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Executive Summary

Aircraft maintenance is inherently unpredictable due to differences in failure rates between components.
This often leads to high variation in incoming component flow, which in case of insufficient and inflexible
capacity results in backlogs of work, longer turnaround time, and the need for high stock levels. There are
two main ways in which a production environment can deal with high variance in demand to obtain the de-
sired service level. The first method accepts the highly variable demand and aims to control the available
resources such as capacity, while the second aims to control the number of incoming components under
fixed conditions. The aim of this research project is to develop two approaches: "Determine the effect of ser-
vice level optimisation in the presence of highly variable demand from an aircraft maintenance supply chain
perspective, by means of a capacity optimisation technique and a multi-criteria decision-making method".

Academically, the focus is on the use of technique and the combination of several research areas and tactical
and operational methods. In order to apply both approaches and test the effect in a real-life situation, a case
study at KLM Engineering & Maintenance is carried out. The scope is limited to a repair shop EWF, which is a
key business entity in the supply chain that repairs high business value components and is having problems
in terms of performance and turnaround time. For KLM, the aim is to determine the possible savings (quanti-
tatively and qualitatively) that can be obtained by implementing either of the two models. The novelty of this
research project is found in the combination of the research areas: service level optimisation in the presence
of highly variable demand from an aircraft maintenance supply chain. Specifically by developing approaches
that eliminate assumptions made on demand characteristics, and translating service level optimisation to
TAT reduction (and eventually stock reduction) rather than focusing on inventory optimisation.

Phase I aims at determining the required and optimal capacity in terms of net manpower per day in the pres-
ence of highly variable inflow, thus creating sufficient flexibility in the process to handle the incoming flow.
To do this, a greedy algorithm is used. The algorithm simulates the path that each component follows in steps
of 1 day for the chosen time interval. The model is initiated at 0 and the capacity is increased until the service
level is sufficient. The greedy algorithm is preferred over other exact techniques such as linear programming,
due to its simplicity, transparency, high computational speed, and flexibility regarding generalisation. The
main risk of a greedy algorithm (obtaining a local optimum rather than a global) is avoided by initiating the
model from 0 and increasing capacity by 1 until the desired performance is obtained. The lowest capacity at
which this occurs is automatically the best.

Results from the case study show that there is a direct relationship between available capacity in terms of
manpower and service level, which is dependent on the distribution of regular/disrupted flow, productivity,
demand scenario, chosen priority procedure, and personnel scheduling. The implementation of disrupted
flow assumes a certain percentage of incoming components will be overdue, regardless of the available ca-
pacity. For the case study based on historical data from 2017 this results in a maximum performance of 83%,
far below the desired 95%. The higher the productivity of technicians, the lower the waste in the repair pro-
cess, implying lower required capacity. Regarding the demand scenario, the most important parameters are
the variance in incoming inflow and the average number of incoming components per day. Increasing (or
decreasing) demand by steps of 10%, results in an almost linear relationship between required capacity and
incoming demand for the case study at KLM. Perhaps surprisingly, the effect of high peaks on the required
capacity is limited, suggesting the process itself contains a certain degree of flexibility. The priority procedure
in many cases is a strategical choice, but has shown to impact the performance significantly. While FIFO is the
most logical procedure, another possibility is ’first-from-buffer’, which provides the illusion of a significantly
higher performance, but yields a major increase in average days overdue (in case of insufficient capacity).
Finally, working multiple shifts, weekends, and/or nights, results in a different relationship between available
capacity and service level, as it effectively yields a lower RPT or longer contracted TAT. In the case study the
scenario of working weekends is tested, resulting in an average increase in performance of 10%, regardless of
the current capacity.

For the case study at hand, the required capacity is computed based on historical inflow data from 2016-2017,
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taking account only regular flow, and the new industry standard of 14 calendar days as contracted TAT. This
yields a required capacity of 19 net fte per day: an increase of 6 fte from the current 13. The effect of highly
variable flow can be seen in the difference in required capacity between the actual situation (19 fte), and a
simulated situation in which the variance is 0 (15 fte). Implementing a capacity of 19 in the shop yields on
average 4 days TAT reduction for the IDG, and 2 days for the VFSG. By means of a component-specific user
function, this is translated to a reduction in required units in stock of 2 for the IDG, and 1 for the VFSG; yield-
ing a total saving of approximately USD 1.2 million.

Phase II focuses on controlling the demand by assisting in in- or outsourcing decision-making, for which the
weighted sum method (WSM) is used. The WSM is simple, transparent, fast, and allows for generalisation
of the model for other applications. The main weakness of the WSM is the inability to incorporate different
units, which is eliminated by normalisation of scales. The three considered criteria are (effect on) service
level, expected days overdue, and direct cost. For each incoming component, the model advises one of two
alternatives: repair the component in-house or outsource it to an outside vendor. To limit subjectivity in de-
termining the level of importance of each of the criteria, 1000 combinations of weights are used to visualise
the effect on the best alternative.

Several parameters were tested to analyse the possible impact on the best alternative: chosen time interval,
available capacity, peak size, and component-repair combination. Using data from the KLM case study, it
can be concluded that the available capacity has the largest impact on the decision to in- or outsource. The
reason for this is that available capacity over a certain time interval affects the entire shop state: buffer-size,
work in stock, shop performance, and shop TAT. For a capacity of 19, the decision support system advises to
repair all incoming components in-house, up to a maximum peak of 24 incoming components in one day.
This supports the conclusion from Phase I that using a capacity of 19 fte creates sufficient flexibility, and thus
robustness, in the process to maintain the desired service level of >95%. For a capacity of 10, or even 15, the
advice is to outsource the first (and following) incoming components, in order to restore a stable and suffi-
cient shop service level. The component-repair combination might impact the decision to in- or outsource
a component, only in case of insufficient capacity and high repair cost. Maximum peak size to be handled
in-house is also highly dependent on the available capacity; for a capacity of 15 or lower, the maximum peak
size is 1. On the other hand, for a capacity of 18 the maximum peak size is 14, and for a capacity of 19 the
maximum peak size is 24.

When testing the MCDM model on a historical inflow scenario, and comparing the results to the actual situ-
ation, the first conclusion is that the model advises to outsource more than five times as many components
as the amount actually outsourced: 10 vs. 52. This results in a USD 1,200,000 increase in repair cost, but
also an increase in service level of 30% on average: from a 60% average with high variation, to a stable 90%.
Making the link to the supply chain by means of TAT and required stock, this translates to an increase in TAT
of 3 days. This is explained by the significantly longer TAT in case of outsourcing, which is five time higher in
the modelled scenario. However, if KLM follows up on contract agreements with outside vendors (maximum
TAT of 28 (current) or 15 (new)), the shop TAT is reduced by 1 and 4 days, respectively. This yields a saving of
1 VFSG in required stock for the analysis between January and March 2017.

Besides the quantitative benefits discussed above, there is one major qualitative benefit for both approaches:
the shop service level is increased significantly, and perhaps more importantly, stable. This yields higher re-
liability of the shop,which extrapolates to the entire supply chain. For the MCDM, an additional benefit is
that by quickly making in- or outsourcing decisions (preferably when the component is still at the customer),
valuable transportation time can be saved by outsourcing directly from the customer.

Main limitations of the models include the inability for flexible capacity and priority procedures for the greedy
algorithm, and the use of only three criteria for the weighted sum method. Regarding the case study, major
limitations are the focus on regular flow and the use of historical distributions which are likely to change in
the future. Besides that, only the top two components are taken into account for supply chain analysis, and
the focus is on reducing the required units in stock. In reality there are other parameters with significant
impact on the supply chain, such as Customer Service Level and cost related to additional lease-in of compo-
nents. Finally, the case study for Phase II only takes into account a limited time interval of 3 months.
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The model is validated by means of expert validation as well as a sensitivity analysis in which three scenarios
are developed with varying weights. All measured parameters remain within 10% upper- and lower-limit of
the modelled scenario, from which it can be concluded that the model is robust.

While a large degree of specialisation is introduced by introduction and analysis of the case study, the method-
ology for both phases allow for generalisation. The main reason for this is that both approaches discussed in
Phase I and II are straightforward, transparent, and relatively simple. Besides that, they consist of ’building
blocks’, which can be adapted and/or expanded depending on the application. Specialisation is introduced
mainly by use of application-specific inputs and assumptions, which therefore allows for significant flexibil-
ity in application. Overall, both approaches are successful in increasing SL and reducing TAT in the presence
of highly variable flow, focusing on applications in an operational business entity in an aircraft maintenance
supply chain that have problems in terms of service level, flexibility, and/or available capacity, with a process
that allows for outsourcing demand, and for which a time step of 1 day is sufficiently accurate.

While this research project introduces two approaches to service level optimisation in the presence of highly
variable demand from an aircraft maintenance supply chain perspective, there are opportunities for further
research. The main focus of additional research should be on increasing complexity to obtain a higher level of
accuracy and possibilities for generalisation of application. Besides that, a combination of both approaches
is to be researched to analyse a possible optimal combination of the two approaches, yielding a strategical
and operational model.
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1
Introduction

For many airlines, aircraft maintenance is considered a necessary evil due to the lack of income while the
aircraft is grounded. For others, aircraft maintenance is part of their core business which they use to increase
their profit, expand their network, and build their brand. Either way, aircraft maintenance plays a significant
role within the aviation industry, its main purpose being the assurance of serviceability and prolonging the
aircraft’s operational life. The level of importance is proportionate to the level of complexity of the aircraft
maintenance industry, which is characterised as heavily regulated, time-driven, and cost-intensive [47]. Air-
craft maintenance consists of a vast amount of -and variation in- repair tasks. Each task requires a unique
combination of skilled personnel, equipment, and material, implying the need for not only a large organisa-
tion, but also an enormous capital investment [33].

Another key characteristic of aircraft maintenance is that it is inherently unpredictable due to differences in
failure rates between components [6]. This, in turn often leads to lumpy or intermittent demand of compo-
nents, which is notoriously difficult to forecast and plan [8][68]. Due to the high level of uncertainty in fore-
casting demand combined with the time-sensitive industry, stock levels of aircraft spare parts are required to
be relatively high. Maintaining a large inventory of spare parts is very costly, both due to the required storage
space, as well as the high cost of aircraft components [37]. Insufficient stock can be caused by 1) unexpected
and unpredictable external factors, 2) poor planning and investment tactics, and 3) high turnaround time
(TAT) in the supply chain, suggesting the components are not serviceable on-time. While causes 1 and 2 are
fairly subjective and difficult to quantify, reducing TAT in any part of the supply chain has a more direct im-
pact on the stock levels and/or customer service level.

Reduction of turnaround time can be achieved in multiple manners throughout the supply chain, for which
a key requirement is meeting the service level. Obtaining and maintaining a high and stable service level
(or performance) is challenging in the aircraft maintenance industry, due to the highly unpredictable and
variable demand. Generally, there are two main ways in which a production environment can deal with high
variance in demand to obtain the desired service level. The first method accepts the highly variable demand
and aims to control the available resources such as capacity, while the second aims to control the number of
incoming components under fixed conditions:

1. Creating sufficient space in the process to handle high inflow peaks

2. Anticipating on- and managing of incoming flow

The first option is to create sufficient space in the process, which can be done in multiple ways such as buffer-
ing, work planning, or personnel scheduling. For this research project however, the scope is limited to the
optimisation of required capacity in the presence of highly variable inflow. Regarding the management of
inflow, the focus is on assisting in in- or outsourcing decision-making in case the current state in the repair
shop has reached critical limits and service level is in danger. Another manner of anticipating on inflow is to
predict demand, however previous research has shown that to be a very complex task in the presence of high
variation [25][46][24].

Combining the above-mentioned focus areas, the aim of this research project can be summarized as follows:
"determine the effect of service level optimisation (both in terms of capacity optimisation and the use of a multi-
criteria decision-making method) in the presence of highly variable demand from an aircraft maintenance
supply chain perspective". In order to discuss both methods, the research as well as the report are divided into
two phases: Phase I covers the capacity optimisation, while Phase II discusses the decision-making method.

1



2 1. Introduction

A key requirement for this research project is the applicability in the aircraft maintenance industry. In or-
der to test the applicability and obtain a better understanding of implementation and results, a case study
is carried out in collaboration with KLM Engineering & Maintenance (E&M), Division Component Services.
The problem described above is one that KLM E&M, as one of the world’s leading Maintenance Repair and
Overhaul (MRO) organisations, is very familiar with. KLM E&M maintains a large pool of spare parts for its
own fleet as well as its external partners and customers, worth EUR 275 million [19]. In order to minimise
stock levels while maximising service level to the customer, KLM’s Component Services (CS) is undergoing
a complete redesign. The main goal of this redesign is to become market leader in Component Availability
for the Boeing 737 and 787, while lowering the turnaround time (TAT) and increasing the service level (SL)
to 95%. Within this project, reducing the TAT is crucial, as it will contribute to an increase in availability and
service level, while simultaneously leading to lower stock levels and thus reduced cost [37].

Regarding the scope of the case study, the focus is on optimising the performance of one unit in the supply
chain: the repair shops. To limit the scope further, shop Hydraulics 1 - workcentre EWF is considered. The
main reason for this is that the inflow of shop EWF is highly variable, which in combination with the long Re-
pair Process Time of the components, has caused significant problems regarding the service level and a large
backlog of work. Besides that, shop EWF contains several high business value components, among which
the Variable Frequency Starter Generator: a key component in the Boeing 787 with expected growth given
the expansion of the contracted 787 fleet. Reducing the buffer-, transport- and waiting-time for components
within this shop can lead to lower cost for investment in stock.

As this project is a collaboration between two parties, both have their own set of requirements and desires,
resulting in different research objectives and -questions. While TU Delft aims at scientific contribution, KLM
E&M is looking for a practical solution to their problem.

Scientific Research Objective & Questions:

"Determine the effect of service level optimisation in the presence of highly variable demand from an air-
craft maintenance supply chain perspective by means of a capacity optimisation technique and multi-criteria
decision-making method".

1. Which solution technique is best to obtain the required shop capacity, taking into account the practical
application requirements?

2. What parameters affect the relationship between capacity and service level, and to what extent?

3. What is the effect of highly variable inflow on the required shop capacity?

4. Which multi-criteria decision-making method is best suited to assist in in- or outsourcing decision-
making, taking into account practical application requirements?

5. What parameters affect the decision to in- or outsource, and to what extent?

6. What validation techniques are best suited to validate the multi-criteria decision-making method and
its results, given the operational nature of the application?

Practical Project Objectives & Questions:

Phase I:"Contribute to a reduction in shop TAT by determining the optimal capacity in terms of manpower in
order to obtain a sufficient and stable shop performance."

Phase II: "Contribute to a reduction in transport- and waiting-time of the component flow by assisting in in- or
outsourcing decision-making using a data-driven decision support model combining tactical and operational
approaches"
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1. In what manner does the available capacity influence the shop performance?

2. What is the required capacity in the shop given the actual historical inflow data?

3. What savings - qualitatively and quantitatively - can be obtained by implementing the optimal shop
capacity?

4. Which parameters have the largest impact on the decision to outsource a component or repair a com-
ponent in-house?

5. What savings - qualitatively and quantitatively - can be obtained by implementing a multi-criteria de-
cision support system?

While there is plenty of literature available on each of the individual research areas, many papers focus on
inventory models and inventory optimisation, rather than service level optimisation in the supply chain.
Novelty of the research project can be found in the combination of the research areas: service level optimisa-
tion in the presence of highly variable demand from an aircraft maintenance supply chain perspective. While
highly variable demand is thoroughly researched, in the majority of studies some type of demand distribution
is assumed [27][8]. This research project aims to develop two approaches that are applicable regardless of the
demand type and thus eliminate assumptions made in existing studies on demand characteristics. Current
literature contains a wide variety of complex linear programming approaches to the capacity optimisation
problem [53][42][18], of which the models and thus application are highly specific. This project focuses on
the development of two approaches that are more generally applicable. Regarding the MCDM, the integration
of an operational model in a tactical decision support model increases the novelty of this research project. In-
stead of focusing on inventory optimisation, this project aims to translate service level optimisation in one
part of the supply chain to TAT reduction in the entire supply chain, which eventually is linked to stock re-
duction by means of a user function. Additional contribution is added by the research and implementation
of two service level optimisation methods applied to a case study at a large MRO organisation.

As mentioned in this chapter, this research project is divided into two phases. The reason for this division is
the difference in objective and approach. The report begins with Chapter 2, in which the theoretical frame-
work and state-of-the-art of both phases of the research areas are presented. After this, Phase I is initiated
with the methodology in Chapter 3, including model description, assumptions and solution techniques. This
is followed by the implementation of this approach in Chapter 4, containing initialisation and pseudo-codes
for the model. Chapter 5 covers the description and context of the case study used for this project. Using the
information from the case study, results for Phase I are presented and discussed in Chapter 6, in which a dis-
tinction is made between results from uncertainty scenarios and the link to the supply chain. After discussing
the results from Phase I, Phase II is initiated with the methodology in Chapter 7. This is followed by the imple-
mentation and results based on the previously discussed case study in Chapters 8 and 9. Chapter 10 covers
the validation of the model. Finally, Chapter 11 discusses the comparison of Phase I and Phase II, as well as
possibilities for generalisation. The report ends with conclusions of the findings and recommendations for
further research in Chapter 12.





2
Theoretical Background and State-of-the-art

This chapter covers the theoretical background of research areas introduced in Chapter 1. The chapter starts
with an introduction on the aircraft maintenance supply chain the effect of demand characteristics in Section
2.1. As discussed before, Phase I of the project focuses on the optimisation of capacity, for which several
solution techniques are discussed in Section 2.2. This is followed by the theoretical background in multi-
criteria decision-making methods in Section 2.3, which will be used in Phase II of the project to assist in
in- or outsourcing decision-making. Finally, Section 2.4 discusses the research gap and contribution of this
research project, as well as project novelty.

2.1. Aircraft Maintenance Supply Chain and the Impact of Demand
A supply chain can be defined as: "a system of organisations, people, activities, information, and resources
involved in moving a product or service from supplier to customer" [21]. For an aircraft maintenance supply
chain, the products can be specified as aircraft components or subparts. The activities are focused on repair
and maintenance of the components, suppliers are the repair stations, and customers are contracted airlines.
In order to optimise the supply chain processes, Tzafestas and Kapsiotis [55] identify three options:

1. Manufacturing facility optimisation: minimise cost from manufacturing only

2. Global supply chain optimisation: assumes direct and cooperative relationship between all stages of
the supply chain

3. Decentralised optimisation: individual optimisation of each of the supply chain entities

Option 1 is not applicable given the specialisation into manufacturing. Option 2 introduces many inter-
dependencies between the different business entities in the supply chain, which has a risk of lower accuracy.
For that reason the focus is on option 3: decentralised optimisation with the aim of linking the results to the
supply chain. Many papers focus on inventory optimisation to minimise cost and maximise service level,
but another interesting business entity in the aircraft maintenance supply chain are the repair shops. Repair
shops can be seen as a specific type of production environment, handling highly complex components, often
with highly variable demand patterns. In many cases this combination leads to a variable output flow, which
affects the variability of the entire supply chain, resulting in either a lower customer service level or a higher
required stock as a buffer.

There are two main (quantitative) performance measures categories in supply chain management that are
used to measure the efficiency and/or effectiveness of the system [11]: cost and (customer) service level. Cost
in the aircraft maintenance supply chain consist of both direct as well as indirect cost. Direct cost include
cost for transport, storage, repair, and personnel. Indirect cost are caused by buy-in and lease-in of addi-
tional stock due to disruptions in the supply chain, such as longer turnaround time or reduced service level.
Customer service level is defined as the percentage of components delivered within contract agreements.
However, service level (or performance) can also be used for individual entities within the supply chain, for
example in the repair shop. As briefly mentioned above, both performance metrics are inter-related; a lower
service level often results in higher cost (either direct or indirect), and vice versa. Other key parameters that
affect the SL and cost are the available resources, productivity, and demand patterns.

Demand, specifically demand characteristics are an important parameter with a large impact on the supply
chain and its performance. Historically, four categories of demand have been identified [6][7][25], based on
modified Williams [61] criteria:

• Smooth demand: little to no variation in interval and quantity

5
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• Intermittent demand: highly sporadic demand, but little variation in quantity

• Erratic demand: large variation in quantity, but little variation in interval

• Lumpy demand: large variation in both interval as well as quantity

The characteristics of each above-mentioned category are based on two parameters: the average inter-demand
interval (ADI) and the coefficient of variation (CV2). ADI determines the average number of time periods be-
tween two successive demands, whereas CV2 is the standard deviation of the demand divided by the average
demand. In order to classify the demand as smooth, intermittent, erratic, or lumpy, boundaries are to be
set. While both Williams [61] as well as Eaves [9] set specific cut-off values, according to Syntetos, Boylan,
and Croston [26] these cut-off values have been chosen based on the particular empirical situation analysed.
Syntetos, Boylan, and Croston have shown the boundaries to be at an ADI value of 1.32, and a CV2 value
of 0.49 [26]. These values were the result of a numerical analysis, where the Mean Squared Error (MSE) was
compared for several forecasting techniques (Single Exponential Smoothing (SES), Croston’s method, and the
Syntetos-Boylan Approximation). The result can be seen in Figure 2.1.

Figure 2.1: Categorisation of Demand Patterns [7]

In case of smooth demand, the level of uncertainty is minimised, yielding a fairly stable inflow of work. How-
ever, when considering erratic or lumpy inflow, the variance in incoming work is large. This results in a rel-
atively high level of uncertainty, which can significantly impact the performance of business entities within
the supply chain. In many instances, capacity is not very flexible, especially in high-complexity environments
such as aircraft maintenance.

As supported by Baghalian et al. [2], demand uncertainty can cause disruptions in the operations in the
supply chain and thus result in the requirement for additional inventory and/or the decrease in service level.
Gupta and Maranas [5] identify two strategies that businesses can position themselves as in order to deal with
demand uncertainty:

1. Adapter: the company does not try to control the demand, but rather focuses on increasing flexibility
in the operation

2. Shaper: the company aims to control the demand in order to limit the risk by means of contract limi-
tations or outsourcing agreements.

Increasing flexibility in the operations can be done in multiple manners such as buffering, work planning,
and personnel scheduling. For this project the focus is on personnel scheduling, more specifically the op-
timisation of shop capacity. Solution techniques for this method are discussed in Section 2.2. Controlling
the incoming demand can be done by either contract limitations on number of incoming components in a
certain time period, or by outsourcing components to maintain a stable in-shop performance. As mentioned
in Chapter 1, the focus is on the latter, of which several solution techniques and theoretical background is
discussed in Section 2.3.
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2.2. Phase I: Optimisation of Shop Capacity
Theoretically, determining the optimal shop capacity can be classified as a production scheduling problem,
in which the optimal capacity is subject to a number of boundary conditions and constraints. In 1954, Edie
[32] was one of the first to discuss the personnel scheduling problem, which over time has increased in com-
plexity due to more flexible working conditions for employees. Beliën and Forcé [22], and Cardoen et al. [10]
classified problems and solutions methods based on the following characteristics:

1. Personnel characteristics
Regarding personnel characteristics, one key difference can be found in full-time or part-time con-
tracts. Another parameter of importance is the skill required to perform the task at hand, in which can
be distinguished between homo- and heterogeneous skill-sets. A final classification can be made in
case a crew (or team) is to be scheduled for a task, rather than an individual.

2. Constraints, performance measures, and flexibility
This characteristic starts with the required coverage to cover the workload, which according to Van den
Bergh et al. [23] is present in more than 75% of all literature. The main objective is to determine the
minimum number of employees to cover the demand. Another well-covered topic is that of flexibility,
on which Topaloglu and Ozkarahan [54] state that organisations use multiple shift times, -lengths, and
process sequences to create additional flexibility in their schedules.

3. Solution method and uncertainty
The vast majority of reviewed papers use some type of mathematical programming, such as linear,
integer, dynamic, or goal programming. Another well-covered solution method are heuristics, espe-
cially constructive and meta-heuristics. One important characteristic that influences the choice for a
solution method is uncertainty. As stated by Van den Bergh et al. [23], the three main categories of
uncertainty are: uncertainty of demand, uncertainty of arrival, and uncertainty of capacity.

4. Area of application
According to Van den Bergh et al. [23], there are six key areas in which the scheduling problem are
prominent: services, transportation, general, manufacturing, retail, and military.

Given the project context and research objectives from Chapter 1, the scope is limited to individual task
scheduling in a production/manufacturing environment. The key objective is to determine the required
manpower to meet the workload, suggesting additional complexities such as flexibility in shifts, contract-
types, and process sequences are not the main priority, but could be added to the model in the future to
enhance accuracy. One important complexity given the problem at hand is the inclusion of uncertainty of
demand and arrival: aircraft maintenance is unpredictable, and so is the required repair time. Several solu-
tion techniques are discussed briefly below in order to provide an overview of the different techniques and
build a foundation which can be used to choose the best suited technique for the application at hand.

2.2.1. Exact Solution Methods
Linear Programming (LP). Linear Programming problems are characterised by the need to make a decision.
This decision is to be made by either minimising or maximising the objective function, which is subject to a
set of linear constraints, as shown by Eq. 2.1.

maximise: cT x

subject to: Ax ≤ b

x ≥ 0

(2.1)

Linear Programming is a powerful technique that is applicable to a large variety of problems. It is a fairly
simple technique that is adaptable and flexible in use and analysing the problem. Cormen et al. [58] states
that a weakness of LP is that the linearity assumption in many cases is unrealistic, often resulting in large dis-
crepancies between model results and the real-life situation. Besides that, LP is a static technique, suggesting
that it does not deal with change in variables well.

Integer Programming (IP). Integer Programming is a subset of linear programming, in which the solution
is limited to integers. The main difference with LP is in the application; some applications require discrete



8 2. Theoretical Background and State-of-the-art

solutions (e.g. the number of men required to cover the workload), while other decisions can be continuous
(e.g. minimisation of cost).

Dynamic Programming (DP). Dynamic programming is a specific type of linear programming, in which the
problem is broken down into simpler sub-problems in order to reduce complexity. These sub-problems are
solved recursively, after which their solutions are combined in order to solve the original problem, as stated
by Cormen et al. [58]. Rather than having one objective function, the decision is broken down into a sequence
of decisions over time, characterised by value functions. These value functions are used to determine the op-
timal values required to obtain the optimal solution. While DP breaks down the problem in smaller, simpler
problems, it decreases computation speed significantly.

Goal Programming (GP). Goal Programming is a solution method in which the alternative is chosen with the
shortest distance (deviation) from a pre-defined goal or target [56] [4] [12]. The main strength of GP is that
it can handle large-scale problems, and translates well to real-world situations. Besides that, GP can be used
for both linear as well as non-linear problems, discrete and continuous variables. Weaknesses include the
inability to determine weights and the relative high complexity. Also, a goal or target must be defined, which
is not always the case in real-world situations.

2.2.2. Heuristics
As stated in Section 2.2.1, exact techniques often result in long computation time, given the fact that they
require all possible solutions to be analysed in order to find the optimum. Heuristics attempt to yield a good
solution, but not necessarily the optimum [44]. This is done by using accessible strategies derived from pre-
vious experience to problems with similar characteristics in order to lower the computational workload an
complexity. In real-life problems, decisions often have to be made in a reasonable time interval, something
that is not always possible when using LP methods. Besides computation time, Martí et al. [44] provides four
other reasons for using heuristics:

1. There is no known method to solve the problem optimally

2. The exact method to solve the problem cannot be used on available hardware

3. The heuristics method provides a higher degree of flexibility compared to the exact method

4. The heuristic method is part of an exact procedure for problem solving

While there are many categories of heuristic methods, there are three main characteristics that a heuristic
model should contain, according to Martí et al. [44]. Firstly, the solution should be obtainable with reasonable
computational effort and time. Besides that, the solution should be near optimal. Finally, the probability of
obtaining a bad solution should be low. Five categories are briefly outlined below.

• Decomposition Methods: break down the problem into sub-problems.

• Inductive Methods: generalize simpler cases to be used in the overall problem.

• Reduction Methods: introduce pre-defined properties as boundaries to the problem, as these properties
are proven to be largely fulfilled by good solution options.

• Constructive Methods: construct a solution from scratch, usually step-by-step, and based on the best
choice at each iteration.

• Local Search Methods: initiated with a feasible solution to the problem and tries to improve this with
every iteration.

Greedy Algorithm. As defined by Cormen et al. [58], a greedy algorithm makes a locally optimal choice at
every step, with the intent of finding the global optimum. Given this definition, the greedy algorithm can be
categorised as each of the five above-mentioned classifications, dependent on the application. For some ap-
plications, the greedy algorithm could lead to the global optimum, meaning it can be categorised as an exact
solution technique.
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The main strength of the greedy algorithm is its computational speed. Moreover, the greedy algorithm has a
relatively low level of complexity, making it easy to use and understand. Rather than the model being a black-
box, the user is able to back-track why certain decisions are made. Besides that, the greedy algorithm can
easily be adapted and expanded. A major weakness of the greedy algorithm is that it will not always lead to a
global optimum. The level of risk regarding the difference between a local and global optimum is dependent
of the type of application.

2.3. Phase II: Decision Support System
The term decision support system (DSS) was first used in literature in 1969 by Ferguson and Jones [48] and
has since led to the more updated definition by Marakas in 2003 [20]: "DSS is an interactive computer-based
system or sub-system to help decision-makers use communications technologies, data, documents, knowl-
edge and/or models to identify and solve problems, complete decision process tasks, and make decisions."
Of the five main categories identified by Power [14] (communications-, data-, document-, knowledge-, and
model-driven), model-driven DSS are mainly used in the aviation industry, as stated by Zhang et al. [41]. To
be more precise, a specific type of model-driven DSS: multi-criteria decision-making (MCDM) tools are used
in the aviation industry with the objective of determining the optimal solution to a certain problem in the
presence of multiple criteria. Belton and Stewart [63] identified three main sub-categories of MCDMs:

1. Value measurement models: "numerical scores are constructed in order to represent the degree to
which one decision option may be preferred to another. Such scores are developed initially for each
individual criterion, and are then synthesized in order to effect aggregation into higher-level prefer-
ence models"

2. Goal, aspiration, or reference models: "desirable or satisfactory levels of achievement are established for
each criterion. The process then seeks to discover options which are closest to achieving these desirable
goals or aspirations";

3. Outranking models: "alternative courses of action are compared pairwise, initially in terms of each
criterion in order to identify the extent to which a preference for one over the other can be asserted.
In aggregating such preference information across all relevant criteria, the model seeks to establish the
strength of evidence favouring selection of one alternative over another"

In the context of this research project, the focus is on the development and implementation of a value mea-
surement model, the choice of which will be elaborated on in Chapter 3. The most relevant value measure-
ment techniques are briefly highlighted below.

Weighted Sum Method (WSM). The WSM was introduced in 1963 by Zadeh [31] and has been prominent in
literature ever since. It is based on weights that are determined by the decision-maker. Each criterion is given
a (non-negative) weight, and each alternative is ranked by computing the weighted sum of the criteria.

Ai =
n∑

j=1
w j ai j (2.2)

Here Ai is WSM score for alternative i , n is the number of alternatives, w j is the relative weight attributed to
criterion C j , and ai j is the performance value of alternative i evaluated in terms of criterion C j . The main
advantage of the WSM is that it is very straightforward and simple to understand and implement. Mela et al.
[29] and Triantaphyllou [16] even argue that WSM should become a standard for evaluation MCDM methods
due to its high performance in single-criteria problems. A major disadvantage of the weighted sum method
is its limitation in application. One limitation of this method is that it requires all data to be expressed in the
same units. Another difficulty is that in case criteria dimensions vary in the order of several magnitudes, nor-
malisation is required. Besides that, Marler and Arora [52] state that is application is limited to optimisation
problems with a maximum of two objective functions. Finally, they state that even though WSM is easy to
use, it only provides a linear approximation of the preference function.

Weighted Product Method (WPM). The WPM is similar to the WSM, in the sense that weights w j and perfor-
mance values ai j of certain criteria C j are determined by the decision-maker. In this case however, instead
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of ranking the alternatives based on the weighted sum, the alternatives are ranked based on the weighted
product. There are two manners in which this can be done. In the first, pair-wise comparison is used, as can
be seen in Eq. 2.3. Here, the relative performance value is computed for alternative AK relative to alternative
AL . In case the result is greater than 1, AK performs better, and in case it is smaller than 1, AL performs better.
The second method, of which the equation can be seen in Eq. 2.4, computes the total performance value of
alternative AK (instead of the relative one) when all criteria are considered simultaneously.

P (
AK

AL
) =

m∏
j=1

(
aK j

aL j
)w j (2.3)

P (AK ) =
m∏

j=1
(aK j )w j (2.4)

As discussed before, WSM is limited to single-dimension problems. A major advantage of WPM is its dimen-
sionlessness; due to the relative nature, any units of measure are eliminated. This allows the WPM to be used
in both single- as well as multi-dimensional MCDM problems. Besides that, Atmojo [50] states that WPM is
more efficient compared to other MCDM methods, which can be largely attributed to its fast computation
speed and simplicity. As stated by Mela et al. [29], a downside of the WPM is that it does not work in case the
criteria values are zero or negative. This is a minor problem, they argue, as this almost never occurs, but it is
something to keep in mind.

Multi-Attribute Value Theory (MAVT). MAVT is a decision support tool for which the foundation was laid
during the late 1960s and early 1970s with works by Fishburn [39] and Keeney [49]. MAVT is a tool that assists
decision-makers in assigning value to a finite and discrete set of alternatives that are to be evaluated in the
case of conflicting objectives. The following steps are to be taken in a MAVT process:

1. Define alternatives

2. Select and define criteria

3. Assess score for each alternative in terms of each criterion

4. Rank the alternatives by applying a value function v

While steps 1-3 are common for most multi-criteria decision models, step 4 is specific for MAVT. As stated
by Von Winterfeldt and Edwards [13], the value function v represents the preferences of the decision-maker.
Value in this context is defined as a measure of preference under certainty. A characteristic of MAVT is that it
is compensatory, meaning that it aggregates the performance across all evaluated criteria.

Let c1, ...,cn be a set of attributes associated with the outcome of the problem, and a1, ..., am be the perfor-
mance value for alternative j . The value function is then equal to v(c1(a j ), ...,cn(a j )), and the alternative with
the maximum v is the best alternative. If m = 1, one can simply choose the alternative with the best score.
However, in the case that m > 1, the value of each of the attributes is to be taken into account in the overall
value. This can be done in two manners: additive and multiplicative. In the additive model, the value func-
tion v is split up into multiple functions vi . The additive model is the simplest form, however it should be
noted that this can only be used if there is additive independence between multiple attributes. The multi-
plicative model is more efficient in its computing speed and allows for interaction between the attributes. A
major disadvantage of this model is its complexity.

MAVT has several advantages, starting with its ability to accommodate both quantitative as well as qualitative
data. Besides that it aids in structuring and understanding a problem, as its user(s) are required to compose
both the value function representing their preference, as well as objectives, criteria, and alternatives. More-
over, the additive form of MAVT is simple to use, and robust, as stated by Keeney and Raiffa [49], and often
used in practice. However, they also state that limiting the model to to its most simple (additive) form means
it becomes unrealistic. This is due to the lack of uncertainty and the assumption of independence of pref-
erences. Another disadvantage of MAVT is its assumption of complete compensability of criteria, meaning
all criteria are expressed in the same unit of measure. For that reason, MAVT is often referred to as a weak
form of decision making. As mentioned before, a major limitation of MAVT is that it can only accommodate
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problems involving a finite and discrete set of alternatives, which is many real-life applications is not the
case. Regarding future work, as stated by Herwijnen [34], no applications of non-additive MAVT are found in
literature, which is necessary to demonstrate its use and application.

Multi-Attribute Utility Theory (MAUT). MAUT is a more complex form of the multi-attribute value theory
discussed previously. Compared to MAVT, Loken [15] states: "it is a more rigorous methodology for how to in-
corporate risk preferences and uncertainty into multi criteria decision support methods". MAUT is an expected
utility theory that aids decision-makers in assigning utility to certain alternatives, considering the decision-
maker’s preferences. This is done by evaluation of the outcomes taking into account multiple attributes, and
finally combining these individual assignments to obtain overall utility measures, as described by Velasquez
[35]. Utility in this context is defined as a measure of preference under uncertainty.In order to determine the
utility, a utility function must be set up. As Mateo [28] states: a utility function is a representation that quan-
tifies the preferences of the decision-maker by assigning a numerical index to varying levels of satisfaction of
a certain criterion. This is done in similar fashion as for MAVT, but instead of using a v to indicate value, u is
used to indicate utility.

One of the main advantages of MAUT is that it can take into account uncertainty. According to Velasquez [35],
many applications of MAUT rely on this strength of dealing with uncertainty, which is often seen in the fields
of economics, finance, and agriculture. Herwijnen on the other hand argues that MAUT is very difficult to ap-
ply and no real-world applications are known. Another advantage of MUAT is that it allows the consideration
of both qualitative as well as quantitative criteria, and is able to include preference of the decision-maker into
the model. This leads to a major disadvantage of MAUT, namely that it requires a lot of input data for it to be
successful, in order to accurately record preferences. Moreover, preferences are difficult to apply precisely,
and often lead to a relatively large level of subjectiveness.

Analytic Hierarchy Process (AHP). The AHP was developed by Saaty in 1980 [59], and has been widely used in
multiple criteria decision-making ever since [35]. The objective of AHP is to identify the preferred alternative,
together with determining a ranking of the alternatives when considering all criteria simultaneously. This is
done by breaking down an unstructured problem into several components, of which hierarchical levels are
arranged, as shown in Figure 2.2.

Figure 2.2: AHP Structure [28]

Here, the goal is the objective, Ai , are the alternatives, and cn are the criteria on which the alternatives are
graded. A characteristic of AHP is the use of pair-wise comparisons, both to determine weights as well as
comparing alternatives. These pair-wise comparisons are represented by the assignment of numerical values
by the decision-maker. The next step is to synthesise these judgments in Eigen vectors in order to determine
priority of variables.

AHP is one of the most well-known MCDM techniques, which implies significant advantages over other
methods. One of these advantages, as stated by Saaty [60] is its ease of use. Besides that, it is scalable and due
to its hierarchical structure, it is easily adjustable to accommodate decision-making problems. While AHP
requires sufficient data to be able to properly perform pair-wise comparison, this is significantly less than the
amount of data required for MAUT. However, AHP also has some disadvantages, starting with problems of
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interdependence between alternatives and criteria. Besides that, Konidari and Mavrakis [40] argue that it can
be subject to inconsistencies in judgment and performs poorly in identifying weaknesses and strengths due
to its pair-wise comparison. Another major criticism has been the fact that AHP is subject to rank reversal,
meaning that alternatives being added later in the process often leads to reversal in the final rankings. A lim-
itation of AHP is that it can only be used in linear decision problems [28], and that it is unable to deal with
uncertainty.

Regardless of the disadvantages of the method, AHP has seen many applications in areas such as resource
management, corporate policy, strategy and risk assessment [35]. According to Subramanian et al. [38], AHP
has been used in supply chain management, more specifically for supplier selection, outsourcing and stock
management, but its use is limited for other applications within the aviation industry.

Analytic Network Process (ANP). The ANP is a more generalised form of the AHP, similar to the relationship
between MAVT and MAUT. Instead of using hierarchies, such as those in AHP, ANP structures objectives, al-
ternatives, and criteria as networks, as stated by Wang in 2012 [57]. The use of networks instead of hierarchies
allows for the prioritisation and clustering of elements. This means that ANP is able to handle dependence
within a cluster (inner dependence), as well as dependence between different clusters (outer dependence),
as stated by Yang et al. [69].

A major advantage of ANP is that it is nonlinear, opposed to AHP which is a linear method. Besides that, ANP
outperforms AHP in terms of handling interdependence and can thus be used in more complex decision-
making problems, including various intangible criteria, as stated by Tsai et al. [64]. Applications of ANP are
mostly found in project selection, optimal scheduling planning, and supply chain management [69].

2.4. Novelty & Research Contribution
Using the information from this chapter discussed in previous section, the main keywords of the research
project are: service level optimisation, capacity optimisation, multi-criteria decision-making, highly variable
demand, and aircraft maintenance supply chain. The first (and main) novelty of this research project is found
in the combination of the above-mentioned research areas. While the individual areas are thoroughly re-
searched and covered in literature, there is a research gap when it comes to the combination of service level
optimisation in the presence of highly variable demand from an aircraft maintenance supply chain perspec-
tive.

Highly variable demand in the aircraft maintenance industry has been researched thoroughly [24][27][57].
A major assumption made in these studies is that the demand is exclusively lumpy, intermittent, erratic, or
smooth. In reality, it often occurs that demand (and thus demand characteristics) vary over time. Another
assumption that is often made in the presence of highly variable demand is the use of certain demand distri-
butions, most commonly the Poisson distribution [30][8]. While in many cases this is the best fit when con-
sidering stochastic modelling, it often results in significant discrepancies compared to the actual situation
and thus does not handle highly variable inflow well. This research project aims to develop two approaches
that are applicable regardless of the demand type and thus eliminate assumptions made in existing studies
on demand characteristics.

Service level optimisation can be applied to almost all problems that in some way measure performance. In
terms of capacity optimisation, many studies focus on exact methods such as linear programming [23]. While
this has shown to incorporate multiple parameters [53][42][18], the models and thus application are highly
specific. Significantly less information is found on the use of simpler techniques such as the greedy algorithm
and the use of it in heuristic solution methods. This research aims to contribute to the body of research per-
formed in this area and develop a model that is more widely applicable.
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Similarly to serivce level optimisation, multi-criteria decision-making models can be applied in practically
any field for a wide variety of problems [20][35]. Walker et al. [65] identified a research gap in terms of inclu-
sion of uncertainty in decision support models, which this research project aims to contribute to by limiting
subjectivity in weighing criteria. Moreover, the integration of an operational model in a tactical decision sup-
port model increases the novelty of this research project as well.

When considering the link between service level optimisation and the (aircraft maintenance) supply chain,
the majority of studies focus on inventory optimisation, which combines both research areas directly [66][36].
These models often handle highly variable inflow poorly due to the assumptions made on demand distribu-
tion. Besides that, they focus primarily on cost minimisation in one part of the supply chain: the warehouse
or storage location. This research project aims to translate service level optimisation in one part of the supply
chain to TAT reduction in the entire supply chain, which eventually is linked to stock reduction by means of
a user function.

Finally, application in the aircraft maintenance industry adds to the novelty, especially in combination with
the case study performed in an operational environment.





3
Methodology Phase I: Optimisation of Shop Capacity

The aim of Phase I is to determine the required and optimal shop capacity in terms of manpower per day
based on historical inflow data in the presence of highly variable demand. Moreover, analysis of multiple
scenarios can provide insights in the effect of capacity on shop performance, and vice versa. Besides that,
a link is to be made to the supply chain, which is used to analyse the results in terms of key parameters in
the supply chain. The chapter is outlined as follows. Section 3.1 covers the choice of solution technique for
this application, followed by the approach taken in Section 3.2. Section 3.3 covers the assumptions and their
possible impact on the solutions, which is followed by the data gathering and reliability of data in Section
3.4. The uncertainty scenarios and approach to yield the desired results are discussed in Sections 3.5 and 3.6.
Finally, the strengths, weaknesses and limitations of the chosen approach are discussed in Section 3.7.

3.1. Choosing a Solution Technique
Phase I is concerned with developing a model that determines the capacity required to obtain a service level
(also called shop performance) of at least 95% based on highly variable demand. Key criteria in choosing a
solution technique for this application are:

• Computational speed

• Simplicity

• Transparency

• Flexibility

All four above-mentioned criteria are of importance for the implementation and use of the model. As stated
in Chapter 2, the scope is limited to value measurement models due to the simplicity compared to both goal-
and outranking models. Besides that, goal models require the existence of an ultimate solution, which in
this case is not present, or unknown. Given the theoretical background on scheduling problems in Chap-
ter 2, the choice is made to use a greedy algorithm, specifically a constructive greedy algorithm. One of the
main reasons for this choice is the computational speed; the method provides fast results. Besides that, the
greedy algorithm is relatively simple. Generally, more complex methods require more (and highly specific)
assumptions, implying the accuracy for a specific application is high, but reducing possibilities for general-
isation. Simpler methods are more easily transferable to other applications. Another key criterion on which
the greedy algorithm performs well is transparency and flexibility. The main limitation for a greedy algorithm
is the risk of yielding a local optimum instead of a global. For this application the optimum is the lowest
possible capacity required to meet the demand (inflow). Since the approach is to start from a capacity of 1
and increase with every iteration, the risk of obtaining a local optimum rather than a global is minimised.
A linear programming technique was also considered, however given the many inter-dependencies between
variables and the reduced level of transparency and simplicity, a greedy algorithm is preferred. Also, as stated
in Chapter 2, the majority of studies focus on implementation of linear programming techniques, while the
use of a greedy algorithm is not as well covered by literature.

3.2. Approach
The approach to solving the above-mentioned problem is as follows: starting with a capacity of 1 and a certain
inflow scenario, the model simulates the path each component follows in steps of 1 day. The time step of 1
day is chosen based on the available information and shop processes; the TAT is measured in days, incoming
components is measured per day, and work is distributed and divided per day. Higher accuracy would there-
fore be unnecessary and require a significant change for both the shop as well as the supply chain processes.

15
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Each component that enters the shop has a certain workscope, which corresponds to an expected Repair
Process Time (RPT). The model assumes three abstract locations: repair, buffer, and overflow buffer. When a
component is in repair, a mechanic is working on the component. The total amount of components in repair
cannot exceed the available capacity. When a component is in the buffer, it is waiting for available capacity
in repair. There is no theoretical limit on buffer-size, however with long Repair Process Times and limited
capacity, the size of the buffer will most likely affect the shop performance. Finally, when a component has
exceeded its maximum buffer time (maximum buffer time = contracted TAT - expected RPT), the component
will be transferred to the overflow buffer. Depending on the priority procedure of choice, components can
either first be taken from the buffer or the overflow buffer in case of available capacity in repair. The model
runs until there are no components left in repair, and the shop performance is computed using Equation 3.1:

P = (1− nover due

ntot al
∗100%) (3.1)

Where,
nover due = number of components in the overflow buffer
ntot al = total number of components in chosen time interval

If the shop performance is lower than 95%, the capacity will be increased by 1, after which the entire process
is repeated. This continues until the performance is 95% or higher, resulting in the required capacity for the
chosen inflow scenario. Figure 3.4 provides a visual representation of the approach in a flowchart. In order to
provide a better overview of key simulation actions performed by the greedy algorithm, a visualisation of two
days is presented in Figures 3.2 and 3.3. The full scenario for FIFO is shown in Appendix A, together with a vi-
sualisation of a different priority procedure: first-from-buffer. The example has the following characteristics:

• Inflow = [1 2 3 2 0]

• Capacity = 2

• Repair time = 3 days

• Contracted TAT = 5 days

• Maximum buffer time = Contracted TAT - Repair time = 2 days

Figure 3.1 shows a schematic representation of the abstract locations used in the greedy algorithm, which
are used in Figures 3.2 until A.2 and Appendix A. Components entering on a given day enter in the inbound.
In case there is no available capacity, the incoming components go directly to the buffer. The location from
which the components are taken in case of available capacity depends on the priority procedure. In case of
FIFO, If the overflow buffer is empty (Figure 3.2, step 2), components enter the repair directly from buffer.
However, if there are components in the overflow buffer, they are given priority since they entered the shop
first (Figure 3.3, step 2). In case of ’first-from-buffer’, components are first taken from the buffer, regardless
of the time spent in overflow, which can be seen in Figure A.2 in the Appendix. It should be noted that when
a component enters one of the abstract locations its count restarts to 0.

Figure 3.1: Schematic Visualisation of Abstract Locations Used in Greedy Algorithm
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Figure 3.2: Visualisation of Key Simulation Actions Greedy Algorithm: Day 4 FIFO

Figure 3.3: Visualisation of Key Simulation Actions Greedy Algorithm: Day 6 FIFO
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Figure 3.4: Flowchart for Greedy Algorithm Determining Required Shop Capacity
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3.3. Assumptions
In order to develop this theoretical model, several assumptions have been made, which are divided into two
categories: 1) assumptions that cause little to no deviation from the actual situation in the shop, and 2) as-
sumptions that could, or will, cause discrepancies compared to the actual situation in the shop.

Assumptions with no or minor impact

1. The process considered starts when entering the repair shop and ends when leaving the repair shop

2. One technician works on one component full-time

3. Operations in the shop are shut down during the weekend

4. There is one shift with an effective duration of 6.5 hours

5. The productivity of the technicians in the shop is 80-85%

6. Every component entering the shop follows the same process

7. All technicians have the required skills to be able to repair and handle all components entering the shop

8. The inflow is unpredictable and includes large variation (independent variable)

Assumptions with possible or major impact

9. There is no physical limit on shop capacity

10. There are three main types of repair (minor, major, overhaul), of which the RPT is taken from historical
distribution

11. There is one central buffer before the component enters the shop

12. Once a component is in repair, it follows a continuous process

13. Distribution regular/disrupted flow and percentage of disrupted flow resulting in overdue is based on
historical data

While assumptions 1 through 8 are relatively straightforward and will result in small to no discrepancies from
the actual situation, for assumptions 9 through 13 their effect should be elaborated on further. Starting with
assumption 9, which is mostly dependent on the test equipment present in the shop. For the development
of the model this limit is not taken into account, but should inflow levels grow significantly, this is an impor-
tant factor to consider. Regarding the repair process time interval described in assumption 10, the historical
data is used to determine the distribution of repair process time for the incoming component based on ac-
tual touch-time. While data is available on the expected touch-time for each of the components, the repair
process time also includes waste in the process, which is not taken into account in the touch-time (further
elaborated on in Section 3.4). For that reason assumption 4 and 5 are used, resulting in 15% waste in the
process to be added onto the touch-time. Since the time step chosen for this model is one full day, adding
15% of waste to each touch-time simply resulted in the addition of one day. Implications on the results could
be over- or under estimation of the required capacity, depending on the level of productivity. If productivity
increases, less capacity is required, and vice versa. The effect of assumptions 11 and 12 in terms of TAT will
be minimal, as the sequence is only theoretically altered, however moving the pre-test to after the buffer is
often not desired as the pre-test is used to determine the workscope and should thus be performed as quickly
as possible. The final assumption, number 13, states the distribution of regular/disrupted flow and its basis
in historical data. Again, historical data is used to determine the distribution between regular and disrupted
flow, and the percentage of components that end up overdue after being disrupted. This distribution is to
be verified by checking it with multiple time intervals. It should be taken into account in the model that this
distribution might change over time and should thus be updated with some frequency. Similar to the implica-
tions discussed for assumption 10, this can result in both over- or under estimation of the required capacity.
Also, if the percentage of overdue from disrupted is decreased, the possibility for meeting the desired service
level is increased, and vice versa.
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3.4. Data Gathering & Reliability
Based on the approach discussed in this chapter, the following inputs are identified:

Inputs

• Historical inflow data in number of components per day

• Distribution of workscope based on historical data in number of days work

• Distribution of overdue from disrupted flow based on historical data in % of total incoming compo-
nents

• Contracted TAT in number of working days

• Priority strategy to determine the sequence of component flow

The historical inflow data provides the model with the incoming components per day for a chosen time in-
terval. The distribution in workscope and overdue from disrupted flow are both taken from historical data
and are thus dependent on the application. The Repair Process Time (RPT) consists of the touch-time (au-
tomatically logged time spent on a component) and the waste in the process. In many cases the waste is
not measured, meaning an assumption is made, often based on productivity. The contracted TAT in working
days as well as the chosen priority strategy are also dependent on the application, and can be either based on
historical, current, or future state. The model outputs are as follows:

Outputs

• Required capacity in number of net fte per day

• Shop performance in %

The reliability of the data-sources is important, since unreliable data can cause significant discrepancies be-
tween the results obtained from the model and reality. When looking at the inflow data, the reliability is quite
high as it is often automatically registered. It is also highly unlikely that a component is not or wrongly en-
tered, as it can otherwise not be handled in sequential steps in the process. The Repair Process Time has a
higher degree of unreliability, due to the assumption of adding waste to the (automatically measured, and
thus highly accurate) touch-time. Regarding the accuracy of the distribution of RPT used to simulate the
workscope of incoming components; the accumulation of assumptions might cause significant discrepan-
cies between simulation and reality. However, these discrepancies can cause skewed distributions to both a
larger or smaller required workscope, averaging out the extremes. Regarding the distribution of overdue from
disrupted, there will be discrepancies compared to the actual situation, as it is dependent on many factors.
The data gathering method is reliable as it obtains data directly from the source.

3.5. Uncertainty Scenarios to Analyse the Relationship between Capacity
and Shop-Performance

As previously discussed, the aim of Phase I is to determine the required capacity in the shop in terms of
manpower given a certain inflow scenario. However, another important objective is to analyse the effect of
capacity on shop performance in different scenarios. In order to see the impact on the on-time performance
or required capacity to obtain the desired service level of > 95%, several uncertainty scenarios are to be tested,
in which the following questions are to be answered:

1. Is there a pattern to be observed for different inflow scenarios?

2. What is the required capacity for each month of inflow in 2016/2017?

3. What is the effect on the performance for varying lengths of historical inflow data?

4. What is the effect on the required capacity for varying inflow growth or decline scenarios?

5. What is the effect on the performance/required capacity of working weekends?
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6. What is the effect of disrupted flow (and overdue due to disrupted) on the performance/required ca-
pacity?

7. Is there any correlation between the maximum- and/or mean inflow and the required capacity?

8. What is the impact of highly variable inflow on the required capacity - compared to inflow with low
variance?

In order to answer questions 1 through 3 the model is adapted by using different (time intervals of) inflow
data, and analysing the results. Regarding question 4, the actual inflow of a certain time interval is identified
as the baseline inflow scenario. This inflow scenario is then reduced or increased by 10% to 50% in steps of
10%, yielding 10 growth or decline scenarios, for each of which the required capacity is computed to maintain
a service level of at least 95%. For question 5, the contracted TAT is increased by the number of weekend days
in the chosen time interval. When considering disrupted flow, the model is to be adapted so that it can take
into account a certain percentage of components that will be overdue, regardless of the capacity. Therefore,
the overdue array E is not initiated as zero, but rather consists of a random distribution of NaN, the amount
equal to the percentage of too late due to disruption out of the total incoming components, based on the his-
torical distribution. Question 7 is aimed at providing insight into the ability of the shop to handle peaks, and
to find a relationship between mean or maximum inflow and the required capacity. Its answer can be found
by plotting the required capacity for several time intervals against the mean and maximum inflow of that time
interval. Finally, question 8 focuses on the impact of high variance in demand. This is done by running the
model for a scenario with 0 variance and analyse the effect on the required capacity.

3.6. Required Shop Capacity and the Effect on the Supply Chain
As stated in Chapter 2, the two key performance indicators for KLM are: 1) Customer Service Level (CSL), and
2) financial risk (or cost). Increasing the shop capacity results in an increase in shop performance, and an
increase in shop performance yields a higher CSL. This in turn results in additional savings by reducing the
required stock levels. The relationship between shop capacity, performance, CSL, and required stock level
is a complex one that is dependent on many conflicting parameters. This research project does not aim to
provide an in-depth analysis on these relationships, rather it uses the dependencies to provide insights on
the possible effects of increasing shop capacity in other parts of the supply chain.

The relationship between shop SL and CSL is relatively straightforward if translated to TAT; a decrease in
shop TAT with x days results in x days reduction in the total supply chain, assuming other parameters remain
unchanged. In order to make the link between shop SL and TAT reduction, the current shop TAT is computed
for the top components and compared to the expected TAT when utilising the required capacity in the shop.
Financial risk consists of several factors, the most important ones being the required number of units in
stock, and the risk of lease-in or buy-in of components. For this research project, the focus is on the first,
as there exist a more direct relationship between the TAT and the required number of units in stock. The
latter introduces significant uncertainty due to possible Aircraft-On-Ground (AOG) notifications and external
factors. In order to determine the relationship between reduction in shop TAT and the required number of
units in stock, a user function is to be developed for the top components, which can be used to compute
possible savings. Summarising, the following steps are to be taken to obtain an indication of possible effects
in the supply chain:

1. Determine required capacity for different time intervals based on historical data

2. Determine relationship between shop SL and shop TAT

3. Compute difference between old and new situation in terms of shop TAT

4. Determine relationship between TAT reduction in the shop and required stock level of top components

5. Compute possible savings
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3.7. Strengths, Weaknesses & Limitations of Approach
As with any approach, there are certain strengths and weaknesses. Starting with the strengths, the most
obvious one is simplicity. The greedy algorithm is straightforward, simple, and easy to use. Besides that, the
number of required inputs is limited and the model handles multiple types of inflow scenarios - not limited to
highly variable demand - by simulation the path of each component per day and adapts the required capacity
based on that specific inflow scenario. Another strength of this approach is that the model can be adapted and
expanded to incorporate higher complexity, for example in case of a different priority procedure in the shop.
The algorithm is thus also fairly flexible and a good foundation to solve similar problems. A characteristic of
this approach, as for many others, is that the output is as good as the input. This can be seen as both a strength
as well as a weakness; a strength since its performance is not limited by the model itself, but also a weakness
as it is highly dependent on the quality of input and the user. Another weakness of this approach is that a
greedy algorithm chooses the alternative that at a specific moment is the most optimal. This means there is a
risk that instead of finding the global optimum, the algorithm outputs a local optimum. For this application
however, the risk of obtaining a local optimum rather than a global optimum is very small. The reason being
that the algorithm runs until the required performance of at least 95% is obtained. The optimum in this
scenario is the lowest capacity for which this will occur, and since the algorithm updates capacity by 1 every
iteration, there is no other optimum than the first one found. Another weakness of the model is that it uses
historical data and distributions as inputs, which can can discrepancies with the actual situation. Therefore
it is important to continuously monitor the inputs and adapt if necessary. A final limitation of the approach
is that the link to the supply chain is limited to the effect on the stock levels, excluding lease-in costs, and the
effect on the customer service level.
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The aim of this chapter is to cover the implementation of the previously discussed methodology and ap-
proach for Phase I of the research project: a greedy algorithm to determine the required capacity in the pres-
ence of highly variable demand. Section 4.1 discusses the initialisation of the model, followed by the greedy
algorithm in Section 4.2. Finally, the verification of the model is discussed in Section 4.3.

4.1. Initialisation
The initialisation of the greedy algorithm aims to provide the correct inputs into the model. As discussed in
Chapter 3, the key inputs are the historical inflow data, contracted TAT, distribution of workscope (also Repair
Process Time (RPT) and overdue from disrupted, and priority procedure. The historical inflow is taken from
an Excel-file, and the contracted TAT is a fixed value based on industry standards. Both the distribution
of workscope and percentage overdue from disrupted are taken from historical data. To implement such a
distribution in the model the following steps are taken:

1. Probability of occurrence p1, p1, ..., pn from historical data

2. Total number of incoming components in time interval ntot al

3. Total expected number of event 1,2, ...,n = p1 ∗ntot al , p2 ∗ntot al , ..., pn ∗ntot al

4. Create vector V length ntot al with correct distribution of events

5. Randomise sequence of events in vector V

6. For each incoming component i , corresponding event is V (i )

The RPT distribution is linked to the incoming component once it enters the shop. The distribution of over-
due from disrupted is only used if disrupted flow is taken into account, and yields an expected number of
components to be overdue regardless of the available capacity. First the total expected number of compo-
nents overdue from disrupted are to be computed using the historical distribution. These occurrences are
then randomly distributed over the total number of incoming components within the chosen time interval.
The final input is the priority procedure, which will require adaptation of the greedy algorithm and shop se-
quence simulation, as shown in Section 4.2.

Finally, several other initial conditions need to be specified. In any case the capacity starts at 0 as the aim is to
update the capacity every iteration until the desired performance of at least 95% is obtained. Other parame-
ters are the number of components in repair, buffer, and overflow; each combination of which corresponds
to a different initial condition for the model. Also, performance has an initial value of 0, which corresponds
to running the model with a capacity of 0.

4.2. Greedy Algorithm
As previously discussed there are two priority procedures to be modeled. Starting with FIFO, the pseudo-
algorithm is shown in Algorithm 1, consisting of three procedures. The first is to increase capacity by one
in case the performance < 95%. The next step is to simulate the shop process for each component per day,
which is shown in lines 5 through 20. After this has been completed the model outputs the capacity and the
performance. This process is repeated until the desired performance is met.
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Algorithm 1 Greedy Algorithm: Determining Required Shop Capacity - FIFO

1: procedure OPTIMISE

2: while performance < 95% do
3: procedure INCREASE CAPACITY

4: capacity = capacity + 1
5: for time = 1:length(time) do
6: for component = 1:sum(inflow) do
7: procedure SIMULATION

8: if component = completed then
9: remain completed

10: if component in repair then
11: time in repair = time in repair + 1
12: if available capacity then
13: component to repair
14: else
15: if component in buffer with time in buffer < (contracted TAT - RPT) then
16: time in buffer = time in buffer + 1
17: else if component in buffer with time in buffer = (contracted TAT - RPT) then
18: component to overflow buffer
19: elsecomponent in overflow buffer
20: time in overflow = time in overflow + 1

21:

22: procedure RETURN

23: performance = (1 - (components in overflow)/(total components)) * 100%
24: capacity

Besides the base model shown in Algorithm 1 in which FIFO is assumed, a second version is developed.
Version 2 of the model includes a different priority procedure in which components are first taken from the
buffer in order to maximise performance, as shown in pseudo-algorithm 2. The first difference is that a new
component is first sent to the buffer (line 14) in order to ensure that new components are not directly sent
to repair. The next step is to check the size of the buffer; if 0 this means that the buffer is empty and the
component can be send to repair from the overflow buffer. If the size of the buffer is not 0, the first component
from the buffer should enter repair. After line 22 both codes are equal.
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Algorithm 2 Greedy Algorithm: Determining Required Shop Capacity - BUFFER FIRST

1: procedure OPTIMISATION

2: while performance < 95% do
3: procedure INCREASE CAPACITY

4: capacity = capacity + 1
5: for time = 1:length(time) do
6: for component = 1:sum(inflow) do
7: procedure SIMULATION

8: if component = completed then
9: remain completed

10: if component in repair then
11: time in repair = time in repair + 1
12: if available capacity then
13: if new component then
14: component to buffer

15: if size buffer = 0 then
16: component to repair
17: else
18: if component in buffer then
19: component to repair
20: else component in overflow
21: time in overflow = time in overflow + 1

22: else
23: if component in buffer with time in buffer < (contracted TAT - RPT) then
24: time in buffer = time in buffer + 1
25: else if component in buffer with time in buffer = (contracted TAT - RPT) then
26: component to overflow buffer
27: else component in overflow buffer
28: time in overflow = time in overflow + 1

29:

30: procedure RETURN

31: performance = (1 - (components in overflow)/(total components)) * 100%
32: capacity
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4.3. Verification of Greedy Algorithm
In order to verify the model several scenarios are developed specifically to test several parts of the code. Crit-
ical parts of the code to be tested are:

• Sequence of for-loops

• If-statements and their sequence

• Computation of buffer-, repair-, and overflow size

• Computation of performance

• Adaptation of capacity when performance is insufficient

The method of verification used for this model is to manually write out scenarios for each time step and
compare the results in each of the arrays (buffer, repair, and overflow) to the ones generated by the model.
Besides that, the overall performance and is checked and compared with the required capacity for SL > 95%.
Table 4.1 shows different scenarios and their purpose.

Table 4.1: Verification Scenarios for the Greedy Optimisation Model

Scenario Inflow Required Repair Process Time [days] Capacity [technicians]
1 [1 2 0 3] 3 2
2 [4 2 0 5 2] 3 3
3 [2 0 0 0 3 1 0 0 0 1] 3 2
4 [8 4 7 2 0 6] 3-7 3,5,8
5 March 2017 3-7 1:20

Scenario 1 is used as a simple test case while developing the model. Scenario 2 and 3 are used to see the effect
of higher inflow, capacity, and intermittent demand on the workings of the model. Scenario 4 introduces a
variable repair time and higher inflow to check the impact of available capacity and repair time on the per-
formance. Finally, scenario 5 uses real inflow data to obtain first rough results on accuracy. For all scenarios
the model showed the same results as the ones obtained by manually going through the process, from which
can be concluded that the model works well and yields the desired results.



5
Case Study

As mentioned in Chapter 1, this research project is a collaboration between TU Delft and KLM Engineering
& Maintenance. Given the methodology and implementation strategy of Phase I, the aim of this chapter is
to provide background information on the specific case on which the methodology will be applied: Shop
EWF. The chapter starts with general information on the shop and processes in Section 5.1. This is followed
by a short inflow analysis to further highlight the specific problem of Shop EWF and by extension the KLM
Component Services supply chain in Section 5.2. Finally, more detailed information is provided and the scope
of the case study is presented in Section 5.3.

5.1. General Shop Information
As discussed previously, the practical scope of this research project is Shop Hydraulics 1 - Workcentre EWF.
This shop is characterised by high business value components; key components being the Integrated Drive
Generator (IDG), Back-Up Generator (BUG), and the Variable Frequency Starter Generator (VFSG). These are
complex components that require highly skilled personnel and have a relatively long Repair Process Time
(RPT) between 2 and 7 days depending on the workscope and type of component. Combining this with the
large variation in inflow and limited capacity in terms of manpower, the main challenge is to obtain and
maintain a stable shop performance and meet the required shop TAT.

Another important characteristic of Shop EWF is that the majority of the inflow comes from customers with
a Time & Material (T&M) contract. For customers from KLM’s Component Services Division, two main types
of contract exist. The first, ’pool’ customers, pay a certain fee for both maintenance of unserviceable com-
ponents as well as the availability of serviceable components. The pool of spare (serviceable) components is
owned and maintained by KLM. The second type of customers pay repair cost per unserviceable component
they want KLM to repair, and thus do not pay for availability, meaning the components are not owned by
KLM. This complicates the situation for KLM, since these components can not easily be outsourced (permis-
sion from the customer is required), and reducing TAT on these components does not yield a direct benefit
for KLM. On the other hand, in general, more profit is made on the repair of T&M components compared to
pool components.

The shop process is visualised in Figure 5.1. Once the component is handled by the Customer Interface Repair
Officer (CIRO), the component enters the shop process, after which it awaits the pre-test. This buffer-time is
relatively short; a component on average spends less than half a day here. The pre-test is used to determine
the workscope and obtain an indication of the RPT. After the pre-test is completed, the component is put in
the main buffer, where it waits until it is picked up by a mechanic to start the repair. This buffer is the ’large’
buffer, where components can spend several days up to weeks, depending on the availability of manpower,
material, and/or other external factors. Once a component is picked up by a mechanic, the process is fairly
continuous up until the repair is completed. After completion, the component undergoes final testing and, in
case of successful results, is signed out by the CIRO. This is where the shop process ends and the responsibility
of the component is handed over to another entity.

Figure 5.1: Visualisation of Shop Process in Shop EWF
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5.2. Analysis of Inflow
Figure 5.2 shows the total number of incoming components per day (excluding weekends when the shop is
closed) for the year 2017. For this year (2017), the total number of incoming components per component type
are shown in Figure 5.3. The top 5 components are responsible for more than 80% of the total inflow.

Figure 5.2: Daily Inflow Shop EWF 2017

Figure 5.3: Total Number of Incoming Components per Type 2017

Using demand characteristics introduced in Chapter 2, the inflow pattern is categorised as smooth. However,
the variation in inflow is relatively high, with several peaks larger than twice the average inflow per day. Vari-
ation in itself is not necessarily a problem if there is sufficient buffer in the process to handle the peaks. In
shop EWF however, the combination of long RPT (Table 5.1) and high inflow peaks result in large backlogs
of work that require a long time to be processed given the limited amount of capacity in terms of manpower
of 13 net fte per day. This is represented in Figure 5.4a, in which the weekly inflow together with the number
of components in stock is shown. No data from the first 20 weeks was available, therefore the ’work in stock’
graph starts in week 21. Similarly, Figure 5.4b shows the weekly inflow and service level over 2017.
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Table 5.1: Historical Repair Process Time Shop EWF 2017

RPT Percentage of Total
0 0
1 17
2 12
3 19
4 17
5 14
6 8
7 6

> 7 5

It can be seen that the number of components in stock - or the backlog - continuously grows until the end
of the year when the inflow is slightly lower. In general, a trend is to be seen: after a period of low inflow
the number of components in stock decreases slightly, and after a period of high inflow the number of com-
ponents in stock increases. Assuming a certain minimal and maximal throughput of the shop this is to be
expected. When looking at the SL, the first observation is that it varies greatly; while theoretically the shop
performance should be stable around 95%, in this case the shop level is highly erratic. Comparing both fig-
ures, if the backlog increases in size, the SL decreases.

Figure 5.4: Weekly Inflow vs. Work in Stock & Weekly Inflow vs. SL 2017 Shop EWF

As mentioned in Chapter 2, one way to control the incoming flow is to use a forecasting model to predict de-
mand. To test whether this is a possibility for Shop EWF, several time series modeling methods and a stochas-
tic method are implemented, of which the methodology and results can be seen in Appendix A. Using the
Mean Average Deviation as an error metric it was found that expecting the average yields minimum deviation
between the actual and predicted inflow. This means the use of a complex forecasting tool is unnecessary.
However, the minimum deviation is still 3 components on an average inflow of 4 components per day. This
suggests that even the best scenario (the average) performs poorly at predicting incoming flow. This supports
the conclusion made in Chapter 2: predicting demand in case of highly variable inflow is very complex and
rarely yields good results.

Table 5.2 shows the current turnaround time for all Shop EWF components for the year 2017. Separate sce-
narios are considered including or excluding disrupted flow, and/or Time & Material components, dependent
on the application.

Table 5.2: Turnaround Time 2017 for Varying Scenarios Shop EWF

Scenario TAT reg + dis TAT reg TAT pool reg + dis TAT pool reg
All components 2017 20 17 16 17
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5.3. Scope of Case Study
As stated above, the scope for this research project is on Shop EWF at KLM Engineering & Maintenance Com-
ponent Services Division. Currently, the net average capacity in the shop is 13 fte per day. The contracted TAT
depends on the contract type, and varies between 15 and 28 calendar days. In the new (CS2.0) situation, KLM
aims to move towards the new industry standard of 14 calendar days. Given the information from Figure 5.3,
the scope is limited to the top 5 components in terms of volume. However, the APU is no longer in repair
at KLM, and the generator engine is excluded due to lack of incoming components from mid-2017 up until
mid-2018. Therefore the scope is limited to the IDG, BUG, and the VFSG, with specific focus on the VFSG due
to the expected growth in terms of Boeing 787 contracts. Regarding the time interval used for the case study,
2017 is considered since it is the latest complete calender year since starting this project. It might be possible
that one full year results in a long computational time for the models, and for that reason the period January
up to and including March 2017 is selected as reference. This period includes high peaks, an average of 4
components per day, and a representative distribution of incoming components, repair types, and regular vs.
disrupted flow.

Key Performance Indicators (KPIs) in the shop are the shop performance (or service level), number of com-
ponents in stock (the buffer), and the distribution regular/disrupted flow. In this research project, part of the
objective is to make a link between the shop performance and the entire supply chain. In the supply chain,
there are two main KPIs: 1) Customer Service Level (CSL), and 2) financial risk. CSL represents the percentage
of on-time deliveries of serviceable components to the customer, and financial risk includes required stock,
investments, and lease-in of components. Both these KPIs benefit from lower turnaround time (TAT). The fo-
cus in this research project is on shop performance, translated to TAT, and financial risk in terms of required
units in stock. Table 5.3 provides additional information regarding in- and outflow of components, that are
of importance for the implementation and obtaining of results based on this case study.

Table 5.3: Key Numbers and Percentages Regarding In- and Outflow of Components Shop EWF

Description Count Percentage
Total Incoming Components 1027 100
Regular Flow 752 73
Disrupted Flow 275 27
Outsourced 38 0.04
Pool Components 403 40
Time & Material Components 624 60
Overdue (total) 360 35
Overdue (disrupted) 206 75



6
Results & Discussion Phase I: Optimisation of Shop Capacity

Based on the scenarios discussed in Chapter 3 there are several results to discuss. The chapter starts with
the results of the uncertainty scenarios in Section 6.1, in which the effect of multiple parameters on the shop
performance are discussed. This is followed by the computation of required capacity in Shop EWF based on
historical data, and the possible savings in the supply chain in Section 6.2.

6.1. Results of Uncertainty Scenarios
Starting with Figure 6.1 which provides a simple relationship between available capacity and performance
in shop EWF based on March 2017 inflow data. It also includes the difference in performance between reg-
ular and disrupted flow. The pattern shown in both plots is that performance increases fairly quickly per
additional unit of capacity. Once performance reaches 90% the graph stagnates and relatively many units of
capacity are required to reach a performance of 100%. When looking at the disrupted flow a similar pattern
can be observed, however due to the fact that 23% (disrupted) * 75% (overdue from disrupted) = 17% of all
components ends up overdue regardless of the level of capacity due to them being disrupted. This immedi-
ately answers question 6: the effect of disrupted flow, more specifically overdue due to disrupted flow, on the
shop performance is significant, and cannot directly be improved by increasing capacity.

Figure 6.1: Capacity vs. Performance Shop EWF Based on March 2017 Inflow: Regular vs. Disrupted Flow

Figure 6.2 shows similar graphs for inflow of several months in 2017 to observe whether or not the pattern
repeats itself. It can be seen that the pattern is similar for every month of inflow, the only difference being
in the steepness of the curve, which is dependent on the number and interval of components coming in, as
indicated in Table 6.1. The May-curve is steepest, and has the lowest average inflow per day, as well as the
lowest maximum inflow per day. October on the other hand has the highest average inflow per day, as well as
the highest inflow peak.
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Figure 6.2: Capacity vs. Performance Shop EWF Based on Inflow from Several Months 2017: Regular Flow

Table 6.1: Average Inflow, Maximum Inflow, CV2, and ADI Values for Varying Inflow Scenarios

Time Interval Avg. Inflow/day Max Inflow CV2 ADI
January 2017 4.3 11 0.46 1.19
March 2017 3.5 8 0.22 1.16

May 2017 2.8 8 0.39 1.8
July 2017 3.6 10 0.32 1.8

October 2017 4.7 17 0.72 1.17

When looking at a longer time interval of three months, in this case from January up to and including March,
again a similar pattern can be observed, as shown in Figure 6.3. The main difference compared to the shorter
time interval can be found in the steepness of the curve for low capacity. This can be attributed to the larger
degree of accumulation in the buffer and overflow buffer in case of low capacity for more incoming compo-
nents, which is the case when considering a longer time interval of historical data. This also results in a higher
capacity required to obtain a shop performance of > 95%, compared to one month of inflow data.

Figure 6.3: Capacity vs. Performance Shop EWF Based on Jan-Mar 2017 Inflow: Regular vs. Disrupted Flow
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Moving on to the second question: "What is the required capacity per month of inflow in 2016 and 2017 - and
can a pattern be distinguished?. Figure 6.4 shows the required capacity per month for a SL of > 95%, both for
2016 and 2017 inflow data. Only regular flow is considered, as with the current distribution of overdue out of
disrupted, the shop performance will not exceed 83%.

Figure 6.4: Required Capacity per Month for SL > 95%, 2016 and 2017 Inflow Data

The first observation based on Figure 6.4 is the difference in required capacity for the year 2016 vs. 2017
shows that there is no clear pattern or seasonality to be observed. Besides that, there is a large variation in
required capacity per month. While in May 2017 the required capacity is only 9, in July of 2016 the required
capacity has doubled to 18. In order to obtain information on the correlation between the required capacity
and key characteristics of the inflow data, Figure 6.5 shows the correlation between the required capacity
and the maximum and mean inflow. Also, Figure 6.4 indicates the required capacity when the demand (or
inflow) has no variation: 4 components enter the shop every (work) day. In that case, the required capacity
is constant at 15 net fte per day, which is significantly lower than the required 18 in case of highly variable
demand. The reason for this is that there are no peaks and/or backlog that needs to be handled, since there is
a relatively constant outflow of the shop. This immediately answers the last question: "What is the impact of
highly variable inflow on the required capacity - compared to the inflow with low variance?": the effect in this
case is 3 fte per day on average.
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Figure 6.5: Correlation between Required Capacity and Key Characteristics of Inflow Data 2017

Another uncertainty scenario to be evaluated is the required capacity in case of growth or decline of inflow,
shown in Figure 6.6. As a baseline the inflow for the time interval between January and March 2017 is taken.
To simulate an increase or decrease in inflow, the number of incoming components is multiplied by a factor
0.5 up until 1.5, and rounded up. The next step is to run the optimisation model and determine the required
capacity for every scenario. It can be observed that the relationship is almost linear.

Figure 6.6: Required Capacity for Multiple Growth Scenarios (Baseline Jan-Mar 2017)

The result of the next scenario can be see in Figure 6.7, in which the effect of working weekends is shown
compared to the current situation. On average, the performance increases by 10% regardless of the capacity.
This is achieved by increasing the contracted TAT from 10 workdays to 14. Similar effects can thus be expected
if the repair process time is reduced, or productivity is increased.
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Figure 6.7: Effect of Working Weekends for Jan-Mar 2017 Inflow

Finally, Figure 6.8 shows the capacity versus performance for two different priority procedures in the shop.
The blue curve indicates the First-In-First-Out (FIFO) procedure, while the red curve indicates performance
in case components are first taken from buffer, regardless of when they entered the shop. As shown in Figure
6.8, the difference in performance is significant. The angle of inclination for the red curve is very large up
until a capacity of 12, after which it slowly stagnates and crosses the blue curve at a capacity of 17. Especially
in the region of low capacity the red curve is almost opposite to the blue (FIFO) curve. This can be explained
by the fact that the theoretical performance is higher as less components enter the overflow buffer, since they
are taken from the regular buffer first. However, this yields a significant increase in average days overdue, up
to 70 days in case of the Jan-Mar 2017 inflow scenario.

Figure 6.8: Effect of Different Priority Procedures on Performance, Inflow Jan-Mar 2017
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6.2. Link to Supply Chain
Now that the relationship between shop capacity and performance has been established, this section is con-
cerned with determining the optimal shop capacity by researching the link between shop performance and
required stock in the supply chain. As described in Chapter 3, the following steps are to be taken:

1. Determine required capacity for different time intervals based on historical data

2. Determine relationship between shop SL and shop TAT

3. Compute difference between old and new situation in terms of shop TAT

4. Determine relationship between TAT reduction in the shop and required stock level of top components
in shop EWF

5. Compute possible savings

Starting with step 1; the determination of required capacity for multiple time intervals, which is already initi-
ated in Phase I as it is part of the uncertainty scenarios that are researched. Based on the available data, the
following time intervals are analysed: 1, 3, 6, 12, and 24 months. The result for required capacity per month
can be seen in Figure 6.4, from which the maximum required capacity is 18 in July 2016. Table 6.2 shows ca-
pacity and corresponding service level for 1, 3, 6, 12, and 24 month intervals taken between January 2016 and
December 2017. It should be noted that for each of the time intervals, the worst case scenario is represented
in Table 6.2.

Table 6.2: Required Capacity for Varying Time Intervals

Time Interval Required Capacity for SL > 95% Service Level [%]
1 month 18 99.4

17 94.5
3 months 19 98.7

18 74.2
6 months 19 99.2

18 59.7
12 months 19 96.6

18 89.2
24 months 19 96.6

18 76.3

It can be concluded that, when considering 3, 6, 12, or 24 month time intervals, the required capacity is
19. The difference compared to the required capacity in case of 1 month intervals can be attributed to the
accumulation of components that occurs when considering a longer period of inflow. Another important
observation is the difference in performance in case of reducing the capacity by 1. For every time interval
(except for 1 month) the performance drops significantly, in the worst case with more than 30%. This implies
that the optimal capacity is at least the required capacity of 19. Given the current net capacity in the shop of
13, this means an additional 6 fte is required to meet the new desired capacity. With an average yearly cost
per fte of USD 60,000, this sums up to a yearly cost of USD 360,000.

The next step is to provide insight on effects in the supply chain in case the net capacity is increased to 19.
While the consequences in the supply chain are indirect, they can accumulate to have a significant impact.
The benefits are mostly caused by a high, stable, and reliable shop performance, which leads to shorter shop
(and thus end-to-end) TAT. For most components in the KLM pool, the number of required units in the supply
chain is partially dependent on the end-to-end TAT. Other parameters are:

• Number of contracted aircraft

• Mean Time Between Removal (MTBR)

• QPA: number of units per aircraft
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• Flight Hours (FH): number of flight hours in the pool

• TAT: assumed end-to-end TAT

• Units in stock

The expected service level is based upon the above-mentioned parameters using the relationship in Equation
6.1, based on the Poisson distribution. Using this equation and the requirement of an expected SL of >95%,
the required number of units in stock can be determined for varying TAT.

SL =
x∑

k=0

e−λλx

k !
(6.1)

Where,
x = units in stock-1
λ = number in pipeline = TAT(days) * expected removals
expected removals = F H∗QPA

MT BR

As shown in Chapter 5, the top 3 components (IDG, BUG, VFSG) are responsible for 80% of the inflow. How-
ever, the BUG is a Time & Material component only, meaning it does not have any relation to the component
pool and thus stock levels of KLM E&M. Therefore, the scope is limited to the IDG and the VFSG. The result
can be seen in Figure 6.9, indicating that with an R2 value > 0.95, linearity can be assumed.

Figure 6.9: Relationship between end-to-end TAT and Required number of IDGs and VFSGs

This results in Equation 6.2 and 6.3 for the IDG and VFSG, respectively. Here, y is the number of required
units in the supply chain, and x is the end-to-end TAT in days.

y = 0.7x +6 (6.2)

y = 0.5x +2.5 (6.3)

In order to determine possible savings in stock levels, the difference in shop TAT is computed between the
current and new situation. Shop data is used from SAP that indicates the average shop TAT per component
type - for regular flow and pool components only, excluding outliers. The new expected shop TAT is 14 days,
as this is the new shop standard that the greedy optimisation algorithm assumes. This results in an average
saving of 2 days for the VFSG, and 4 days for the IDG, as shown in Table 6.3. Using Equations 6.2 and 6.3,
this results in savings of 2 IDGs, and 1 VFSG. Given the list price of both components (USD 315,853 and USD
502,380), this results in a total expected saving of USD 1,134,086.

Table 6.3: Savings in Required Stock per Component Type in TAT and USD

Component Type Current Shop TAT Expected Shop TAT Savings [days] Savings [ Units]
IDG 18 14 4 2

VFSG 16 14 2 1
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6.3. Conclusions Phase I
This section aims to summarise and discuss the results stated in this chapter. Section 6.3.1 covers the results
from the uncertainty scenarios and effect of certain parameters on the relationship between available capac-
ity and shop performance. Section 6.3.2 contains the conclusion and discussion of results with regards to the
supply chain.

6.3.1. Conclusions: Uncertainty Scenarios
Based on the results shown in the previous section, several conclusions can be drawn. First of all, a clear
pattern can be identified between the available capacity and shop performance, regardless of the considered
time interval. The curve starts with a small angle of inclination. This is caused by the high degree of accumu-
lation that occurs if the capacity is far below the required capacity; increasing capacity by one makes little to
no difference. The level of accumulation is also dependent on the size of the considered time interval, and/or
the amount of incoming components within that interval. Once the capacity reaches a certain point, the
net effect of increasing capacity by one results in significant increases in performance. When performance
is close to the 95 mark the curve stagnates, meaning that a large amount of additional capacity is required
to reach a small increase in performance. The level of stagnation is related to the amount and size of high
inflow peaks, which disrupt the balance in the process. While the above-described pattern is present for the
First-In-First-Out principle, a different pattern is observed for other priority scenarios. In case of ’First from
Buffer’, the curve behaves almost opposite when considering low capacity. This is explained by the fact that
there is still a large amount of accumulation of components in the overflow buffer, but less components enter
the overflow buffer since they are immediately taken from the regular buffer. Even though it yields a higher
performance, it also results in components staying in the overflow buffer for a significant amount of time;
in case of Jan-Mar 2017 inflow up to 70 days). This immediately highlights an issue in the current KPI mea-
surement, in which focus is on shop performance, rather than on average days overdue. In many situations
it might be beneficial to have a stable procedure in which every component is 1 day overdue compared to a
highly erratic procedure resulting in a higher shop performance, but a very high average in days overdue.

Another conclusion to be drawn is that the impact of the percentage of overdue due to disrupted on the shop
performance, is large. If no progress is made in the on-time performance of components in the disrupted
flow, the desired SL of > 95% will not be met. When looking at the required capacity per month for both 2016
and 2017, it can be seen that there is a large variation in required capacity per month. As shown from the
correlation plots, the required capacity is mostly dependent on the average inflow per day. Besides that, no
pattern or seasonality can be seen in the required capacity when comparing 2016 and 2017, which was also
concluded based on inflow patterns and seasonality analysis in Chapter 5. The effect of highly variable inflow
is significant: when considering constant inflow of 4 components per day, the required capacity is equal to 15
instead of the 18 in case of actual inflow (considered monthly). Regarding the effect of growth on the required
capacity, it can be concluded that there exists a fairly linear relationship between the two. Finally, in case of
working weekends (corresponding to an increase of 4 days in contracted TAT), the performance is increased
by approximately 10%. Similar effects are expected if process time is decreased, which can be obtained by
removing waste from the process and/or eliminating waiting/buffer time.

6.3.2. Conclusions: Required Capacity and Effect on Supply Chain
Regarding the required capacity based on historical inflow data from 2016 up to and including 2017, the min-
imal required capacity is 19 net fte per day, yielding a SL > 95%. This only assumes regular flow for a period
of more than 3 months, as it has been established that a large part of the disrupted flow is overdue regardless
of the available capacity in the shop. By using the assumed shop TAT of 14 calender days and comparing
this to the actual shop TAT in shop EWF over 2017 per component type, it was shown that for the VFSG the
shop TAT is reduced by 2 days, and for the IDG by 4 days. Using a linear approximation of the user func-
tion based on KLM data, it was found that this results in savings of 1 VFSG and 2 IDGs in the supply chain,
summing up to a total saving of approximately USD 1.2 million. While this is quite significant, it should be
noted that there are also additional cost for adding capacity, a total of 6 additional fte’s resulting in a yearly
cost of approximately USD 360,000. This case study only focuses on the top 2 components. In reality, shop
EWF maintains a larger pool of components, for which similar computations can be made, expected to yield
similar results and thus additional profit. Besides that, the scope is limited to focus only on required stock,
but another important source for additional cost is the leasing of components which occurs in case of no
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available serviceable components in the pool. Due to complexity in linking shop TAT to lease-in, this param-
eter was not taken into account, however it is expected that with a higher and mostly stable shop TAT, the
number of lease-ins will decrease. Further research should be done to analyse possible savings. Finally, it is
expected that KLM’s Component Services Division will grow significantly in the coming years. For that reason
it is important to strategically upscale the available capacity in the shop to be able to handle the increase in
incoming components. This also affects the required stock levels and thus investment to be made in the next
years.
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Methodology Phase II: Decision Support System

In Phase II, the operational parameters such as capacity are treated as a given, and the inflow (or demand)
is to be controlled. The aim of this chapter is to discuss the methodology used to apply a MCDM method to
make a decision on which components can enter the shop with the aim of ob- and maintaining a sufficient
service level. The objective of the decision support model is to be able to make quick decisions based on data
rather than human experience. In the context of the case at KLM E&M, this translates to choosing between
two alternatives: repair a component in-house, or outsource it to another repair station. This decision is
made based on several criteria, on which both alternatives are graded. The manner in which alternatives are
graded and/or chosen, depend on the type of multi-criteria decision method used, as described in Chapter
2. The chapter starts with the argumentation behind the chosen MCDM in Section 7.1. This is followed by
the approach taken, in which the determination of the three criteria is explained in Section 7.2. Section 7.3
describes the approach taken in terms of scaling and grading of each of the alternatives. This is followed
by the assumptions and data gathering and reliability in Sections 7.4 and 7.5. The solution techniques and
approach are discussed in Sections 7.6 and 7.7. Finally, the strengths, weaknesses, and limitations of the
methodology are covered in Section 7.8.

7.1. Choosing a Multi-Criteria Decision-Making Method
In order to choose between MCDM models, several factors are to be taken into account: the desired objective
of the model, problem characteristics, and user requirements. The objective is discussed previously and can
be summarised as follows: "Choosing the best of two alternatives for each incoming component, taking into
account multiple criteria in order to reduce TAT and obtain a high (>95%) and stable shop service level". When
looking at the problem at hand, it has the following characteristics:

• Multi-objective: maximise service level, while minimising cost

• Finite and limited number of alternatives and criteria

• Includes uncertainty

There are several user requirements: transparency, simplicity, and objectivity. The interpretation of these re-
quirements differs depending on perspective. Academically, the desire is to be able to generalise results and
use the discussed methodology and implementation for other applications with similar characteristics. In
general, higher complexity requires more assumptions and thus makes the technique more specific for a cer-
tain application. For that reason, in this case simplicity is desired to avoid limitations in use. If the foundation
is relatively simple, the model can be tuned for specific applications by expanding the base model. Also, if
a model is built specifically for one application, accuracy and possibilities for use in real-life applications is
reduced due to the large amount of required assumptions. When looking at the practical application, trans-
parency is critical. Two other requirements are ease-of-use and simplicity. Since the decision support tool
will be used by several employees in different layers of the organisation, it is of importance that it can easily
be understood why a certain alternative is to be chosen. This not only gains trust of the employees, it also
provides insights in possible fundamental issues and creates opportunities for continuous improvement of
both the model as well as the process. Finally, it is important that the model has a high degree of objectivity.
In the current situation the decision to outsource is based solely on experience or opinion by one, or a hand-
ful of employees. While these people posses a large amount of information on the dedicated process, they
are often unable to look at the overall picture. Therefore, it is important to reduce the subjectivity in grading
the alternatives. Taking into account the above-mentioned factors, the choice is made to prioritise simplicity
and transparency and choose the Weighted Sum Method.
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7.2. Approach
As stated in earlier in this chapter, there are two alternatives to choose from: repair a component in-house,
or outsource it to an outside repair station. The two main KPIs are used as criteria, in which service level
is divided into in-shop service level, and expected days overdue. This results in the following three criteria,
on which both alternatives will be graded: 1) direct cost, 2) effect on in-shop service level, and 3) expected
number of days overdue. Figure 7.1 shows a flowchart for the approach taken to obtain a solution.

Figure 7.1: Flowchart Weighted Sum Method

7.2.1. Determination of Direct Cost
The direct cost consist of the repair cost of a component and a standard transport fee. The transport fee
consists of a standard export fee, a transportation fee, and a standard outstation fee including customs and
administrative tasks. In order to compute the repair cost per component and repair type, historical data is
required to determine the cost of repairs, as well as the distribution of incoming components and types of
repair. This is followed by randomising the occurrences of component and repair type.

7.2.2. Determination of the Effect on the In-Shop Service Level
The second criterion that each alternative is graded on is the effect that it has on the in-shop performance.
This criterion consists of two sub-criteria: 1) the current service level, and 2) the effect of the incoming com-
ponent on the service level. If the current service level is (far) below the required service level, it should
increase the likelihood to decide to outsource a component, regardless of the effect that one additional com-
ponent has on the SL. In general, this is positive in case of outsourcing, as it creates space in the shop process
and allows for flexibility and a small buffer for components in the shop. If a component enters the shop it
will be more likely to have a negative effect on the in-shop service level, as it creates additional work in the
shop, and thus has a chance of increasing accumulation of existing work in the shop, increasing chances of an
overdue component. In order to identify the effect that each incoming component has on the in-shop service
level, both the current shop performance as well as the expected performance for that specific component
are to be known. The current service level is fairly easily obtained by using greedy algorithm as described in
Chapter 3. To obtain the expected service level, three steps are to be taken, of which the implementation is
found in Chapter 8:
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1. Determine the expected number of days until completion of the component

2. Determine whether or not this component is expected to be completed in time, and by how many days

3. Compute the effect on the service level of a certain component

7.2.3. Determination of Expected Days Overdue
The third and final criterion is that of the expected number of days overdue. This is important, as the in-shop
service level itself does not provide any information on how long a component remains overdue. As shown in
the results of Phase I of the research project, having several components overdue for over a large amount of
days can the same impact on the supply chain as having many components overdue for 1 day. While the in-
shop performance does not have a direct impact on the supply chain unless accumulated over time and/or
volume. The expected days overdue on the other hand has a direct link to the supply chain, and is thus more
directly related to other KPIs: customer service level and cost in the supply chain. For the in-house repair
alternative, the expected days overdue can be taken from the operational model described in Section 7.2.2.
When looking at the outsource alternative, the distribution of expected number of days overdue is taken from
historical data and randomised to link the expected number of days overdue to the specific component.

7.3. Set-up of Scales & Grading of Alternatives
As discussed in Chapter 2, a major limitation of the Weighted Sum Method is its inability to handle data
expressed in different units. Therefore, the grading of alternatives for each criteria will be done using nor-
malised scales. Regarding cost, there is a pre-defined set of possibilities, dependent on the type of component
and the corresponding repair cost. This set is normalised between 0 and 1, where 0 indicates no additional
cost, and 1 indicates the highest possible amount of additional cost for a component-repair mix. When look-
ing at the service level and effect on service level, there is no pre-defined set of possibilities, rather it can be
any percentage between 0 and 100. For the current performance the 1 corresponds to 80%, and 0 corresponds
to 100% (the lower total score the better). Anything below 80% has a grade higher than 1 for in-house repair
(vice versa for outsourcing), since the likelihood of outsourcing should increase drastically in case the shop
performance drops below 80%. For the effect on the shop service level, the scale is from -1% to 1%, where the
negative effect is in case of in-house repair, and positive in case of outsource. Another aspect to be taken into
account is the fact that the larger the chosen time interval (or inflow scenario), the smaller the effect of one
component on the SL. For that reason, only the last x components are taken into account in the computation
of the (expected) performance and effect on SL. Finally, for the expected days overdue, the lower limit is 0 and
the upper limit is 30 days.

Besides the scaling of criteria and the subsequent grading of alternatives, the third parameter required to
determine the total score are the weights corresponding to each of the criteria. These weights are often based
on experience, current situation, or the opinion of the stakeholders. To limit the subjectivity in determining
the weights, an approach is chosen in which a large variation of possible weights are considered. For each
of the combination of weights, the best alternative is chosen. This is done using Eq. 7.1 until 7.3. Besides
limiting subjectivity, this approach also allows for a much higher degree of flexibility, as it is possible (and
highly realistic) that the importance of each of the criteria changes depending on the current state of the
operations.

w1 = r and(1,n) (7.1)

w2 = (1−w1)∗ r and(1,n) (7.2)

w3 = 1−w1 −w2 (7.3)

Using the above-mentioned procedure, the final step is to compute the total score for each of the alternatives,
using Eq. 7.4 and 7.5. The best alternative for each set of weights is the alternative with the lower score.

Ai n = w1 ∗ c1i n +w2 ∗ c2i n +w3 ∗ c3i n (7.4)

Aout = w1 ∗ c1out +w2 ∗ c2out +w3 ∗ c3out (7.5)
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7.4. Assumptions
Since the operational model is an adaption of the greedy algorithm from Phase I, the same assumptions apply
to the MCDM. However, additional assumptions are made for the remainder of the MCDM model, which are
discussed below.

1. Direct cost are zero for in-house repair

2. All used distributions are based on historical data

(a) Type of incoming component

(b) Required repair

(c) Expected days overdue for outsourced components

3. IDG, BUG, and other repair is assumed major if RPT > 4 days

4. Repair and transportation cost for ’other’ components is taken as the average of the IDG and BUG

5. All components can be outsourced

6. The three criteria direct cost, shop service level, and expected days overdue are the only factors influenc-
ing the decision to outsource a component

Assumption 1 states that the repair cost for in-house repair are zero. In reality this is not true, since cost
include material, personnel, tooling, etc. to repair the component. However, both personnel as well as tooling
are a fixed cost in the shop, as these factors are present regardless of the number of incoming components.
Material is not, and therefore this will be the cause of the largest discrepancies for this assumption. The
implications on the final result is that the difference in cost for both alternatives is smaller than implied by the
result from the DSS. However, it is expected that cost will not drastically change the best alternative, unless
disproportionally large. The second assumption might also cause discrepancies with the real situation, as
it is not up-to-date. It is however required to initialise the model with information, and using a historical
distribution will yield more accurate results compared to simply using an average. There is a risk that in
some instances an extreme will be used by the model while in the actual situation the average occurred. This
might yield inaccurate results on a given day, but over time the extremes will cancel out. However, in case the
distributions change over-time, which is to be expected given the dynamic nature of aircraft maintenance,
they need to be updated in the model in order to cause possibly large deviations from the actual situation.
Assumption 3 is used to make a distinction between minor and major repair. Whereas for the VFSG this data
is readily available, for the remaining components this is not the case. This assumption is discussed with,
and set-up using the help of the shop leaders of EWF and can be taken as a rule-of-thumb. Regarding the
repair and transportation cost for components outside of the top 3, they are assumed to be the average of the
IDG and BUG due to lack of available data. The impact can be quite significant if certain components have
extremely high or low repair cost and it is therefore advised to further research this to obtain more accurate
results. However, given the low percentage of ’other’ components, the total effect is expected to be minor.
Assumption 5 states that all components can be outsourced. In reality, the majority of incoming components
has a Time & Material contract, meaning they are not part of the pool of components owned and maintained
by KLM E&M. In many cases these customers pay for the quality and reliability of maintenance performed by
KLM, which cannot be guaranteed in case of outsourcing. For that reason, many T&M components will not
be outsourced. This introduces a higher degree of complexity in terms of preferred components to outsource.
The net effect is expected to be small, however it is possible that on a given day a large inflow peak is present
consisting only of T&M components, which cannot be outsourced. This limits the benefit of using a decision
tool, as it is not effective in some cases. The final assumption limits the scope and effect of parameters on the
decision to outsource a component. In reality, many factors have to be taken into account, such as practical
and regulatory considerations.
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7.5. Data Gathering & Reliability
Input:

• Repair cost

• Transportation cost

• Inflow scenario as baseline

• Inflow today in number of components per day

• Shop capacity in net fte per day

• Distribution of component-repair combination

• Distribution of days overdue for outsourced components

Output:

• Grade for each alternative per criterion

• Total score, leading to best alternative

The direct cost consist of repair cost and transportation cost for certain component. The repair cost is taken
from current contracts with outside vendors, which is up-to-date and is thus reliable. Discrepancies are only
introduced for the ’other’ components, which are not considered in the Top 3, for which the repair cost is
taken as the average of the Top 3. While the percentage of ’other’ components is relatively small, this might
introduce significant differences in results. For the transport cost a standard fee is identified, which is taken
from a standard equation using the weight of the component. The inflow scenario is taken from SAP, con-
sisting of the number and type of components entering the shop on a daily basis. As discussed in Section
3.3, the reliability of this data is high. The same is the case for the inflow of today, however ideally one would
want to predict the number of incoming components in order to make pro-active decisions to save valuable
transportation time. Another input is shop capacity, which is chosen manually, based on the results from
Phase I of this research project. Finally, regarding the distribution of component-repair combinations, and
the expected days overdue for outsourced components, the historical data from 2016-2017 is used. This data
is highly reliable, as it is monitored continuously by the shop. To verify the obtained distribution, it is tested
on multiple time intervals, yielding discrepancies no larger than 10%. However, the model might output a
different sequence of incoming components compared to the actual inflow, due to randomisation. This can
cause discrepancies between model outputs and the actual situation on a daily level, but will level out over
time. It is important however, to update this distribution with time, given possible phase-out or increase in
flow.

7.6. Solution Technique for Analysing the Effect of Parameters on Best Al-
ternative

To obtain valuable information and insights on the effect of different parameters on the best alternative (in-
house repair or outsource), several scenarios are to be run. There are five key parameters that influence the
result:

• The component-repair combination, which corresponds to a certain repair- and transportation cost

• The current status of the shop, yielding the expected days on-/over-time, and information on the cur-
rent and expected shop performance

• The available capacity in the shop

• The time interval taken as the initial conditions, which corresponds to a certain inflow scenario

• The number of components entering the shop on day t
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The first step is to create a baseline scenario. For this case the initial time interval is taken as the inflow be-
tween January up to and including March 2017. This inflow scenario is also used in Phase I of the research,
and is presumed to be representative of the recent inflow distribution. A period of three months is used, as
this has proven to be sufficient in order to determine the required capacity, and to limit the computational
time. For the baseline scenario, the component-repair combination is an IDG with a minor repair, as the
probability of combination is largest compared to others. Besides that, the repair cost of this combination
is near average. For simplicity, the 1st incoming component on day t is considered in the baseline scenario.
Regarding the available capacity in the shop, the baseline scenario considers the required capacity computed
in Phase I of this research project, which is equal to 19. However, it is expected that with a capacity of 19, there
should be sufficient space in the process to always repair a component in-house. For that reason a second
baseline capacity of 15 is used, the main objective being to show the effect of varying parameters in choosing
one of two alternatives. Table 7.1 provides a summary of the parameters used as the baseline scenario.

Table 7.1: Baseline Scenario 1 and 2 Decision Support System

Historical Inflow Scenario n-th Component Component-Repair Mix Capacity
Jan-Mar 2017 1 IDG minor repair 19
Jan-Mar 2017 1 IDG minor repair 15

Using the baseline, several scenarios are developed to test the impact of individual parameters on the final
score - and thus the choice to in- or outsource a component, of which the results are presented in Chapter 9.

1. Varying time interval

(a) 1 month - capacity 15, 19

(b) 3 months - capacity 15, 19

(c) 6 months - capacity 15, 19

(d) 12 months - capacity 15, 19

2. Varying component-repair combination

(a) IDG minor - capacity 15, 19

(b) VFSG major - capacity 15, 19

3. Varying capacity

(a) Capacity = 10

(b) Capacity = 15

(c) Capacity = 19

4. Varying number of incoming components

(a) From 1 to 30 for capacity between 15 and 19

7.7. Approach for Analysing Result of Using MCDM Method on Historical
Inflow Scenario

Similar to Phase I, the above-mentioned scenarios provide insight in the effect of certain parameters and the
relationship between different variables and the total score – and thus the best alternative. However, these
insights do not provide information on the possible contribution to TAT reduction, in this case focused on
waiting-, transport-, and buffer-time. For that reason, the decision support tool will be used over a limited
time interval. For this time interval, three things are monitored: 1) shop service level, 2) average shop TAT,
and 3) outsourcing cost. These parameters are then compared to results from the actual situation. Direct
repair and transportation cost are fairly straightforward to compare, and will most likely be higher when
using the DSS, since more components will be outsourced. However, it is expected that the shop SL will be
higher, and the average shop TAT per component-type will be lower. The shop TAT of the actual situation
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will be compared to the simulated scenario using the DSS. With the user functions for the top components
determined in Phase I, the shop TAT can be linked in changes in required number of units in stock, which
corresponds to a certain reduction in financial risk. Summarising, the following steps are taken to analyse the
result of the use of an MCDM method on actual historical inflow scenario:

1. Run model with DSS for specific time interval

2. Monitor key parameters

(a) Number and type of outsourced components per week

(b) Shop SL per week

(c) Average shop TAT per component type (regular + outsource) for the chosen time interval

3. Obtain actual historical information for the chosen time interval on key parameters (see points 2a-2c)

4. Compare results from actual situation to simulated scenario

7.8. Strengths, Weaknesses & Limitations of Approach
The main strength of the model is firstly that it uses the weighted sum method, which is simple and trans-
parent. Based on the inputs, it is easily understood for the user why a certain alternative is preferred. Besides
that, the use of varying weights in the output significantly limits the level of subjectivity, and in many cases
provides a clear ’best choice’, without the need to think about which criterion is most important. Besides
limiting the level of subjectivity, it also provides a clear overview of the best alternative subject to uncertainty.
Another benefit of the model is that the grading is done objectively based on actual values; a major part ob-
tained from the operational model. The operational model allows for a more accurate and direct link to the
current state in the shop. This immediately introduces a weakness of the approach, namely the accuracy and
practicality of the operational model. As stated before, the operational model is based on historical data and
distributions, and does not project the real-time situation in the shop. Therefore, errors can accumulate and
resets are necessary. Another weakness of the approach is that the weighted sum method is very simple and
requires normalisation to obtain the same units for all criteria. This might lead to reduction in accuracy and
reliability and introduces additional uncertainty. Also, only three criteria are considered, while in reality the
decision to outsource a component is dependent on many parameters, often linked by certain relationships.
This level of complexity is not taken into account in the weighted sum method. Finally, a limitation of the
approach is found in the translation to supply chain, which is only based on one time interval of 3 months.
Also, given the assumptions, the focus is on one part of the operation, rather than taking the entire supply
chain into account. Similar to the approach in Phase I, another limitation can be found in the link to the
supply chain, which is limited to the effect on TAT and stock levels.
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Following the methodology of Phase II in Chapter 7, this chapter aims to describe the steps taken for the
implementation of the decision support model. Section 8.1 covers the initialisation of the model, followed by
discussion of the operational model and weighted sum method in Sections 8.2 and 8.3. Finally, Section 8.4
contains the verification strategy and results for the MCDM.

8.1. Initialisation

During the initialisation of the model, the model structure is set-up and the initial conditions are determined.
For this model the initialisation consists of two parts. Part 1 is the initialisation of the operational model,
which is equal to that of the greedy algorithm disucssed in Phase I of the research project. This includes the
set-up of multiple distributions and the initial conditions with which to start the model. Part 2 includes the
initialisation of the MCDM, which contains the set-up of the distribution of the component-repair combina-
tion and the determination and normalisation of scales, as discussed in Chapter 7.

8.2. Operational Model

In order to obtain the expected number of days until completion, number of days on/over-time, and the ef-
fect on the shop SL, an operational model is to be developed, which is an adaption to the greedy algorithm
from Phase I. The adaption is found in the initial conditions; while for Phase I the model was initiated from
0, for the operational model it is desired to start each day using the end-of-day results from the day before.
This is achieved by running the greedy algorithm from Phase I as a baseline inflow scenario, and save the
results in arrays. The operational model starts with the inflow of today, and runs the greedy algorithm with as
initial conditions the previously saved arrays. The expansion is found in the three above-mentioned points:
expected number of days until completion, the expected number of days on-time (or overdue), and the effect
on the in-shop service level. The pseudo-algorithm of the expansion is shown below.

Here,
tcompl = time to completion
Pcur r ent = current performance
Pexpected = expected performance
SLe f f ect = effect on SL
nover f low = number of components in overflow
nexpover f low = number of components expected to overflow
ntot al = number of total components

49
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Algorithm 3 Operational Model

1: for time = 1:length(time) do
2: for component = 1:sum(inflow) do
3: procedure SIMULATION

4: if component = completed then
5: remain completed
6: else if component is in repair then
7: tcompl = RPT - time in repair
8: else
9: tcompl = tcompl (i - CAP) + RPT

10: if component = completed then
11: remain completed
12: else
13: expected days on-time = contracted TAT - (length(inflow) - j) - tcompl (i)

14:

15: procedure OUTPUT

16: Pcur r ent = (1 - (nover f low )/(ntot al ) *100%)
17: Pexpected (j-1) = (1 - (nover f low + nexpover f low (1:(j-1))/(ntot al ) *100%)
18: Pexpected = (1 - (nover f low + nexpover f low )/(ntot al ) *100%)
19: SLe f f ect = Pexpected (i) - Pexpected (i-1)

As stated above, this is an expansion of the greedy algorithm from Phase I, with the main purpose to obtain
the required parameters for the MCDM. To compute the time to completion for each component, two options
are possible. If the component is in repair, the time to completion is simply the expected RPT - time spent
in repair. In all other cases the time to completion is the time to completion of the component that entered
the shop exactly capacity components + expected RPT. The time to completion can then be used to compute
whether or not a component will be completed on time, and by how many days. This is done by using the
contracted TAT - time between current component and inflow date - time to completion. Finally, the effect
on the in-shop service level is computed by taking the difference in performance excluding and including the
component at hand.

8.3. Multi-Criteria Decision-Making: Weighted Sum Method
After the MCDM model is initiated and the operational model is implemented, the next step is to set-up
the complete model. For every incoming component (or expected incoming component), the first step is
to assign it a component and corresponding repair, based on historical distribution. Once the component-
repair combination is known, the direct repair cost is known, both in case of in-house repair (= 0) as well as
for the outsource scenario. The next step is to implement the operational model which provides the MCDM
model with the current state of the shop. This yields the in-shop service level, effect on the service level,
and expected days overdue in case of in-house repair. The expected days overdue in case of outsourcing are
based on the historical distribution, as discussed in Section 8.1. Using this information, the next step is to
grade both alternatives on each of the criteria, using the normalised scales as discussed in the initialisation.
This is followed by the set-up of weights to ensure they do not exceed 1, and the final grading per alternative.
The final step is to plot all possible weights and results in a 3D scatterplot.
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Algorithm 4 Multi-Critera Decision Model Algorithm

1: for components = 1:max(inflowToday) do
2: obtain component type and corresponding repair
3: direct cost in-house repair = 0
4: direct cost outsource = repair cost + transport cost
5: procedure OPERATIONAL MODEL

6: implementation operational model
7: obtain SL, effect on SL and expected days overdue
8: expected overdue outsource = taken from distribution
9: procedure DETERMINE SCORE

10: directCostIn = 0
11: directCostOut = normalise(direct cost)
12: slIn = normalise(SL + effectS L)/2) slOut = nor mali se((SL−e f f ectS L)/2)
13:14: edoIn = normalise(expected days overdue in-house)
15: edoOut = normalise(expected days overdue outsource)
16: procedure SET-UP WEIGHTS

17: w1 = rand(1,1000)
18: w2 = (1 - w1)*rand(1,1000)
19: w3 = 1 - w1 - w2
20: procedure DETERMINE FINAL SCORE PER ALTERNATIVE

21: for i = 1:length(w1) do
22: aIn(i) = w1(i) * directCostIn + w2(i) * slIn + w3(i) * edoIn
23: aOut(i) = w1(i) * directCostOut + w2(i) * slOut+ w3(i) * edoOut
24: if aIn(i) < aOut(i) then
25: result(i) = 0
26: else
27: result(i) = 1

28: procedure PLOT GRAPH

29: scatter3D (w1, w2, w3, result)
30:

8.4. Verification of Multi-Criteria Decision-Making Method
To check if the MCDM model yields the correct results, verification is performed on the following parameters:

• Computation of direct cost

• Implementation of operational model

• Computation of expected days on/over-time

• Scaling

• Computation of weights

• Computation of total score

For the computation of direct cost the verification strategy is to compare the results of the model to the results
when computed manually. In order to verify the implementation of the operational model, the results of the
effect on the service level is compared to the effect on shop service level of the operational model as described
above. The same approach is taken for the computation of the expected days on/over-time, as this is also
directly taken from the operational model. Regarding the scaling, the only checks to be performed are the
normalisation of the baseline scale and the position of the grade on the scale. Both will be verified using
manual computation. As described in Section 7.3, the best alternative will be computed for a large range of
different combinations of weights in order to limit the degree of subjectivity in determination of weights. In
order to verify the distribution of weights, two main steps are to be taken. Firstly, it should be checked that the
weights of the three criteria add up to (and do not exceed) 1, are randomised, and cover many possibilities.
Secondly, to ensure accuracy a sufficiently large data-set of samples is to be chosen.
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Figure 8.1: Verification Best Alternative
Varying Weights: 10 data points

Figure 8.2: Verification Best Alternative
Varying Weights: 100 data points

Figure 8.3: Verification Best Alternative
Varying Weights: 1000 data points

Figures 8.1 until 8.3 shows the difference between 10, 100 and 1000 data points, from which it can be seen
that the latter provides a much better overview and boundary of each of the choices. Figures 8.4 until 8.6
shows the distribution and coverage of the 1000 data points, which proves that there is sufficient coverage of
different possibilities and combinations of weights.

Figure 8.4: Verification Best Alternative
Varying Weights: w1 vs. w2

Figure 8.5: Verification Best Alternative
Varying Weights: w1 vs. w3

Figure 8.6: Verification Best Alternative
Varying Weights: w2 vs. w3

Finally, the computation of the total score must be verified, which is done by checking boundary conditions
(e.g. w1 w2 w3 = [1 0 0], [0 1 0], [0 0 1]), and a selected number of other random scenarios. The results from
the model will then be compared to the results which are computed manually. Table 8.1 shows the results,
indicating the model performs as expected.

Table 8.1: Verification of Total Score Multi-Criteria Decision-Making Model

Scenario Weights Test Result Model Result

[0 0.4 0.7; 0.2 0.3 0.7] [1 0 0] In-house In-house
[0 1 0] Outsource Outsource
[0 0 1] In-house In-house

[0.33 0.33 0.33] In-house In-house
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Implementation of the methodology discussed in Chapter 7 on the case study introduced in Chapter 5, yields
several results to be analysed. Section 9.1 discusses the effect of varying key parameters on the decision to
outsource a component or repair it in-house. Besides that, the effect on the shop and supply chain is analysed
by running the model on actual data, which can be found in Section 9.2.

9.1. Effect of Varying Individual Parameters on Decision-Making
As mentioned before, there are four main parameters that influence the choice for either one of two alterna-
tives:

• The component-repair combination, which corresponds to a certain repair- and transportation cost

• The current status of the shop, yielding the expected days on-/over-time, and information on the cur-
rent and expected shop performance

• The available capacity in the shop

• The time interval taken as baseline, which corresponds to a certain inflow scenario

To identify and analyse the effect of these parameters on the outcome of the multi-criteria decision method,
several scenarios are developed, each varying at least one of these parameters. This section discusses the
effect of the above-mentioned parameters on the best alternative. Starting with the effect on the time interval
in Section 9.1.1, followed by capacity in Section 9.1.2, component-repair mix in Section 9.1.3, and finally the
effect of the inflow peak size in Section 9.1.4.

9.1.1. Effect of Time Interval/Inflow Scenario
Starting with the time interval, inflow scenarios of 1, 3, 6, and 12 months are considered, each starting from
January 2017. The results can be seen in Figure 9.1 for a capacity of 19 fte, and in Figure 9.2 for a capacity of
15.

Figure 9.1: Best Alternative for Varying Weights (Capacity = 19) - Time Intervals: 1, 3, 6, and 12 Months

As seen from Figure 9.1, given the initial conditions stated above, the chosen time interval does not have
any effect on the decision to repair a component in-house. This can partially be explained by the fact that a
fixed number of components are taken into account in order to normalise the computation of performance.
Therefore, if the chosen time interval contains more than 300 components, only the last 300 are taken into
account in the performance computation. While this decreases the effect of longer time intervals, it still shows
the impact of different inflow scenarios and initial conditions. From this it can be concluded that when the
available capacity is sufficient, the chosen time interval does not affect the decision to in- or outsource a
component.
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Figure 9.2: Best Alternative for Varying Weights (Capacity = 15) - Time Intervals: 1, 3, 6, and 12 Months

However, when looking at Figure 9.2, the effect of the chosen time interval is evident. The first graph in which
only one month of historical data is used advises to repair the component in-house, which can be explained
by the fact that the accumulation of components in the buffer and overflow buffer has not yet matured due to
short time interval. In the 3-month scenario the situation has matured and it can be seen that it is advised to
outsource the component in the majority of weighing combinations. For both the 6 and 12-month scenario
there are slight differences to be seen, which can be attributed to the difference in initial conditions. This sug-
gests that if the time interval is longer than 3 months, it does not have a major impact. Again, this is explained
by the normalisation factor which means only the 300 most recent components are taken into account for the
service level computation. However, the other criteria are not affected by this assumption. There are slight
changes to be seen in the distribution of best alternatives, which are most likely to be present due to different
initial conditions of the model rather than be affected by the length of the chosen time interval.

9.1.2. Effect of Capacity
When looking at the effect of varying capacity, three options are considered: 10, 15, and 19 available fte per
day. As discussed in Phase I, a capacity of 19 is the advised capacity given the historical inflow data. Lowering
the capacity results in accumulation of components in the buffer and overflow buffer and thus a large backlog
of work, which directly has a large impact on the shop performance. The results can be seen in Figures 9.3
until 9.5.

Figure 9.3: Best Alternative for Varying
Weights: Capacity = 10

Figure 9.4: Best Alternative for Varying
Weights: Capacity = 15

Figure 9.5: Best Alternative for Varying
Weights: Capacity = 19

From this it can be concluded that the available capacity has a significant impact on the choice to in- or out-
source. When looking at Figure 9.3, outsourcing is preferred unless cost are considered a highly important
criterion. This makes sense, given the fact that the cost for in-house repair are zero and thus always lower than
the cost in case of outsourcing. For a higher capacity of 15 (Figure 9.4, in most cases it is preferred to repair the
component in-house, except when considering shop service level as the most important criterion. This is as
expected, since outsourcing a component has a positive effect on the shop service level, while repairing that
component in-house has a negative impact on the shop service level. Compared to the scenario with capacity
of 10, the top part of the graph (high weight on expected days overdue) has also changed. In the low capacity
situation, there is likely a large buffer in the shop, and a large number of components overdue. Adding an-
other component to the buffer means it will be the last in line, often yielding a large amount of expected days
overdue. In the medium-capacity situation, the buffer and overflow buffer will be smaller, resulting in less ex-
pected days overdue. Given the distribution of expected days overdue for outsourced components, resulting
in a high probability of expected days overdue > 20, in most cases the in-house repair performs better on this
criterion. Finally, for the high capacity scenario, the advice is to repair the component in-house, regardless of
the weights of the considered criteria. In this case again the cost and expected number of days overdue are



9.1. Effect of Varying Individual Parameters on Decision-Making 55

lower, but also the service level is in favor of the in-house repair. This can be explained by two things, first
the current shop performance is above the required SL of 95%. Secondly, the negative effect of a component
entering the shop is zero. This means that the required SL is not in danger, yielding the advice to repair a
component in-house.

9.1.3. Effect of Component-Repair Combination
The third parameter to be varied is the component-repair combination, which mostly has an effect on the
cost. It is expected that, the more expensive the repair, the higher the likelihood for in-house repair. The
results for the baseline scenario can be seen in Figure 9.6, in which IDG minor repair is compared to a VFSG
major repair. It can be seen that there is no difference between both graphs, which is expected when using
a capacity of 19 as there should be sufficient space in the process to repair most incoming components in-
house.

Figure 9.6: Best Alternative for Varying Weights - Effect of Component/Repair: Capacity = 19

Figure 9.7 shows the same graphs, this time for a capacity of 15. A large difference is seen compared to Figure
9.6 regarding the presence of outsourcing alternatives. This is expected given the lower capacity. Also, in this
case a clear difference is seen in the distribution between in- and outsourcing between the IDG minor and
VFSG major repair. This shows the impact of cost on choosing the best alternative; the higher the cost, the
higher the likelihood of repairing a component in-house.

Figure 9.7: Best Alternative for Varying Weights - Effect of Component/Repair: Capacity = 15

9.1.4. Effect of Inflow Peak Size
For the previous scenarios only the first incoming component is considered, but the effect of a large inflow
peak has not yet been analysed. For that reason, the model is run for the first until the 30th incoming com-
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ponent, and the best alternative is shown. As a reference point, it is assumed that all criteria are considered
of equal importance (w1 = w2 = w3 = 1

3 ) in order to provide a better overview. Again, the baseline scenario is
considered, with inflow = Jan-Mar 2017, and all incoming components are IDG with minor repair. Figure 9.8
shows the effect of the number of incoming components on one day for capacity between 15 and 19. Here, 0
indicates in-house repair, and 1 indicates outsource.

Figure 9.8: Effect of Incoming Component on In- or Outsourcing Decision for Multiple Capacity Scenarios

It can be seen that for low capacity, it is advised to outsource the first and all following components. The
reason for this is that the baseline scenario results in high accumulation of components in the buffer, meaning
that the shop performance is poor and the negative effect of a component entering the shop is relatively large.
For higher capacity situations such as those with 18 and 19 fte per day, the situation is much better, but still
it is advised that in case of a large inflow peak some components are to be outsourced in order to maintain a
stable performance in the shop and eliminate the risk of building up a backlog.

9.2. Effect of MCDM on Shop and Supply Chain Based on Historical Inflow
Scenario

While the results shown and discussed in the previous sections provide insights in the effect of key parameters
on the choice to in- or outsource a component, it does not yet create a link to the supply chain and possible
benefits regarding TAT reduction focused on waiting- and transport-time. This section aims to do the latter.
As discussed in Chapter 7, the followings steps are carried out:

1. Run model with DSS for time interval from Jan-Mar 2017

2. Monitor key parameters

(a) Number and type of outsourced components per week

(b) Shop SL per week for Shop EWF

(c) Average shop TAT per component type (regular + outsource) for the chosen time interval

3. Obtain actual historical information from January up to and including March 2017 on key parameters
(see points 2a-2c)

4. Compare results from actual situation to simulated scenario
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For the period between January and April 2017, the distribution of outsourced components can be seen in
Table 9.1 for both the actual situation as well as the simulation, which is based on historical data.

Table 9.1: Distribution of Outsourced Components in Shop EWF: January-March 2017

Component Type & Repair Count - Actual Count - Simulated
IDG minor 2 20
IDG major 0 10
BUG minor 0 3
BUG major 0 3
VFSG minor 7 3
VFSG major 1 1
Other minor 0 6
Other major 0 6

Figure 9.9 shows the cumulative number of outsourced components over the 13 weeks in the chosen time
interval. Figure 9.10 shows the comparison between the actual situation and the modelled situation regarding
change in in-shop service level.

Figure 9.9: Number of Outsourced Components (cumulative)
for Actual Situation and Simulation over Time

Figure 9.10: In-Shop Service Level over Time for Actual Situa-
tion and Simulation

First, when looking at Figure 9.9 it can be seen that the advised number of outsourced components is 5 times
as large as the actual number of outsourced components in the same period. Looking at Figure 9.10 it can be
understood why. In the actual situation the in-shop service level varies greatly, is highly unstable, and mostly
below the target of 95%. On the other hand, in the simulated scenario, the service level is stable and consis-
tently above 85%. It should be noted that this is the in-shop SL only, not taking into account the outsourced
components.

Table 9.2 shows the difference in expected repair (& transportation) cost between the actual situation and the
modelled scenario. While the number of outsourced components is 5 times higher, the expected cost is only
4 times as high. This can be explained by the fact that in reality many VFSGs were outsourced due to warranty
issues. The model does not take this preference into account and assumes the distribution as initiated in
Chapter 8.

Table 9.2: Difference in Repair Cost: Actual vs. Modelled Scenario

Total Repair Cost Actual [USD] Total Repair Cost Modelled [USD]
427,500 1,600,900

Regarding the shop TAT for both scenarios, the results can be seen in Table 9.3. Here it can be seen that in
case of regular flow (not taking into account outsourced components), the shop TAT is reduced by 2 days for
the modelled scenario. This can be explained by the fact that more components are outsourced, meaning the
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inflow into the shop is lower, and there is more room in the shop to process the incoming components on
time. The average shop TAT including outsourced components is as expected higher, due to the longer TAT in
case of outsourcing. However, the difference between the actual (10 outsourced components) and modelled
(52 outsourced components) is relatively small.

Table 9.3: Average Shop TAT for Several Scenarios - Actual vs. Modelled

Scenario Shop TAT
Actual average shop TAT (excl. outsource) 18
Actual average shop TAT (incl. outsource) 20

Modelled average shop TAT (excl. outsource) 16
Modelled average shop TAT (incl. outsource) 23

The effect of the shop TAT on the CSL and financial risks in the supply chain have been analysed and dis-
cussed in Chapter 6. In this case however, the use of a MCDM method on average yields a longer shop TAT
by 3 days compared to the actual situation. Therefore, no quantitative benefits are to be found based on the
chosen scenario.

Two additional scenarios are to be tested in which the outsource TAT cannot exceed the contracted TAT
agreed upon between KLM and the outside vendor. This means that if the outside vendor is not able to
repair the component within the contracted time, the customer (in this case KLM) is entitled to a replace-
ment, which means a serviceable component is added to the KLM stock. Currently, that is 28 days, which is
significantly lower than the actual average outsource TAT of 41 days. Unfortunately, KLM currently does not
take sufficient advantage of this agreement, meaning they do not demand a serviceable component in case
the TAT exceeds 28 days; resulting in the relatively high current shop TAT. The second scenario is taking into
account the new contracted outsourcing TAT of 15 days, which will become the new industry standard. The
results can be seen in Table 9.4.

Table 9.4: Average Shop TAT in Case of Varying Outsourcing Contracted TAT

Scenario TAT in days IDG VFSG
Actual average shop TAT - no limit 20 16 26

Actual average shop TAT - 28 day limit 19 16 22
Actual average shop TAT - 15 day limit 18 16 18
Modelled average shop TAT - no limit 23 22 22

Modelled average shop TAT - 28 day limit 19 19 19
Modelled average shop TAT - 15 day limit 16 16 16

From Table 9.4 it can be seen that when KLM consistently reclaims a serviceable component in case the out-
sourced repair exceeds the contracted TAT of either 28 (current) or 15 (new) days, the average shop TAT is
reduced both for the actual situation and the modelled scenario. Similarly to Phase I, the TAT reduction for
the top 2 pool components (IDG and VFSG) is linked to savings in required number of units in stock. The
last two columns in Table 9.4 show the difference in TAT for the VFSG and IDG for varying contracted TAT
agreements.

It can be seen that for the IDG the actual average shop TAT is 16 days and thus within the current contracted
TAT. This means that no TAT reduction is achieved, which can be attributed to the fact that only 2 IDGs were
outsourced in the actual situation, thus barely impacting the TAT. Therefore, the reclamation of serviceable
components in case of outsourcing has limited effect. For the modelled scenario, several IDGs are outsourced
with an average TAT of 41 days, thus resulting in the longer average shop TAT of 22 days. This is slightly re-
duced when considering the contracted TAT of 28 days in case of outsourcing, and even further for a limit of
15 days. For the VFSG the situation is very different: in the actual situation the average shop TAT was 26 days,
which can be explained by the large number of outsourced VFSGs in the chosen time period. In the modelled
scenario, the number of outsourced VFSGs is smaller than the actual situation, which explains the lower shop
TAT. When considering the 28 and 15 day limit, the TAT is reduced significantly.
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Savings are computed by comparing the actual average shop TAT to the modelled scenarios with a 28 and 15
day limit. For the IDG this does not yield any savings. However, for the VFSG this results in a TAT reduction
of 3 and 2 days, both yielding a saving of 1 VFSG.

9.3. Conclusions Phase II
This section briefly discusses the results presented in this chapter. Section 9.3.1 covers the effect of the key
parameters on the decision to in- or outsource a component, which is followed by Section 9.3.2 in which the
results of the actual case study are discussed.

9.3.1. Conclusions: Effect of Parameters on Decision to In- or Outsource
Based on the results presented in this chapter, several conclusions can be drawn. Firstly, when considering a
capacity of 19, the only parameter that has significant impact on the decision to in- or outsource a component
is a dis-proportionally large inflow peak. Otherwise, the situation in the shop is robust enough to handle
changes of initial conditions, and any type of component-repair mix. When looking at the inflow scenario it
can be concluded that it has no effect if the capacity is sufficient (19). In case of lower capacity (15), the chosen
time interval has limited effect if longer than 3 months: only minor effect of inflow scenario on decision to
in- or outsource a component. Varying the component-repair combination does not have a significant effect
on the decision to in- or outsource a component, especially in case of high capacity. For major repair and
high-value components the decision will be in favor of in-house repair, but the difference is minimal, and
only present if cost is the most important criterion, which in reality will not occur often. Finally, the change
in capacity (taken over the entire time interval) has the largest impact on the decision to in- or outsource a
component. This is expected, since it has a significant impact on many parameters taken into account in the
MCDM: current- and expected performance, effect on SL, and expected days overdue.

9.3.2. Conclusions: Case Study and Effect on Supply Chain
The case study itself shows that use of the decision support system leads to a 500% increase in outsourced
components, with an additional cost of USD 1.2 million. This results in an average increase in shop service
level of 30%. This means that the model performs well in increasing service level and smooths out the in-
coming inflow to a level that the shop is capable of handling with a capacity of 13 fte per day. Also, if KLM
starts reclaiming serviceable components from outside vendors if the TAT exceeds 28 days (current situation)
or 15 (new situation), the average TAT can be reduced by 2 or 3 days respectively. When looking at the top
pool components, this results in savings of 1 VFSG when looking at the actual situation between January and
March 2017.

Besides the quantitative benefits obtained when contract agreements are met, there are several qualitative
benefits. Firstly, having a high and stable shop performance results in a relatively constant shop output. This
is beneficial for the entire supply chain, as it indicates high reliability. High shop reliability suggests that
there is little variance in the output of the shop. This means that if a component is notified as unserviceable,
it can be fairly accurately predicted when the component will be serviceable again, and thus returned to the
customer or back in stock; ready for use. This increases the likelihood of making well-founded decisions re-
garding possible lease-in or buy-in of additional components, or the necessity to outsource. Besides that,
benefits are obtained by being able to quickly make decisions on outsourcing, preferably before the com-
ponent enters the shop. Unfortunately, that option is not taken into account in these results, as it required
previous data on the component, for example the removal notification at the customer. This type of data is
difficult to obtain given the current IT infrastructure and of poor quality. However, operating with that data
will allow for direct outsourcing. Direct outsourcing suggest the direct shipment from the customer to an
outside vendor instead of having to send the component to Amsterdam. In the current situation it is required
to follow the entire internal process in Amsterdam until it enters the shop, where it is determined that it needs
to be outsourced. Dependent on the origin and destination of the customer and the vendor, the total TAT can
be reduced by multiple days in terms of waiting- and transport time. While saving 2 days on a total TAT of 40
might seem insignificant, these 2 days can be the difference in the pool between having a spare part available
and having to lease or buy a component.





10
Validation

Regarding validation of the model, the objective is to ensure valid and realistic outputs that represent the
actual situation in the shop. Unfortunately, it is very difficult to test scenarios in the shop environment for
multiple reasons. First, the performance in the shop is currently highly unstable and far below the required SL
of 95%. Besides that, the model is developed using the new situation of CS2.0, in which different assumptions
are made that will significantly impact the results. Moreover, creating a test set and scenario requires multiple
resources, both practically as well as financially, which given the operational nature of the shop is not a pri-
ority. For that reason, two alternative validation methods are used: 1) expert validation (Section 10.1), and 2)
sensitivity analysis (Section 10.2). Finally, limitations of the validation strategy are discussed in Section 10.3.

10.1. Expert Validation
For expert validation, several scenarios are developed in which the key parameters of the model are to be
validated. Two experts are asked to make a decision for each scenario on whether they would repair the
component in-house or outsource it. The experts in this case are the ex shop leader and current shop leader of
Shop EWF, as they are responsible for making that decision. The focus is on varying: 1) component type (and
thus repair cost), 2) available capacity, 3) current service level, 4) effect on service level, and 5) the expected
days overdue. The complete scenarios can be found in Appendix C, and results are shown in Table 10.1.

Table 10.1: Results of Expert Validation

Scenario Result Expert Validation Result Model
1 Outsource Outsource
2 Outsource Outsource
3 Outsource Outsource
4 Outsource Outsource
5 In-house repair In-house repair
6 In-house repair In-house repair
7 In-house repair In-house repair
8 In-house repair In-house repair
9 In-house repair In-house repair

10 In-house repair In-house repair

From the results it can be concluded that the model yields the same decision as the one made by experts. It
should be noted that for the modeled scenarios the alternative is chosen that covered the majority of the sur-
face of the 3D plot for varying weights. There were some doubts regarding the decision to make for scenario
2 and 4, given the very high cost in case of outsourcing. However, given the very low shop performance and
expected number of days overdue the preferred alternative was still to outsource.

10.2. Sensitivity Analysis
To limit subjectivity in validation, sensitivity analysis is performed as a second means of validation. The ob-
jective is two-fold. Firstly, the impact of individual parameters on the final result is to be analysed. Similar to
the expert validation, the focus is on the 5 key parameters. This type of sensitivity analysis is shown in Section
9.1, where the effect of individual parameters is analysed on the best alternative. Given the solution set-up
discussed in the approach, the resulting graphs are 3D scatterplots, in which 1000 combinations of varying
weights are plotted. This means that an increase or decrease of x% in weights corresponds to a different set
of weights, meaning it is already incorporated in the plot. Another sensitivity can be found in increasing or
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decreasing the grading of alternative for each criterion. However, for this problem and approach, the grading
itself is objective as it is based on actual data. Based on the results discussed in Section 9.1 a brief summary
of the effect of parameters on the choice of best alternative:

• Chosen time interval and length of said interval does not affect the choice of alternative if chosen in-
terval is longer than 3 months

• Available capacity over the chosen time interval has major effect on best alternative due to changing
initial conditions which have an impact on SL and expected days overdue

• The effect of component-repair mix (repair cost) is minor and only impacts decision-making in case of
limited capacity

• The effect of the inflow peak is highly dependent on the initial conditions and thus the available capac-
ity, but has a significant impact if the peak is larger than 14 incoming components

The second objective of performing a sensitivity analysis is to test the robustness of the results given the
uncertainty in decision-making. Here, the focus is on the results obtained in Section 9.2 in which the MCDM
model is applied to the actual inflow data from January up to and including March 2017. The results are
compared to those of the actual situation in terms of in-shop service level, number and type of outsourced
components, cost related to outsourcing, and shop TAT. To test the robustness of the results, the weights of the
three criteria are altered. In the baseline scenario, all weights are considered equal (w1 = w2 = w3 = 1

3 ). For
the sensitivity analysis, three scenarios are developed in which each criterion is given a significantly higher
weight than the other two: [0.7,0.15,0.15], shown in Table 10.2.

Table 10.2: Validation Scenarios with Varying Weights

Scenario Weight 1 (Direct Cost) Weight 2 (Effect on SL) Weight 3 (Expected Days Overdue)
1 0.7 0.15 0.15
2 0.15 0.7 0.15
3 0.15 0.15 0.7

Figure 10.1 shows the results of the three scenarios compared to the baseline for both the cumulative num-
ber of components to outsource as well as the resulting in-shop service level. Looking at scenario 1 in which
the weight of direct cost is larger than the two others, it can be seen that it is advised to outsource less com-
ponents due to the higher cost in case of outsourcing. The difference compared to the baseline in terms of
total number of components is 3. The in-shop service level is lower due to the higher number of incoming
components, which has an impact of 6% on average. For the second scenario, in which the in-shop service
level is considered a top priority, the total number of outsourced components increases by 3. This results in
an increase in service level up to 4%. Finally, scenario 3 (high weight on number of days overdue) results in
larger degree of in-house repairs, as outsourced components on average yield a longer TAT. This has a similar
effect as scenario 1, with a decrease in number of outsourced components and in-shop SL. For all scenarios
however, it can be seen that the difference compared to the baseline scenario does not exceed 10%, from
which it can be concluded that the model is fairly robust.
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Figure 10.1: Cumulative Number of Outsourced Components and SL for Various Validation Scenarios

Table 10.3 shows the repair cost corresponding to each of the validation scenarios. The difference compared
to the baseline scenario is smaller than 5%. Since the component-repair mix is based on the historical distri-
bution randomly distributed over the outsourced components, it is possible that for one scenario there are
only minor repairs while for the other a major repair is included. This explains some differences between the
repair cost.

Table 10.3: Repair Cost and Difference from Baseline for Validation Scenarios

Scenario Repair Cost [USD] Difference [%]
Baseline 1,600,900 0

Scenario 1 1,522,690 4.9
Scenario 2 1,634,580 2.1
Scenario 3 1,604,310 0.2

The final check is with regards to the shop TAT corresponding to each of the scenarios. Table 10.4 shows
the average shop TAT including and excluding outsourced components. The shop TAT including outsourced
components is equal for all scenarios. While there are some minor changes due to differences in shop SL
(lower SL yields more components overdue) the average TAT does not change. However, when looking at the
shop TAT including the outsourced components there are some differences which can be explained by the
relatively large influence of a component being outsourced. Given the historical distribution it is possible
that one additional component being outsourced is the one component that has a TAT of 80 days, which
impacts the average TAT.

Table 10.4: Average in-shop TAT Including and Excluding Outsourced Components for Validation Scenarios

TAT Baseline Scenario 1 Scenario 2 Scenario 3
Average in-shop TAT (excl.) 16 16 16 16
Average in-shop TAT (incl.) 23 22 24 23

In conclusion, the effect of changing weights and thus relative importance of the three criteria of the MCDM
model do not have significant (>10%) effects on the results. This suggests the model is robust and can handle
uncertainty well.
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10.3. Limitations of Validation Strategy
Even though the validation strategy and results discussed above provide insights in the robustness of the
model and its results, there are several limitations. Starting with the expert validation, this type of validation
provides some insight in the accuracy of decision-making, but it is still very subjective. Some level of subjec-
tivity is eliminated by systematically building up the scenarios and separately interviewing two shop-leaders,
however the choice made by the experts remains dependent on experience and personal preference. Besides
that, the sensitivity analysis focuses mainly on the effect of varying weights. There are many other parameters
that might influence the decision-making which are not considered in this analysis. Finally, the validation is
only performed on a limited time interval in history for a specific application. While this time interval is rela-
tively representative of the last 18 months, it will yield discrepancies to the actual situation.

The ideal validation strategy for this model would include a test in Shop EWF only considering regular flow
and components that can be outsourced. The model would then have to be initialised using the begin state
of the shop in terms of capacity, buffer size, and service level. Based on the incoming flow the model would
adapt the expected service level of the shop and advise on in- or outsourcing decision-making. The aim is
then to follow the advice provided by the DSS and observe the effect on service level, outsourced components,
and eventually the supply chain. Ideally, this would be performed for at least 3 months, as this is the minimum
interval after which the situation has matured. In case the pilot would be performed for at least 3 months, the
results can be extrapolated to the supply chain by means of TAT analysis in which the actual TAT is compared
to the modelled TAT.
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Comparison Application and Results Phase I and II, & Possibilities for

Generalisation

The previous chapters have covered the methodology, implementation, and results of both approaches. Where
Phase I focuses on implementing flexibility into the operation by determining the optimal capacity in the
presence of highly variable demand, Phase II aims to control the incoming flow by means of an in- and out-
sourcing decision-making tool. The objective of this chapter is to summarise key similarities and differences
in both the application and limitation (Section 11.1) as well as the obtained results (Section 11.2). Finally,
possibilities for generalisation are discussed in Section 11.3.

11.1. Similarities and Differences in Application Phase I & Phase II
Phase I focuses on increasing flexibility in the operational processes by determining the required capacity,
assuming and accepting the highly variable demand. Phase II on the other hand, aims to do the opposite:
control the incoming flow by means of a decision support system, while keeping the operational parameters
fixed. This immediately highlights a major difference between both approaches. For Phase I the inflow sce-
nario is a given en fixed parameter used as input for the greedy algorithm, whereas for Phase II the inflow is
an output of the DSS. A similar analysis can be down for the capacity, which in Phase I is the output, but in
Phase II is part of the set of input parameters.

Regarding the choice of technique, similar requirements are used for Phase I and II: computational speed,
simplicity, possibilities for generalisation, transparency, and flexbility. For both phases this results in the
choice of a relatively simple method, which although not academically challenging by itself, provides suf-
ficient scientific novelty in combination with the other research areas and works well in practice. For both
phases the reliability of the inputs (and thus the output) is highly dependent on the assumptions and use of
historical data. As stated above, several assumptions are made for both approaches that reduce the accuracy
of the results. For both models several distributions are used, whether it be RPT, type of incoming component
and repair, or overdue from disrupted flow. Given the highly unpredictable nature of aircraft maintenance,
there is always a possibility (or risk) that any given time period varies significantly compared to the chosen
baseline.

When looking at the implementation of both approaches, the greedy algorithm in Phase I is initiated from
0, while for the adapted greedy algorithm in Phase II the initial conditions are updated at every time step to
allow for a near real-time current state of the operational process, which is then used as input for the multi-
criteria decision-making model. Regarding the link to the supply chain, Phase I focuses on the reduction in
shop TAT obtained by meeting the 95% service level. By means of a user function, this shop TAT (per com-
ponent type) can be translated to a reduction in required units in stock. For the case study, the focus is on
determining the required capacity in the new CS2.0 situation, with a contracted shop TAT of 14 calender days,
in order to strategically make decisions on capacity. For Phase II, the objective of the case study is to com-
pare the effect of using the decision support tool to the actual situation, rather than simulating the new CS2.0
scenario. By monitoring key parameters such as number and type of outsourced components, shop SL, and
average shop TAT in both situations, the user function from Phase I can be used to determine the effect on
the required stock.

Finally, when considering the strengths and weaknesses for both approaches, the first observation is that a
key strength for both approaches is the simplicity; both in implementation as well as use considering the case
study. Besides that, both approaches can be adapted and expanded to meet the ever-changing operational
environment and thus requirements - this will be elaborated on more in Section 11.3. The development of
a decision support tool in Phase II introduces more parameters and thus more uncertainty. However, by
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utilising 1000 combinations of weights, the level of subjectivity is significantly reduced, as in many instances
it is expected that one of the two choices will clearly be the better one. The main weakness for both models is
that the output is as good (or accurate) as the input, and given the methodology for both approaches in which
historical data is used, this can introduce significant risk in case the actual input deviates from the assumed
input. For the WSM in Phase II, normalisation of scales and thus grades is required due to the inability of the
method to handle differences in units. This might lead to a reduction in accuracy and requires continuous
monitoring to check of the results are still valid. A major limitation is that only one area of the supply chain
is considered, while in reality there are many inter-dependencies between the different business entities in
a supply chain. Also, for both phases only regular flow is taken into account, which results in significant
discrepancies from the real-life situation depending on the distribution and effect of disrupted flow. Finally,
the focus in this research project is on TAT reduction and the effect on required number of units in stock. In
reality, there are many other parameters that affect the total performance of the supply chain, such as lease-in
cost and customer service level.

11.2. Similarities and Differences in Case Study Results Phase I & Phase II
In Phase I, the direct relationship between available capacity and shop service level is identified. The pattern
between both parameters is dependent on the length of the chosen time interval (the longer, the slower the
increase in performance per added unit of capacity), and the average number of incoming components per
day (the higher, the slower the increase in performance per added unit of capacity). Another key observation
is that the net effect of adding (or subtracting) one unit of capacity differs depending on the current available
capacity, but can be significant (>30%).

Based on historical data from 2016 and 2017, the required capacity in Shop EWF is 19 fte per day, as de-
termined in Phase I. Using a capacity of 19 as a baseline for Phase II, this is confirmed by multiple inflow
scenarios indicating that any incoming component can be repaired in-house, implying sufficient space in
the process. Using the results from Phase II it is concluded that the available capacity in the shop - and thus
the current state in the shop in terms of SL and backlog - has the largest effect on the decision to outsource a
component, which is consistent to results found in Phase I.

From Phase I is was concluded that the disrupted flow has a large impact on the possibility of meeting the
desired SL. This is partially supported by the findings from Phase II, which shows the impact of outsourcing
components on the TAT (and thus SL). In the current situation, outsourcing components leads to a much
longer TAT due to poor reclamation of components and monitoring of outsourcing TAT. This significantly
impacts the shop performance and thus the average shop TAT. It should be noted that outsourcing only takes
up a small percentage of the total number of disrupted components, meaning the effect of outsourced com-
ponents on the TAT is only a relatively small part of the effect of disrupted flow on both the SL as well as the
average TAT.

Regarding the link to the supply chain, Phase I results in a 2 day average shop TAT reduction for the VFSG,
and 4 for the IDG (considering only regular flow and pool components), resulting in a saving of 1 VFSG and
2 IDGs. This difference is taken between the actual situation and the expected new situation in which the
contracted TAT is reduced to 14. For Phase II, as stated above, the case study focused on determining the
differences in outsourced components between using and not using the decision support model. Therefore,
the expected reduction in contracted TAT was not taken into account in the initial computations. However,
if KLM starts reclaiming serviceable components from outside vendors if the TAT exceeds 28 days (current)
or 15 (new situation), the average TAT can be reduced by 1 or 4 days respectively. When looking at the top
pool components, this results in savings of 1 VFSG compared to the actual situation between January and
March 2017. Comparing this to the results from Phase I, the savings from Phase II are slightly less in terms
of stock reduction. Besides that, outsourcing 50+ components per quarter (given the current capacity of 19),
also yields additional cost of approximately USD 1.2 million.
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11.3. Possibilities for Generalisation
While the case study application requires a significant amount of specialisation, the methodologies presented
for both approaches allow for some generalisation of the results. The methodology itself is fairly basic; spe-
cialisation is introduced by means of 1) assumptions, and 2) inputs. Regarding the assumptions, a key pa-
rameter for both phases is the structure of the operational process and procedure that could influence the
path-simulation of the components. For Phase II, an important assumptions is the choice of criteria. For
example, if the expected days overdue is not a key criterion for a specific application, the entire model struc-
ture must be adjusted. When looking at the inputs, the use of historical data and distributions for both ap-
proaches allow for easily adjustable models which can be tuned to a specific application by simply using the
corresponding inflow data and distributions.

Regarding the link to the supply chain, for both approaches the focus is on the combination of business en-
tity service level and TAT reduction, which is then translated to reduction in required stock. In the KLM case
study, a direct relationship between TAT and required units in stock per component type is determined by
means of the user function. The benefit of the use of a user function is that it is highly dependent of the spe-
cific application, meaning that if the circumstances change, so should the user function. The disadvantage of
this is that there is no one-fits-all relationship and it should thus be developed per case.

Another benefit regarding generalisation is that both models (greedy algorithm as well as the decision sup-
port system) is that they essentially consist of ’blocks’, meaning that the greedy algorithm itself can be used
without the link to the supply chain, and the decision support system can be used without the operational
model as one of the key inputs. Of course, this lowers the complexity and novelty of the models, but the pos-
sibility of separating the ’blocks’ allows for broader use.

Overall, both approaches are successful in increasing service level and decreasing TAT in the presence of
highly variable inflow. The specific assumptions and operational processes can differ depending on the ap-
plication, but no fundamental changes are required if the problem has the following characteristics:

• Operational business entity in an aircraft maintenance supply chain - repair shop

• Service level problems and/or structural backlog of work

• Insufficient flexibility in the process

• Time step of 1 day yields sufficient accuracy

• Possibilities for outsourcing

• No more than 3 key criteria on which the decision to in- or outsource is dependent - service level,
expected days overdue, and direct cost





12
Conclusion & Recommendations

This chapter contains the conclusions obtained from both Phases of the research project in Section 12.1, and
recommendations for further research in Section 12.2.

12.1. Conclusions
Based on the results discussed in the previous chapters there are several conclusions to be drawn for both
phases of the research project. Phase I aims at service level optimisation by means of capacity optimisation
in the presence of highly variable demand, while Phase II focuses on service level optimisation by controlling
incoming demand by use of a multi-criteria decision-making (MCDM) model that assists in in- or outsourcing
decision-making. Both approaches aim to make a link to the aircraft maintenance supply chain by translating
service level optimisation to TAT reduction, and eventually savings in required stock.

Phase I:

For Phase I, a greedy algorithm is used which simulates the path that each component follows in steps of 1
day for the chosen time interval. The capacity is increased by 1 after each iteration of the time interval until
the service level is sufficient. This methodology is applied to the case study at KLM E&M, from which sev-
eral conclusions can be drawn. The greedy algorithm is preferred over other exact techniques such as linear
programming, due to its simplicity, transparency, high computational speed, and flexibility regarding gen-
eralisation. The main risk of a greedy algorithm (obtaining a local optimum rather than a global) is avoided
by initiating the model from 0 and increasing capacity by 1 until the desired performance is obtained. The
lowest capacity at which this occurs is automatically the best.

Firstly, there exist a direct relationship between available capacity in terms of manpower and service level
(or performance). This relationship is dependent on several parameters: distribution regular/disrupted flow,
productivity, demand scenario, priority procedure, and personnel scheduling. The implementation of dis-
rupted flow assumes a certain percentage of incoming components will be overdue, regardless of the avail-
able capacity. For the case study based on historical data from 2017 this results in a maximum performance of
83%, far below the desired 95%. The higher the productivity of technicians, the lower the waste in the repair
process, implying lower required capacity. Regarding the demand scenario, the most important parameters
are the variance in incoming inflow and the average number of incoming components per day. Increasing
(and decreasing) demand by steps of 10%, results in an almost linear relationship between required capac-
ity and incoming demand for the case study at KLM. Perhaps surprisingly, the effect of high peaks on the
required capacity is limited, suggesting the process itself contains a certain degree of flexibility. The prior-
ity procedure in many cases is a strategical choice, but has shown to impact the performance significantly.
While FIFO is the most logical procedure, another possibility is ’first-from-buffer’, which provides the illusion
of a significantly higher performance, but yields a major increase in average days overdue (in case of insuf-
ficient capacity). Finally, working multiple shifts, weekends, and/or nights, results in a different relationship
between available capacity and service level, as it effectively yields a lower RPT or longer contracted TAT. In
the case study the scenario of working weekends is tested, resulting in an average increase in performance of
10%, regardless of the current capacity.

For the case study at hand, the required capacity is computed based on historical inflow data from 2016-2017,
taking account only regular flow, and the new industry standard of 14 calendar days as contracted TAT. This
yields a required capacity of 19 net fte per day: an increase of 6 fte from the current 13. The effect of highly
variable flow can be seen in the difference in required capacity between the actual situation (19 fte), and a
simulated situation in which the variance is 0 (15 fte). Implementing a capacity of 19 in the shop yields on
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average 4 days TAT reduction for the IDG, and 2 days for the VFSG. By means of a component-specific user
function, this is translated to a reduction in required units in stock of 2 for the IDG, and 1 for the VFSG; yield-
ing a total saving of USD 1,134,086 based on current latest list price of the components.

Besides the quantitative savings described above, there is one major qualitative benefit: the shop service level
is increased significantly, and perhaps more importantly, stable. This yields higher reliability of the shop,
which extrapolates to the entire supply chain. To conclude, the greedy algorithm discussed in Phase I can
be used as a tactical model to determine the required capacity based on historical demand in an operational
environment, and provide insights and information on the effect of multiple parameters on the service level.
By implementing this model, the service level will be increased, resulting in reduced TAT and thus savings in
the required stock.

Phase II:

For Phase II, the Weighted Sum Method (WSM) is used as an MCDM to assist in in- or outsourcing decision-
making for each incoming component. The WSM is simple, transparent, fast, and allows for generalisation
of the model for other applications. The main weakness of the WSM is the inability to incorporate different
units, which is eliminated by normalisation of scales. Using the three criteria (effect on) shop service level,
direct cost, and expected days overdue, for each incoming component the model decides which option is best:
to repair the component in-house, or outsource it to an outside vendor. To limit subjectivity in determining
the level of importance of each of the criteria, 1000 combinations of weights are used to visualise the effect
on the best alternative.

Several parameters are tested to analyse the possible impact on the best alternative: chosen time interval,
available capacity, peak size, and component-repair combination. Using data from the KLM case study, it
can be concluded that the available capacity has the largest impact on the decision to in- or outsource. The
reason for this is that available capacity over a certain time interval affects the entire shop state: buffer-size,
work in stock, shop performance, and shop TAT. For a capacity of 19, the decision support system advises to
repair all incoming components in-house, up to a maximum peak of 24 incoming components in one day.
This supports the conclusion from Phase I that using a capacity of 19 fte creates sufficient flexibility, and thus
robustness, in the process to maintain the desired service level of >95%. For a capacity of 10, or even 15, the
advice is to outsource the first (and following) incoming components, in order to restore a stable and suffi-
cient shop service level. The component-repair combination might impact the decision to in- or outsource
a component, only in case of insufficient capacity and high repair cost. Maximum peak size to be handled
in-house is also highly dependent on the available capacity; for a capacity of 15 or lower, the maximum peak
size is 1. On the other hand, for a capacity of 18 the maximum peak size is 14, and for a capacity of 19 the
maximum peak size is 24.

When testing the MCDM model on a historical inflow scenario, and comparing the results to the actual situ-
ation, the first conclusion is that the model advises to outsource more than five times as many components
as the amount actually outsourced: 10 vs. 52. This results in a USD 1,200,000 increase in repair cost, but
also an increase in service level of 30% on average: from a 60% average with high variation, to a stable 90%.
Making the link to the supply chain by means of TAT and required stock, this translates to an increase in TAT
of 3 days. This is explained by the significantly longer TAT in case of outsourcing, which is five time higher in
the modelled scenario. However, if KLM follows up on contract agreements with outside vendors (maximum
TAT of 28 (current) or 15 (new)), the shop TAT is reduced by 2 and 3 days, respectively. This yields a saving of
1 VFSG in required stock for the analysis between January and March 2017, resulting in approximately USD
500,000 savings in required stock.

Similar to Phase I, a major qualitative benefit is the higher and stable service level obtained by implemen-
tation of the MCDM. This yields higher reliability and lower variance in the output. Besides that, by quickly
making in- or outsourcing decisions (preferably when the component is still at the customer), valuable trans-
portation time can be saved by ’direct outsourcing’. To conclude, the MCDM is an operational model that can
be used day-to-day to assist in in- or outsourcing decision-making, resulting in a manageable demand for the
shop. This yields a higher service level, which (following contract agreements) results in a TAT reduction and
thus savings in required stock.
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Combination, Limitations, & Generalisation:

Both approaches are successful in increasing and maintaining a high and stable service level in the presence
of highly variable demand. The generally introduced assumptions on demand characteristics are eliminated
by using a simulation of the operational process for incoming flow. The result of higher service level is trans-
lated to the turnaround time of components, which in both cases is reduced. By translating the TAT reduction
to the required stock by means of a user function, savings in terms of cost are obtained.

Comparing the results from Phase I and Phase II, the use of a MCDM (over a 3-month period) yields a larger
saving in terms of stock, however also increases repair cost significantly. Phase I yields less direct savings in
terms of stock, but is more cost-effective and provides a more strategical decision to upscale capacity to be
able to repair components in-house. In reality, a combination of approach I and II will most likely result in the
optimal combination of maximising service level and minimising cost, which will be elaborated on further in
Section 12.2.

Main limitations of the models include the inability for flexible capacity and priority procedures for the greedy
algorithm, and the use of only three criteria for the weighted sum method. When looking at the relationship
between TAT and required stock, this is highly dependent of the number of contracted tails, which can there-
fore significantly impact the results. Regarding the case study, major limitations are the focus on regular flow
and the use of historical distributions which are likely to change in the future. Besides that, only the top two
components are taken into account for supply chain analysis, and the focus is on reducing the required units
in stock. In reality there are other parameters with significant impact on the supply chain, such as Customer
Service Level and cost related to additional lease-in of components. Finally, the case study for Phase II only
takes into account a limited time interval of 3 months.

While a large degree of specialisation is introduced by introduction and analysis of the case study, the method-
ology for both phases allow for generalisation. The main reason for this is that both approaches discussed in
Phase I and II are straightforward, transparent, and relatively simple. Besides that, they consist of ’building
blocks’, which can be adapted and/or expanded depending on the application. Specialisation is introduced
mainly by use of application-specific inputs and assumptions, which therefore allows for significant flexibil-
ity in application. Overall, both approaches are successful in increasing SL and reducing TAT in the presence
of highly variable flow, focusing on applications in an operational business entity in an aircraft maintenance
supply chain that have problems in terms of service level, flexibility, and/or available capacity, with a process
that allows for outsourcing demand, and for which a time step of 1 day is sufficiently accurate.

12.2. Recommendations
While the previous section provides clear conclusions based on the research performed, there are several
possibilities for further research, which will be discussed in this section. First, specific recommendations for
Phase I and II are covered, after which recommendations for the entire project are discussed.

Phase I:

For the operational process FIFO is assumed, and the performance of the FIFO priority procedure is com-
pared to another common procedure: ’first-from-buffer’. However, there are many in-between scenarios that
have not been analysed in this research project, that could affect that relationship between available capacity
and performance. Another shortcoming of the greedy algorithm, related to the above-mentioned problem,
is that it is not able to take into account component (or customer) preferences. For example, in some cases
it might be beneficial to prioritise a Time & Material component instead of a pool component. To increase
accuracy of the model this preference should be considered.

Another possibility for further research is the implementation of higher complexity in terms of material
and/or personnel scheduling. Regarding material planning, for this model it is assumed that material is
always available, which in reality is often not true: availability of material can cause significant problems.
For the current approach and case study it is sufficient to assume one shift per day in which all technicians
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work full-time and possess the required skills to repair all incoming components. For other applications, or
to analyse the effect on the service level, the implementation of multiple shifts, contract-types, flexible skills,
and process sequences should be researched.

For the case study at hand, the optimal capacity is taken as the minimum required shop capacity to handle
historical inflow data. Dependent on the strategy at KLM, the optimal capacity could be either higher or lower
than the required capacity. This possibility was not part of the scope of this research project, but can be of
interest for the business. Besides that, the capacity is taken as a fixed parameter, while in reality capacity is
uncertain due to unexpected illness and holidays. To increase accuracy, it is advised to take this uncertainty
into consideration for future research.

Phase II:

One of the main limitations of the approach taken in Phase II is that the inter-dependencies between the dif-
ferent criteria of the multi-criteria decision-making model are not taken into account. In reality, the service
level is affected by the expected days overdue, and vice versa. While in most cases it does not lead to a differ-
ent ’best alternative’, it would improve accuracy of the model.

In order to determine the effect of different parameters on the best alternative, for the case study one base-
line scenario was used. To increase the accuracy, it would be advised to test the effect on multiple scenarios.
Besides that, the effect of capacity uncertainty should be taken into account; similarly to Phase I, the capacity
is assumed to be fixed, which decreases accuracy of results.

For the research project at hand the MCDM model is validated using expert validation and a sensitivity anal-
ysis performed on a case study. In order to validate the results further it would be advised to use the model in
the shop to see the effect on the service level and cost.

General Recommendations:

Firstly, while the effect of disrupted flow is taken into account in the relationship between available capacity
and performance, it is not taken into consideration when considering the required capacity. As shown in the
case study, the impact of disrupted flow on the possibility of meeting the required service level is significant.
For that reason it is important to further analyse the effect of disrupted flow on the service level, and thus on
the TAT and stock levels.

When looking at the link to the supply chain, it is limited to TAT reduction, translated to possible savings in
required units in stock. It is advised to provide a more complex relationship between TAT and required stock.
Besides that, only the top 2 components are considered in this research project. To create a more accurate
representation of the possible savings in terms of cost, other parameters should also be taken into account
such as lease-in cost of additional components, or indirect cost due to overdue components, and a larger
number of components.

This research project contains two approaches to service level optimisation in the presence of highly variable
inflow from an aircraft maintenance supply chain perspective. The next step would be to combine both ap-
proaches to determine the optimal capacity. For the case study at hand, implementing the required capacity
of 19 fte net per day, means the use of a decision support system is not necessary, since there will be sufficient
flexibility in the process to handle almost all inflow scenarios - assuming similar demand. Decreasing the
capacity to 18 would already yield different results, in some cases a service level drop of 30%. Combining this
information with the MCDM to outsource certain components to control the inflow and maintain a stable
and sufficient SL could result in an overall better performance, and lower cost. The next step would therefore
be to combine both approaches and analyse possible effects on service level, cost, and TAT.
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A
Appendix: Visualisation Greedy Algorithm

This appendix covers the day-to-day simulation performed by the greedy algorithm in FIFO priority proce-
dure (Figure A.1), and an example of a simulated day in case of ’first-from-buffer’ in Figure A.2.

Figure A.1: Visualisation of Greedy Algorithm
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Figure A.2: Visualisation of Key Simulation Actions Greedy Algorithm: Day 6 First-from-buffer



B
Appendix: Demand Forecasting

This chapter provides the methodology and results of the implementation of forecasting techniques for the
inflow of Shop EWF for 2017. For the application at hand the focus is on moving average techniques and
exponential smoothing techniques. Other techniques include bootstrapping and neural networks, which are
eliminated due to the high level of complexity and the need for large amounts of training data. Section B.1
covers a brief theoretical introduction to the techniques used. Using historical data from Shop EWF in 2017,
the results are presented and discussed in Section B.2.

B.1. Theoretical Background Demand Forecasting Techniques
Naive forecasting method. This is a primitive forecasting method in which the expected demand is equal to
the last observed demand. While this method is incredibly simple, it is highly inaccurate and therefore often
only used as a benchmark.

ˆyt+1 = yt (B.1)

Simple Average. In this method the average of all previous values is taken as the new expected demand. This
method generally performs better than the naive forecasting method, but is much too simple to be able to
take into account complexities such as seasonality and trends.

ˆyt+1 = 1

n

n∑
i=1

yi (B.2)

Moving Average (MA). This method is similar to the simple average method, but instead of taking the average
of all previous demand points, it only considers the last n demand points. According to Callegaro et al. [3],
this method is only suited for smooth and/or slow moving demand, and has few fields of applicability due to
its simplicity.

ˆyt+1 = 1

n

n−1∑
i=0

yt−i (B.3)

Weighted Moving Average (WMA). This is a moving average method in which specific values within the last
n demand points are given different weights w. In the end, the weights should add up to 1. In general,
more recent points are given a higher weight. This technique is again fairly easy to implement, as argued by
Ghobbar [8] and Callegaro et al. [3]. However, similar to MA, WMA is only applicable in case of low lumpiness.

ˆyt+1 =
n−1∑
i=0

wt−i yt−i (B.4)

Single Exponential Smoothing (SES). This method can be seen as a weighted average method in which all
previous data points are assigned exponentially smaller weights, eventually approaching zero. This method
is also known as the exponential weighted moving average (EWMA), and can thus also be categorised as a
moving average technique.

ŷt =αyt + (1−α) ˆyt−1 (B.5)

Here, α is the smoothing factor and is 0 < α < 1. The higher α, the faster the model ’forgets’ older values;
meaning higher weights are given to the more recent values. Exponential smoothing was first introduced
by Brown in 1956, and expanded by Holt in 1957. Gardner [17] states that SES has been used extensively in
a wide variety of fields, including spare part demand, due to its simplicity. However, SES does not perform
well in case of intermittent of lumpy demand, as noted by Croston [24]. Also, similar to the moving average
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techniques, SES introduces a lag in predicting future demand. Another disadvantage of SES is that it does not
handle trends or seasonality well. Besides that, it is mostly suitable for short-term forecasting [17].

Double and Triple Exponential Smoothing. As discussed previously, SES does not handle trend and/or
seasonality well. Double exponential smoothing applies ES to both level and trend, and triple exponential
smoothing applies ES to level, trend, and seasonality. Level is now indicated by l , trend by b, and seasonality
by s.

lt =α(yt − st−L)+ (1−α)(lt−1 +bt−1) (B.6)

bt =β(lt − lt−1)+ (1−β)bt−1 (B.7)

st = γ(yt − lt )+ (1−γ)st−L (B.8)

ˆyt+m = lt +mbt + sx−L+1+(m−1)modL (B.9)

Here, α, β, γ indicate smoothing factors determined by fitting, m is any integer, and the index of the seasonal
component indicates the offset into the list of seasonal components from the last set from observed data. It
should be noted that the above stated equations are additive rather than multiplicative, but both are valid.
Both double as well as triple exponential smoothing methods are also known as the Holt-Winters forecasting
method. Gardner [17] provides a detailed overview of standard exponential smoothing methods, including
damping, multiplicative and additive expansions to incorporate trend and/or seasonality. As to be expected,
double and triple ES methods are more accurate and can include trend and seasonal effects. Both are still rel-
atively simple to implement and robust in results, as argued by Regattieri [6]. However, as stated by Bacchetti
[1], there is still a problem when dealing with intermittent or lumpy demand.

Croston’s method (CR). Since a major problem with previously discussed methods is the low performance
in case of intermittent or lumpy demand (something that is very likely in the airline maintenance industry),
Croston [24] developed a method based on ES to deal with intermittent demand. Two options are considered,
option 1: if yt = 0:

pt = pt−1 (B.10)

zt = zt−1 (B.11)

qt = qt−1 +1 (B.12)

Option 2: if yt 6= 0:

pt = pt−1 +α(qt−1 −pt−1) (B.13)

zt = zt−1 +α(yt − zt−1) (B.14)

qt = 1 (B.15)

ŷt = zt

pt
(B.16)

Here, pt is the demand interval at time t, zt is the mean demand size at time t, q is the zero demand interval
counter, and yt is the demand at time t. The main advantage of CR compared to other exponential smoothing
methods, as stated by Wang et al. [67] is that it takes into account the nature of the relevant demand pattern,
meaning demand arrivals as well as demand sizes. Croston’s method is currently widely used in industries
that deal with intermittent demand, such as aviation, automotive, military and IT sectors [43][62]. Willemain
et al. [62] concluded that Croston’s method is superior to ES under intermittent conditions. Syntetos and
Boylan argued that Croston’s method is biased and proposed an adjusted method, proving its superior per-
formance, as discussed further below.

The Syntetos-Boylan Approximation Method (SBA). In 2001, Syntetos and Boylan showed that Croston’s
method is postively biased by identifying an error in the mathematical derivation of the expected demand



B.1. Theoretical Background Demand Forecasting Techniques 81

[25], and with a follow-up paper in 2005 proposed an adjusted method: the Syntetos-Boylan Approximation
[26]. IN SBA the estimator of mean demand set by Croston is deflated by a factor of 1− α

2 :

ŷt = (1− α

2
)

zt

pt
(B.17)

Several studies (Eaves and Kingman [9], Gutierrez et al. [51], and Syntetos and Boylan [26]) have shown SBA
to outperform Croston’s method. Due to this, its relative simplicity and proof of concept in the spare part
demand research area, SBA is considered a benchmark approach. Other improvements to Croston’s method
have appeared, e.g. by Teunter et al. [45], who argued that the Syntetos-Boylan Approximation had a negative
bias. However, SBA is still the method with the most empirical support. It should be noted however, that SBA
is biased for non-intermittent demand.

Syntetos method (SY). The previously discussed bias for intermittent demand when using the SBA method
is removed by Syntetos [25], who introduced the following factor to forecast demand. It should be noted that
even though the bias on non-intermittent demand is removed, introducing the SY factor increases forecast
variance.

ŷt = (1− α

2
)

zt

pt − α
2

(B.18)

Teunter-Syntetos-Babai method (TSB). The problem with many of the above mentioned methods (CR, SBA,
SY) is that they do not handle obsolescence well. This means that in case obsolescence occurs, these fore-
casting methods continue to forecast a fixed nonzero demand. Compared to both Croston as well as SBA, the
difference lies in the fact that instead of estimating interval size, TSB estimates the probability of non-zero
demand [46]. Besides that, the estimates are updated every period rather than only when demand occurs.
Again, two situations are assessed, using dt to indicate demand occurrence, where dt = 1 in case of nonzero
demand, and dt = 0 otherwise. Also, v is the estimate of demand for time t.
For dt = 0:

vt = vt−1 −βvt−1 (B.19)

zt = zt−1 (B.20)

ŷt = vt zt (B.21)

For dt = 1:

vt = vt−1 +β(1− vt−1) (B.22)

zt = zt−1 +α(yt − zt−1) (B.23)

ŷt = vt zt (B.24)
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B.2. Results Demand Forecasting Shop EWF
Implementing the techniques discussed above to the inflow of Shop EWF for 2017, the results for Moving Av-
erage and Weighted Moving Average techniques are shown in Figure A.1. For Single Exponential Smoothing,
Croston’s Method, Syntetos-Boylan Approximation, Syntetos’ Method, and Teunter-Syntetos-Babai Method,
the results are shown in Figure A.2.

Figure B.1: Mean Average Deviation for Varying n: MA, WMA

Figure B.2: Mean Average Deviation for Varying Alpha: SES, CRO, SBA, SY, and TSB

From the results shown above, it can be seen that for the moving average techniques, the mean average de-
viation decreases with increasing n; where n is the number of data points taken into account for the moving
average. For the exponential smoothing techniques, the mean average deviation decreases with decreasing
al pha (and bet a). Both indicate that the performance of the forecasting model increases when getting closer
to the average; with the optimal performance in case the average is expected.



C
Appendix: Expert Validation Scenarios

Table C.1: Scenario 1

Current shop SL 22%
Incoming component IDG minor repair

Scaled repair cost if outsourced 0.1358
Effect on shop SL 0.33%

Expected days overdue if outsourced 30
Expected days overdue in-house repair 55

Table C.2: Scenario 2

Current shop SL 22%
Incoming component VFSG major repair

Scaled repair cost if outsourced 0.9657
Effect on shop SL 0.33%

Expected days overdue if outsourced 30
Expected days overdue in-house repair 55

Table C.3: Scenario 3

Current shop SL 42%
Incoming component IDG minor repair

Scaled repair cost if outsourced 0.1358
Effect on shop SL 1.33%

Expected days overdue if outsourced 30
Expected days overdue in-house repair 13

Table C.4: Scenario 4

Current shop SL 42%
Incoming component VFSG major repair

Scaled repair cost if outsourced 0.9657
Effect on shop SL 1.33%

Expected days overdue if outsourced 30
Expected days overdue in-house repair 15
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Table C.5: Scenario 5

Current shop SL 70%
Incoming component IDG minor repair

Scaled repair cost if outsourced 0.1358
Effect on shop SL 0.33%

Expected days overdue if outsourced 30
Expected days overdue in-house repair 1

Table C.6: Scenario 6

Current shop SL 70%
Incoming component VFSG major repair

Scaled repair cost if outsourced 0.9657
Effect on shop SL 0.33%

Expected days overdue if outsourced 30
Expected days overdue in-house repair 1

Table C.7: Scenario 7

Current shop SL 93%
Incoming component IDG minor repair

Scaled repair cost if outsourced 0.1358
Effect on shop SL 0%

Expected days overdue if outsourced 30
Expected days overdue in-house repair 1

Table C.8: Scenario 8

Current shop SL 93%
Incoming component VFSG major repair

Scaled repair cost if outsourced 0.9657
Effect on shop SL 0%

Expected days overdue if outsourced 30
Expected days overdue in-house repair 0

Table C.9: Scenario 9

Current shop SL 98%
Incoming component IDG minor repair

Scaled repair cost if outsourced 0.1358
Effect on shop SL 0%

Expected days overdue if outsourced 30
Expected days overdue in-house repair 0

Table C.10: Scenario 10

Current shop SL 98%
Incoming component VFSG major repair

Scaled repair cost if outsourced 0.9657
Effect on shop SL 0%

Expected days overdue if outsourced 30
Expected days overdue in-house repair 0
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