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Abstract
Weconstruct a newclass of efficientMonteCarlomethods basedon continuous-timepiecewise deterministicMarkovprocesses
(PDMPs) suitable for inference in high dimensional sparse models, i.e. models for which there is prior knowledge that many
coordinates are likely to be exactly 0. This is achieved with the fairly simple idea of endowing existing PDMP samplers with
“sticky” coordinate axes, coordinate planes etc. Upon hitting those subspaces, an event is triggered during which the process
sticks to the subspace, this way spending some time in a sub-model. This results in non-reversible jumps between different
(sub-)models. While we show that PDMP samplers in general can be made sticky, we mainly focus on the Zig-Zag sampler.
Compared to the Gibbs sampler for variable selection, we heuristically derive favourable dependence of the Sticky Zig-Zag
sampler on dimension and data size. The computational efficiency of the Sticky Zig-Zag sampler is further established through
numerical experiments where both the sample size and the dimension of the parameter space are large.

Keywords Bayesian variable selection · Piecewise deterministic Markov process ·Monte Carlo · Spike-and-slab · Big-data ·
High-dimensional problems · Non-reversible jump

1 Introduction

1.1 Overview

Consider the problem of simulating from a measure μ on
R

d that is a mixture of atomic and continuous components.
A key application is Bayesian inference for sparse problems
and variable selection under a spike-and-slab prior μ0 of the
form

μ0(dx) =
d∏

i=1

(wiπi (xi )dxi + (1− wi )δ0(dxi )) . (1.1)
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Here, wi ∈ [0, 1], π1, π2, . . . , πd are densities with respect
to the Lebesgue measure referred to as slabs and δ0 denotes
the Dirac measure at zero. For sampling from μ, it is com-
mon to construct and simulate a Markov process with μ

as invariant measure. Routinely used samplers such as the
Hamiltonian Monte Carlo sampler (Duane et al. 1987) can-
not be applied directly due to the degenerate nature of μ. We
show that “ordinary” samplers based on piecewise determin-
istic Markov processes (PDMPs) can be adapted to sample
from μ by introducing stickiness.

In piecewise deterministic Markov processes, the state
space is augmented by adding to each coordinate xi a
velocity component vi , doubling the dimension of the state
space. They are characterized by piecewise deterministic
dynamics between event times, where event times corre-
spond to changes of velocities. PDMPs have received recent
attention because they have good mixing properties (they
are non-reversible and have ‘momentum’, see e.g. Andrieu
and Livingstone 2019), they take gradient information into
account and they are attractive in Bayesian inference scenar-
ios with a large number of observations because they allow
for subsampling of the observations without creating bias
(Bierkens et al. 2019a, 2020).

We introduce “sticking event times”, which occur every
time a coordinate of the process state hits 0. At such a time
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that particular component of the state freezes for an indepen-
dent exponentially distributed timewith a specifically chosen
rate equal to |vi |κi , for some κi > 0 which depends on μ.
This corresponds to temporarily setting themarginal velocity
to 0: the process “sticks to (or freezes at) 0” in that coordi-
nate,while the other coordinates keepmoving, as long as they
are not stuck themselves. After the exponentially distributed
time the coordinate moves again with its original velocity,
see Fig. 1 for an illustration of the sticky version of the Zig-
Zag sampler (Bierkens et al. 2019a). By this wemean that the
dynamics of a ordinary PDMP are adjusted such that the pro-
cess can spend a positive amount of time at the origin, at the
coordinate axes and at the coordinate (hyper-)planes by stick-
ing to 0 in each coordinate for a random time span whenever
the process hits 0 in that particular coordinate. By restoring
the original velocity of each coordinate after sticking at 0, we
effectively generatenon-reversible jumps between states with
different sets of non-zero coordinates. In the Bayesian con-
text this corresponds to having non-reversible jumps between
models of varying dimensionality.

This allows us to construct a piecewise deterministic pro-
cess that has a pre-specified measure μ as invariant measure,
which we assume to be of the form

μ(dx) = Cμ exp(−�(x))

d∏

i=1

(
dxi + 1

κi
δ0(dxi )

)
(1.2)

for some differentiable function �, normalising constant
Cμ > 0 and positive parameters κ1, κ2, . . . , κd . Here the
Diracmasses are located at 0, but generalizations are straight-
forward. The resulting samplers and processes are referred to
as sticky samplers and sticky piecewise deterministic Markov
processes respectively. The proportionality constant Cμ is
assumed to be unknown while (κi )i=1,...,d are known. This
is a natural assumption; suppose a statistical model with
parameter x and log-likelihood �(x) (notationally, we drop
the dependence of � on the data). Under the spike-and-slab
prior defined in Eq. (1.1), the posterior measure is of the form
of Eq. (1.2) with

�(x) = C − �(x) −
d∑

i=1

log(πi (xi )),

κi = wi

1− wi
πi (0) (1.3)

where C , independent of x , can be chosen freely for conve-
nience.Apopular choice forπi is aGaussian density centered
at 0with standard deviationσi . In this case, asw/(1−w) ≈ w

forw ≈ 0, κi depends linearly onwi/σi in the sparse setting.
Relevant quantities useful for model selection, such as the

posterior probability of a model excluding the first variable

μ({0} × R
d−1) = Cμ

∫
exp(−�(x))

1

κ1
δ0(dx1)

d∏

i=2

(
dxi + 1

κ i
δ0(dxi )

)

cannot be directly computed if Cμ is unknown. However,
given a trajectory (x(t))0≤t≤T of a PDMP with invariant
measureμ, the quantityμ({0}×R

d−1) can be approximated
by the ratio T0/T where T0 = Leb{0 ≤ t ≤ T : x1(t) = 0}.
This simple, yet general idea requires the user only to specify
{κi }d

i=1 and � as in Eq. (1.2). Moreover, the posterior prob-
ability that a collection of variables are all jointly equal to
zero can be estimated in a similar way by computing the frac-
tion of time that all corresponding coordinates of the process
are simultaneously zero and, more generally, expectations
of functionals with respect to the posterior can be estimated
from the simulated trajectory.

1.2 Related literature

The main purpose of this paper is to show how “ordinary”
PDMPs can be adjusted to sample from the measure μ

as defined in (1.2). The numerical examples illustrate its
applicability in a wide range of applications. One specific
application that has received much attention in the statistical
literature is variable selection using a spike-and-slab prior.
For the linear model, early contributions include Mitchell
and Beauchamp (1988) and George and McCulloch (1993).
Some later contributions for hierarchical models derived
from the linearmodel are Ishwaran andRao (2005),Guan and
Stephens (2011), Zanella and Roberts (2019) and Liang et al.
(2021). These works have in common that samples from the
posterior are obtained fromGibbs sampling and canbe imple-
mented in practise only in specific cases (when the Bayes
factors between (sub-)models can be explicitly computed).
A general and common framework for MCMC methods for
variable selection was introduced in Green (1995) and Green
and Hastie (2009) and referred to as reversible jump MCMC.

Methods that scale better (compared to Gibbs sampling)
with either the sample size or dimension of the parameter can
be obtained in different ways. Firstly, rather than sampling
from the posterior one can approximate the posterior within
a specified class, for example using variational inference. As
an example, Ray et al. (2020) adopt this approach in a logis-
tic regression problem with spike-and-slab prior. Secondly,
one can try to obtain sparsity using a prior which is not of
spike-and-slab type. For example, Griffin and Brown (2021)
considerGibbs sampling algorithms for the linearmodelwith
priors that are designed to promote sparseness, such as the
Laplace or horseshoe prior (on the parameter vector). While
such methods scale well with dimension of data and parame-
ter, these target a different problem: the posterior is not of the
form (1.2). That is, the posterior itself is not sparse (though
derived point estimates may be sparse and the posterior itself
may have good properties when viewed from a frequentist
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Fig. 1 Two-dimensional Sticky
Zig-Zag sampler with initial
position (−0.75,−0.4) and
initial velocity (+1,−1). On the
left panel, a trajectory on the
(x, y)-plane of the Sticky
Zig-Zag sampler. The sticky
event times relative to the x
(respectively y) coordinate and
the trajectories with the x
(respectively y) stuck at 0 are
marked with a blue (respectively
red) cross and line. On the right
panel, the trajectories of each
coordinate against the time
using the same (color-) scheme.
The trajectory of y is dashed

perspective). Moreover, part of the computational efficiency
is related to the specific model considered (linear or logistic
regression model) and, arguably, a generic gradient-based
MCMC method would perform poorly on such measures
since the gradient of the (log-)density near 0 in each coor-
dinate explodes to account for the change of mass in the
neighborhood of 0 induced by the continuous spike compo-
nent of the prior.

A recent relatedwork byChevallier et al. (2020) addresses
variable selection problems using PDMP samplers. The dif-
ferent approach taken in that paper is based on the framework
of reversible jump (RJ)MCMC as proposed in Green (1995).
A comparison between Chevallier et al. (2020) and our work
may be found in Appendix C.

1.3 Contributions

• We show how to construct sticky PDMP samplers from
ordinary PDMP samplers for sampling from the mea-
sure in Eq. (1.2). This extension allows for informed
exploration of sparse models and does not require any
additional tuning parameter. We rigorously characterise
the stationary measure of the sticky Zig-Zag sampler.

• We analyse the computational efficiency of the sticky
Zig-Zag sampler by studying its complexity and mixing
time.

• We demonstrate the performance of the sticky Zig-Zag
sampler on a variety of high dimensional statistical exam-
ples (e.g. the example in Sect. 4.2 has dimensionality
106).

The Julia package ZigZagBoomerang.jl (Schauer and
Grazzi 2021) implements efficiently the sticky PDMP sam-
plers from this article for general use.

1.4 Outline

Section 2 formally introduces sticky PDMP samplers and
gives the main theoretical results for the sticky Zig-Zag sam-
pler. In Sect. 2.4 we explain how the sticky Zig-Zag sampler
may be applied to subsampled data, allowing the algorithm to
access only a fraction of data at each iteration, hence reduc-
ing the computational cost from O(N ) to O(1), where N is
the sample size. In Sect. 3 we extend the Gibbs sampler for
variable selection for targetmeasures of the form of Eq. (1.2).
We analyse and compare the computational complexity and
the mixing times of both the sticky Zig-Zag sampler and the
Gibbs sampler. Section 4 presents four statistical examples
with simulated data and analyses the outputs after applying
the algorithms considered in this article. In Sect. 5 both lim-
itations and promising research directions are discussed.

There are five appendices. The derivation of our theoret-
ical results is given in Appendix A. Appendix B extends
some of the theoretical results for two other sticky samplers:
the sticky version of the Bouncy particle sampler (Bouchard-
Côtè et al. 2018) and the Boomerang sampler (Bierkens et al.
2020), the latter having Hamiltonian deterministic dynam-
ics invariant to a prescribed Gaussian measure. Appendix C
contains a self-contained discussionwith heuristic arguments
and simulations which highlight the differences between the
sticky PDMPs and the method of Chevallier et al. (2020).
Appendix D complements Sect. 3 with the details of the
derivations of the main results and by presenting local imple-
mentations of the sticky Zig-Zag sampler that benefit of a
sparse dependence structure between the coordinates of the
target measure. Appendix E contains some of the details of
the numerical examples of Sect. 4.

1.5 Notation

The i th element of the vector x ∈ R
d is denoted by xi .

We denote x−i := (x1, x2, . . . , xi−1, xi+1, . . . , xd) ∈ R
d−1.
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Write

(x[k : y])i :=
{

xi i �= k,

y i = k.

and [x]A := (xi )i∈A ∈ R
|A| for a set of indices A ⊂

{1, 2, . . . , d} with cardinality |A|. We denote by � the dis-
joint union between sets and the positive and negative part
of a real-valued function f by f + := max(0, f ) and
f − := max(0,− f ) respectively so that f = f +− f −. For a
topological space E , let B(E) denote the Borel σ -algebra on
E . Denote byM(E) the class of Borel measurable functions
f : E → R and letC(E) = { f ∈ M(E) : f is continuous }.
For a measure μ(dx, dy) on a product space X ,Y , we write
the marginal measure on X by μ(dx) = ∫Y μ(dx, dy).

2 Sticky PDMP samplers

In what follows, we formally describe the sticky PDMP sam-
plers (Sect. 2.1) and give themain theoretical results obtained
for the stickyZig-Zag sampler (Sect. 2.3). Section2.4 extends
the sticky Zig-Zag sampler with subsampling methods.

2.1 Construction of sticky PDMP samplers

The state space of the the sticky PDMPs contains two copies
of zero for each coordinate position. This construction allows
a coordinate process arriving at zero from below (or above)
to spend an exponentially distributed time at zero before
jumping to the “other” zero and continuing the dynamics.
Formally, let R be the disjoint union R = (−∞, 0−] �
[0+,∞)with the natural topology1 τ , where we use the nota-
tion 0−, 0+ to distinguish the zero element in (−∞, 0] from
the zero element in [0,∞). The process has càdlàg2 tra-

jectories in the locally compact state space E = R
d × V ,

where V ⊂ R
d . Pairs of position and velocity will typically

be denoted by (x, v) ∈ R
d × V . A trajectory reaching zero

in a coordinate from below (with positive velocity) or from
above (with negative velocity) spends time at the closed end
of the half open interval (−∞, 0−] or [0+,∞), respectively.
For i = 1, . . . , d we define the associated ‘frozen boundary’
Fi ⊂ E for the i th coordinate as

Fi := {(x, v) ∈ E : xi = 0−, vi > 0 or xi = 0+, vi < 0}.

1 A function f : R → R is continuous if both restrictions to (∞, 0−]
and [0+,∞) are continuous. If f (0−) = f (0+), we write f (0).
2 I.e., trajectories that are continuous from the right, with existing limits
from the left.

Thus the i th coordinate of the particle is sticking to zero (or
frozen), if the state of the particle belongs to the i th frozen
boundary Fi .

Sometimes, we abuse notation by writing (xi , vi ) ∈ Fi

when (x, v) ∈ Fi as the set Fi has restrictions only on xi , vi .
The closed endpoints of the half-open intervals are some-
what reminiscent of sticky boundaries in the sense of Liggett
(2010, Example 5.59). Denote by α ≡ α(x, v) the set of
indices of active coordinates corresponding to state (x, v),
defined by

α(x, v) = {i ∈ {1, 2, . . . , d} : (x, v) /∈ Fi } (2.1)

and its complement αc = {1, 2, . . . , d}\α. Furthermore
define a jump or transfer mapping Ti : Fi → E by

Ti (x, v) =
{

(x[i : 0+], v) if xi = 0−, vi > 0,

(x[i : 0−], v) if xi = 0+, vi < 0.

The sticky PDMPs on the space E are determined by their
infinitesimal characteristics: their dynamics are determined
by random state changes happening at random jump times
of a time inhomogeneous Poisson process with intensity
depending on the state of the process, and a determinis-
tic flow governed by a differential equation in between.
The state changes are characterised by a Markov kernel
Q : E × B(E) → [0, 1], at random times sampled with
state dependent intensity λ : E → [0,∞). The determinis-
tic dynamics are determined coordinate-wise by the integral
equation

(xi (t), vi (t)) = (xi (s), vi (s)) +
∫ t

s
ξi (xi (r), vi (r))dr ,

i = 1, 2, . . . , d, (2.2)

with ξi being state dependent with form

ξi (x, v) =
{

ξ̄i (xi , vi ) (xi , vi ) /∈ Fi

(0, 0) (xi , vi ) ∈ Fi ,
(2.3)

for functions ξ̄i : R × R → R × R which depend on the
specific PDMP chosen and corresponds to the coordinate-
wise dynamics of the ordinary PDMP while the second case
in Eq. (2.3) captures the behaviour of the i th coordinate when
it sticks at 0.

For PDMP samplers, we typically have ξ̄i = ξ̄ j for all
i, j ∈ 1, . . . , d and we have different types of state changes
given by Markov kernels Q1, Q2, …, for example refresh-
ments of the velocity, reflections of the velocity, unfreezing
of a coordinate etc. If each transition is triggered by its indi-
vidual independent Poisson clock with intensity λ1, λ2, . . .,
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then λ =∑i λi , and Q itself can be written as the mixture

Q((x, v), ·) =
∑

i

λi ((x, v))

λ((x, v))
Qi ((x, v), ·).

With that, the dynamics of the sticky PDMP sampler t �→
(X(t), V (t)) are as follows: starting from (x, v) ∈ E ,

1. its flow in each coordinate is deterministic and continuous
until an event happens. The deterministic dynamics are
given by (2.2). Upon hittingFi , the i th coordinate process
freezes, captured by the state dependence of (2.3).

2. A frozen coordinate “unfreezes” or “thaws” at rate equal
to κi |vi | by jumping according to the transfer mapping
Ti to the location (0+, vi ) (or (0−, vi )) outside Fi and
continuing with the same velocity as before. That is, on
hitting Fi , the i th coordinate process freezes for an inde-
pendent exponentially distributed time with rate κi |vi |.
This constitutes a non-reversible move between mod-
els of different dimension. The corresponding transition
Qi,thaw is the Dirac measure at δTi (x,v) and the intensity
component λi,thaw equals κi |vi |1Fi .

3. An inhomogeneousPoissonprocessλrefl with rate depend-
ing on � triggers the reflection events. At a reflection
event time, the process changes its velocities according
to its reflection rule Qrefl in such a way that the process
is invariant to the measure μ.

4. Refreshment events can be added, where, at exponen-
tially distributed inter-arrival times, the velocity changes
according to a refreshment rule leaving the measure μ

invariant. Refreshments are sometimes necessary for the
process to be ergodic.

The resulting stochastic process (Xt , Vt ) is a sticky PDMP
with dynamics Q, λ, ϕ, initialised in (X(τ0), V (τ0)). Let
s → ϕ(s, x, v) be the deterministic solution of (2.2) starting
in (x, v). Set τ0 = 0 and the initial state (X(τ0), V (τ0)) ∈
E . A sample of a sticky PDMP is given by the recursive
construction in Algorithm 1.

In what follows, we focus our attention on the Sticky
Zig-Zag sampler and defer to Appendix B the details of the
Bouncy Particle sampler and the Boomerang samplers.

2.2 Sticky Zig-Zag sampler

Atrajectory of theStickyZig-Zag sampler has piecewise con-
stant velocity which is an element of the set V = {v : |vi | =
ai ,∀i ∈ {1, 2, . . . , d}} for a fixed vector a. For each index
i , the deterministic dynamics of Eq. (2.3) are determined by
the function ξ̄i (xi , vi ) = (vi , 0). The reflection rate λrefl is
factorised coordinate-wise and the reflection event for the

Algorithm 1 PDMP samplers: recursive construction
Given the current state (X(τk), V (τk)) at time τk

1. Sample independently 
k as the first event time of an inho-
mogeneous Poisson process. We denote 
k ∼ Poiss(s →
λ(ϕ(s, X(τk), V (τk))), with

P (
k ≥ t) = exp

(
−
∫ t

0
λ(ϕ(s, X(τk), V (τk))ds

)
. (2.4)

2. Let τk+1 = τk + 
k and set for t ∈ [τk , τk+1)

(X(t), V (t)) = ϕ(t − τk , X(τk), V (τk)).

3. Let

(X(τk+1), V (τk+1)) ∼ Q(ϕ(
k , X(τk), V (τk)), ·).

i th coordinate is determined by the inhomogeneous rate

λi,refl(x, v) = 1i∈α(x,v)(vi∂i�(x))+. (2.5)

At reflection time of the i th coordinate, the transition ker-
nel Qi,refl acts deterministically by flipping the sign of the
i th velocity component of the state: (xi , vi ) → (xi ,−vi ). As
shown in Bierkens et al. (2019b), the Zig-Zag sampler does
not require refreshment events in general to be ergodic.

2.3 Theoretical aspects of the Sticky Zig-Zag sampler

A theoretical analysis of the sticky Zig-Zag sampler is given
in “Appendix A.1”. In this section we review key concepts
and state the main results.

The stationary measure of a PDMP is studied by looking
at the extended generator of the process which is an operator
characterising the process in terms of local martingales—see
Davis (1993, Section 14) for details. The extended generator
is - as the name suggests—an extension of the infinitesimal
generator of the process (defined for example in (Liggett
2010, Theorem 3.16) in the sense that it acts on a larger class
of functions than the infinitesimal generator and it coincides
with the infinitesimal generator when applied to functions in
the domain of the infinitesimal generator.

A general representation of the extended generator of
PDMPs is given in Davis (1993, Section 26), while the
infinitesimal generator of the ordinary Zig-Zag sampler
is given in the supplementary material of Bierkens et al.
(2019a). Here, we highlight the main results we have derived
for the sticky Zig-Zag sampler.

Recall t → ϕ(t, x, v) denotes the deterministic solution
of (2.2) starting in (x, v) and τ is the natural topology on E .
Define the operator A with domain

D(A) = { f ∈ M(E) : t �→ f (ϕ(t, x, v))τ

-absolutely continuous ∀(x, v) and
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∀i : lim
t↓0 f (x[i : 0+ + t], ·) = f (x[i : 0+], ·),

lim
t↓0 f (x[i : 0− − t], ·) = f (x[i : 0−], ·)}

by A f (x, v) =∑d
i=1Ai f (x, v) with

Ai f (x, v) =

⎧
⎪⎨

⎪⎩

aiκi ( f (Ti (x, v)) − f (x, v)) (x, v) ∈ Fi ,

vi∂xi f (x, v) + λi (x, v)

( f (x, v[i : −vi ]) − f (x, v)) else.

Proposition 2.1 The extended generator of the d-dimensional
Sticky Zig-Zag process is given by A with domain D(A).

Proof See Appendix 1. ��
Notice that, the operator A restricted on D = { f ∈
C1

c (E),A f ∈ Cb(E)} coincides with the infinitesiaml gen-
erator of the ordinary Zig-Zag process restricted on D, see
Proposition A.6, Appendix 1 for details.

Theorem 2.2 The d-dimensional Sticky Zig-Zag sampler is a
Feller process and a strong Markov process in the topological
space (E, τ ) with stationary measure

μ(dx, dv) = 1

C

∑

u∈V
exp(−�(x))

d∏

i=1

(
dxi + 1

κi

(
1vi >0 δ0−(dxi )

+1vi <0 δ0+(dxi )
)
δu(dv)

)
, (2.6)

for some normalization constant C > 0.

Proof The construction of the process and the character-
ization of the extended generator and its domain of the
d-dimensional Sticky Zig-Zag process can be found in
Appendix 1. We then prove that the process is Feller and
strong Markov (“Appendix A.2” and “Appendix A.3”). By
Liggett (2010, Theorem 3.37), μ is a stationary measure if,
for all f ∈ D,

∫
L f dμ = 0. This last equality is derived in

Appendix A.5. ��
Theorem 2.3 Suppose � satisfies Assumption A.8. Then the
sticky Zig-Zag process is ergodic and μ is its unique station-
ary measure.

Proof See Appendix 1. ��
The following remark establishes a formula for the recur-

rence time of the Sticky Zig-Zag to the null model, and may
serve as guidance in design of the probabilistic model or the
choice of the parameter κi , here assumed for simplicity to be
all equal.

Remark 2.4 (Recurrence time of the Sticky Zig-Zag to zero)
The expected time to leave the position 0 = (0, 0, . . . , 0)
for a d-dimensional Sticky Zig-Zag with unit velocity com-
ponents is 1

κd (since each coordinate leaves 0 according to
an exponential random variable with parameter κ). A simple
argument given in “Appendix A.7” shows that the expected
time of the process to return to the null model is

1− μ({0})
dκμ({0}) . (2.7)

2.4 Extension: sticky Zig-Zag sampler with
subsamplingmethod

Here we address the problem of sampling a d-dimensional
target measure when the log-likelihood is a sum of N terms,
when d and N are large. Consider for example a regression
problemwhere both the number of covariates and the number
of experimental units in the dataset are large. In this situation
full evaluation of the log-likelihood and its gradient is pro-
hibitive. However, PDMP samplers can still be used with the
exact subsampling technique (e.g. Bierkens et al. 2019a) as
this allows for substituting the gradient of the log-likelihood
(which is required for deriving the reflection times) by an
estimate of it which is cheaper to evaluate, without introduc-
ing any bias on the output of the sampler.

The subsampling technique for Sticky Zig-Zag samplers
requires to find an unbiased estimate of the gradient of � in
(1.2). To that end, assume the following decomposition:

∂xi �(x)=
⎛

⎝
Ni∑

j=1

S(x, i, j)

⎞

⎠ , ∀x ∈R
d
, i = 1, 2, . . . , d,

(2.8)

for some scalar valued function S. This assumption on �

is satisfied for example for the setting with a spike-and-slab
prior and a likelihood that is a product of factors, such as for
likelihoods of (conditionally) independent observations.

For fixed (x, v) and x∗ ∈ R
d , for each i ∈ α(x, v) the

random variable

Ni
(
S(x, i, J ) − S(x∗, i, J )

)+ ∂xi �(x∗),
J ∼ Unif({1, 2, . . . , Ni })

is an unbiased estimator for ∂xi �(x). Define the Poisson rates

λ̃i, j (x, v)

= (vi Ni (S(x, i, j) − S(x∗, i, j)) + vi∂xi �(x∗)
)+

and, for each i ∈ α, define the bounding rate

λi (t, x, v)≥ λ̃i, j (ϕ(t, x, v)), t ≥0, ∀ j ∈ {1, 2, . . . , Ni },
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which is specified by the user and such that Poisson times
with inhomogeneous rate τ ∼ Poiss(s → λi (s, x, v)) can be
simulated (see “Appendix D.2” for details on the simulation
of Poisson times).

The Sticky Zig-Zag with subsampling has the following
dynamics:

• the deterministic dynamics and the sticky events are iden-
tical to the ones of the Sticky Zig-Zag sampler presented
in Sect. 2.3;

• a proposed reflection time equals mini∈α(x,v) τi , with
{τi }i∈α(x,v) being independent inhomogeneous Poisson
times with rates s → λi (s, x, v);

• at the proposed reflection time τ triggered by the i th
Poisson clock, the process reflects its velocity accord-
ing to the rule (x, v) → (x, v[i,−vi ]) with probability
λ̃i,J (ϕ(τ, x, v))/λi (τ, x, v) where J ∼ Unif({1, 2, . . . ,
Ni }).

Proposition 2.5 The Sticky Zig-Zag with subsampling has a
unique stationary measure given by Eq. (2.6).

The proof of Proposition 2.5 follows with a similar argu-
ment made in the proof of Bierkens et al. (2019a, The-
orem 4.1). The number of computations required by the
Sticky Zig-Zag with subsampling to compute the next
event time with respect to the quantity N is O(1) (since
∂xi �(x∗) can be pre-computed). This advantage comes at
the cost of introducing ‘shadow event times’, which are
event times where the velocity component does not reflect.
In case the posterior density satisfies a Bernstein–von-
Mises theorem, the advantage of using subsampling over
the standard samplers has been empirically shown and infor-
mally argued for in Bierkens et al. (2019a, Section 5) and
Bierkens et al. (2020, Section 3) for large N andwhen choos-
ing x∗ to be the mode of the posterior density.

3 Performance comparisons for Gaussian
models

In this section we discuss the performance of the Sticky Zig-
Zag sampler in comparison with a Gibbs sampler. The sticky
Zig-Zag sampler includes newcoordinates randomly but uses
gradient information to find which coordinates are zero. By
comparing to a Gibbs sampler that just proposes models at
random, we show that it is an efficient scheme of explo-
ration. As the Gibbs sampler requires closed form expression
of Bayes factors between different (sub-)models (Eq. (2.1)
below), we consider Gaussian models. The comparison is
motivated by considering two samplers that do not require
model specific proposals or other tuning parameters. In spe-
cific cases such as the target models considered below, the

Gibbs sampler could be improved by carefully choosing a
problem-specific proposal kernel in between (sub-)models,
see for example Zanella and Roberts (2019) and Liang et al.
(2021)—something we don’t consider here.

The comparison is primarily in relation to the dimension
d, average number of active particles and sample size N of the
problem. It is well known that the performance of a Markov
chain Monte Carlo method is given by both the computa-
tional cost of simulating the algorithm and the convergence
properties of the underlying process. In Sect. 3.2 we con-
sider both these aspects and compare the results obtained for
the sticky Zig-Zag sampler with those relative to the Gibbs
sampler. The results are summarised in Tables 1 and 2. The
technical details of this section are given in “Appendix D”.

3.1 Gibbs sampler

We can use a set of active indices α to define a model, as the
corresponding set of non-zero values in R

d :

Mα := {x ∈ R
d : xi = 0, i /∈ α} for α ⊂ {1, 2, . . . , d}.

For every set of indices α ⊂ {1, 2, . . . , d} and for every j ,
the Bayes factors relative to two neighbouring (sub-)models
(those differing by only one coefficient) for a measure as in
Eq. (1.2) are given by

B j (α) = μ(Mα∪{ j})
μ(Mα\{ j})

= κ j
∫
R|α∪{ j}| exp(−�(y))dxα∪{ j}∫

R|α\{ j}| exp(−�(z))dxα\{ j}
, (2.1)

where y = {x ∈ R
d : xi = 0, i /∈ (α ∪ { j})}, z = {x ∈

R
d : xi = 0, i /∈ (α\{ j})]. The Gibbs sampler starting in

(x, α), with xi �= 0 only if i ∈ α for some set of indices
α ⊂ {1, 2, . . . , d}, iterates the following two steps:

1. Update α by choosing randomly j ∼ Unif({1, 2, . . . , d})
and set α ← α ∪ { j} with probability p j where p j satis-
fies p j/(1− p j ) = B j (α), otherwise set α ← α\{ j}.

2. Update the free coefficients xα according to the marginal
probability of xα conditioned on xi = 0 for all i ∈ αc.

In Appendix 1, we give an analytical expressions for the right
hand-side of Eq. (2.1) and the conditional probability in step
2 when� is a quadratic function of x . For logistic regression
models, neither step 1 nor step 2 can be directly derived and
the Gibbs samplers makes use of a further auxiliary Pólya-
Gamma random variable ω which has to be simulated at
every iteration and makes the computations of step 1 and
step 2 tractable, conditionally on ω (see Polson et al. 2013
for details).
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Table 1 Computational scaling of the Sticky Zig-Zag algorithm and
the Gibbs sampler for variable selection for p and sample size N

Algorithm Worst case Best case

Sticky Zig-Zag p2N p

Gibbs sampler p(p2 + N ) p(
√

p + N )

Worst case is when the target density does not present any conditional
independence structure and the subsampling method for the Sticky Zig-
Zag cannot be employed; best case when the target measure presents
a relevant conditional independence structure and subsampling can be
employed

3.2 Runtime analysis andmixing times

The ordinary Zig-Zag sampler can greatly profit in the case
of models with a sparse conditional dependence structure
between coordinates by employing local versions of the stan-
dard algorithm as presented in Bierkens et al. (2021). In
“Appendix D.2” we discuss how to simulate sticky PDMPs
and derive similar local algorithms relative to the sticky
Zig-Zag. Also the Gibbs sampler algorithm, as described in
Sect. 3.1, benefits when the conditional dependence struc-
ture of the target is sparse. In “Appendix D.3” we analyse the
computational complexity of both algorithms. In the analy-
sis, we drop the dependence on (x, v) and we assume that
the size of α(t) := {i : xi (t) �= 0} fluctuates around a typi-
cal value p in stationarity. Thus p represents the number of
non-zero components in a typical model, and can be much
smaller than d in sparse models.

Table 1 summarises the results obtained of both algo-
rithms in terms of the sample size N and p when the
conditional dependence structure between the coordinates
of the target is full and the sub-sampling method presented
in Sect. 2.4 cannot be employed (left-column) and when
there is sparse dependence structure and subsampling can
be employed (right-column). Our findings are validated by
numerical experiments in Sect. 4 (Figs. 5 and 8).

We now turn our focus on the mixing time of both the
underlying processes. Given the different nature of depen-
dencies of the two algorithms, a rigorous and theoretical
comparison of their mixing times is difficult and outside
the scope of this work. We therefore provide an heuristic
argument for two specific scenarios where we let both algo-
rithms be initialized at x ∼ Nd(0, I ) ∈ R

d , hence in the
full model, and assume that the target μ assigns most of its
probability mass to the null model M∅. Then we derive the
expected hitting time to M∅ for both processes. The two
scenarios differ as in the former case the target μ is sup-
ported in every sub-model so that the process can reach the
point (0, 0, . . . , 0) by visiting any sequence of sub-models
while in the latter case the measureμ is supported in a single
nested sequence of sub-models. Details of the two scenarios
are given in “Appendix D.4”. Table 2 summarizes the scaling

Table 2 Scaling relative to the dimension d of the expected time (num-
ber of iteration for the Gibbs sampler) to travel from the full model
(initialized as a standard Gaussian random variable) to the null model
(which is the mode of the target)

Algorithm μ supported on
every model

μ supported on a
nested sequence

Sticky Zig-Zag log(d) d

Gibbs sampler d log(d) d2

The results are for targets which are supported in every model and for
targets supported on a single sequence of nested sub-models

results (in terms of dimensions d) derived in the two cases
considered.

4 Examples

In this section we apply the Sticky Zig-Zag sampler and,
when possible, compare its performance with the Gibbs
sampler in four different problems of varying nature and dif-
ficulty:

4.1 (Learning networks of stochastic differential equations)
A system of interacting agents where the dynamics of
each agent are given by a stochastic differential equation.
We aim to infer the interactions among agents. This is an
example where the likelihood does not factorise and the
number of parameters increases quadratically with the
number of agents. We demonstrate the Sticky Zig-Zag
sampler under a spike-and-slab prior on the parameters
that govern the interaction and compare this with the
Gibbs sampler.

4.2 (Spatially structured sparsity) An image denoising prob-
lem where the prior incorporates that a large part of
the image is black (corresponding to sparsity), but also
promotes positive correlation among neighbouring pix-
els. Specifically, this examples illustrates that the Sticky
Zig-Zag sampler can be employed in high dimensional
regimes (the showcase is in dimension one million) and
for sparsity promoting priors other than factorised priors
such as spike-and-slab priors.

4.3 (Logistic regression)The logistic regressionmodelwhere
both the number of covariates and the sample size are
large, while assuming the coefficient vector to be sparse.
This is an non-Gaussian optimal scenario where the
Sticky Zig-Zag sampler can be employed with subsam-
pling technique achieving O(1) scaling with respect to
the sample size.

4.4 (Estimating a sparse precision matrix) The setting where
N realisations of independent Gaussian vectors with
precision matrix of the form X X ′ are observed. Spar-
sity is assumed on the off-diagonal elements of the
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lower-triangular matrix X . What makes this example
particularly interesting is that the gradient of the log-
likelihood explodes in some hyper-planes, complicating
the application of gradient-based Markov chain Monte
Carlo methods.

In all cases we simulate data from the model and assume the
parameter to be sparse (i.e. most of its elements are assumed
to be zero) and high dimensional. In case a spike-and-slab
prior is used, the slabs are always chosen to be zero-mean
Gaussian with (large) variance σ 2

0 . The sample sizes, param-
eter dimensions and additional difficulties such as correlated
parameters or non-linearities which are considered in this
section illustrate the computational efficiency of our method
(and implementation) in awide range of settings. In all exam-
ples we used either the local or the fully local algorithm
of the Sticky Zig-Zag as detailed in “Appendix D.2” with
velocities in the set V = {−1,+1}d . Comparisons with
the Gibbs sampler are possible for Gaussian models and
the logistic regression model. Our implementation of the
Gibbs sampler is taking advantage ofmodel sparsity.Because
of its computational overhead, when such comparisons are
included, the dimensionality of the problems considered has
been reduced. The performance of the two algorithms is com-
pared by running the two algorithms for approximately the
same computing time. As performance measure we consider
the squared error as a function of the computing time:

c �→ Es(c) :=
d∑

i=1

(psi (c) − pi )
2, (2.1)

where c denotes computing time (we use c rather than t as
the latter is used as time index for the Zig-Zag sampler). In
the displayed expression, we first compute pi , which is an
approximation to the posterior probability of the i th coor-
dinate being nonzero. This quantity can either be obtained
by running the Sticky Zig-Zag sampler or the Gibbs sampler
(if applicable) for a very long time. As we show the Sticky
Zig-Zag sampler to converge faster, especially in high dimen-
sional problems, we use this sampler in approximating this
value. We stress that the same result could be obtained by
running the Gibbs sampler for a very long time. More pre-
cisely, we compute for each coordinate of the Sticky Zig-Zag
sampler the fraction of time it is nonzero. In Es(c), the value
of pi is compared to psi (c) which is the fraction of time (or
fraction of samples in case of the Gibbs sampler) where xi is
nonzero using computational budget c and sampler ‘s’. All
the experiments were carried out with a conventional lap-
top with Intel core i5-10310 processor and 16 GB DDR4
RAM. Pre-processing time and memory allocation of both
algorithms are comparable.

4.1 Learning networks of stochastic differential
equations

In this example we consider a stochastic model for p
autonomously moving agents (“boids”) in the plane. The
dynamics of the location of the i th agent is assumed to satisfy
the stochastic differential equation

dUi (s) = −λUi (s)ds +
∑

j �=i

xi, j (U j (s)

−Ui (s))ds + σdWi (s), 1 ≤ i ≤ p (2.2)

where, for each i , (Wi (s))0≤s≤T is an independent 2-
dimensional Wiener process. We assume the trajectory of
each agent is observed continuously over a fixed interval
[0, T ]. This implies σ > 0 can be considered known, as it
can be recovered without error from the quadratic variation
of the observed path. For simplicity we will also assume
the mean-reversion parameter λ > 0 to be known. Let
x = {xi, j : i �= j} ∈ R

p2−p denote the unknown param-
eter. If xi, j > 0, agent i has the tendency to follow agent j ,
on the other hand, if xi, j < 0, agent i tends to avoid agent
j . Hence, estimation of x aims at inferring which agent fol-
lows/avoids other agents. We will study this problem from
a Bayesian point of view assuming sparsity of x , incorpo-
rated via the prior using a spike and slab prior. This problem
has been studied previously in Bento et al. (2010) using �1-
regularised least squares estimation.

Motivation for studying this problem can be found in
Reynolds (1987) and the presentation at JuliaCon (2020).
An animation of the trajectories of the agents in time can be
found at Grazzi and Schauer (2021).

Suppose Ui (s) = (Ui,1(s), Ui,2(s)) and let Y (s) =
(U1,1(s), . . . , Up,1(s), U1,2(s), . . . , Up,2(s))denote thevec-
tor obtained upon concatenation of all x-coordinates and
y-coordinates of all agents. Then, it follows from Eq. (2.2)
that dY (s) = C(x)Y (s)ds + σdW (s), where W (s) is a
Wiener process in R

2p. Here, C(x) = diag(A(x), A(x))

where

A(x) =

⎡

⎢⎢⎢⎢⎣

−λ − x1 x1,2 x1,3 . . .

x2,1 −λ − x2 x2,3

x3,1
. . .

...

⎤

⎥⎥⎥⎥⎦

with xi =∑ j �=i xi, j . IfPx denotes themeasure onpath space
of YT := (Y (s), s ∈ [0, T ]) and P0 denotes the Wiener-
measure on R

2p, then it follows from Girsanov’s theorem
that

�(x) := log
Px

P0
(YT ) = 1

σ 2

∫ T

0
(C(x)Y (s))′dY (s)
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− 1

2σ 2

∫ T

0
‖C(x)Y (s)‖2ds. (2.3)

As we will numerically only be able to store the observed
sample path on a fine grid, we approximate the inte-
grals appearing in the log-likelihood �(x) using a standard
Riemann-sum approximation of Itô integrals (see e.g. Rogers
and Williams 2000, Ch. IV, Sect. 47) and time integrals. We
assume x to be sparse which is incorporated by choosing a
spike-and-slab prior for x as in Eq. (1.1). The posterior mea-
sure is of the form of (1.2) with κ and �(x) as in (1.3). As
x �→ �(x) is quadratic, the reflection times of the Sticky
Zig-Zag sampler can be computed in closed form.
Numerical experiments: In our numerical experiments we
fix p = 50 (number of agents), T = 200 (length of time-
interval), σ = 0.1 (noise-level) and λ = 0.2 (mean-reversion
coefficient). We set the parameter x such that each agent has
one agent that tends to follow and one agent that tends to
avoid. Hence, for every i , we set xi, j to be zero for all j �= i ,
except for 2 distinct indices j1, j2 ∼ Unif({1, 2, . . . , d}\i)
with xi, j1xi, j2 < 0. The parameter x is very sparse and it
is highly nontrivial to recover its value. We then simulate
YT using Euler forward discretization scheme, with step-size
equal to 0.1 and initial configuration Y (0) ∼ N2p(0, I ).

The prior weights w1 = w2 = · · · = wd (wi being the
prior probability of the i th coordinate to be nonzero) are
conveniently chosen to equal the proportion of non-zero ele-
ments in the true (data-generating) parameter vector x . The
variance of each slab was taken to be σ 2

0 = 50. We ran
the Sticky Zig-Zag sampler with final clock 500, where the
algorithm was initialized in the full-model with no coordi-
nate frozen at 0 at the posterior mean of the Gaussian density
proportional to �.

Figure 2 shows the discrepancy between the parameters
used during simulation (ground truth) and the estimated
posterior median. In this figure, from the (sticky) Zig-Zag
trajectory of each element xi, j (i �= j) we collected their val-
ues at time ti = i0.1 and subsequently computed the median
of the those values. We conclude that all parameters which
are strictly positive (coloured in pink) are recovered well.
At the bottom of the figure (black points and crosses), 25
are incorrectly identified as either being zero or negative. In
this experiment, the Sticky Zig-Zag sampler outperforms the
Gibbs sampler considerably.

In Fig. 3 we compare the performance of the Sticky Zig-
Zag sampler with the Gibbs sampler. Here, all the parameters
(including initialisation) are as above, except now the number
of agents is taken as p = 20. Both c �→ EZig-Zag(c) and
c �→ EGibbs(c), with c denoting the computational budget,
are computed for c ∈ [0, 10]. For this, the final clock of the
Zig-Zag was set to 104 and the number of iterations for the
Gibbs sampler was set to 1.2 × 104. For obtaining p̄i the

Fig. 2 Posterior median estimate of xk (where k can be identified with
(i, j)) versus k computed using the Sticky Zig-Zag sampler. Thin ver-
tical lines indicate distance to the truth. True zeros are plotted with
the symbol ×, others are plotted as points. With p = 50 agents, the
dimension of the problem is d = 2450

Fig. 3 Squared error of the marginal inclusion probabilities (Eq. 2.1)
c → Ezig-zag(c) (red) and c → Egibbs(c)(green) where c represent the
computing time in seconds. With p = 20 agents the dimension of the
problem is p(p − 1)/2 = 380

Sticky Zig-Zag sampler was run with final clock 5 × 104

(taking approximately 50 s computing time).

4.2 Spatially structured sparsity

We consider the problem of denoising a spatially correlated,
sparse signal. The signal is assumed to be an n × n-image.
Denote the observed pixel value at location (i, j) by Yi, j and
assume

Yi, j = xi, j + Zi, j , Zi, j
i.i.d.∼ N(0, σ 2), i, j ∈ {1, . . . , n}.

The “true signal” is given by x = {xi, j }i, j and this is the
parameter we aim to infer, while assuming σ 2 to be known.
We view x as a vector in R

d , with d = n2 but use both linear
indexing xk and Cartesian indexing xi, j to refer to the com-
ponent at index k = n(i − 1) + j . The log-likelihood of the
parameter x is given by �(x) = C +σ−2∑n

i=1
∑n

j=1 |xi, j −
Yi, j |2, with C a constant not depending on x .
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We consider the following prior measure

μ0(dx) = exp

(
−1

2
x ′�x

) d∏

i=1

(
dxi + 1

κ
δ0(dxi )

)
.

The Dirac masses in the prior encapsulate sparseness in the
underlying signal and an appropriate choice of � can pro-
mote smoothness. Overall, the prior encourages smoothness,
sparsity and local clustering of zero entries and non-zero
entries. As a concrete example, consider � = c1� + c2 I
where � is the graph Laplacian of the pixel neighbourhood
graph: the pixel indices i, j are identified with the vertices
V = {(i, j) : (i, j) ∈ {1, . . . , n}2} of the n × n -lattice
with edges E = {{v, v′} : (v, v′) = ((i, j), (i ′, j ′)) ∈ V 2,
|i − i ′| + | j − j ′| = 1} (using the set notation for edges).
Thus, edges connect a pixel to its vertical and horizontal
neighbours. Then

λv,v′ =
⎧
⎨

⎩

degree(v) v = v′
−1

{
v, v′
} ∈ E

0 otherwise

and � = (�k,l)k,l∈{1,...,n2} with �(i−1)n+ j,(k−1)n+l =
λ(i, j),(k,l), for i, j, k, l ∈ {1, . . . , n}.

This is a prior which is applicable in similar situations as
the fused Lasso in Tibshirani et al. (2005).
Numerical experiments: We assume that pixel (i, j) corre-
sponds to a physical location of size 
1 × 
2 centered at
u(i, j) = u0 + (i
1, j
2) ∈ R

2. To numerically illustrate
our approach, we use a heart shaped region given by xi, j =
5max(1− h(u(i, j)), 0) where h : R

2 → [0,∞) is defined

by h(u1, u2) = u2
1 +
(
5u2
4 −√|u1|

)2
, u0 = (−4.5,−4.1),

n = 103 and 
1 = 
2 = 9/n. In the example, about 97% of
the pixels of the truth are black. The dimension of the param-
eter equals 106. Figure 4, top-left, shows the observation Y
with σ 2 = 0.5 and the ground truth.

As the ordinary Sticky Zig-Zag sampler would require
storing and ordering 1 million elements in the priority queue
we ran the Sticky Zig-Zag sampler with sparse implementa-
tion as detailed in Remark D.1. For this example, we have
�(x) = �(x)+0.5x ′�x .We took c1 = 2, c2 = 0.1 in the def-
inition of � and chose the parameters κ1 = κ2 = · · · = κd =
0.15 for the smoothing prior. The reflection times are com-
puted bymeans of a thinning scheme, see “Appendix E.2” for
details. We set the final clock of the Sticky Zig-Zag sampler
to 500. Results from running the sampler are summarized in
Fig. 4.

In Fig. 5, the runtimes of the Sticky Zig-Zag sampler and
Gibbs sampler are shown (in a log–log scale) for different
values of n2 (dimensionality of the problem), the final clock
was fixed to T = 500 (103 iteration for the Gibbs sampler).
All the other parameters are kept fixed as described above.

The results agree well with the scaling results of Table 1,
rightmost column.

In Fig. 6 we show t → EZig-Zag(t) and t → EGibbs(t) for
t ranging from 0 to 5, in case n = 20. Both samplers were
initialized at the posterior mean of the Gaussian density pro-
portional to � (hence, in the full-model with no coordinates
set to 0). In this experiment, the Sticky Zig-Zag sampler out-
performs the Gibbs sampler considerably.

4.3 Logistic regression

Suppose {0, 1} � Yi | x ∼ Ber(ψ(xT ai )) with ψ(u) =
(1+ e−u)−1. ai ∈ R

d denotes a vector of covariates and x ∈
R

d a parameter vector. Assume Y1, . . . , YN are independent,
conditionally on x . The log-likelihood is equal to

�(x) =
N∑

j=1

(
log
(
1+ e〈a j ,x〉

)
− y j 〈a j , x〉

)

We assume a spike-and-slab prior of (1.1) with zeromean
Gaussian slabs and (large) variance σ 2

0 . Then the posterior
can be written as in Eq. (1.2), with � and κ as in Equa-
tion (1.3).
Numerical experiments:Weconsider twocategorical features
with 30 levels each and 5 continuous features. For each obser-
vation, an independent random level of each discrete feature
and a random value of the continuous features,N (0, 0.12) is
drawn. Let the design matrix A ∈ R

N×d be the matrix where
the i-th row is the vector ai . A includes the levels of the dis-
crete features in dummy encoding and the interaction terms
between them also in dummy encoding scaled by 0.3 (960
columns), and the continuous features in the final 5 columns.
This implies that the dimension of the parameter equals
d = 965. We then generate N = 50d = 48250 observations
using as ground truth sparse coefficients obtained by setting

xi = ziξi where zi
i.i.d.∼ Bern(0.1) and ξi

i.i.d.∼ N (0, 52),
where {zi } and {ξi } are independent.

We run the sticky ZigZag with subsampling and bounding
rates derived in Appendix E.1. We chose w1 = w2 = · · · =
wd = 0.1 and σ 2

0 = 102 and ran the Sticky Zig-Zag sam-
pler for 100 time-units. The implementation makes use of a
sparse matrix representation of A, speeding up the compu-
tation of inner products 〈a j , x〉. Figure 7 reveals that while
perfect recovery is not obtained (as was to be expected), most
nonzero/zero features are recovered correctly.

In a second numerical experiment we compare the com-
puting time of the Sticky Zig-Zag sampler andGibbs sampler
(as proposed in Polson et al. 2013) as we vary the number of
observations (N ). In this case, we reduce the dimension of
the parameter by restricting to 2 categorical variables, includ-
ing their pairwise interactions, augmented by 3 “continuous”
predictors (leading to the parameter vector x ∈ R

9). For each
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Fig. 4 Top-left: observed 1000× 1000 image of a heart corrupted with
white noise, with part of the ground truth inset. Top-right, left half:
posterior mean estimated from the trace of the Sticky Zig-Zag sampler
(detail). Top-right, right half: mirror image showing the absolute error
between the posteriormean and the ground truth in the same scale (color
gradient between blue (0) and yellow (maximum error)). Bottom: trace

plot of 3 coordinates; on the left the full trajectory is shown whereas on
the right only the final 60 time units are displayed. The traces marked
with blue and orange lines belong to neighbouring coordinates (highly
correlated) from the center, the trace marked with green belongs to a
coordinate outside the region of interest

sample size N we ran the Gibbs sampler for 1000 iterations
and the Sticky Zig-Zag sampler for 1000 time units. Our
interest here is not to compare the computing time of the
samplers for a fixed value of N , but rather the scaling of
each algorithm with N . Figure 8 shows that the computing
time for the Sticky Zig-Zag sampler is roughly constant when
varying N . On the contrary, the computing time increases lin-
early with N for the Gibbs sampler. This is consistent with
the theoretical scaling results presented in Table 1 (rightmost
column). We remark that qualitatively similar results would
be obtained if we would have fixed the number of iterations
of the Gibbs sampler and endtime of the Zig-Zag sampler to
different values.

4.4 Estimating a sparse precisionmatrix

Consider

Yi | X
i.i.d.∼ Np

(
0, (X X ′)−1

)
, i = 1, 2, . . . , N

for some unknown lower triangular sparsematrix X ∈ R
p×p.

We aim to infer the lower-triangular elements of X which we
concatenate to obtain the parameter vector x := {Xi, j : 1 ≤
j ≤ i ≤ p} ∈ R

p(p+1)/2. This class of problems is important
as the precision matrix X X ′ unveils the conditional indepen-
dence structure of Y , see for example Shi et al. (2021), and
reference therein, for details.
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Fig. 5 Runtime comparison of the Sticky Zig-Zag sampler (green)
and the Gibbs sampler (red) for the example in Subsection 4.2. The
horizontal axis displays the dimension of the problem, which is n2.
The vertical axis shows runtime in seconds. The runtime is evaluated
at n2 = 502, 1002, . . . , 6002 for the sticky Zig-Zag sampler and at
n2 = 402, 452, . . . , 702 for the Gibbs sampler. Both plots are on a log–
log scale. The dashed curves shows the theoretical scaling (including
a log-factor for the priority queue insertion): x �→ c1x log(x) (green)
and x �→ c2x3/2 (orange), with c1 and c2 chosen conveniently

Fig. 6 Squared error of the marginal inclusion probabilities (Eq. 2.1)
c → Ezig-zag(c) (red) and t → Egibbs(c) (green) where c represent the
computational time in seconds; right-panel: zoom-in near 0. Here the
dimension of the problem is n2 = 400

Fig. 7 Results for the logistic regression coefficients derived with the
Sticky Zig-Zag sampler with subsampling. Description as in caption of
Figure 2. The dimension of this problem is d = 965

Fig. 8 Logistic regression example: computing time in seconds versus
number of observations. Solid red line: Gibbs samplers with 103 iter-
ations. Solid blue line: Sticky Zig-Zag samplers with subsampling ran
for 103 time units. The dashed lines correspond to the scaling results
displayed in Table 1. Here, the dimension of the problem is fixed to
d = 9

We impose a prior measure on x of the product form
μ0(dx) =⊗p

i=1

⊗i
j=1 μi, j (dxi, j ) where

μi, j (dxi, j ) =
{

πi, j (xi, j )1(xi, j>0)dxi, j i = j,

wπi, j (xi, j )dxi, j + (1− w)δ0(dxi, j ) i �= j,

and πi, j is the univariate Gaussian density with mean ci, j ∈
R and variance σ 2

0 > 0.
This prior induces sparsity on the lower-triangular off-

diagonal elements of X while preserving strict positive
definiteness of X X ′ (as the elements on the diagonal are
restricted to be positive).

The posterior in this example is of the form

μ(dx) ∝ exp(−�(x))⎛

⎝
p⊗

i=1

i−1⊗

j=1

(
dxi, j + 1

κi, j
δ0(dxi, j )

)⎞

⎠
p⊗

k=1

dxk,k

with

�(x) = 1

2

N∑

i=1

Y ′
i X X ′Yi − N

p∑

i=1

log(xi,i )

+
p∑

i=1

i−1∑

j=1

(xi, j − ci, j )
2

2σ 2
0

+
p∑

i=1

(xi,i − ci,i )
2

2σ 2
0

and κi, j = πi, j (0)w/(1−w). In particular, the posterior den-
sity is not of the form as given in Eq. (1.2), as the diagonal

123



    8 Page 14 of 31 Statistics and Computing             (2023) 33:8 

Fig. 9 Left: error between the
true precision matrix and the
precision matrix obtained with
the estimated posterior mean of
the lower-triangular matrix
(colour gradient between white
(no error) and black (maximum
error)). Right: traces of two
non-zero coefficients (x1,1 in red
and x2,1 in pink) of the lower
triangular matrix. Dashed green
lines are the ground truth. Here,
the dimension of each vector Yi
is p = 200 and the dimension of
the problem is
p(p + 1)/2 = 20 100

elements cannot be zero and have a marginal density relative
to the Lebesguemeasure, while the off-diagonal elements are
marginally mixtures of a Dirac and a continuous component.
Notice that, for any i = 1, 2, . . . , p, as xi,i ↓ 0, exp(−�(x))

vanishes and ∇�(x) → ∞. This makes the sampling prob-
lem challenging for gradient-based algorithms.
Numerical experiments: We apply the Sticky Zig-Zag sam-
pler where the reflection times are computed by using a
thinning and superposition scheme for inhomogeneous Pois-
son processes, see “Appendix E.3” for the details.

We simulate realisations y1, . . . , yN with precisionmatrix
X X ′ a tri-diagonal matrix with diagonal (0.5, 1, 1, . . . , 1, 1,
0.5) ∈ R

p and off-diagonal (−0.3,−0.3, . . . ,−0.3) ∈
R

p−1. In the prior we chose σ 2
0 = 10 and ci, j = 1(i= j)

and for 1 ≤ j ≤ i ≤ p and w = 0.2.
We fixed N = 103 and p = 200 and ran the Sticky Zig-

Zag sampler for 600 time-units. We initialized the algorithm
at x(0) ∼ Np(p+1)/2(0, I ) and set a burn-in of 10 unit-time.
The left panel of Fig. 9 shows the error between X X ′ (the
ground truth) and X X

′
where X is posterior mean of the

lower triangular matrix estimated with the sampler. The error
is concentrated on the non-zero elements of the matrix while
the zero elements are estimated with essentially no error. The
right panel of Fig. 9 shows the trajectories of two represen-
tative non-zero elements of X . The traces show qualitatively
that the process converges quickly to its stationary measure.

In this case, comparisons with the Gibbs sampler are not
possible as there is no closed form expression for the Bayes
factors of Eq. (2.1).

5 Discussion

The sticky Zig-Zag sampler inherits some limitations from
the ordinary Zig-Zag sampler:

Firstly, if it is not possible to simulate the reflection times
according to the Poisson rates in Eq. (2.5), the user needs

to find and specify upper bounds of the Poisson rates from
which it is possible to simulate the first event time (see
“Appendix D.2” for details). This procedure is referred to
as thinning and remains the main challenge when simulat-
ing the Zig-Zag sampler. Furthermore, the efficiency of the
algorithm deteriorates if the upper bounds are not tight.

Secondly, the Sticky Zig-Zag sampler, due to its continu-
ous dynamics, can experience difficulty traversing regions of
low density, in particular it will have difficulty reaching 0 in
a coordinate if that requires passing through such a region.

Finally, the process can set to 0 (and not 0) only one coor-
dinate at a time, hence failing to be ergodic for measures not
supported on neighbouring sub-models. For example, con-
sider the space R

2 and assumes that the process can visit
either the origin (0, 0) or the full space R

2 but not the coor-
dinate axes {0} × R ∪ R × {0}. Then the process started in
R
2 hits the origin with probability 0, hence failing to explore

the subspace (0, 0).
In what follows, we outline promising research directions

deferred to future work.

5.1 Sticky HamiltonianMonte Carlo

The ordinary Hamiltonian Monte Carlo (HMC) process as
presented by Neal et al. (2011) can be seen as a piecewise
deterministicMarkov processes with deterministic dynamics
equal to

ẋ = v, v̇ = −∇�(x) (2.1)

where ∇� is the gradient of the negated log-density relative
to the Lebesgue measure. At random exponential times with
constant rate, the velocity component is refreshed as v ∼
N (0, I ) (similarly to the refreshment events in the bouncy
particle sampler). By applying the same principles outlined
in Sect. 2, such process can be made sticky with Eq. (1.2) as
its stationary measure.

123



Statistics and Computing             (2023) 33:8 Page 15 of 31     8 

Unfortunately, in most cases, the dynamics in (2.1) cannot
be integrated analytically so that a sophisticated numerical
integrator is usually employed and a Metropolis–Hasting
steps compensates for the bias of the numerical integrator
(see Neal et al. 2011 for details). These two last steps makes
the process effectively a discrete-time process and its gener-
alization with sticky dynamics is not anymore trivial.

5.2 Extensions

The setting considered in thisworkdoes not incorporate some
relevant classes of measures:

• Posteriors given by prior measures which freely choose
prior weights for each (sub-)model. This limitation is
mainly imputed to the parameter κ = (κ1, κ2, . . . , κd)

which here does not depend on the location component x
of the state space. While the theoretical framework built
can be easily adapted for letting κ depend on x , it is cur-
rently unclear to us the exact relationship between κ and
the posterior measure in this more general setting.

• Measures which are not supported on neighbouring sub-
models are also not covered here.
To solve this problem, different dynamics for the process
should be developed which allow the process to jump in
space and set multiple coordinates to 0 (and not 0) at a
time.
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A. Details of the Sticky Zig-Zag sampler

A.1 Construction

In this section we discuss how the Sticky Zig-Zag can be
constructed as a standard PDMP in the sense ofDavis (1993).

The construction is a bit tedious, but the underlying idea is
simple: the Sticky Zig-Zag process has the dynamics of a
ordinary Zig-Zag process until it reaches a freezing boundary
Fi = {(x, v) ∈ E : xi = 0−, vi > 0 or xi = 0+, vi < 0}
of E = R

d × V , with R = (−∞, 0−] � [0+,∞) which has
two copies of 0. Then it immediately changes dynamics and
evolves as a lower dimensional ordinary Zig-Zag process on
the boundary, at least until an unfreezing event happens or
upon reaching yet another freezing boundary in the domain
of the restricted process.

Davis’ construction allows a standard PDMP to make
instantaneous jumps at boundaries of open sets, but puts
restrictions on further behaviour at that boundary.Wecircum-
vent these restrictions by first splitting up the space R

d × V
into disconnected components in a way somewhat different
than the construction of E as presented in Sect. 2. Only at a
later stage we recover the definition of E .

Define the set

K =
{
�◦, ◦�,�◦, ◦�,

�◦,
�◦
}

and

|K | = {◦,�◦�,�◦�}

(note that |K | does not denote the cardinality of the set K ).
Define the functions k : R×R → K and |k| : R×R → |K |
by

(x, v) k(x, v) at (x, v) the process
is…

|k|(x, v)

x > 0, v > 0 ◦� …moving away from
0 with positive veloc-
ity

�◦�

x < 0, v < 0 �◦ …moving away
from 0 with negative
velocity

�◦�

x > 0, v < 0 ◦� …moving toward 0
with negative veloc-
ity

�◦�

x < 0, v > 0 �◦ …moving toward 0
with positive velocity

�◦�

x = 0, v > 0
�◦ …at 0 with positive

velocity
◦

x = 0, v < 0
�◦ …at 0 with negative

velocity
◦

If (x, v) ∈ R
d × V , then extend k : R

d × V → K d and

|k| : R
d × V → |K |d by applying the map k and |k| coordi-

natewise.
For each � ∈ K d define

Ẽ◦
� = {(�, x, v) : k(x, v) = �}
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Note that for � �= �′ the sets Ẽ◦
� and Ẽ◦

�′ are disjoint.
The set Ẽ◦

� is open under the metric introduced in Davis
(1993, p. 58), which sets the distance between two points
(�, x, v) and (�′, x ′, v′) to 1 if � �= �′. We denote the induced
topology on Ẽ by τ̃ . Ẽ◦

� is a subset ofR
2d of dimension d� =∑d

i=1 1|�i |�=◦, since the velocities are constant in E◦
� and the

position of the components i where �i = ◦ are constant as
well in Ẽ◦

� (Ẽ◦
� is isomorphic to an open subset of R

d� ).
The sets which contain a singleton, i.e. |Ẽ◦

� | = 1, are those
sets Ẽ◦

� such that |�i (x, v)| = ◦ for all i = 1, 2, . . . , d and
are open as they contain one isolated point, but will have to be
treated a bit differently. Then Ẽ◦ =⋃�∈K d Ẽ◦

� is the tagged
space of open subsets ofRd� used inDavis (1993, Section 24).

Ẽ◦ separates the space into isolated components of vary-
ing dimension. In each component, the Sticky Zig-Zag
process behaves differently and essentially as a lower dimen-
sional Zig-Zag process.

Let ∂ Ẽ◦
� denote the boundary of Ẽ◦

� in the embedding
space R

d� (where the velocity components are constant in
Ẽ◦

� ), with elements written (�, x, v). Some points in ∂ Ẽ◦
�

will also belong to the state space Ẽ of the Sticky Zig-Zag
process, but only the entrance-non-exit boundary points:

Ẽ =
⋃

�

Ẽ�, Ẽ�

= Ẽ◦
� ∪ {(�, x, v) ∈ ∂ Ẽ◦

� : xi = 0 ⇒ |�i | �=�◦� for all i}.

(This corresponds to the definition of the state space in Davis
(1993, Section 24), only that we use knowledge of the flow).

The remaining part of the boundary is

� =
⋃

�

�� ⊂
⋃

�

∂ Ẽ◦
� ,

�� =
{
(�, x, v) ∈ ∂ Ẽ◦

� , ∃i : xi = 0, |�i | =�◦�

}
,

with Ẽ ∩ � = ∅ so that � is not part of the state space Ẽ .
Any trajectory approaching �, jumps back into Ẽ just before
hitting �. If Ẽ◦

� is a singleton (|Ẽ◦
� | = 1), then �� = ∅ and

Ẽ� = Ẽ◦
� (atoms).

Lemma A.1 A bijection ι : Ẽ → E is given by

ι((�, x̃, v)) = (x, v)

where

xi =

⎧
⎪⎨

⎪⎩

0+ (0−) �i =�◦ (�i =�◦)

0+ (0−) �i = ◦� (�i =�◦), x̃i = 0

x̃i otherwise.

Proof Recall that α(x, v) := {i ∈ {1, 2, . . . , d} : (x, v) /∈
Fi } and αc denotes its complement. First of all, notice that
ι(Ẽ) ⊂ E . Now let (x, v) ∈ E be given. We construct e ∈ Ẽ

such that (x, v) = ι(e). If there is at least one x j = 0± with
j /∈ α(x, v), then take e = (�, x̃, v) ∈ Ẽ\Ẽ◦ as follows
(entrance-non-exit boundary): for i ∈ αC we have |�i | =
◦, x̃i = 0, while for all i ∈ α with xi = 0±, we have
|�i | =� ◦ �, x̃i = 0. Then ι(e) = (x, v). Otherwise, e =
(k (̃x, v), x̃, v)) ∈ Ẽ◦ (interior of an open set) and ι(e) =
(x, v)where x̃i = 0 for all i ∈ α(x, v) and x̃i = xi otherwise.
��

Having constructed the state space, we proceed with the
process dynamics. Firstly, the deterministic flow (locallyLip-
schitz for every � ∈ K ) is determined by the functions
φ̃� : [0,∞)× Ẽ◦

� → Ẽ◦
� which for the sticky ZigZag process

are given by

φ̃(t, �, x, v) = (�, x ′, v), ∀(�, x, v) ∈ E,

with xi + vi t(1|�i |�=◦), i = 1, 2, . . . , d and determines the
vector fields

X� f̃ (�, x, v) =
d∑

i=1

1|�i |�=◦vi∂xi f (�, x, v), f ∈ C1(Ẽ).

Sometimes we write φ̃k(t, x, v) = φ̃(t, k, x, v) for con-
venience. Next, further state changes of the process are
instantaneous, deterministic jumps from the boundary � into
Ẽ

Qf(((�, x, v), ·)) = δ(k(x,v),x,v), (�, x, v) ∈ �

and random jumps at random times corresponding to unfreez-
ing events

Qs((�, x, v), ·) =
∑

i λsi (�, x, v)δ(�[i : �′i ],x,v)∑
i λsi (i, x, v)

with �′i = ◦� if �i =�◦ and �′i =� ◦ if �i =�◦ , and random
reflections

Qr((�, x, v), ·) =
∑

i λri (�, x, v)δxδv[i : −vi ]δ�∑
i λri (�, x, v)

with

λsi (�, x, v) = 1|�i |=◦κi

and

λri (�, x, v) = 1�i �=◦
(
(vi∂i�(x))+ + λ0,i (x)

)
, i = 1, 2, . . . , d.

Then λ : Ẽ → R
+

λ(�, x, v) =
d∑

i=1

λri (�, x, v) + λsi (i, x, v)
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and a Markov kernel Q : (Ẽ ∪ �,B(Ẽ ∪ �)) → [0, 1] by

Q((�, x, v), .)

=

⎧
⎪⎪⎨

⎪⎪⎩

∑
i λri (�,x,v)

λ(�,x,v)
Qr((�, x, v), .)

+
∑

i λsi (�,x,v)

λ(�,x,v)
Qs((�, x, v), .) (�, x, v) ∈ Ẽ,

Qf((�, x, v), .) (�, x, v) ∈ �.

Proposition A.2 X, λ,Q satisfy the standard conditionsgiven
in Davis (1993, Section 24.8), namely

• For each � ∈ K , X� is a locally Lipschitz continuous
vector field and determines the deterministic flow φ̃� :
Ẽ� → Ẽ� of the PDMP.

• λ : Ẽ → R
+ is measurable and such that t →

λ(φ̃�(t, x, v)) is integrable on [0, ε(�, x, v)), for some
ε > 0, for each �, x, v.

• Q is measurable and such thatQ((�, x, v), {(�, x, v)}) =
0

• The expected number of events up to time t, starting at
(�, x, v) is finite for each t > 0,∀(�, x, v) ∈ Ẽ

To see the latter, remember that for any initial point
(�, x, v) ∈ Ẽ , the deterministic flow (without any random
event) hits � at most d times before reaching the singleton
(0, 0, . . . , 0) and being constant there.

A.2 StrongMarkov property

Proposition A.3 (Part of Theorem 2.2) Let (Z̃t ) be a Zig-Zag
process on Ẽ with characteristics X, λ,Q. Then Zt = ι(Z̃t )

is a strong Markov process.

Proof By Davis (1993), Theorem 26.14, the domain of the
extended generator of the process (Z̃t ) with characteristics
X, λ,Q is

D(Ã) = { f ∈ M(Ẽ); t → f (φ̃�(t, x, v))

τ̃ -absolutely continuous ∀(�, x, v) ∈ Ẽ, t = [0, t�(�, x, v));
f (�, x, v) = f (κ(x, v), x, v), (�, x, v) ∈ �},

with

t�(�, x, v) = inf{0 ≤ t : φ̃�(t, x, v) ∈ �̃}

and

Ã f (�, x, v) = X� f (�, x, v) + λ(�, x, v)∫

Ẽ
( f (�′, x ′, v′) − f (�, x, v))Q(�, x, v, d(�, x, v)).

The strong Markov property of (Z̃t ) follows by Davis
(1993), Theorem 25.5. Denote by (P̃t )t≥0 the Markov tran-
sition semigroup of (Z̃t ) and let (Pt )t≥0 be a family of

probability kernels on E and such that for any bounded mea-
surable function f : E → R and any t ≥ 0,

P̃t ( f ◦ ι) = (Pt f ) ◦ ι.

Then (Pt )t≥0 is the Markov transition semigroup of the pro-
cess Zt = (ι(Z̃t )). By Rogers and Williams (2000), Lemma
14.1, and since any stopping time for the filtration of (Z̃t ) is a
stopping time for the filtration of (Zt ), Zt is a strong Markov
process. ��

A.3 Feller property

Given an initial point �, x, v ∈ Ẽ , let

t�1(�, x, v) = inf{0 ≤ t : φ̃�(t, x, v) ∈ �̃}

and define the extended deterministic flow ϕ̃ : Ẽ → Ẽ by
setting ϕ(0, �, x, v) = (�, x, v) and recursively by

ϕ̃(t, �, x, v) =
{

ϕ̃�(t, x, v) t < t�1 ,

ϕ̃(t − t�1, k(x ′, v′), x ′, v′) t ≥ t�1

with (�′, x ′, v′) = limt→t�1
ϕ̃�(t, x, v) ∈ �.

Observe that t → ι(ϕ̃(t, �, x, v)) is continuous on (E, τ ).
Define also

�(t, �, x, v) =
∫ t

0
λ(ϕ̃(s, �, x, v))ds.

Notice that, while (�, x, v) → λ(�, x, v) has discontinuities
at the boundaries �, (�, x, v) → �(�, x, v) is continu-
ous. Denote by T1 the first random event (so excluding the
deterministic jumps). Then for functions f ∈ B(Ẽ) and
ψ ∈ B(R+ × Ẽ), set z(t) = (�(t), x(t), v(t)) and define

G̃ψ(t, �, x, v) = E[ f (z(t))1t<T1 + ψ(t − T1, z(t))1t≥T1 ].

We have that

G̃ψ(t, �, x, v) = f (ϕ̃(t, �, x, v)) × T (A.1)

with

T =
∑

i

∫ t

0
1t∈[t�i ,t�i+1)

∫

x ′,v′
ψ(t − s, �, x, v)Q((�, dx ′, dv′),

ϕ̃(s, �, x, v))λ(ϕ̃(s, �, x, v))e−�(s,�,x,v)ds.

The Feller property holds if, for each fixed t and for f ∈
Cb(E), we have that (x, v) → Pt f (x, v) is continuous (and
bounded follows easily). This is what we are going to prove
below, bymaking a detour in the space Ẽ , using the bijection ι

and adapting some results found in Davis (1993, Section 27),
for the process Z̃t .
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Theorem A.4 (Part of Theorem 2.2) Zt is a Feller process.

Proof Take f ∈ Cb(Ẽ) such that f ◦ ι ∈ Cb(E). Call those
functions on Ẽ τ -continuous. We want to show that P̃ pre-
serves τ -continuity. Notice that τ -continuous functions on Ẽ
are such that

lim
t→t�

f (ϕ̃(t, �, x, v)) = f (ϕ̃(t�, �, x, v))), (�, x, v) ∈ Ẽ .

For τ -continuous functions f and for a fixed t , the first term
on the right hand side of (A.1) (�, x, v) → f (ϕ̃(t, �, x, v))

is clearly continuous. Also the second term is continuous
since is of the form of an integral of a piecewise contin-
uous function. Therefore, for any t ≥ 0, ψ(t, ·) ∈ B(Ẽ)

and τ -continuous function f , we have that (�, x, v) →
G̃ψ(t, �, x, v) is continuous. Clearly, the (similar) operator

G̃nψ�(t, x, v) = Ex
[

f (ϕ̃�(t, x, v))1t<Tn

+ψ(t − Tn, ϕ̃�(t, x, v))1t≥Tn

]
,

with Tn denoting the nth random time, is continuous as well
for anyfixedn, t, ψ(t, ·) ∈ B(Ẽ) and τ -continuous function
f . By applying Lemma 27.3 in Davis (1993) we have that
for any ψ(t, ·) ∈ B(Ẽ)

|G̃nψ�(t, x, v) − P̃t f (x, v)| ≤ 2max(‖ψ‖‖ f ‖)P(t ≥ Tn).

Finally, if λ is bounded, then we can bound P(t ≥ Tn) by
something which does not depend on (�, x, v) and goes to 0
as n → ∞ so that G̃nψ → P̃t f uniformly on �, x, v ∈ Ẽ
under the supremum norm. This shows that, for any t , P̃t

(and therefore Pt ) preserves τ -continuity. ��
Remark A.5 The proof of the Feller andMarkov property fol-
low similarly for the Bouncy Particle and the Boomerang
sampler.

A.5 The extended generator of Zt

Let f ∈ D(A) if f̃ ∈ D(Ã) and f ◦ ι = f̃ . Then f ∈ D(A)

are τ -absolutely continuous functions along full determinis-
tic trajectories on E :

D(A) = { f ∈ M(E); t → f (ϕ(t, x, v))τ

-absolutely continuous ∀(x, v);
lim
t→0

f (x[i : 0+ + t], v) = f (x[i : 0+], v);
lim
t→0

f (x[i : 0− − t], v) = f (x[i : 0−], v)}.

For those functions f ∈ D(A) with f ◦ ι = f̃ we have that

Ã f̃ (�, x̃, v) = A f (x, v) =
N∑

i=1

Ai f (x, v)

with

Ai f (x, v) =

⎧
⎪⎨

⎪⎩

κi ( f (Ti (x, v)) − f (x, v)) (x, v) ∈ Fi ,

vi∂xi f (x, v) + λi (x, v)

( f (x, v[i : − vi ]) − f (x, v)), otherwise,

and

λi (x, v) = (vi∂i�(x))+ + λ0,i (x), i = 1, 2, . . . , d,

for positive functions λ0,i .
Denote the space of compactly supported functions on E

which are continuously differentiable in their first argument
by C1

c (E). Define Cb(E) = { f ∈ C(E) : f is bounded} and
D = { f ∈ C1

c (E),A f ∈ Cb(E)}. The following proposi-
tion shows that the operatorA restricted to D coincides with
the infinitesimal generator of the ordinary Zig-Zag process
restricted to D.

Proposition A.6 We have

D =
{

f ∈ C1
c (E) : viκi ( f (Ti (x, v)) − f (x, v))

= vi∂i f (x, v) + λi (x, v)( f (x, v[i : − vi ]))
− f (x, v)), (x, v) ∈ Fi for all i = 1, . . . , d} .

For f ∈ D, A f = L f , where L f =∑d
i=1 Li f with

Li f (x, v) = vi∂xi f (x, v) + λi (x, v)

( f (x, v[i : − vi ]) − f (x, v)) .

Proposition A.7 (Proposition 2.1) The extended generator of
the process (Z(t)) is given by A with domain D(A).

Proof This is to verify that if f ∈ D(Ã) and Ã solve the
martingale problem, i.e are such that

f (�(t), x(t), v(t)) − f (�, x, v)

+
∫ t

0
A f (�(s), x(s), v(s)ds, ∀(�, x, v) ∈ Ẽ

is a local martingale (Davis 1993, Section 24) on Ẽ , then
f ◦ ι : f ∈ D(Ã) and A solve the martingale problem on E
(for any local martingale Zt on Ẽ , ι(Zt ) is a local martingale
on E). ��
By the Feller property, the extended generator is an extension
of the generator defined as

L f (x, v) := lim
t↓0

E[ f (Xt , Vt ) | X0 = x, V0 = v] − f (x, v)

t

for a sufficient regular class of functions f forwhich this limit
exists uniformly in x (see Liggett 2010, Section 3, for more
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details). Then, D = { f ∈ D(A) : f ∈ C1
b , A f ∈ Cb(E)} is

a core for A (as in Liggett 2010, Definition 3.31). Let L be
the restriction ofA on D. By Liggett (2010, Theorem 3.37),
μ is a stationary measure if, for all f ∈ D:

∫
L f dμ = 0.

A.5 Remaining part of the proof

Invariant measure of the Sticky Zig-Zag process: We check
here that the sticky d-dimensional Zig-Zag process as pre-
sented in Sect. 2.3 taking values in E with discrete velocities
in V = {v : |vi | = ai ,∀i ∈ {1, 2, . . . , d}} and with extended
generator A is such that

∫
L f (x, v)μ(dx, dv) = 0

for all f ∈ D = { f ∈ C1
c (E),A f ∈ Cb(E)}. Here, L is the

extended generatorA restricted to D (See Proposition (A.6)).
For any-1 f ∈ D, define λ+i := λi (x, v[i : , ai ]), λ−i :=
λi (x, v[i : ,−ai ]), f +i := f (x, v[i : ai ]), f −i := f (x, v[i : −
ai ]), f +i (y) := f (x[i : y], v[i : ai ]), f −i (y) := f (x[i : y], v[i : −
ai ]), . Also write the measure ρ(dxi , vi ) := dxi + 1

κ

(
1vi <0

δ+0 (dxi ) + 1vi >0δ
−
0 (dxi )

)
. We see that

∫
Li f dμ =

∑

v∈V−i

(∫

Rd−1

(∫ ∞

0+
+
∫ 0−

−∞

)

(
ai∂xi f +i + λ+i ( f −i − f +i )

)
exp(−�(x))dxi

∏

j �=i

ρ(dx j , v j )

⎞

⎠

+
∑

v∈V−i

(∫

Rd−1

(∫ ∞

0+
+
∫ 0−

−∞

)

(−ai∂xi f −i + λ−i ( f +i − f −i )
)

exp(−�(x))dxi

∏

j �=i

ρ(dx j , v j )

⎞

⎠

+
∑

v∈V−i

(∫

Rd−1
ai
(

f +i (0+) − f +i (0−)
)

exp (−�(x[i : 0]))
∏

j �=i

ρ(dx j , v j )

⎞

⎠

+
∑

v∈V−i

(∫

Rd−1
−ai

(
f −i (0−) − f −i (0+)

)
exp(−�(x[i : 0]))

∏

j �=i

ρ(dx j , v j )

⎞

⎠ .

By integrationbypartswehave that
(∫∞

0+ + ∫ 0−−∞
) (

∂xi f (x, v)

exp(−�(x))) dxi is equal to

(
f (x[i : 0−], v) − f (x[i : 0+], v)

)

exp(−�(x[i : 0])) +
(∫ ∞

0+
+
∫ 0−

−∞

)

(∂i�(x) f (x, v) exp(−�(x))) dxi

so that
∫
Li f dμ is equal to

∑

v∈V−i

(∫

Rd−1

(∫ ∞

0+
+
∫ 0−

−∞

)

(
ai∂xi �(x) + λ+i − λ−i

)
f −i exp(−�(x))dxi

∏

j �=i

ρ(dx j , v j )

⎞

⎠

+
∑

v∈V−i

(∫

Rd−1

(∫ ∞

0+
+
∫ 0−

−∞

)

(−ai∂xi �(x) + λ−i − λ+i
)

f +i exp(−�(x))dxi

∏

j �=i

ρ(dx j , v j )

⎞

⎠

+
∑

v∈V−i

(∫

Rd−1
ai
(

f +i (0+) − f +i (0−)
)

exp(−�(x[i : 0]))
∏

j �=i

ρ(dx j , v j )

⎞

⎠

+
∑

v∈V−i

(∫

Rd−1
−ai
(

f −i (0−) − f −i (0+)
)

exp(−�(x[i : 0]))
∏

j �=i

ρ(dx j , v j )

⎞

⎠

+
∑

v∈V−i

(∫

Rd−1
ai
(

f +i (0−) − f +i (0+)
)

exp(−�(x[i : 0]))
∏

j �=i

ρ(dx j , v j )

⎞

⎠

+
∑

v∈V−i

(∫

Rd−1
−ai
(

f −i (0+) − f −i (0−)
)

exp(−�(x[i : 0]))
∏

j �=i

ρ(dx j , v j )

⎞

⎠ = 0,

where we used that −vi∂i�(x)+ λi (x, v)− λi (x, Fi (v)) =
0, ∀(x, v) ∈ E .

A.6 Ergodicity of the sticky Zig-Zag process

In this section, we prove that the sticky Zig-Zag is ergodic.
As the argument partially relies on the ergodicity results of
the ordinary Zig-Zag sampler (Bierkens et al. 2019b), we
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start by making similar assumptions on � as appearing in
that paper.

Assumption A.8 (Assumptions of Bierkens et al. 2019b,The-
orem 1) Let � satisfy the following conditions:

• � ∈ C3(Rd),
• � has a non degenerate local-minimum,
• For some constants c > d, c′ ∈ R,�(x) > c ln(|x |)−c′,

for all x ∈ R
d .

For every set α ⊂ {1, 2, . . . , d}, we define the sub-space
Mα = {x ∈ R

d : xi = 0, i /∈ α} and define the |α|-
dimensional ordinary Zig-Zag process (Z (α)

t )t≥0, with |α| ≤
d, on the sub-space Mα × {−1,+1}α and with reflection
rates λi (x, v) = max(0, vi∂i�(x)), x ∈ Mα , i ∈ α.

Proposition A.9 Suppose � satisfies Assumption A.8. Then
for every set α ⊂ {1, 2, . . . , d}, (Z (α)

t )t≥0 is ergodic with
unique invariant measure with density exp(−�(x))|Mα

relative to Leb(Mα)(dx) ⊗ Uniform({−1,+1}α)(dv). Fur-
thermore, some skeleton chain of each process is irreducible.

Proof IfAssumptionA.8 holds onR
d , then it holds on any the

sub-spaceMα, α ⊂ {1, 2, . . . , d}, for functions x �→ �(x),
x ∈ Mα . Proposition A.9 follows from the ergodic theorem
of ordinary Zig-Zag processes (Bierkens et al. 2019b, Theo-
rem 1 and Theorem 5). ��

Next, we show that, for any initial position (x, v) ∈ E ,
the sticky Zig-Zag process is Harris recurrent to the set
where all coordinates are stuck at 0. Denote the measure
δ0(dx, dv) = ⊗d

i=1(δ0+,−1(dxi , dvi ) + δ0−,+1(dxi , dvi )),
the set S = ∩d

i=1Fi and the first hitting time τA = inf{t >

0 : Zt ∈ A}, where Zt = (Xt , Vt ) is the sticky Zig-Zag pro-
cess.

Proposition A.10 (Harris recurrence) Suppose � satisfies
Assumption A.8. Then for any initial state Z0 = z0 ∈ E,
we have that P(τS < ∞) = 1.

Proof Let x0 ∈ Mα for an arbitrary α ⊂ {1, 2, . . . , d}.
Denote the random time of the first stuck coordinate xi , i ∈
αc leaving zero by T1 ∼ Exp(

∑
j∈αc κ j ) > 0. Denote the

random time of the first ‘free’ coordinate xi , i ∈ α hitting
zero by T2.

Notice that T1 is independent of the trajectory on the sub-
space Mα . and the sticky Zig-Zag process behaves as an
ordinary |α|-dimensional Zig-Zag process in the subspace
Mα for time t ∈ [0,min(T2, T1)]. By Proposition A.9,
T2 is finite and P(T2 < T1) > 0. By using the Markov
structure of the process and iterating the same argument for
a sequence of sub-models Mα2 , Mα3 , . . . ,Mα|α|−1 , with
|α j | + 1 = |α j+1|, we conclude that P(τS < ∞) = 1.

Now, consider a subset S ⊂ S and a random element
from S. Without loss of generality, we may assume this ele-
ment to be s0 = ((0−, . . . , 0−), (+1, . . . ,+1)). Next, we
show that P(τS < ∞) = 1. Let τS be the hitting time to
the set S of the sticky Zig-Zag Z(t)t>0. Denote by β :=
{i : Zi (τS �= [s0]i )} ⊂ {1, 2, . . . , d} the set of indices for
which the coordinate is stuck on the other copy of zero. At
time Z(τS) the process will stay in the null model for a time

T ∼ Exp(

∑d
j=1 κ j ). At time T +
T a coordinate i ∈ β is

released with positive probability κi/
∑

j κ j . Conditional on

T and on the event that the coordinate i is released at time
T +
T , the sticky Zig-Zag behaves as a 1 dimensional ordi-
nary Zig-Zag sampler until time τS+
T +min(
T1,
T2),
where, similarly as before, 
T1 ∼ Exp(

∑
j �=i κ j ) (and it

is independent from the trajectory of the free coordinate)
and 
T2 is the hitting time to 0 of the coordinate process
Zi (τS +
T + t)t>0. By Proposition A.9, 
T2 is finite and
P(
T2 < 
T1) > 0. By using theMarkovian structure of the
process and iterating this argument for all i ∈ β we conclude
that P(τS < ∞) = 1. ��

By Meyn and Tweedie (1993, Theorem 6.1), the sticky
Zig-Zag sampler is ergodic if it is Harris recurrent with
invariant probability μ and if some skeleton of the chain is
irreducible. For the latter condition, notice that any skeleton
Z (
) = (Z(0)), Z(
), Z(2
), . . .) (with 
 > 0) is irre-
ducible relative to the measure δ0 as the process, once it has
reached the null model, it will stay there for a random time

T ∼ Exp(

∑d
j=1 κ j ) and P(
T > 
) > 0.

A.7 Recurrence time of the sticky Zig-Zag to 0

The recurrent time to the point 0 = (0, 0, . . . , 0) is derived
with a simple heuristic argument. We assume the sticky Zig-
Zag to have unit velocity components and to be ergodic with
stationary measure μ. Clearly, the expected time to leave
0 is (κd)−1 since each coordinate leaves 0 according to
an independent exponential random variable with parame-
ter κ . Denote by τ0 the recurrent time to 0, i.e. the random
time spent outside 0 before returning to 0. By ergodicity, the
expectation of τ0 must satisfy the following equation

(κd)−1

μ({0}) = E[τ0]
1− μ({0}) .

B. Other sticky PDMP samplers

Herewe extend the results presented in Sect. 2.3 for two other
Sticky PDMP samplers: the sticky version of the Bouncy par-
ticle sampler (Bouchard-Côtè et al. 2018) and theBoomerang
sampler (Bierkens et al. 2020), the latter having Hamiltonian
deterministic dynamics invariant to a prescribed Gaussian
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Fig. 10 (x-y) phase portraits, of 3 different sticky PDMP samplers
targeting the measure of Eq. (1.2) with exp(−�) being a mixture of
two bivariate Gaussian densities centered respectively in the first and
the third quadrant of the x-y axes. Left: Sticky Zig-Zag sampler. Mid-
dle: sticky Bouncy Particle sampler with refreshment rate equal to 0.1.
Right: sticky Boomerang sampler with refreshment rate equal to 0.1.

For all the samplers, κ1 = κ2 = 0.1 and the final clock was set to
T = 103. As the sticky Bouncy Particle sampler and the Boomerang
sampler don’t have constant speed, we marked their continuous trajec-
tories in the phase plots with dots. The distance of dots indicates the
speed of traversal

measure. To visually assess the difference in sample paths,
we show in Fig. 10 a typical realization of the Sticky Zig-
Zag sampler, Sticky Bouncy particle sampler and Sticky
Boomerang sampler.

B.2 Sticky Bouncy Particle sampler

The inner product and the norm operator in the subspace
determined by A is denoted by 〈x, v〉A := ∑i∈A xivi and
‖x‖A := ∑i∈A x2i with the convention that 〈·, ·〉{1,2,...,d} =
〈·, ·〉 and ‖ · ‖{1,2,...,d} = ‖ · ‖. The deterministic dynamics
of the sticky Bouncy Particle process are identical to that
of the Sticky Zig-Zag process, having piecewise constant
velocity. For each i ∈ {1, 2, . . . , d}, when the process hits
a state (x, v) ∈ Fi , the i th coordinate (xi , vi ) sticks for an
exponentially distributed time with rate equal to κi |vi | while
the other coordinates continue their flow until a reflection
or refreshment event happens. A reflection occurs with an
inhomogeneous rate equal to

λ(x, v) = max(0, 〈v,∇�(x)〉α),

where α is as defined in Eq. (2.1). At reflection time the pro-
cess jumps with a contour reflection of the active velocities
with respect to ∇�:

(R�(x, v)v)i =
{

vi i /∈ α(x, v)

vi − 2 〈∇�(x),v〉α
‖∇�(x))‖2α ∂i�(x) else.

Similarly to the ordinary Bouncy Particle sampler, the sticky
Bouncy Particle sampler refreshes its velocity component at
exponentially distributed timeswith homogeneous rate equal
to λref . This is necessary for avoiding pathological behaviour
of the process (see Bouchard-Côtè et al. 2018). At refresh-
ment times, each coordinate renews its velocity component
independently according to the following refreshment rule

v′i ∼
{

Zi (x, v) /∈ Fi ,

sign(vi )|Zi | (x, v) ∈ Fi ,
(B.1)

where Zi
i .i .d.∼ N (0, 1), independently of all random quan-

tities. The refreshment rule coincides with the refreshment
rule given in the ordinary Bouncy Particle sampler algorithm
Bouchard-Côtè et al. (2018) for the coordinates whose index
is in the set α. For the components which are stuck at 0, the
refreshment rule renews the velocity without changing its
sign. This prevents the possibility for the i th stuck compo-
nent to jump out the set Fi (changing its label from frozen to
active at refreshment time).

The extended generator of the stickyBouncy Particle sam-
pler is given by

A f (x, v) =
d∑

i=1

Gi f (x, v) + λ(x, v)( f (x, R�(x, v)v)

− f (x, v)) + λref

∫
( f (x, w) − f (x, v)) �x,v(w)dw
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and

Gi f (x, v) =
{
|vi |κi ( f (Ti (x, v)) − f (x, v)) (x, v) ∈ Fi

vi∂xi f (x, v) else,

where

�x,v(w) = ρ(wα(x,v))
∏

i∈α(x,v)c

2ρ(wi )1vi wi >0,

for sufficient regular functions f : E → R in the extended
domain of the generator. Here, ρ(y) is the standard normal
density function evaluated at y.

Proposition B.1 The d-dimensional sticky Bouncy Particle
sampler is invariant to the measure

μ(dx, dv) = 1

C
ρ(v)dv exp(−�(x))

d∏

i=1

(
dxi + 1

κi

(
1vi >0δ0−(dxi ) + 1vi <0δ0+(dxi )

))
(B.2)

for some normalization constant C.

Proof The transition kernel R�(x) satisfies the following
properties:

〈∇�(x), R�(x, v)v〉α = −〈∇�(x), v〉α
and

‖R�(x, v)v‖2 = ‖v‖2αc + ‖R�(x, v)v‖2α
= ‖v‖2αc + ‖v‖2α = ‖v‖2

so, ρ(R A
�(x)v) = ρ(v) (ρ(x) here denotes the standard

Gaussian density evaluated at x). Furthermore λ satisfies

−〈v,∇�(x)〉α + λ(x, v) − λ(x, R�(x, v)v) = 0,

∀(x, v) ∈ E . (B.3)

Let us check that the process satisfies
∫
L f (x, v)μ(dx, dv) =

0, for all f ∈ D = { f ∈ C1
c (E),A f ∈ Cb(E)} where L is

the extended generator A restricted to D.
First let usfix somenotation: denote fi (y) = f (x[i : y], v),

R f (x, v) = f (x, R�(x, v)v) and Rλ(x, v) = λ(x, R�(x, v)v).
Also write δ0(dxi , vi ) := 1vi <0δ0+(dxi ) + 1vi >0δ0−(dxi )

and 
i f (x, v) := f (x[i : 0+], v) − f (x[i : 0−], v)). We
have this preliminary result:

∫ d∑

i=1

Gi f dμ = 1

C

∑

i

∫ (
Gi f exp(−�(x))(dxi + 1

κi
δ0(dxi ))

)

∏

j �=i

(
dx j + 1

κ j
δ0(dx j , v j )

)
ρ(v)dv

= 1

C

∑

i

∫

(
vi∂xi f exp(−�(x))dxi + vi
i f exp(−�(x))δ0(dxi )

)

∏

j �=i

(
dx j + 1

κ j
δ0(dx j , v j )

)
ρ(v)dv (B.4)

= 1

C

∑

i

∫ (
vi∂xi �(x) f (x, v) exp(−�(x))dxi

)

∏

j �=i

(
dx j + 1

κ j
δ0(dx j , v j )

)
ρ(v)dv (B.5)

= 1

C

∑

A⊂{1,...,d}
(
∑

i∈A

(∫
vi∂xi �(x) f (x, v) exp(−�(x))dxA

)

∏

j∈Ac,

1

κ j
δ0(dx j , v j )

⎞

⎠

= 1

C

∑

A⊂{1...,d}

∫
〈v,∇�(x[Ac : 0])〉A f (x[Ac : 0], v)

exp(−�(x[Ac : 0]))dxA

∏

j∈Ac

1

κ j
ρ(v)dv (B.6)

Here from (B.4) to (B.5) we used integration by parts in the
two half planes (∞, 0+] and [0−,−∞). For the equivalence
of (B.5) to (B.6) note that placing |A| balls in d numbered
boxes and marking one of them (say the ball in box i) is
equivalent to placing a marked ball in box i and distributing
the remaining unmarked balls over the remaining boxes.Also
notice that

∫
λref

∫
( f (x, w) − f (x, v))�(w)dwdμ

= 1

C

∑

A⊂{1,2,...,d}
λre f

∫
( f (x, w) − f (x, v)) exp(−�(x))dxA

×
∏

i∈Ac

1

κi
δ0−(dxi )

1vi >01wi >02
|Ac|ρ(v)ρ(w)dvdw

+ 1

C

∑

A⊂{1,2,...,d}
λref

∫
( f (x, w) − f (x, v)) exp(−�(x))dxA
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×
∏

i∈Ac

1

κi
δ0+(dxi )1vi <01wi <02

|Ac|

ρ(v)ρ(w)dvdw,

which is equal to 0 by symmetry between v and w. Then

∫
L f dμ = 1

C

∑

A⊂{1...,d}

∫
〈v,

∇�(x[Ac : 0])〉A exp(−�(x[Ac : 0]))
f (x[Ac : 0], v)dxA

∏

j∈Ac

1

κ j
ρ(v)dv

+
∫

(λ(x, R�(x, v)) − λ(x, v)) f (x, v)μ(dx, dv)

= 1

C

∑

A⊂{1...,d}

∫
〈v,

∇�(x[Ac : 0])〉A exp(−�(x[Ac : 0])) f (x[Ac : 0], v)

dxA

∏

j∈Ac

1

κ j
ρ(v)dv (B.7)

+ 1

C

∑

A⊂{1,...,d}

∫ (
λ(x[Ac : 0], R�v) − λ(x[Ac : 0], v)

)

f (x[Ac : 0], v) exp(−�(x[Ac : 0]))dxA

×
∏

j∈Ac

1

κ j
ρ(v)dv

= 0, (B.8)

where in Eqs. (B.7)–(B.8) we used a change of variable v′ =
R�(x, v)v and property (B.3). ��
Remark B.2 In more generality, the transition kernel at
refreshment times can be chosen as follows:with two refresh-
ment transition densities q A and q F such that q A(wA |
vA)ρ(vA) and q F (wF | vF )ρ(vF ) for each A � F =
{1, . . . , d} are symmetric densities in w, v, the refreshment
kernel

�x,v(dy, dw) = q A(wα(x,v) | wα(x,v))

q F (wαc(x,v) | wαc(c,v))δF(x,v,w)(dy)dw

where

(F(x, v, w))i =

⎧
⎪⎨

⎪⎩

0− if xi = 0+, vi < 0, wi > 0,

0+ if xi = 0−, vi > 0, wi < 0,

xi else

leaves the target measure μ invariant.

The transition kernels given in Remark B.2 satisfy the Equa-
tion λref

∫
f (x, w) − x(x, v)�x,wdwdμ = 0 and therefore,

by similar computations as in the proof of Proposition B.1,
leave μ invariant. For example, the preconditioned Crank–
Nicolson schemeCotter et al. (2013) fallswithing this setting.

B.2 Sticky Boomerang sampler

The sticky Boomerang sampler has Hamiltonian dynamics
prescribed by the vector field ξ̄i (xi , vi ) = (vi ,−xi ) with
close-form solution

(xi (t), vi (t)) = (cos(t)xi (0) + sin(t)vi (0),

−xi (0) sin(t) + cos(t)vi (0)), (B.9)

and is invariant to a prescribed Gaussian measure centered
in 0. Define U (x) such that

U (x) = �(x) − 1

2
x ′�−1x

for a positive semi-definite matrix � ∈ R
d×d . Consider

for example the application in Bayesian inference with
spike-and-slab prior (Eq. (1.1)) where {πi }d

i=1 are centered
Gaussian densities with variance σ 2

i . Then a natural choice
is � = Diag(σ 2

1 , σ 2
2 , . . . , σ 2

n ).
Similarly to the sticky Bouncy Particle sampler, the pro-

cess reflects its velocity at an inhomogeneous rate given by

λ(x, v) = 〈v,∇U (x)〉+α
with reflection specified by the transition kernel

(RU (x, v)v)i

=
{

vi i /∈ α

vi − 2 〈∇U (x),v〉α
‖∇�1/2U (x)),‖2α 〈�[i,:],∇U (x)〉α else

and refreshes the velocity at exponentially distributed times
with rate equal to λref according to the rule given in Eq. (B.1).

Proposition B.3 The d-dimensional sticky Boomerang sam-
pler is invariant to the measure in Eq. (B.2).

Proof The extended generator of the sticky d-dimensional
Boomerang process is given by

A f (x, v) =
d∑

i=1

Gi f (x, v) + λ(x, v)( f (x, RU (x, v)v)

− f (x, v)) + λref

∫
( f (x, w) − f (x, v)) �x,v(w)dw

and

Gi f (x, v) =
{
|vi |κi ( f (Ti (x, v)) − f (x, v)) (x, v) ∈ Fi

vi∂xi f (x, v) + xi∂vi f (x, v) else,
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where

�x,v(w) = ρ(wα(x,v))
∏

i∈α(x,v)c

2ρ(wi )1vi wi >0,

ρ(y) being the standard normal density function evaluated
at y and for sufficient regular functions f : E → R in the
extended domain of the generator. Then, define D = { f ∈
C1

c (E),A f ∈ Cb(E)} and L as the extended generator A
restricted to D. The component of the extended generator
(x, v) → ∂xi f (x, v) + xi∂vi f (x, v) produces Hamiltonian
dynamics (see Eq. (B.9)) preserving any Gaussian measure
centered on 0. Notice that the RU (x) satisfies

〈∇U (x), RU (x)v〉α(x,v) = −〈∇U (x), v〉α(x,v)

and that

‖�−1/2RU (x)v‖ = ‖�−1/2v‖.

Then one can check that
∫
L f (x, v)μ(dx, dv) = 0 by

carrying out similar computations as in the proof of Propo-
sition B.1. ��
A variant of the sticky Boomerang sampler is the sticky fac-
torised Boomerang sampler (being the sticky version of the
factorised Boomerang sampler introduced in Bierkens et al.
2020). Here the process has the same dynamics, refreshment
rule and sticky events of the sticky Boomerang process but
has a different reflection rate and reflection rule. Similarly
to the Sticky Zig-Zag process, the first reflection time of the
sticky factorised Boomerang sampler is given by the mini-
mum of |α(x, v)| Poisson times {τ j : j ∈ α(x, v)}with τ j ∼
Poiss(t → λ j (ϕ(t, x, v)) and λ j (x, v) = (∂x j U (x)v j )

+.
Likewise the Sticky Zig-Zag process, at the reflection time
the process reflects its velocity by changing the sign of the
i th component v → v[i : − vi ] where i = argmin{τ j : j ∈
α(x, v)}. As shown in Bierkens et al. (2020) the factorised
Boomerang sampler can outperform the Boomerang sampler
when ∂xi U is function of few coordinates.

C.Comparisonbetweenreversible jumpPDMPs
and sticky PDMPs

In this appendix, we discuss the differences between the
sticky PDMPs and RJ (Reversible Jumps) PDMPs presented
in Chevallier et al. (2020) which, similarly to us, addresses
variable selection problems using PDMP samplers.

The approach taken in Chevallier et al. (2020) is based on
the framework of reversible jump (RJ) MCMC as proposed
in Green (1995) and its derivation is therefore substantially
different from our approach. Nonetheless, the samplers have
certain similarities. The dynamics of both the RJ PDMPs in

Chevallier et al. (2020) and the sticky PDMPs proposed in
this paper allow each coordinate to stick at 0 for an expo-
nential time. The rate of the exponential time of the sticky
PDMPs depends only on the velocity component of each
coordinate, while the rate of RJ PDMPs can depend on
the current state of the process. The latter is slightly more
general as it allows to choose freely a prior weight on the
Dirac measure for each possible model (while our approach
allows to choose freely a prior weight on the Dirac mea-
sure of each possible coordinate). An important difference
between the two methods is the behaviour of the process
after the particle sticks at 0: the velocity of the coordinate
of the sticky PDMPs is restored to its previous value while
for RJ PDMPs, a new velocity is drawn independently to the
previous one. The former action introduces non-reversible
jumps betweenmodels while the latter reversible jumps and a
randomwalk behaviour when jumping betweenmodels. This
simple, yet substantial, difference leads to two different limit-
ing behaviour of the two processes when the number of Dirac
measures increases. The limiting behaviour of both processes
is unvelied below in Appendix C.2 through numerical sim-
ulations: while the Sticky Zig-Zag converges to ordinary
Zig-Zag, the RJ Zig-Zag asymptotically exhibits diffusive
behaviour.

For RJ PDMPs, the random walk behaviour is mitigated
by introducing a tuning parameter p which allows each coor-
dinate to stick at 0 only a fraction of times when hitting 0
(and compensating for this by down-scaling the rate of the
exponential waiting time when the coordinate sticks). The
parameter p is tuned to be equal to 0.6 based on empiri-
cal criteria. In “Appendix C.1” we investigate the possibility
to introduce the tuning parameter p in the Sticky Zig-Zag
sampler and, based on a heuristic argument and a simulation
study, we concluded that it is not beneficial for us.

C.1 Heuristics for the choice of p

Here we investigate the possibility of introducing the param-
eter p to the Sticky Zig-Zag sampler. This parameter was
originally introduced in Chevallier et al. (2020). Based on
the heuristic argument and the simulation study given below,
we conclude that the introduction of p does not improve the
performance of the Sticky Zig-Zag sampler.

The parameter p defines the probability for a coordinate
to stick at 0 when it hits 0. By introducing this parameter, the
times of the particles stuck at 0 has to be rescaled by a factor
of p in order target the right measure.

Consider a trajectory {zt : 0 < t < T } of the one
dimensional ordinary Zig-Zag sampler (without stickiness)
targeting a givenmeasure. In this case, one could create a tra-
jectory of the Sticky Zig-Zag process retrospectively just by
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adding constant segments equal to 0, every time the process
hits 0 with random length equal to XY , with X ∼ Ber(p)

and Y ∼ Exp(κ/p), X independent from Y . Then, if the
trajectory zt hits 0 N -times, the total occupation time of
the sticky process in 0 is Gamma-distributed with shape
parameters N

p and inverse scale parameter pκ (in variable
selection, this would correspond to the posterior probability
of the sub-model without the coefficient). While the mean of
this random variable is constant for every p, its variance is
N
κ p and is minimized when p = 1.

Based on the aforementioned heuristics, it appears not use-
ful to introduce the parameter p for the Sticky Zig-Zag. This
claim is supported by simulations presented in Fig. 11, where
we vary p from 0.1 (top) to 1.0 (bottom) for a 20 dimensional
Gaussian density with pairwise correlation equal to 0.99 and
relative to the measure

d∏

i=1

(
dxi + c

∑

j∈N
δ j∗0.01(dxi )

)
, (C.1)

with c = 1.0. InFig. 11, left panels, the traces aremore erratic
when p is small and the process traverses the space in less
timewhen p is large (notice the different ranges of the vertical
axis). In Fig. 11, right panels, the phase portrait of the first
two coordinates is shown. By visual inspection it is possible
to notice that the phase portrait fails to be symmetric on the
axis x1 = −x2 for p smallwhile it succeeds for p = 1 (notice
again the different ranges of the axes), hence suggesting that
Zig-Zag sampler has a better mixing for p = 1.

C.2 Limiting behaviour

Here we show the different limiting behaviour between the
RJ-PDMP samplers and the sticky PDMP samplers as the
number of Dirac measures increases.

The limiting behaviour of the two samplers significantly
differ because after every time a coordinate sticks at a
point mass, the sticky PDMP sampler preserves the veloc-
ity component while RJ PDMP sampler has to refresh a new
independent velocity. We illustrate the limiting behaviour of
the two samplers through simulations wherewe let the Sticky
Zig-Zag and the RJ-Zig-Zag sampler (with p = 0.6) tar-
get a 20-dimensional measure with a Gaussian density with
pairwise correlation equal to 0 (Fig. 12) and 0.99 (Fig. 13)
relative to the reference measure of Eq. (C.1) with c = 10.
While the Sticky Zig-Zag sampler resemble an ordinary Zig-
Zag sampler, the RJ-PDMP sampler has a limiting diffusive
behaviour and appears to explore the space less efficiently
than the sticky PDMP sampler (see the range of the axes and
the symmetries of the measure around the axis x2 = −x1
).

D. Details of Section 3

D.1 Bayes factors for Gaussianmodels

Let (X , Y ) ∼ N (μ, �−1), written in block form as

μ =
[
μx

μy

]
, � =

[
�x �xy

�′
xy �y

]
.

Denote the density of (X , Y ) evaluated at (x, y) by φ([x, y];
μ, �−1). Let

X | (Y = y) ∼ N (μx |y, �−1
x ) (D.1)

be the marginal density of X given Y = y, where μx |y =
μx − �−1

x �xy(y − μy). Assume �x to be positive definite
and let the marginal density of Y be

∫
φ([x, y]; μ, �−1)dx(2π)

dx−d
2 |�| 12 |�x |− 1

2

exp

(
1

2
μ′

x |y�xμx |y − 1

2
[−μx , y − μy]′�[−μx , y − μy]

)

(D.2)

where dx is the size of X .
We are now ready to compute the corresponding Bayes

factors of two neighbouring (sub-)models as in Eq. (2.1)
when � is a quadratic function. For every set of indices
α ⊂ {1, 2, . . . , d} and for every j , the Bayes factors rel-
ative to two neighbouring (sub-)models (those differing by
only one coefficient) for a measure as in Eq. (1.2) are given
by

B j (α) = μ(Mα∪{ j})
μ(Mα\{ j})

= κi
∫
R|α∪{ j}| exp(−�(y))dxα∪{ j}∫
R|α\{ j}| exp(−�(z))dxα\{ j}

, (D.3)

where y = {x ∈ R
d : xi = 0, i /∈ (α ∪ { j})}, z = {x ∈

R
d : xi = 0, i /∈ (α\{ j})]. Since � is quadratic, we can

write exp(−�(x)) = Cφ(x; μ, �−1) for some parameters
C, μ, �. By using both Eqs. D.1 and D.2 we have that the
right hand side of Eq. (D.3) is equal to

κi

√
2π |�x1 |
|�x2 |

exp

(
1

2
(μ′

x1|y1=0�x1μx1|y1=0 − μ′
x2|y2=0�x2μx2|y2=0)

)

where x1 = xα− j∪{ j}, x2 = xα− j\{ j}, y1 = xαc− j\{ j}, y2 =
xαc− j∪{ j}. Furthermore, by Eq. D.1, the random variable at
step 2 of the Gibbs sampler presented in Sect. 3.1 can be
simulated as Xα|(Xαc = 0) ∼ N (μxα |xαc=0, �xα ).
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Fig. 11 x1 trace plots (left) and
x1-x2 phase portraits (right) of
the Sticky Zig-Zag samplers
with final clock T = 503 with p
equal to 0.1 (top), 0.5 (center),
1.0 (bottom). The target
measure has a Gaussian density
with pairwise correlation equal
to 0.99 relative to the reference
measure of Eq. (C.1). By
comparing the symmetry of the
empirical measures along the
diagonal and the range of the
coordinates, one can conclude
that the algorithm performs best
for p = 1

Fig. 12 Comparison between
RJ Zig-Zag samplers (first row)
and Sticky Zig-Zag samplers
(second row) targeting a 20
dimensional measure with
Gaussian density with pairwise
correlation equal to 0.0 and
relative to the reference measure
in Eq. (C.1). Column 1: trace
plot of the first coordinate.
Column 2: trace plot of the
second column. In all cases
T = 104. By looking at the
range of each coordinate, it is
clear that the Sticky Zig-Zag
mixes faster than its reversible
counterpart
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Fig. 13 Same description as in
Fig. 12, except now for a
Gaussian measure with pairwise
correlation equal to 0.99. By
looking for example at the
symmetry along the axis
x2 = −x1 and the ranges of the
coordinates, it is clear that the
Sticky Zig-Zag outperforms the
RJ Zig-Zag

D.2 Simulating sticky PDMPs and sticky Zig-Zag
samplers

Sticky samplers can be implemented recursively by modify-
ing appropriately the ordinary PDMP samplers so to include
sticky events as introduced in Sect. 2.We discuss how to inte-
grate local implementations of the algorithms to increase the
sampler’s performance in case of a sparse dependence struc-
ture in the target measure and in case of local upper bounding
rates.

Although PDMPs have continuous trajectories, the algo-
rithm computes and saves only a finite collection of points
(which we refer to as the skeleton of the continuous tra-
jectory) corresponding to the positions, velocities and times
where the deterministic dynamics of the process change. In
between those points, the continuous trajectory can be deter-
ministically interpolated.

In case the i th partial derivative of the negative score
function is a sum of Ni terms, which is the case for exam-
ple in regression problems, subsampling techniques can be
employed as described in Sect. 2.4.

D.2.3 Computing Poisson times for PDMPs

As PDMPs move deterministically (and with simple dynam-
ics) in between event times, the main computational chal-
lenge consists of simulating those times. Given an initial
position (x, v), the distribution of the time until the next
event is specified in (2.4). A sample from this distribution

can be found by solving for τ ′ in the equation

∫ τ ′

0
λ(ϕ(s, x, v))ds = t, t = Exp(1). (D.4)

We then write that τ ′ ∼ Poiss(λ(ϕ(·, x, v)). When it is
not possible to find the root of Eq. (D.4) in closed form, it
suffices to find upper bounds λ for the rate functions which
satisfies, for any (x, v) ∈ E and for some 
 = 
(x, v) > 0

λ(t, x, v) ≥ λ(ϕ(t, x, v)), 
 ≥ t ≥ 0, (D.5)

for which this is possible and use the thinning scheme:
Let τ ′ ∼ Poiss(λ̄(·, x, v)); if τ ′ > 
 then the pro-
posed time is rejected and a new time has to be drawn as
τ ′ ∼ Poiss(λ̄(·, φ(
, x, v))). We accept the proposed time
with probability λ(φ(τ ′, x, v))/λ̄(τ ′, x, v). This scheme
is referred as adaptive thinning in Bouchard-Côtè et al.
(2018). More sophisticated and potentially efficient thin-
ning schemes have been proposed, see Sutton and Fearnhead
(2021). The simulation of unfreezing times is easier: once
the i-th component hits zero then it sticks at zero for a time
that is exponentially distributed with parameter κi |vi |.

For the ordinary d-dimensional Zig-Zag and the fac-
torised Boomerang sampler (these samplers are called fac-
torised PDMPs in Bierkens et al. (2020)), the reflection
time is factorised as the minimum of d independent clocks
τ1, τ2, . . . , τd where τi ∼ Poiss(λi (ϕ(·, x, v)) for i =
1, 2, . . . , d. The first reflection time of the d-dimensional
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sticky factorised samplers is obtained instead by finding the
minimum of |α| < d independent clocks with the same rates
λi of the ordinary factorised sampler, but only for the active
coordinates i ∈ α(x, v).

If ∂xi � (an estimate of ∂xi � when using subsampling) or
the upper bound λ depends on fewer coordinates, then the
evaluation of each reflection time is cheaper. The fully local
implementation presented in Bierkens et al. (2021) exploits
these two features once in proposing the reflection time and
once for deciding whether to accept. Below, we discuss in
more details the algorithm of Sticky Zig-Zag sampler with
local upper bounds and with subsampling.

D.2.2 Local implementation:

Assume that the sets Ai and λi are such that

λi (t, x, v) = fi (t, xAi
), ∀x, for i = 1, 2, . . . , d

for some fi : R
+ × R

|Ai | → R
+ with Ai ⊂ {1, 2, . . . , d}.

Given an initial position (x, v) and random times τ j ∼
Poiss(t → λ j (t, x, v)), for i ∈ α, denote by i =
argmin j∈α(x,v) τ j and τ = min j∈α(x,v) τ j the first proposed
reflection time. According to the thinning procedure for
Poisson processes, the process flips the i th coordinate with
probability λi (ϕ(τ, x, v))/λi (τ, x, v). If the process flips the
i th velocity, then the Poisson rates {λ j : j ∈ α, A j �� i}
continue to be valid upper bounds so that the corresponding
reflection times do not need to be renewed (see Bierkens et al.
2021, Section 4, for implementation details).

In general, when the i th particle freezes at 0 or was stuck
at 0 and gets released, the reflection times {τ j : i ∈ A j }
have to be renewed. However this is not always the case, as
there are applications, such as the one in Sect. 4.3, for which
the upper bounding rates {λi }d

i=1 continue to be valid upper
bounds when one or more particles hit 0 and therefore the
waiting times computed before the particles hit 0 are still
valid.

D.2.3 Fully local implementation:

Consider now the decomposition of ∂xi �, i = 1, 2, . . . , d
given in Eq. (2.8) and such that

S(x, i, j) = fi, j (x Ãi, j
), ∀x, for (i, j) ∈ {1, 2, . . . , d}

×{1, 2, . . . , Ni }

for some fi, j : R
| Ãi, j | → R with Ãi, j ⊂ {1, 2, . . . , d}.

The fully local implementation of the Sticky Zig-Zag
with subsampling profits from local upper bounds and local
gradient estimators by assigning an independent time for
each coordinate, thus evolving the flow of only the coor-

dinates which are required at each step and by stacking
{τ j∧τ �

j : j ∈ α}, with τ j being a proposed reflection time and
τ �

j the hitting time to 0, and the unfreezing times {τ ◦j : j ∈ αc}
in an ordered queue. For a documented implementation, see
Schauer and Grazzi (2021).

Given an initial point (x, v) and if i = argmin(τ j : j ∈
α(x, v)) is the coordinate of the first proposed reflection time
τ = min(τ j : j ∈ α(x, v)), the sampler reflects the velocity
of the i th coordinatewith probability λ̃i,J (x Ãi

(τ ), v)/λ(τ, x, v)

with J ∼ Unif({1, 2, . . . , Ni }). Hence, it is only required
to update the position of the coordinates with index in
Ãi,J\αc(x, v). Then,

• if the i th velocity flips, then the algorithm needs to
update only the waiting times {τ j : j ∈ α, A j � i} (as
described in Appendix D.2.2) and, to this end, needs
to update the position of the coordinates with index
{k ∈ A j\αc(x, v) : i ∈ A j };

• in the other case, when the i th velocity does not change
(shadow event), only τi has to be renewed so that only
the particles in Ai have to be updated.

Remark D.1 (Sparse implementation.) When the dimension-
ality d is large, inserting eachwaiting time in a ordered queue
and initializing the state space can be computationally expen-
sive. If for example the product ki |vi | is equal for all i , an
alternative efficient and sparse implementation is possible.
Here we simulate the sticky time for each frozen coordinate
bymeans of simulating the overall sticky time from the expo-
nential distribution with rate

∑
i∈αc κi |vi | (which has to be

renewed every time a new particle sticks at 0) and selecting
the particle to unfreeze uniformly from the set αc. A further
improvement can be obtained by representing x as a sparse
vector and saving only the location of the active particles
{xi : i ∈ α}.

D.3 Runtimes of the algorithms

We will now compute typical runtimes for the Gaussian
model, assuming a decomposition

�(x) = (x − μ)′�(x − μ) =
N∑

i=1

(x − μi )
′�i (x − μi ) + c,

so that N captures the dependence on the number of obser-
vations in a Bayesian setting.

D.3.1 Sticky Zig-Zag sampler

The computational cost of simulating PDMP samplers is
intimately related with the number of random times gen-
erated. This, in turn, depends on the intensity of the rate λ of
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the underlying Poisson process. For any initial position and
velocity (x, v), the total rate of the Sticky Zig-Zag sampler
is equal to

λ(x, v) =
∑

i∈α

λi (x, v) +
∑

i∈αc

|vi |κi (D.6)

where, as before, α = {i : xi �= 0}. In the following analysis,
we drop the dependence on (x, v) andwe assume that the size
of α(t) := {i : xi (t) �= 0} fluctuates around a typical value
p in stationarity. Thus p represents the number of non-zero
components in a typical model, and can bemuch smaller than
d in sparse models.

We consider the sticky Zig-Zag with local implementa-
tion as in Remark D.1 where we assume κ := κ1 = κ2 =
· · · = κd . We ignore logarithmic factors, e.g., for priority
queue insertion. In the analysis belowwedistinguish between
the computational costs of reflection events and unfreezing
events.

The number of reflection and unfreezing events per unit
time interval are respectively O(p) and O((d − p)κ) per
unit time; see Eq. (D.6). Once either a reflection or unfreez-
ing event happens, we have to recompute betweenO(1) and
O(p) new reflection event times (depending on the elements
of Ai ∩ α; see Appendix D.2.2). Finally, each newly com-
puted reflection event time for the particles i ∈ α requires
a computation ranging from O(1) to O(N ). The complex-
ity O(1) can be achieved using the subsampling technique
(Sect. 2.4) in ideal scenarios (Bierkens et al. 2019a). Table 1
in Sect. 3 summarizes the overall scaling complexity of the
Sticky Zig-Zag algorithm for the quantities p and N .

D.3.2 Gibbs sampler

At each iteration, the Gibbs sampler algorithm requires the
evaluation of the Bayes factors which involves the inversion
of a squarematrix of dimension p× p. This can be efficiently
obtained with a Cholesky decomposition of a sub-matrix of
�. This is a computation of O(p3) when � is full; a lower
order is possible when� is sparse. For example, in the exam-
ple in Sect. 4.2, the complexity of this operation isO(p3/2).
This is followed by computing sufficient statistics in step 2 of
Sect. 3.1 which involves the inversion of a triangular matrix
which is O(|α2|) (O(1) if the Cholesky factor is sparse) in
addition to an operation of order pN (for example in lin-
ear or logistic regression). It is important to notice that if
� is sparse, its Cholesky factors might not be. Our finding
are summarized in Table 1 in Sect. 3 and validated by the
numerical experiments of Sect. 4 (Figs. 5 and 8).

D.4Mixing

Next to the complexity per iteration, we should also under-
stand the time the underlying process needs to explore the
state space and to reach its stationary measure. Given the
different nature of dependencies of the two algorithms, a rig-
orous and theoretical comparison of their mixing times is
difficult. We therefore provide a heuristic argument for two
specific scenarios.

Let both algorithms be initialized at x ∼ Nd(0, I ) with
all non-zero coordinates (αc = ∅) and assume that the target
μ assigns most of its probability mass to the null modelM∅.
Consider the following scenarios:

• A measure supported in every model and such that for
any two models Mαi and Mα j with αi �= α j , we have
μ(Mαi ) > μ(Mα j ) if |αi | < |α j |. The Sticky Zig-
Zag will be directed to the null model, each coordinate
with speed 1, so that the first visit of the null set hap-
pens with an expected time O(maxi (|xi |)) which is of
O(log d) if x is standard Gaussian. On the other hand,
the Gibbs sampler, at every iteration, randomly picks
a coordinate and, if this is a non-zero coordinate, suc-
ceeds to set that coordinate to zero. Denote by τα the
(random) number of iterations needed for the algorithm
to set any non-zero coordinate to zero, when explor-
ing a model Mα . Then E(τα) = d/|α| which ranges
from 1 (when Mα is the full model) to d (for any sub-
model with only one non-zero coordinate). Consider
any sequence Mα1 ,Mα2 , . . . ,Mαd−1 of models with
|α j | + 1 = |α j+1| (decreasing size) and withMα1 begin
the full model. By adding the expected number of itera-
tions at each of thosemodel, we conclude that the process
started at x in the full model, is expected to reach the null
model in

∑d
i=1 d/i iterations which is of O(d log(d)).

• A measure supported on a single nested sequence of sub-
models, up to the full model: i.e. for a model Mα j , with
μ(Mα j ) �= 0 there is only one sub-model Mαi ⊂ Mα j

with |αi | + 1 = |α j | and the smaller model again has
more probability massμ(Mαi ) > μ(Mα j ). By a similar
argument as above, the first expected visit time of the null
model is of O(

∑d
i=1 |xi |) = O(d) for the Sticky Zig-

Zag, while for the Gibbs sampler the expected number of
steps is d2.

Table 2 in Sect. 3 summarizes the scaling results derived in
the two cases considered above.
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E Details of Section 4

E.1 Logistic regression

Similar computations for the bounds of the Poisson rates
of the Zig-Zag sampler applied to logistic regressions can
be found in the supplementary material of Bierkens et al.
(2019a). Given a posterior density of the form of Eq. (1.2)
with

�(x) =
N∑

j=1

(
log
(
1+ e〈A[ j,:],x〉

)

−y j 〈A[ j,:], x〉)+ 1

2σ 2 ‖x‖2

we use the Sticky Zig-Zag subsampler presented in Sect. 2.4.
To that end, defineU (x) = �(x)− 1

2σ 2 ‖x‖2.We decompose
the partial derivatives of U as follow:

∂xi U (x) =
∑

j∈�i

S(x, i, j)

with sets �i = { j ∈ {1, 2, . . . , N } : A j,i �= 0} and

S(x, i, j) =
(

A[ j,i]e〈A[ j,:],x〉

1+ e〈A[ j,:],x〉 − y j A[ j,i]

)
.

Then, for all i = 1, 2, . . . , p and any x ′ ∈ R
p, if J

∼ Unif(�k), the estimator [|�i |(S(x, i, J ) − S(x
′
, i, J )] +

∂xi U (x∗) + σ−2xi is unbiased for ∂xi �(x). Notice that the
partial derivative of S(x, k, j) is bounded:

∂xi (S(x, k, j)) = A[ j,k]A[ j,i]e〈A[ j,:],x〉
(
1+ e〈A[ j,:],x〉)2

≤ 1

4
A[ j,k]A[ j,i],

which means that for i = 1, 2, . . . , d

|S(x, i, j) − S(x ′, i, j)| ≤ Ci‖x − x ′‖p, p ≥ 1,

j ∈ �i , x, x ′ ∈ R
d ,

with

Ck = 1

4
max

j=1,...,N
|A[ j,k]| ‖A j,:‖2.

Then given an initial position (x, v) ∈ E , tuning parame-
ter x ′ and for any t ≥ 0, write (x(t), v(t)) = ϕ(t, x, v) with
i ∈ α(x, v) :

λ̃i (x(t), v(t))

=
(
vi

(
∂xi U (x ′) + σ−2xi (t) + |�i |(S(x(t), i, j) − S(x ′, i, j))

))+

≤ (vi (∂xi U (x ′) + σ−2(xi + vi t)))
+ + |vi ||�i |(|S(x(t), i, j) − S(x, i, j)| + |S(x, i, j) − S(x ′, i, j)|)

≤ (vi (∂xi U (x ′) + σ−2(xi + vi t))
+

+ |vi ||�i |Ci
(
t‖v‖p + ‖x − x ′‖p

)
.

Thus we set

λi (t, x, v) = vi (ai (x, v) + bi (x, v)t)

where ai (x, v) = (vi (∂iU (x ′)+σ−2xi ))
++Ci |�i ||vi |‖x −

x ′‖p and bi (x, v) = |vi |Ci |�i |‖v‖p + v2i σ−2. We choose x ′
to be the posterior mode of exp(−�), which in this case is
unique and easily found with the Newton’s method since the
function exp(−�) is convex. Given an initial position (x, v),
suppose the particle j �= i gets frozen at time τ ≥ 0. Then for
t ≥ τ we have that ‖ ∫ t

0 v(t)dt‖p = τ‖v‖p + (t −τ)‖v′‖p ≤
t‖v‖p, with v′ = v[ j : 0]. This implies that the Poisson times
drawnbefore the j th coordinate gets stuck are still valid upper
bounds after time τ . The same argument follows easily for
n ≥ 1 coordinates getting stuck at 0.

E.2 Spatially structured sparsity

For this application, we use the thinning scheme as presented
in Appendix D.2.3. The bounding rates are of the form

λ̄i (t, x(t0), v(t0)) = (c + vi (t0)∂xi �(x(t0))
+ (E.1)

for t ∈ [0,
]with
 = 1/c. To see this, define the Lipschitz
growth bound Lx,v,
 as

P( sup
0<t<


1

t
|Vi (t)∂xi �(X(t))| ≤ Lx,


| X(0) = 0, V (0) = v) = 1, i = 1, 2, . . . , d,

which gives an explicit expression for c in Eq. (E.1) as

c − L

 = 0 ⇒ 
 = 1/c,

such that the inequality (D.5) holds.With L
 = supx Lx,v,
,
in this application we have that

L
 = sup
v,t

|∂t∂xi �(x + tv)| = c2 + 8c1 + 1/σ 2

with c1, c2 defined in Sect. 4.2. With this given choice, in
the simulations of Sect. 4.2, the ratio between the accepted
reflection times and the proposed reflection times was 0.357.
Here we used the local implementation of the Sticky Zig-
Zag given by Appendix D.2.2 (with sets Ai = i for all i) in
conjunction with the sparse algorithm as in Remark D.1.
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E.3 Sparse precisionmatrix

By write �(x)
⊗p

i=1

⊗i
j=1(dxi, j + 1

κ
δ0(dxi, j )1(i �= j)) and

we have that

∂xi, j �(x) = (Y Y ′)(i,:) X(:, j)

+γi, j (xi, j − ci, j ) − 1(i= j)

(
N

xi, j

)
. (E.2)

Note that, for any initial position and velocity (x, v), the
reflection timesof theStickyZig-Zagwith ratesλi, j (φ(t, x, v)) =
(vi∂xi, j �(x + vt))+ can be computed exactly for the off-
diagonal elements and via a thinning scheme for the diagonal
elements where

λi,i (φ(t, x, v) ≤ λi,i (t, x, v) + λi,i (t, x, v), t > 0,∀i .

Here λi,i (t, x, v) = (vi,i (Y Y ′
i,:(X :,i + vt)+ γi,i (xi,i + vt −

ci,i )))
+ and λi,i (t, x, v) =

(
−vi,i

N
xi,i+vi,i t

)
and a Poisson

time form the bounding rate is simulated as min(τ1, τ2)
where τ1 ∼ Poiss(s → λi,i (s, x, v)) and τ2 ∼ Poiss(s →
λi,i (s, x, v)).

References

Andrieu, C., Livingstone, S.:. Peskun–Tierney ordering for Markov
chain and process Monte Carlo: beyond the reversible scenario
(2019). arXiv: 1906.06197

Bento, J., Ibrahimi, M., Montanari, A.: Learning networks of stochastic
differential equations (2010). arXiv: 1011.0415

Bierkens, J., Fearnhead, P., Roberts, G.: The Zig-Zag process and super-
efficient sampling for Bayesian analysis of big data. Ann. Stat.
47(3), 1288–1320 (2019)

Bierkens, J.,Grazzi, S.,Kamatani,K., Roberts,G.: The boomerang sam-
pler. In: International Conference on Machine Learning, PMLR,
pp. 908–918 (2020)

Bierkens, J., Grazzi, S., van der Meulen, F., Schauer, M.: A piece-
wise deterministicMonte Carlo method for diffusion bridges. Stat.
Comput. 31(3), 1–21 (2021)

Bierkens, J., Roberts, G.O., Zitt, P.-A.: Ergodicity of the zigzag process.
Ann. Appl. Probab. 29(4), 2266–2301 (2019)

Bouchard-Côtè, A., Vollmer, S.J., Doucet, A.: The bouncy particle sam-
pler: a nonreversible rejection-free Markov chain Monte Carlo
method. J. Am. Stat. Assoc. 113(522), 855–867 (2018)

Chevallier, A., Fearnhead, P., Sutton, M.: Reversible jump PDMP sam-
plers for variable selection (2020). arXiv: 2010.11771

Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: MCMC methods
for functions: modifying old algorithms to make them faster. Stat.
Sci. 28, 424–446 (2013)

Davis, M.H.A.: Markov models and optimization. In: Monographs on
Statistics and Applied Probability, vol. 49. Chapman & Hall, Lon-
don (1993)

Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte
Carlo. Phys. Lett. B 195(2), 216–222 (1987)

George, E.I., McCulloch, R.E.: Variable selection via Gibbs sampling.
J. Am. Stat. Assoc. 88(423), 881–889 (1993)

Grazzi, S., Schauer, M.: Boid animation. https://youtu.be/
O1VoURPwVLI (2021)

Green, P.J.: Reversible jump Markov chain Monte Carlo computa-
tion and Bayesian model determination. Biometrika 82, 711–732
(1995)

Green, P.J., Hastie, D.I.: Reversible jump MCMC. Genetics 155(3),
1391–1403 (2009)

Griffin, J.E., Brown, P.J.: Bayesian global-local shrinkage methods for
regularisation in the high dimension linearmodel. Chemom. Intell.
Lab. Syst. 210, 104255 (2021)

Guan, Y., Stephens, M.: Bayesian variable selection regression for
genome-wide association studies and other large-scale problems.
Ann. Appl. Stat. 5(3), 1780–1815 (2011)

Ishwaran, H., Rao, J.S.: Spike and slab variable selection: frequentist
and Bayesian strategies. Ann. Stat. 33(2), 730–773 (2005)

JuliaCon: 2020 by Jesse Bettencourt. JuliaCon 2020—Boids: Danc-
ing with friends and enemies. https://www.youtube.com/watch?
v=8gS6wejsGsY (2020)

Liang, X., Livingstone, S., Griffin, J.: Adaptive random neighbour-
hood informed Markov chain Monte Carlo for high-dimensional
Bayesian variable Selection. arXiv:2110.11747 (2021)

Liggett, T.M.: Continuous timeMarkov processes. In: Graduate Studies
in Mathematics, vol. 113. American Mathematical Society, Prov-
idence, RI (2010)

Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes II:
continuous-timeprocesses and sampled chains.Adv.Appl. Probab.
25(3), 487–517 (1993)

Mitchell, T.J., Beauchamp, J.J.: Bayesian variable selection in linear
regression. J. Am. Stat. Assoc. 83(404), 1023–1032 (1988)

Neal,R.M., et al.:MCMCusingHamiltonian dynamics.Handb.Markov
Chain Monte Carlo 2(11), 2 (2011)

Polson, N.G., Scott, J.G., Windle, J.: Bayesian inference for logistic
models using Pòlya- Gamma latent variables. J. Am. Stat. Assoc.
108(504), 1339–1349 (2013)

Ray, K., Szabo, B., Clara, G.:Spike and slab variational Bayes for high
dimensional logistic regression (2020). arXiv: 2010.11665

Reynolds, C. W.: Flocks, herds and schools: a distributed behavioral
model. In: Association for Computing Machinery (1987)

Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Mar-
tingales: Volume 2, Itô calculus. vol. 2. Cambridge University
Press (2000)

Rogers, L., Williams, D.: Diffusions, Markov processes, and martin-
gales: foundations. In: Cambridge Mathematical Library, vol. 1.
Cambridge University Press (2000)

Schauer, M., Grazzi, S.: mschauer/ZigZagBoomerang.jl: v0.6.0. Ver-
sion v0.6.0. https://doi.org/10.5281/zenodo.4601534 (2021)

Shi, W., Ghosal, S., Martin, R.: Bayesian estimation of sparse precision
matrices in the presence of Gaussian measurement error. Electron.
J. Stat. 15(2), 4545–4579 (2021)

Sutton, M., Fearnhead, P.: Concave-convex PDMP-based sampling.
arXiv:2112.12897 (2021)

Tibshirani, R., et al.: Sparsity and smoothness via the fused lasso. J. R.
Stat. Soc. Ser. B Stat. Methodol. 67(1), 91–108 (2005)

Zanella, G., Roberts, G.: Scalable importance tempering and Bayesian
variable selection. J. R. Stat. Soc. Ser. B Stat. Methodol. 81(3),
489–517 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1906.06197
http://arxiv.org/abs/1011.0415
http://arxiv.org/abs/2010.11771
https://youtu.be/O1VoURPwVLI
https://youtu.be/O1VoURPwVLI
https://www.youtube.com/watch?v=8gS6wejsGsY
https://www.youtube.com/watch?v=8gS6wejsGsY
http://arxiv.org/abs/2110.11747
http://arxiv.org/abs/2010.11665
https://doi.org/10.5281/zenodo.4601534
http://arxiv.org/abs/2112.12897

	Sticky PDMP samplers for sparse and local inference problems
	Abstract
	1 Introduction
	1.1 Overview
	1.2 Related literature
	1.3 Contributions
	1.4 Outline
	1.5 Notation

	2 Sticky PDMP samplers
	2.1 Construction of sticky PDMP samplers
	2.2 Sticky Zig-Zag sampler
	2.3 Theoretical aspects of the Sticky Zig-Zag sampler
	2.4 Extension: sticky Zig-Zag sampler with subsampling method

	3 Performance comparisons for Gaussian models
	3.1 Gibbs sampler
	3.2 Runtime analysis and mixing times

	4 Examples
	4.1 Learning networks of stochastic differential equations
	4.2 Spatially structured sparsity
	4.3 Logistic regression
	4.4 Estimating a sparse precision matrix

	5 Discussion
	5.1 Sticky Hamiltonian Monte Carlo
	5.2 Extensions

	Acknowledgements
	A. Details of the Sticky Zig-Zag sampler
	A.1 Construction
	A.2 Strong Markov property
	A.3 Feller property
	A.5 The extended generator of Zt
	A.5 Remaining part of the proof
	A.6 Ergodicity of the sticky Zig-Zag process
	A.7 Recurrence time of the sticky Zig-Zag to 0

	B. Other sticky PDMP samplers
	B.2 Sticky Bouncy Particle sampler
	B.2 Sticky Boomerang sampler

	C. Comparison between reversible jump PDMPs and sticky PDMPs
	C.1 Heuristics for the choice of p
	C.2 Limiting behaviour

	D. Details of Section 3
	D.1 Bayes factors for Gaussian models
	D.2 Simulating sticky PDMPs and sticky Zig-Zag samplers
	D.2.3 Computing Poisson times for PDMPs
	D.2.2 Local implementation:
	D.2.3 Fully local implementation:

	D.3 Runtimes of the algorithms
	D.3.1 Sticky Zig-Zag sampler
	D.3.2 Gibbs sampler

	D.4 Mixing

	E Details of Section 4
	E.1 Logistic regression
	E.2 Spatially structured sparsity
	E.3 Sparse precision matrix

	References




