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Preface

Philippians 4:13 (NIV):

"I can do all this through Him who gives me strength."
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me through the challenges and uncertainties, and I am beyond grateful for the opportunities

and experiences He has given me.

My time at TU Delft has taught me more than I could have imagined. It has challenged me

intellectually, pushed me out of my comfort zone, and broadened my perspective on what it

means to contribute to the world. The opportunity to study how technology and innovation

can drive sustainable solutions in such a critical sector has opened my eyes to the endless

possibilities ahead.

I would like to express my sincere gratitude to my supervisors, Prof. dr. ir. Lóri Tavasszy, Dr. ir.

Mahnam Saeednia, and Dr. ir. Maria Nogal Macho, for their invaluable guidance and support

throughout this research process. Their expertise, patience, and feedback were important in

shaping this work. They have not only guided me through the technical aspects of my thesis

but also provided endless support beyond the academic sphere. Whether it was advice on

navigating challenges or just a word of encouragement when things got tough, they were

always there for me, and for that, I am truly thankful. I would also like to thank Ximeng Liao,

my PhD supervisor, for the insights provided during the development of the mathematical

models used in this study.

Furthermore, I am thankful for the support of my family and friends, whose encouragement

helped me stay focused and motivated throughout this journey. This thesis is a testament to

the unexpected turns life can take—and the joy that can be found along the way.

– Inez, October 2024
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Summary

The purpose of this master’s thesis is to explore and develop an optimal configuration of

Electric Road Systems (ERS) and static charging infrastructure for the electrification of heavy-

duty road freight transport. The study addresses the growing need for sustainable freight

transport solutions, focusing on minimizing the environmental impact while maintaining

operational efficiency. The research objective is to provide a model that integrates both static

and dynamic charging or ERS methods, aiming to minimize the total cost of ownership and

operational costs for freight trucks while considering varying levels of ERS adoption.

The primary objective of the thesis is to develop a model that identifies the optimal

combination of dynamic and static charging stations for heavy-duty electric trucks. This

model aims to minimize the overall infrastructure and operational costs while covering the

maximum possible demand for charging along key transport routes. The main research

question driving the study is: "How to determine a configuration of dynamic and static

charging stations for heavy-duty vehicles that achieves the most demand coverage within a

limited budget, considering different acceptance levels of ERS among stakeholders?"

The research identifies significant challenges in the existing studies, which typically focus on

either static or dynamic charging infrastructure but rarely address the combined use of both

systems. This work aims to fill that gap by proposing a comprehensive, integrated approach

that balances the costs and benefits of both systems.

Methodology

The research employs a combination of literature review, mathematical modeling, and a

case study validation. The literature review focuses on existing ERS technologies and the

trade-offs between dynamic and static charging infrastructures. A bi-level optimization

model is developed, representing both government decisions (upper-level problem) and

user responses (lower-level problem). The government focuses on minimizing infrastructure

costs for charging networks, while users aim to minimize their transportation costs,

optimizing their routes and charging behaviors. The model is applied to real-world data

from the Netherlands, optimizing the placement of charging facilities on highways while

considering user demand and technology acceptance rates. The model is validated through

simulations and a case study to test its effectiveness in real-world scenarios.

Key findings

1. Trade-offs Between ERS and Static Charging: ERS and static charging are

complementary rather than mutually exclusive. ERS proves to be economically

favorable on high-traffic routes by reducing battery size requirements and eliminating
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0. Summary

the downtime associated with static charging. Static chargers serve as necessary

infrastructure in low-traffic areas or where ERS deployment is impractical. As ERS

adoption increases, the demand for static chargers decreases, leading to infrastructure

and operational cost savings of up to 22-25%.

2. Impact of ERS Adoption on Network Design: Higher ERS adoption rates reduce the

need for static chargers and make the ERS network more cost-effective. For example,

with ERS installation costs exceeding €900,000 per kilometer, static charging becomes

more favorable. The model demonstrates that traffic density plays a key role in

determining the priority for electrifying certain highway segments.

3. Case Study Results for the Netherlands: The model suggests that prioritizing high-

traffic corridors for ERS deployment, such as the Randstad area, is the most efficient

strategy. The Netherlands’ case study found that electrifying 80% of the country’s

highways with ERS would provide significant cost savings. Strategic placement of static

chargers in less dense areas supports network resilience, and this combined approach

maximizes both coverage and cost-efficiency.

4. Policy and Investment Recommendations: To optimize infrastructure investments,

policymakers are advised to prioritize routes with higher freight traffic for ERS

deployment, while static chargers should complement ERS in areas where installation

is less feasible. Additionally, a focus on reducing ERS installation costs through public-

private partnerships and technological innovation is critical to making ERS a viable

long-term solution.

Conclusion and Recommendations

The thesis concludes that a combined ERS-static charging infrastructure is the an cost-

effective solution for electrifying freight transport, particularly for heavy-duty electric trucks.

The results indicate that an integrated network of ERS and static charging stations can lead

to significant cost savings, reduce reliance on large battery sizes, and support environmental

goals like the Paris Agreement. Furthermore, the flexibility of the model allows it to be

adapted to various countries, making it an essential tool for global infrastructure planning.

For future research, the thesis recommends exploring the resilience of the combined charging

network under scenarios such as infrastructure failures or extreme weather conditions.

Additionally, further studies should focus on the operational challenges of static chargers,

such as queuing and peak demand periods, to refine infrastructure deployment strategies.

This research offers valuable insights into optimizing the transition to electric freight

transport and underscores the importance of strategic, cost-effective deployment of ERS and

static charging systems. The findings provide actionable recommendations for governments,

policymakers, and private stakeholders involved in electric road system projects.
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1
Introduction

1.1. Background

Freight transport is essential to the global economy and a major contributor to

environmental degradation. Billions of tons of cargo are transported by road every year [27].

Road freight transport alone is responsible for approximately 8% of global CO2 emissions

from energy-related activities, a figure projected to double by 2050 due to economic growth

in Asia, Africa, and Latin America [31]. Despite constituting only 5% of the vehicles on

European roads, heavy-duty vehicles, including trucks, account for about 28% of the EU’s

CO2 emissions from road transport [76]. Compounded by a 3% annual increase in freight

activity, driven by rising e-commerce and global trade, this trend significantly exacerbates

environmental impacts [58]. The persistent rise in emissions is alarming and highlight the

urgent need for comprehensive strategies to reduce the carbon footprint. This urgency

has motivated stakeholders across various sectors to actively seek and implement effective

solutions.

In line with the Paris Agreement’s objective for global carbon emissions to reach net zero

by 2050 [34], there is a pressing call for action. The key solution to this is renewables.

According to [34], for the next 15 years we need to drive huge leaps in clean energy innovation

and have huge declines in the use of fossil fuels such as coal, oil, and gas. In reaching

this, many solutions has been explored to substitute fossil fuels in transport, such as using

hydrogen, electric power, and biofuels. While hydrogen and biofuels present promising

alternatives, they face significant hurdles in terms of production efficiency, infrastructure

development, and overall scalability. Hydrogen, for instance, requires substantial energy

input for production and lacks a widespread refueling infrastructure [49]. Biofuels, on the

other hand, compete with food production and can contribute to deforestation [72]. In

contrast, electric vehicles (EVs) have emerged as the most viable and mature solution due

to their advanced technology, growing infrastructure, and immediate impact on reducing

emissions [52] [40].

EVs provide substantial environmental advantages, including zero tailpipe emissions,
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1.2. ERS as a solution 1. Introduction

reduced air pollution, and enhanced air quality, alongside significant long-term cost savings.

The initial high investment required for electric trucks is offset by the lower cost of

electricity compared to gasoline, resulting in reduced operating and maintenance expenses.

Furthermore, the EU government actively supports the widespread adoption of EVs, notably

through tax subsidies for adopters and a robust plan to expand charging infrastructure. For

instance, there is a target to establish approximately 2 million static charging stations in the

Netherlands alone. These initiatives are expected to drive increased adoption of EVs, both for

passenger cars and freight transport.

Electric trucks offer several environmental benefits but face substantial challenges that limit

their practicality in long-haul freight operations. One of the primary limitations is the driving

range constraint imposed by the substantial weight and cost of their battery packs. These

large and heavy batteries not only consume valuable space but also diminish the available

payload capacity, thereby impacting the overall vehicle cost. As a result, long-haul operations

require larger batteries to reduce the frequency of charging stops, which in turn further

reduces the load quantity that can be carried. Moreover, the cost of batteries escalates with

size, making larger batteries significantly more expensive. Additionally, the infrastructure for

charging for heavy duty trucks is not yet fully implemented, often leading to long charging

time at charging stations. The inherent downtime required for charging, severely disrupts

delivery schedules and reduces overall productivity. For instance, current technology limits

heavy-duty electric truck range to approximately 200-300 kilometers under full load before

needing a recharge — considerably less than diesel trucks, which can cover upwards of 1,000

kilometers on a single tank. Furthermore, the increased weight of the batteries can reduce

the payload capacity by as much as 10-15%.

These factors contribute to the low adoption rates of EVs among freight companies. The high

operational costs associated with the current limitations of EV technology—such as heavy

batteries, frequent charging needs, and extended downtime—deter widespread use. These

challenges underscore the necessity for solutions that not only lower operational costs but

also ensure safety and reliability. Addressing these issues is critical for making electric trucks a

viable and competitive option in the freight transport industry, fostering broader acceptance

and aligning them with sustainability goals.

1.2. ERS as a solution

Electric Road Systems (ERS), also known as dynamic charging, offer a promising solution

to the significant challenges faced by electric trucks in freight transport. ERS technology

involves embedding conductive rails, overhead powerlines, or inductive charging systems

into roadways, allowing vehicles to charge directly while in motion. As vehicles drive over

the electrified sections, the energy is captured by the receiver coils in the vehicles, inducing

voltage that charges the batteries in real time. This technology allows vehicles to charge

continuously while in motion, eliminating the need for frequent stops at static charging

stations.

ERS deliver transformative benefits for sustainable transportation by merging economic

savings, environmental gains, and enhanced operational efficiency. Compared to traditional

2
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battery-only solutions, ERS proves to be more cost-effective due to its facilitation of large-

scale battery downsizing, thus reducing both vehicle and infrastructure costs [14] [61].

Economically, ERS can significantly reduce the total cost of ownership for electric vehicles.

Börjesson et al. [10] reported that ERS implementation could cut these costs by 20-30%,

primarily through savings in battery and fuel expenses. Additionally, Coban, Rehman,

and Mohamed [13] estimated societal cost savings of 15-25% compared to conventional

fuel-based systems, with long-term operational and maintenance savings justifying the

high initial investments. Connolly [14] highlighted that ERS could also reduce road

maintenance costs by up to 15%, enhancing the overall economic viability. These financial

advantages make ERS an attractive investment for both public and private sectors, potentially

accelerating the transition to electric transportation.

Environmentally, Domingues-Olavarría et al. [23] projected that a full-scale ERS

implementation in Denmark could reduce CO2 emissions from road transport by up to 40%,

contributing substantially to national climate targets. In Sweden and Germany, large-scale

ERS deployment could integrate up to 80% of renewable energy into the transport sector,

as indicated by Olovsson et al. [59]. These environmental benefits are critical for meeting

global climate goals and reducing the carbon footprint of transportation. Technologically,

ERS enhances the efficiency and reliability of electric vehicles. Soares and Wang [68]

demonstrated that wireless power transfer (WPT) technology in ERS could achieve energy

transfer efficiencies of over 90%, minimizing energy loss. Operationally, ERS provides a

constant power supply, reducing the need for large onboard batteries and mitigating range

anxiety. Nordin, McGarvey, and Ghafoori [57] estimated that ERS could extend the lifespan

of vehicle batteries by up to 40% and reduce vehicle downtime by 30% [55].

These studies collectively affirm the benefits and significant future potential of ERS.

However, despite the compelling evidence presented, this technology remains in its nascent

stages, with widespread adoption and pilot project implementation still evolving. Sweden’s

Smartroad Gotland, the world’s first public wireless electric road for heavy-duty vehicles,

demonstrated dynamic wireless power transfer, providing 100 kW to trucks at 80 km/h

and withstanding -23°C, proving its suitability for harsh climates. However, challenges like

consistent energy transfer and infrastructure integration remain [25] [28]. Sweden also plans

to convert part of the E20 motorway into a permanent electrified road by 2025, aiming to

extend up to 3,000 km by 2035. This project highlights logistical and economic hurdles,

including road wear and high initial costs [51] [53]. France’s A10 highway project aims to

reduce CO2 emissions by 86% with a 2 km dynamic charging stretch, showcasing potential

but also needing further technological advancements [24]. These pilot projects represent

ongoing efforts to scale up the implementation of ERS to broader applications.

The ongoing development of ERS projects as new technology raises doubts among various

stakeholders, including users, investors, and government bodies. Successful deployment

requires concerted collaboration among all parties, including truck manufacturers. However,

this situation presents a classic "chicken and egg" dilemma: manufacturers are hesitant

to invest extensively in trucks equipped with pantographs or receiver coils without clear

commitments to ERS infrastructure development and demonstrated customer demand.

Conversely, investors and ERS developers are reluctant to allocate significant funds to

ERS without a guaranteed market large enough to justify the costs. Therefore, customer

3
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acceptance becomes a critical factor in the viability of ERS. A high adoption rate among users

would justify further expansion of ERS infrastructure due to increased demand, whereas low

user interest would suggest a scaled-back approach to minimize financial risks.

When aiming for larger-scale implementation of Electric Road Systems (ERS), it is crucial

to explore the optimal network structure of chargers, determining the most effective

arrangement of dynamic and static charging facilities to optimize both investment and

operational efficiency. According to Hou et al. [33], a mixed network of dynamic and static

chargers, strategically placed along major transport routes and urban areas, can maximize

coverage while minimizing costs. Additionally, a well-planned network design for ERS could

minimize redundant installations and enhance cost-effectiveness [62]. Properly balancing

the placement of ERS and static chargers can significantly reduce unnecessary expanses of

static infrastructure.

Existing studies have focused on optimizing location and distribution for either static

or dynamic charging systems independently. For instance, methodologies for designing

electrical infrastructure supporting both dynamic and static charging have been developed,

highlighting their potential to enhance efficiency and facilitate large-scale implementation

[16]. Location optimization methods for fast-charging stations have also been proposed,

considering user demands, electrical distribution network sizing, and traffic conditions

[11][15]. Additionally, integrated approaches combining static plug-in charging stations

with dynamic charging lanes have shown promising improvements in charging efficiency

and convenience [70]. However, a comprehensive optimization model that simultaneously

addresses the deployment of both ERS and static charging stations still needs to be explored.

1.3. Problem description

1.3.1. Research gap

Current research primarily focuses on the deployment and scalability of ERS, neglecting

the real-world coexistence with static charging infrastructure. This scope overlooks the

potential synergies and challenges inherent in integrating ERS with static charging stations.

Considering different rates of ERS acceptance adds another layer of complexity to this

issue. Previous research posits ERS as a viable alternative, suggesting significant government

investment. However, practical uptake among electric truck users may be limited due to the

novelty of the technology, associated costs, and other deterrents. Consequently, it is critical

to consider technology adoption when designing networks to ensure that investments are

precisely targeted and align with actual user needs and behaviors.

A deeper exploration into the optimal configuration of ERS and static charging could enhance

significant cost efficiencies in infrastructure investment. However, this integrated approach

remains underexplored, representing a gap in current research. Addressing this gap could

influence future investment decisions and policy development in the EV sector.
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1.3.2. Research questions and objective

The objective of the study is to develop a model that produce the optimal configuration

of dynamic and static charging facilities for heavy-duty trucks while minimizing cost,

given different ERS acceptance from various stakeholders. This research aims to enhance

existing studies by integrating both dynamic and static charging methods into the analysis,

offering insights for future EV infrastructure investments and policy development, thereby

providing insights into optimal infrastructure deployment strategies for decarbonizing

freight transportation.

The research objective can be achieved by the following main research question:

"How to determine a configuration of dynamic and static charging stations for heavy-duty

vehicles that has the most demand coverage within a limited budget, taking into account

varying acceptance levels of ERS among different stakeholders?"

The main research questions can be answered by the following sub-questions:

1. What are the key trade-offs between ERS and static charging for heavy-duty truck

electrification?

2. Which modeling approaches are most suitable for developing a model that optimizes

the configuration of dynamic and static charging stations, and how can this model be

effectively developed and validated?

3. How does different ERS adoption rate impact the ERS network design?

4. What is the optimal configuration of ERS and static charging stations for heavy-duty

electric trucks in the context of a specific case study?

5. What considerations and recommendations can be given to different stakeholders in

the ERS project based on the case study?

1.3.3. Research scope

The research scope encompasses a detailed investigation into the primary areas of interest,

ensuring a comprehensive understanding of the subject matter. This section outlines the

key components and boundaries of the study, providing a clear framework for the research

activities. The scope is defined by the following points:

• Charging infrastructure: This study utilizes a conductive ERS with a pantograph as

the type of dynamic charging. For static charger, only Level 3 chargers are considered,

which are high-power DC fast chargers with capabilities exceeding 50 kW.

• Modality: The research focuses primarily on heavy-duty trucks used for road freight

transport, specifically battery electric vehicles (BEVs). Diesel and hydrogen-powered

vehicles are not included in this study.
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• Data and Network: All data, including distances between cities, demand levels, and

highway connections, are assumed fixed throughout the modeling time-span, ensuring

a consistent framework for analysis.

1.4. Research approach

In this section, the methods to answer the research questions are explained. The

methodologies to answer the sub-questions are summarized in Table 1. There are three

methods in the study: literature review, mathematical modeling and simulation, and case

study validation.

Sub-RQ Method Detail

1 Literature review Analyze existing research to identify and compare
the trade-offs associated with static and dynamic
charging systems.

2 Literature review,
mathematical modeling

Conduct a thorough literature review to identify
existing models and develop a mathematical
model optimizing charging infrastructures based
on model in the previous research.

3 Model application and
validation

Apply the developed model to evaluate its
performance under varying ERS adoption rates
and analyze how these differences impact the
optimal configuration of the charging network.

4 Model application and
validation

Apply the developed model to a specific case in
the Netherlands, analyzing data to identify optimal
charging network configurations

5 Result analysis Examine the case study results to draw insights
and formulate practical recommendations for
stakeholders involved in ERS projects

Table 1.1: Research methods per sub-research question

Figure 1.1 depicts the structured research workflow guiding the study, ensuring systematic

analysis and reliable insights.

Figure 1.1: Research workflow
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1.5. Report outline

This thesis is organized into seven chapters. Chapter 1 introduces the background, problem

statement, and research objectives. Chapter 2 reviews the existing literature on ERS and

static charging infrastructure, identifying key knowledge gaps. Chapter 3 presents the bi-level

optimization model used to determine the optimal configuration of ERS and static chargers.

Chapter 4 describes the data used for the model, while Chapter 5 explains the modeling

approach, including the methods used for optimization. Chapter 6 presents the results of

the model, focusing on the cost trade-offs and optimal configurations for the Netherlands’

highway network. Finally, Chapter 7 discusses the policy implications, limitations. Finally,

the Conclusion summarizes finding and suggests future research directions.
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2
Literature Review

The literature review provides a comprehensive analysis of existing research and theoretical

frameworks pertinent to the study. This section synthesizes key findings, identifies prevailing

trends, and highlights gaps in the current knowledge base, establishing a foundation for the

present research.

2.1. Overview of Electric Road Systems

The shift towards electrification in transport highlights the need for high-power charging

infrastructure to complement home chargers and ensure HDEVs match the convenience of

diesel refueling. HDEVs in Europe typically have a 200-300 km range, which may decrease

with heavy loads, underscoring the necessity for accessible public high-power stations [35].

HDEV adoption faces hurdles like longer charging times, high energy requirements, and the

lack of suitable infrastructure, with most stations designed for passenger cars and providing

only 250-350 kW. However, HDEVs require stations capable of delivering over 350 kW, up to 1

MW, for rapid 30-45 minute recharges [36].

2.1.1. Different types of ERS

ERS can be broadly categorized into three types based on the method of power transfer:

overhead conductive, ground-based conductive, and inductive (wireless) systems. Each

system has unique characteristics and implementation requirements, which are explored

below.

Overhead conductive systems

Overhead conductive or catenary systems utilize overhead wires to supply electricity to

vehicles equipped with pantographs, enabling power transfer through a direct and constant

connection between the vehicle and the energy source [62]. Pantographs can be positioned

on top, on the side, or beneath the vehicle [67]. The most common placement is on top of

the vehicle, with overhead wires as seen in trolleybuses and trams. However, a significant
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challenge with top-mounted pantographs is their height requirement. The transmitting

power lines are placed high, limiting their use to tall vehicles such as trucks, buses, and trams,

making them less attractive for standard passenger vehicles [67].

An alternative placement for transmitting power lines is on the side of the road, as proposed

by Honda. In this setup, the pantograph’s mechanical arm extends from the side of the vehicle

to slide along a conductive rail on the road barrier for charging [67]. For future planning,

where ERS is intended for both trucks and passenger cars, side-mounted power lines are

preferable. This configuration can accommodate a wider range of vehicles, enhancing the

system’s overall utility and attractiveness.

Despite being the most mature ERS technology to this date, ERS catenary system has its

own advantages and disadvantages. The primary advantage of this system is its proven

technology and reliability. Studies by Min [54] highlight the successful implementation of

overhead ERS in Sweden’s eHighway project, demonstrating significant reductions in carbon

emissions and operational costs for heavy-duty trucks [3]. However, overhead systems face

challenges related to infrastructure aesthetics and compatibility with existing road networks.

Maintenance of overhead lines and ensuring continuous power supply in adverse weather

conditions are additional concerns [82].

Ground-based conductive system

Similar to the overhead catenary system, ground-based conductive systems require constant

and direct contact between the power source and the vehicle’s conductive arms through

conductive rails embedded in the road surface [62]. In operation, the vehicle aligns with the

electrified track, and a mechanical arm directly extends from beneath the vehicle to connect

with the electrified rail.

This system is straightforward and compatible with various vehicle types, including heavy

goods vehicles, light goods vehicles, and passenger cars. Moreover, the technology is

well-developed. However, the ground-level placement of the rails poses safety risks for

motorcyclists [67]. Additionally, this system is highly susceptible to weather conditions such

as water and snow. When the rail is covered by snow or debris, power transfer efficiency

can be significantly compromised. Ensuring reliable contact between the vehicle and the

conductive rail under varying weather and road conditions remains a technical challenge.

Inductive (wireless) system

Inductive ERS utilize electromagnetic fields to wirelessly transfer power from coils embedded

within the road to receivers on the vehicle. This system can transfer power over varying

air gaps, eliminating the need for physical contact and offering significant safety and

convenience benefits [62]. The invisibility of the coils enhances the aesthetic appeal of

this system and makes the system less susceptible to weather conditions. Unlike overhead

catenary systems, which are limited to large vehicles only, inductive ERS can be used by

all types of electric vehicles, including passenger cars, making them more versatile for

widespread implementation.

However, inductive wireless systems face key challenges. The installation costs are

significantly higher due to the extensive work required to embed the coils within the
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road. Additionally, the efficiency of power transfer is slightly lower compared to conductive

systems. While conductive systems can achieve 95% efficiency and above, inductive systems

range from 70% to 95%. This lower efficiency is attributed to the air gap between the power

supply coils and the receiver coils [67]. Despite these challenges, inductive ERS systems

continue to be a major focus of research due to their potential benefits.

2.1.2. ERS Implementation

ERS are still in the early stages of development, primarily focused on research and small-

scale implementations in specific corridors and pilot projects. However, global progress

in ERS deployment is advancing, with key projects in Sweden showcasing the technology’s

potential. Table 2.1 provides a summary of ERS projects implemented worldwide. For

instance, Michigan is introducing a public wireless in-road EV charging system in Detroit,

developed in collaboration with Electreon and partners [74]. Despite these advancements,

ERS technology has yet to be implemented at scale.

Name Location Length (km) ERS type

E16 Sweden 2 Overhead lines
eRoadArland Sweden 2 Conductive rail
Evolution Road Sweden 1 Conductive rail
Smartroad Gotland Sweden 2 Inductive wireless
ELISA Germany 5 Overhead lines
FESH Germany 5 Overhead lines
eWayBW Germany 4 Overhead lines
Detroit Michigan, USA - Inductive wireless

Table 2.1: Implemented ERS projects worldwide [29] [74]

Several pilot projects in Sweden are designed primarily for research purposes, aimed at

understanding how to build, operate, and maintain ERS. Implementing ERS in real-world

settings helps uncover practical challenges. For example, according to [29], the first

procurement and early phases of implementation led to higher-than-expected costs due to

unforeseen complexities. In these pilot projects, no extensive road planning was required

given their small scale, though typical road planning for larger projects would take between

1 and 3 years.

One notable Swedish project, the 2 km Smartroad Gotland, is the first inductive ERS for

heavy-duty vehicles. It successfully demonstrated Dynamic Wireless Power Transfer (DWPT)

by charging a 40-ton truck and a 12.5-meter bus, achieving 100 kW charging at speeds of 80

km/h, and operating reliably even in extreme temperatures as low as -23°C [29].

In contrast, the three ERS projects in Germany use a catenary line system, a technology long

employed in railways. These projects also focus on researching technical aspects related to

vehicles, road infrastructure, and energy grids. Given the maturity of the catenary system

in rail transport, the technical challenges for these ERS implementations are considered

relatively low [29].

While pilot projects have proven the benefits of ERS, realizing its full potential depends on
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addressing key research areas such as integration into urban and regional planning and

ensuring scalability for future expansion. Research is needed to explore how ERS can be

seamlessly incorporated into existing and future transportation networks, including the

impact on traffic flow, road design, and its interaction with other charging infrastructures. As

ERS technology continues to evolve, ongoing research will be essential to assess its scalability

and readiness for large-scale implementation.

2.2. Trade-offs between ERS and Static Chargers

The introduction of ERS has sparked research into whether it is superior to static chargers

and what trade-offs exist between the two technologies. Understanding these trade-offs

helps determine the optimal conditions for investing in each and the key factors to consider

in decision-making. Both approaches present distinct advantages and challenges in terms

of cost, convenience, technological efficiency, and user behavior. Understanding these

trade-offs is essential to developing an integrated and scalable solution for widespread EV

adoption.

Cost and Infrastructure Investment

ERS requires substantial upfront investment, as it involves embedding charging technology

directly into roadways. This makes large-scale deployment costly and complex, particularly

in urban areas where infrastructure modifications are both expensive and disruptive [46][70].

While continuous charging during travel may justify the investment for long-haul routes,

the significant initial cost limits ERS implementation to high-use corridors [21]. In contrast,

static chargers provide a more cost-effective and scalable option [70]. However, widespread

deployment is still necessary to alleviate range anxiety, especially in areas with limited

charging infrastructure [46]. Therefore, the decision between ERS and static chargers must

balance the immediate cost advantages of static systems with the long-term operational

benefits of ERS.

Range, Charging Convenience, and User Experience

A major advantage of ERS is its ability to provide continuous, on-the-go charging, which

significantly reduces range anxiety and eliminates the need for frequent stops [46] [70]. The

smaller batteries advantage from using dynamic charging depends on the availability of

ERS infrastructure, which is typically limited to specific routes. In contrast, static chargers

increases travel time and potentially inconveniencing drivers, particularly on long journeys

[66]. While fast-charging stations can reduce some of the downtime associated with static

chargers, they become less efficient at higher states of charge and do not eliminate the need

for larger battery capacities [66].

Technological Efficiency and Operational Impact

ERS faces challenges in maintaining efficient energy transfer between the road and the

vehicle at varying speeds, introducing complexities that may affect overall performance

[46][70]. Additionally, ERS must be compatible with a wide range of vehicles, further

complicating its implementation [46]. On the other hand, static chargers benefit from a

stable connection, resulting in higher charging efficiency [70]. However, frequent use of fast-
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charging stations can lead to diminishing returns, and over-reliance on them may shorten

long-term battery life [46]. While ERS offers the potential for a more seamless charging

experience, static chargers are more technologically mature and reliable to this date.

Battery Size and Energy Management

ERS supports the use of smaller batteries by providing continuous charging during travel,

which is particularly beneficial for long-haul journeys [21]. This allows for lighter vehicles

and greater payload capacity, making ERS especially attractive for heavy goods vehicles and

long-distance freight operations. In contrast, static chargers require larger batteries to cover

the longer gaps between charging stops [21]. For long trips, especially in areas with sparse

charging infrastructure, EVs may need oversized batteries, which increase costs and reduce

efficiency [21]. However, strategically placed high-capacity static chargers can help minimize

the need for excessively large batteries.

2.3. ERS stakeholder acceptance

The widespread adoption of ERS faces several barriers, particularly during the early stages of

the technology. Not all trucks will adopt ERS immediately due to the high costs and required

investments in compatible components. Trucks without ERS compatible components will

continue to rely on static charging stations, emphasizing the importance of a versatile

charging infrastructure. The system’s benefits—economic, environmental, and social—are

acknowledged, but transitioning current systems has proven challenging due to market

inertia and dependence on established technologies [9]. Without a clear government plan to

to build ERS, vehicle manufacturers are hesitant to produce ERS-compatible vehicles, further

limiting market growth [71].

There are significant barriers to ERS adoption, including technological, financial, and market

domains. Technological uncertainties and the high costs of infrastructure create challenges

[9]. Additionally, market dynamics further hinder adoption. In Sweden, established business

relationships favoring conventional technologies, combined with a lack of awareness and

understanding of ERS, have slowed its adoption rate [9]. Financially, the gradual expansion of

ERS infrastructure discourages investment in compatible vehicles, leading to low utilization

rates and reducing the cost-effectiveness of public investments in the system [71]. Similar

barriers are observed in the broader context of EV adoption. Studies from the Netherlands

highlight key obstacles such as price sensitivity and driving range limitations, which are also

relevant to ERS adoption [8].

Several key drivers influence the adoption of ERS. For road freight companies, the relative

advantages of ERS—such as cost savings, operational efficiency, and sustainability—play

a critical role in shaping their adoption intentions [48]. Technological advancements,

including improvements in driving range and charging infrastructure, are also significant. For

instance, studies show that reducing the distance between charging stations and shortening

recharge times can significantly boost the adoption of static chargers [8]. Additionally, word

of mouth becomes a powerful driver, particularly in later stages of adoption. While initial

uptake may be slow, adoption tends to accelerate as more users embrace the technology

[8]. This S-shaped adoption curve indicates that as technical advancements meet consumer

12



2.4. Regulatory aspect regarding ERS 2. Literature Review

expectations and charging infrastructure becomes more accessible, the rate of ERS adoption

will increase substantially [8].

Survey data from the United States indicates that lifestyle factors, environmental awareness,

and safety concerns regarding ERS networks play a significant role in shaping public

willingness to adopt the technology [41]. The research also emphasizes the importance of

time savings, with individuals more likely to adopt ERS if it offers exclusive electrified lanes

and tangible benefits, such as reduced travel times [41]. These findings highlight the need

to address consumer concerns and preferences through targeted strategies that build public

trust and increase confidence in ERS.

2.4. Regulatory aspect regarding ERS

Current regulations regarding static chargers and ERS address various aspects, including

infrastructure placement, standardization, and technological innovation, all aimed at

facilitating a smooth transition to electric trucks. The current and future regulations are

elaborated in this section.

2.4.1. Regulations regarding static chargers

In the European Union (EU), directives like the Alternative Fuels Infrastructure Regulation

(AFIR) mandate the development of fast-charging infrastructure along the Trans-European

Transport Network (TEN-T) corridors. These regulations set strict targets for the deployment

of high-power chargers at regular intervals along major transport routes. By 2025, fast

chargers of at least 150 kW must be available every 60 km, with a requirement to scale up

to 600 kW by 2027—critical for supporting the growing electric truck fleet [6][4].

Equity and accessibility are also key considerations in static charging infrastructure

regulations. In the UK, policies require new developments with parking facilities to include

charging points, while mobile charging stations are proposed to fill gaps in underserved

regions [32]. Dynamic pricing models further enhance affordability by offering lower rates

during off-peak hours, reducing grid strain and making charging more accessible to truck

operators [32].

The Dutch regulatory framework showcases the role of government incentives in accelerating

public charging infrastructure. Initiatives like the Electric Transport Green Deal 2016-2020

have supported the installation of high-capacity fast-charging stations, with some reaching

up to 350 kW to facilitate long-haul transport [1].

2.4.2. Regulations regarding ERS

European regulations for ERS remain in the early stages of development. Under the AFIR, ERS

is recognized as an emerging technology, though it lacks the same mandatory deployment

targets imposed on static charging infrastructure [4]. The recognition of ERS as "emerging"

has been criticized as overly cautious, given that comparable technologies like hydrogen have

received more assertive regulatory support despite similar levels of technological readiness
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[4]. To support ERS development, European standardization bodies, such as CEN-CENELEC,

are working on establishing technical standards for various ERS technologies, including both

conductive and inductive systems [4].

In terms of funding, ERS implementation faces significant financial challenges due to its high

infrastructure costs. The Eurovignette Directive, which allows EU member states to charge

for road use, has been amended to permit the inclusion of ERS infrastructure costs in road

tolls, providing a potential funding mechanism for broader ERS deployment [4]. In Germany,

pilot projects for ERS are being funded as part of national road infrastructure initiatives, and

future legislation may provide further clarification on how to incorporate ERS costs into toll

systems [4].

One notable regulatory challenge facing ERS is ensuring interoperability and cross-

border consistency. The European regulatory environment underscores the importance of

integrating ERS into the TEN-T network to enable seamless travel across different countries.

A unified billing system, potentially modeled on the European Electronic Toll Service (EETS),

is also considered essential for ensuring consistent user experiences across borders [4].

However, the possibility of fragmented ERS implementations, where different countries

adopt varying technologies, remains a significant obstacle to the system’s broader rollout [4].

2.5. Charging stations network design

The design of ERS networks plays a crucial role in determining their adoption potential.

Studies comparing dense infrastructure networks, which involve multiple short routes, with

corridor-based designs, which focus on longer segments, reveal that each configuration

presents different benefits and challenges [5]. Corridor designs tend to be more efficient for

long-haul transport, attracting longer trips and contributing more significantly to reducing

carbon emissions. However, dense networks offer greater route flexibility, making them more

attractive to a larger number of users in the early stages of adoption [5]. Policymakers face

a critical trade-off between the immediate adoption potential offered by dense networks

and the long-term environmental benefits of corridor designs. This suggests that a phased

approach, where investments start with dense networks and gradually expand to corridors,

might be the most effective strategy for maximizing ERS market growth [5].

Since a huge number of charging infrastructures are needed, both dynamic and static

charging, more research around charging network design is needed. As an instance, [65] uses

a mathematical approach with a path-constrained network equilibrium model to optimize

the location of electrification roads, aiming to minimize total travel time within a limited

construction budget. The numerical experiments done validate the model’s effectiveness

and explore the impact of variables like charging efficiency, battery size, and comfortable

range of the system. On the other hand, a Geographic Information System (GIS)-based

model is used by [60] to calculate potential charging station locations by employing user-

and destination-based approaches. In this research, optimal charging station locations

are determined by minimizing walking distances while ensuring extensive coverage of

electric energy demand, which is further applied in the southern Germany case study.

Moreover, [43] develops two mixed integer linear programming (MILP) models to optimize
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the location of charging stations along intercity highways, aiming to minimize detour mileage

within budget constraints. The first model is based on the original node-link network

topology, incorporating path and subpath activation indicators to reflect the utilization of

paths and subpaths. The second model utilizes a station-subpath metanetwork topology,

which simplifies routing and charging decisions into a two-phase process, enhancing

computational efficiency for large-scale problems. Results indicate both models are

effective, with the metanetwork-based approach offering computational advantages for

larger problems. MILP is also used by [42], [45], and [81]to solve the origin-destination

shortest distance-based flow-capturing location model (FCLM). Arc cover model is used in

[80] to locate battery exchange stations to serve tourism transport.

The paper by Chen, Liu, and Yin [12] investigates the deployment of both stationary and

dynamic chargers along traffic corridors. The study develops a charging-facility-choice

equilibrium model that analyzes how drivers select between these two types of charging

facilities. The research optimizes deployment strategies under two scenarios: public

provision, where a government agency develops infrastructure to minimize social costs, and

private provision, where competing companies build and operate infrastructure to maximize

profits. Numerical experiments using empirical data explore the competitiveness of charging

lanes, showing that dynamic charging lanes can attract drivers and generate revenue in

both public and private contexts. Results highlight the potential of dynamic charging lanes,

especially for vehicles with higher values of time, such as commercial fleets. This study

contributes to the literature by offering a first-of-its-kind comparison between stationary and

dynamic charging infrastructure within the framework of user equilibrium and infrastructure

deployment planning.

Several other methods are explored by [39], exact methods like branch and bound, as used

in [79], and mixed integer linear programming to heuristic algorithm due to computational

complexity. The paper evaluates various algorithms and mathematical models such as greedy

algorithms, genetic algorithms, Non-Dominated Sorting Genetic Algorithm (NSGA-II),

Particle Swarm Optimization (PSO). Each of these methods has its strengths and weaknesses.

Greedy algorithms are simple and can provide quick solutions but may not always reach the

global optimum. Genetic algorithms and NSGA-II are powerful for complex, multi-objective

problems but require careful design and can be computationally intensive. PSO and its

variants offer a balance between exploration and exploitation, providing efficient solutions

for a wide range of problems. The choice of method depends on the specific requirements

of the location optimization problem, including the complexity of the dataset, the number

of objectives to be optimized, and computational resource constraints. Moroever, [39]

highlights the transition towards heuristic methods, which, despite not always yielding the

ideal solution, provide reasonably accurate solutions efficiently. The review emphasizes the

need for models that consider both road network accessibility and electric distribution grid

impacts to develop sustainable charging station location strategies.
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3
Model Specification

In this thesis, the objective is to determine the optimal configuration of static chargers and

ERS. To achieve this, we will employ an optimization model that strategically integrates

both charging technologies. Optimization models provides a systematic and quantifiable

approach to decision-making. These models allow us to identify the most efficient allocation

of resources, balancing various objectives such as cost, time, and environmental impact. By

using an optimization model, we can ensure that the deployment of static chargers and ERS

is done in a manner that minimizes overall transport costs for users while also reducing the

infrastructure costs invested by the government. This approach will allow us to assess the

most efficient and cost-effective solutions for supporting electric vehicle infrastructure.

3.1. Model characterization

3.1.1. Road segments

Figure 3.1: Road segments visualization

In the model, roads are divided into segments, each 10 kilometers in length. At the end of

each segment, there is the potential for a static charging station to be installed, as illustrated

in Figure 3.1. This segmentation approach is designed to streamline the modeling process;
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rather than considering a continuous range of potential charging station locations—which

would be computationally intensive—charging stations are considered every 10 kilometers.

The 10-kilometer interval was chosen because it aligns well with the government’s initial

guideline of having at least one charging station every 60 kilometers, making it a practical

representation of potential charging locations. Additionally, ERS can be installed along the

same highway links, offering a complementary solution to the static charging stations.

3.1.2. Network representation

Figure 3.2: Network example visualization, consist of nodes and bi-directional highway connections

In this thesis, the transportation network is illustrated by representing cities as nodes and

connecting highways as bidirectional links. As shown in Figure 3.2, the example includes five

cities interconnected by ten highway links. For a hypothetical journey from node A to node

E, we evaluate three strategic charging options:

• Large Battery Capacity: This option equips vehicles with large batteries that can

complete the journey without recharging, suitable for distances up to 300km. While

this avoids charging delays, it also introduces higher costs and reduced payload

capacity due to the significant weight of the batteries. This approach becomes

impractical for longer distances due to the exponential increase in battery size and cost.

• DC Fast Charging Stations: By installing DC fast charging stations along the route,

vehicles can recharge mid-journey. This configuration uses standard Battery Electric

Vehicles (BEVs) but introduces additional time costs for charging stops, which need to

be integrated into overall trip cost calculations.

• Electric Road Systems: Installing ERS along certain highway segments represents a

more significant initial investment compared to static chargers but offers considerable

benefits. It allows vehicles to charge while driving without necessitating large on-

board batteries, thereby eliminating charging stops and reducing the journey time and

operational costs for users. However, it requires vehicles to be equipped with specific

technologies such as pantographs or receiver coils, which limits its use to specially

equipped BEVs.
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Each option presents unique benefits and challenges, necessitating a comprehensive analysis

to determine the optimal integration of static and dynamic charging systems to minimize

both infrastructure and operational costs. The analysis will focus on the optimal placement

and quantity of charging facilities and the appropriate length of ERS to efficiently meet

traffic needs. This approach aims to strategically locate these assets to maximize investment

efficiency and operational effectiveness.

3.2. Bi-level optimization

In the literature review, various types of optimization models have been explored, including

single objective optimization, bi-level optimization, and multi-objective optimization. Each

of these models has its own advantages and suitable applications. However, for our specific

problem of optimizing the combination of static chargers and ERS, a bi-level optimization

model stands out as the most suitable.

A bi-level optimization model involves two interrelated levels of optimization problems,

where the solution to the upper-level problem depends on the solution to the lower-level

problem. In this thesis, the bi-level optimization can be represented as the following:

• Upper-Level Problem: This represents the government’s perspective, focusing on

minimizing the infrastructure costs associated with installing and maintaining static

chargers and ERS. The government needs to decide on the optimal locations and

number of these installations to achieve cost efficiency.

• Lower-Level Problem: This captures the users’ perspective, aiming to minimize their

transport costs. Users will optimize their travel routes and charging behaviors based

on the infrastructure provided by the government.

The bi-level optimization model is particularly well-suited for addressing this problem

because it accurately reflects the hierarchical decision-making process observed in real-

world scenarios.

Figure 3.3 depicts the iterative process of the bi-level optimization model. At the upper level,

the government makes strategic decisions about where to build charging infrastructure based

on the routes commonly used by travelers. These decisions are influenced by the need to

optimize the locations and types of charging stations to meet the projected demand while

minimizing infrastructure costs. In response to these government decisions, users at the

lower level optimize their travel routes to minimize their individual costs, including both

travel and charging expenses.

The routes selected by users provide feedback to the government, which can then re-evaluate

and adjust the charging infrastructure to better align with actual usage patterns. This

feedback loop—where the government continually re-optimizes infrastructure placement

based on usage and costs, and users, in turn, adjust their routes based on the newly

developed infrastructure and their travel costs, creating an iterative process.

The dynamic interaction between government decisions and user responses ensures that

the charging infrastructure evolves to meet real-world demands effectively, balancing costs
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Figure 3.3: Bilevel optimization scheme

and user needs over time. By incorporating real-world constraints and data, such as traffic

patterns, energy consumption, and user preferences in routing, the model can provide

insights about the optimal number of chargers need to be installed to satisfy EV trucks

charging needs while minimizing costs.

3.2.1. Assumption and simplification

The subsection on model assumptions and simplifications outlines the foundational

premises and necessary reductions in complexity that underpin the study’s analytical

framework. By clearly stating these assumptions and simplifications, this section ensures

transparency and facilitates an understanding of the model’s limitations and applicability.

The key assumptions and simplifications are as follows:

• Electric Road Systems type: The study focuses exclusively on conductive ERS, either

overhead or side pantograph. This type of ERS is considered the most advanced in

terms of development, making it the chosen model for this study.

• Vehicle types: The model only considers battery electric trucks (BETs) used for road

freight transport. Personal vehicles and alternative fuel vehicles, such as diesel or

hydrogen trucks, are excluded. The adoption of ERS technology among BETs varies,

with some vehicles equipped with pantographs and others not, reflecting different

levels of adoption.

• Highway electrification: Electrified highway lanes are divided into two sections. The

first section operates as a regular highway for all vehicles, regardless of pantograph

presence. The second section, equipped with ERS, is exclusively for vehicles with

pantographs actively charging. When not charging, these vehicles revert to using

the regular highway lane. Only vehicles with pantographs can charge on ERS lanes.
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Additionally, highway electrification must cover the entire length of the highway; it is

not feasible to install ERS on only a portion of a single highway link.

• Toll pricing: Vehicles charging via ERS benefit from a subsidized toll price per

kilometer, incentivized by government subsidies to encourage ERS adoption. Vehicles

that are not using ERS pay the standard toll price per kilometer.

• Battery capacities: For simplification, two battery capacity categories are used:

– Battery size for BETs with receiver coils for pantograph (vehicle type 1)

– Battery size for BETs without receiver coils for pantograph (vehicle type 2)

• Highway electrification scope: All highways are considered eligible for electrification,

with no limitations on implementing ERS lanes.

• Charging and energy consumption rates: Charging rates for both ERS and static

chargers, as well as energy consumption rates, are predetermined and constant.

Although, in reality, energy consumption varies due to factors such as vehicle weight,

speed, and road elevation, these variables are not accounted for in the model.

• Charging station time: The time each vehicle spends at a charging station is based on

the kWh required to reach full battery capacity. It is assumed all vehicles charge to full

capacity, despite real-world behavior where drivers might charge only enough to reach

their destination.

• Starting battery capacity: All vehicles are assumed to start their journey from the

depot with a full battery. The model considers only one-way trips; return trips are not

included.

• Electricity cost: The cost of electricity per kWh is assumed constant. Users of ERS

receive a partially subsidized electricity cost as part of the government’s initial efforts

to promote ERS technology.

• Pantograph adoption rate: The percentage of BETs equipped with pantographs is a

parameter. The study analyzes different adoption rates to assess their impact.

• Discount rate for future costs: Future costs are discounted using a fixed discount rate.

• Cost timeline: All costs are projected to occur in the year 2030, with a model timespan

of one year.

3.3. Model formulation

The model formulation section details the mathematical and logical structures that define

the sets, parameters, variables and decision variables that are going to be modeled using bi-

level optimization algorithm. Moreover, the detailed optimization objectives and constraints

will be elaborated.

The formulation starts with the sets and indices to represent the problem, which are listed as

follows:
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• N : a set of nodes in the network representing set of cities. The individual city is

represented with i ∈N

• A : a set of links connecting pairs of nodes, representing a unidirectional highway road

with several links. The link is denoted as (i , j ) ∈A

• Q: a set of traffic demand from origin o ∈N to destination d ∈N , denoted as (o,d)

• V : a set of truck types where v = 1 is trucks with receiver coils and v = 2 is trucks

without the receiver coils. V = {1,2}

• S : a set of potential static charging station locations s ∈ S that are set every certain

distance called segment length, along the highway link (i , j ) ∈ A . Potential static

charging location s is denoted as s ∈S i , j

The following part enumerates the parameters integral to the model, each of which holds the

input data for the model, shaping the outcomes. The parameters included in the models are:

• dr : Discount rate for future cost [-]

• e f E : Transfer efficiency when charging using ERS [-]

• e f S: Transfer efficiency when charging using a static charger [-]

• len: Segment length, which is the distance between each potential static charger

location in S. The length is constant of 10km. [m]

• t : Time spent as vehicle downtime when charging using static charger to recharge

vehicle type 2 battery until full capacity [hour]

• tol lE : Toll price a vehicle has to pay after using ERS charger [€/km]

• tol lS: Toll price a vehicle has to pay when using battery or when not charging using

ERS [€/km]

• vot : Value of travel time which is related to translate the t in monetary value [€/hour]

• Bv : The battery capacity of vehicle type v ∈ V . This set consist of B1 being the vehicle

with receiver coils for pantograph, and B2 being the vehicle without receiver coils.

[kWh]

• C b: Battery price of the vehicle [€/kWh]

• C d : Catenary cost to install ERS on the highway link [€/km]

• Ce: Charging cost using ERS [€/kWh]

• C sc: Chagring cost when using static charging stations [€/kWh]

• Sc: Installation cost of a static charging station [€/unit]

• veh1: Number of vehicle of type 1. This is calculated after each iteration of lower level

model. [-]
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• y wd : Number of trips a vehicle have in a year [trips/year]

• α: Percentage of type 1 vehicle, which has pantograph [-]

• β: Truck energy consumption rate while driving on a highway [kWh/km]

• γ: Penalty to be paid in case in case if there is not enough charging station available,

which results in unfulfilled charging demand. In order to reach the destination, the

vehicle is forced to reload the battery without an actual charging station available,

calculated as a penalty [-]

• ηmax : Maximum battery level that the vehicle effectively can use, represented by a

percentage of full battery capacity [-]

• ηmi n : Minimum battery level that the vehicle need to have, represented by a percentage

of full battery capacity [-]

• µer s : Annual operation and maintenance cost rate of the installed ERS. This value is a

percentage of the whole investment of the installed ERS [-]

• µer s_use : Maintenance cost for parts reparation and replacement, which is represented

by a cost per km per vehicle using the ERS charger [€/km.v]

• µsc : Maintenance cost for parts reparation and replacement, which is represented by a

cost per km per vehicle using the static charger [€/unit.year]

• µsc_use : Maintenance cost for parts reparation and replacement, which is represented

by a cost per charger unit per vehicle using the static charger [€/unit.v]

• τbat t : Operational life of vehicle battery [years]

• τer s : Operational life of ERS infrastructure [years]

• τsc : Operational life of static charger [years]

• φ: Charging rate of ERS on the vehicle [kWh/km]

The variables used in the optimization model are outlined in the following part. These

variables are essential for defining the decision-making framework and for solving the

optimization problem effectively. The key variables in the model are:

• bl (o,d)
v,(i , j ),s : Positive continuous variable denoting battery level of each vehicle v that

travels from origin o to destination d at location s on link (i , j ) [kWh]

• cl (o,d)
v,(i , j ),s : Positive continuous variable denoting the power consumed to recharge trucks

of type v ∈ V traveling on link (i , j ) ∈ A for demand (o,d) ∈ Q at the end of segment

s ∈ Si j [kWh]

• Ecl (o,d)
v,(i , j ),s : Amount of kWh added to vehicle type v to finish a trip from origin o to

destination d while there is no charging station at location s on link (i , j ) to fulfil this

demand. When there are insufficient charging stations to meet the demand, vehicles

are compelled to draw additional energy, measured in kilowatt-hours (kWh), to ensure

they can reach their destination, calculated as a penalty.
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• f (o,d)
v,(i , j ): Positive continuous variable denoting the number of trucks of type v ∈ V

traveling on link (i , j ) ∈A for demand (o,d) ∈Q

Apart from the variables written above, the following part lists the decision variables that

represent the choices to determine the optimal solution. The decision variables in the model

are:

• xs
i j : Binary variable stating 1 if a static charging station is established at location s in

link (i , j ), and 0 otherwise xs
i j ∈ {0,1}

• yi j : Binary variable stating 1 if ERS is implemented on the link (i , j ) yi j ∈ {0,1}

• r (o,d)
v,(i , j ),s : Binary variable that equals to 1 if trucks type v ∈ V traveling on link (i , j ) ∈ A

for demand (o,d) ∈Q use the static charging to recharge at the end of segment s ∈ Si j ,

and 0 otherwise r (o,d)
v,(i , j ),s ∈ {0,1}

• π(o,d)
(i , j ) : Binary variable that equals to 1 if vehicles type 1 traveling on link (i , j ) for

demand (o,d) use ERS for recharging. The charging activity using ERS happens from

the start until the end of the link. π(o,d)
(i , j ) ∈ {0,1}

• w (o,d)
v,(i , j ): Binary variable whether vehicle type v traveling with origin-destination (o,d)

choose to travel through the link (i , j ) to reach the destination wo,d
v,(i , j ) ∈ {0,1}

3.3.1. Lower-level optimization model

The objective function of the lower-level optimization model aims at minimizing the total

transportation cost of each trips paid by the logistic company, including travel extension

time due to charging using a static charger, toll cost, charging cost, and battery cost. These

individual components of the lower-level objective function can be represented as follows:

• Travel time extension cost due to static charging: When a vehicle opts to charge using

a static charger, it must stop and charge until the battery reaches full capacity. This

stop incurs a cost associated with vehicle downtime, which is reflected in the travel

time extension cost. This cost is calculated by multiplying the number of times the

vehicle charges using static chargers by the time required to fully charge the battery

and by the value of travel time in euros. The value of travel time encompasses various

costs, including operational expenses, driver wages, and potential delays in delivery

schedules. ∑
(o,d)∈Q

∑
v∈V

∑
(i , j )∈A

∑
s∈S

t · vot · r (o,d)
v,(i , j ),s ·Q(o,d) (3.1)

• Toll cost: Toll costs are incurred when using highways. However, in the initial stages

of ERS implementation, the government may offer subsidies on toll costs to encourage

ERS adoption. Therefore, the toll cost per kilometer for vehicles using ERS is lower than

the standard toll rate for driving on highways without ERS. This toll cost is calculated

by multiplying the toll rate per kilometer by the highway length, and by the variable
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π(o,d)
(i , j ) for vehicles using ERS, or

(
1−π(o,d)

(i , j )

)
for those not using ERS.

∑
(o,d)∈Q

∑
(i , j )∈A

{
tol lE ·π(o,d)

(i , j ) ·di j ·w (o,d)
v,(i , j )·Q(o,d)+ ∑

v∈V

[
tol lS ·

(
1−π(o,d)

(i , j )

)
·di j ·w (o,d)

v,(i , j ) ·Q(o,d)
]}

(3.2)

• Cost of electricity: This cost refers to the charging expense, which differs between

using an ERS and a high-power static charger. It is calculated based on the amount of

energy (kWh) required to fully charge the vehicle’s battery, multiplied by the respective

rate for ERS or static charging, and a variable indicating the charging method used.

∑
(o,d)∈Q

∑
(i , j )∈A

∑
s∈S

[
Ce · cl (o,d)

1,(i , j ),s ·π(o,d)
(i , j ) ·Q(o,d) + ∑

v∈V

(
C sc · cl (o,d)

v,(i , j ),s · r (o,d)
v,(i , j ),s ·Q(o,d)

)]
(3.3)

• Battery cost: The larger the battery, the higher the vehicle’s cost. Consequently,

vehicles equipped with ERS technology tend to have a lower purchase price due to their

smaller batteries. The battery cost is determined by multiplying the price per kWh by

the battery capacity specific to each vehicle type and the number of vehicles. Overall,

the number of trips in the dataset is divided by the number of trips of a vehicle per year

(ywd) to determine the total number of trucks.

Furthermore, the modeling is conducted over a one-year period, while the vehicle

battery, static chargers, and ERS infrastructure have different lifespans. To account

for these varying lifespans, the Equivalent Annual Cost (EAC) is used. EAC represents

the annual cost of owning, operating, and maintaining an asset over its entire lifespan,

allowing for the comparison of net present values and amortized annual costs across

different infrastructures with varying service periods.

∑
(o,d)∈Q

∑
(i , j )∈A

∑
v∈V

C b ·Bv · f (o,d)
v,(o, j )

y wd
·annbat t (3.4)

annbat t =
dr

1− (1−dr )−τbat t
(3.5)

The costs involved in the total transportation cost can be combined as lower-level

optimization equation, denoted as follows:

min
r,π

∑
(o,d)∈Q

∑
v∈V

∑
(i , j )∈A

∑
s∈S

(
t · vot · r (o,d)

v,(i , j ),s ·Q(o,d)
)
+ ∑

(o,d)∈Q

∑
v∈V

∑
(i , j )∈A

C b ·Bv · f (o,d)
v,(i , j )

y wd
·annbat t

+ ∑
(o,d)∈Q

∑
(i , j )∈A

[
tol lE ·π(o,d)

(i , j ) ·di , j ·w (o,d)
v,(i , j ) ·Q(o,d) + ∑

v∈V

tol lS · (1−π(o,d)
(i , j ) ·di j ·w (o,d)

v,(i , j ) ·Q(o,d)

]

+ ∑
(o,d)∈Q

∑
(i , j )∈A

∑
s∈S

[
Ce · cl (o,d)

1,(i , j ),s ·π(o,d)
(i , j ) ·Q(o,d) + ∑

v∈V

(
C sc · cl (o,d)

v,(i , j ),s · r (o,d)
v,(i , j ),s ·Q(o,d)

)]
(3.6)

The lower-level objective function is subject to the following constraints:
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• Flow conservation constraints, they imply that the number of trucks of all types leaving

node i if node i is the origin equals to the total number of trucks that shall leave o, if

node i is the destination then the total number of trucks that enters d is the number of

trucks that shall be received at d , and the trucks getting into a node and leaving a node

is equal for all other nodes.

∑
j

∑
v

f (o,d)
v,(i , j ) −

∑
j

∑
v

f (o,d)
v,( j ,i ) =


N(o,d) if i = o

−N(o,d) if i = d

0 otherwise

∀i ∈N , (o,d) ∈Q (3.7)

• Guarantee that the battery level of any vehicle v ∈ V does not exceed the maximum

level and does not drop below the minimum level of battery, respectively.

bl (o,d)
v,(i , j ),s ≤ ηmi n ·Bv ∀(i , j ) ∈A , s ∈Si j , (o,d) ∈Q (3.8)

bl (o,d)
v,(i , j ),s ≥ ηmax ·Bv ∀(i , j ) ∈A , s ∈Si j , (o,d) ∈Q (3.9)

• At the start of the trip, all vehicles begin with their batteries fully charged.

bl (o,d)
v,(o, j ),s ≤ Bv ∀(o, j ) ∈A , s ∈Si j , (o,d) ∈Q, v ∈ V (3.10)

cl (o,d)
v,(o, j ),s = 0 ∀(o, j ) ∈A , s ∈Si j , (o,d) ∈Q, v ∈ V (3.11)

• Determine the battery level for all vehicles across all links and segments. This

constraint specifies that the battery level of a vehicle type v entering segment s of

link (i , j ) is equal to the battery level from the previous segment of the link, minus the

battery consumption, which is a function of the distance traveled (i.e., segment length),

plus any recharging that occurs.

bl (o,d)
v,(i , j ),s = bl (o,d)

v,(i , j ),s−1−β·di j ·w (o,d)
v,(i , j )+cl (o,d)

v,(i , j ),s+Ecl (o,d)
v,(i , j ),s ∀(i , j ) ∈A , s ∈Si j , (o,d) ∈Q, v ∈ V

(3.12)

• Calculate the recharging quantity for vehicles of type 2, which can only utilize static

charging stations.

cl (o,d)
2,(i , j ),s ≤ B2 · r (o,d)

2,(i , j ),s · xs
i j ∀(i , j ) ∈A , s ∈Si j , (o,d) ∈Q (3.13)

• Calculate the recharging quantity for vehicles of type 1, which have the option to

recharge using both static charging stations and the ERS.

cl (o,d)
1,(i , j ),s ≤ B1 · r (o,d)

1,(i , j ),s · xs
i j +φ ·π(o,d)

(i , j ) · len ∀(i , j ) ∈A , s ∈Si j , (o,d) ∈Q (3.14)

• The vehicle flow cannot exceed the total number of traffic trips, and whenever there is

a flow on a link, there must be at least one vehicle operating on that link.

w (o,d)
v,(i , j ) ≤ f (o,d)

v,(i , j ) ≤Q(o,d) ·w (o,d)
v,(i , j ) ∀(i , j ) ∈A , v ∈ V , (o,d) ∈Q (3.15)

25



3.3. Model formulation 3. Model Specification

• Ensure that the proportion of the fleet consisting of vehicles of type 1 meets or exceeds

the specified acceptance rate. Therefore, limiting the number of vehicle type 2.

f (o,d)
2,(o, j ) ≤ (1−α) ·∑ f (o,d)

v,(o, j ) ∀(o, j ) ∈A , v ∈ V , (o,d) ∈Q (3.16)

• Ensure that recharging can only happen at charging stations that are open or ERS that

are installed, respectively.

π(o,d)
(i , j ) ≤ yi j ∀(i , j ) ∈A , (o,d) ∈Q (3.17)

r (o,d)
v,(i , j ),s ≤ xs

i j ∀(i , j ) ∈A , s ∈Si j , (o,d) ∈Q (3.18)

• Ensure that the total number of vehicles aligns with the number of trips for all OD pairs.∑
f (o,d)

v,(o, j ) =Q(o,d) ∀(o, j ) ∈A , v ∈ V , (o,d) ∈Q (3.19)

• Ensure that all vehicles depart from the origin node and reach the destination node.∑
w (o,d)

v,(i ,d) = 1 ∀(i ,d) ∈A , v ∈ V , (o,d) ∈Q (3.20)

∑
w (o,d)

v,(o,i ) = 1 ∀(o, i ) ∈A , v ∈ V , (o,d) ∈Q (3.21)

• Domain values of the variables and decision variables

r (o,d)
v,(i , j ),s ,π(o,d)

(i , j ) , w (o,d)
v,(i , j ) ∈ {0,1} ∀(i , j ) ∈A , v ∈ V , (o,d) ∈Q, s ∈Si j (3.22)

bl (o,d)
v,(i , j ),s ,cl (o,d)

v,(i , j ),s ,Ecl (o,d)
v,(i , j ),s , f (o,d)

v,(i , j ) ≥ 0 ∀(i , j ) ∈A , v ∈ V , (o,d) ∈Q, s ∈Si j (3.23)

3.3.2. Upper-level optimization model

In the upper-level model, the benefits are also included as cost reductions when determining

which infrastructure should be built. This approach is grounded in the understanding

that governments create infrastructure to benefit society, which in turn generates a form

of societal surplus that can be considered a return on investment. Essentially, when the

government invests in public infrastructure like ERS or static chargers, the benefits extend

beyond the direct financial costs; they also encompass broader societal gains. In this context,

user surplus—representing the cost savings and efficiencies that users experience when

utilizing the infrastructure—can be considered a benefit for the government. Although users

directly benefit from reduced costs, these individual gains contribute to broader societal

benefits. This is why societal gain is factored into the decision-making process.

By incorporating these cost savings, such as reductions in charging time, battery costs, and

tolls, into the government’s calculations, the model ensures that infrastructure investments

are evaluated not only on their financial cost but also on their potential to generate surplus for

society. This holistic approach aligns with the government’s goal of promoting sustainability

and economic growth, recognizing that public infrastructure projects should deliver long-

term societal benefits that outweigh the initial capital and operational costs. In this way, the
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model captures the full scope of the government’s role in enhancing societal welfare through

strategic infrastructure investment.

The objective function for the upper-level mathematical aims at minimizing the total cost of

installing ERS in highway links, installing static charging stations, and maintenance costs for

the installed ERS and static charging stations. The individual components of the upper-level

objective function are denoted as follows:

• ERS installation cost: The cost of ERS installation is calculated by multiplying the

installation price per kilometer by the length of the electrified highway and the binary

variable yi j , which indicates whether a particular highway segment is selected for

electrification. As previously mentioned, this cost is further adjusted by an annuity

factor to determine the amortized annual cost of the infrastructure, accounting for the

discount rate applied to future expenses.∑
(i , j )∈A

C d ·di j · yi j ·anner s (3.24)

anner s = dr

1− (1−dr )−τer s
(3.25)

• ERS fixed maintenance cost: The fixed maintenance cost is independent of usage

frequency. This cost encompasses annual operational expenses as well as regular

inspections and adjustments. The maintenance rate is expressed as a percentage of

the total installation cost. ∑
(i , j )∈A

C d ·di j · yi j ·µer s (3.26)

• ERS variable maintenance cost: This cost is directly influenced by the frequency

of use. Increased usage accelerates wear and tear on components, leading to a

shorter lifespan and necessitating more frequent replacements, adjustments, and

maintenance. The cost is calculated by multiplying the maintenance rate per kilometer

of use by the frequency of use and the length of the electrified highway.∑
(o,d)∈Q

∑
(i , j )∈A

π(o,d)
(i , j ) ·µer s_use ·di j ·Q(o,d) ·w (o,d)

v,(i , j ) (3.27)

• Static charging station installation cost: This cost is determined by multiplying

the number of installed static charging stations by the installation cost per station.

Additionally, an annuity factor is applied, incorporating the discount rate over the

lifespan of the static chargers to calculate the amortized annual cost.∑
(i , j )∈A

∑
s∈S

Sc · xs
(i , j ) ·annsc (3.28)

annsc = dr

1− (1−dr )−τsc
(3.29)

• Static charger fixed maintenance cost: Similar to ERS lanes, static chargers require

regular maintenance, periodic inspections, and operational expenses over time. The
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maintenance cost is calculated as an annual rate applied to the total installation cost of

the static chargers. ∑
(i , j )∈A

∑
s∈S

Sc · xs
(i , j ) ·µsc (3.30)

• Static charger variable maintenance cost: Frequent use makes static chargers

susceptible to wear and tear, which incurs additional costs. These costs are calculated

by multiplying the cost per usage by the number of uses per year.∑
(o,d)∈Q

∑
(i , j )∈A

∑
s∈S

∑
v∈V

r (o,d)
v,(i , j ),s ·µsc_use ·Q(o,d) (3.31)

• Penalty cost: To ensure that all charging demand is met and to avoid a shortage of

charging stations, a penalty cost is incorporated into the model. This penalty cost

is set to be exceedingly high, at 1012, reflecting large enough value compared to the

substantial expense associated with ERS installation.

The decision variable Ecl (o,d)
v,(i , j ),s is introduced to mitigate the risk of infeasible solutions

that may arise if the model fails to establish an adequate number of charging stations.

This variable is heavily penalized in the objective function to deter reliance on this

charging mode as a preferred strategy, ensuring it is used only as a last resort to

maintain model viability.

In the model, the value of Ecl must be carefully monitored to ensure it remains at zero

in the optimal solution, thereby guaranteeing that all demand is adequately fulfilled.∑
(o,d)∈Q

∑
(i , j )∈A

∑
s∈S

∑
v∈V

γ ·Ecl (o,d)
v,(i , j ),s (3.32)

• (-) Charging time saving when using ERS: When building infrastructure, the

government considers not only the financial investment but also the broader benefits it

can provide. Installing ERS can accelerate the adoption of electric vehicles by offering

significant advantages to users, thereby helping the government achieve its goal of zero

emissions more rapidly, particularly in freight transport. One of the key benefits for

users of ERS is the elimination of vehicle downtime associated with static charging.

This cost saving is factored into the government’s upper-level objective value because

it incentivizes users or logistics companies to adopt ERS and electric vehicles, thus

contributing to the larger goal of decarbonizing freight logistics.

The cost saving is calculated by multiplying the number of ERS uses by the time that

would have been spent charging using static chargers. This calculation represents

the efficiency gained by using ERS instead of static chargers. For vehicle type 1, the

time saved is given by
(
t · B1

B2

)
, accounting for the difference in battery capacity. This is

calculated as a negative term in the objective function because it represents a benefit

rather than a cost. ∑
(o,d)∈Q

∑
(i , j )∈A

π(o,d)
(i , j ) ·Q(o,d) ·w (o,d)

v,(i , j ) · vot · t · B1

B2
(3.33)

• (-) Battery saving cost: There are several reasons why battery cost is considered
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a benefit for the government in the objective function. Firstly, the smaller battery

size of ERS-compatible vehicles is one of the key factors that makes them attractive

to companies. A smaller battery not only reduces the vehicle’s overall weight but

also lowers the purchase price, resulting in significant cost savings. Additionally, the

lighter battery allows for the possibility of carrying a larger payload, which enhances

operational efficiency.

From the government’s perspective, promoting smaller batteries aligns with

sustainability goals. Smaller or fewer batteries mean a reduced environmental

footprint, less hazardous material to process, and decreased waste generation, which

supports key objectives like lowering greenhouse gas emissions and promoting a

circular economy. The reduced demand for large-scale battery recycling also eases

the burden on environmental management systems, further justifying the inclusion

of battery cost as a benefit for the government.

This figure is further adjusted by applying an annuity factor to determine the amortized

annual cost.
veh1 · (B2 −B1) ·C b

annbat t
(3.34)

• (-) Charging cost saving: In this model, the cost of charging via ERS is lower than that of

static chargers. In addition to initial government incentives during the early adoption

phase, ERS benefits from more efficient use of grid resources. This reduced cost makes

ERS an attractive option for users, encouraging adoption. The cost savings from ERS

charging are calculated by taking the difference between the static charger price and

the ERS price per kWh and multiplying it by the total kWh required for all vehicles.

cl (o,d)
v,(i , j ),s ·π(o,d)

(i , j ) ·Q(o,d) · (C sc −Ce) (3.35)

• (-) Toll cost saving: Similar to the savings in charging costs, the toll cost when using

ERS is also lower than that of a regular highway, due to government subsidies. The toll

cost savings from ERS can be calculated by taking the difference between the toll rates

of a standard highway when not using ERS and an ERS-equipped highway when using

ERS, then multiplying that by the distance traveled along the highway. This calculation

also includes a variable that accounts for whether the ERS-equipped highway is part of

the user’s chosen route. These toll savings further incentivize the use of ERS.∑
(o,d)∈Q

∑
(i , j )∈A

π(o,d)
(i , j ) · (tol lS − tol lE) ·di j ·w (o,d)

1,(i , j ) ·Q(o,d) (3.36)

Combining the components stated above, the upper-level objective function minimizing the
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total infrastructure cost can be written as:

min
x,y

∑
(i , j )∈A

C d ·di j · yi j ·
(
anner s +µer s

)+ ∑
(o,d)∈Q

∑
(i , j )∈A

π(o,d)
(i , j ) ·µer s_use ·di j ·Q(o,d) ·w (o,d)

v,(i , j )+∑
(i , j )∈A

∑
s∈S

Sc · xs
(i , j ) ·

(
annsc +µsc

)+ ∑
(o,d)∈Q

∑
(i , j )∈A

∑
s∈S

∑
v∈V

r (o,d)
v,(i , j ),s ·µsc_use ·Q(o,d)+

∑
(o,d)∈Q

∑
(i , j )∈A

∑
s∈S

∑
v∈V

γ ·Ecl (o,d)
v,(i , j ),s −

∑
(o,d)∈Q

∑
(i , j )∈A

π(o,d)
(i , j ) ·Q(o,d) ·w (o,d)

v,(i , j ) · vot · t · B1

B2
−

veh1 · (B2 −B1) ·C b

annbat t
− ∑

(o,d)∈Q

∑
(i , j )∈A

π(o,d)
(i , j ) · (tol lS − tol lE) ·di j ·w (o,d)

1,(i , j ) ·Q(o,d)−

cl (o,d)
v,(i , j ),s ·π(o,d)

(i , j ) ·Q(o,d) · (C sc −Ce)

(3.37)

The objective function is subject to the following constraints:

• Domain values of the decision variables

xs
i j , yi j ∈ {0,1} (3.38)
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4
Data

This section provides a detailed account of the information and datasets used in this study.

It encompasses the sources, types, and characteristics of the data, ensuring a realistic

foundation for analysis and modeling. This section aims to enhance the transparency and

reproducibility of the research by clearly defining the data parameters, including the values

of the parameters, the freight transport and geographical data, and the costs related to the

problem.

4.1. Freight data

The dataset utilized is derived from the paper by Daniel Speth et al. [69]. The

dataset encompasses European road freight transport data, including traffic flows, Origin-

Destination (OD) matrix, highway links, and distance metrics.

The freight demand data is a critical component, encompassing truck traffic flows between

the specified regions. This dataset includes road freight flows in tons for the year 2030, as well

as truck traffic flows in the number of vehicles for the same year. Each origin-destination pair

is identified by unique IDs and names, along with the shortest path between regions within

the European highway network. The dataset is focused, containing directed transport flows

between significant origin and destination pairs within the Netherlands, Belgium, Germany,

and Luxembourg. In this study, only dataset from the Netherlands is used due to complexity

and high computational time.

Data processing involved several critical steps to ensure the dataset’s relevance and accuracy.

The original ETISplus data from 2010 was updated using Eurostat data to reflect projections

for 2030. Freight volumes were converted to the number of vehicles using an average loading

factor of 14 tons per truck. This conversion methodology follows the approach detailed

in the study by Ximeng et al. [44]. Routes were determined using the NetworkX library’s

implementation of Dijkstra’s algorithm, ensuring optimal paths within the E-road network.

The freight demand data presented in table 4.1 has been converted into truckflow units using
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4.2. Network data 4. Data

Overig
Groningen

Noord-
Friesland

Noord-
Drenthe

...

Overig Groningen 0 174232 155153 ...
Noord-Friesland 160633 0 170415 ...
Noord-Drenthe 393712 94023 0 ...
... ... ... ...

Table 4.1: Freight transport origin-destination trips between regions

the payload factor method described by Ximeng et al. [44]. This data is represented as

the number of trips traveling from the origin to the destination, formatted into an Origin-

Destination (OD) matrix.

4.2. Network data

The network data includes detailed information about the European highway (E-road)

network, essential for modeling and optimizing freight transport routes and infrastructure

requirements. This data comprises nodes and edges, with the model including relevant nodes

and edges for the specified regions. Each node has a unique ID, geographical coordinates

(longitude and latitude), and the associated NUTS-3 region. Each edge connects two nodes

and includes attributes detailing whether it was manually added and the length of the edge

in kilometers.

Distance data

The distance data includes the distance from the origin region to the E-road network, the

shortest path distance within the E-road network, and the distance from the E-road network

to the destination region. These distances are calculated using Dijkstra’s algorithm to ensure

optimal routes, with the total distance representing the sum of these components, from the

origin region center to the destination region center. The total transport route from the center

of origin and destination point is represented in table 4.2 in unit kilometer.

Overig
Groningen

Noord-
Friesland

Noord-
Drenthe

...

Overig Groningen 0 75 30 ...
Noord-Friesland 75 0 105 ...
Noord-Drenthe 30 105 0 ...
... ... ... ...

Table 4.2: Distance data between centers of regions

Highway data

The highway data is represented in a binary format, indicating the presence or absence of

direct highway connections between cities or regions. In the binary matrix, a value of 1

signifies a direct connection, meaning there is a highway link between two cities, while a

value of 0 indicates no direct connection.
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The structure of this data involves listing all relevant cities or regions as nodes and then

determining the pairs of nodes that have direct highway connections, which example can

be seen in table 4.3. In this matrix, the rows and columns represent the different regions, and

the presence of a highway connection is indicated by a 1 at the intersection of the respective

row and column.

Overig
Groningen

Noord-
Friesland

Noord-
Drenthe

...

Overig Groningen 0 1 1 ...
Noord-Friesland 1 0 0 ...
Noord-Drenthe 1 0 0 ...
... ... ... ...

Table 4.3: Highway connections data between regions

This dataset provides a robust foundation for analyzing and optimizing the infrastructure

needs for electric road systems and charging stations, aiding in the strategic planning for

future road freight transport in the Netherlands. The synthetic nature of the data ensures

a comprehensive and consistent representation of the European road freight landscape,

critical for developing effective optimization models.

4.3. Parameters data

Parameters related to ERS

In this research, the parameters concerning ERS are analyzed, emphasizing the installation

costs, electricity charges, toll prices, and maintenance expenses associated with ERS

infrastructure.

• Installation Cost: The initial installation cost of the catenary conductive ERS, chosen

for its cost-effectiveness relative to inductive systems, is estimated between 0.7 to 1.1

million euros per kilometer [20] [13]. For this study, a conservative estimate of 0.5

million euros per kilometer is applied for a single-direction installation, resulting in

a total of 1 million euros for bi-directional lanes.

• Electricity Charging Price: The national average electricity rate for ERS in the

Netherlands is approximately €0.36 per kWh [56]. Although regional variations exist, a

constant rate of €0.36 per kWh is utilized in this model for uniformity and simplification

of calculations.

• Toll Price: Toll rates for HGVs in the Netherlands vary based on environmental

characteristics, with cleaner trucks incurring lower tolls. While specific rates are

pending finalization, an estimated toll rate of €0.15 per kilometer, based on rates from

Germany and Belgium, serves as a benchmark [30]. For BETs, which are considered

cleaner, a reduced rate of €0.10 per kilometer is assumed [44].

• Charging efficiency: The catenary system of ERS has been demonstrated to incur

lower energy losses during battery charging compared to standard static charger [20].
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Consequently, this model adopts a charging efficiency of 95% to reflect these improved

performance metrics.

• Maintenance Cost: The annual maintenance and operating costs of the ERS are

projected to be between 1% and 2.5% of the initial capital outlay [19] [73]. Maintenance

includes routine inspections and, dependent on usage, variable costs for repairs and

component replacements are estimated at €0.07 per vehicle-kilometer [18].

• Discount Rate and Infrastructure Lifetime: The ERS infrastructure is assumed to have

a service life of 30 years [18], considering the potential for up to 35 years as suggested

by [63]. Financial calculations employ a discount rate of 1.6% to normalize investment

costs over this period [18].

• Charging rate: According to Schaap [67], the charging power of an ERS equipped with

a catenary system can achieve up to 500 kW, while a rail system can deliver up to 240

kW. Given a vehicle speed of 80 km/h, this study assumes a charging rate of 3 kW per

kilometer traveled for ERS within the model.

These financial assumptions are integral to the model, ensuring a comprehensive evaluation

of the economic feasibility and sustainability of ERS deployment within the freight transport

sector. In summary, the values of the paramaeters related to ERS can be depicted in table 4.4.

Parameter Symbol Value Unit
Installation cost Cd 500000 €/km
Electricity charging cost Ce 0.36 €/kWh
Toll rate toll_e 0.1 €/km
Fixed maintenance cost µers 2 %
Variable maintenance cost µers_use 0.07 €/v.km
Charging efficiency ef_e 0.95
Discount rate dr 1.6%
Charging rate φ 3 kWh/km
Infrastructure lifetime τers 30 years

Table 4.4: Parameter values related to ERS

Parameters related to static chargers

In this study, we evaluate the costs and operational parameters associated with DC fast

chargers, which are elaborated as follows:

• Installation Cost:DC fast chargers, essential for charging battery electric trucks (BETs),

represent the most expensive static charger type due to the need for high-voltage

equipment and specialized maintenance. The installation costs for a DC fast charger

stand at approximately €100,000, with total investment potentially reaching €200,000

per unit [50].

• Electricity Charging Cost: The average rate for using a DC fast charger in the

Netherlands is €0.73 per kWh, adopted for this model, with observed prices typically

ranging from €0.64 to €0.82 per kWh. Price examples include €0.69 per kWh at a 50

kW Fastned station in Oeienbosch, €0.83 per kWh at a 150 kW Shell station in Arnhem,
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and €0.65 per kWh at a 62.6 kW Vattenfall station in Groningen. These variations are

influenced by factors such as energy market fluctuations, bulk energy purchases by

operators, and distinct pricing strategies by charging networks [75].

• Toll Cost: For comparative purposes, the estimated toll rate for vehicles using ERS is

approximately €0.15 per kilometer traveled.

• Charging Efficiency: DC fast charging is noted for its higher efficiency, with typical

energy losses around 10%. Consequently, this model assumes a charging efficiency of

90% for DC fast chargers [37].

• Recharge Time: Charging times are significantly reduced with DC fast charging; for

example, a truck equipped with a 500 kWh battery can achieve a 10% to 80% charge in

less than an hour using a 350 kW charger. For a truck with a maximum battery capacity

of 1000 kWh, full charging is achievable within two hours [22, 26]. This analysis utilizes

a charging duration of one hour for trucks with up to 220 kWh battery capacity.

• Lifetime and Maintenance Cost: The expected lifetime of a DC fast charger is 5-6 years

with a usage rate of ten cars per day, achieving 90% reliability. This estimate is based

on the B10 lifetime of the DC-DC converter, which can vary with component quality

[7]. The annual maintenance cost for these chargers, based on studies from California,

is approximately 10% of the initial investment. Maintenance includes operational

and monitoring costs, with variable expenses introduced for replacing shorter-lived

components such as the cooling system (5-7 years) and cables and connectors (2-3

years) at a rate of €0.5 per vehicle per charge [26].

To provide a clear and structured overview of the financial and operational parameters

associated with DC fast chargers, table 4.5 summarizes the values.

Parameter Symbol Value Unit
Installation cost Sc 200000 €/km
Electricity charging cost Csc 0.73 €/kWh
Toll rate toll_s 0.15 €/km
Fixed maintenance cost µsc 10 %
Variable maintenance cost µsc_use 0.5 €/v
Charging efficiency ef_s 0.90
Charging time recharging_time 1 hour
Infrastructure lifetime τsc 6 years

Table 4.5: Parameter values related to DC fast static charger

Parameters related to vehicles

Furthermore, the parameters related to the vehicle are explored as the following:

• Battery Cost:

Figure 4.1 illustrates the decline in EV battery prices from 2010 to 2030, developed

by IEA [38]. The dotted line projects future costs, suggesting that by 2030, prices will

stabilize at around €80 per kWh. Furthermore, Lutsey [47] projects in his study that by

2030, battery prices will decrease to approximately 80-90 USD per kWh. In this study,

battery cost of €80 per kWh is used.
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Figure 4.1: Battery price prediction [38]

• Value of Travel Time: This metric quantifies the economic impact of transport time

extensions due to charging with static chargers. It accounts for the driver’s hourly wage

and vehicle downtime, collectively assumed to be €38 per hour.

• Battery Capacities: The model incorporates 2 battery capacities based on average

travel distances: 80 and 220 kWh for short-haul freight transport in the Netherlands.

• Consumption Rate: According to research, the energy consumption at the wheels

for regional delivery trucks is projected to decrease from 1.6 kWh/km in 2020 to 1.45

kWh/km by 2030. For long-haul trucks, it is expected to reduce from 1.95 kWh/km in

2020 to 1.15 kWh/km in 2030. This model adopts the lower average rate of 1.6 kWh/km

for 2030 [2].

• Number of Operations and Battery Life Cycle: The lifespan of a truck’s battery is

estimated to be approximately 8 years. For the purposes of this model, it is assumed

that each truck operates 250 days per year [77].

In summary, the parameter values of the vehicles can be concluded in table 4.6.

Parameter Symbol Value Unit
Battery cost Cb 80 €/kWh
Value of travel time vot 38 €/hour
Battery capacities battery_capacities {80, 220} kWh
Minimum battery level min_battery 10 %
Maximum battery level max_battery 90 %
Energy consumption rate β 1.6 kWh/km
Battery lifespan life_time 8 years
Number of operations ywd 250 trips/year

Table 4.6: Parameter values related to vehicles
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5
Modeling Approach

This section discusses the design and implementation of the solution methodology for

solving large-scale instances of the bi-level optimization model introduced in Section 3.

Initially the model is solved with exact approach of mixed integer linear problem using

Gurobi. Secondly, due to the complexity of the problem, metaheuristics approach is used.

5.1. Exact approach

In this study, a bi-level optimization approach is employed to determine the optimal

configuration of dynamic and static charging facilities for heavy-duty trucks. This method

effectively captures the hierarchical decision-making process involving infrastructure

investment decisions by the government and route optimization by freight operators.

The optimization modeling is conducted using Python, leveraging the Gurobi solver. Gurobi

is a powerful mathematical optimization solver widely recognized for its efficiency in solving

large-scale linear and mixed-integer programming problems. Its ability to handle extensive

datasets and provide robust solutions makes it a suitable choice for the initial phase of our

model implementation.

One significant limitation of Gurobi is its inability to directly solve non-linear optimization

problems. To address this, the initial phase of the modeling involves simplifying the

equations and linearizing the non-linear components. This process ensures that Gurobi can

effectively solve the problem on a small scale, providing an initial feasible solution that serves

as a basis for further refinement.

The initial modeling approach and the sequence of the algorithm are illustrated in Figure 5.1.
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Figure 5.1: Flowchart of bi-level optimization model

The procedure of the algorithm are explained below with an example of 2 OD pairs which are

(A,E) and (B,E).
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1. Initialization

Figure 5.2: Vehicles choose route that has shortest distance to the destination

The modeling process begins with the initialization phase, where the necessary

parameters and datasets are loaded. This includes the traffic flow data, distances,

highway connections, and costs associated with both ERS and static chargers. During

initialization, vehicle routing is determined based on the shortest path from their origin

to destination, regardless of the battery level. At this stage, no charging points or

electrified links are established. This setup provides a baseline routing scenario to be

refined in subsequent steps.

2. Upper level: Allocation of chargers

Figure 5.3: Charging stations established based on the charging needs of the vehicles and the lowest cost

At the upper level, the primary goal is to allocate the charging infrastructure optimally.

This involves determining the locations and capacities of both static and dynamic

charging stations. The battery constraints and other constraints regarding the charging

stations are introduced. Based on the vehicle routing determined in the initialization

phase, charging stations are established.

Since transportation cost considerations from the lower level are not yet introduced

in iteration zero, the upper-level model initially chooses the cheapest option, which

tends to be static charging stations. This preliminary step sets the stage for more

detailed optimization in subsequent iterations. Using Gurobi, a linearized version

of the problem is solved to find an initial feasible solution. The upper-level

optimization focuses on minimizing the total infrastructure cost, including installation
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and maintenance expenses. The decision variables at this level include the placement

of static chargers and the segments of highways to be equipped with ERS.

3. Lower Level: Routing Decision

Figure 5.4: Vehicles reroute based on the cheapest transportation cost

Once the charging infrastructure is allocated, the lower level addresses the routing

decisions for the freight vehicles. This involves introducing routing constraints such

as continuity, vehicle conservation constraints, battery constraints, and charging

constraints. The decision variables from the upper level (xs
i j and yi j ) indicating

established chargers are used as inputs. Vehicles then choose their routing based

on these established charging stations, aiming to minimize their transportation costs,

which include charging costs.

The lower-level optimization ensures that the chosen routes are efficient given

the constraints imposed by the available charging infrastructure. This step also

considers the battery capacities and energy consumption rates of the vehicles to ensure

feasibility. This level outputs the decision variablesπ(o,d)
(i , j ) and r (o,d)

v,(i , j ),s , which denote the

chosen and charging decisions.

4. Bi-level Optimization Loop

Figure 5.5: Upper level model optimize the charger allocation based on the routing of the vehicles and their
charging needs, while minimizing cost

The bi-level optimization loop iteratively refines the solutions obtained from the upper

and lower levels. At this stage, the actual link usage by vehicles, charging station usage,

and the number of uses are known. The upper level re-examines the type and location
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of charging stations, balancing cost-effectiveness and charging needs. The more a

charger is used, the higher the maintenance cost, directly impacting the upper-level

objective function. Hence, the upper level decides again on the decision variables xs
i j

and yi j . These updated decisions are then fed back into the lower level, which re-

optimizes vehicle routing based on the new charger installations. This loop continues

until either 99 iterations are reached (itermax) or the optimization gap falls below 0.01

(tolerance).

5. Best Solution

The final step involves selecting the best solution from the optimization loop. This

solution represents the most cost-effective and efficient configuration of static and

dynamic charging facilities, balancing the investment and operational costs. The

best solution is evaluated based on its lowest objective value, which means lowest

investment cost. The results are then validated using case studies to ensure robustness

and reliability.

5.2. Genetic Algorithm

The model includes a significant number of binary and continuous decision variables, which

poses substantial challenges for commercial solvers, particularly as the number of binary

variables increases exponentially with the addition of nodes and links in the network. To

address this complexity, a metaheuristic approach based on a Genetic Algorithm (GA) are

employed for this purpose.

A GA is a class of evolutionary algorithms that mimic the process of natural selection, making

them particularly adept at navigating large and complex search spaces to find near-optimal

solutions. The genetic algorithm’s iterative process of selection, crossover, and mutation

helps in efficiently exploring and exploiting the solution space, accommodating the complex

nature of the problem and the high-dimensional data involved.

A GA has become a widely-used optimization technique inspired by the principles of

natural selection and genetics. GAs have been effectively applied to a range of challenging

optimization problems across various disciplines. For instance, GA have been used to

optimize the design of complex engineering systems, such as aerodynamic shapes and

structural layouts, as demonstrated by Deb in 2002 [17]. In operations research, GAs have

been successfully employed to solve difficult combinatorial problems, including the well-

known traveling salesman problem, as illustrated by Potvin (1996) [64]. Additionally, the

literature highlights the use of GAs in solving complex bi-level optimization problems, such

as those involving encoding schemes, as discussed by Wang (2007) [78]. Given the complexity

of the bi-level programming model presented in this study, which involves numerous binary

decision variables, the application of GA is a natural and well-suited choice for the solution

methodology.

In this research, the GA is designed to find near-optimal values for the decision variables

yi j and xs
i j , while the remaining decision variables are determined by solving a set of linear

programming models. This approach involves decomposing the lower-level problem into a
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set of subproblems, with the number of subproblems corresponding to the number of origin-

destination pairs in the network. This method is chosen over using GA to solve for continuous

decision variables due to the vast search space associated with these variables — such as the

number of vehicles of each type 1 or 2 traversing each link — which would be computationally

prohibitive. Instead, a more efficient mechanism is implemented, where the type of vehicles

for each flow is determined using a Bernoulli random variable, with the probability of success

equal to the imposed acceptance rate. This approach balances the computational complexity

while effectively navigating the search space.

A Genetic Algorithm typically consists of the 5 key components: chromosome encoding,

initial population, crossover, mutation, and fitness evaluation. The subsequent sections

provide a detailed explanation of the approach used to implement each of these steps.

5.2.1. Chromosome encoding

Chromosome encoding determines how solutions are represented within the Genetic

Algorithm. Each chromosome, or individual, corresponds to a potential solution to the

optimization problem. In our approach, the decision variables yi j and xs
i j are binary,

meaning that they can take on values of either 0 or 1. To represent these variables, a

specific encoding scheme is employed, illustrated in Figure 5.6, where each gene within a

chromosome is assigned a value of 0 or 1. This binary encoding effectively captures the

structure of the decision variables, enabling the GA to explore the solution space efficiently.

Figure 5.6: Chromosome encoding

5.2.2. Initial Population

The initial population is the first set of candidate solutions that the GA begins with. This

population serves as the starting point and evolves over successive generations to explore the

solution space. In this approach, the initial population is generated by randomly assigning a

value of 0 or 1 to each gene within a chromosome, ensuring a diverse set of potential solutions

from the outset. The population size, a critical parameter that influences the algorithm’s

ability to explore and converge on optimal solutions, is set to 50 for this implementation.

This choice balances the need for diversity in the population with computational efficiency,

providing a robust foundation for the GA’s evolutionary process.
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5.2.3. Crossover

Crossover is a genetic operator that combines the genetic information of two parent solutions

to create new offspring, mimicking the processes of reproduction and recombination found

in natural genetics. In this implementation, the single point crossover method is

employed, as illustrated in Figure 5.7. This method involves selecting a random crossover

point within the parent chromosomes and exchanging the genetic material beyond that

point to produce the offspring. The use of single-point crossover ensures a balance between

preserving existing structures from the parents and introducing new combinations, thereby

enhancing the exploration of the solution space.

Figure 5.7: Single point crossover mechanism

5.2.4. Mutation

Mutation is a genetic operator that introduces diversity into the population by randomly

altering the genes (variables) of an individual. This process plays a crucial role in exploring

the solution space and helps prevent the algorithm from becoming trapped in local optima.

In this implementation, mutation is governed by the mutation rate parameter. During the

mutation process, each gene is evaluated, and with a probability defined by the mutation

rate, the gene’s value is changed, as illustrated in Figure 5.8. This controlled introduction of

randomness ensures that the GA maintains a proper level of diversity, thereby enhancing its

ability to search for optimal solutions across the entire solution space.
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Figure 5.8: Mutation process

5.2.5. Fitness Evaluation

Fitness evaluation is a critical step in determining how well each individual (chromosome) in

the population satisfies the objective function. It guides the selection process by identifying

which individuals are more likely to produce superior offspring in subsequent generations.

In this GA, the quality of each solution is assessed using Objective Functions (3.6) and

(3.37). Additionally, a penalty function is applied if the number of vehicles of type 1 falls

below the specified acceptance rate. This penalty ensures that solutions aligning with the

acceptance criteria are favored, thereby maintaining adherence to the problem’s constraints

while guiding the algorithm toward optimal solutions.

Final modeling approach

While the initial plan was to utilize both the exact approach and a genetic algorithm

for solving the model, the complexity of the problem—particularly the large number

of decision variables and the extensive dataset—presented significant computational

challenges. Despite efforts to streamline the genetic algorithm, even with a small population

size, the algorithm required a prohibitively long computational time and still failed to reach

convergence. Given these limitations, it was ultimately decided to proceed exclusively with

the exact approach, using the Gurobi optimizer to solve the problem efficiently. However,

it is important to note that the genetic algorithm remains a promising alternative method

for addressing such complex optimization problems. With further refinement, it could

potentially offer a viable solution in future iterations or for related problems, particularly

when computational resources or time constraints are less stringent.
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6
Results

Before applying the model to large-scale freight trip data, it is first tested on a smaller scale

in one highway corridor spanning from Delft to Nuremberg, to assess its performance and

interpret the results in a controlled environment. This preliminary testing is crucial for

verifying the model’s accuracy and reliability before scaling it up to larger datasets. By

conducting this verification, potential issues can be identified and addressed early, ensuring

the model’s robustness when applied to more complex and extensive datasets.

Figure 6.1: Verification test on Map 1: Netherlands-Germany highway corridor

For this verification, the highway network of the corridor will be utilized, as shown in Figure

6.1. The network includes 8 nodes: Nuremberg, Wurzburg, Frankfurt, Cologne, Dusseldorf,

Arnhem, Utrecht, and Delft. These regions are interconnected by 7 bidirectional links,
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resulting in a total of 14 highway lanes with a combined length of 1,574 km.

6.1. Tradeoffs between infrastructure cost and transportation cost

As is well known, one of the major concerns with installing ERS is the high installation cost,

despite the significant benefits it offers. Even with the increased infrastructure costs, ERS has

proven to be beneficial. To support this assertion, a test was conducted using the model on a

test map, referred to as Map 1, shown in Figure 6.2. The test map was selected to allow for a

more detailed analysis of the model’s behavior and to reduce computational time, making it

easier to observe the nuances of the model’s performance under specific conditions.

Figure 6.2: Result of the model on test map: analysing effect of electrification on total transport cost and vehicle
type 1 adoption

Figure 6.2 offers an analysis of the impact of ERS length on both total transport costs and

the adoption rate of vehicle type 1, which is equipped with ERS-compatible technology. As

the ERS length increases, a downward trend in total transport costs is observed. Initially, at

0 km of ERS, transport costs are extremely high, reaching €900 million per year. This high

cost can be attributed to the reliance on static chargers and the need for larger batteries,

which are more expensive and less efficient. As more ERS charger is installed, transport cost

savings increase significantly, reaching approximately €190 million per year when all highway

segments are fully electrified. This highlights the considerable economic advantages of ERS

by reducing the need for large batteries and elimination of downtime due to static charging.

The detailed breakdown of transport cost can be seen in Table 6.1.

On the other hand, the ERS adoption rate, exhibits a strong positive correlation with the

length of ERS installed. The adoption rate starts zero and rises sharply, reaching 100% when

ERS is installed in all segments. This indicates that as more ERS infrastructure becomes

available, users are increasingly incentivized to adopt ERS-compatible vehicles, considering
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the transport costs benefits. This trend demonstrates that the availability of ERS is a strong

driver for the adoption of these vehicles. The steep rise in adoption rate, particularly beyond

800 km of installed ERS, suggests a threshold effect, where a critical mass of infrastructure

encourages rapid user adoption. This could be due to increased route coverage, making ERS-

compatible vehicles more practical.

Furthermore, another critical factor that must be considered in this analysis is the potential

externalities not captured by the graph, such as environmental benefits, reductions in carbon

emissions, or societal benefits from reduced dependence on fossil fuels. These factors might

justify ERS adoption despite the static nature of transport costs.

Figure 6.3: Contribution of each benefit component in transport cost saving

Figure 6.3 shows how transport cost savings are distributed across different

components—value of time savings, battery cost savings, and charging cost savings—based

on varying lengths of ERS. This visualization provides a detailed breakdown of how each

component contributes to overall cost efficiency as the ERS network expands.

As the ERS length increases, a significant portion of these savings is attributed to battery

cost reductions. However, it has to be noted that the ERS adoption rate is also higher when

more ERS is installed. The high cost of travel time extension for using static charging is a

significant factor in overall cost savings and is arguably the most influential benefit driving

the deployment of ERS. The second major contributor to cost savings is the value of time

savings by using continuous charging ERS rather than the static chargers. The reduction in

downtime when using ERS directly translates into time savings, which is particularly valuable

in the freight industry, where time is often equated with money. On the other hands, charging

cost savings, shown in gray, is perceived to be less significant to the overall benefit. These

savings are derived from the reduced dependency on static charging stations, which are

typically more expensive per kWh compared to dynamic charging via ERS.
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ERS
length
[km]

Number
of static
chargers

Number
of vehicle
type 1

Number
of vehicle
type 2

Toll
cost
[M€]

Time
cost
[M€]

Battery
cost [M€]

Charging
cost [M€]

0 13 0 49958 245 221 118 295
134 13 3319 49958 236 190 113 323
268 14 6191 43767 211 217 109 340
392 13 6304 43654 203 190 108 353
516 13 7211 42747 198 178 107 362
698 13 12689 37269 194 128 99 412
880 13 15433 34525 152 231 95 351
1018 14 23062 26896 168 158 83 412
1080 13 24882 25076 166 118 81 436
1142 13 29014 20944 163 112 74 414
1280 13 32878 17080 141 94 69 423
1356 13 35471 14487 140 79 65 443
1432 10 43603 6355 141 81 52 464
1503 7 46460 3498 140 63 48 483
1574 0 49958 0 140 0 43 506

Table 6.1: Summary of ERS length, static chargers, number of vehicles, and transport cost

Moreover, the adoption of ERS-compatible vehicles, while encouraged by the growth in

infrastructure, may still be constrained by external factors such as the availability of charging

stations, electricity costs, or user preferences. The "chicken and egg" dilemma discussed

earlier remains relevant: transport companies may hesitate to invest in ERS-compatible

vehicles until sufficient infrastructure is in place, and infrastructure developers may be

reluctant to expand networks without guaranteed user demand. Thus, while the benefits

outlined in the graph are promising, their realization is contingent on coordinated action

between governments, industry stakeholders, and freight operators to ensure that both ERS

infrastructure and vehicle adoption progress in tandem.

In terms of strategic planning, these insights highlight the importance of considering

how different cost-saving components contribute to the overall economic viability of ERS

infrastructure. The significant impact of battery and time savings suggests that these should

be considerations when justifying the investment in ERS.

Table 6.1 shows a consistent number of static chargers, even as ERS length increases. This

is likely because the model assumes static chargers have unlimited capacity, allowing them

to handle an unrestricted number of vehicles simultaneously. In reality, static chargers are

capacity-limited, and if this constraint were applied, we would expect to see more static

chargers installed when less ERS is available. This would likely shift the infrastructure

balance, requiring additional static chargers to support vehicles in regions with limited ERS

coverage, potentially altering the cost-benefit analysis.

Moreover, an analysis should be done is whether there is an optimal ERS length that

maximizes these benefits, beyond which the returns on further investment may diminish.

This finding is crucial for policymakers and planners, as it emphasizes the need for a balanced

approach that focuses on optimizing the placement and length of ERS infrastructure rather

than simply extending it indefinitely. By carefully targeting ERS deployment to high-impact

areas and considering the saturation point of vehicle adoption, it is possible to achieve
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significant cost savings and efficiency gains in electric freight transport.

Priority in segment electrification

Figure 6.4: Priority in choosing lanes to be electrified. Red lines: electrified lanes, black lines: non-electrified
lanes

Table 6.2 outlines the electrification order of various road segments based on their traffic

density, measured in vehicles per kilometer, which is visually depicted in Figure 6.4. A critical

observation from this analysis is that traffic density can serve as a quick and effective criterion

for determining which road segments should be prioritized for electrification, proven by
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Electrification
order

Electfied segment Segment traffic density
[vehicle/km]

1 Dusseldorf - Cologne 43807
2 Cologne - Dusseldorf 40840
3 Arnhem - Utrecht 17040
4 Utrecht - Delft 16832
5 Delft - Utrecht 16568
6 Utrecht - Arnhem 14699
7 Wurzburg - Nuremberg 9137
8 Frankfurt - Wurzburg 8181
9 Nuremberg - Wurzburg 7702
10 Wurzburg - Frankfurt 7536
11 Dusseldorf - Arnhem 5499
12 Cologne - Frankfurt 3937
13 Arnhem - Dusseldorf 3607
14 Frankfurt - Koln 3332

Table 6.2: Order of electrification and the segment’s traffic density

the result of the model. Segments with higher traffic densities, such as the Düsseldorf-

Cologne route (43,807 vehicles/km) and Cologne-Düsseldorf (40,840 vehicles/km), are at the

top of the electrification order. Higher traffic density implies that more vehicles will use the

electrified segment, maximizing the benefits of the ERS and making it more cost-effective

relative to the investment required.

However, while traffic density provides a simple and effective method for prioritizing which

segments to electrify, it does not reduce the overall complexity of the model. The model still

operates iteratively, where, at each step, the upper-level decision-making process determines

whether it is beneficial to install ERS on a given segment. This decision is not based solely on

traffic density but also on other factors such as vehicle routes, the availability of charging

infrastructure, operational costs, and potential savings from ERS implementation. This

iterative approach ensures that the benefits of ERS are not simply determined by the busiest

routes but are distributed across the network in a way that accounts for long-term efficiency.

In other words, while traffic density is one of the key indicators, the model needs to consider

a wide range of variables to ensure that the electrification strategy maximizes both economic

and operational benefits.

Additionally, determining how many segments should be electrified adds another layer of

complexity to the problem. Electrifying every high-traffic segment may not be feasible

due to budgetary constraints, and installing ERS on too many segments could lead to

diminishing returns if some routes are underutilized. Thus, there is a need for a balance

between prioritizing high-traffic routes and ensuring the entire network remains cohesive

and efficient. The challenge for policymakers and planners is to find the right balance

between investing in high-traffic segments and ensuring that the ERS network is distributed

in a way that maximizes overall efficiency and cost-effectiveness.
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Chargers deployment under different acceptance rate

Figure 6.5: Installed ERS and static chargers under different acceptance rate using test map

As elaborated earlier, given that ERS is still a new technology, its adoption may be limited.

In this model, ERS adoption is represented by the number of vehicles equipped with

pantographs, referred to as vehicle type 1. Hypothetically, the level of adoption significantly

influences the decision to implement ERS. The greater the number of users willing to adopt

ERS, the stronger the justification for the government to implement it, as this would increase

the potential savings in terms of transportation costs.

This analysis tests various ERS acceptance rates to observe their influence on charger

deployment decisions. As expected, seen in Figure 6.5, higher adoption rates lead to a shift

from static chargers to more ERS coverage. Once adoption exceeds a certain threshold,

vehicles increasingly rely on dynamic charging, reducing the need for static chargers.

However, between adoption rates of 0.0 and 0.6, static charger deployment remains stable.

One possible reason for this outcome, as previously noted, is that the static chargers are

not capacity-constrained. If they were, more static chargers could potentially be installed

at adoption rates below 0.5.

The increase in ERS length at higher adoption rates indicates that the benefits of ERS

eventually outweigh the high initial costs. As adoption grows, the ERS network expands,

suggesting that once a critical mass of ERS-compatible vehicles is reached, the system

becomes economically viable, with reduced operational costs justifying the investment.

Conversely, at lower adoption rates, ERS is not the preferred solution. The insufficient

number of ERS-compatible vehicles during the early stages of adoption creates a situation

where the benefits derived from dynamic charging do not yet justify the high installation

costs. In this phase, the economic rationale for ERS deployment is weaker, as the high capital

expenditure is spread across too few users, limiting the return on investment in a form of
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users’ surplus. As a result, static chargers continue to play a dominant role in supporting the

charging needs of these early adopters.

This dynamic highlights the importance of reaching a critical threshold in ERS adoption to

fully realize its economic and environmental benefits. It also justifies the earlier mentioned

phenomenon, the "chicken and egg" dilemma: without sufficient user adoption, ERS

investment is hard to justify, but without infrastructure, users are reluctant to switch.

Coordinated policies, financial incentives, and a strategic rollout are needed to ensure that

ERS infrastructure and vehicle adoption grow in parallel.

6.2. Chargers Deployment in Netherlands highway Network

Figure 6.6: Network deployment in Netherlands highway network with 100% ERS adoption rate. Red lines:
electrified lanes, black lines: non-electrified lanes

The map in Figure 6.6 illustrates the deployment of ERS and static chargers across the

Netherlands’ full highway network, assuming a 100% adoption rate of vehicle type 1. The

network is visually represented with blue nodes indicating key cities or regions, covering:

Groningen, Friesland, Drenthe, Overijssel, Arnhem, Flevoland, Utrecht, Amsterdam, Delft,

Zeeland, Brabant, and Limburg. The red lines indicate the optimal selection of electrified

highway links.

A notable observation is the absence of static chargers in hte optimal solution, with the
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model relying solely on ERS for charging, reflecting its efficiency when full adoption is

achieved. Based on the model implementation in the given map, it reflects an optimized

distribution where ERS is likely prioritized along the most heavily trafficked routes, such

as those connecting major cities like Amsterdam, Delft, Utrecht, Flevoland, and the north

region of Groningen and Drenthe. These routes are vital for national and regional logistics,

indicating a focus on ensuring that the busiest corridors are well-equipped with ERS to

support continuous and efficient transport of goods.

However, real-world implementation would need to account for potential disruptions, such

as road maintenance or temporary closures, that could affect dynamic charging access

and connectivity. While the map offers a robust solution, additional considerations like

system redundancy or static chargers on secondary routes may be necessary for full network

resilience.

Varying value of travel time

Figure 6.7: Results of chargers deployment under different value of time and acceptance rate

Figure 6.7 illustrating the impact of the value of travel time on the deployment of ERS

and static chargers provides insightful data into how infrastructure decisions are influenced

by the economic importance of travel time, particularly in scenarios where the adoption

rate of vehicle type 1 is 20% and 100%, respectively. Value of travel time influences the

decision-making around charger deployment, as optimizing travel time becomes a priority

for minimizing costs in a competitive freight environment.

In the 20% adoption rate scenario (left graph), the number of static chargers remains constant

at 14 across all values of travel time, whereas the number of electrified lanes increases

gradually as the value of travel time rises. This pattern suggests that at a low adoption rate,

static chargers play a dominant role in the charging infrastructure, irrespective of the value

of travel time. The consistency of static chargers implies that under low adoption conditions,

travel time has little effect on their deployment, likely because the system relies heavily on

them for charging. Nevertheless, the uncapacitated charger model still applies as a reason

why the number of static chargers remain constant. However, when time is valued highly,

electrified lanes become a more attractive option for reducing delays.

Interestingly, even at high values of travel time, such as from €40 to €100/hour, the number
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of electrified lanes remains stable on 6 ERS lanes. This suggests that under a 20% adoption

scenario, the infrastructure remains skewed toward static chargers, even when minimizing

travel time becomes more valuable. It indicates that the system may not yet be optimized for

high-efficiency dynamic charging, with static chargers continuing to serve as the backbone

of the network. The system may lack the economic justification to invest in widespread ERS

lanes when the adoption rate is still low, as the benefits from electrified lanes are limited by

the small number of ERS-compatible vehicles.

In contrast, the 100% adoption scenario (right graph) shows a significant shift in charger

deployment. At a travel time value of £0/hour, there is heavy reliance on static chargers,

with over 66 units installed due to the lower infrastructure cost. However, as the value of

travel time increases, the number of static chargers declines rapidly, while the deployment of

electrified lanes rises sharply. By the value of travel time reaches £40/hour, electrified lanes

dominate the system, and static chargers are reduced to zero. This shift occurs because, with

all vehicles being type 1 (equipped with smaller batteries), the need for frequent charging

increases. As the value of time rises, the cost of frequent stops for charging outweighs the high

initial investment in ERS, making it the preferred option due to its ability to reduce downtime.

Additionally, once the value of time exceeds £50/hour, the number of electrified lanes

stabilizes, with 38 ERS lanes deployed across 42 highway segments. This plateau suggests

that the charging demand has been fully met, and further expansion of ERS would not yield

additional cost savings in transport.

One point that stands out in this analysis is how differently the system behaves under

different adoption rates. This highlights the inefficiencies of ERS at low adoption rates, where

static infrastructure remains indispensable and the full potential of dynamic charging cannot

be realized. The implication is that early stages of ERS deployment will require a hybrid

system, heavily reliant on static chargers to meet charging needs until vehicle adoption scales

up. This demonstrates that the deployment of ERS is more economically justified in scenarios

where reducing travel time is critical. Conversely, in scenarios where the value of time is

lower, the model suggests that static chargers, with their lower installation and maintenance

costs, are more appropriate despite the additional time required for charging.

Varying ERS cost per km

Figure 6.8: Impact of different ERS installation price to the overall chargers deployment
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The two graphs in Figure 6.8 illustrate how static chargers and electrified lanes vary with

different ERS installation costs under two adoption scenarios: 15% and 100%. In the 15%

adoption scenario, static chargers dominate, maintaining around 13-14 units. Electrified

lanes, however, decrease as ERS installation costs rise—from 6 lanes at 100,000 €/km to one

or two at 2,000,000 €/km. This highlights the sensitivity of ERS to high installation costs,

making static chargers the more viable solution at low adoption levels. The current price of

catenary system ERS can go from 500,000 to 3,000,000 €/km, and we see in this grpah that

with 15% adoption rate in the Netherlands, the number of electrified lanes starts decreasing

after 900,000 €/km.

In contrast, under 100% adoption, electrified lanes increase significantly at low ERS

installation costs, with over 40 lanes installed when costs are 100,000-300,000€/km. As

costs rise, static chargers gradually replace electrified lanes. At 2,000 k€/km, static chargers

outnumber electrified lanes, underscoring that even with full adoption, high installation

costs make a fully electrified road system less feasible, necessitating reliance on static

chargers. ERS are still attractive and no static chargers are needed with ERS cost below

900,000 €/km. However, above 900,000 €/km, electric lanes that does not give enough benefit

to cover the cost starting to be replaced by static chargers.

Policymakers and investors must prioritize cost-effective ERS deployment. Even at full

adoption, cost constraints suggest a continued need for hybrid infrastructure. This suggests

a hybrid approach, where both static and dynamic charging solutions are used strategically

based on cost and regional demand. Policymakers must focus on reducing costs and

promoting adoption to optimize infrastructure investments and maximize the benefits of

ERS. Strategies to reduce installation costs, such as technological innovations, economies

of scale, or public-private partnerships, could be essential in making ERS deployment more

feasible.
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7
Discussion

7.1. Limitations

• Capacitated Charging Stations: One limitation is that the model does not account for

the capacity of static charging stations or ERS infrastructure. In real-world scenarios,

these stations have limited capacity and cannot serve all vehicles simultaneously,

leading to potential bottlenecks. The absence of capacity constraints in the model

could result in an overestimation of system efficiency, as it assumes that all vehicles

can charge without queuing delay.

• Environmental Benefits Exclusion: The model does not factor in the environmental

benefits of chargers, such as the reduction of CO2 emissions or the integration of

renewable energy sources into charging networks. These elements could add a layer

of both cost (e.g., investment in renewable energy infrastructure) and benefit (e.g.,

reductions in carbon taxes, pollution mitigation) that might affect decision-making.

Future iterations of the model could include environmental costs and savings to

provide a more holistic view of the true economic impact.

• Resilience of the System: Another limitation is the lack of attention to network

resilience. The results suggest that, in some scenarios, the Netherlands’ entire highway

network could be electrified with ERS, making static chargers unnecessary. However,

this creates a vulnerability—if a segment of the ERS fails (e.g., due to maintenance or

an accident), there are no backup static chargers, which could lead to system-wide

disruptions. A resilient charging network would require redundancy, ensuring that if

one component of the system fails, alternative charging options are available. This real-

life consideration is critical for ensuring the system remains functional under stress

conditions.

• Computational Complexity: The model is highly computationally intensive,

particularly when optimizing large networks. The bi-level optimization and genetic

algorithm approaches used require substantial computational power, making real-

time decision-making difficult in large-scale applications. This computational demand
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limits the practical use of the model in real-time or dynamic planning environments,

where immediate responses to changes in traffic, energy demand, or infrastructure

availability may be required.In addition to the optimization approach using Gurobi,

a heuristic method such as a genetic algorithm can serve as an alternative or

supplementary approach. However, due to the high computational demands of the

genetic algorithm, only a low population size could be utilized in this research, leading

to unreliable results and a lack of convergence. As a result, the genetic algorithm

outcomes were excluded from the final modeling results.

7.2. Result interpretation

The results from the analysis indicate a clear trade-off between infrastructure costs and

transportation efficiency, particularly between the use of static chargers and ERS for road

freight electrification. The core finding is that as ERS deployment increases, the reliance on

static charging decreases, but the two infrastructures complement each other based on the

adoption rates and traffic density on different routes.

In one scenario, when ERS adoption is high (i.e., more vehicles are equipped with the

necessary technology for in-motion charging), the model shows a significant reduction in the

number of static chargers needed. The deployment of ERS on high-traffic routes, such as in

the Netherlands, where dense highway networks exist, results in considerable transportation

cost savings. This happens because ERS reduces the need for large batteries and eliminates

the downtime for static charging, which ultimately lowers both vehicle operating costs and

infrastructure costs in the long run. For instance, when ERS is deployed extensively, the

model suggests that the entire transport network can function with minimal static chargers,

resulting in cost reductions of up to 22-25%.

Furthermore, the model suggests that an optimal configuration of dynamic and static

charging infrastructure depends heavily on the rate of ERS adoption by stakeholders,

particularly vehicle manufacturers and freight companies. In scenarios with low ERS

adoption, the model shows a continued reliance on static charging infrastructure to meet

demand. Conversely, with high adoption rates, the expansion of ERS infrastructure becomes

more viable, as the demand for in-motion charging justifies the significant upfront costs of

ERS.

Additionally, the model is sensitive to the costs associated with ERS installation. The

results demonstrate that as ERS installation costs rise (e.g., above €900,000 per kilometer),

the economic advantage of using ERS diminishes, favoring static chargers instead. This

highlights the importance of cost control and technological innovation to make ERS a more

attractive option for wider-scale deployment. The sensitivity of the model to installation costs

emphasizes the need for balanced investment strategies This suggests that while ERS has the

potential to minimize operational costs long-term, it will be heavily dependent on upfront

cost management and technological advancements to make its widespread deployment

viable.

The relationship between static chargers and ERS shows a clear complementary dynamic. As

ERS infrastructure is expanded, the need for static chargers decreases, particularly in high-
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traffic areas where in-motion charging through ERS can meet most of the energy demands

for heavy-duty electric vehicles. ERS allows vehicles in reducing reliance on large onboard

batteries and the infrastructure required for static charging. However, the results also suggest

that static chargers continue to play an important role. In regions with lower traffic density

or where ERS installation may not be feasible, static chargers are still necessary to ensure full

network coverage. Therefore, static chargers serve as a backup in the hybrid infrastructure,

supporting routes where ERS deployment is limited or impractical. This interdependence

indicates that while ERS reduces the need for static chargers, it does not completely replace

them.

Another interesting result highlighted by the model is that infrastructure resilience is not

inherently built into the system. While the model suggests that a fully ERS-enabled network

could theoretically meet the demand without static chargers in some regions, real-world

conditions require considering redundancy and backup options. If an ERS segment fails

(due to technical issues or road maintenance), the absence of static chargers could lead to

significant disruptions. This is an important insight when considering the reliability of the

infrastructure, particularly for critical routes where downtime could severely impact freight

operations.

The results of the optimization model also highlight significant economic and geopolitical

benefits of ERS adoption. One key advantage is the reduction in the need for large batteries,

which are not only costly but also heavily reliant on the supply of rare minerals like lithium.

Currently, a large portion of the global lithium supply comes from countries like China,

creating a dependency that can lead to vulnerabilities in supply chains. By integrating ERS

into the transport infrastructure, the Netherlands can reduce its reliance on lithium, which

in turn lessens its dependence on foreign suppliers.

Even with a modest 10% adoption rate of ERS in the Netherlands, the model estimates that

the country could save approximately €10.5 million annually on battery costs alone. These

savings come from the reduced need for larger battery capacities, as vehicles would be able

to charge while driving, minimizing the size of the onboard batteries required. This reduction

in battery size not only alleviates supply chain pressures but also promotes more sustainable

transportation practices by decreasing the environmental impact associated with battery

production.

Moreover, the results of the optimization model offer important insights into the interaction

between current government policies and the potential benefits of integrating ERS into the

charging infrastructure. At present, the government policy mandates the installation of static

charging stations every 60 kilometers on highways. However, this policy was developed

without considering the potential of ERS technology. According to the model’s results, in a

scenario where 30% of the Netherlands’ highway network is electrified with ERS, the need for

static chargers can be significantly reduced. The results suggest that, instead of placing static

chargers every 60 kilometers, the intervals can be extended to every 78 kilometers, reducing

approximately 23% of static chargers. It is important to note that this scenario assumes 100%

of vehicles are equipped with smaller batteries. In cases of lower ERS adoption rates, the

demand for static chargers would decrease even further, leading to additional reductions in

static chargers needs.
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This extension not only meets the charging needs of vehicles but also substantially reduces

the capital investment required for static charger infrastructure. With fewer static chargers

needed due to the support of ERS, the government can allocate resources more efficiently,

directing funds toward other aspects of the transport electrification initiative and subsidies.

Furthermore, the model demonstrates that ERS is highly beneficial for users.

These findings challenge the current static charging policy and suggest that a combined

approach, integrating ERS and static chargers, would be more cost-effective and efficient.

The results imply that infrastructure planning should consider ERS deployment to optimize

both capital investments and operational efficiency, showing that a one-size-fits-all approach

to static charger placement may not be necessary in an ERS-supported network.

7.3. Results implication

With the limitations mentioned above, the implications of these results extend beyond

the Netherlands, as the model offers a versatile framework adaptable to various regions

and contexts. By adjusting parameters like traffic data, adoption rates, or installation

costs, this model can be applied to different countries, making it a valuable tool for

global infrastructure planning. This flexibility allows policymakers and investors to tailor

infrastructure deployment strategies according to local conditions, ensuring that resources

are allocated in a way that maximizes coverage and operational savings while minimizing

unnecessary expenditure.

In real-world applications, this model could guide infrastructure investments by helping

governments and private stakeholders identify optimal configurations of dynamic and static

charging facilities. For example, it could recommend prioritizing ERS deployment along

major freight corridors while ensuring that static chargers remain available in lower-density

regions to provide network resilience. This approach not only supports the broader transition

to electric freight vehicles but also ensures that the infrastructure is robust and adaptable to

future technological advancements.

Furthermore, the decreased reliance on large batteries aligns with global sustainability goals,

including reducing greenhouse gas emissions and encouraging the use of renewable energy

sources for charging. The integration of ERS into freight transportation infrastructure allows

for a more resilient, cost-effective, and environmentally friendly system, all while minimizing

dependency on critical minerals from foreign markets.

Lastly, the model’s flexibility and detailed cost analysis make it a crucial tool for achieving

long-term sustainability targets, such as those set out in the Paris Agreement. By

optimizing the deployment of charging infrastructure, governments can take strategic steps

to decarbonize the freight transport sector while simultaneously reducing operational costs

for businesses. This, in turn, encourages greater adoption of electric vehicles, creating a

positive feedback loop that accelerates the transition to clean energy transport.

59



8
Conclusion and Future Research

8.1. Conclusion

The objective of this research is to develop an optimization model that determines the

optimal configuration of dynamic and static charging facilities for heavy-duty electric trucks,

considering varying levels of ERS adoption. The research aims to answer the main research

question: "How does an integrated approach combining ERS and static charging infrastructure

optimize cost and coverage for road freight transport?" The answers to this question explored

through several sub-questions which have been explored in this thesis, including:

1. What are the key trade-offs between ERS and static charging for heavy-duty truck

electrification?

The study revealed that ERS and static chargers complement one another rather than

being mutually exclusive. While static chargers are necessary in areas where traffic

density or infrastructure investment cannot justify ERS deployment, ERS becomes

economically attractive on high-traffic routes due to the reduction in battery size

requirements and the elimination of downtime associated with static charging, as well

as cheaper charging and toll costs. Static chargers act as complimentary infrastructure

in low-traffic regions or in scenarios where ERS installation is inefficient. The model

indicates that as ERS adoption increases, the number of static chargers needed

decreases substantially, offering up to 22-25% savings in infrastructure and operational

costs.

2. Which modeling approaches are most suitable for developing a model that optimizes

the configuration of dynamic and static charging stations, and how can this model be

effectively developed and validated?

The chosen bi-level optimization model, solved using the Gurobi optimizer, proved

effective in addressing the complexity of the problem. The model successfully

captured the trade-offs between dynamic and static charging stations, considering

factors like ERS adoption rates, traffic density, and cost constraints. Testing the
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model on the Netherlands highway network validated its accuracy and applicability.

The sensitivity analysis on ERS installation costs highlighted the need for precise

investment strategies. Due to the model’s complexity, with numerous variables and

extensive data, higher computational capacity is required to efficiently run larger

datasets or cover broader areas. An alternative approach considered in this research

is the use of genetic algorithms, which were initially explored as a potential solution for

addressing the model’s complexity.

3. How does different ERS adoption rate impact the ERS network design?

Varying adoption rates significantly influenced the design and deployment of ERS

infrastructure. When adoption rates were low, the model indicated a heavier reliance

on static chargers. In contrast, higher ERS adoption rates made the expansion of

ERS networks more cost-effective and reduced the number of static chargers needed.

Importantly, the model showed a strong correlation between ERS deployment and the

increased adoption of ERS-compatible vehicles, particularly when over 800 kilometers

of ERS were installed. However, high installation costs (e.g., exceeding €900,000/km)

reduced the economic advantage of ERS, tipping the balance in favor of static charging.

4. What is the optimal configuration of ERS and static charging stations for heavy-duty

electric trucks in the context of a specific case study?

In smaller analysis using a long highway segment from Delft to Nuremburg, the model

suggested electrification in highly trafficked area, such as Düsseldorf and Cologne,

Utrecht and Delft, and Arnhem and Utrecht. The model also suggested that static

chargers should be strategically placed in less densely trafficked areas to ensure

network resilience and coverage. The model demonstrated that a hybrid approach,

where both ERS and static chargers are utilized based on traffic density and adoption

rates, maximized cost savings and coverage. Similarly, for the case study focused on

the Netherlands, the optimal configuration prioritized ERS deployment along heavily

trafficked routes, such as the Randstad and north area, covering almost 80% of the

overall highway network. These routes support the majority of freight traffic, making

ERS more cost-effective and operationally efficient. The model also suggest that no

static chargers are needed in under this condition.

Additionally, the findings reveal that traffic density, measured as the number of vehicles

per kilometer, plays a key role in determining the priority for highway segment

electrification. This priority is adjusted iteratively based on vehicle routing within

the model. In budget-constrained scenarios, this approach provides a simplified

method for identifying which highway segments should be electrified first. However,

it is essential to consider other influencing factors to ensure well-informed decision-

making and avoid potential oversights.

5. What considerations and recommendations can be given to different stakeholders in the

ERS project based on the case study?

Based on the findings, stakeholders and policymakers should focus on reducing ERS

installation costs through innovation and public-private partnerships, as this is a

critical factor in making ERS more attractive. Additionally, static charging should not
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be entirely replaced by ERS but instead should serve as a backup in areas where ERS

installation is not viable. Importantly, the model results suggest that the current policy

of installing static chargers every 60 kilometers could be optimized. In scenarios where

30% of the Netherlands’ highway network is electrified with ERS, the distance between

static chargers could be extended to 78 kilometers, reducing the number of static

chargers needed by 23%. This scenario assumes 100% adoption of ERS-compatible

vehicles, which are equipped with smaller batteries, thereby necessitating a greater

number of static chargers. However, as the adoption rate of ERS-compatible vehicles

decreases, the demand for static chargers is expected to decline further. This reduction

in infrastructure requirements would result in significant cost savings for policymakers.

This could result in significant capital savings, allowing the government to allocate

resources more efficiently and promote a more integrated, cost-effective charging

infrastructure. For infrastructure planners, prioritizing high-traffic routes for ERS

deployment is crucial for maximizing return on investment. Furthermore, stakeholders

should work collaboratively to promote ERS-compatible vehicle adoption, as this

accelerates the benefits derived from an integrated charging network.

This research highlights that an integrated approach combining ERS and static charging

infrastructures can optimize both costs and coverage in road freight electrification. However,

the effectiveness of such a system hinges on the strategic deployment of infrastructure and

the adoption of ERS-compatible vehicles. The results of this study provide actionable insights

for stakeholders, suggesting that future investments in road electrification should be guided

by both traffic density and ERS adoption rates, while also considering cost control in ERS

installation.

8.2. Future research recommendation

Future research should explore into the resilience of the combined ERS-static charging

network, particularly in the face of unexpected disruptions such as infrastructure failures

or extreme weather conditions. Since both static and dynamic charging systems are critical

to ensuring continuous freight operations, understanding how these systems cope under

critical condition is vital. Investigating how the network responds to outages, malfunctions,

or severe weather, as well its connectivity, would provide valuable insights into maintaining

system reliability. This research could also explore redundancy measures, such as backup

power sources or alternate charging routes, to ensure the network remains functional

even when parts of the system fail. A resilient charging infrastructure will be key to

maintaining service continuity, minimizing downtime, and ensuring that electric freight

transport remains viable during unforeseen disruptions.

Additionally, future work should focus on limited infrastructure capacity and the impact

of queuing at static charging stations. In the current study, access to charging facilities

was assumed to be seamless, but real-world operations will face capacity limitations.

Incorporating queuing theory and analyzing waiting times during peak usage periods would

offer a more practical view of how the system performs under high demand. Understanding

these dynamics is crucial for optimizing the placement and number of static chargers, as
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well as ensuring that ERS infrastructure can handle the anticipated traffic volumes. This

research could inform policies for reducing congestion at charging points, ensuring faster

turnarounds for trucks, and ultimately improving the operational efficiency of the network.
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Appendix A: Optimal Charging

Configuration in the Netherlands

Figure 9.1: Network deployment in Netherlands highway network with 20% (left) and 100% (right) ERS adoption
rate. Red lines: electrified lanes, black lines: non-electrified lanes, red dots: installed charging stations
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Appendix B: Genetic Algorithm

Approach
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import numpy as np 
import matplotlib.pyplot as plt 
 
# Parameters 
population_size = 26 # this has to be even number 
generations = 10 
crossover_rate = 0.8 
mutation_rate = 0.1 
tournament_size = 3  # Number of individuals in each tournament 
 
charging_stationsMappingForward = {} 
charging_stationsMappingBackward = {} 
counter = 0  
for i in charging_stations.keys(): 
    charging_stationsMappingForward[i] = counter 
    charging_stationsMappingBackward[counter] = i 
    counter += 1 
 
dynamic_linkMappingForward = {} 
dynamic_linkMappingBackward = {} 
counter = 0  
for i in dynamic_links.keys(): 
    dynamic_linkMappingForward[i] = counter 
    dynamic_linkMappingBackward[counter] = i 
    counter += 1 
 
def heuristic_charging_strategy_with_decision(network, charging_stations, path, battery_capacity, consumption_rate, 
penalty_cost, EV_type, lookahead_distance=2): 
    battery = battery_capacity 
    total_cost = 0 
     
    for i, link in enumerate(path): 
        segments = network[link]['segments'] 
        wireless_link = network[link]['wireless'] 
         
        for j, segment in enumerate(segments): 
            segment_id = segment['id'] 
            distance = segment['length'] 
            static_station = charging_stations[link][segment_id]['static'] 
            wireless_segment = segment['wireless'] and wireless_link 
             
            # Calculate energy needed to traverse the segment 
            energy_needed = distance * consumption_rate 
             
            # Lookahead to see the next few segments and their energy demands 
            future_energy_needed = 0 
            for k in range(1, lookahead_distance + 1): 
                if i + k < len(path): 
                    future_link = path[i + k] 
                    future_segments = network[future_link]['segments'] 
                    future_energy_needed += sum(s['length'] * consumption_rate for s in future_segments) 
             
            # Decision making: Compare static and wireless charging if both are available 
            if battery < energy_needed or battery < future_energy_needed: 
                if EV_type == 1:  # EV type 1 can use both static and wireless 
                    static_cost = charging_stations[link][segment_id]['cost'] if static_station else float('inf') 
                    wireless_cost = charging_stations[link][segment_id]['cost'] * (min(energy_needed, 
battery_capacity - battery)  
                                                                                   / energy_needed) if 
wireless_segment else float('inf') 
                     
                    # Choose the cheaper option 
                    if static_cost < wireless_cost: 
                        battery = battery_capacity  # Full recharge 
                        total_cost += static_cost 
                    elif wireless_cost < static_cost: 
                        charge_amount = min(energy_needed, battery_capacity - battery) 
                        battery += charge_amount 
                        total_cost += wireless_cost 
                elif static_station and EV_type == 2:  # EV type 2 can only use static 
                    charge_cost = charging_stations[link][segment_id]['cost'] 
                    battery = battery_capacity  # Full recharge 
                    total_cost += charge_cost 
                elif wireless_segment and EV_type == 1: 
                    charge_amount = min(energy_needed, battery_capacity - battery) 
                    charge_cost = charging_stations[link][segment_id]['cost'] * (charge_amount / energy_needed) 
                    battery += charge_amount 
                    total_cost += charge_cost 
                else: 
                    # No charging available, incur penalty 
                    if battery < energy_needed: 
                        deficit = energy_needed - battery 
                        penalty = deficit * penalty_cost 
                        total_cost += penalty 
                        battery = 0  # Battery becomes zero 



 
            # Update battery after traveling the segment 
            battery -= energy_needed 
         
    return total_cost 
 
 

# Objective function 
def objective_function(xVector, yVector): 
    lowerLevelObj = 0 
    upperLevelObj = 0 
    IndicatorVal = {} 
    charging_stations = {} 
    for i in range(len(xVector)): 
        charging_stations[charging_stationsMappingBackward[i]] = xVector[i] 
 
    dynamic_linksVal = {} 
    for i in range(len(yVector)):  
        dynamic_linksVal[dynamic_linkMappingBackward[i]] = yVector[i] 
    for (o,d) in requests.keys(): 
        requestsVal = requests[(o,d)] 
        if random.uniform(0, 1) > request_percentage: 
            givenVehType = [1] 
        else: 
            givenVehType = [2] 
        flowVal, lvlobjVal = 
lowerSubProblem(requestsVal,o,d,link_lengths,charging_stations,dynamic_linksVal,givenVehType) 
         
        for v in vehicle_types: 
            for (i, j) in links: 
                IndicatorVal[v, i, j, o, d] = flowVal[v, i, j] 
        lowerLevelObj += lvlobjVal 
        # project back to full solution to be passed to the master problem. 
        upperlvlCost = upperLevelSub(IndicatorVal,charging_stations,dynamic_linksVal,givenVehType,requestsVal,o,d) 
        upperLevelObj += upperlvlCost 
    objectiveOA = 0     
 
    for link in links: 
        # Fixed Cost 
        objectiveOA +=  ((Cd*link_lengths[link]*yVector[dynamic_linkMappingForward[link]])*(1+ mu_ers*tao_sc)  
                         - (Cd*link_lengths[link]*yVector[dynamic_linkMappingForward[link]]*(tao_ers-
tao_sc)/tao_ers))/ann_1 
        # Recharging time cost for static charging 
        for seg in range(1,num_segments[link]+1): 
            objectiveOA += ((Sc *100* xVector[charging_stationsMappingForward[link[0], link[1], 
seg]])*(1+mu_sc*tao_sc) ) / ann_1 
    # TODO: Add the constraint that number of vehicles shall be at least a certain value 
    totalCost = upperLevelObj + lowerLevelObj + objectiveOA 
    return totalCost 
 
# Generate initial population 
def initialize_population(size_x, size_y, population_size,probSelection): 
    population_x = np.random.randint(2, size=(population_size, size_x)) 
    population_x = np.random.choice([0, 1], size=(population_size, size_x), p=[1-probSelection, probSelection]) 
    population_y = np.random.randint(2, size=(population_size, size_y)) 
    return population_x, population_y 
 
# Fitness evaluation 
def evaluate_fitness(population_x, population_y): 
    fitness = np.array([-objective_function(x, y) for x, y in zip(population_x, population_y)]) 
    return fitness 
 
# Tournament selection 
def tournament_selection(population_x, population_y, fitness, tournament_size): 
    selected_x = [] 
    selected_y = [] 
    num_individuals = len(population_x) 
     
    for _ in range(num_individuals): 
        tournament_indices = np.random.choice(num_individuals, tournament_size, replace=False) 
        tournament_fitness = fitness[tournament_indices] 
        best_index = tournament_indices[np.argmax(tournament_fitness)] 
        selected_x.append(population_x[best_index]) 
        selected_y.append(population_y[best_index]) 
     
    return np.array(selected_x), np.array(selected_y) 
 
# Crossover 
def crossover(population_x, population_y, crossover_rate): 
    new_population_x = [] 
    new_population_y = [] 
    for i in range(0, len(population_x), 2): 
        parent1_x, parent2_x = population_x[i], population_x[i+1] 



        parent1_y, parent2_y = population_y[i], population_y[i+1] 
         
        if np.random.rand() < crossover_rate: 
            crossover_point_x = np.random.randint(1, len(parent1_x)) 
            crossover_point_y = np.random.randint(1, len(parent1_y)) 
            child1_x = np.concatenate((parent1_x[:crossover_point_x], parent2_x[crossover_point_x:])) 
            child2_x = np.concatenate((parent2_x[:crossover_point_x], parent1_x[crossover_point_x:])) 
            child1_y = np.concatenate((parent1_y[:crossover_point_y], parent2_y[crossover_point_y:])) 
            child2_y = np.concatenate((parent2_y[:crossover_point_y], parent1_y[crossover_point_y:])) 
        else: 
            child1_x, child2_x = parent1_x, parent2_x 
            child1_y, child2_y = parent1_y, parent2_y 
         
        new_population_x.extend([child1_x, child2_x]) 
        new_population_y.extend([child1_y, child2_y]) 
     
    return np.array(new_population_x), np.array(new_population_y) 
 
# Mutation 
def mutate(population_x, population_y, mutation_rate): 
    for i in range(len(population_x)): 
        if np.random.rand() < mutation_rate: 
            mutation_point_x = np.random.randint(len(population_x[i])) 
            population_x[i][mutation_point_x] = 1 - population_x[i][mutation_point_x] 
    for i in range(len(population_y)):     
        if np.random.rand() < mutation_rate: 
            mutation_point_y = np.random.randint(len(population_y[i])) 
            population_y[i][mutation_point_y] = 1 - population_y[i][mutation_point_y] 
     
    return population_x, population_y 
 
# Main genetic algorithm loop with recording of objective values 
def genetic_algorithm(size_x, size_y, population_size, generations, crossover_rate, mutation_rate, tournament_size, 
probSelection): 
    population_x, population_y = initialize_population(size_x, size_y, population_size, probSelection) 
    best_objective_values = [] 
    bestSCNames = [] 
    bestERSNames = [] 
    bestFound = float('inf') 
     
    for generation in range(generations): 
        fitness = evaluate_fitness(population_x, population_y) 
        population_x, population_y = tournament_selection(population_x, population_y, fitness, tournament_size) 
        population_x, population_y = crossover(population_x, population_y, crossover_rate) 
        population_x, population_y = mutate(population_x, population_y, mutation_rate) 
         
        # Record the best objective value of this generation 
        best_index = np.argmax(evaluate_fitness(population_x, population_y)) 
        best_x = population_x[best_index] 
        best_y = population_y[best_index] 
        best_fitness = objective_function(best_x, best_y) 
        best_objective_values.append(best_fitness) 
        print(f"Generation number {generation} best value is {best_fitness}, number of CS stations is {sum(best_x)} 
and number of ERS is {sum(best_y)}") 
        if best_fitness < bestFound: 
            bestFound = best_fitness 
            bestSCNames = [] 
            bestERSNames = [] 
            for indx,value in enumerate(best_x): 
                if value >= 0.9: 
                    bestSCNames.append(charging_stationsMappingBackward[indx]) 
            for indx,value in enumerate(best_y): 
                if value >= 0.9: 
                    bestERSNames.append(dynamic_linkMappingBackward[indx])     
                 
     
    return bestERSNames, bestFound, best_objective_values 
 
# Running the genetic algorithm 
best_y, best_fitness, best_objective_values = genetic_algorithm(numCS, numERS, population_size, generations, 
crossover_rate, mutation_rate, tournament_size,probSelection) 
 
# Plotting the objective values over generations 
plt.plot(best_objective_values) 
plt.xlabel('Generation') 
plt.ylabel('Objective Function Value') 
plt.title('Objective Function Value Over Generations') 
plt.grid(True) 
plt.show() 
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Abstract

The study aims to develop an optimization model that determines the optimal configuration of dynamic Electric Road Systems
(ERS) and static charging infrastructure for heavy-duty electric trucks. By considering varying levels of ERS adoption, the model
seeks to minimize total infrastructure and operational costs while maximizing demand coverage along key transport routes. The re-
search uses a bi-level optimization model: the upper level addresses government decisions on infrastructure placement to minimize
infrastructure costs, while the lower level focuses on user routing to minimize transportation expenses. The model was applied to
the Netherlands as a case study, optimizing the placement of ERS and static chargers based on traffic patterns and user behavior.
Key findings indicate that ERS and static chargers are complementary, with ERS proving more cost-effective on high-traffic routes,
reducing battery size and eliminating charging downtime. In low-traffic areas, static chargers provide essential infrastructure sup-
port. The model demonstrated that an integrated charging network could lead to cost savings of up to 25%. The study concludes
that a combined ERS-static charging infrastructure is the a cost-efficient approach for electrifying freight transport, offering both
economic and environmental benefits .

Keywords: Electric Road Systems (ERS), Freight Electrification, Static Charging, Electric Trucks, Infrastructure Optimization

1. Introduction

The growing environmental impact of freight transport is a
pressing concern, with heavy-duty vehicles contributing signif-
icantly to global CO2 emissions. Road freight alone accounts
for approximately 8% of energy-related CO2 emissions, a fig-
ure expected to double by 2050 due to increased economic ac-
tivity, particularly in Asia, Africa, and Latin America (Greene,
2023). Although heavy-duty trucks represent only 5% of the
vehicle fleet, they contribute around 28% of the EU’s road
transport emissions (Unterlohner, 2022). The rapid growth of
e-commerce and global trade further exacerbates this environ-
mental challenge, prompting the urgent need for sustainable so-
lutions (OECD, 2023). In response to the Paris Agreement’s
goal of achieving net-zero emissions by 2050, several alterna-
tive fuel solutions, including hydrogen, biofuels, and electric
power, have been explored (IEA, 2021). Among these, elec-
tric vehicles (EVs) have emerged as the most viable option due
to their technological maturity, expanding infrastructure, and
direct impact on emissions reduction (McConnell and Leard,
2020; Konstantinou and Gkritza, 2023).

EVs offer significant environmental benefits, such as zero
tailpipe emissions and lower long-term operational costs. How-
ever, the widespread adoption of electric trucks for freight
transport faces critical challenges, particularly in long-haul op-
erations, where the limitations of battery technology hinder
practical implementation. Larger batteries are required for

long-haul operations to minimize charging stops, but these in-
crease vehicle weight and reduce payload capacity, impacting
both operational efficiency and vehicle costs. Additionally, the
cost of large batteries escalates, while the current charging in-
frastructure remains underdeveloped. Long charging times and
the downtime associated with static charging stations disrupt
delivery schedules and reduce productivity, particularly in com-
parison to diesel trucks, which can travel much farther without
refueling (M and G, 2023; Taheripour et al., 2010). These chal-
lenges highlight the need for innovative solutions to optimize
the trade-offs between battery size, cost, and range, thereby
enhancing the practicality and economic viability of electric
trucks.

ERS, a dynamic charging technology, offer a promising so-
lution to the limitations of static charging. ERS enables vehi-
cles to charge while in motion via conductive rails, overhead
powerlines, or inductive charging embedded within roadways.
By allowing continuous charging, ERS reduces the need for
large onboard batteries and eliminates the downtime associ-
ated with stationary charging. Studies suggest that ERS can
lead to substantial cost savings, with reductions in total own-
ership costs of up to 30%, primarily due to decreased battery
and fuel expenses (Börjesson et al., 2021; Coban et al., 2022;
Connolly, 2016). ERS also enhances the environmental sustain-
ability of transport systems, with projections indicating that a
full-scale deployment could reduce road transport emissions by
up to 40% (Domingues-Olavarrı́a et al., 2018; Olovsson et al.,
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2021). Technologically, wireless power transfer technology in
ERS can achieve energy transfer efficiencies of over 90%, fur-
ther reducing operational costs (Soares and Wang, 2022).

Despite these benefits, large-scale ERS implementation is
still in its early stages. Pilot projects in Sweden, Germany, and
France demonstrate the technical feasibility of ERS, but also
highlight challenges such as high infrastructure costs and the
need for collaboration among stakeholders. For example, Swe-
den’s Smartroad Gotland, the world’s first public wireless elec-
tric road for heavy-duty vehicles, demonstrated wireless power
transfer at speeds of up to 80 km/h, showing its potential for
future applications, though further technological improvements
are needed (Electreon, 2024; Frost, 2019). The ”chicken and
egg” dilemma persists, as manufacturers hesitate to invest in
ERS-compatible vehicles without clear infrastructure commit-
ments, and investors are reluctant to fund ERS projects without
guaranteed market demand. As a result, user acceptance plays
a crucial role in ERS viability (Manthey, 2023; Min, 2023a).

To address these challenges, this research aims to develop an
optimization model that integrates both ERS and static charg-
ing infrastructures for heavy-duty electric trucks. The model
seeks to minimize the total cost of infrastructure and operations
while maximizing demand coverage along key transport routes.
By considering varying levels of ERS adoption, the study aims
to provide insights into the optimal deployment strategies for
dynamic and static charging networks (Hou et al., 2021; Pi-
arc, 2018). This research contributes to the existing literature
by addressing the gap in studies that have primarily focused
on static or dynamic charging systems independently (Danese
et al., 2021; Campaña and Inga, 2023; Csiszár et al., 2020; Sun
et al., 2020).

The primary research question is: How can a configuration
of dynamic and static charging stations be developed for heavy-
duty electric vehicles that optimizes demand coverage within a
limited budget, while accounting for varying acceptance lev-
els of ERS among stakeholders? This research will explore the
trade-offs between ERS and static charging, the impact of dif-
ferent ERS adoption rates on network design, and the optimal
configuration of charging stations for electrified freight trans-
port.

This study is crucial for informing future policy and invest-
ment decisions in electrifying freight transport. By balancing
cost, efficiency, and environmental impact, the research aims
to guide the strategic deployment of ERS and static charging
systems, contributing to decarbonizing road freight transport.

2. Literature Review

The rise of EVs and HDEVs has led to extensive research
on developing efficient charging infrastructure. Two key meth-
ods, static charging stations and ERS, are under study for their
potential to support electrification at scale. A critical area of re-
search is the optimal design and deployment of these infrastruc-
tures to balance cost, energy efficiency, and user convenience,
with ERS showing promise in reducing range anxiety and bat-
tery size for long-haul freight operations.

2.1. ERS overview

Electric Road Systems (ERS) offer continuous, on-the-go
charging through different technologies: overhead conductive,
ground-based conductive, and inductive (wireless) systems.
Overhead conductive systems use pantographs that connect ve-
hicles to overhead power lines, as seen in Sweden’s eHighway
project. This system has proven effective in reducing carbon
emissions for heavy trucks but faces challenges such as high
costs and limitations for smaller vehicles Min (2023b); Aker-
man (2016); Zhang et al. (2014). Ground-based conductive
systems, like the eRoadArlanda project, provide power via con-
ductive rails embedded in roads but are vulnerable to weather
conditions and pose safety risks for motorcyclists Piarc (2018);
Schaap (2021). Inductive systems, while safer and aesthetically
pleasing due to their wireless nature, suffer from lower energy
transfer efficiency and high installation costs Schaap (2021).

2.2. Network Design for Charging Infrastructure

Network design for charging infrastructure is a critical factor
influencing the adoption of ERS and static chargers. Several re-
searchers have developed models to optimize the placement of
charging facilities, balancing costs, user convenience, and en-
ergy demands. Chen, Liu, and Yin Chen et al. (2017) proposed
a charging-facility-choice equilibrium model that compares the
deployment of stationary and dynamic charging infrastructure.
Their research indicates that dynamic charging lanes can be
highly competitive, particularly for commercial vehicles with
high time-value, and can attract drivers by minimizing down-
time and charging stops. Their results show that dynamic charg-
ing lanes, while costly, can be financially sustainable through
either public provision or private-sector investment.

Path-constrained network equilibrium models, such as those
explored by Qiu et al. (2020), aim to minimize total travel time
and optimize the location of electrified roads while considering
budget constraints. These models explore the impact of vari-
ous factors, including battery size and charging efficiency, to
ensure that the infrastructure meets the needs of EV users effi-
ciently. Other research, such as that by Pagany et al. (2019),
uses Geographic Information System (GIS)-based models to
determine optimal locations for static charging stations. This
method minimizes walking distances to charging stations while
ensuring sufficient energy coverage in high-demand areas, as
demonstrated in their case study in southern Germany.

A corridor-based design for ERS, which focuses on long-
haul routes, is often considered more efficient for reducing
emissions, particularly for heavy goods vehicles. This ap-
proach ensures higher utilization rates and justifies the invest-
ment in high-power dynamic charging infrastructure Bakker
et al. (2024). However, dense infrastructure networks, which
include multiple short routes and static chargers, may offer
greater flexibility and user adoption in the early stages of elec-
trification Bakker et al. (2024). Studies suggest that a phased
approach—starting with dense static charging networks and
gradually expanding to ERS corridors—could maximize both
early adoption and long-term environmental benefits.
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Several mathematical and heuristic methods have been em-
ployed to optimize charging station networks. Mixed Inte-
ger Linear Programming (MILP) models have been used to
solve the location problem, considering factors such as detour
mileage and budget constraints Li et al. (2022). MILP-based
approaches are particularly useful for large-scale problems, as
seen in the research of Kuby and Lim (2005); Lin et al. (2008);
Wang and Lin (2009), where the optimization of static charg-
ing stations along intercity highways reduced overall travel time
and increased system efficiency. Other methods, such as ge-
netic algorithms, particle swarm optimization (PSO), and Non-
Dominated Sorting Genetic Algorithm (NSGA-II), have been
applied to enhance computational efficiency and handle com-
plex, multi-objective optimization problems Kizhakkan et al.
(2019).

3. Methodology

Current research on EV charging infrastructure often focuses
either on ERS or static charging solutions, neglecting the po-
tential synergies of combining the two technologies. This over-
sight creates a research gap in understanding how to optimize
the deployment of both static chargers and ERS in a unified
network to minimize costs while maximizing coverage and effi-
ciency. The main issue lies in determining the optimal configu-
ration that addresses both government infrastructure investment
strategies and user route optimization, considering varied ac-
ceptance levels of ERS among stakeholders. Furthermore, ex-
isting methodologies often overlook the operational differences
between high-traffic and low-traffic areas, where ERS and static
charging infrastructure must be deployed differently. This re-
search aims to address this gap by developing a comprehensive
model that integrates both technologies to minimize infrastruc-
ture costs and operational inefficiencies while providing maxi-
mum demand coverage for heavy-duty trucks.

The research employs a combination of bi-level optimiza-
tion modeling and case study analysis to explore the optimal
configuration of static and dynamic charging infrastructure for
heavy-duty trucks. The methodology is built on two interde-
pendent levels of optimization. The lower-level optimization
focuses on minimizing transportation costs for users. This in-
cludes the cost of travel time extended by static charging, toll
costs (which are subsidized for ERS usage), electricity costs for
both ERS and static chargers, and battery costs (with smaller
batteries required for ERS-equipped vehicles). The total trans-
portation cost is minimized under constraints, ensuring that ve-
hicle battery levels remain within limits, vehicles follow flow
conservation laws, and charging demand is met at all times.

In the upper-level optimization, the model aims to minimize
the total infrastructure cost. This includes the installation and
maintenance costs of ERS and static chargers, along with a
penalty for any unfulfilled charging demand. The model also
accounts for broader societal benefits, such as cost savings from
using smaller batteries and reduced toll costs for ERS users. By
considering these factors, the government can evaluate the po-
tential long-term benefits of ERS, promoting the adoption of
electric vehicles.

Figure 1: Bilevel optimization scheme

Figure 1 illustrates the iterative process of the bi-level opti-
mization model. At the upper level, the government strategi-
cally decides where to install charging infrastructure based on
common travel routes, aiming to meet demand while minimiz-
ing costs. At the lower level, users adjust their routes to mini-
mize individual travel and charging costs in response to the in-
frastructure. This feedback loop allows the government to con-
tinually refine charger placement based on actual usage, while
users adapt their routes to the evolving infrastructure. By in-
corporating real-world data like traffic patterns and energy con-
sumption, the model optimizes the number of chargers needed
to meet EV truck demand while minimizing costs.

The optimization process involves a mathematical model
that includes various decision variables for infrastructure place-
ment, charging station capacities, and vehicle routing. Static
charging stations are assumed to be placed every 10 kilometers
along highway segments, and ERS can be installed in specific,
high-traffic routes. The model considers multiple constraints,
such as the battery capacity of trucks, energy consumption
rates, travel costs, and toll fees for using ERS infrastructure. By
simulating different levels of ERS acceptance, the model is ca-
pable of identifying trade-offs between investment in ERS and
static charging stations, depending on user behavior and traffic
density.

The model is applied to a case study based on real-world data
from the Netherlands, focusing on the country’s major high-
ways. Freight demand data, traffic patterns, and infrastructure
costs were collected from Eurostat and national transportation
databases to simulate various configurations of ERS and static
chargers. The case study validates the model’s applicability and
provides insights into the real-world implications of infrastruc-
ture deployment strategies.

3



Figure 2: Verification test on Map 1: Netherlands-Germany highway corridor

4. Results

4.1. Data overview

The freight data is derived from European road freight trans-
port data, specifically focused on the Netherlands. It includes
traffic flows, an Origin-Destination (OD) matrix, and highway
links. The data has been updated for 2030, converting freight
volumes to the number of vehicles using an average loading fac-
tor of 14 tons per truck. Routes are determined using Dijkstra’s
algorithm, ensuring optimal paths for the vehicles.

The network data includes nodes (cities) and edges (highway
links), detailing direct connections between regions. Distances
between regional centers are calculated using Dijkstra’s algo-
rithm, providing the shortest path data for the model.

Before applying the model to large-scale freight data, it is
first tested on a smaller highway corridor from Delft to Nurem-
berg to assess its performance in a controlled setting. This step
helps verify the model’s accuracy and address any issues before
scaling up.

As shown in Figure 2, the corridor includes 8
nodes—Nuremberg, Wurzburg, Frankfurt, Cologne, Dus-
seldorf, Arnhem, Utrecht, and Delft—connected by 7
bidirectional links, covering a total distance of 1,574 km across
14 highway lanes.

4.2. Assumptions and simplifications

• The model focuses on conductive ERS, such as overhead
or side pantographs, considered the most developed tech-
nology.
• Only battery electric trucks (BETs) are included, with

varying adoption rates of pantographs. Personal and alter-
native fuel vehicles (e.g., diesel, hydrogen) are excluded.
• Highways are fully electrified, with separate sections

for regular traffic and ERS charging. Only pantograph-
equipped trucks can charge, and partial highway electrifi-
cation is not considered.
• Subsidized tolls apply to ERS users, while non-ERS vehi-

cles pay standard toll rates.
• Two categories of BETs are modeled: those with pan-

tographs (vehicle type 1) and those without (vehicle type
2).

Figure 3: Result of the model on test map: analysing effect of electrification on
total transport cost and vehicle type 1 adoption

• All highways are eligible for ERS installation.
• Charging rates and energy consumption are constant, ex-

cluding variables like vehicle weight, speed, or road con-
ditions.
• All vehicles are assumed to fully charge at stations, and

charging time is based on the kWh needed to reach full
capacity.
• Vehicles start each trip with a full battery, and only one-

way trips are modeled.
• Electricity costs are constant, with ERS users receiving a

government-subsidized rate.
• Varying adoption rates of pantographs are analyzed to as-

sess their impact.
• A fixed discount rate is used for future costs.
• All costs are projected for the year 2030, with a one-year

model timespan.

4.3. Tradeoffs between infrastructure cost and transportation
cost

A key concern with ERS is its high installation cost, despite
its benefits. To assess the model’s performance and impact,
a test was conducted on a simplified map (Map 1) for easier
analysis. Figure 3 shows the relationship between ERS length,
transport costs, and adoption of ERS-compatible vehicles.

As the length of ERS increases, total transport costs show
a clear downward trend. At 0 km of ERS, transport costs are
around €900 million per year due to the reliance on static
chargers and the larger, more expensive batteries required for
non-ERS vehicles. As ERS coverage expands, transport costs
drop significantly, reaching approximately €190 million per
year when the entire highway network is electrified. This
demonstrates the economic advantages of ERS, including re-
duced battery size requirements and the elimination of static
charging downtime.

The adoption rate of ERS-compatible vehicles follows a sim-
ilar trend, starting at 0% and climbing rapidly as more ERS is
installed, reaching 100% adoption when all highway segments
are electrified. The sharp increase, especially after 800 km of
ERS installation, suggests a critical threshold where broader
ERS coverage makes adopting ERS-equipped vehicles more
practical and appealing.
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Figure 4: Contribution of each benefit component in transport cost saving

Additionally, while the analysis primarily focuses on trans-
port costs, it is important to consider external benefits like re-
duced carbon emissions and environmental impacts, which fur-
ther support ERS adoption despite its higher initial infrastruc-
ture costs.

Figure 4 breaks down the transport cost savings across
three components—value of time, battery, and charging
costs—relative to increasing ERS lengths. The majority of
savings come from battery cost reductions and time savings,
with time savings being the most influential, particularly in the
freight industry, where reduced downtime is critical. Charg-
ing cost savings, though present, are less significant due to the
higher costs of static chargers compared to ERS.

The analysis highlights the ”chicken and egg” issue, where
ERS adoption depends on sufficient infrastructure, and infras-
tructure expansion relies on user demand. Coordinated efforts
between governments and industry are essential to balance in-
frastructure development and vehicle adoption.

Table 1 summarizes the results, showing a consistent num-
ber of static chargers, as the model assumes no capacity lim-
its. In practice, more chargers would likely be needed with less
ERS coverage. Additionally, optimizing ERS length is key, as
beyond a certain point, further investment yields diminishing
returns. This underscores the importance of strategic ERS de-
ployment in high-impact areas for maximizing cost savings and
efficiency in electric freight transport.

4.4. Priority in segment electrification

Table B.5 show the electrification order of road segments
based on traffic density, with high-traffic segments such as
Düsseldorf-Cologne (43,807 vehicles/km) prioritized. This
traffic-based approach is effective in identifying which seg-
ments should be electrified first to maximize the benefits of ERS
and ensure a cost-effective investment.

However, traffic density alone does not simplify the overall
complexity of the model. The model still operates iteratively,
with the upper-level decision process evaluating factors beyond
traffic, such as vehicle routes, infrastructure availability, oper-
ational costs, and potential savings from ERS. This ensures a

Figure 5: Installed ERS and static chargers under different acceptance rate using
test map

well-distributed electrification strategy that balances immediate
traffic demands with long-term network efficiency.

Moreover, determining the optimal number of segments for
electrification adds another challenge. Budgetary constraints
make it unfeasible to electrify every high-traffic segment, and
over-electrification could lead to diminishing returns if some
routes are underutilized. Policymakers must strike a balance
between focusing on high-traffic routes and ensuring that the
ERS network is cohesively and strategically developed to max-
imize overall system efficiency and cost-effectiveness.

4.5. Chargers deployment under different acceptance rate

Figure 5 illustrates the impact of varying ERS adoption rates
on the deployment of ERS infrastructure and static chargers.
ERS adoption, represented by the number of vehicles equipped
with pantographs (vehicle type 1), significantly influences the
decision to expand ERS coverage. As adoption increases, re-
liance on dynamic charging rises, reducing the need for static
chargers. Between 0.0 and 0.6 adoption rates, static charger
deployment remains stable, likely due to the assumption of un-
limited charger capacity.

At higher adoption rates, the ERS network expands, indi-
cating that once a critical mass of ERS-compatible vehicles is
reached, the economic benefits outweigh the high initial costs.
Conversely, at lower adoption rates, ERS is less viable, as the
limited number of compatible vehicles cannot justify the sig-
nificant infrastructure investment. This reinforces the ”chicken
and egg” dilemma, where both ERS infrastructure and vehicle
adoption must grow in tandem to realize economic and environ-
mental benefits. Coordinated policies and incentives are essen-
tial to achieve this balance.

5. Insights from Case Study

5.1. Chargers Deployment in Netherlands highway Network

At a 20% ERS adoption rate, the optimal network includes
12 electrified lanes out of the 42 possible routes, as seen in Fig-
ure 6. This indicates that electrification is focused on a limited
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ERS
length
[km]

Number of
static charg-
ers

Number of
vehicle type 1

Number of
vehicle type 2

Toll cost
[M€]

Time cost
[M€]

Battery cost
[M€]

Charging cost
[M€]

0 13 0 49958 245 221 118 295
134 13 3319 49958 236 190 113 323
268 14 6191 43767 211 217 109 340
392 13 6304 43654 203 190 108 353
516 13 7211 42747 198 178 107 362
698 13 12689 37269 194 128 99 412
880 13 15433 34525 152 231 95 351
1018 14 23062 26896 168 158 83 412
1080 13 24882 25076 166 118 81 436
1142 13 29014 20944 163 112 74 414
1280 13 32878 17080 141 94 69 423
1356 13 35471 14487 140 79 65 443
1432 10 43603 6355 141 81 52 464
1503 7 46460 3498 140 63 48 483
1574 0 49958 0 140 0 43 506

Table 1: Summary of ERS length, static chargers, number of vehicles, and transport cost

Figure 6: Network deployment in Netherlands highway network with 20% (left) and 100% (right) ERS adoption rate. Red lines: electrified lanes, black lines:
non-electrified lanes, red dots: installed charging stations
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Electrification
order

Electfied segment Traffic density
[vehicle/km]

1 Dusseldorf - Cologne 43807
2 Cologne - Dusseldorf 40840
3 Arnhem - Utrecht 17040
4 Utrecht - Delft 16832
5 Delft - Utrecht 16568
6 Utrecht - Arnhem 14699
7 Wurzburg - Nuremberg 9137
8 Frankfurt - Wurzburg 8181
9 Nuremberg - Wurzburg 7702
10 Wurzburg - Frankfurt 7536
11 Dusseldorf - Arnhem 5499
12 Cologne - Frankfurt 3937
13 Arnhem - Dusseldorf 3607
14 Frankfurt - Koln 3332

Table 2: Order of electrification and the segment’s traffic density

number of high-traffic routes, which are most likely prioritized
due to the reduced number of vehicles equipped to utilize ERS.
To compensate for the lower adoption of ERS technology, opti-
mal result shows that 15 static charging stations are strategically
placed throughout the network. These static chargers are essen-
tial in supporting the trucks that do not have access to ERS and
still require regular stops for recharging. This setup reflects a
hybrid approach, balancing static and dynamic charging meth-
ods, with a significant reliance on static charging due to the
limited reach of ERS infrastructure.

In contrast, at a 100% adoption rate, the network expands to
33 electrified lanes out of the 42 routes. This increase shows
that with full adoption, electrification of the majority of the
highway network becomes feasible and cost-effective. The
complete reliance on dynamic charging through ERS eliminates
the need for static charging stations entirely, as shown by the
absence of any static chargers in this scenario. The entire fleet
of heavy-duty electric trucks can charge while driving, render-
ing the static charging infrastructure redundant and leading to a
fully electrified road system that supports continuous operation
without the need for frequent charging stops.

While the model prioritizes ERS on major routes, real-world
implementation must consider potential disruptions, such as
road maintenance, which could affect dynamic charging access.
Additional measures, like system redundancy or static chargers
on secondary routes, may be necessary for network resilience.

5.2. Varying value of travel time

Figure 7 illustrates the impact of travel time value on the
deployment of ERS and static chargers, highlighting how eco-
nomic factors influence infrastructure decisions under 20% and
100% ERS adoption scenarios.

In the 20% adoption scenario, shown left chart in Figure 7,
static chargers remain constant at 14 units, regardless of travel
time value, while the number of electrified lanes increases grad-
ually. This suggests that, at low adoption rates, the system relies
heavily on static chargers, and travel time has little influence

on their deployment. Even at high travel time values (€40-
€100/hour), static chargers dominate, as the limited number
of ERS-compatible vehicles restricts the benefits of electrified
lanes.

In contrast, the 100% adoption scenario in the right chart of
Figure 7 shows a shift as travel time value rises. Initially, static
chargers dominate with over 66 units installed, but as the value
of travel time increases, the number of static chargers decreases
rapidly, and electrified lanes become the primary solution. By
€40/hour, the system relies almost entirely on ERS, reducing
static chargers to zero and deploying 38 electrified lanes across
42 segments.

This analysis underscores the inefficiencies of ERS at low
adoption rates, where static chargers remain essential. As adop-
tion grows, dynamic charging becomes more viable, especially
when reducing travel time is critical. In early stages of ERS de-
ployment, a hybrid system is necessary until vehicle adoption
scales up, while lower travel time values favor static chargers
due to their lower costs.

5.3. Varying ERS cost per km

In the 15% adoption scenario, static chargers dominate
with 13-14 units, while electrified lanes decrease as ERS
costs rise—from 6 lanes at €100,000/km to 1-2 lanes at
€2,000,000/km. This shows ERS’s sensitivity to high instal-
lation costs, making static chargers more viable at low adop-
tion rates. The number of electrified lanes begins to drop after
€900,000/km.

In contrast, at 100% adoption, over 40 electrified lanes are
deployed when ERS costs are below €300,000/km. As costs
rise, static chargers increasingly replace ERS, with static charg-
ers dominating at €2,000,000/km. Above €900,000/km, elec-
trified lanes are gradually replaced by static chargers due to di-
minishing cost-effectiveness.

This analysis suggests a hybrid approach, combining static
and dynamic charging, as ERS alone may not be feasible at
high installation costs. Policymakers must focus on reducing
ERS costs through technological advances, economies of scale,
and partnerships to maximize the benefits of ERS and ensure
cost-effective deployment.

6. Discussion

6.1. Limitations

• Capacitated Charging Stations: The model does not con-
sider the capacity limits of static chargers or ERS infras-
tructure, assuming all vehicles can charge without delay.
In reality, capacity constraints could cause bottlenecks,
leading to an overestimation of system efficiency.

• Exclusion of Environmental Benefits: Environmental fac-
tors, such as CO2 reduction and the integration of renew-
able energy, are not included in the model. These consider-
ations could impact both costs (e.g., investment in renew-
able energy) and benefits (e.g., reduced emissions), pro-
viding a more complete economic analysis.
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Figure 7: Results of chargers deployment under different value of time and acceptance rate

Figure 8: Impact of different ERS installation price to the overall chargers deployment

• System Resilience: The model assumes full ERS electrifi-
cation, eliminating the need for static chargers. However,
this creates a vulnerability—if an ERS segment fails, there
is no backup infrastructure, potentially causing system-
wide disruptions. A resilient charging network would re-
quire redundancy, such as backup static chargers.

• Computational Complexity: The bi-level optimization ap-
proach used in the model is computationally intensive,
making it challenging to apply in real-time or large-scale
scenarios. Additionally, due to the high computational
demands, the genetic algorithm used in earlier tests was
excluded from the final results because of unreliable out-
comes and lack of convergence.

6.2. Result interpretation

The results of the analysis highlight a trade-off between
infrastructure costs and transportation efficiency, partic-
ularly between static chargers and ERS for road freight
electrification. As ERS deployment increases, the reliance
on static chargers decreases, with the two infrastructures
complementing each other based on adoption rates and
traffic density.

In scenarios with high ERS adoption, the need for static
chargers significantly declines, especially on high-traffic
routes. ERS reduces the need for large batteries and min-
imizes downtime, resulting in long-term cost savings of
up to 22-25%. However, at lower adoption rates, static
chargers remain essential to meet demand, as the benefits
of ERS are limited by the small number of compatible ve-
hicles.

The model also shows that ERS installation costs are a key
factor in determining the optimal infrastructure mix. As
costs rise above €900,000 per km, static chargers become
more economically viable than ERS. This underscores
the importance of cost management and technological ad-
vancements to make ERS more feasible for widespread de-
ployment.

The complementary relationship between ERS and static
chargers is evident—ERS reduces the need for static
chargers in high-traffic areas, but static chargers remain
crucial in regions where ERS is not viable. Static chargers
serve as a backup, ensuring network resilience, particu-
larly on routes where ERS installation may not be practi-
cal.
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The model also highlights the need for system redundancy.
A fully ERS-enabled network could meet demand without
static chargers, but real-world conditions require backup
options to prevent disruptions from technical failures or
maintenance.

Additionally, ERS offers economic and geopolitical ben-
efits by reducing dependence on large batteries and rare
minerals like lithium. Even a 10% ERS adoption rate in
the Netherlands could save €10.5 million annually on bat-
tery costs, reducing supply chain pressures and promoting
sustainability.

The results also suggest that current government policies
on static charger placement may need revision. With 30%
of the highway network electrified by ERS, the interval
for static chargers could be extended from 60 km to 78
km, reducing the number of static chargers by 23%. This
could lower infrastructure costs and improve resource allo-
cation, supporting a more efficient transport electrification
strategy.

In conclusion, the findings indicate that a combined ap-
proach integrating ERS and static chargers is more cost-
effective and efficient than a static-only strategy. Policy-
makers should consider the potential of ERS in infrastruc-
ture planning to optimize both investment and operational
efficiency.

6.3. Result implication

The implications of these results extend beyond the
Netherlands, as the model provides a flexible framework
adaptable to various regions. By adjusting parameters like
traffic data, adoption rates, or installation costs, it can be
applied to different countries, making it a valuable tool
for global infrastructure planning. This allows policymak-
ers and investors to tailor strategies for maximizing cover-
age and operational savings while minimizing unnecessary
costs.

In practical applications, the model can guide infrastruc-
ture investments by identifying optimal configurations of
ERS and static chargers. It suggests prioritizing ERS along
major freight routes while maintaining static chargers in
lower-density areas to ensure network resilience. This ap-
proach supports the transition to electric freight vehicles
and prepares infrastructure for future technological ad-
vances.

Additionally, the reduced reliance on large batteries sup-
ports global sustainability goals by lowering greenhouse
gas emissions and encouraging renewable energy integra-
tion. The model’s cost analysis helps governments strate-
gically plan for decarbonizing freight transport, aligning
with long-term goals like those in the Paris Agreement,
while reducing operational costs and promoting electric
vehicle adoption.

7. Conclusion and Future Research

This research developed an optimization model for configur-
ing dynamic ERS and static charging infrastructure for heavy-
duty electric trucks, accounting for varying ERS adoption rates.
The integrated approach of combining ERS and static chargers
optimizes costs and coverage, with ERS proving cost-effective
on high-traffic routes by reducing battery size, charging down-
time, and operational costs. Static chargers complement ERS
in lower-traffic regions where ERS installation is less feasible.
The study showed up to 25% savings in infrastructure and op-
erational costs with increased ERS adoption, and a strong cor-
relation between ERS network expansion and reduced static
charger reliance. Traffic density and vehicle routing played cru-
cial roles in determining optimal highway segment electrifica-
tion, with budget constraints guiding deployment strategies.

Policy recommendations highlight reducing ERS installation
costs, promoting ERS-compatible vehicle adoption, and opti-
mizing static charger placement, particularly by extending the
distance between them as ERS infrastructure grows.

Future research should focus on exploring the resilience of
the combined ERS-static charging network. This includes in-
vestigating how the system responds to disruptions such as in-
frastructure failures or extreme weather conditions, and assess-
ing backup systems and alternate routes to ensure continuous
operations. Additionally, the impact of charging station capac-
ity limitations and queuing should be examined. By incorpo-
rating queuing theory, future studies can provide insights into
system performance during peak demand periods and optimize
the placement and number of charging stations. These areas of
research are essential for enhancing the reliability and opera-
tional efficiency of electric freight transport networks.

Appendix A. Model formulation

The model formulation section details the mathematical and
logical structures that define the sets, parameters, variables and
decision variables that are going to be modeled using bi-level
optimization algorithm. Moreover, the detailed optimization
objectives and constraints will be elaborated.

The formulation starts with the sets and indices to represent
the problem, which are listed as follows:

• N : a set of nodes in the network representing set of cities.
The individual city is represented with i ∈ N

• A: a set of links connecting pairs of nodes, representing a
unidirectional highway road with several links. The link is
denoted as (i, j) ∈ A

• Q: a set of traffic demand from origin o ∈ N to destination
d ∈ N , denoted as (o, d)

• V: a set of truck types where v = 1 is trucks with receiver
coils and v = 2 is trucks without the receiver coils. V=
{1, 2}
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• S: a set of potential static charging station locations s ∈ S
that are set every certain distance called segment length,
along the highway link (i, j) ∈ A. Potential static charging
location s is denoted as s ∈ Si, j

The following part enumerates the parameters integral to the
model, each of which holds the input data for the model, shap-
ing the outcomes. The parameters included in the models are:

• dr: Discount rate for future cost [-]

• e f E: Transfer efficiency when charging using ERS [-]

• e f S : Transfer efficiency when charging using a static
charger [-]

• len: Segment length, which is the distance between each
potential static charger location in S. The length is constant
of 10km. [m]

• t: Time spent as vehicle downtime when charging using
static charger to recharge vehicle type 2 battery until full
capacity [hour]

• tollE: Toll price a vehicle has to pay after using ERS
charger [€/km]

• tollS : Toll price a vehicle has to pay when using battery
or when not charging using ERS [€/km]

• vot: Value of travel time which is related to translate the t
in monetary value [€/hour]

• Bv: The battery capacity of vehicle type v ∈ V. This set
consist of B1 being the vehicle with receiver coils for pan-
tograph, and B2 being the vehicle without receiver coils.
[kWh]

• Cb: Battery price of the vehicle [€/kWh]

• Cd: Catenary cost to install ERS on the highway link
[€/km]

• Ce: Charging cost using ERS [€/kWh]

• Csc: Chagring cost when using static charging stations
[€/kWh]

• S c: Installation cost of a static charging station [€/unit]

• veh1: Number of vehicle of type 1. This is calculated after
each iteration of lower level model. [-]

• ywd: Number of trips a vehicle have in a year
[trips/year]

• α: Percentage of type 1 vehicle, which has pantograph
[-]

• β: Truck energy consumption rate while driving on a high-
way [kWh/km]

• γ: Penalty to be paid in case in case if there is not
enough charging station available, which results in unful-
filled charging demand. In order to reach the destination,
the vehicle is forced to reload the battery without an actual
charging station available, calculated as a penalty [-]

• ηmax: Maximum battery level that the vehicle effectively
can use, represented by a percentage of full battery capac-
ity [-]

• ηmin: Minimum battery level that the vehicle need to have,
represented by a percentage of full battery capacity [-]

• µers: Annual operation and maintenance cost rate of the
installed ERS. This value is a percentage of the whole in-
vestment of the installed ERS [-]

• µers use: Maintenance cost for parts reparation and replace-
ment, which is represented by a cost per km per vehicle
using the ERS charger [€/km.v]

• µsc: Maintenance cost for parts reparation and replace-
ment, which is represented by a cost per km per vehicle
using the static charger [€/unit.year]

• µsc use: Maintenance cost for parts reparation and replace-
ment, which is represented by a cost per charger unit per
vehicle using the static charger [€/unit.v]

• τbatt: Operational life of vehicle battery [years]

• τers: Operational life of ERS infrastructure [years]

• τsc: Operational life of static charger [years]

• ϕ: Charging rate of ERS on the vehicle [kWh/km]

The variables used in the optimization model are outlined in
the following part. These variables are essential for defining the
decision-making framework and for solving the optimization
problem effectively. The key variables in the model are:

• bl(o,d)
v,(i, j),s: Positive continuous variable denoting battery

level of each vehicle v that travels from origin o to des-
tination d at location s on link (i, j) [kWh]

• cl(o,d)
v,(i, j),s: Positive continuous variable denoting the power

consumed to recharge trucks of type v ∈ V traveling on
link (i, j) ∈ A for demand (o, d) ∈ Q at the end of segment
s ∈ S i j [kWh]

• Ecl(o,d)
v,(i, j),s: Amount of kWh added to vehicle type v to fin-

ish a trip from origin o to destination d while there is no
charging station at location s on link (i, j) to fulfil this de-
mand. When there are insufficient charging stations to
meet the demand, vehicles are compelled to draw addi-
tional energy, measured in kilowatt-hours (kWh), to ensure
they can reach their destination, calculated as a penalty.

• f (o,d)
v,(i, j): Positive continuous variable denoting the number

of trucks of type v ∈ V traveling on link (i, j) ∈ A for
demand (o, d) ∈ Q
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Apart from the variables written above, the following part
lists the decision variables that represent the choices to deter-
mine the optimal solution. The decision variables in the model
are:

• xs
i j: Binary variable stating 1 if a static charging station

is established at location s in link (i, j), and 0 otherwise
xs

i j ∈ {0, 1}
• yi j: Binary variable stating 1 if ERS is implemented on the

link (i, j) yi j ∈ {0, 1}
• r(o,d)

v,(i, j),s: Binary variable that equals to 1 if trucks type v ∈
V traveling on link (i, j) ∈ A for demand (o, d) ∈ Q use the
static charging to recharge at the end of segment s ∈ S i j,
and 0 otherwise r(o,d)

v,(i, j),s ∈ {0, 1}

• π(o,d)
(i, j) : Binary variable that equals to 1 if vehicles type

1 traveling on link (i, j) for demand (o, d) use ERS for
recharging. The charging activity using ERS happens from
the start until the end of the link. π(o,d)

(i, j) ∈ {0, 1}

• w(o,d)
v,(i, j): Binary variable whether vehicle type v traveling

with origin-destination (o, d) choose to travel through the
link (i, j) to reach the destination wo,d

v,(i, j) ∈ {0, 1}

Appendix A.1. Lower-level optimization model
• Travel time extension cost due to static charging: When

a vehicle uses a static charger, it incurs downtime, cal-
culated by multiplying the number of charging stops, the
time to fully charge, and the value of travel time in euros.
This value includes operational costs, driver wages, and
potential delivery delays.

∑

(o,d)∈Q

∑

v∈V

∑

(i, j)∈A

∑

s∈S
t · vot · r(o,d)

v,(i, j),s · Q(o,d) (A.1)

• Toll cost: Toll costs are incurred on highways, with lower
rates for ERS users due to government subsidies. The toll
cost is calculated by multiplying the toll rate per kilometer
by the highway length and by the proportion of vehicles
using ERS (π(o,d)

(i, j) ) or not using ERS (1 − π(o,d)
(i, j) ).

∑

(o,d)∈Q

∑

(i, j)∈A

{
tollE · π(o,d)

(i, j) · di j · w(o,d)
v,(i, j) · Q(o,d)

+
∑

v∈V

[
tollS ·

(
1 − π(o,d)

(i, j)

)
· di j · w(o,d)

v,(i, j) · Q(o,d)
] } (A.2)

• Charging cost: This refers to the charging expense, vary-
ing between ERS and static chargers. It’s calculated by
multiplying the required energy (kWh) by the respective
rate for ERS or static charging, depending on the method
used.

∑

(o,d)∈Q

∑

(i, j)∈A

∑

s∈S

[
Ce · cl(o,d)

1,(i, j),s · π(o,d)
(i, j) · Q(o,d)+

∑

v∈V

(
Csc · cl(o,d)

v,(i, j),s · r(o,d)
v,(i, j),s · Q(o,d)

) ] (A.3)

• Battery cost: Vehicles with ERS technology have smaller,
less expensive batteries. The battery cost is calculated by
multiplying the price per kWh by the battery capacity for
each vehicle type and the number of vehicles, which is
determined by dividing the total trips by the number of
trips per vehicle per year.

Since the model spans one year, but batteries, static charg-
ers, and ERS infrastructure have different lifespans, the
Equivalent Annual Cost (EAC) is used to account for these
differences, comparing the annualized costs of assets with
varying lifespans.

∑

(o,d)∈Q

∑

(i, j)∈A

∑

v∈V

Cb · Bv · f (o,d)
v,(o, j)

ywd
· annbatt (A.4)

annbatt =
dr

1 − (1 − dr)−τbatt
(A.5)

The costs involved in the total transportation cost can be
combined as lower-level optimization equation, denoted as fol-
lows:

min
r,π

∑

(o,d)∈Q

∑

v∈V

∑

(i, j)∈A

∑

s∈S

(
t · vot · r(o,d)

v,(i, j),s · Q(o,d)
)

+
∑

(o,d)∈Q

∑

v∈V

∑

(i, j)∈A

Cb · Bv · f (o,d)
v,(i, j)

ywd
· annbatt

+
∑

(o,d)∈Q

∑

(i, j)∈A

[
tollE · π(o,d)

(i, j) · di, j · w(o,d)
v,(i, j) · Q(o,d)

+
∑

v∈V
tollS · (1 − π(o,d)

(i, j) · di j · w(o,d)
v,(i, j) · Q(o,d)

+
∑

(o,d)∈Q

∑

(i, j)∈A

∑

s∈S

[
Ce · cl(o,d)

1,(i, j),s · π(o,d)
(i, j) · Q(o,d)

+
∑

v∈V

(
Csc · cl(o,d)

v,(i, j),s · r(o,d)
v,(i, j),s · Q(o,d)

)

(A.6)

The lower-level objective function is subject to the following
constraints:

• Flow conservation constraints: These ensure that the
number of trucks leaving the origin node equals the total
trucks departing from that origin. Similarly, at the destina-
tion, the number of trucks entering equals the total trucks
arriving. For all other nodes, the trucks entering and leav-
ing must balance.

∑

j

∑

v

f (o,d)
v,(i, j)−

∑

j

∑

v

f (o,d)
v,( j,i) =



N(o,d) if i = o
−N(o,d) if i = d
0 otherwise

∀i ∈ N , (o, d) ∈ Q
(A.7)

• Guarantee that the battery level of any vehicle v ∈ V does
not exceed the maximum level and does not drop below
the minimum level of battery, respectively.

bl(o,d)
v,(i, j),s ≤ ηmin · Bv ∀(i, j) ∈ A, s ∈ Si j, (o, d) ∈ Q

(A.8)
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bl(o,d)
v,(i, j),s ≥ ηmax · Bv ∀(i, j) ∈ A, s ∈ Si j, (o, d) ∈ Q

(A.9)

• At the start of the trip, all vehicles begin with their batter-
ies fully charged.

bl(o,d)
v,(o, j),s ≤ Bv ∀(o, j) ∈ A, s ∈ Si j, (o, d) ∈ Q, v ∈ V

(A.10)
cl(o,d)

v,(o, j),s = 0 ∀(o, j) ∈ A, s ∈ Si j, (o, d) ∈ Q, v ∈ V
(A.11)

• Battery level constraint: This ensures that the battery level
of vehicle type v entering segment s of link (i,j) equals the
battery level from the previous segment, minus consump-
tion based on distance, plus any recharging that occurs.

bl(o,d)
v,(i, j),s = bl(o,d)

v,(i, j),s−1 − β · di j · w(o,d)
v,(i, j) + cl(o,d)

v,(i, j),s + Ecl(o,d)
v,(i, j),s

∀(i, j) ∈ A, s ∈ Si j, (o, d) ∈ Q, v ∈ V
(A.12)

• Calculate the recharging quantity for vehicles of type 2,
which can only utilize static charging stations.

cl(o,d)
2,(i, j),s ≤ B2·r(o,d)

2,(i, j),s·xs
i j ∀(i, j) ∈ A, s ∈ Si j, (o, d) ∈ Q

(A.13)

• Calculate the recharging quantity for vehicles of type 1,
which have the option to recharge using both static charg-
ing stations and the ERS.

cl(o,d)
1,(i, j),s ≤ B1 · r(o,d)

1,(i, j),s · xs
i j + ϕ · π(o,d)

(i, j) · len

∀(i, j) ∈ A, s ∈ Si j, (o, d) ∈ Q
(A.14)

• The vehicle flow cannot exceed the total number of traffic
trips, and whenever there is a flow on a link, there must be
at least one vehicle operating on that link.

w(o,d)
v,(i, j) ≤ f (o,d)

v,(i, j) ≤ Q(o,d) · w(o,d)
v,(i, j)

∀(i, j) ∈ A, v ∈ V, (o, d) ∈ Q
(A.15)

• Ensure that the proportion of the fleet consisting of vehi-
cles of type 1 meets or exceeds the specified acceptance
rate. Therefore, limiting the number of vehicle type 2.

f (o,d)
2,(o, j) ≤ (1−α)·

∑
f (o,d)
v,(o, j) ∀(o, j) ∈ A, v ∈ V, (o, d) ∈ Q

(A.16)

• Ensure that recharging can only happen at charging sta-
tions that are open or ERS that are installed, respectively.

π(o,d)
(i, j) ≤ yi j ∀(i, j) ∈ A, (o, d) ∈ Q (A.17)

r(o,d)
v,(i, j),s ≤ xs

i j ∀(i, j) ∈ A, s ∈ Si j, (o, d) ∈ Q (A.18)

• Ensure that the total number of vehicles aligns with the
number of trips for all OD pairs.
∑

f (o,d)
v,(o, j) = Q(o,d) ∀(o, j) ∈ A, v ∈ V, (o, d) ∈ Q

(A.19)

• Ensure that all vehicles depart from the origin node and
reach the destination node.
∑

w(o,d)
v,(i,d) = 1 ∀(i, d) ∈ A, v ∈ V, (o, d) ∈ Q (A.20)

∑
w(o,d)

v,(o,i) = 1 ∀(o, i) ∈ A, v ∈ V, (o, d) ∈ Q (A.21)

• Domain values of the variables and decision variables

r(o,d)
v,(i, j),s, π

(o,d)
(i, j) ,w

(o,d)
v,(i, j) ∈ {0, 1}

∀(i, j) ∈ A, v ∈ V, (o, d) ∈ Q, s ∈ Si j

(A.22)

bl(o,d)
v,(i, j),s, cl(o,d)

v,(i, j),s, Ecl(o,d)
v,(i, j),s, f (o,d)

v,(i, j) ≥ 0

∀(i, j) ∈ A, v ∈ V, (o, d) ∈ Q, s ∈ Si j

(A.23)

Appendix A.2. Upper-level optimization model

In the upper-level model, infrastructure investments are eval-
uated based on both financial costs and societal benefits, such
as user surplus from reduced charging times, battery costs, and
tolls. These cost savings contribute to broader societal gains,
aligning with the government’s goals of promoting sustainabil-
ity and economic growth.

The objective function aims to minimize the total cost of in-
stalling and maintaining ERS and static charging stations across
highway links, incorporating both direct financial costs and so-
cietal benefits.

• ERS installation cost: This is calculated by multiplying
the installation cost per kilometer by the highway length
and the binary variable yi j, which indicates if a segment is
electrified. The cost is amortized using an annuity factor
to account for future expenses and the discount rate.

∑

(i, j)∈A
Cd · di j · yi j · anners (A.24)

anners =
dr

1 − (1 − dr)−τers
(A.25)

• ERS fixed maintenance cost: This annual cost, cover-
ing operations and regular inspections, is a percentage of
the total installation cost and is independent of usage fre-
quency. ∑

(i, j)∈A
Cd · di j · yi j · µers (A.26)

• ERS variable maintenance cost: This cost depends on
usage frequency, with higher use leading to more wear
and tear. It’s calculated by multiplying the maintenance
rate per kilometer by usage frequency and the length of
the electrified highway.
∑

(o,d)∈Q

∑

(i, j)∈A
π(o,d)

(i, j) · µers use · di j · Q(o,d) · w(o,d)
v,(i, j) (A.27)
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• Static charging station installation cost: Calculated by
multiplying the number of stations by the installation cost
per station, adjusted by an annuity factor to account for the
discount rate and lifespan for the annualized cost.

∑

(i, j)∈A

∑

s∈S
S c · xs

(i, j) · annsc (A.28)

annsc =
dr

1 − (1 − dr)−τsc
(A.29)

• Static charger fixed maintenance cost: This annual cost,
covering maintenance and inspections, is a percentage of
the total installation cost of the static chargers.

∑

(i, j)∈A

∑

s∈S
S c · xs

(i, j) · µsc (A.30)

• Static charger variable maintenance cost: This cost is
based on usage frequency, calculated by multiplying the
cost per use by the number of annual uses.

∑

(o,d)∈Q

∑

(i, j)∈A

∑

s∈S

∑

v∈V
r(o,d)

v,(i, j),s · µsc use · Q(o,d) (A.31)

• Penalty cost: A high penalty cost of 1012 is included to en-
sure all charging demand is met and to prevent a shortage
of stations. The decision variable Ecl(o,d)

v,(i, j),s is introduced to
avoid infeasible solutions, heavily penalized in the objec-
tive function to discourage its use. In the optimal solution,
Ecl must remain zero to confirm all demand is met.

∑

(o,d)∈Q

∑

(i, j)∈A

∑

s∈S

∑

v∈V
γ · Ecl(o,d)

v,(i, j),s (A.32)

• Charging time saving with ERS: Installing ERS reduces
vehicle downtime compared to static charging, encourag-
ing electric vehicle adoption and supporting government
decarbonization goals. The cost saving is calculated by
multiplying the number of ERS uses by the time saved
compared to static charging. This saving is included as
a negative term in the objective function, representing a
benefit.

∑

(o,d)∈Q

∑

(i, j)∈A
π(o,d)

(i, j) · Q(o,d) · w(o,d)
v,(i, j) · vot · t · B1

B2
(A.33)

• Battery saving cost: Smaller batteries in ERS-compatible
vehicles lower purchase costs and vehicle weight, improv-
ing operational efficiency and making them more attractive
to companies. For the government, promoting smaller bat-
teries supports sustainability goals by reducing the envi-
ronmental impact, hazardous materials, and waste. These
savings are factored into the objective function as a bene-
fit, amortized using an annuity factor.

veh1 · (B2 − B1) ·Cb
annbatt

(A.34)

• Charging cost saving: ERS charging is cheaper than
static chargers due to government incentives and more ef-
ficient grid use. The savings are calculated by multiplying
the difference in price per kWh between static and ERS
charging by the total kWh required for all vehicles.

cl(o,d)
v,(i, j),s · π(o,d)

(i, j) · Q(o,d) · (Csc −Ce) (A.35)

• Toll cost saving: ERS tolls are lower than regular high-
way tolls due to subsidies. Savings are calculated by mul-
tiplying the toll rate difference by the distance traveled on
ERS-equipped highways, accounting for whether the high-
way is part of the user’s route.

∑

(o,d)∈Q

∑

(i, j)∈A
π(o,d)

(i, j) · (tollS − tollE) ·di j ·w(o,d)
1,(i, j) ·Q(o,d) (A.36)

Combining the components stated above, the upper-level ob-
jective function minimizing the total infrastructure cost can
be written as:

min
x,y

∑

(i, j)∈A
Cd · di j · yi j · (anners + µers)

+
∑

(o,d)∈Q

∑

(i, j)∈A
π(o,d)

(i, j) · µers use · di j · Q(o,d) · w(o,d)
v,(i, j)

+
∑

(i, j)∈A

∑

s∈S
S c · xs

(i, j) · (annsc + µsc)

+
∑

(o,d)∈Q

∑

(i, j)∈A

∑

s∈S

∑

v∈V
r(o,d)

v,(i, j),s · µsc use · Q(o,d)

+
∑

(o,d)∈Q

∑

(i, j)∈A

∑

s∈S

∑

v∈V
γ · Ecl(o,d)

v,(i, j),s

−
∑

(o,d)∈Q

∑

(i, j)∈A
π(o,d)

(i, j) · Q(o,d) · w(o,d)
v,(i, j) · vot · t · B1

B2

− veh1 · (B2 − B1) ·Cb
annbatt

−
∑

(o,d)∈Q

∑

(i, j)∈A
π(o,d)

(i, j) · (tollS − tollE) · di j · w(o,d)
1,(i, j) · Q(o,d)

− cl(o,d)
v,(i, j),s · π(o,d)

(i, j) · Q(o,d) · (Csc −Ce)
(A.37)

The objective function is subject to the following constraints:

• Domain values of the decision variables

xs
i j, yi j ∈ {0, 1} ∀(i, j) ∈ A, s ∈ Si j (A.38)
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Appendix B. Value of parameters used in the model

Parameter Symbol Value Unit

Installation cost Cd 500000 €/km
Electricity charging cost Ce 0.36 €/kWh
Toll rate toll e 0.1 €/km
Fixed maintenance cost µers 2 %
Variable maintenance cost µers use 0.07 €/v.km
Charging efficiency ef e 0.95
Discount rate dr 1.6%
Charging rate ϕ 3 kWh/km
Infrastructure lifetime τers 30 years

Table B.3: Order of electrification and the segment’s traffic density

Parameter Symbol Value Unit

Installation cost Sc 200000 €/km
Electricity charging cost Csc 0.73 €/kWh
Toll rate toll s 0.15 €/km
Fixed maintenance cost µsc 10 %
Variable maintenance cost µsc use 0.5 €/v
Charging efficiency ef s 0.90
Charging time t 1 hour
Infrastructure lifetime τsc 6 years

Table B.4: Order of electrification and the segment’s traffic density

Parameter Symbol Value Unit

Battery cost Cb 80 €/kWh
Value of travel time vot 38 €/hour
Battery capacities battery capacities{80,

220}
kWh

Minimum battery level min battery10 %
Maximum battery level max battery90 %
Energy consumption rate β 1.6 kWh/km
Battery lifespan life time 8 years
Number of operations ywd 250 trips/year

Table B.5: Order of electrification and the segment’s traffic density
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