This is related to the depletion of solute from the grain
boundary, and subsequently transporting solute from the bulk which can be
depleted in later stages of precipitate growth. Yi and coworkers showed that in
practical situations, the change in character can play a significant role in growth
rate of precipitates on grain boundaries.

The transition between two regimes might have been observed for creep cavity
growth as well. When single creep cavities in brass were monitored by Isaac and
coworkers using X-ray tomography [26], it was found that the cavity growth
rates can change abruptly during the creep life-time.

The diffusional transport character of second phase particles or the growth of
creep cavities is very sensitive to the intercavity or interprecipitate distance. For
our case of precipitation inside creep cavities, the nucleation of new creep cavities
during creep reduces the intercavity distance. This behaviour has implications
on the self healing process of creep steels, where the interdistance between creep
cavities decreases until coalescence joins them. Precipitates forming on the creep
cavity surfaces can grow through 2D grain-boundary diffusion, or in later stages
through 1D volume diffusion. The transitions in behaviour are mapped and can
thereby be predicted.

5. Conclusions

The filling of creep cavities located on grain boundaries perpendicular to the
applied stress, through the diffusional flux of supersaturated solute is modelled
using finite element methods. The time required for filling depends on the
volume diffusivity Dy and grain-boundary diffusivity Dg;, and on the intercavity
spacing A with respect to the creep cavity size a. For a relatively fast grain-
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boundary diffusivity the geometric factor A /a determines whether the solute can
be drained from the grain boundary, or has to come primarily from the bulk.
For a relatively large intercavity spacing 3D transport is observed when the grain
boundary and volume diffusivities are of a similar order of magnitude, whilea 2D
behaviour is observed when the grain boundary diftusivity is dominant. Instead,
when the intercavity distance is small, the transport behaviour tends to a 1D
behaviour in all cases, as the amount of solute available in the grain boundary is
insufficient. The various regimes could be identified when the normalised time
for creep cavity filling was analysed with respect to the intercavity distance and
the diffusivity ratios. The kinetics of the filling fraction for 1D transport scales as
f o t%°, while for 2D and 3D transport an effective scaling of approximately
f o t985 is observed. Predictions are provided for the transitions between
the three regimes. The three regimes identified and the transition between the
regimes, are experimentally found in applications where precipitation growth or
creep cavity growth is observed. The accurate prediction of this regime change
is important for the correct description of the growth of second phase particles
or creep cavities, during long service lives.
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Appendix 1. Ideal solutions to 3D, 2D and 1D diffusion problems

The mass flux of solute in a medium depends for a large part on the geometry of the problem.
Of particular interest for creep cavity filling is the time dependence of the flux at the edge of
the creep cavity. In this appendix the time dependence of this flux is evaluated for ideal 3D,
2D and 1D solute transport.

A.1. 3D solute transport

For a spherical cavity and isotropic diffusion (Dg, /Dy = 1) without boundaries (A /a — 00),
the problem has been treated analytically [22]. For a constant diffusivity we can start from the
diffusion equation in spherical coordinates;

2
=y (Gs+ 25 ). (A1)

ar Y \ar2 T ror

For a static position of the boundary of the creep cavity (r = a) the concentration profile
takes the following form [22],

co—c(r,t) a r—a
— = —erfc e > a. A2
o rerc<2m> or r>a (A2)

The solute flux at the edge of the creep cavity J(r = a) = —(Dy/2)(dc/dr), determines the
filling rate of the creep cavity. The development of the concentration profile determines the
diffusional flux at the edge boundary resulting in

_ DvAC a __DvAC 1
J(a) =——¢ (l+m>— s <1+m). (A3)

where Ac = ¢y — ¢;. For short times (t <« 1/m), the second term, which represents 1D
diffusion, prevails. This is logical as the diffusion length is short with respect to the cavity
radius for short times. For longer times (t > 1/m) the steady-state growth of a precipitate
proceeds as follows,

J(a) ~ _Dvac for > ! (A4)
al2 T

The filling fraction is now obtained after integration of the flux over surface area and time. In
the initial stage (r < 1/7) the time exponent for the filling fraction f ~ ¢" is v = 0.5. In the
later stages of filling the dominant time exponent for the filling fraction (f o t") for isotropic
3D diffusion is v = 1. In practical cases 0.5 < v < 1 can be found.

A.2. 2D solute transport

For a cylindrical cavity and isotropic grain-boundary diffusion without boundaries (A/a —
00), the 2D diffusion equation corresponds to [22]

dc 9%  1dc
— =Dy | —+-—]). A5
ot gh<8r2+r8r> (A5)
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The concentration profile is mathematically complex, but relatively quickly approaches an
equilibrium shape. For this equilibrium situation dc/dt = 0, providing a general solution to
the concentration profile of the form [27]

c(r) = A+ Bln (r). (A6)

With boundary condition ¢(r = a) = ¢; and c¢(r = 1) = cp, the concentration profile

b 27
ecomes [27] aln(h/r) + coln (r/a)

= . A7
e(r) In G /a) (A7)
The flux at the creep cavity surface is then;
Dy, Ac 1
— . A8
J@) aQ In(h/a) (A8)

This flux corresponds to the solution for long times (steady-state). For short times, the diffu-
sion length is small compared to the cavity radius, and in analogy to the case for 3D diffusion,
the diffusional flux should effectively be 1D in nature, with J(a) = —(Dg,Ac/Q,/mDgt).
The filling fraction is obtained after surface and time integration of the flux. The dominant
time exponent for the filling fraction (f o ") for isotropic 2D diffusion is v = 1 in the later
stages of filling, as can be seen from Equation (A8). For short times v = 0.5 is expected. In
practical cases 0.5 < v < 1 can be found. The cross-over between the solution for short and
long times is expected to take place when 2\/@ ~ a, which leads to T ~ (1/4)(Dy/Dgp).

The flux rapidly stabilises to a constant value, which is similar to the case of 3D symmetric
cavity filling. This solution is similar to the simplified solution of Herring [11], describing
the axial diffusional growth of creep cavities, which means that like the 3D case, the time
exponent for the diffusional flux tends to v = 1 for large times.

A.3. 1D solute transport

In planar geometry (1D), the diffusion equation corresponds to;

ac 9%c

The well-known concentration profile, for boundary conditions ¢(r = a) = ¢; and ¢(r =

A) = cg, is of the form
co — c(r,t) r—a
= 7 — erf . Al10
p— erc<2 th,) ( )

The flux at the edge of the creep cavity is now

Dy Ac 1 _ DyAc 1
Q JaDyt aQ Jmwt

The filling fraction is obtained after surface and time integration of the flux. The time exponent
for the filling fraction (f o< tV) for 1D diffusion is always v = 0.5.

J(a) = (A11)
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