

Delft University of Technology

Self-supervised Monocular Multi-robot Relative Localization with Efficient Deep Neural
Networks

Li, S.; de Wagter, C.; de Croon, G.C.H.E.

DOI
10.1109/ICRA46639.2022.9812150
Publication date
2022
Document Version
Final published version
Published in
2022 IEEE International Conference on Robotics and Automation, ICRA 2022

Citation (APA)
Li, S., de Wagter, C., & de Croon, G. C. H. E. (2022). Self-supervised Monocular Multi-robot Relative
Localization with Efficient Deep Neural Networks. In G. J. Pappas, & V. Kumar (Eds.), 2022 IEEE
International Conference on Robotics and Automation, ICRA 2022 (pp. 9689-9695). (Proceedings - IEEE
International Conference on Robotics and Automation). https://doi.org/10.1109/ICRA46639.2022.9812150
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICRA46639.2022.9812150
https://doi.org/10.1109/ICRA46639.2022.9812150

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Self-supervised Monocular Multi-robot Relative Localization with
Efficient Deep Neural Networks

Shushuai Li, Christophe De Wagter and Guido C. H. E. de Croon

Abstract— Relative localization is an important ability for
multiple robots to perform cooperative tasks in GPS-denied
environments. This paper presents a novel autonomous po-
sitioning framework for monocular relative localization of
multiple tiny flying robots. This approach does not require any
groundtruth data from external systems or manual labeling.
Instead, the proposed framework is able to label real-world
images with 3D relative positions between robots based on
another onboard relative estimation technology, using ultra-
wideband (UWB). After training in this self-supervised manner,
the proposed deep neural network (DNN) can predict relative
positions of peer robots by purely using a monocular camera.
This deep learning-based visual relative localization is scalable,
distributed, and autonomous. We also built an open-source and
lightweight simulation pipeline by using Blender for 3D render-
ing, which allows synthetic image generation of other robots,
and generalized training of the neural network. The proposed
localization framework is tested on two real-world Crazyflie2
quadrotors by running the DNN on the onboard AIdeck (a
tiny AI chip and monocular camera). All results demonstrate
the effectiveness of the self-supervised multi-robot localization
method. Video: https://youtu.be/7arkaIblPps

I. INTRODUCTION

Relative localization is necessary for a robot to interact
with peer robots, underlying a wide range of distributed and
cooperative tasks, e.g., formation flight [1], cooperative con-
struction [2], flocking behaviour [3], etc. However, most of
the multi-robot systems rely on external devices such as the
global positioning system (GPS) or motion capture systems,
for providing the relative positions between robots. These
systems cannot work in unknown, GPS-denied environments.

Onboard relative localization methods have been recently
proposed for achieving fully autonomous operation of multi-
robot systems. Relative estimation based on sound [4] or
infra red [5] is impractical for nano robots as larger sensor
arrays need to be mounted. Relative localization with com-
munication chips is very suitable for tiny robots thanks to
their light weight. For example, multiple tiny quadrotors can
avoid each other based on the received signal strength (RSS)
[6]. More precise ranging from UWB can be implemented on
the same tiny robots for more accurate relative estimation [7].
However, these methods suffer from band-width limitations,
leading to poor scalability for a larger number of robots.

Vision-based methods are scalable and distributed for
multi-robot localization. These methods can be divided into
two main categories: marker-based traditional methods and
marker-less learning based detection. The methods with

All authors are with Faculty of Aerospace Engineering, Delft University
of Technology, 2629 HS Delft, The Netherlands (e-mail: s.li-6@tudelft.nl;
c.deWagter@tudelft.nl; g.c.h.e.decroon@tudelft.nl)

Fig. 1: Multiple tiny Crazyflie quadrotors localize peer robot 3D
positions with deep neural networks based on self-supervised labels
from an ultra-wideband relative localization method. Top right:
different coordinate frames. Bottom right: a tiny quadrotor, the AI
camera and the UWB module. Bottom left: onboard captured image.

markers consist of relative localization for multiple micro
aerial vehicles (MAVs) with onboard markers [8], [9], collab-
orative localization for a swarm of MAVs relying on salient
external features for sparse reconstruction [10], estimation
of relative pose between two ground robots by observing a
pair of 3D points [11], and two drones tracking same target
cooperatively [12]. The performance of these methods is
easily degraded due to the size of markers (which should be
very small for tiny robots) and the marker pose in the image.
Although there is a swarm of quadrotors based on general
textures by using visual inertial odometry (VIO) [13], the
relative pose will drift with time and they must take off from
known locations. An improvement for VIO-based relative lo-
calization is combining it with the UWB measurement [14].
However, the VIO part requires considerable computation
power, which is impracticable for tiny flying robots.

Learning-based visual localization is marker-independent
and directly robot-oriented. For example, 3D positions of
a drone can be estimated by using depth images and deep
neural networks [15], [16]. DeepURL proposes a deep esti-
mation method for relative localization of underwater vehi-
cles based on keypoint prediction and PnP which, however,
requires each robot’s 3D model information [17]. Another
state-of-the-art work uses YOLOv3-tiny to detect the drones
by training the network with mask images from a static
camera and background subtraction method [18], in which
the detection can be subject to a larger reality gap caused
by more cluttered environments, motion blur and lighting
conditions. In [19], the drone positions can be automatically
annotated with localization sensor UVDAR, which lacks an
efficient solution for deployment on tiny drones.

We also review the related references in computer vi-
sion and robotic grasping. Classical pose networks require

2022 IEEE International Conference on Robotics and Automation (ICRA)
May 23-27, 2022. Philadelphia, PA, USA

978-1-7281-9680-0/22/$31.00 ©2022 IEEE 9689

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
78

-1
-7

28
1-

96
81

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

RA
46

63
9.

20
22

.9
81

21
50

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 12:12:32 UTC from IEEE Xplore. Restrictions apply.

manual annotations such as SSD [20], PoseCNN [21], and
PoseNet [22]. Model-based methods can extract more pose
information without or with less annotations. For example,
EPOS predicts 3D fragment coordinates only with coordinate
annotation, and then uses PnP-RANSAC to get 6D object
pose [23]. Instead of using coordinate annotation, a deep
neural network is designed by detecting 2D projections of
robot joints, combined with PnP and model information to
estimate the camera-to-robot pose from a single image [24].
However, annotations are time-consuming, and 3D model
information is not significant for tiny robots.

Extended visual information can facilitate the 6D pose
estimation, such as RGB-D images for object pose predic-
tion, based on a model [25], or in a self-supervised way by
capturing images from different views [26]. A pair of images
is used for self-supervised depth estimation [27]. These
extended visual sensors are usually heavy, power hungry,
and high-cost for tiny robots compared with a monocular
camera.

This paper proposes a self-supervised framework for
autonomous, scalable and low-cost relative localization of
multiple tiny robots. The proposed network draws from the
object detection research YOLOv3, but is adapted to the
multi-robot localization domain. We do not predict bounding
boxes. Rather, we predict the 2D pixel position of the robot
center and depth from camera to robot. Here we adopt our
previous work of UWB-based relative localization as an aux-
iliary localization method to label the images automatically
[7], to make the training process self-supervised. Notice that
the UWB localization component is soft- and hardware open-
source, and lightweight such that it can be used by other
drones. The contributions of this paper are summarized as:
1) an efficient deep neural network for integrated monocular
multi-robot detection and depth prediction; 2) a novel self-
supervised system framework for data labeling and network
training; 3) a lightweight 3D rendering simulation for multi-
robot image generation with arbitrary pose states; 4) the first
implementation of deep neural networks into light tiny (33
gram) flying robots for visual relative localization; 5) Public
release of all code to the community 1.

The remainder of the paper is organized as follows.
Section II introduces the system definition and the relative
localization problem. Section III gives the detailed design of
the proposed framework and the deep neural network. Sec-
tion IV shows the 3D multi-robot visual rendering pipeline,
and performance of the deep relative localization on synthetic
images. Section V validates the localization efficacy on
real-world experiments, including dataset collection, network
refining, and deep inference onboard an AI camera.

II. PRELIMINARIES

A monocular camera mounted on one robot can observe
n peer robots in a single RGB image. This section gives the
preliminaries of the multi-robot visual system, the auxiliary
onboard relative localization, and the problem definition.

1Code: https://github.com/shushuai3/deepMulti-robot

A. Multi-robot system

For clarity, the spatial model of two robots is considered.
As shown in Fig. 1, we define three coordinates: 1) image
coordinate with yellow axes, where ξp = [xp, yp, 1]

T denotes
pixel positions of peer-robot center in the image with top-
left origin; 2) camera coordinate with blue axes, where
ξc = [xc, yc, zc]

T represents 3D positions of peer robot with
respect to the camera; 3) horizontal coordinate with red axes,
which is an inertial frame fixed to the robot with a vertical z
axis, while x and y axes point forward and left horizontally.

Camera coordinates can be transformed to image coor-
dinates by the intrinsic matrix Mitr of the camera. The
intrinsic parameters of the AIdeck camera is calibrated with
a chessboard, and Rc means the rotation of the camera
coordinate, which are shown as follows:

xcξp =MitrRcξc =

183.73 0 166.90
0 184.12 77.51
0 0 1

0−1 0
0 0 −1
1 0 0

 ξc
(1)

The auxiliary 3D relative estimation is represented in the
horizontal coordinate, denoted as ξh = [xh, yh, zh]

T , which
facilitates real-world 3D multi-robot control. This coordinate
can be transformed into camera coordinate by rotation in xy
sequence

ξc = R(φ, θ)ξh =

 c(θ) 0 s(θ)
s(φ)s(θ) c(φ) −c(θ)s(φ)
−c(φ)s(θ) s(φ) c(θ)c(φ)

 ξh, (2)

where φ and θ denote roll and pitch attitude along axis xc
and yc respectively.

B. Onboard auxiliary localization

This subsection gives a brief review of the UWB-based
relative estimation [7], which is used for generating labels
to teach the deep neural network to learn peer-robot positions
from monocular images.

As can be seen in Fig. 2, the yellow box illustrates the
auxiliary localization. The ith robot takes as inputs the peer
velocity vj , peer yaw rate rj , peer height hj , self velocity vi,
self yaw rate ri, self height hi, and range dij . Afterwards, a
Kalman filter is implemented to estimate the relative position
[xij , yij , hij]

T , which is equal to ξh. More details can be
found in [7].

C. Self-supervised localization problem

Suppose the multi-robot system is equipped with the
aforementioned localization techniques. Each robot captures
the monocular image and obtains the corresponding label ξh
automatically. Given the image Im with a peer robot in it, the
self-supervised deep localization problem is to find a deep
neural network fn(Im) that can predict peer-robot relative
positions Y which satisfies Y = [xp, yp, xc]

T . According to
(1) and (2), the desired relative positions Y can be derived
from automatic label ξh as:

Y = F (R(φ, θ)ξh) = [ξ[0:2]p ;xc]

= [(MitrRcR(φ, θ)ξh/xc)
[0:2];xc]

(3)

9690

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 12:12:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: System framework for deep relative localization of tiny flying robots. Red block shows all onboard sensors. Yellow block is the
onboard auxiliary localization, which outputs the relative position label. This data is transformed to robot pixel position and depth for
training the neural network as shown in the green block. After training, the deep localization can use purely monocular image to estimate
the 3D multi-robot relative pose. In addition, the network architecture consists of convolution layers, Relu activation, and max pooling
layers as shown in the blue block. It also shows the kernel size, input and output channels, and the image size for each step.

where ξ[0:2]p means the first two rows of the vector ξp.
In addition, multiple robots can appear on one monocular
image. Thus, the deep inference function fn(Im) must be
able to predict 3D positions of multiple robots.

III. METHODOLOGY

This section describes the detailed approach to self-
supervised monocular relative localization. The system
framework, network architecture and loss functions are ex-
plained, respectively.

A. Network output and self-supervised dataset

The data flow of the whole system is shown in Fig. 2.
As can be seen, it starts from the auxiliary localization
block, which generates the labeled dataset automatically for
self-supervised training. The dataset consists of monocular
images and the corresponding inter-robot positions Y =
[xp, yp, xc]

T . To detect multiple robots, the network output
fn(Im) is designed as a 28x40 grid map with the predicted
depth channel d̂(i, j) and the confidence channel ĉ(i, j). A
higher dimensional grid map leads to more accurate pixel
localization, which however increases the ambiguity between
detections at neighbor pixels. The grid labels are created by
the following rules:{

c(i, j) = 1, d(i, j) = xc, if(i, j) = (xp/8, yp/8)

c(i, j) = 0, d(i, j) = 0, otherwise
(4)

which means a grid that contains a robot has confidence of 1
and the depth of xc in camera coordinate. Since xp ∈ [0, 320)
and yp ∈ [0, 224), (xp, yp)/8 fits with the network output
size.

In order to obtain a more generalized network, we pretrain
the network on a synthetic dataset. In this dataset, the grid

labels can be created automatically by the masks of robots
during 3D rendering. The synthetic dataset contains more
different backgrounds and arbitrary random attitudes and
positions of the drones.

B. Network architecture

Our deep network is inspired by YOLOv3 network which
can detect multiple small objects with bounding boxes [28].
We modify the YOLOv3 network to solve the localization
problem as described in Section II-C. The proposed network
predicts the pixel position and depth of peer robots as can be
seen in the blue block in Fig. 2, instead of bounding boxes
as the original YOLOv3 network. The feature maps and
layers of the original network are largely reduced, as we only
predict one class of robots. Also, this simplified network fits
with the implementation on a resource-limited tiny AI chip,
the GAP8 microprocessor, which was first demonstrated for
autonomous corridor following in [29].

Specifically, the proposed network is an encoder with
eight main layers including convolution and max pooling.
The activation adopts the Relu function, and there is batch
normalization during the training process. No anchors are
required as it focuses on the center of the object. The output
layers are modified to predict the confidence grid map for
localizing the robot center, and the depth grid map.

C. Loss functions

The loss functions are also different from those in object
detection networks. The total loss of the proposed network
is composed by two individual items:

l = ld + lc (5)

Depth loss ld denotes the mean of square errors between
estimated depth x̂c and real value xc in grid (i, j), which is

9691

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 12:12:32 UTC from IEEE Xplore. Restrictions apply.

represented by

ld = mean(

Nyc∑
i=1

Nxc∑
j=1

c(i, j)(d̂c(i, j)− d(i, j))2) (6)

where c(i, j) is the real confidence of whether there exists
an robot center in grid (i, j) defined in (4). Nyc = 28 and
Nxc = 40 are the sizes of output grid maps in the proposed
network.

Confidence loss item lc is designed by softmax cross
entropy function [28], and the formula is

lc = mean(

Nyc∑
i=1

Nxc∑
j=1

(c− ĉ)2[−c · log(ĉ)− (1− c)log(1− ĉ)])

(7)
where ĉ(i, j) and c(i, j) are the predicted and real confidence
in grid (i, j) defined in (4).

An optional loss item is to distinguish multiple classes of
robots by using the one-hot vectors. lprob demonstrates the
class probability error, written as

lp = mean(

Nyc∑
i=1

Nxc∑
j=1

c(i, j)[−p · log(p̂)− (1− p)log(1− p̂)])

(8)
where p̂(i, j) and p(i, j) are predicted and real probability of
different classes in grid (i, j). This item has been tested to
be effective for robot classification, but not included in this
paper for a better quantization of the network to run in the
microprocessor.

D. Training and post processing

The proposed deep relative localization network is trained
from scratch in the environments of Anaconda and Tensor-
flow2. There are 25 epochs for total training including 2
warm epochs to reduce the primacy effect and avoid the early
over-fitting. Given 800 training images and a batch size of
five images, each epoch has 160 steps. The learning rate
changes adaptively with Adam method. The training can be
either run on GPU or CPU as the network size is very small.

After training the network on synthetic images, the net-
work is refined on the real-world dataset (192 training
images) captured on two Crazyflies. The refined model file is
quantized into int8 format by the GAP8 tool chains. Finally,
it is compiled to a C function that can run on the GAP8
microprocessor.

Based on the prediction ĉ(i, j) and d̂(i, j) from the net-
work fn(Im), the final relative position Y can be calculated
by

[x̂p, ŷp, x̂c]
T = {[8i, 8j, d̂(i, j)]T)|ĉ(i, j) > Tc}. (9)

where Tc denotes a proper confidence threshold, which was
empirically selected as 0.33 for synthetic dataset and 0.23
for real-world tests.

IV. SIMULATION

This section shows the developed simulator for synthetic
image generation, training and testing results of the network
on the synthetic dataset. This simulated environment is not
necessary for an onboard deep neural network, but it can
generate a flexible and rich multi-robot visual dataset easily
for preliminary validation of the DNN. Refining the network
on the simulated dataset saves training time and promises
more generality of the neural network.

A. Simulated pipeline for 3D multi-robot rendering

Fig. 3: The developed 3D rendering simulation environment. It can
render multiple 3D robots in any background images. The attitudes
and positions of robots and camera can be set in python code.

We built a Blender-based 3D rendering environment as
shown in Fig. 3 for generating synthetic images in a multi-
robot domain. The whole pipeline can render images with a
random number of 3D robots in the images with random
attitude and positions. The attitude of the camera, and
lighting conditions can be also set arbitrarily. The operational
relative depth is randomized from 0.2m to 2m to make the
drone feasible in the camera. The background images are
from the COCO dataset, specifically the 2017-Val-images
set including 5000 images. Annotation of robot positions
and depth to the camera can be obtained from the prior
known groundtruth in Blender. The rendered examples can
be seen in Fig. 5. This tool is lightweight, open-source and
easily modified for generating multi-robot images for other
applications.

B. Training on synthetic dataset

(a) Confidence loss (b) Depth loss (meter)

Fig. 4: Loss changes with training steps on synthetic dataset. The
network is trained from scratch on a training dataset with 800
images. Two individual loss items are shown in this figure.

9692

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 12:12:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Testing results of multi-robot localization on synthetic images. The white circle with an outer black circle represents the predicted
robot position in the image, while the value means the estimated robot depth in the camera. Different robot attitude and position with
respect to the camera are demonstrated in these figures, as well as multiple robots in indoor and outdoor environments.

From Fig. 4, we can see all loss items decrease as the
training steps increase. They are stable at about 1000 steps.
Specifically, confidence error tends to converge to zero which
indicates that the deep neural networks encode the robot
pixel position in the output grid maps. The stable depth error
is about 0.05m, which is not approximating zero probably
because different robot attitudes lead to slight depth changes.
However, it is accurate enough for robot position estimation.

C. Testing results on synthetic images

The prediction errors are shown in this subsection. All test-
ing results come from network prediction on the test dataset
which contains 200 new images with different backgrounds
and different poses of peer robots.

From 5, we can see the proposed network can detect
different sizes of robots in outdoor and indoor environments.
In addition, thanks to the underlying (modified) YOLOv3
framework, the network is capable to detect multiple robots
in one image at same time, even though it is only trained on
images with single robot. There are a false-positive detection
on the fourth image and a true-negative detection on the
third image, potentially due to similar background and less
features. These outliers can be rejected by filters in real-
time sequences of images. Note that these five test images
are selected randomly. Hence, the deep network has similar
effectiveness on the other testing images.

Fig. 6: 2D robot position error (left figure) in image and depth error
(right figure) between prediction and groundtruth are shown with
respect to inter-robot distances. This distribution is based on 200
testing images with single robot in each image.

For explicit demonstration, the statistical 3D estimation
error is depicted by Fig. 6. From the left figure, we can see
the robot localization prediction in image has a zero average
pixel error. Most position error is within 20 pixels and with
few outliers caused by a few false detections. The right figure
demonstrates the error distribution of depth predictions,
where mean and medium values are approximating zero.
Both errors get larger as the distance between drones increase

since the appearance is not significantly changed when robots
are far away. However, only close neighbors are considered
for swarm robotics.

Compared to other state-of-the-art research in relative
localization with deep learning, our proposed network is
much smaller and thus efficient for both training (20 minutes
on i7 CPU) and testing. Besides, the drone depth is predicted
simultaneously with the drone detection, while other refer-
ences require the prior-known drone size to estimate robot
depth.

V. EXPERIMENTS

This section presents practical experiments: flight for real-
world dataset collection, refining of the neural network on the
real dataset, porting the Tensorflow-based network to AIdeck
microprocessor, and onboard deep visual localization.

A. Hardware

The multi-robot platform is composed by two Crazyflie2
quadrotors, which are tiny flying robots with only 33 grams
and pocket size (12.5 cm in diameter). Three decks are
required for our work. The first one is AI deck [29], which is
composed by a GAP8 RISC-V processor, a Himax HM01B0
RGB camera, 512 Mbit HyperFlash for storing dataset,
and an ESP32 wifi module for remote streaming. Another
deck is the optical flow sensor for estimating robot velocity
and altitude. The last one is the loco deck with a UWB
module for inter-robot ranging measurements and auxiliary
localization.

The last two decks are used for generating relative position
labels automatically, while only the first deck is used for deep
visual multi-robot localization.

B. Real-world dataset acquisition

Due to the reality gap between synthetic and real images, a
real-world dataset with 240 images is collected for refining
the network. During data collection, one drone flies with
randomly velocities by a remote controller, while another
drone flies with random velocities but in the view of the
camera on the first drone. The example dataset can be found
in following sections.

To get a dataset with two flying tiny drones, a specific
procedure is designed: a quadrotor sends its 2D attitude (roll
and pitch) and UWB-based 3D auxiliary relative position
to the GAP8 chip, which combines these variables with
the monocular image data and stores them in HyperFlash
memory. Afterwards, the GAP8 sends the data from flash

9693

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 12:12:32 UTC from IEEE Xplore. Restrictions apply.

memory to a computer via a Olimex ARM-JTAG-20-10
debugger.

C. Refining and testing on real-world dataset

The training process on the real-world dataset is the same
as that in Section IV.

(a) Confidence loss (b) Depth loss (meter)

Fig. 7: Loss changes of refining the neural network on real-world
dataset. The initial weights are those trained by the synthetic images
in last section. All training configurations remain the same during
refining.

From Fig. 7, we can see all loss items drop down again
within 600 steps. The confidence loss decreases a bit slowly
than that of depth loss, because the appearance changes
largely while drone sizes are easily to learn. The real-
world dataset is divided into 192 training images and 48
testing images with self-supervised labels of relative position,
all obtained from two randomly flying Crazyflies, without
relying on any external systems such as motion capture
system or GPS.

Fig. 8: Testing results of the refined network on randomly selected
testing images. The white circle in images shows the predicted pixel
position of peer robot center. The value on the image means the
depth of the robot from the camera. All testing images are captured
onboard with different flying attitude and velocity of both quadrotor,
captured at different day times.

Fig. 8 shows the localization performance of the refined
neural network. Both training and testing images have three
light conditions (evening, afternoon and morning, respec-
tively). These testing results indicate that the refined network
can localize the real-world flying robots with high accuracy
due to the previous training on a more generalized synthetic
dataset. It also works even with large motion blur, partial
occlusion, and different positions and attitudes of the robots.

Fig. 9 demonstrates the statistical prediction errors in
image coordinate, by comparing the deep visual localization
with the auxiliary UWB localization. The refined network
has even smaller localization and depth prediction errors than
on the synthetic dataset.

Fig. 9: Left: the 2D pixel position error of robot center between deep
inference and UWB localization. Right: the depth error distribution
in camera coordinate. These results are based on testing dataset
with 48 new real-world images with size of 224x320.

D. Onboard deep relative localization with AIdeck

This subsection shows the implementation of the deep
localization network into a low-cost and ultra low-power
AI chip. After quantization from float to int8, the network
can run on the AIdeck microprocessor to predict peer-robot
position onboard a tiny flying robot.

Fig. 10: Comparison of the deep visual relative localization between
running on the laptop and the onboard AI chip. Top left: an example
captured image during flight; bottom left: the experimental flight
of two quadrotors; top middle: confidence channel predicted on
laptop; bottom middle: depth channel predicted on laptop; top
right: confidence channel predicted on AIdeck; bottom right: depth
channel predicted on AIdeck.

Fig. 10 compares the deep inference results on both
laptop (the middle column) and the edge AI chip (the right
column) for the same flight image (top left). The network
outputs on PC multiply the quantization scale calculated by
the GAP8 tools. Two right images on first row shows the
confidence prediction, where both laptop and AIdeck have
similar inference of drone localization in the image. Though
they have slight differences in depth prediction as seen in
the right two images on second row, the depth values with
respect to the robot center area are similar.

VI. CONCLUSIONS

This paper proposes a novel monocular multi-robot rel-
ative localization framework which are self-supervised, au-
tonomous, low-cost, and scalable, without using any external
positioning system. In addition, this paper solves a challeng-
ing problem, i.e., implementation of deep learning into a tiny
AI chip for relative localization of tiny flying robots.

Future work could include real-world dataset collection in
more scenes, and control of a large number of flying robots
with the proposed localization method.

9694

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 12:12:32 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a
swarm of agile micro quadrotors,” Autonomous Robots, vol. 35, no. 4,
pp. 287–300, 2013.

[2] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction of cubic
structures with quadrotor teams,” Proc. Robotics: Science & Systems
VII, 2011.

[3] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and
T. Vicsek, “Optimized flocking of autonomous drones in confined
environments,” Science Robotics, vol. 3, no. 20, 2018.

[4] M. Basiri, F. Schill, D. Floreano, and P. U. Lima, “Audio-based local-
ization for swarms of micro air vehicles,” in 2014 IEEE international
conference on robotics and automation (ICRA). IEEE, 2014, pp.
4729–4734.

[5] J. F. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano, “3-d relative
positioning sensor for indoor flying robots,” Autonomous Robots,
vol. 33, no. 1-2, pp. 5–20, 2012.

[6] K. McGuire, C. De Wagter, K. Tuyls, H. Kappen, and G. C. H. E.
de Croon, “Minimal navigation solution for a swarm of tiny flying
robots to explore an unknown environment,” Science Robotics, vol. 4,
no. 35, 2019.

[7] S. Li, M. Coppola, C. De Wagter, and G. C. H. E. de Croon, “An
autonomous swarm of micro flying robots with range-based relative
localization,” arXiv preprint arXiv:2003.05853, 2020.

[8] M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik,
J. Faigl, G. Loianno, and V. Kumar, “System for deployment of groups
of unmanned micro aerial vehicles in gps-denied environments using
onboard visual relative localization,” Autonomous Robots, vol. 41,
no. 4, pp. 919–944, 2017.

[9] I. Rekleitis, P. Babin, A. DePriest, S. Das, O. Falardeau, O. Dugas,
and P. Giguere, “Experiments in quadrotor formation flying using on-
board relative localization,” in Vision-based Control and Navigation
of Small, Lightweight UAVs Workshop, IROS, 2015.

[10] S. Vemprala and S. Saripalli, “Monocular vision based collaborative
localization for micro aerial vehicle swarms,” in 2018 International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2018,
pp. 315–323.

[11] R. T. Rodrigues, P. Miraldo, D. V. Dimarogonas, and A. P. Aguiar,
“A framework for depth estimation and relative localization of ground
robots using computer vision,” in 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp.
3719–3724.

[12] E. Price, G. Lawless, R. Ludwig, I. Martinovic, H. H. Bülthoff, M. J.
Black, and A. Ahmad, “Deep neural network-based cooperative visual
tracking through multiple micro aerial vehicles,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3193–3200, 2018.

[13] A. Weinstein, A. Cho, G. Loianno, and V. Kumar, “Visual inertial
odometry swarm: An autonomous swarm of vision-based quadrotors,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1801–1807,
2018.

[14] H. Xu, L. Wang, Y. Zhang, K. Qiu, and S. Shen, “Decentralized
visual-inertial-uwb fusion for relative state estimation of aerial swarm,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 8776–8782.

[15] A. Carrio, S. Vemprala, A. Ripoll, S. Saripalli, and P. Campoy,
“Drone detection using depth maps,” in 2018 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE, 2018,
pp. 1034–1037.

[16] T. Hinzmann and R. Siegwart, “Deep uav localization with reference
view rendering,” arXiv preprint arXiv:2008.04619, 2020.

[17] B. Joshi, M. Modasshir, T. Manderson, H. Damron, M. Xanthidis,
A. Q. Li, I. Rekleitis, and G. Dudek, “Deepurl: Deep pose estimation
framework for underwater relative localization,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2020, pp. 1777–1784.

[18] F. Schilling, F. Schiano, and D. Floreano, “Vision-based drone flocking
in outdoor environments,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 2954–2961, 2021.

[19] V. Walter, M. Vrba, and M. Saska, “On training datasets for machine
learning-based visual relative localization of micro-scale uavs,” in
2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 10 674–10 680.

[20] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d:
Making rgb-based 3d detection and 6d pose estimation great again,” in

Proceedings of the IEEE international conference on computer vision,
2017, pp. 1521–1529.

[21] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” arXiv preprint arXiv:1711.00199, 2017.

[22] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp.
2938–2946.

[23] T. Hodan, D. Barath, and J. Matas, “Epos: estimating 6d pose of
objects with symmetries,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp. 11 703–11 712.

[24] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer,
D. Fox, and S. Birchfield, “Camera-to-robot pose estimation from a
single image,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 9426–9432.

[25] K. Wada, E. Sucar, S. James, D. Lenton, and A. J. Davison, “More-
fusion: multi-object reasoning for 6d pose estimation from volumetric
fusion,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 14 540–14 549.

[26] X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and D. Fox,
“Self-supervised 6d object pose estimation for robot manipulation,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 3665–3671.

[27] J. Hur and S. Roth, “Self-supervised monocular scene flow estimation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 7396–7405.

[28] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[29] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza,
and L. Benini, “A 64-mw dnn-based visual navigation engine for
autonomous nano-drones,” IEEE Internet of Things Journal, vol. 6,
no. 5, pp. 8357–8371, 2019.

9695

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 12:12:32 UTC from IEEE Xplore. Restrictions apply.

