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Abstract

Soil Moisture is a key hydrological variable since it controls the interactions between the
atmosphere, biosphere and hydrosphere. It is responsible for the partitioning of precipitation
into evaporation, transpiration, percolation and run-off. Soil Moisture monitoring is used to
indicate droughts in vegetated areas and is an important parameter to early warning systems for
flood. Therefore, throughout the years human population attempted to monitor and control it.
The advent of Remote Sensing, during the past decades, enormously influenced soil moisture
research by enabling acquisition of large scale data. Many Remote Sensing systems were
developed exclusively to study this variable.

Land subsidence, triggered both by human activity and natural processes, is another phe-
nomenon whose monitoring is crucial for the environment and the human populationa and
is thus an essential variable which needs to be continuously monitored in vulnerable areas,
since it can damage buildings’ foundations. Remote Sensing and more specifically Microwave
remote sensing has been pivotal in studying land deformation and subsidence in near real
time. Detecting and monitoring land subsidence and deformation with InSAR method has
been meticulously researched however there are still obstacles to overcome such as vegetation.

The aim of this research is to study whether InSAR closure phases can be used to detect
moisture changes. The idea of using closure phases for soil moisture estimation was proposed
by De Zan, Parizzi, et al. 2013 and further studied by Zwieback, Hensley, and Hajnsek 2015a.
The closure phase inversion model of De Zan and Gomba 2018 is implemented in this thesis
using Sentinel-1 C-band for the inversion and SMAP data for the evaluation of the results. The
results support the idea that this method has potential over bare soil and low vegetated areas
but struggles to overcome vegetation due to its limited penetration capability. Furthermore,
soil moisture changes may introduce a systematic error to land subsidence measurements.
For this reason, the idea was to make use of the generated soil moisture data to produce
interferometric phase corrections over the study areas. However, the results are inconclusive
due to the poor quality of the data over vegetated areas.
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1
Introduction

Soil moisture content (SMC) is a key hydrological and climatic variable in various applications
domain (Paloscia et al. 2013) and responds dynamically to sequences of the complex processes
in the soil. Soil moisture is one of the most important general characteristics of the soil and
has an extremely variable value over time and space. Soil moisture which in essence is the
water than is held in the soil within reach of the plants’ roots controls the interactions among
the atmosphere, biosphere and hydrosphere (Wagner, Lemoine, and Rott 1999). Changes in
soil moisture may trigger or accelerate multiple processes on the land surface such as flood
events, landslides and land subsidence, the latter being the most important for the present
thesis. Apart from the effect on the aforementioned processes, soil moisture changes may
induce systematic errors and bias to the spatial and temporal patterns of land deformation
measurements, produced by microwave remote sensing, which are not yet well studied and
understood (Zwieback, Hensley, and Hajnsek 2015b). Consequently, its monitoring is of utmost
importance to a wide range of scientific disciplines, such as hydrology, geohydrology, geology
etc.

1.1. Research motivation
Land subsidence is a prevailing issue in many areas all around the world, with many of them
being in coastal areas close to river deltas. There is both human and non-human induced land-
subsidence. Pair that with an increase of the mean sea level globally and the issue is becoming
even more apparent. The Netherlands is a prime example of that where land subsidence due to
anthropogenic (groundwater extraction), geochemical (peat oxidation) geological subsidence in
tandem with sea level rise, pose a threat to the inhabitants. In a sense, Netherlands is a fertile
ground for land subsidence studies as different areas are subjected to subsidence stemming
from different human or non-human induced processes.

Figure 1.1 presents the current situation for the whole of the Netherlands as well as for
the area of Delft and Delfland. At the north of the country lies the Groningen gas field,
Europe’s largest gas field. The extraction of gas reduces the pressure of the underground
chamber leading to its compaction and subsequent land subsidence on the ground above.
Due to its close proximity to the sea and the looming dangers, the rate of subsidence is put
under close inspection (Thienen-Visser, Pruiksma, and Breunese 2015). The western part
of the Netherlands came to be habitable from the reclamation of peatlands and lakes. This
kind of drainage exposed peat to aerobic conditions leading to its oxidization. Nowadays the
subsidence continues in rural areas because of groundwater extraction causing peat oxidization
and in urban areas due to soil consolidation.

1



2 1. Introduction

Figure 1.1: Land subsidence map of the Netherlands (left), the area around Delft and Delfland (middle) and
the given legend (right) (bodemdalingskaart.nl) (total) (Bodemdalingskaart 2018)

Throughout the years different technologies have been implemented to detect and quantify
land subsidence, the most common being remote sensing techniques. Soil moisture and its
temporal variability is one of the components affecting the quality of said techniques. The
focus of this research will primarily be to investigate whether microwave remote sensing can be
used to initially estimate soil moisture and then examine the possibility of using the generated
soil moisture data to correct land subsidence measurements.

1.2. Introduction to Microwave Remote Sensing
Remote sensing is the science of studying elements on the surface of the Earth without making
in situ contact with them. Different remote sensing methods have been developed over the
years in order to be implemented in a vast array of science disciplines and other fields, from
cartography, ecology and earthquake geology to military spying activities and even locating
houses without a building permit.

Remote sensing systems employ sensors which operate on certain ranges of the electro-
magnetic spectrum. On one hand, systems making use of visible, near infrared nd shortwave
infrared sensors are classified as optical remote sensing. On the other hand, those operating on
the microwave wavelength region are classified as microwave remote sensing. Remote sensing
systems are usually mounted on either satellite, planes and even drones or rails (Ground Based
SAR). All microwave systems fall under two categories, passive and active.

The passive sensors receive radiation from two sources: sunlight radiation reflected from
the surface of the Earth and radiation emitted by the object themselves depending on the
physical attributes of the object. Passive methods are usually applied for the detection of
snowmelt but also for soil moisture. Active sensors emit their own energy in the form of
an electromagnetic wave and then receive the reflected radiation which is backscattered by
the different objects it comes in contact with. Active microwave systems are independent of
external energy sources, while both active and passive systems have the ability to penetrate
clouds depending on the wavelength they operate. Hence they can be used to retrieve images at
all times and in all weather conditions. Backscatter from targets on the ground depends both
on physical parameters such as geometric shape, surface roughness, dielectric properties etc.
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and on electromagnetic parameters of the radar system used like incidence angle, polarization,
frequency etc.

1.2.1. Introduction to InSAR
Synthetic Aperture Radar (SAR) is a side-looking active microwave system that produces high
resolution images of the land surface or objects on it. SAR is a monostatic radar (single
antenna to emit and receive microwaves) platform where both temporal (revisit time) and
spatial resolution vary depending on the special characteristics of the satellite constellation.
A very important trait of the SAR technique is that it is a coherent imaging system, meaning
that the amplitude and the phases of the emitted pulses are preserved. This characteristic
allows the implementation of interferometry (Engdahl et al. 2013).

InSAR (Interferometric Synthetic Aperture Radar) is a technique based on utilizing the
phase differences between two or more SAR images. There are different forms of InSAR,
depending on the acquisitions’ temporal and/or spatial baseline and the parameters of the radar
system used. This thesis will focus on two different but not mutually exclusive InSAR forms:
repeat pass interferometry and differential interferometry, in order to use the phase difference
information to estimate soil moisture changes and eventually land deformation. Repeat pass
interferometry employs acquisitions taken at different times, allowing the study phenomena
inducing land changes such as land subsidense, ice dynamics etc. Differential Interferometry
is the technique where using a DEM, the contribution of the altitude is subtracted from the
interferometric phase allowing the estimation of the terrain motion component (Ferretti et al.
2007).

1.3. Problem Statement and Objectives
The area of Delfland, south of Delft is such an area where peat soils are prevalent and land
subsidence has been noted. In order to monitor and study the subsidence of this particular
area, the method of InSAR, among others, has been implemented. However, the products
of this method have been plagued with systematic errors, caused by the effects that both
vegetation and the high organic content of the soil have on the SAR signal.

At this point, the possibility to take advantage of InSAR closure phases to estimate soil
moisture changes, a novel method proposed by De Zan, Parizzi, et al. 2013, De Zan, Gomba,
and Yokoya 2018 (Zan et al., 2014; De Zan and Gomba, 2018) and De Zan and Gomba 2018,
and studied by Zwieback, Hensley, and Hajnsek 2015a; Zwieback, Hensley, and Hajnsek 2015b;
Zwieback, Hensley, and Hajnsek 2017, comes into play. The study by De Zan, Parizzi, et
al. 2013provide insight into using phase triplets, from SAR products, to obtain information
regarding soil moisture changes. This method is quite promising since the benefits are twofold.
First of all, it may be able to generate soil moisture data with fine spatial resolution (pixel
size less than 1x1km). Second, soil moisture information can prove to be very useful for land
deformation monitoring studies since changes in it induce significant noise in InSAR data.
Knowing the soil moisture, would result in its quantification into phase correction De Zan and
Gomba 2018 to insert into InSAR estimates.

1.3.1. Research question
To this date, a vast array of techniques has been developed to retrieve large scale soil moisture
data, however closure phases remains a seldomly touched domain. This thesis research aims
to contribute to current knowledge about the utility of InSAR closure phases as a means to
derive soil moisture. According to literature, L-band closure phase data have shown potential
in soil moisture retrieval over bare ((De Zan, Parizzi, et al. 2013))and vegetated ((De Zan and
Gomba 2018)) areas, however no extensive research has been done so far using C-band data.
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Hence, the scope can be summarised as:

• To determine whether soil moisture in vegetated areas can be accurately estimated using
the method of phase closure inversion of C-band data

• Produce a time series of soil moisture data of the study area

• Test whether soil moisture is correlated to land deformation and model its contribution

1.4. Research Questions
The research question that arises during the problem statement is related to this thesis is
formulated and presented as follows:

Is it possible to detect soil moisture changes with the method of closure phase inversion,
using Sentinel-1 C-band data?

The main research question can be then split to sub questions:

1. Does the phase closure inversion method proposed by De Zan work in C-band?
So far, the method proposed by De Zan has only been implemented using L-band Alos-2
data and the results so far have been quite promising. It is a priori known that due
to a shorter wavelength C-band’s penetration ability is weaker than L-band’s, since the
penetration capability of a microwave is inversely proportional to the frequency of the
signal. C-band penetration depth has beenfound to be 1-2 cm, while L-band’s is betwwen
5 and 8 cm (Owe and Van de Griend 1998). Consequently, the quality of C-band derived
soil moisture is expected to be somewhat lower than that of L-band.

2. How does land cover affect the closure phase dataset?
The texture of the soil plays a major role in the natural processes revolving around
soil moisture and therefore it has to be taken into account by the employed method.
However, on top of that, there is a wide range of objects on the surface obstructing the
radar signal from reaching the soil. These objects can be different types of vegetation,
ranging from bushland to forest, snow, permafrost etc. Moreover, there are also areas
where man-made structures completely replaced soil and thus the drainage is artificial,
ergo, it is of interest to observe how closure phases behave for different land cover types.
There are methods which can be used to possibly filter out vegetation effects but they
will not be investigated in this study.

3. Is the detected soil moisture spatially consistent with land cover?
This comes up as a follow up to the previous question. Consistency is an important
parameter in order to decide whether the results are arbitrary or can be trusted. Pixels
belonging in the same land cover would ideally have similar coherence and closure phase
history which would result in similar soil moisture trajectory.

4. Is it possible to use the produced soil moisture timeseries for interferometric phase cor-
rections?
The method employed for the estimation of soil moisture fluctuation can be reverse
engineered to convert those time series into interferometric phase correction. We know
for a fact that soil moisture changes induce noise/systematic error to InSAR phases,
which is yet to be adressed and accounted for into modern models. Due to this, it would
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be interesting to test whether the proposed model can provide accurate phase corrections
to be subsequently used to possibly correct land deformation measurements by filtering
out this “noise displacement”

1.4.1. Thesis outline
This thesis consists of five chapters and an appendix. Chapter 2 covers most of the basics
regarding the scientific and technical background of both soil moisture and Interferometry.
This knowledge will be valuable to further comprehend the following chapters. Last, a brief
introduction to the study areas will be given. In Chapter 3 the methodology of this research
is meticulously presented. First, there is an overview of the data acquisition and preprocess-
ing, followed by the description of the soil moisture estimation method that is implemented
and the follow up “translation” of the produced timeseries into land deformation correction.
In Chapter 4 the most important results of this research are presented and discussed. The
rest of the results and the interferograms can be found in the Appendix. Finally, the soil
moisture results produced will be evaluated and the possibility of them being used to enhance
InSAR land deformation monitoring. In conclusion, Chapter 5 will present brief answers to
the research questions introduced in chapter 1 and present some recommendations for further
research. Finally, additionally produced figures will be included in the Appendix.





2
Background Information

This research has two main objectives, them being study whether soil moisture differences can
be modelled from InSAR phase closure as well as whether those now modelled soil moisture
differences can reduce the uncertainty in land deformation monitoring. The basic concepts of
soil moisture and Interferometry will be explained in this chapter.

2.1. Soil Moisture
Soil moisture is an essential component of the earth system, notably but not exclusively in the
water balance of a water catchment area. It has a key role in the feedback processes between
land and atmosphere, hence the importance to estimate soil moisture storage in order to gain
a better grasp of the processes involved. The fundamental equation for soil moisture modelling
is the following:

𝑑𝑆
𝑑𝑡 = 𝑃 − 𝐸𝑇 − 𝑅 (2.1)

Which can be also presented in a more detailed fashion:

𝑑𝑆
𝑑𝑡 = (𝑃ᑣ + 𝑀)–(𝐸 + 𝑇)–(𝑅ᑠ + 𝑅ᑤ + 𝑅ᑘ) (2.2)

Where the change of soil moisture in time depends on the tradeoff between the moisture
input from precipitation 𝑃ᑣ and snowmelt 𝑀 and the moisture loss through evapotranspiration
(evaporation 𝐸 and plant transpiration 𝑇) and runoff 𝑅. Runoff can be further partitioned
in Hortonian overland flow 𝑅ᑠ, subsurface lateral flow 𝑅ᑤ and percolation to groundwater 𝑅ᑘ.
Furthermore, the soil moisture content of the root zone defines the availability of water to
plants (Legates et al. 2010).

Soil moisture is the underlying factor in all three major subdivisions of physical geography:
climatology, hydrology & geomorphology as well as biogeography. A deep understanding of its
nature and variability helps to identify interactions between the three aforementioned branches.

2.1.1. Soil Moisture & Microwave Remote Sensing
During the past three decades, microwave remote sensing has been employed to detect surface
soil moisture changes over bare and vegetated soils. This is possible due to the ability of
microwave remote sensing to make estimations of the soil’s dielectric properties based on land
surface emissivity (Mohanty et al. 2017).

In microwave remote sensing soil moisture (SM) refers to the volumetric water content
(VWC) 𝜃 of a soil and is defined as the volume of water 𝑉ᑨ existing in a volume of soil 𝑉ᑤ.

7
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Volumetric water content is expressed as a ratio [𝑚Ꮅ/𝑚Ꮅ] and its maximum value is equal to
the soil’s porosity.

𝜃 = 𝑉ᑨ/𝑉ᑤ[𝑚Ꮅ/𝑚Ꮅ] (2.3)

Typically, low frequency radars (X-, C- and L-band) have been used to estimate near-surface
(0-5cm) soil moisture. This near-surface soil moisture should not be confused with root zone
soil moisture which can not be detected using Microwaves due to their limited penetration
capability. Over the years, multiple satellite platforms have been employed to acquire global
soil moisture products, both passive and active. Both passive and active systems rely on
either (semi-)empirical or physical models to describe the dielectric behavior of moist soils
as a function of soil physical parameters at microwave frequencies (Hallikainen et al. 1985).
Additional models are implemented for soil moisture estimation over vegetated areas such as
the Water Cloud model, crop model and the f-k model (Zhang and Zhou 2016).

2.1.2. Climatology and atmospheric moisture
The energy balance is a mechanism where soil moisture serves as an integral cogwheel. It is
responsible for the partitioning of energy at the land-atmosphere interface into latent (evapo-
ration) and sensible (heating the air) heat (Duerinck 2014). The following equation presents
the so-called energy balance:

𝑅ᑟ = 𝐻 + 𝜌ᑨ𝜆Ε + 𝐺 (2.4)

Where 𝑅ᑟ is the net radiation available at the surface of the Earth needed to heat the air 𝐻,
evaporate water 𝜌ᑨ𝜆Ε and heat the ground 𝐺.

Figure 2.1: Global energy balance from (Physics of Evaporation) by (A.M.J. Coenders-Gerrits)

Comprehensive studies by (Ent et al. 2010) (Yoshimura et al. 2004) showed that a signif-
icant portion of the global precipitation originates from atmospheric moisture generated by
terrestrial evaporation as illustrated by 2.2. This phenomenon is called moisture recycling. It
was estimated that on average 40% of global precipitation is provided by continentally gener-
ated moisture, ranging from as low as 20% in Oceania to as high as 48% in Africa, while 57%
of terrestrial evaporation returns to continents in the form of precipitation, with a high of 66%
for Europe. The contribution of terrestrial evaporation varies both spatially and temporally
and there are numerous reasons for that. Moreover, (van der Ent et al., 2010) provided a
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parameter called rainfall multiplier (𝑚ᑔ) indicating the amplification of precipiation with a
global average value of 1,67.

Figure 2.2: Average continental evaporation and precipitation recycling ratios

2.1.3. Hydrology
Hydrology is the science where the distribution and movement of water within the hydrologic
cycle is studied. The soil and in particular the unsaturated zone lies at the interface between
land surface and the first layer of the atmosphere, thus being key-variable acting as the partition
controller of the input (precipitation) into three components (Brocca, Melone, and Moramarco
2005). The three partition paths are evapotranspiration, infiltration and surface runoff and
their interaction with the soil water content of the unsaturated zone can be understood by
studying the layout of a lumped conceptual hydrological model 2.3.

Figure 2.3: Layout of a lumped conceptual model. ፏ is precipitation, ፄ is evapotranspiration while ፒᑦ and
ፒᑦ,ᑞᑒᑩ are the current and the maximum storage respectively in the unsaturated zone. ፑᑗ is runoff and ፑᑤ is
slow response (infiltration) (Aalbers 2015)
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This model, called FLEX, which was developed by (Fenicia et al. 2006) acts as a simplified,
abstract, yet not dumbed down, representation of a drainage basin (typical scale of a hydrolog-
ical system). The water content of the unsaturated zone can be perceived as a reservoir which
receives precipitation as input and then distributes (hydrological response) it to various parts
of the system. The presence of the unsaturated zone storage at the majority of the governing
equations of the FLEX model signify the importance of soil moisture on the early stage of the
hydrological cycle.

𝐸 = 𝐸ᑡ ∗ 𝑚𝑖𝑛(1, 𝑆ᑦ
𝑆ᑦ,ᑞᑒᑩ

1
𝐿ᑡ

) (2.5)

where 𝐸ᑡ is the potential evaporation and 𝐿ᑡ(−) the fraction of maximum storage below
which evaporation is constrained by moisture. In similar fashion for infiltration 𝑅ᑗ and fast
runoff 𝑅ᑗ respectively:

𝑃ᑚ = (1 − 𝜌) ∗ 𝑃 (2.6)

𝑅ᑗ = 𝜌 ∗ 𝑃 (2.7)

Precipitation 𝑃 fills (infiltrates) the reservoir over time, until a certain threshold is exceeded,
which depends on its physical properties (soil texture etc.). Afterwards, the precipitation is
partitioned into two parts, the first being infiltration and the latter being fast runoff. The
runoff coefficient � , which dictates the division into the aforementioned flows, depends on both
soil moisture and saturation threshold.

𝑅ᑊ = 𝑆ᑦ
𝑆ᑦ,ᑞᑒᑩ

∗ 𝑅ᑊ,ᑞᑒᑩ (2.8)

The percolation rate to the underground is linearly constrained by the relative soil moisture
content (Aalbers 2015).

2.1.4. Geomorphology & Biogeography
Geomorphology is another scientific study where soil moisture behavior is key knowledge to
understand a wide spectrum of natural phenomena. Two main categories of such phenomena
will be presented at this subchapter, hydrologic-aeolian erosion and mass wasting.

Soil erosion is a perpetual natural land process, which can be accelerated and enhanced by
human-induced activities. This enhancement is by no means positive, as increased soil erosion
leads to soil degradation, which has adverse effects on agriculture and environmental quality
(Lal et al. 1994). This kind of degradation is especially apparent and hazardous in dryland
areas. This environmental disaster only progresses geometrically, as increased soil degradation
leads to aridity which further exacerbates the issue. There are two major factors affecting soil
erosion, wind and soil water content, the latter’s impact often being discounted. According
to (Thomas and Middleton 1997) wind and water erosion contribute to 87% of the degraded
land. On one hand, wind erosion is more dominant in arid climate. Among the reasons wind
erosion is prevalent is the absence of soil moisture. Moisture has a direct effect on the bonding
forces of soil particles. Those bonding forces are further increased by vegetation which actively
protects soil from wind erosion (Ravi et al. 2010). This kind of erosion is deterred by the
presence of biological soil crusts, often consisting of a mixture of fungi, algae and soil particles,
as they increase soil stability.

On the other hand, water erosion prevails in humid climate. It is associated with processes
related to the hydrologic cycle such as rainfall and runoff. The impact of the raindrops on
the ground break the soil aggregates which are then dislodged due to the kinetic energy of the
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generated by rainfall. At the previous chapter, the effect of antecedent soil moisture on runoff
generation was mentioned (Ravi et al. 2010). This antecedent soil moisture also indirectly
affects the nutrient and sediment loss caused by overland flow (Legates et al. 2010).

Mass wasting or mass movement is a poll of natural processes where soil, rock etc will
move downhill following the local relief. Common triggering mechanisms are earthquakes,
overburden from structures and increased soil moisture. As it has been already mentioned,
water surface’s tension is essential to maintain soil cohesion. A simple example is building a
sand castle, where water is needed to construct the walls and the towers, yet if the structure is
flushed with water it will eventually collapse. Slope stability obeys to the same law of nature:
a small amount of water is needed to maintain cohesion, yet too much of it will diminish
friction effects and will lead to a landslide or soil creep (Lumen Physical geography 2017).
Fieldwork studies have indicated, that the rapid increase of pore-water pressure is pivotal for
the initiation of slope failure (Tohari, Nishigaki, and Komatsu 2007). Precipitation introduces
infiltrating water which in turn dissipates the soil suction in the unsaturated zone, resulting
in reduction of shear strength. (Ray, Jacobs, and Alba 2010) that a concurrent increase of
unsaturated zone water content and a rising groundwater table increase the vulnerability of
slope failure.

2.2. SAR Remote Sensing
A SAR is an active microwave imaging radar, mounted on a moving platform, which illuminates
the surface with its own radiation, thus making the system independent of solar radiation. It
has the ability to penetrate clouds, precipitation and depending on the microwave frequency
used, it may also penetrate foliage, vegetation even ground. The backscattered signal is col-
lected by the same radar antenna. As shown in 2.4 the satellite, on which the antenna is
mounted, flies in azimuth direction, also called along track, the antenna is facing the Earth.
The direction of the antenna’s Line of sight (LOS) is called across track and since the system
is side looking, the look angle forms an angle 𝜃 to the nadir direction (Engdahl et al. 2013).

Furthermore, the radiation emitted by the system is coherent, meaning that the frequency
and waveform are always the same and the phase difference between two waves is always
a constant. This is an essential characteristic of SAR as it allows the implementation of
interferometry.

This thesis research mainly revolves around the exploitation of interferometry, a widely
known and applied SAR technique, in order to obtain information regarding soil moisture.
In addition to classic interferometry, a novel method developed by (De Zan, Parizzi, et al.
2013) involving phase triplets and coherence magnitude to quantitatively estimate soil moisture
changes. This chapter will introduce and elaborate on these concepts.

2.2.1. SAR Principles
First of all, what does synthetic aperture mean? We know that the radars sensor is trans-
mitting and receiving signal continuously in a strip mode. The received signal has a very low
resolution due to the physical constraint of the antenna. However, this resolution is sharpened
dramatically, by using multiple consecutive low-resolution images to reconstruct the backscat-
tering making use of the system’s degrees of freedom (redundancy). Consequently, a single
image of a “synthetic aperture” is created via the method termed SAR focusing (R. F. Hanssen
2001). The focused SAR images are stored in a format known a single-look complex (SLC)
data. In this format every pixel’s value consists of a complex phasor 𝑃 as

𝑃 = 𝑅𝑒(𝑃) + 𝑖𝐼𝑚(𝑃) = 𝐴𝑒𝑥𝑝(𝜄𝜑) (2.9)
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Figure 2.4: Imaging geometry of a side-looking SAR. (Engdahl et al. 2013)

𝜑 = 2𝜋
𝜆 2𝑟 = 4𝜋

𝜆 𝑟 (2.10)

where 𝑅𝑒(𝑃) and Im(P) are the real and imaginary parts of the complex phasor (Samiei
Esfahany 2017), 𝜆 is the radar’s operating wavelength , 𝑟 denotes the slant range distance
between the antenna and the surface objects projected onto the respective pixel. The phase 𝜑
of the SLC has a number of components as presented below:

𝜑 = 𝜑ᑣᑒᑟᑘᑖ + 𝜑ᑒᑥᑞᑠ + 𝜑ᑤᑔᑒᑥ + 𝜑ᑟᑠᑚᑤᑖ (2.11)

with 𝜑ᑣᑒᑟᑘᑖ referring to the range dependent phase, 𝜑ᑒᑥᑞᑠ to the delay in phase caused
by the atmospheric conditions, 𝜑ᑤᑔᑒᑥ to the phase related to the distribution of the scatterers
and 𝜑ᑟᑠᑚᑤᑖ to the phase induced by the radar’s system noise. It should be noted here that the
values of the phase are wrapped with the modulo-2� operator. 𝑅𝑒(𝑃) and Im(P) are the real
and imaginary parts of the complex phasor as (Samiei Esfahany 2017).

𝑅𝑒(𝑃) = 𝐴𝑐𝑜𝑠(𝜑), 𝐼𝑚(𝑃) = 𝐴𝑠𝑖𝑛(𝜑) (2.12)

Which are derived from equation (2.11) and the implementation of Euler’s formula:

𝑒𝑥𝑝(𝑖𝜑) = 𝑐𝑜𝑠(𝜑) + 𝑠𝑖𝑛(𝜑) (2.13)

2.2.2. Interferometric SAR (InSAR)
InSAR is a SAR technique widely applied in Geodesy and Remote Sensing, predominantly
used to detect land movement and displacement. Its applications include among others the
monitoring of volcanic deformation, land subsidence and glacial motion. SAR interferometry
requires two coherent and coregistered images to measure the phase difference between them.
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Figure 2.5: Geometrical configuration of repeat-pass SAR interferometry. Sat1 and Sat2 are the master and
slave acquisitions respectively, while ፁ is the baseline, ᎕Ꮂ is the look or squint angle, ።Ꮂ is the incidence angle
and ᎞ is the slant range . (Tobita et al. 1998)

By recording the same area from different squint angles, as shown in 2.5, the phase difference
can be estimated and then translated to displacement following a procedure, where the stack
of images used will first be resampled on a unique grid and its spectra will be appropriately
processed (Goldstein filtering etc.) before calculating those phase differences. Normally, a
difference would be calculated by subtracting one value from another. Since the SLC data
are complex this procedure is done by performing a complex image multiplication, where the
‘master’ image is multiplied with complex conjugate of the ‘slave’ image as shown next (asterisk
denoting the conjugate):

𝐼 = 𝑃ᑄ.𝑃∗
ᑊ = 𝐴ᑄ𝐴ᑊ.𝑒𝑥𝑝 (𝑖𝜑ᑄ − 𝑖𝜑ᑊ)) (2.14)

The 𝐼 being the complex interferogram of the two images. The interferometric amplitude
is the product of multiplying the respective amplitudes for master and slave while the interfer-
ometric phase is the residual of subtracting the respective phases. The interferometric phase
consists of the same phase terms as a regular SAR image (refer to equation 2.10). The range
related phase term of an interferogram 𝜑ᑣᑒᑟᑘᑖ can be split into the following components

𝜑ᑣᑒᑟᑘᑖ = 𝜑ᑕᑖᑗᑠ + 𝜑ᑥᑠᑡᑠ + 𝜑ᑗᑝᑒᑥ (2.15)
where 𝜑ᑗᑝᑒᑥ is the effect of the curvature of the reference ellipsoid (e.g. WGS84 for Sentinel)

on the interferometric phase and the baseline of the interferometric pair, while 𝜑ᑥᑠᑡᑠ is the
distortion caused by the surface height above the reference surface. The final phase component
is 𝜑ᑕᑖᑗᑠ which represents the phase offset caused by a deformation of the surface, which took
place between the master and slave acquisitions (Samiei Esfahany 2017).

In land deformation studies using InSAR, the objective is to get rid of the rest of the com-
ponents of the interferometric phase and determine an accurate value for the land deformation
induced phase. This component can be then used to determine the actual deformation using
the following equation:
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Figure 2.6: Interferometric phase maps of the isle of Leykada, Greece before (left) and after (right) the 2015’s
earthquake. The earthquake induced deformation phase is clearly visible as several concentric fringes forming
around the epicentre. A deformation of 28,5cm was estimated using InSAR data (own work).

𝜑ᑕᑖᑗᑠ = −4𝜋
𝜆 𝐷ᑃᑆᑊ (2.16)

where 𝐷ᑃᑆᑊ is the projection of the 3D displacement along the radar’s Line of Sight (LOS)
direction. Since SAR uses side looking radar, this displacement can be projected on the 3D
space:

𝐷ᑃᑆᑊ = 𝐷ᑌ𝑐𝑜𝑠(𝜃ᑚᑟᑔ) − 𝑠𝑖𝑛(𝜃ᑚᑟᑔ)[𝐷ᑅ𝑐𝑜𝑠(𝑎ᑙ − 3𝜋
2 ) + 𝐷ᐼ𝑠𝑖𝑛(𝑎ᑙ − 3𝜋

2 )] (2.17)

where 𝐷ᑌ, 𝐷ᑅ, 𝐷ᐼ, are the components in Upward, North and East direction respectively,
whereas 𝑎ᑙ is the satellite’s heading angle. However, in order to extract direction-oriented
deformation extra information is needed. This is done by combining ascending and descending
interferograms to recover the two vector of a 3D displacement. The last one requires assumption
on the characteristics of the displacement (R. F. Hanssen 2001).

2.2.3. Decorrellation in InSAR
Decorrelation is among the main limitations of InSAR, hence the need to elaborate on the
decorrelation mechanism as well as on its implication on this thesis. Among the components
of phase one can find the 𝜑ᑤᑔᑒᑥ, which is the interferometric scattering phase, which is induced
by the difference in scattering phase between master and slave acquisitions.

𝜑ᑤᑔᑒᑥ = 𝜑ᑤᑔᑒᑥ
ᑄ + 𝜑ᑤᑔᑒᑥ

ᑊ (2.18)

This scattering phase is a function of different components, such as the location of elemen-
tary scatterers within a resolution cell relative to the radar sensor and the electrical traits of
the scatterers. Usually, decorrelation can be partitioned in 4 prevailing mechanisms (Samiei
Esfahany 2017):

1. Baseline decorrelation: It is a fact that in master and slave acquisitions the radar antennas
always have a slightly different position and therefore different incidence angle. In this
case, not only the angle but also the range distance differs and hence the scattering
phase will vary from acquisition to acquisition. The relative position of two acquisitions is
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called baseline and this component is called baseline decorrelation as it increases together
with an increase in the baseline. Spectral filtering is employed to overcome baseline
decorrelation.

2. Doppler centroid decorrelation: This decorrelation component stems also from an angle
difference, the squint angle (look angle 𝜃 in 2.4) which is the angle formed between the
nadir line and the pointing direction of the antenna. This difference of the viewing direc-
tion in azimuth introduces the doppler centroid decorrelation. This kind of decorrelation
operates in a similar way to the baseline one and is also mitigated with spectral filtering.
Since these first two components can be successfully countered with existing methods
and are somewhat irrelevant to this thesis there is no point of further elaborating.

3. Volume decorrelation: Although, the two abovementioned mechanisms are associated
with 2𝐷 scattering, since reality is 3𝐷, there is also decorrelation caused by disturbance
in the 3ᑣᑕ dimension. This is caused by potential displacement of the scatterers in
height which induces different imaging geometry. Volume displacement is common in
vegetated areas (forests, crops etc.), where plant growth results in unpredictable random
volume scattering. At this point, the operational wavelength of the radar comes into
play, as its capability to penetrate into a volume of scatterers is directly related to it,
with long wavelengths having greater penetration capability than shorter ones. Radar
systems with large wavelengths (L-band) have decreased volume decorrelation compared
to smaller wavelengths (C-band).

4. Temporal decorrelation: Last but not least, temporal decorrelation is caused by changes
in the physical properties of the imaged objects between acquisitions (Morishita and R.
Hanssen 2014). Such changes are caused by both human (soil plowing, cultivation) and
non-human (snow fall, plant growth, natural phenomena) related drivers. In general,
urban areas and the built environment are on the low end of temporal decorrelation as
changes are scarce, while rural areas are more prone to changes which will result in high
temporal decorrelation. Soil moisture is one the phenomena responsible for temporal
decorelation, as it affects the dielectric properties of the soil and hence the backscatter.

A common way to quantify correlation between two images is the magnitude of the complex
correlation coefficient or coherence, called absolute coherence (|𝛾|). The complex coherence is
defined as:

𝛾 = 𝐸{𝑦Ꮃ𝑦∗
Ꮄ }

√𝐸{|𝑦Ꮄ
Ꮃ |}𝐸{|𝑦Ꮄ

Ꮄ |}
(2.19)

Estimating the rate of temporal decorrellation over a dataset with given repeat interval is
key to assess the possibility of retrieving coherent information. To achieve this, (Morishita and
R. Hanssen 2014) presented the following method. Starting on:

𝛾(𝑡) = 𝛾Ꮂ𝑒Ꮍᑥ/ᒙ (2.20)

where 𝛾(𝑡) is the coherence observed at different 𝑡, 𝛾Ꮂ is the initial coherence and 𝜏 is
the decorrellation rate which in turn is the time it takes for coherence to drop to 1/𝑒 of its
initial value. Since zero coherence can not be observed due to bias in the coherence estimator
and persistent dominant scatterers within the multilooking window the previous equation is
transformed to:

𝛾𝑜̂(𝑡) = (𝛾Ꮂ − 𝛾ᐴ)𝑒Ꮍᑥ/ᒙ + 𝛾ᐴ (2.21)
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where 𝛾ᐴ symbolizes the minimum attainable coherence. At this point the decorrellation
rate 𝜏 stands for the time it take for coherence to drop to 𝛾ᐴ (Morishita and R. Hanssen 2014).

The total coherence can be broken down in different multiplicative coherence terms (Samiei
Esfahany 2017):

𝛾ᑥᑠᑥᑒᑝ = 𝛾ᐹ𝛾ᑕᑔ𝛾ᑧᑠᑝ𝛾ᑥᑖᑞᑡ𝛾ᑥᑙᑖᑣᑞᑒᑝ𝛾ᑡᑣᑠᑔᑔ (2.22)

Where 𝛾ᐹ is the coherence term related to baseline decorrelation, 𝛾ᑕᑔ related to doppler
centroid decorrelation, 𝛾ᑧᑠᑝ related to volume decorrelation, 𝛾ᑥᑖᑞᑡ related to temporal decor-
relation and the final two terms are related to thermal and processing induced noise. The
following equation expresses temporal decorrelation in terms of wavelength 𝜆 and variance of
the motion of the scatterers 𝜎ᑣ (Morishita and R. Hanssen 2014):

𝛾ᑥᑖᑞᑡ = 𝑒𝑥𝑝(−1
2(4𝜋

𝜆 )Ꮄ𝜎Ꮄ
ᑣ ) (2.23)

It becomes obvious when looking at the equation, that longer wavelengths result in reduced
temporal decorrelation, however the variance of the scatterers is equally important. This
variance can be improved by increasing the temporal resolution of the timeseries which can
only achieved by shorter repeat intervals.

2.2.4. Closure phase & ensuing ambiguities
The concept of interferometry is not strictly confined in SAR. Instead it is applied in other
scientific fields like astronomy and oceanography. The concept of closure phase was first applied
in astronomy to increase phase stability in VLBI (Very Long Baseline Interferometry) by
Jennison in 1958. Closure phase is the sum of three phases resulting from a closed triangle,
where the three points are positions of telescopes and the sides are the three baselines. This
sum is independent of telescope-specific phase shifts induced by the atmosphere or the telescope
system (Monnier, Perrin, and Malbet 2003).

Despite the widespread application of closure phases in astronomical VLBI technique, with
its most prominent implementation being the imaging of a black hole (Event Horizon Telescope
2019), using closure phases in InSAR is a fairly novel technique, first introduced in 2013 (De
Zan, Parizzi, et al. 2013). Currently, since research into closure phase for InSAR purposes is
still at an early stage, contribution has been limited to that of De Zan, Zwieback and their
respective research teams.

A statistic term used in astronomic interferometry to derive the insensitivity of closure
phase is the bispectrum. Now, assuming a set of three SAR acquisitions, there are three
possible interferograms 𝐼ᑞᑟ, 𝐼ᑟᑠ&𝐼ᑞᑠ. (Zwieback, Hensley, and Hajnsek 2015a) proposed to
adapt bispectrum to InSAR’s bicoherence Γᑞᑟᑠ which is defined as the triple product of the
complex coherences (𝛾ᑞᑟ, 𝛾ᑟᑠ, 𝛾ᑞᑠ)the three interferograms, with ∗ symbolizing the complex
conjugate.

Γᑞᑟᑠ = 𝛾ᑞᑟ.𝛾ᑟᑠ.𝛾∗
ᑞᑠ (2.24)

Ξᑞᑟᑠ = 𝜑ᑞᑟ + 𝜑ᑟᑠ + 𝜑ᑞᑠ (2.25)

The argument of which is the closure phase Ξᑞᑟᑠ. One would expect the phase closure
to sum up to zero since each one of the phase components for range 𝜑ᑣ, atmosphere 𝜑ᑒᑥ,
scattering 𝜑ᑤᑔ and noise 𝜑ᑟ , will appear twice but with opposite sign.

𝜑ᑞᑟ = (𝜑ᑣ
ᑟ − 𝜑ᑣ

ᑞ) + (𝜑ᑒᑥ
ᑟ − 𝜑ᑒᑥ

ᑞ ) + (𝜑ᑤᑔ
ᑟ − 𝜑ᑤᑔ

ᑞ ) + (𝜑ᑟ
ᑟ − 𝜑ᑟ

ᑞ) (2.26)
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𝜑ᑟᑠ = (𝜑ᑣ
ᑠ − 𝜑ᑣ

ᑟ) + (𝜑ᑒᑥ
ᑠ − 𝜑ᑒᑥ

ᑟ ) + (𝜑ᑤᑔ
ᑠ − 𝜑ᑤᑔ

ᑟ ) + (𝜑ᑟ
ᑠ − 𝜑ᑟ

ᑟ ) (2.27)

𝜑ᑞᑠ = (𝜑ᑣ
ᑠ − 𝜑ᑣ

ᑞ) + (𝜑ᑒᑥ
ᑠ − 𝜑ᑒᑥ

ᑞ ) + (𝜑ᑤᑔ
ᑠ − 𝜑ᑤᑔ

ᑞ ) + (𝜑ᑟ
ᑠ − 𝜑ᑟ

ᑞ) (2.28)

It would be expected that the sum of the three phases would sum up to zero, since the clo-
sure phase is invariant to topographic or atmospheric effects, as well as piston-like deformations
(De Zan, Zonno, and López-Dekker 2015). Piston-like deformation describes a phenomenon
where the subject moves uniformly within the time period. This means that the displacement
between the 𝑆𝐿𝐶ᑞ and 𝑆𝐿𝐶ᑠ should equal the respective displacements between 𝑆𝐿𝐶ᑞ and
𝑆𝐿𝐶ᑟ plus that between 𝑆𝐿𝐶ᑟ and 𝑆𝐿𝐶ᑠ (Zwieback, X. Liu, et al. 2016).

This lack of consistency indicates the presence of additional underlying phenomena, which
have to be taken into account. First of all, this inconsistency can be due to noise produced by
decorrelation, mostly temporal and volume. Especially stacks of SAR images with significant
temporal resolution decorrelation is a major obstacle in the analysis of phase closures, since
a certain level of coherence is mandatory to have consistent signal. Temporal decorrelation
depends on both the terrain and the satellite configuration (wavelength and repeat interval).
In general, short repeat interval are necessary. Moreover, longer wavelengths (L-band) have an
advantage over shorter ones (C-band) regarding decorrelation rate (Morishita and R. Hanssen
2014). There appears to be a critical range between 0.15 and 0.20 which defines whether
an interferogram can be used. When coherence is below 0.15 no phase information can be
extracted; 0.15 to 0.20 is an area where information can be obtained depending on the area
type and above 0.20, phase information can be successfully retrieved (Wei and Sandwell 2010).

Nevertheless, decorrelation is of major importance for retrieval of phase information and
consequently equally importance for phase triplets. Therefore, an issue emerging from the
attempts at utilising the closure phase signal in InSAR, is identifying and separating the
different mechanisms responsible for the measured closure errors, which is crucial for its correct
interpretation.

It is important to examine whether the closure phase timeseries can be attributed either
to noise alone or to other sources which will be mentioned next. According to the findings of
a statistical test on the significance of these non-random effects on Ku- and X-band datasets
(Zwieback, X. Liu, et al. 2016), the significance of the observed phase triplets varies seasonally
and depends on both land type and coherence magnitude. The seasonality is linked to the
precipitation pattern which in turn is reflected on soil moisture variation and snow melt de-
tetcion, meaning that those phenomena can be detected via an analysis of the closure phases.
However, often the sheer magnitude of the decorrelation noise ”breaks” the closure phases and
puts wrench in the works of identifying and quantifying the underlying mechanisms.

A couple of such mechanisms inducing phase inconsistencies have been identified so far will
be briefly presented (De Zan, Zonno, and López-Dekker 2015):

• Volume scattering: scattering produced when radiation moves from one medium to an-
other, due to different permittivities (Elements such as leaves, branches, crowns of trees,
rainfall etc.). The volume scattering phase inconsistencies occur due to vegetation growth
(altering scattering profile) or baseline differences (altering incidence angle)

• Volume scattering occurring due to baseline variation. Typical in crossing-orbit interfer-
ometry. The ver tical scattering profile’s skewness is directly linked with phase closures
(Equation 2.26)

• Soil moisture variations: Multiple studies have shown that interferometric and closure
phase contain information regarding soil moisture (De Zan, Parizzi, et al. 2013)(Morrison
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et al. 2011). This stems from the fact that the wavenumbers in soil are moisture depen-
dent and thus a moisture difference between acquisitions will result in a phase difference.
Experiments over bare soils (absence of vegetation induced volume scattering) indicate
that the phase excess is possibly explained by soil moisture discrepancies.

• Vegetation water content variations: In some obsrvations over forested areas, the resulting
phase inconsistencies cannot be explained solely by volumetric scattering effects. A
hypothesis was made, where differences in vegetation water content explain the phase
offset. This hypothesis is supported by (Albinet et al. 2012) using TropiScat P-band data
and as for recently, also by (De Zan and Gomba 2018) using ALOS-2 L-band data.

A novel method, to actually exploit the loss of consistency due to underlying mechanisms,
was developed by (De Zan, Parizzi, et al. 2013), when researchers noticed that in the case of
multilooked interferograms the sum of the triple phase difference will not be zero, indicating a
correlation of closure phase with soil moisture. This observation was backed up by the findings
of (Zwieback, Hensley, and Hajnsek 2015b) where a linear dependence of closure phase with
soil moisture change was observed.

The magnitude of the closure phase shows a reverse proportionality with coherences, as
it tends to decrease when coherence increases and vice-versa (Zwieback, X. Liu, et al. 2016).
Therefore, as a rule of thumb, one would expect higher closure phases when a drop in coherence
is observed.

Figure 2.7: Examples of consistency on a flat plane (left) and inconsistency on a non-flat one (right) (De Zan,
Zonno, and López-Dekker 2015)

A parallel to this finding regarding the inconsistency of a phase triplet can be drawn
by looking at the inconsistency of the angles on a curved geometry. In Eucliden geometry
(flat plane), the sum of the angles measured along a closed path should always equal zero
(consistency). However, this does not hold in non-flat geometries, where the same closed path
would result in a non-zero angle total (inconsistency).

In InSAR the inconsistency due to the effect of underlying mechanisms manifests as clo-
sure phase. In Geodesy, the inconsistency due to the effect of Earth’s curvature manifests as
spherical excess; the sum of the interior angles exceeds 180ᑠ.

The main obstacle of using phase triplets to obtain soil moisture information is the ensuing
ambiguity (Zwieback, Hensley, and Hajnsek 2017). Ambiguities are inherent to closure phase
and refer to the fact that a single closure phase value Ξᑞᑟᑠ may correspond to multiple soil
moisture time series. These time series can either have a systematic offset or opposite sign
step changes as shown in 2.8.

Phase is antisymmetric with respect to permutations, since phase can take values from
−𝜋 to 𝜋, meaning that assuming acquisitions 𝑖, 𝑗 the following relation between the possible
interferometric values occur:
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Figure 2.8: Different soil moisture (bare soil case) time series yielding similar closure phase, indicating the issue
of ambiguity (Zwieback, Hensley, and Hajnsek 2017)

𝜑ᑚ,ᑛ = −𝜑ᑛ,ᑚ (2.29)
This relation passes on to phase triplets, where triplets are antisymmetric to odd permu-

tations and symmetric to even ones (Zwieback, Hensley, and Hajnsek 2017). An example of it
is presented next, where Ξ stands for phase triplet:

Ξᑞᑟᑠ = −Ξᑟᑞᑠ = Ξᑠᑞᑟ (2.30)
This symmetry extends to any anumber of acquisitions and possible phase triplets and is

responsible for the absence of sensitivity at detecting step changes andd sawtooth patterns.
Moreover, this permutational symmetry propagates to any number of acquisitions and potential
phase triplets.

The ambiguity of soil moisture can be solved by either using external data (ground truthing)
or by using other SAR parameters, like coherence. A method to overcome the obstacle of
ambiguities, was proposed and implemented by (De Zan and Gomba 2018),(De Zan, Gomba,
and Yokoya 2018) based on the premise of symmetry or cyclical permutation, is part of the
methodology and as such will be presented in Chapter 3 of this study.

2.3. Study Areas
The research of this thesis focuses on two distinct areas in Mexico and the Netherlands. The
availability of Sentinel-1 closure phase maps over Mexico (De Zan, Gomba, and Yokoya n.d.);
alas in a very crude form (no legend) meant that there was data available for a first qualitative
analysis of my own generated closure phase maps. Moreover, this part of Mexico, like the
Netherlands, also suffers from land subsidence. Thus, this particular area in Mexico was
selected as the second study area.

2.3.1. Mexico
The study area in Mexico covers parts of two Mexican states: the Free and Sovereign states
of Tlaxcala and Puebla. The area covered by the SAR dataset is 2226 𝑘𝑚Ꮄ. It is located at
the East-Central Mexico, between the capital, Mexico City and the largest port on Mexico’s
east coast, Veracruz. Different land cover types can be found at the study area as presented in
Figure 2.9 (b) with the major ones being cropland, forest and urban. There are also shrublands
(brown color) as well as patches of bare soil situated on the mountain tops of the national park.

The study area (Figure 2.9 (a)) covers a major part of the Valley of Puebla or Valley of
Cuetlaxcoapan which is surrounded by the mountains and volcanoes of the Trans-Mexican
volcanic belt (TMVB). At the southeast corner of the study area lies part of the National Park
of Iztaccihuatl-Popocatepetl named after the 3rd and 2nd highest volcanoes in Mexico, Iztacci-
huatl and Popocatepetl with an altitude of 5286 and 5426 m respectively. At the mid-east lies
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(a) (b)

Figure 2.9: The study area as seen from Google Earth (a) and its land types as detected by ESA. Red is urban,
Yellow is cropland, White is bare soil and Green is forest (ESA CCI Land Cover).

La Malinche a dormant volcano (5th highest in Mexico) with an elevation of 4461m while the
northern part is dominated by rugged terrain covered with forest, shrubs and cropland. The
valley is covered by either croplands or urbanized areas. Major cities are the city of Puebla
at the South, Tlaxcala at the middle of the study area and Apizaco north of Tlaxcala, while
smaller towns can be found scattered all around the valley.

The Trans-Mexican volcanic belt (Figure 2.10 is a 1000km volcanic arc related to the
subduction of the Cocos an Riveras plate beneath the North American plate. The Valley of
Puebla is volcanic center of the TMVB, shaped during the Pliocene-Quaternary age (Gómez-
Tuena et al. 2003). Due to the active volcanoes surrounding the valley, the soil consists of coarse
volcanic ash and pumice rocks (42%) combined with finer loam and clay soils (Urbina-Flores
et al. 2016),(Segura-Castruita 2006). These soils are called residual moisture soils (RMS)
and have greater water retantion capacity than sandy soils, mainly dueto the pumice rock
component.

The climate of the Valley is classfied as Cwb in the Köppen-Geiger classification system
(Kottek et al. 2006). Cwb refers to Oceanic: Subtropical Highland climate, which exists in
elevated areas (average valeey elevation is 2200m) within either the tropics or the subtropics.
The climate is temperate at the Valley and cold at the surrounding elevated regions. Precipi-
tation occurs mainly during the rain season lasting from May to October with a yearly average
of 827mm with a dry season from November through April. Figure 2.11 presents average
precipitation and temperature data for the study area.

2.3.2. Netherlands
The study area covers a large part of the municipality of Zuid Holland and the eastern part of
the municipality of Utrecht. The area covered by the SAR dataset is 720 𝑘𝑚Ꮄ. It is situated
in the west of the Netherlands, on the North Sea. The terrain is mostly flat and the majority
of the area is below sea level as presented in Figure 2.12(a).
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Figure 2.10: The Trans-Mexican volcanic belt and the location of the study area (Ferrari 2003)

(a) (b)

Figure 2.11: Average monthly Precipitation (a) and Temperature (b) at the Valley of Puebla (climate-data.org
n.d.)
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(a) (b)

Figure 2.12: Above and below sea level (a) (Actueel Hoogtebestand Nederland n.d.) and soil types in the
Netherlands (b) (Brus, Lame, and Nieuwenhuis 2009).



2.3. Study Areas 23

Land cover data are presented in Figure 2.13. The majority of the area is classified as
cropland, which includes different types of crops and grassland. Urban areas cover a significant
part of the studied area with major municipalities such as The Hague, Rotterdam, Leiden, Delft
and Utrecht. Forested areas can be found all over the map and usually around urban areas.
Lastly, herbaceous vegetation exists primarily along the coastline (coinciding with the location
of sand dunes for water defense) and thinly spread around the map.

Figure 2.13: Land cover types located at the study area (Copernicus-Land Monitoring Service 2015)

The soil of this region is dominated by the presence of clay and peat (Figure 2.12)(b), while
the shoreline is rich in sandy soils (Brus, Lame, and Nieuwenhuis 2009). The substrate of the
study area consists of early Holocene deposits alluvial and lagoonal peat and clay sequences,
which are called the the Naaldwijk and Nieuwkoop formations (Marc Hijma 2017). The Naald-
wijk formation is characterized by variations of sand and clay while the Niewkoop primarily
consists of clay and secondarily of clay deposits. The DINOloket database, a collaboration
between TNO’s and the Geological Survey of the Netherlands, consists of a dense network of
boreholes providing among others useful information regarding the soil profile and texture of
the area of interest (DINOloket n.d.). The borehole profiles show that both aforementioned
formations may appear on the top soil with an example shown in Figure 2.14

The Netherlands is a small and flat country and climatological differences are therefore
small. The climate of the Netherlands can be classified as Cfb in the Köppen-Geiger classifi-
cation system (Kottek et al. 2006). Cfb refers to Oceanic: Marine West coast climate. The
climate is influenced by the North Sea and the Atlantic Ocean, with moderate winters and cool
summers. Precipitation is distributed throughout the year, with a slightly dryer period from
February to June with a yearly average of 800mm. Figure 2.15 presents average precipitation
and temperature data for the study area.

Figure 2.14: Example of a borehole log profile (DINOloket n.d.)
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(a) (b)

Figure 2.15: Average monthly Precipitation (a) and Temperature (b) in the area of interest (climate-data.org
n.d.)



3
Methodology

The goal of this study is to investigate the potential of soil moisture retrieval using Sentinel-1
C-band plase triplets. Thus, SAR data were collected and used to carry through with the
research. The methodology can be broken down in 5 discrete steps, which will be presented in
this chapter.

3.1. Data acquisition & pre-processing
At this point the criteria regarding the selection of the satellite products used will be explained,
followed by a brief description of the pre-processing steps leading to the interferogram creation.
The steps and the logic behind them are going to be explained without giving in to either
describing how the software works or its respective commands. To keep things simple and
avoid repetition, from this point on all processing steps are done using SNAP unless it is
stated otherwise. These steps are listed below:

• Split and apply orbit

• Coregistration of master-slave images

• Create interferogram and eliminate redundant lines with deburst

• Removal of the topographic component of the phase

Figure 3.1: This chart shows the sequence of the processes leading up to the analysis of the phase closures. The
circled part is presented in chapter 3.2 but is included for the sake of presenting the whole picture.

,
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3.1.1. Data used

In general, there are a lot of different satellite constellations and products which can be used to
perform deformation analysis using InSAR. Such could be C-band Radar satellite 2 (Rsat-2),
C-band Sentinel-1 (S1), L-band PALSAR-2 ALOS2 products etc. For this study, Sentinel-1
data will be used and the major reason behind this decision lies in the fact that, during the
early stages of this thesis, it was decided to use SNAP for the pre-processing of the SLCs up
to the creation of the interferograms. A known disadvantage of choosing C-band over L-band
is that the expected coherence is lower, which will result in smaller closure phases (De Zan
and Gomba 2018). Also, the temporal sampling of Sentinel-1 (12 days) is likely insufficient
for soil moisture measurements, taking into account the expected temporal decorrelation. De-
spite the drawbacks mentioned above, Sentinel-1 mission’s major advantage is that it provides
temporally consistent, worldwide coverage, freely accessible to anyone interested.

SNAP is a software developed by ESA encompassing all of Sentinel toolboxes in order to do
earth observation processing and analysis. Another reason behind the selection of Sentinel-1
data is that ESA through the RUS service, provides an on-line free-access platform to promote
the uptake of Copernicus data and support the scaling up of R&D activities. This is very useful
since although InSAR processing requires high end hardware which is not easily accessible, it
can be easily overcome, employing a virtual machine provided by the Copernicus mission.

For this study Level-1 Single Look Complex (SLC) IW products will be used. The Inter-
ferometric Wide (IW) swath mode is the main acquisition mode over land and satisfies the
majority of service requirements. It acquires data with a 250 km swath at 5 m by 20 m spatial
resolution (single look). IW mode captures three sub-swaths using Terrain Observation with
Progressive Scans SAR (TOPSAR) [1]. IW SLC products contain one image per sub-swath
and one per polarization channel, for a total of three (single polarization) or six (dual polar-
ization) images in an IW product. The IW mode has 2,7x22m resolution and 2,3x14,1m pixel
spacing.

Since, there are two areas of interest, at least two datasets had to be collected. Regarding
the Netherlands, a total of 29 SLCs were used in this study, covering a period starting from
February 9th 2017 to January 24th 2018. The study area of Mexico was considerably bigger
and due to constraints in computing power, had to be split in two different subsets. Both
subsets used the same Sentinel-1 acquisitions from December 12th 2014 to November 15th 2015.
Considering the goal was to study the possible interactions between soil moisture fluctuation
and land subsidence, a period of a year was deemed necessary to have adequate data to study
the phenomenon.

3.1.2. Orbital information

First of all, the accuracy of interferometry depends heavily on information regarding the rel-
ative position of the satellites during the time the 2 paired images were taken. Consequently,
uncertainties in the available orbit information may distort the imaging geometry, the data
geocoding, as the geographic coordinates of each scatterer depends on the geometry of the ac-
quisition) (Engen and Johnsen 2010), as well as the resulting phase differences and thus precise
orbital data are crucial in InSAR data processing. Orbital products for the Sentinel missions
are provided by Copernicus Precise Orbit Determination (CPOD) service for Near Real-Time
(NRT) etc., while the accuracy is assessed by external validation authorities (Fernández et al.
2015). Those orbit files are fetched and applied on the SLCs to improve the results of the
following step: coregistration.
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3.1.3. Coregistration & ESD
The particularity of this method lies to the fact that instead of using pairs of SLCs as usual,
instead triplets are used. Each dataset needs to be coregistered, meaning that identical scatter-
ers need to be identified and combined, which becomes possible once the grid of both images is
aligned to each other. In order to do so, one SLC will act as the “master” image while the rest
become the “slaves”, the pixels of which have to be aligned with pixels of the former. In the
given case, the first SLC in terms of temporal acquisition will be designated as the “master”
image.

For InSAR applications, the sub-pixel registration of the focused SAR images is a strict
requirement for interferometric processing, especially for terrain observation with progressive
scan (TOPS) mode applied on Sentinel-1 satellite. SNAP employs DEM-based coregistration,
where the offsets are computed based on the orbit information provided in the previous step
and by the DEM (Samiei Esfahany 2017). This procedure is precisely described in (Sansosti
et al. 2006) consequently, delving into details will be a redundancy. Τhe aforementioned
DEM is provided by NASA’s Shuttle Radar topography Mission 3 arc-sec (SRTM3), with a
resolution of 3 arc-sec which translates to 90m on the ground. The DEM resampling method
as well as the resampling method was selected to be bilinear-interpolation. This method is
preferred to conventional polynomial approximations, especially in case of rough topography
or long baselines (Nitti et al. 2010), the latter being the main driver for this choice of operator.
Coregistration took place in SNAP using the Back-geocoding operator which is suitable for
Sentinel-1 TOPS scans. After the identical scatterers are identified with the assistance of the
DEM, the slave images have to be resampled into the master’s frame.

3.1.4. Terrain Correction
At this point, there is one last step before forming the SAR interferograms and triplets, which is
the correction of the topographical distortions of SAR images caused over areas with elevated
and/or alternating terrain. Those distortions are created, as a result of the nature of the
SAR range mapping, reflectance functions and the tilt of the sensor and the geometry of the
phenomenon is presented in Figure 3.2. There are different methods available to overcome
this issue by compensating for those distortions in order to have an image, the geometry of
which will be as close to the real world as possible. In this case, the Range Doppler Terrain
Correction operator was implemented and a brief description of the method used will be given.
This operator employs the orthorectification method (Schubert et al. 2014) for geocoding SAR
imagery. It is a back-geocoding method where the input image (SLC) is resampled onto a
provided DEM’s geometry (SRTM3) by using the range and azimuth indices as the common
denominator. The resampling method set was Bilinear Interpolation. After this step the SAR
stacks of Mexico and the Netherlands are exported from SNAP as the implementation of the
soil moisture inversion method is done in the MATLAB environment.

3.1.5. Multilook
Loss of coherence, especially related to volume and temporal decorrelation is the major obstacle
in the processing of long time series of SAR data. Consequently, it is essential to increase
coherence as much as possible, before implementing the phase closure inversion method. A
common method to get rid of some of the phase noise is to spatially average pixels and is called
complex multilooking. This method was proposed by Goldstein as a way to enhance radiometric
accuracy at the cost of image resolution. According to (R. F. Hanssen 2001), multilooking can
effectively reduce noise variance of the interferometric phase, assuming spatial smoothness of
the signal and ergodicity (Samiei Esfahany 2017). Figure 3.3 shows that the implementation
of a multilooking process significantly increases the probability of high coherence.
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Figure 3.2: Geometry of topographical distortions in SAR imagery (STEP ESA n.d.).

Figure 3.3: Probability density functions for different coherence levels. Slimmer curves correspond to highest
coherence. L is the number of multi looked images (R. F. Hanssen 2001).

In this study, in order to increase the coherence levels in both study areas multilooking
was applied. To be more specific, a multilooking window of 20x20 pixels was applied in both
Mexico and the Netherlands for the sake of consistency. Multilooking results in a coarser
pixel resolution, from 5x20m to 100x400m, which is a necessary evil, in the pursue of coherent
interferograms.

3.2. Propagation Model
In order to study soil moisture changes over Mexico and the Netherlands using Sentinel-1 SAR
data, it is essential to understand how moisture affects the propagation and the backscatter
of the signal in the soil. Soil is considered a dissipative (lossy) medium, which means that a
significant amount of the energy of a propagating electromagnetic wave is absorbed to heat
the medium, thus a percentage of the energy is permanently lost.

3.2.1. Microwave incidence and refraction
Since the soil is lossy, it has to be modelled as such, having complex dielectric properties and a
complex refraction index, where the imaginary part of those complex numbers is associated with
the energy dissipation of the attenuating wave. Further information regarding the approach
towards modelling the dielectric parameters is given at the following subchapter. At this point
the geometry of the propagating wave, presented in 3.4, will be explained.
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Figure 3.4: Wave propagation and scattering profile of a lossy medium (De Zan, Parizzi, et al. 2013)

The main goal is to associate the propagation of the incident wave with the moisture state
of the soil medium and thus with its dielectric properties. To do so, the expected number of
an interferogram will be expressed in terms of the wavenumber, which is the spatial frequency
of the wave emitted by the SAR instrument. The general wavenumber equation is:

𝜅 = 𝜔
𝜐 = 2𝜋𝜆 (3.1)

where 𝜔 = 2𝜋𝑓 is the angular frequency (radians/sec), 𝑓 is the wave frequency (Hz), 𝜆 is
the wavelength (cm) and 𝜐 is the phase velocity. The phase velocity is expressed as:

𝜃 = 1
√𝜀𝜇 (3.2)

Where 𝜇 is the permeability of the medium (H/m) and 𝜀 is the permittivity or dielectric
constant of the soil (F/m also expressed as s2/mH). Combining those two equations, the
wavenumber equation for normal incidence (De Zan, Parizzi, et al. 2013) is introduced:

𝜅 = √𝜔Ꮄ𝜀𝜇 (3.3)

Since the medium is lossy, the wavenumber becomes complex and the wavenumber equation
for incidence on a lossy medium is introduced:

𝜅Ꮄ
ᒜ + 𝜅Ꮄ

ᒋ = 𝜔Ꮄ𝜀𝜇 (3.4)

Finally, given the known incidence angle 𝜃ᑚᑟᑔ, which can be retrieved from the S-1 data (for
best incidence angle from ellipsoid is chosen), the complex form of permittivity (𝜀 = 𝜀ᖤ + 𝜀ᖦ)
and the boundary condition between soil and air 𝑘ᖤ

ᑩ = 𝑘ᑩ has to be met, the final wavenumber
equation which will be implemented to relate interferometric differences with the soil dielectric
constants is derived:

𝜅ᖤ
ᒋ(𝜀ᖤ) = √𝜔Ꮄ𝜀𝜇 − 𝜅Ꮄᒜ (3.5)

The expected value of an interferogram with a change in soil moisture and thus varying 𝜅ᖤ
ᒋ

as derived by (De Zan, Parizzi, et al. 2013) is:
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Ι(𝜀ᖤ
Ꮃ, 𝜀ᖤ

Ꮄ) = ∫
ᐴ

Ꮂ
𝑓(𝜁)𝑒ᎽᑛᎴᒏᖤ

ᒋᎳᒋ(𝑒ᎽᑛᎴᒏᖤ
ᒋᎴᒋ)∗𝑑𝜁 (3.6)

Where 𝑓(𝜁) a scattering profile in the soil.If we assume that the scattering profile is expo-
nential 𝑓(𝜁) = 𝑒𝑥𝑝(−2𝛼), 𝑎 > 0 the resulting interferogram is:

Ιᑝ,ᑞ =
Ꮃ
Ꮄ

𝑗(𝜅ᑝ − 𝜅∗ᑞ) + 𝛼 (3.7)

Now that the equation for a single interferogram is known, the closure phase for any
interferometric triplet can be computed using the equation 3.8 to end up with equation 3.9.

Φᑝᑞᑟ = 𝑎𝑟𝑔(Ιᑝ,ᑞΙᑞ,ᑟΙᑟ,ᑝ) (3.8)
Φᑝᑞᑟ ≈ −𝛼ᎽᎵ(𝜅ᑝ − 𝜅ᑞ)(𝜅ᑞ − 𝜅ᑟ)(𝜅ᑟ − 𝜅ᑝ) (3.9)

Based on equation 3.9, (De Zan, Gomba, and Yokoya 2018) proposed a simplified alternative
to it by getting rid of the wavenumber parameter by approximating a wavenumber difference
(𝜅ᑝ − 𝜅ᑞ) to be equivalent to a moisture difference (𝜃ᑝ − 𝜃ᑞ) (𝑚Ꮅ/𝑚Ꮅ). This approximation
results in the following equation:

Φᑝᑞᑟ ≈ −𝛼ᎽᎵ(𝜃ᑝ − 𝜃ᑞ)(𝜃ᑞ − 𝜃ᑟ)(𝜃ᑟ − 𝜃ᑝ) (3.10)
At this point we have two models with slight albeit not negligible differences, the physical

model (3.9) and the simplified one (3.10). (De Zan and Gomba 2018) who developed this
method, tested both models using L-band (ALOS) data and reported that the physical model
returns better results.

3.2.2. Dielectric constant of soil
Estimating and using dielectric constant values of the soil is a tricky field as there is no universal
model or database including all soil types. Soil is a four-component dielectric blend consisting
of air, bulk soil, bound and free water and hence the dielectric dispersion spectrum is more
complex and different from that of a single component. Water alone behaves differently under
bound and free condition; however, both are functions of electromagnetic frequency 𝑓, physical
temperature 𝑇 and salinity 𝑆. Overall, the dielectric constant of soil is a function of 𝑓, 𝑇, 𝑆, bulk
soil density 𝑝𝑏, the shape of soil particles and water inclusions as well as the total volumetric
water content 𝑚𝑣 (Hallikainen et al. 1985). There are two different semi-empirical models
widely used to estimate the soil dielectric constant for different spectra, developed by (Dobson
et al. 1985) & (Mironov and Fomin 2009). The first one is part of the SMOS’s algorithm
since the beginning of its mission and requires sand, clay content and bulk density, while
the second one is also implemented in SMOS since 2012 and requires less input parameters,
just clay content and temperature (Mialon et al. 2015). In order to relate moisture changes
with refraction (De Zan, Parizzi, et al. 2013) chose to use the empirical model proposed by
(Hallikainen et al. 1985), which was developed in tandem with Dobson’s model (Dobson et al.
1985). Therefore, the same empirical curves will be employed in the current research. The
drawback of this model is that it does not take organics into consideration, which will therefore
introduce an unknown bias when applied on peat soils where organics prevail.

This inability of the empirical model impedes the application of the method in the Nether-
lands’ case as the soil at both Delfland and Zegveld is mostly peat. Throughout the years quite
some research has been conducted towards determining the dielectric constants of various or-
ganic soils such as (Mironov and Bobrov 2003) and (Karim, Kamaruddin, and Hasan 2018),
yet as of today there is no research linking the percentage of organics to the variation of the
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Figure 3.5: Complex dielectric constant values for different organic matter content as modelled by the semi
empirical model by (J. Liu et al. 2013)

dielectrics. Satellite missions such as SMOS and SMAP make use of dielectric mixing models
but none so far has taken soil organic matter under consideration (Jin et al. 2017).

(J. Liu et al. 2013) proposed a semi-empirical model to describe the behaviour of the
dielectric constant at soils with organic matter. The results of this semi-empirical model are
presented in 3.5 using soil samples in the respective study area (China). The finings of this
study are valid for SOM (soil organic matter) ranging from 0.03 to 17.84%. The drawback
of this method, although highly detailed, is that it requires input data in the form of soil
sampling, which in tandem with the given uncertainty of the model, makes it unfeasible for
this research unless extensive soil sampling takes place which exceeds the scope of the thesis.
According to (Lesschen et al. 2012), the SOM varies within the studied region from 5% to
more than 20%. To be more specific regarding the area of Delfland the organic matter exceeds
20% of the total soil matter. Among the conclusions of Liu’s study (J. Liu et al. 2013) is that
organic presence in the soil decreases the bulk density and increases the adsorption forces.
This results in a decreased dielectric constant which will possibly lead to an underestimation
of the soil moisture changes unless it is being taken into account.

Calling back on those findings we expect the emergence of a systematic error in areas
where organics are a prevalent part of the soil texture, potentially rendering the physical
model unreliable in terms of accurate value prediction. However, the major concern of this
study is whether C-band closure phases can determine the changes in soil moisture For this
reason, in the case of the Netherlands (where organics prevail) both physical and simplified
soil moisture inversion methods will be implemented to examine whether the simplified model
will prove to be more accurate than the physical one.

3.3. Replication of the closure phase inversion method
The closure phase inversion method consists of a number of processes as shown in Figure 3.6.
The entirety of the inversion method was done using MATLAB. The post processing of the
resulting images was done part using Matlab and part using QGIS.

3.3.1. Initial optimization of the inversion algorithm
The goal of this part is to obtain a set of moisture values which will explain the observed
closure phases. Consequently, the first step is to generate those closure phases for each one of
the study areas. For any N given number of images there is a set amount of possible closure
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Figure 3.6: Process scheme of the inversion algorithm

No. of images No. of Fourier
phases

No. of
independent

closure phases

% of phase
information

3 3 1 33,1
6 15 10 66,7
11 55 45 81,8
21 210 190 90,5
50 1225 1176 96,0

Table 3.1: Percentages of phase information depending on the number of acquisitions.

phases according to (Monnier, Perrin, and Malbet 2003),

”𝑁 𝑐ℎ𝑜𝑜𝑠𝑒 3” ∶ (𝑁)(𝑁 − 1)(𝑁 − 2)
(2)(3) (3.11)

However, not all of them are independent, since the independent Fourier phases are (”𝑁 𝑐ℎ𝑜𝑜𝑠𝑒 2” ∶
(𝑁)(𝑁 − 1)/2. In order to compute independent phase closures, one image has to be fixed, in
our case the first image acquisition time wise. The independent closure phases now for 𝑁 − 1
images are (𝑁 − 1)(𝑁 − 2)/2 and therefore as many will be computed for the implementation
of the inversion method. The drawback is that since the computations are made for 𝑁 − 1
images, the algorithm does not have enough sensitivity to estimate the initial moisture level.

An important remark is that the independent closure phases will always be less than the
Fourier phases, meaning there will always be a phase information deficit, which goes down as
the number 𝑁 increases 3.1.

% 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑁𝑜. 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑝ℎ𝑎𝑠𝑒𝑠
𝑁𝑜. 𝑜𝑓 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑝ℎ𝑎𝑠𝑒𝑠 (3.12)

In our case, due to limitations on computing power, sets of 11 acquisitions will be used (and
a set of 6 purely for reference and comparison purposes). Once the prerequisite closure phases
are produced from the collected data, they will be used as input of the inversion algorithm,
whereas the moisture levels will be the unknowns. These moisture changes will be estimated
by minimizing the follow figure of merit (residual sum of squares):

𝑓(𝜃) =
ᑪ

∑
ᑝ,ᑞ,ᑟ

(Φᖤ
ᑝ,ᑞ,ᑟ − Φᑝ,ᑞ,ᑟ)Ꮄ (3.13)

Where the primed symbols are the observed triplet values, the unprimed ones are deter-
mined from the propagation model and y is the number of times the minimization algorithm
is repeated per pixel. For the optimization process a gradient descent iterative algorithm is
required. For this study the fmincon, nonlinear multivariable, function was employed.
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The minimizing procedure is repeated with different random starting points in order to
achieve a global search, since we know there can be more than one local minima. The mois-
ture values have to be manually constrained during the minimization process and the triplet
differences will be wrapped in the [−𝜋, +𝜋] range, which is directly responsible for the arising
ambiguities. Each solution returns a possibly correct solution, correct being a solution where
the acquisitions are correctly ordered based on their moisture level. The solution with the
smallest cost per pixel is considered to either be the correct one or, due to the permutation
symmetry of phase triplets, a circularly equivalent one.

For more details on the subject of permutation symmetry, the reader is referred to the
phase closure subsection of Chapter 2.

3.3.2. Solving the ambiguity
At this point, we have a potential solution in the form of a moisture sequence, which can
be reorganized in a monotonically increasing order and due to the ensuing ambiguities is
subject to circular permutation symmetry. For example assuming that a solution to a 7 ac-
quisition minimization problem is the following moisture sequence monotonically sorted from
highest to lowest: [3,1,5,7,6,2,4]. Every other solution where the values are circularly shifted
([5,7,6,2,4,3,1] or [1,5,7,6,2,4,3]) are equally viable and there is no way to distinguish them, thus
the solution is constrained on a ring where the relative position of each element is known but
there is no way to tell where the array starts and ends. In essence, an optimization algorithm
based on closure phases will order the acquisitions correctly according to the moisture level,
provided that the result is put on a ring. It has no way to determine where the breaking point
of the ring is; it being between the wettest and driest acquisition

The scope of this step is to break and unfold the ring like solution, thus getting rid of
the ambiguity. To do so extra data are needed for the obstacle to be overcome and for this
reason the parameter of interferometric coherence will be employed (De Zan and Gomba 2018).
The goal at this point is to tell the wettest from driest acquisition which due to the circular
permutation have to be next to each other and uncoil the permutation chain 3.7. The basic
assumption is that changes in soil moisture result in different backscattering and thus loss of
coherence and consequently, coherence must be higher for pairs with similar soil moisture or
minor change.

Figure 3.7: Example of a circularly permutated moisture order. Finding the link between wettest and driest is
the key to solve the ambiguity.

A most important limitation of this method is the necessity of sufficient temporal coherence
between all images. In this vein, Longer wavelengths are preferable over shorter ones (De Zan
and Gomba 2018). Sentinel-1 12-day overpass together with the inherent fast decorrelation
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(a) (b)

Figure 3.8: Example of ambiguity solution. Coherence plots for two maximum candidates 1 (a) and 7 (b)

rate of C-band data makes it difficult to get adequate coherence over time, especially between
acquisition with a large temporal gap.

Based on the assumption stated before, the procedure which takes place individually for
each pixel is as follows:

1. Each one of the images is individually tested as being the wettest element of the chain.
The absolute coherences between the “wettest” image and the rest are computed.

2. The results are plotted where the ordinate is the absolute coherence and the coordinate
is the distance on the moisture order.

3. A trendline of the coherence data is generated and its angle with the x axis (gradient) is
computed.

4. Steps 1-3 are repeated as many times as the number of acquisitions put on test. The
steepest trendline is considered to be associated with the correct wettest acquisition at
the head of the moisture chain.

For example, let’s make use of the hypothetical 7 acquisition optimization mentioned be-
fore. The optimization algorithm sorted the 7 acquisitions monotonically in decreasing order:
[3,1,5,7,6,2,4], where any circular shift has a possibility to represent the correct order. Two
out of the 7 candidates will be examined for being the ”wettest”; image 7 and image 1. Figure
4.6 presents the coherence plots of both moisture orders. The trendline of the left plot has
the steepest downward trendline between the two and thus its moisture ordering, with image
1 as the highest moisture, is more likely to be the correct one compared to theother one. In
practice, coherence plots for every possible circular shift is produced since every acquisition
has the potential to be the one at the top of the moisture order.

3.3.3. Final moisture results & conversion to interferometric variables
Once the circular permutation ambiguities are solved, the final step of the inversion algorithm
can take place. This final step consists of yet another minimization using a gradient descent
algorithm. The distinguishing feature is that the correct moisture order obtained at the pre-
vious step is now inserted as a constraint. The moisture value of the first image has to be
deemed fixed and known, since the sensitivity of the closure phase method is not adequate
to recover it. Values from the available validation data will be used to compensate for the
unknown initial soil moisture.
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According to (Zwieback, Hensley, and Hajnsek 2017), the effect of soil moisture changes
on DInSAR surface displacement measurements is random error of about 10-20% of the radar
wavelength. Sentinel-1 C-band’s frequency of 5,405 GHz corresponds to a wavelength of 5,5
cm, so an error of 0.55 to 1.1 cm due to soil moisture is expected. The soil moisture timeseries
extracted from the inversion method are used in an attempt to compensate for this spurious
displacement. The moisture related interferometric phase and coherence maps are then used
to examine whether they can offer useful correction or just introduce even larger errors.

3.4. Evaluation of soil moisture product
The outcome of this study has to be evaluated and externally validated. Ideally, both remote
sensing and ground truthing generated data would be used for cross-correllation and validation.
However, the validation process varies between the study areas as the Netherlands have a rich
database of timeseries on different kind of data which can prove to be useful for the needs
of this study. The common denominator between the 2 areas is the result comparison with
SMAP data.

Before that however, the SAR parameters need to be assessed in order to check whether the
current dataset (repeat interval, coherence, closure phases) is adequate to obtain meaningful
soil moisture data using the inversion algortihm. This will be done using the decorrellation
rate estimation method (Morishita and R. Hanssen 2014) mentioned in Chapter 2.

For the purpose of the validation SMAP’s “Surface Soil Moisture 9km (L4, Model Value-
added)” dataset was used. This layer contains model-derived global volumetric surface soil
moisture (3.9) on the top 5 cm of the soil column. The L4_SM algorithm is built on the
ensemble Kalman filter, merging passive L-band observation together with estimates from a
land surface model (National Snow Ice Data Center n.d.).

Figure 3.9: Example of world map SMAP L4 surface moisture imaging.

The Soil Moisture Active Passive project is a NASA mission aiming to set up a satellite
observatory providing data about the moisture content of the upper soil (top 5 cm of the soil)
as well as its state (frozen/thawed). The satellite fleet was launched January 31 of 2015 and
the the first results were obtained in April of the same year. Initially it was designed to make
use of an L-band radar (active component) and an L-band radiometer (passive component),
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but since the radar’s failure in the 7th of July 2015, soil moisture data are provided by the
radiometer alone (National Aeronautics and Space Administration 2015). The brightness data
obtained by the radiometer are processed and analyzed in order to enhance them (sharpen
resolution with additional data) and provide the desired product of soil moisture (L4_SM
algorithm).

Regarding the Netherlands, the validation process apart from the SMAP spaceborne data
will also include ground truthing and correlation with precipitation. For the ground truthing,
time series of soil moisture data was provided by the municipality of Zegveld at the province
of Utrecht. Zegveld soils have a similar texture to the ones found in Delfland in a sense that
are both dominated by the presence of organics. The soil moisture is estimated with the use of
2 sensors providing hourly logs from March 2016 to September 2018. In order to be as precise
as possible, as a matter of consistency and since the acquisition time of the SAR images is a
known variable, the ground-based data will be selected accordingly. The precise observation
time, which is provided in the form of metadata by ESA, is 19:25 CEST (17:25 UTC) and is the
same for each subsequent acquisition. Consequently and since the Zegveld data are provided
per hour, the correct value will be extrapolated using the moisture values at 18:00 and 19:00
CET.

Figure 3.10: Annual cycles of daily precipitation (mm/d) for Delft (left) and Zegveld (right) documented by the
KNMI stations located at the respective areas. The daily timeseries were used to evaluate the implementation
of the soil moisture inversion (Koninklijk Nederlands Meteorologisch Instituut 2019)

Usually, soil moisture changes are associated with rainfall events. Normally, moisture
decays over time in absence of rainfall events as the available water either evaporates under
sunlight, is absorbed by vegetation or infiltrates to the soil. Regardless, in case of a rainfall
event the water content will sharply increase. This somewhat consistent behaviour allows
the correlation of soil moisture and its associated coherence loss with precipitation. Hence, a
Pearson correlation test between the ground truthing soil moisture data and precipitation will
be done. Moreover, due to the connection between soil moisture and precipitation, the Zegveld
dataset throughout the study period will be correlated with the KNMI data using once again
the Pearson method.



4
Results

In this chapter the main results of the closure phase generation, soil moisture inversion and
land deformation corrections are presented and discussed. Due to the large number of produced
maps presenting different (SAR related) parameters, only some of them will be presented at
this chapter. The appendix includes complete sets of those maps.

4.1. SAR Parameters
The two most important SAR parameters for the detection of soil moisture variations according
to the closure phase inversion method are the coherence of the SAR signal and of course the
closure phase. Hence it is imperative to briefly present, how these parameters vary throughout
the time series. As stated in Chapter 3, for each dataset of 11 acquisitions, a set of 55 and 45
coherence and closure phase maps respectively was produced in order to be used as input in
the inversion method proposed by (De Zan and Gomba 2018).

Figure 4.1 shows four respective coherence maps resulting from using acquisitions with
the smallest possible interval of 12 days. Brighter areas correspond to areas less changed
within those twelve days. It is interesting seeing as even though the average coherence varies
greatly between all four maps there are certain patterns arising from the different land types.
Moreover, one can assume that this homogeneous lack of coherence in maps 1b and 1c is
caused by rainfall events taking place between each pair of acquisitions. In general, coherence
is dropping, as expected, as the time interval between acquisitions grows larger.

In a similar fashion, Figure 4.2 presents coherence maps for two different acquisition pairs
of the time series for Netherlands. In this case, the 12 day coherence shows lower variability
over time than its Mexican counterpart. This can be possibly attributed to the absence of
variety in land use, since the study area in the Netherlands consists of either urban areas
which naturally return high coherence and of areas with either pasture or agriculture which
were exected to have low coherence values. This lack of variability explain the presentation of
only two coherence maps.

Closure phase or phase triplet is the integral parameter of the method implemented. Since
it is plagued with ambiguities, and different soil moisture series may result in the same triplet
value, the sign is not a very useful indicator of the level of soil moisture change. The magnitue
of the triplet on the other hand can provide some early warning on whether change is to be
expected or not. For this reason as well as to make the maps more intuitive and easier to
read, the triplet data will be presented in absolute values. The resulting maps are presented
in figures 4.3 and 4.4 for Mexico and the Netherlands respectively.

Concerning the study area in Mexico (Figure 4.3), sub-figure 1a’s low closure phase indicates
that disturbances caused by precipitation are limited which is expected as the raining season

37
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(a) (b)

(c) (d)

Figure 4.1: Coherence maps of the study area in Mexico at four different time stamps. For the sake of consistency,
for all four maps displayed, SLCs with an interval of 12 days were used

(a) (b)

Figure 4.2: Coherence maps of the study area in the Netherlands at two different time stamps both with a time
interval of 12 days
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(a) (b)

(c) (d)

Figure 4.3: Closure phase maps of the study area in Mexico at four different time stamps. 1a low levels of
closure phase is related to low monthly precipitation, especially when compared wwith 1b which lies in the
middle of Mexico’s wet season

usually does not start untl May or even June, while 1b is a prime example of a map implying
a vast and sudden change in surface soil moisture at some point before the third acquisition.
In 1c and 1d one can see that there are changes caused to temporal and volume decorrelation,
however there are areas where change was expected to be imited and in fact is.

Now, concerning the study area in the Netherlands (Figure 4.4), the situation shares some
similarities with the previously mentioned Mexico case. The most important observation is that
the disturbance caused by a precipitation effect together with the moisture profile antecedent
to the acquisitions may induce a signal greater or equivalent to the one caused by a large time
interval. Comparison between 1a and 1b shows that the magnitude of a precipitation effect
is apparent in urban areas (0.21 to 0.11) while it is similar to a temporal decorrelation effect
caused by a total interval of 140 days between acquisitions (0.96 to 1.06).

Furthermore, what is even more interesting and surprising, is the fact that the greatest
disturbances (greater triplet signal) were recorded in all closure maps where the middle acqui-
sition was the one of the 4th of May, which coincides with a rather mild precipitation event.
This shows that precipitation events are not solely responsible for this kind of noise induced
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(a) (b)

(c) (d)

Figure 4.4: Closure phase maps of the study area in the Netherlands at four different time stamps.

Figure 4.5: Antecedent precipitation estimated by using data provided by KNMI. The sensors in Delft and
Zegveld have a correlation rate of 0.88

into the signal, but rather the degree of moisture change caused by the dipole of precipitation
and antecedent soil moisture. To conclude, coherence and as a result, the closure phase mag-
nitude is defined by both precipitation induced noise as well as differences in the soil moisture
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(a) (b)

Figure 4.6: Left: The Soil Moisture time series as observed by SMAP and two ground sensors at Zegveld,
Netherlands. Both sensors were deactivated from 10/8 to 22/8, hence the absence of measurements. Right: The
corresponding scatter plot.

state between the 3 images employed to create the phase triplet.
Naturally, precipitation is the mechanism responsible for replenishing the soil moisture,

however modelling their interaction is complex and out of scope of this thesis. A Pearson cor-
rellation was run between the precipitation data provided by KNMI and the two available soil
moisture products (Zegveld sensor and respective SMAP time series). The Pearson correllation
factor was calculated at 0.015 and 0.001 for Zegveld and SMAP, showing that the two phe-
nomena are uncorrellated and thus confirming that they need to be considered independently.
Figure 4.5 presents the precipitation data as recorded by the KNMI network at the Delft and
Zegveld stations. One can easily deduce that the two sensors are highly correllated and similar
rainfall patterns can be observed.

Next, the groundtruthing of the SMAP dataset was done using the two ground sensors
located at Zegveld. One must take into account that the resolution of SMAP (9x9km) is
too coarse and it would require a network of sensors to get optimalresults. However, the
correllation between SMAP and both sensors was high (0.79 0.74), showing that SMAP can
accurately estimate soil moisture over the Netherlands. Figure ?? presents the two datasets.
For the correlation the data beyond the 10/8 were not taken into account due to the time gap
from 10/8 to 22/8 where both sensors were deactivated. Naturally, SMAP is less sensitive to
changes due to its coarse resolution. Nevertheless, SMAP seamslessly follows the correct soil
moisture pattern throughout the 140-day window.

4.2. Inversion algorithm
Before we proceed with the algorithm’s results,the basic rules and assumptions binding this
thesis research will be layed down.

• It is assumed that the main drivers behind phase closure signal are precipitation, soil
moisture and decorrellation.

• The Halikkainen model is implemented to determine the dielectric constant of the soil
at both study areas. The first assumption is that each area is covered by soil of more or
less same texture and hence a single soil texture is used for each.

• Urban areas are being regarded as soil despite the obvious fallacy. Unfortunately, the
implemented algorithm is unable to discern between urban and rural areas and due to
migration issues between SNAP and MATLAB georeferencing of the SLCs is lost, thus
a land cover mask can not be implemented.
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• Due to the massive amount of computations; 30 optimizations and 11 coherence plots
for ambiguity solution per pixel ( 164.428 pixels for Mexico, 56.250 for the Netherlands)
it is virtually impossible to present intermediate results. For this reason, during the
development of the code, the algorithm was initially run for random pixels to check
whether the results made sense. After the code was finished algorithm was run for the
whole image, pixel by pixel.

The implementation of the inversion algorith is performed for four distinct cases as shown in
Table 4.1. The minimization process was run a total of 30 times, for each pixel individually to
ensure that the correct solution will be chosen out of an adequate number. The number of times
this process is repeated in tandem with the size of the images used affects the computational
time. The duration of the computation for Models 1 to 4 was 8.4, 3.9, 2.8 and 1.7 days
respectively. For reference, the grid in Mexico was 407x404 pixels while the one in Holland
was 150x375 pixels. At this stage the optimization may result in either the correct solution,
a circularly equivalent or a different ”incorrect” one. After every optimization the resulting
moisture sequences are put in an array together with their cost as an index. Every array is
examined on whether it is a circular equivalent of a previous one and when that happens a
frequency index is added.
Figures 4.7 and 4.8 present some of the resulting solutions for the behaviour of a single pixel
throughout the time-series. Since it is a single pixel we are in no position to a priori decide
which sequence is the correct one using validation data of any form. Two indicators are needed
to detect the ”correct” chain, the first one being the total cost of the per pixel residuals and
the second one being the frequency of the different solutions.

A/A Study area No. of
SAR acq.

Model type Start date End date

1 Mexico 11 Physical April 1st

2015
August

11th 2015
2 Mexico 6 Physical April 1st

2015
August

11th 2015
3 Holland 11 Physical April 10th

2017
September

1st 2017
4 Holland 11 Simplified April 10th

2017
September

1st 2017

Table 4.1: Characteristics of the four implementations of the soil moisture inversion model

In the case of the 11 acquisitions(Figure 4.7), figure (d) has the highest cost and can be thus
ruled out while (a), (b), (c) have similar cost, which is possible due to the ambiguous nature
of the phase triplets. Furthermore, out of the 3 remaining solutions, options (a) and (c) are
circularly equivalent and thus this sequence satisfies both criteria of frequency and minimum
cost. Solution (a) and its circular equivalents (such as b) in this case appeared 8 out of 30
times.

In the case of the 6 acquisitions(Figure 4.8), there are 2 occurring patterns, with the
algorithm detecting either 2 (figures a,b) or 1 (figures c,d) local/absolute minima. The former
group has a considerably lower function cost on average but it appears less frequent than the
latter; frequency index of 5 vs 9 out of a total of 30 optimizations. In such cases the algorithm
is set to prioritize the cost criterion over the frequency. Further discussion on this decision is
found on the respective chapter.

The main weakness of the optimization step which reflects on the resulting moisture se-
quence has been observed to be the exaggeration of the minima. Both fmincon and lsqnonlin
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have been tested in this thesis and the differences among the 2 are negligible. The reason
these two methods were chosen is that both of them have the possibility to detect local min-
ima, in non linear multivariable function. However, in the case of phase triplets, it seems
that the local minima are often over exaggerated to the point of becoming absolute minima.
Consequently, although the optimization step achieves its purpose in detecting whether the
moisture increases/decreases between subsequent acquisitions, it fails to grasp how each of the
acquisitions is related to the rest of the dataset.

(a) Cost: 250 (b) Cost: 290

(c) Cost: 255 (d) Cost: 372

Figure 4.7: Single pixel moisture sequences estimated by the minimization algorithm in the 11 acquisition
Mexico model, with random initial values. Each run of the minimization algorithm may result in a correct
sequence, a circularly equivalent one or a completely different one.

(a) Cost: 25 (b) Cost: 21

(c) Cost: 35 (d) Cost: 33

Figure 4.8: Single pixel moisture sequences estimated by the minimization algorithm in the 6 acquisition Mexico
model, with random initial values. Each run of the minimization algorithm may result in a correct sequence, a
circularly equivalent one or a completely different one.
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4.3. Inverted moisture results & validation
Now that the ambiguities have been dealth with and the moisture order per pixel has been
established, the constrained inversion developed by De Zan and Gomba 2018 can be performed.

4.3.1. Mexico Model 1
The results of the first model are presented in Figure 4.12. Unfortunately, the validation in
Mexico can not be done using ground data since no public access sensors were found. Figure
4.9 presents the comparison between the modelled and the SMAP product over the whole area,
with the modelled moisture having the same trend as the respective one generated from SMAP
albeit in a much more crude form. The inability of the optimization step to detect all local
minima is reflected on the end result with the inverted moisture data unable to correctly model
the moisture drop in acquisitions 3 & 6 (25/4/2015 & 12/6/2015). However, the inversion model
correctly presents the upward trend from the start of the time series up to the 8th acquisition
(6/7/2015). After the moisture peaks there is a sharp drop to an absolute minima instead of
a local as estimated by NASA’s satellite. Furthermore, although the inversion constrain has
been set to coincide with the SMAP estimates, the model steadily slightly overestimates soil
moisture until the maxima and then underestimates it.

Upon taking a closer look at the eleven generated soil moisture maps, one can see that
there is little spatial variability at images three to seven. In fact, the speckle takes over and
it is hardly possible to discern anything. This spatial variability improves drastically after the
seventh image with patterns emerging, indicating that the inversion algorithm works differently
depending on the land cover type.

Figure 4.9: Comparison of Mexico inversion results with validation data (SMAP).

Upon closer inspection of the resulting moisture plots, one can see that the modelled mois-
ture varies depending on the land cover type. The studied area was divided into five major land
cover types: urban, forest, low vegetation to bare soil and 2 types of cropland. This distinction
was made using land cover data provided by ESA as shown in Figure 4.10. Cropland was split
in two sub types in order to get some insight into the areas on the northwest part of the region
whose response differs, compared to the rest of the cropland.

First, the decorrelation rate is estimated to evaluate the impact of temporal decorrelation
on the different land cover types. According to 4.11, on one hand, the coherence of urban and
low vegetation to bare soil land types does not decay over time, meaning that the effect of
temporal decorrelation is negligible. On the other hand, croplands and forested areas are more
susceptible to decorrelation, since coherence decays fast and long term coherence is close to
zero. In fact the decorrelation rate was estimated to be 7 days for cropland 2 and 12 days for
forest and cropland 1. Consequently, the 12 day interval of Sentinel-1 is not adequate to counter
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Figure 4.10: The region of Puebla and its land types as detected by ESA. Red is urban, Yellow is cropland,
White is bare soil and Green is forest (ESA CCI Land Cover).

the rate the signal decorrelates over vegetated areas, thus we expect temporal decorrelation to
affect the inversion algorithm.

Figure 4.11: Histograms of the decorrelation rate Ꭱ for the different land cover types.

According to the results the urban type and the little to no vegetation have very similar,
if not identical soil moisture behavior. This is an unexpected finding since the man-made
environment of an urban area is supposed to behave quite differently compared to nature. A
possible explanation to that would be that urban areas in rural Mexico are not covered purely
by concrete meaning that the effects of precipitation soil is also apparent. Furthermore, the
SMAP algorithm masks out and disregards urban areas. Consequently, SMAP measurements
above such urban areas reflect the soil moisture in the non-built part of it.
In an attempt to further assess the consistency of the results and to better understand and
quantify how coherent the results are per land type, Figure 4.13 was produced. This Figure
shows the index of the image with the highest moisture, individually per pixel, according to the
algorithm’s outcome. It can be seen, that for most pixels image four is the one with the highest
moisture, although there are a lot of patterns coinciding with the land types already mentioned.
Moreover,there are also a lot of pixels where the index points to a different image. This means
that for many pixes, the algorithm could not detect the correct maximum resulting in an
incorrect moisture sequence and thus image speckle. Table 4.2 shows which image appeared
mostly within the pixel pool of each land type, as well as the variance of pixels within the said
land type. On one hand, it comes to no surprise that urban and bare soil land types have the
lowest variance indicating homogeneity, which gradually increases from lower vegetation to the
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two cropland types and finally to forest. The high variance of the latter two shows that the
inversion algorithm behaves poorly in areas covered by vegetation and the results are rather
inconsistent. This poor behavior can be attributed to the aforementioned decorrelation rate 𝜏.

A/A Land cover type Majority Variance
1 Urban 8 3.1
2 Bare Soil/ Low

Vegetation
8 3.9

3 Cropland 1 8 7.3
4 Cropland 2 9 6.7
5 Forest 8 9.2

Table 4.2: Majority and variance of highest moisture image index
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4.12: Volumetric Soil Moisture (፦Ꮅ/፦Ꮅ) inversion results for the 11 acquisition Mexico model.
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Figure 4.13: Index of the image with the highest moisture level per pixel.

The moisture variation as modelled and as observed by SMAP, per land cover type is
presented in Figure 4.14. As stated before, the optimization algorithm is unable to detect all
local minima and maxima at all land types. Moreover, the magnitude of moisture changes
estimated by the inversion algorithm is lower than the one observed by SMAP. Upon closer
inspection, the two land cover types having the lower moisture shifts are the ones with the
higher variance (Table 4.2), which in turn are the ones with the most noise, possibly induced
by temporal decorrelation, in their results. For example, at areas classified as forest, according
to the algorithm, soil moisture barely changes (0.03 𝑚Ꮅ/𝑚Ꮅ from max to min) compared to
the respective SMAP results (0.13 𝑚Ꮅ/𝑚Ꮅ from max to min). On the contrary, urban and
sparsely vegetated areas correctly reflect the magnitude of soil moisture change observed by
SMAP, albeit doing so with an offset

(a) Inversion algorithm (b) SMAP

Figure 4.14: Mexico inversion results for different land types and their respective SMAP values. Cropland 1
refers to the major cropland, while Cropland 2 refers to the northwest region.
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4.3.2. Mexico Model 2
In a similar fashion, the results of the second inversion using the 6 acquisitions are presented
in Figure 4.16. This model is able to follow the moisture trend (Figure 4.15), similarly to the
1st one. The issue with the local minima remains in this model, since it is unable to detect the
moisture drop in acquisition 3 (25/4/2015). Looking back at Tables 3.1 and 4.1 model 2 lags
behind the other 3 in terms of available phase information with 66,7& and 81.8% respectively.
This means that, on paper, a weaker performance is to be expected from this model due to
information deficit. The comparison between the land cover types, is repeated for model 2 and
the results are presented in Figure 4.17.

Figure 4.15: Comparison of Mexico Model 2 inversion results with validation data (SMAP).

(a) (b) (c)

(d) (e) (f)

Figure 4.16: Volumetric Soil Moisture (፦Ꮅ/፦Ꮅ) inversion results for the 6 acquisition Mexico model

A glaring difference compared to Model 1 is that moisture changes and especially their
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magnitude in forested areas are better predicted by Model 2. Another major difference be-
tween the 2 models, is that the quality of the soil moisture prediction deteriorates over urban
areas, bare soils and low vegetation. In fact, Model 2 predicts a maximum at image 4, while
according to SMAP soil moisture peaks at image 5. Figure 4.11 showed that these land types
are marginally affected by temporal decorrelation. Therefore, we can use them to draw a com-
parison between the 2 models. And since Model 2 can not even correctly estimate the image
with the highest moisture level, it is safe to conclude that the information deficit of Model 2
effectively hampers the implementation of the inversion algorithm and can not be compensated
by a reduced temporal decorrelation stemming from the shorter total time window.

When comparing the correlation coefficients of al four land cover types between both models
(Figure 4.3 one may conclude that Model 2 performs better than Model 1. However, the
increase in correlation is biased since there are less data points to correlate (6 instead of 11).

Land cover type Model 1 (11
SAR images)

Model 2 (6
SAR images)

Urban 0.523 0.819
Cropland 1 0.326 0.542
Cropland 2 0.507 0.647

Forest 0.438 0.949

Table 4.3: Comparison of the correlation coefficients for the four land cover types between Models 1 & 2.
Correlation is independent of the magnitude of values so offsets are irrelevant.

(a) (b)

Figure 4.17: Mexico inversion results for different land types and their respective SMAP values. Cropand 1
refers to the major cropland, while Cropland 2 refers to the northwest region.

4.3.3. Holland Physical & Simplified Model
Moving on the the second study area of this thesis, the first model consists of the same in-
version model as the two models implemented for Mexico, while the second model is based on
the premises of a simplified inversion model, under the assumption that there is a direct link
between closure phases and moisture change. Figures 4.19 & 4.20 present the produced mois-
ture maps of the study area for the physical and the simplified model respectively. Meanwhile,
Figure 4.21 compares the inverted moisture sets resulting from both models with SMAP.

Both models show a subpar performance, at least when compared with the study case in
Mexico. Neither of the two achieve in following the general moisture trend observed by SMAP.
Although the inversion was constrained within limits which were selected to have results similar
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(a) (b)

(c)

Figure 4.18: Inversion results for the three different land types and their respective SMAP values.

to the ones from SMAP, the moisture value of the initial acquisition far exceeds the respective
one from SMAP. This time the inversion algorithm detects more local maxima and minima
than it did in Mexico, however these do not correlate well with the moisture values observed
by SMAP. Furthermore, both models result in moisture orders which show a high level of
variation among each other. Both show significant spatial variability, due to the different
land cover types. Consequently, no conclusions can be made, unless these land cover types are
investigated. For this region, land cover data were retrieved from (Copernicus-Land Monitoring
Service 2015) and 3 major types were selected: Urban, Forest and Cropland. For each land
cover type several subsets were selected to get a better grasp of the situation. Both physical
and simplified models fail to accurately recreate the moisture trends for croplands, forest and
pasture. The correlation coefficient for each model and land cover type is shown in Table 4.4.

In order to attempt to explain the performance of the model over the Netherlands, the
decorrelation rate is estimated to evaluate the impact of temporal decorrelation, in a similar
manner to what was done in the study area of Mexico. According to Figure 4.22, the coherence
decays over time in every land cover type except for the urban type. Croplands, pasture (such
as Delfland) and forested areas are quite susceptible to temporal decorrelation, since the decay
is almost instantaneous and the long term coherence is almost zero. The decorrelation rate was
estimated to be just 6 days for pasture (Delfland) and cropland and 9 days for forest. Based
on this findings, the situation in the Netherlands is much more grim than it was in Mexico,
because 12 day interval of the Sentinel-1 mission, is not frequent enough to make up for the
coherence decay.

Furthermore, in the Netherlands the signal reflected from vegetated areas decorrelates twice
as fast as the respective one at Mexico, which may explain the underwhelming results of the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4.19: Volumetric Soil Moisture (፦Ꮅ/፦Ꮅ) inversion results for the 11 acquisition Physical Holland model
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4.20: Volumetric Soil Moisture (፦Ꮅ/፦Ꮅ) inversion results for the 11 acquisition Simplified Holland model
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(a) (b)

Figure 4.21: Comparison of the Physical (a) and the Simplified (b) Holland model inversion results with the
available validation data (SMAP).

inversion algorithm.

Figure 4.22: Histograms of the decorrelation rate Ꭱ for the different land cover types.

Land cover type Physical
Inversion Model

Simplified
Inversion Model

Urban -0.086 0.638
Cropland 0.134 -0.780

Forest 0.186 0.174

Table 4.4: Comparison of the correlation coefficients for the three land cover types between the two employed
models.

Another interesting fact about the inversion model employed, is that surface water bodies
have non zero phase closure, resulting in moisture change, which is unreal. This ”moisture
change” results from the fact that the backscatter above water is very low and thus the co-
herence is close to zero. Consequently, the SAR signal reflected from water bodies is pure
noise.

In order to do some investigation on this phenomenon, the following water bodies were se-
lected to be studied: Westeinderplassen, Braassemermeer, Vinkeveense plassen and the system
of Wetlands east of Gouda. Land cover data as well as the selected water bodies are presented
in Figure 4.23. The average coherence signal of these water bodies was found to be 0.11 with a
maximum of 0.17.This average can now be used as a threshold, to determine whether the signal
is pure noise or there is some useful information which can be extracted. Upon examination,
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the average coherence levels of pasture and cropland does not exceed 0.16, meaning that there
is hardly any useful soil moisture information to be extracted ( (Wei and Sandwell 2010)).

Figure 4.23: The region of Netherlands studied and its land types as detected by (Copernicus-Land Monitoring
Service 2015). The water bodies studied are circled.

4.4. Interferometric phase corrections
Determining the moisture sequence, apart from its hydrological interest, enables the correction
of interferometric parameters like coherence and phase. Such corrections are essential to InSAR
applications where moisture changes induce noise to the system. For this conversion the forward
model proposed by De Zan, Parizzi, et al. 2013 is implemented employing the moisture dataset
from both study areas.

At this section a couple of examples of compensated phase and displacement correction
from each study area will be shown. Regarding Mexico, Figures 4.24 & 4.25 present two
typical phase correction maps and a displacement correction respectively.

(a) (b)

Figure 4.24: Compensated interferometric phase (mean Dlos = 0.47mm)(a) and (mean Dlos = -0.14mm) (b)

C-band phase differences can amount up to �5.5 mm per interferogram. Assuming the
phase corrections can be stacked, this would result in a total of 15.2 mm land subsidence
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Figure 4.25: Total moisture induced displacement

corrections due to shifts in moisture in a window of 130 days, in the region Puebla. According
to Puebla subsides slowly at a rate of 4.4 cm/year, meaning that the signal correction is not
at all negligible (false signal up to 1/3 of the yearly subsidence, during the rain season alone).

Regarding the Netherlands, Figure 4.26 presents a typical phase correction map and a
displacement correction respectively. Since both models performed poorly, the resulting cor-
rection are expected to not reflect reality. Nevertheless, it is still interesting to see what are
the reading in Delfland. The maximum deformation is �11 mm over 140 days of summer with
little precipitation. Since the physical model underestimated the moisture shift, the real one
can rank even higher.

(a) (b)

Figure 4.26: Compensated interferometric phase (mean Dlos = 0.47mm)(a) and Total moisture induced dis-
placement (b)
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Conclusions & Recommendations

In this thesis, the potential of Sentinel-1 C-band phase closure as a tool to estimate soil
moisture and the associated correction in InSAR parameters has been studied. To be more
specific, two alternatives of the Interferometric Model for Soil Moisture introduced by De Zan,
Parizzi, et al. 2013, De Zan and Gomba 2018 and reinforced by the contribution of Zwieback,
Hensley, and Hajnsek 2017 are applied in two study areas: Puebla region in Mexico and Zuid
& Nord-Holland in the Netherlands.

This chapter will give short answers to the individual research questions set in the early
stages of the research. Finally, a couple of recommendations for further research on the topic
will be presented.

5.1. Conclusions
The main research question is:

Is it possible to detect soil moisture changes with the method of closure phase inversion,
using Sentinel-1 C-band data?

This question will be answered by answering the sub questions.

• Does the phase closure inversion method proposed by De Zan work in C-band?

Based on the findings of this thesis, C-band Sentinel-1 product has indeed the potential
to be used for this purpose. However, there are certain conditions which have to be met for
the successful inversion. The results showed that the current state and setup of the algorithm
does not have the ability to overcome vegetation at least not with the 12-day repeat interval.
The algorithm generated consistent soil moisture products over bare soils and areas with low
vegetation, however the quality deteriorated when vegetation came into play. According to
the pixel statistics at Table 4.2 and Figure 4.13, the chances of each of the 11 images to be
identified as the one with the moisture maximum were spread evenly with a noticeable edge
given to the actually correct one. This implies that the potential is there, however the current
results are far from satisfactory.

• How does land cover affect the closure phase dataset?

Land cover dictates the level of coherence between images to a certian extent. Therefore
it is inadvertently responsible for the closure phase signal as well. As a general rule of thumb,
low coherence generates strong and noise plagued phase signal, which makes extracting useful

57
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data highly unlikely, at least with the methodology employed. This was quite apparent in
the Netherlands where vegetated areas were inndistinguishable from water bodies in terms of
coherence levels. All in all, a consistently high magnitude closure phase signal deters the inver-
sion algorithm from solving the circular ambiguities and discern the underlying soil moisture
patterns.

• Is the detected moisture spatially consistent with land cover?

The consistency seem to depend entirely on the land cover type. Looking at the results, it
is apparent that areas in Mexico with little to no vegetation generate a highly consistent signal,
but the quality decays over areas with dense vegetation, in Mexico and the Netherlands alike.
The investigation conducted showed that this decay is directly associated with the increased
decorrelation rate over vegetated areas.
The fact that the Mexico model managed to generate two spatially discrete moisture patterns
over the same land cover type (cropland 1 and 2), shows that the potential is indeed there,
but more research is required to overcome the issues which were identified at this thesis.

• Can soil moisture be used to reduce the uncertainty of land deformation values obtained
with InSAR?

All findings point to the soil moisture being able to reduce the uncertainty. In Mexico, for
example, the phase compensation was not negligible at all. Additionally, in Delfland where the
physical model underestimated the local soil moisture changes heavily, the total deformation
signal was almost equal to the one in Mexico (15.2mm to 14.4mm). Consequently, soil moisture
signal could be pivotal in alleviating land deformation measurements from a certain degree of
uncertainty.

5.2. Recommendations
• The results of the phase closure inversion algorithm in the Netherlands left a lot to be

desired, especially in comparison with Mexico. The physical model using the Halikkainen
empirical dielectric constant was imperfect for this area since organics were not being
accounted for. It would be certainly interesting to look into it, in order to broaden its
field of application.

• To my surprise, urban areas in Mexico provided a clear ”soil moisture” coherent with
SMAP observations. Moreover, the quality of the results was on par with those over bare
soil/ low vegetated areas. My assumption is that it has to do with the urban drainage
infrastructure and urban texture overall. Although the result can not be actual soil
moisture, it is intriguing to find out more about this interaction.

• So far, and apart from this thesis, only L-band data have been used to replicate this
method. In theory due to the longer wavelength, ergo larger penetration L-band is
indeed a more suitable choice. It would be wise to use both L-band and C-band, maybe
also Ku-band on the same study area as a means to get tangible comparable results.

• This method is not very efficient as it requires a large amount of data and has it’s fair
share of pre-processing between acquiring the SAR images and producing the moisture
maps. Due to the ambiguities plaguing phase closures, the optimization process needs a
large number of repetitions in order to have a good cross section of potential solutions.
This, together with the number of the SAR images employed and a potentially large grid
size, means that the computing power required is substantial. i would recommend using
a a terminal with parallel computing or partitioning the process.
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• According to Monnier, Perrin, and Malbet 2003 the available phase information acquired
from phase closures is directly linked to the number of images in use. In this thesis sets
of 11 images were used, meaning that just �82% ofphase information was at my disposal.
This gap can be diminished by using a time series consisting of more acquisitions. This
was not able to be done during this study due to the limited resources available. It
would be interesting to investigate the implementation of this method on a larger SAR
dataset. Of course that would introduce even greater amounts of temporal decorrelation
over vegetated areas.

• In both areas the decorrelation rate was higher or equal to the repeat interval. As a result
the phase signal was plagued with temporal decorrelation. It is suggested to repeat this
method, involving techniques to thicken the dataset. A possible solution could be to use
multipolar InSAR.

• Although this research was initiated with the phase corrections in mind as an endgoal,
further research on its applicability and efficiency purely for hydrological purposes would
be advised. Maybe it could be used in tandem with a ground truthing network comprising
of soil moisture sensing stations, even operated by citizen scientists.
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