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all obstacles during my research. Moreover, the support provided by my parents, both financially and
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Contrastive Learning of Visual Representations from Unlabeled Videos

Andrei Simion-Constantinescu  Osman Semih Kayhan (Supervisor) Jan C. van Gemert (Supervisor)

Delft University of Technology
Delft, The Netherlands
andrei.simion.c @ gmail.com

Abstract—This paper presents a novel self-supervised
approach of learning visual representations from videos
containing human actions. Our approach tackles the complex
problem of learning without the need of labeled data by
exploring to what extent the ideas successfully used for
images can be transferred, adapted and extended to videos
for action recognition purposes. We begin by giving a brief
introduction to the topic of learning features without having
access to a labeled corpora, providing the motivation of our
work. We continue with presenting the related research in
terms of contrastive learning, action recognition from videos
with 3D convolutions and self-supervised techniques for both
images and videos. Next, we formalize our approach with
regards to the sampling method, the types of spatial and
temporal transformations and the contrastive loss used. We
evaluate videoSimCLR proposed method in terms of linear
evaluation, fully fine-tuning and video retrieval. We also ex-
plore the extension of another contrastive learning approach
to videos, videoMOCO, and compare it to videoSimCLR by
means of linear evaluation.

Keywords — self-supervision, contrastive learning,
image-based, video-based, deep learning, neural net-
works, image classification, action recognition, video
retrieval, video embedding

1. Introduction

Convolutional Neural Networks (CNNs) achieve state-
of-the-art performance on numerous Computer Vision
tasks such as image classification [35], [53], [62], video
action recognition [4], [11], [52], object detection [36],
[48], [49], instance segmentation [7], [21], [29], etc.
CNNs are the standard backbone architecture for most of
Computer Vision domains since the revolution of AlexNet
[32]. However, their success is highly dependent on having
high-quality labeled data, which is not as largely available
as unlabeled data. To take advantage of the exiting un-
labeled corpora, self-supervised learning [64] techniques
are explored. The annotation becomes harder as the com-
plexity of the data increases, with a video is more time
consuming and expensive to label compared to an image.
This paper aims to tackle this issue by proposing a novel
way of feature learning from videos without the need of
human data annotation.

Self-supervised pre-training for learning visual
representation from images yields very promising results.
Methods such as MOCO [6] and simCLR [5] are at a
competitive level with the fully supervised counterpart.

Delft University of Technology
Delft, The Netherlands
o.s.kayhan @ tudelft.nl

Delft University of Technology
Delft, The Netherlands
Jj.c.vanGemert@ tudelft.nl

Compared to images, videos introduce both the temporal
dimension and additional modalities such as speech or
audio. Cross-modal supervision takes advantage of the
audio-visual relation in videos, proposing multi-modal
self-supervision schemes [1], [39], [40], [45], [47].
This paper does not focus on the multi-modal learning,
but uses a single modality, namely RGB values. We
follow another general trend of adapting successful
self-supervised ideas from image domain to videos.

Self-supervised video feature learning from RGB
flow includes methods such as VideoGAN [56], Video
colorization [57], Space-Time Cubic Puzzles [28], Arrow
of Time [59], Temporal Order Verification [38], 3D
RotNets [24], etc. All of this techniques are using loss
functions from supervised learning domain, since they
are creating pseudo-labels that can act as normal data
annotations. Contrastive learning used for self-supervision
is focused on teaching a model to promotes the similarity
between relevant data points and to distinguish them from
a bunch of distractors. Contrastive learning based methods
for videos exists, with Dense Predictive Coding [17] and
Temporally Coherent Embeddings [30] as a couple of
examples, but this approaches are still indirectly enforc-
ing the similarity by tasks such as predicting the future
frames or selecting the temporally adjacent ones. Our
paper presents a novel approach of adapting a couple
of contrastive learning ideas from images to videos by
directly enforcing the similarity between videos. Consider
Figure 1, in which an overview of our videoSimCLR
method is presented: having two clips we apply a random
temporal transformation on each, followed by a random
spatial transformation. We then use a contrastive loss to
enforce the similarity between the two augmented versions
of each clip and to promote the dissimilarity between the
versions generated from different clips.

Our work brings the following contributions. First, we
extend three state-of-the-art image based methods [5], [6],
[20] for videos as videoSimCLR, videoMOCO V1 and
V2. This contrastive learning methods from images are
used on videos by applying random spatial transforma-
tions to the frames of two action recognition datasets,
namely UCF101 [51] and HMDBS51 [33]. Second, we
propose adding novel temporal transformations to learn
better video and motion representations. We experiment
with multiple types of temporal transformations such
as Shifting, Frame Dropping, Reversing and Shuffling.
We find out that temporal transformations alone are not
enough, with the combination of both temporal transfor-
mations and spatial ones being essential for good results.
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Figure 1: Overview of videoSimCLR method. Starting from two original clips sampled from two different videos, we apply a random
temporal transformation on each clip to generate two shifted versions. On each of the shifted versions we further apply a random
spatial transformation. At the end, we promote the attraction between the augmented versions from the same clips and we force the
ones from different clips to repel each other. Videos taken from UCFI101 action classes of Soccer Juggling and Floor Gymnastics.

Having the right combination, we obtain significantly
better performance than fully supervised training. Third,
we show the learnt representations with a video retrieval
task and compare with fully supervised representations.
The performance of our methods, videoSimCLR and
videoMOCO V1/V2, is measured using the linear eval-
uation protocol, with the best videoSimCLR model be-
ing fine-tuned for comparison purposes with other self-
supervised video techniques.

2. Related Work

Action recognition with 3D Residual Network The
choice of the backbone architecture used to encode the
data to a latent space is important. 3D CNNs [4], [18],
[23], [54] are capable to perform the convolution operation
on the whole video volume. Motivated by the ability of
directly extracting spatio-temporal features, an extension
of the 2D residual networks [22] is commonly employed
for action recognition when using only the RGB stream.
3D ResNets [19] are proposed in various numbers of
layers, from 18 to 200. In our work, we have employed a
3D Resnetl8 as our backbone architecture due to training
being on small datasets to prevent overfitting. More back-
ground information about CNNs can be found in Chapter
2, The Basics of Deep Learning. The subject of video
action classification is presented in detail on Chapter 3,
Action recognition.

Contrastive learning. Contrastive learning is a type of
deep metric learning [25] which aims to learn a function
for measuring the similarity between a pair of data points.
The function used to distinguish between similar and
dissimilar data examples is called a contrastive loss. There
are several contrastive loss functions: Siamese loss [16],
Triplet loss [60], Multi-class N-pair loss [50], Supervised
NT-Xent loss [27], etc. Self-supervised learning [64] is a
type of unsupervised learning which uses a pretext task,
also called self-supervised task, to generate pseudo-labels
from unlabeled data. By optimizing to solve a pretext task
which exploits the intrinsic relationship existent in the
data, visual representations can be learned. The optimiza-
tion can be done using a contrastive loss. Our work uses
contrastive learning as a way of creating pseudo-labels
without defining an explicit pretext task.

Self-supervised image features learning. The self-
supervised techniques for image feature learning can be
classified based on the type of the pretext task. The

generative based methods has the main goal to create
realistic images, meaningfully visual representations be-
ing learned as a side effect: Denoising auto-encoders
[55], Generative Adversarial Networks [14], Bidirectional
GANs [9], Context Encoders [46], Image colorization
[63]. The next class of methods exploits the relationship
between patches such as predicting the relative position
[8], solving Jigsaw puzzles [42] and learning to count
features [43]. Another handcrafted pretext task category
is geometric transformation based with Exemplar CNNs
[10] or predicting the image rotation [13]. Finally, con-
trastive losses are used for the next group of techniques
with Contrastive Predictive Coding [44] being inspired
by the Noise Contrastive Estimation used in learning
word embeddings [15]. Our work is inspired by two
state-of-the-art contrastive based self-supervised meth-
ods, namely Momentum Contrast (MOCO) [20] and a
Simple Framework for Contrastive Learning of Visual
Representations (simCLR) [5]. SimCLR uses contrastive
learning to maximize agreement between 2 augmented
versions of the same image. In MOCO V1 the number
of negative examples is dependent on the queue size,
where in SimCLR is related to the batch size. A recent
study, MOCO V2 [6], integrates a couple of SimCLR
ideas, such as stronger data augmentation and the MLP
projection head, into the MOCO framework showing
further improvements to the quality of the learned fea-
tures. This paper takes simCLR and MOCO as starting
points for our proposed methods, vidleoMOCO V1/V2
and videoSimCLR. A detailed review of self-supervised
learning from images can be analyzed in Chapter 4.1,
Self-supervised learning.

Self-supervised video features learning. When
looking at approaches for self-supervised video feature
learning, many methods are extending the image based
version to videos. Similar types of pretext tasks are
used: generative based with VideoGAN [56] and Video
colorization [57], relationship between frames by solving
Space-Time Cubic Puzzles [28], tracking the movement
of an object [58], verifying [38] or predicting [34] the
frame order, identifying odd-one clip [12] and predicting
the Arrow of Time [59], geometric transformation based
with 3D rotation networks [24]. More recently, contrastive
learning is used for video features learning as well, with
Dense Predictive Coding [17] by recurrently predicting
future representations and Temporally Coherent Embed-
dings [30] by directly enforcing temporal coherency in
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the embedding space. Following this general trend of
extending the image-based methods to video and given the
better results of the contrastive learning when compared
to handcrafted pretext tasks, we have chosen to explore
to what extent SImCLR and MOCO ideas can be applied
on videos. The topic of video self-supervised learning is
detailed in Chapter 4.2, Self-supervised learning.

3. Method

The pipeline of our videoSimCLR method can be
analysed in Figure 2. Starting from an N-frames video,
we sample a clip with a fixed number of frames. On the
selected clip we apply two random temporal transforma-
tions to generate two versions of it: clip;, and clip;. A
random spatial transformation is then applied on each
version of the selected clip to make clip; and clip;. Finally,
clip; and clip; are encoded with a function F' composed
of a sequence of CNNs followed by one or more fully
connected layers (FC). A contrastive loss is used on the
encoded versions of the augmented clips, F'(clip;) and
F(@), to promote the similarity between them.

Sampling method. Starting from videos with different
number of frames, we need a sampling technique to gener-
ate clips with the same number of frames. As the sampling
method, a temporal random crop have been used. We
select m-consecutive frames starting from a random index.
If the clip is shorter than m-frames, we loop until getting
the desired number of frames. In the rest of the paper, we
future refer this sampling method as Random m.

Temporal transformation. For generating two dif-
ferent clips from the sampled m-frames clip, we apply
two random temporal transformations. We have 4 dif-
ferent transformations: temporal shifting, frame dropping,
reversing the order of frames and shuffling the frames.

For the Temporal shift, we start with the m-frames
clip and shift it using the original N —frames video with
a random step s in a random direction, either backward or
forward. We will refer it as RandomShift [-s, s]. A small
example of the temporal shifting can be seen in Figure 3,
with N =12, m =4 and s = 4.

When implementing the Temporal Drop, starting with
a 2m-frames video, we drop either the even or the odd
index frames based on a random decision.

At the Temporal reverse, we simply take the original
clip to be one of the versions and we reverse the frame
order to create the other version, which one is clip; or
clip; being randomly determined.

The Temporal Shuffle is creating the two versions of
the m-frames clip based on two random permutations of
the frame indexes.

Spatial transformation. We apply a sequence of spa-
tial transformations on the frame level to obtain a different
correlated view. The spatial transformation pipeline starts
with a random cropping of the original frame followed by
resizing to the desired frame size, continues with a random
horizontal flip, some random color distortions such as
color jittering and random grayscaling and finishes with
a random Gaussian blur.

Base encoder F. For projecting the augmented clips
to a latent space, we use a CNN architecture with 3D
kernels, 3D Resnetl8. Let C' be the encoding function

describing 3D Resnet18. Applied on clip;, the output will
be h = C(clip;), h € R52. From the CNN projec-
tion, we further propagate the data through a Multi-layer
perceptron (MLP) with 2 hidden layers and ReLU [41]
non-linearity in between. The final output is F'(clip;) =
MLP(h) € R?56,

Contrastive loss. Let F(clip;) be p; and F(clip;) be
p;. The contrastive loss function used for videoSimCLR
(1) is inspired by the normalized temperature-scaled cross
entropy loss (NT-Xent) used in simCLR [5]:

exp(sim(ps, p;)/7)

S oo Lz exp(sim(p;, pr) /7)

where sim is the cosine similarity function, 7 is the
temperature parameter that controls the concentration level
of the distribution [61] and T, is {0,1} with 1 if
k # 4. For each batch of videos, positive and negative
pairs have been created. Given a batch of size N, 2N
augmented clips are generated forming /N positive pairs.
For each positive pair (p;,p;), 2(N — 1) negative pairs
are made from the rest of the augmented clips from
the batch. NT-Xent loss promotes the similarity between
two augmented version of the same clip, enforcing the
augmented versions of the other clips to be dissimilar to
it.

L;;=—log (1

videoMOCO. Another way of viewing the contrastive
learning task is as a dictionary look-up problem. Fol-
lowing MOCO [20] approach from images, a similar
contrastive loss called InfoNCE (2) is adopted in our work:

£ o OISy, k) /) o

Yoo exp(sim(py, ki)/7)
where sim is the similarity measured by dot product
and k; is the positive key of the dictionary that
pq matches. The dictionary is a queue of size K
which stores the negative examples k;. There are
two encoders, the query encoder and the momen-
tum encoder: p, is query_encoder(clip,) and ky is

momentum_encoder(clipq), with clip, being an aug-
mented version of clip,. The dictionary size needs to be
adapted to the length of our datasets to limit the number
of positives examples from the queue. Both the query
encoder and momentum encoder are 3D Resnet18 based,
with videoMOCO V1 using the CNN projection of the
base encoder F followed by only one fully-connected
layer. For videoMOCO V2, the same base encoder F as
the one used by videoSimCLR is employed. In regards to
the data transformation, videoMOCO V2 uses the same
stronger spatial augmentation applied for videoSimCLR.

N-frames video 16-frames clip

n Spatial = F =
-ﬂ -ﬂ [clip] o, (1Bt -2 L@
Temporal
transform

.’ —SAMPLE—>
- Spatial F
w W e

Figure 2: videoSimCLR simplified pipeline which starts with
sampling a 16 frame clip from an N-frame video. A sequence
of a random temporal transformation and a spatial random
transformation is applied to generate two modified versions of
the sampled clip, versions which are encoded using CNNs layers
followed by FC ones. At the end, the agreement between F(clip,)
and F(clip;) is enforced via a contrastive loss.

Maximize
agreement



Figure 3: Temporal random shift example on a video of 12-frames, with a sampled clip of 4-frames using a shift step of 4. Starting
with a 12-frame video, the original clip is sampled by taking the frames from indexes 5 to 8. Using a random temporal step of 4
[frames, we shift the original clip in either backward or forward. clip, is generated by shifting backward with 1 frame (Shift -1) and
clip; by shifting forward with 3 frames (Shift +3). After that, on both versions of the original clip a spatial random transformation
is applied to generate clip; and clip;. The example video is from UCFI0I action class of Table Tennis Shot.

Evaluating the quality of the learned features. The
quality of the learned features is measured by following
the linear evaluation protocol, which is the most widely
used method for evaluating the learned representations
from images [2], [31]. To have a fair comparison with
other self-supervised video based techniques, since most
of them are reporting their results after fully fine-tuning,
we need to fine-tune the whole network starting from our
pre-trained weights. For better understanding the learned
representation and visualize our results, we also perform
a Nearest Neighbour video retrieval task [3]. Based on
the R?%0 feature vector obtained for each video using
videoSimCLR, the nearest neighbors of a query video are
retrieved using cosine similarity.

4. Experiments

The models are pretrained on two popular yet small ac-
tion recognition datasets, UCF101 and HMDBS51, without
using any labels. HMDBS51 [33] is divided into 51 action
categories with a minimum of 100 clips per category,
having 3570 training and 1530 testing clips. UCF101 [51]
is a larger action recognition dataset composed of 101 ac-
tions divided into 5 types: human-object interaction, body-
motion only, human-human interaction, playing musical
instruments and sports. It has 13320 videos split in 9537
training and 3783 testing clips.

All the following experiments are done by using 3D
Resnet18 [18] architecture with only RGB features. Fol-
lowing the linear evaluation protocol, first, the pre-trained
weights are used to initialize the 3D ResNetl8 architec-
ture. Afterwards, the weights are frozen to train a linear
classifier on the top of the learned representations by using
the training set. The classifier performance is evaluated by
using the Top-1 accuracy (Acc@1) on the testing set. To
note that, this protocol is followed for every training setup
of the paper, apart from when comparing to other self-
supervised video based techniques which requires fine-
tuning the whole network.

For both self supervised pre-training and linear eval-
uation, we resize the video frames from 320x240 to the
standard size of 224x224. The linear classifier is a 12-
regularized multinomial logistic regression [5]. For pre-
training, we use a batch size of 128 and we decay the
learning rate using cosine decay schedule [37]. All of the

other configurations are chosen based on an ablation study
presented in Section 5.

Pre-training Pre-training  UCF HMDB
method on Acc@] Acc@l]
videoSimCLR Temp. Shift ~ UCF 44.4% 21.8%
videoSimCLR Temp. Shift HMDB 35.9% 20.1%
videoMOCO V1 K=8192 UCF 40.3% 19.7%
videoMOCO V2 K=8192 UCF 41.4% 20.5%
videoMOCO V1 K=1024 HMDB 32.6% 16.7%
videoMOCO V2 K=1024 HMDB 34.2% 18.4%
Random init - 20.6% 10.2%
Supervised - 37.4% 14.7%

Table 1: Linear evaluation results for videoSimCLR, video-
MOCO VI and V2 compared to supervised pre-training or
random weights. Meaningful features for action recognition are
learned without using the labels, the size of the pre-training
dataset being important for the quality of the learned visual
representations. videoMOCO uses a different queue size K
dependant on the size of the pre-training dataset. videoMOCO
V2 integrates stronger data augmentation and a projection head
with two fully-connected layers into the videoMOCO V1 frame-
work. The three proposed pre-training methods are superior to
supervised pre-training by using the labels.

4.1. Evaluating videoSimCLR and videoMOCO
learned visual representations

We assess the quality of the learned feature when
pre-training on HMDB51 and UCF101 using our first
proposed self-supervised method, videoSimCR. We also
evaluate our additional method, videoMOCO, in both V1
and V2. The number of epochs for pre-training was 100
for videoSimCLR and 200 for videoMOCO V1/V2. In
Table 1, all of the results are summarized, with the best
Top-1 linear evaluation accuracy being for videoSimCLR
pre-trained on UCF101. The cross testing is used to further
show the generalization capabilities of our models. Similar
to when applied to images, vidleoMOCO V2 performs
better compared to V1. When pre-trained on UCF101,
videoMOCO V2 gives a 1.1% improvement tested on
UCF101 and 0.8% on HMDB51. With HMDBS51 as pre-
training dataset, vidleoMOCO V2 has 1.6% accuracy im-
provment on UCF101 and 1.7% on HMDB51. With both
videoSimCLR and videoMOCO, pre-training on the larger
dataset, namely UCF101, is better when evaluating on the
two datasets.
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videoSimCLR

TR

Figure 4: Examples of Nearest Neighbor video clip retrieval on UCF101 testing set. The leftmost column shows 3 frames from each
of the query clip. Given the same query clips and based on both videoSimCLR and Kinetics video clip generated embeddings, the 3
nearest neighbors according to cosine distance are retrieved. The last 3 columns contain 3 frames from each of the retrieved clip.
The top rows are using videoSimCLR generated embeddings and the bottom rows Kinetics ones. The first rows of both methods
show that videoSimCLR is capable on surpassing Kinetics pre-trained, with the retrieved video of the first being from the right Baby
Crawling class and the ones from the second having only a similar class to Crawling, Rock Climbing. The other rows shows that
overall Kinetics pre-trained generated embeddings are better, but the videoSimCLR disagreements in terms of class are influenced
by other relevant semantic cues, with few exceptions in the third row.

Moreover, our pre-trained weights generated by both self-
supervised methods, videoSimCLR and videoMOCO, are
an excellent starting point for training a classifier. When
compared to random initialization and supervised pre-
training, our methods surpass with more than 20% on
UCF101 and 10% on HMDB the first initialization method
and with over 4% on UCF101 and 5% on HMDBS5I1
the second pre-training technique. For small datasets like
UCF101 and HMDB51, using a self-supervised method is
better than fully-supervised.

4.2, Comparison with other

methods

self-supervised

For comparing with other existing self-supervised
methods, we fine-tune the whole network, not only the
classification layer. The fine-tuning of our best videoSim-
CLR pre-trained model is done for 150 epochs, with
different learning rate for the CNN part and the classifier
part. Following the approach from DPC [17], the learning
rate for the pre-trained network, CNN part, is 1/10 of the
learning rate for the classifier part. In Table 2, we split the
results of the other self-supervised methods based on the
criteria of using extra data for pre-training. The best Top 1
accuracy after fine-tuning the whole network are obtained
using Kinetics as pre-training dataset, all of the methods
from the extra data part falling into this category. When
self-supervised pre-trained on Kinetics, previous methods
achieve accuracies between 60% and 70% on UCF101.

Our method has promising results in the non ex-
tra data category, but with lower accuracy in compari-
son to the current state-of-the-art when pre-training on
UCF101. Nonetheless, fine-tuning 3D Resnetl8 from
scratch starting with random weights is inferior to us-
ing our pre-trained weights. Note that DPC uses 40
frames from each video, compared to Random16 for our

videoSimCLR. Moreover, TCE has a 2D Resnet architec-
ture which generates embeddings for each frame, instead
of making one feature vector for the whole videos as our
videoSimCLR approach.

. Extra UCF HMDB
Method Architecture data Acc Ace
3D RotNet [24] 3D Resnetl8 v 62.9% -
3D Cubic Puzzles [28] 3D Resnetl8 v 65.8%  33.7%
DPC [17] 3D Resnetl8 v 682% 34.5%
Shuffle & Learn [38] CaffeNet X 50.2% 18.1%
OPN [34] VGG M2048 X 51.9%  23.8%
VideoGAN [56] C3D X 521% -
AoT [59] AlexNet X 55.3% -
videoSimCLR (ours) 3D Resnetl8 X 56.7% 28.6%
DPC [17] 3D Resnetl8 X 60.6% -
TCE [30] 2D Resnet50 X 68.2% 31.7%
Random init [26] 3D Resnetl8 - 38.6% 16.1%
Kinetics [19] 3D Resnetl8 - 84.4% 56.4%

Table 2: videoSimCLR fine-tuning results compared to other self-
supervised techniques. All of the methods fine-tune the whole
network. The best results are achieved when using extra data
for pre-training, namely the Kinetics dataset. Our videoSim-
CLR method performs better compared to a couple of others
self-supervised methods from the same no extra-data category,
but it is still relatively behind to the current state-of-the-art.
videoSimCLR gives significant improvement over fine-tuning by
starting with a random initialization. The results of fine-tuning
from Kinetics supervised pre-trained weights show that there is
still a gap between unsupervised and supervised approaches.

4.3. Qualitative evaluation of videoSimCLR by
video retrieval visualization

To further analyze the quality of the learned repre-
sentation, we visualize the 3 nearest neighbors according
to cosine similarity of three query clips from UCF101
testing set. The 256-embeddings are generated by feeding
16 frames to a pre-trained 3D Resnetl18 network, either



unsupervised pre-trained using videoSimCLR on UCF101
training set or supervised pre-trained on Kinetics.

As can be seen in Figure 4, in most of the cases
the semantic of the human action is well captured with
the retrieved clips being semantically diverse (e.g cam-
era viewpoint, different background) when compared to
the query clip. When looking at the first row for each
method, with the query clip of Baby Crawling, we ob-
serve videoSimCLR capturing better the semantic of the
action by retrieving a completely different clip in terms
of background and camera view-point, but with the same
class. However, the other two rows show the superior-
ity of Kinetics pre-trained. The mistakes at class level
for videoSimCLR retrieved clips are showing promis-
ing semantic information such as up and down move-
ment (videoSimCLR second row) and one to one com-
bat (videoSimCLR third row). The action classes of
videoSimCLR retrieved clips from a query clip tend
to disagree more compared to Kinetics retrieved clips.
Nevertheless, even for the videoSimCLR retrieved clips
with a different class as the one of the query clip, the
semantics of the retrieved clip and query are similar. The
scene appearance impact is minimal, with few exception
in videoSimCLR third row having the query clip from
a boxing fight with the background floor of blue color:
the second retrieved clip showing a person jumping into
a pool is only similar in terms of the blue background
and the third retrieved video has a news tickers which is
confused with the score ticker from the boxing video.

5. Ablation study

To find the best configuration, we run an extensive
ablation study presented from 5.1 to 5.5 using a batch size
of 256 with smaller frame sizes of 56x56, pre-training all
of the models for 100 epochs.

5.1. What is the effect of spatial transformation
on learning action representations?

There are two possibilities when applying a random
spatial transformation to a video: either keep the same
random transformation for the whole video or apply a
different transformation on each frame of the video. The
sequence of spatial transformations contains a crop of
random size € [0.08,1] uniform in area, that applied
different for each frame could make it impossible for the
model to encode relevant information in regards to the
action from the video.

To test this assumption, we run the first experiment
on UCF101 using Random 8 and Random 16 as sampling
techniques. From Table 3 we can observe significant ac-
curacy improvements when using more frames per video,
with Random 16 being the best choice for both supervised
pre-training approaches, the one using UCF101 labels and
the other taking the Kinetics pre-trained model. This ac-
curacy improvement does not hold when using videoSim-
CLR with a different spatial transformation on each frame
for pre-training, Random 8 and 16 performing almost the
same. In all of our next experiments we are keeping the
same spatial random transformation for each video, since
we showed the clear superiority of this approach.

Sampling Pretraining UCF101 UCF101
Method Method Acc@] Frame Acc@] Chunk

Supervised UCF 28.8% 28.8%
Random 8 videoSimCLR 22.6% 29.5%
Kinetics 700 29.4% 35.1%
Supervised UCF 29.4% 29.4%

Random 16 videoSimCLR 22.1% 32%
Kinetics 700 43.3% 43.3%

Table 3: Different pre-training methods using 8 or 16 frames
from a random frame index with a size of 56x56. Top-1 accuracy
is changing from Different column to Same column only for
videoSimCLR, since there are two ways of applying a random
spatial transformation on a video: Frame-way with a different
transformation on each frame and Chunk-way with the same
transformation for all of the frames inside a video. videoSimCLR
same is the best method for both sampling techniques, showing
significant improvement when using more frames per video.

5.2. Is videoSimCLR capable of learning visual
features from a different smaller dataset?

In the previous experiment, we used videoSimCLR
pre-training method with only random spatial transfor-
mations. Having promising results when pre-training on
UCF101 keeping the same spatial transformation for all
of the frames of each video, we further investigate the
capabilities of the method when pre-training on a smaller
dataset, HMDBS51. In Figure 5, we can observe the same
pattern for both datasets used for pre-training. The models
are pre-trained on the training set of one of the two
datasets and evaluated using the testing set of the dataset
used for pre-training. videoSimCLR with only spatial ran-
dom transformation is better than supervised pre-training
on both datasets, but still is not able to achieve the same
performance as the Kinetics pre-trained. We will stop
comparing with Kinetics for the next experiments, since
it will not provide a fair comparison given the massive
size difference when compared to our training datasets,
UCF101 and HMDBS51. Moreover, in all of our next
experiments will be be using Random 16 as sampling
method, since compared to Random 8 it produced much
better results.

--+-- UCF random 8
—e— UCF random 16
--+- HMDB random 8
—e— HMDB random 16

N
o

w
[

w
o

Top 1 accuracy
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videoSimCLR
Pretraining method

Supervised Kinetics 700

Figure 5: Comparison of 3 pre-training methods on 2 action
recognition datasets, HMDBS51 and UCFI101. For each dataset,
two sampling techniques are used with 8 and 16 frames per
video. The performance is reported using the linear evaluation
protocol, videoSimCLR surpassing the supervised pre-training
on both datasets. Experiment using 56x56 as frame size.
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5.3. Does adding random temporal shifting before
the spatial transformation helps?

The previous experiments were only using random
spatial transformations, without having any temporal
transformation applied on the sampled clip. Applying the
spatial transformations on different versions in the tem-
poral axis of the sampled clip should force the model to
better learn the temporal component of the action. To test
this hypothesis, we start by adding temporal shifting as a
way of increasing how much the models “’sees” from the
video without having the increase the number of frames
sampled from each video. As seen in Table 4, we tried a
number of shifting steps for the both datasets, with s = 4
being the best for HMDB and s = 8 for UCF. With the
right shift step, adding random temporal shifting before
the spatial transformation improves the performance for
both datasets.

Temporal Shift Type  UCF101 Acc@1 HMDBS1 Acc@1

None 32% 13.7%
Random [-4, 4] 31.6% 14.7 %
Random [-8, 8] 32.8% 13.5%

Random [-16, 16] 31.3% 11.8%

Table 4: Analysis of the impact of adding random temporal
shifting before the spatial transformation. The None-row is
only with the random spatial transformation. Several shifting
steps are tested, showing that the size of the shift needs to be
correlated with the dataset. The Top-1 accuracy improves when
using temporal shifting when the step size is set accordingly.
Experiment using 56x56 as frame size.
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Figure 6: The impact overview of using different random tem-
poral transformations before applying the spatial transforma-
tion. In most of the cases, adding temporal transformation
improves the performance, with similar relative differences on
both UCF101 and HMDBS51, an exception being for the Tem-
poral Shuffle. The best improvement is obtained with Temporal
Shifting. Without applying the spatial transformation, even the
best temporal transformation (Only Shift) performs poorly. When
testing using the linear evaluation protocol, the pre-trained
weights learned by videoSimCLR are much better than randomly
initializing (Random Init) the network or using the weights from
supervised pre-training. Experiment using 56x56 as frame size.

5.4. What is the effect of adding other temporal
transformations?

With the improvements resulted from adding temporal
shifting before the spatial transformations, the question
of using other types of temporal transformation arises.
We run experiments for both UCF101 and HMDBS5I1
using other three temporal transformation types: Frame
Drop, Reverse and Shuffle. Figure 6 indicates the effect
of adding different types of temporal transformations be-
fore the random spatial transformation. To also validate
that the improvements come from the combination of
temporal and spatial transformation, we run another test
with only the best temporal transformation. Not using
the spatial transformation badly affects the performance,
the combination of the two being crucial for achieving
good results. With all of this results, we can conclude
that the best setup is Random Temporal Shifting of step 4
with Random Spatial Transformations for HMDBS51 and
Random Temporal Shifting of step 8 with Random Spatial
Transformations for UCF101.

5.5. How to modify MOCO dictionary size given
the length of our training datasets?

We run a couple of experiments extending another
self-supervised contrastive learning image based
method, namely MOCO. Different queue sizes were
tested dependant on the size of the pre-training
dataset, with K.{512,1024,2048} for HMDB51 and
K.{1024,4096,8192} for UCFI10l. Controlling the
size of the queue is important for both allowing more
negative samples to be stored and limiting the number
of positive examples from the dictionary. In Table 5, the
linear evaluation accuracy on UCF101 and HMDBS51 is
reported for all of the tested queue sizes. Choosing the
right queue size influences videoMOCO performance,
with the best results using K = 1024 for HMDB51
and K = 8192 for UCFI101l. The Top-1 accuracy is
comparable to pre-training in a supervised manner for
HMDBS51 and slightly lower for UCF101. Hoewever,
the overall performance of videoMOCO is lower when
compared to even our initial videoSimCLR model that
uses only random spatial transformation, without taking
into consideration the temporal dimension.

Queue size HMDB51 UCF101
K Acc@1 Acc@1
1024 - 24.9%
512 10.1% -
4096 - 25.4%
1024 12.1% -
8192 - 26.1%
2048 10.9% -

Table 5: videoMOCO V1 results when pre-training with different
queue sizes on HMDB51 (bottom half of each cell) and UCF101
(top half of each cell). The queue sizes K are chosen accroding
to the size of the pre-training dataset, ~3.5k for HMDB and
~9.5k for UCF. The Top-1 accuracy is on the same level as
supervised pre-training for HMDB (12%) and ~3% lower for
UCF (29.4%). For both datasets, videoMOCO VI performs
worst compared to videoSimCLR. Experiment using 56x56 as
frame size.



6. Conclusion

In this paper, the challenging task of learning visual
features from videos without the need of human anno-
tated data was tackled. We started with extending a self-
supervised contrastive based approach from images to
videos. This step involved applying only random spatial
transformations to the video frames of UCF101, having
the question of how to apply the spatial transforma-
tion on videos. From the initial version of our method,
videoSimCLR, we further explored the model capabilities
to learn from another smaller dataset, HMDBS51. After
that, naturally we addressed the hypothesis of generating
better visual features by using temporal information. A
variety of random temporal transformation were applied,
with the experiments leading to Temporal Shifting be-
ing the better choice, but only in combination with the
previous spatial transformations. To further increase the
importance of our work to the community, we proposed
a second self-supervised approach, vidleoMOCQO, in two
versions with the latter adding videoSimCLR ideas into
videoMOCO framework. The evaluation of the learned
features was conducted both quantitatively by reporting
Top-1 accuracy on both dataset using linear evaluation
protocol and fine-tuning and qualitatively by visualizing
a couple of video retrieval results.

Limitations. First, in terms of comparing with the
state-of-the-art, videoSimCLR has lower results that can
be attribute to the use of a smaller batch size given our
GPU memory limitations. The size of the batch determines
the number of negative pairs needed for the contrastive
loss, therefore a batch of 128 clips is probably not enough
to achieved state-of-the-art results. Moreover, the training
of our videoSimCLR and videoMOCO models is not done
on a very large scale action dataset like Kinetics, which
may improve the performance drastically. Secondly, look-
ing at the last row of videoSimCLR video clip retrieval
results from Figure 4, the second and the third closest
neighbor clips are showing that background information is
influencing the learned features without adding additional
value in regards to the action cues: the blue background
of the pool is similar to the blue floor of the ring (second
neighbor), the news ticker from the video of a man walk-
ing a dog is considered similar to the score ticker from
the boxing video (third neighbor). Finally, videoMOCO
comes with the dictionary size limitation adapted to the
length of our training datasets. This limitation in relevant,
since big dictionaries allow the storing of more negative
samples needed for the contrastive loss.
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The Basics of Deep Learning

Deep learning is an area of machine learning that uses Artificial Neural Networks (NN) [62] for
representational learning. Compared to the classic machine learning approach of designing feature
extraction methods, deep learning focuses on making a system to automatically extract features from
the raw input data. The learning process can be done either supervised or unsupervised. The most
common method is to learn from a labeled training set, which is the supervised case.

2.1. Feed-forward Networks

Feed-forward Networks are a type of NN in which the information flows from the input data x through
the intermediate layers to reach the output y, without any feedback connections [17]. Feed-forward
Networks are design to approximate some function f* to map the input to the output: y = f*(x). The
connections from the input to the output have learnable weights to encapsulate the information from
the training data. In this way, a mapping y = f(x, ) is defined with 8 being the learnable parameters.

The input data is fed through the network in the forward pass. A loss function is used to measure
the difference between the mapping f and f*. The parameters 6 are updated during the backward
pass based on an optimization criteria, given the loss function values on the training set.

2.1.1. Multi-layered perceptron

The most simple way of connecting the inputs to the outputs is directly by a series of weights, this
type of Feed-forward Network being called single-layered perceptron. If a number of hidden layers are
placed between the input and the output layer, a multi-layered perceptron (MLP) is obtained. The com-
putations can be described by a Directed Acyclic Graph (DAG) [18] as a chain of function compositions.
The depth of a MLP is given by the number of layers, with the example from Figure 2.1 having a depth
of 3: input, hidden and output layer. The network is drawn in both styles, the explicit expanded form
and the compact notation by using vector representations. Each layer consists of units called neurons,
which are connected to all the units from the previous layer. A MLP is also called a fully-connected
(FC) network.

2.1.2. Activation function

Let's take a look at the output of the previous MLP with one hidden layer, y = f(x) = T g(x, WT)+b.
If the function g that computes the output of hidden layer h is a linear function, f(x) = " WTx will be
a linear function as well. With this rigid limitation, f cannot approximate a non-linear function like the
binary XOR. To solve this problem, non-linear activation functions [7, 27, 47, 51] are used to compute
the hidden layer values.

The most trivial activation function is a binary step function based on a threshold value, but this limits
the output set to only two values. Sigmoid and Hyperbolic Tangent (Tanh) functions limit the output to
an interval: Sigmoid € [0,1] and Tanh € [—1,1]. Sigmoid activation function is generally used for
networks to output a probability, on which a threshold can be applied for binary classification purposes.
For a multinomial classification problem, a generalized version of Sigmoid exists, the Softmax activation
function. The most used function is the Rectified Linear Unit (ReLU) [51], which computes max(x, 0).

13
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Figure 2.1: Multi-layered perceptron example with a depth of 3 represented in two different styles. The learnable weights are
the matrix W describing the mapping from x to h and the vector w for the mapping from h to y. The network can be written as
y=wTh(x)+b=wTg(x,wT) + b, with b being the bias term. Figure courtesy of [17].

The problem with ReLU activation function comes from negative inputs when the neuron turns into zero,
affecting the optimization from the backward pass. Leaky RelL U [47] addresses this issue by replacing
the constant zero with a very small coefficient for the negative inputs.

The mathematical formulas for Sigmoid, Tanh, ReLU and Leaky ReLU as displayed in Equation 2.1.
The plots for all of this activation functions with an input x € [—10, 10] can be seen in Figure 2.2.

Sigmoid:  g(x) ! Tanh: g = S
igmoid: xX)=———— anh : X)) = ——
9 g 1+e™* g e* +e™* 2.1)
2.1
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Figure 2.2: The plots of four common used activation functions: Sigmoid, Hyperbolic Tangent (Tanh), Rectified Linear Unit (ReLU)
and Leaky ReLU. The graphs are made for an input x € [-10,10]. Tanh is similar to Sigmoid, but zero-centered. Leaky RelLU
is a modified version of ReLU resolving the problem of neurons being deactivated for negative values.

2.2. Optimization

The optimization during the backward pass involves minimizing or maximizing an objective/loss
function. Usually, for deep learning networks, the cross-entropy between the data distribution and the
model distribution is what needs to be optimized.

When dealing with multinomial classification, for the target t € {1,...,K} the "one-hot” encoding
is employed t = (0,...,0,1,0,...,0). The network output will be a vector of probabilities obtained by
applying Softmax and the cross-entropy will be the loss function to be optimized, Lz (y, t) = —tT (log y).

2.2.1. Stochastic gradient descent

Let's assume we have a function y = f(x), with x, y € R and its derivative f'(x). The derivative of a
function gives its slope at a certain point x. This indicates how a small change ¢ in the input will affect
the output: f(x + €) = f(x) + f'(x). Gradient descent [45] is the technique of minimizing a function
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f(x) by moving x in the opposite sign of its derivative, f’(x), with small steps. Looking at Figure 2.3,
having a function f(x) = %xz and its derivative f'(x) = x, f has a global minimum at x = 0 when
f'(x) = 0. In this case, the derivative has the same sign as the input x, thus moving rightward for
negative values and leftward for positives ones will result in reaching the minimum.
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Figure 2.3: Gradient descent algorithm illustration for finding the minimum of a function f(x) = %xz. Starting from either positives
or negative values, gradient descent optimization will find the solution in x = 0 by moving in the opposite sign of the gradient,
f'(x) = x. Figure courtesy of [17].

For neural networks, the function f is dependant of both the input x and the weights 6: y = f(x, 9).
The gradient Vo f(x,0) is a vector of all partial derivatives with respect to the weights %f(x, 6). Up-
dating the parameters using gradient descent with step size € can be written as 8’ = 6 — Vg f(x,0). In
deep learning terminology, the step size is called learning rate. The stochastic approximation [60] idea
is behind Stochastic gradient descent (SGD), with SGD being an approximation of the gradient from a
small number of samples. The SGD update formula based on a batch of m’ samples can be seen in
equation 2.2.

!

m
1 . .
' =6-— e Z VoL(x®,y®,9) where L is the loss function (2.2)
i=1

2.2.2. Cosine Annealing

Cosine Annealing learning rate schedule was first introduced for snapshot ensembles [46] which
require an aggressive learning rate changing policy. The learning rate starts at a high value, but it is
quickly decreased to a minimum value of almost zero, before being increased again to the previous
maximum value. This learning rate schedule acts as a restart of the learning process and on each
cycle it continues from the current network learned weights. This is a warm restart, as opposed to
a cold restart which resets the network weights to random values at each cycle. The learning rate
evolution over 100 epochs, with cycles of 20 epochs and starting with a learning rate of 0.01 can be
analyzed in Figure 2.4.

The formula for the learning rate at each step t following the Cosine Annealing schedule can be
found in equation 2.3, where [n,,;,, nmax] IS the range for the learning rate, T,,, shows how many
epochs have passed since the last restart and T,,,,, is the maximum number of iterations.

1 Teur
Ne = NMmin t E (Mmax — Mmin) | 1 + cos T T (2.3)

max
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Figure 2.4: Cosine Annealing learning rate schedule example over 100 epoch, with restarts at each 20 epochs.

2.3. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [43] are the de facto standard when dealing with computer
vision tasks such as image classification [24, 30, 64], object detection and localization [58, 59], instance
segmentation [25, 61], video action classification [3, 23, 35], generative models for images and videos
[6, 16], etc.

The paper in which AlexNet [41] architecture was introduced achieved a more than 10% lower error
rate on ImageNet [9], compared to the previous state-of-the-art. Surpassing the existing methods by
such a wide margin, AlexNet is responsible for the beginning of CNN dominance in Computer Vision
tasks.

Typically, a CNN is made of multiple convolutional layers with non-linear activation functions in
between and pooling layers. The CNN pipeline from Figure 2.5 shows that starting from the input
image, features are learned by the CNN block and the classification is made using fully-connected
layers on the flattened learned representations. The end of the pipeline contains a Softmax activation
function to generate a vector of probabilities, with the size equal to the number of classes.

/ — CAR

— TRUCK
— VAN

= — |
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D D — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN RULLY SOFTMAX
CONNECTED
FEATURE LEARNING CLASSIFICATION

Figure 2.5: CNN overview for a classification problem. From the input image, the feature learning is done by a series of
convolutional layers, ReLU and pooling. The classification part uses fully-connected layers with a Softmax activation at the
end.’

2.3.1. Convolution operator

The convolution is the core operation behind CNNs. In NN terminology, for convolution the most
important terms are the input I, the kernel K and the feature map S. The convolution operator is denoted
by *, having the following formula:

S ) = (K * DG, ) = 221(1‘ +m,j +n)K(mn) (2.4)

'© https://ch.mathworks.com/discovery/convolutional-neural-network.html
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Note that the actual operation described by equation 2.4 is called cross-correlation, but since ma-
chine learning terminology refers it as convolution, we will also follow this convention. A matrix K, with
the size smaller compared to I, is sliding over the two-dimensional input. We define the stride as the
number of pixels we move the kernel when sliding over the input image. Looking at Figure 2.6, each
time we slide the 2x2 kernel over the 4x3 image, we calculate the weighted sum between the kernel
weights and the pixels from the selected area of the image. At the end, with a stride of 1 we obtain
a feature map of size 3x2. To generalize, starting from an input of size [h, w], where h is the height
and w the width, moving a kernel of size [F,, F,,] with a stride of p results in a feature map of size

[A=fn g, W= g
p p

Input

Kernel

w xr

v Output
L
aw + br + bw + ex cw + dr 4
ey + fz fy + gz gy + hz
ew + fr + fw + gz + gw + hz 4
i+ jz v o+ k2 ky + Iz

Figure 2.6: 2D Convolution example on an 4x3 input with a squared kernel of 2x2. The output, called the feature map, is the
result of moving the kernel with a stride of 1 and computing each time the element-wise matrix multiplication between the kernel
and the covered input area. Figure courtesy of [17].

2.3.2. Kernels as feature detectors

In the context of CNNs, kernels are called filters. Each convolutional layer is characterized by the
size of the kernels, the number of filters and the stride. Each filter weights act as a particular feature
detector, thus the learning of kernel weights translates into learning the features. In Figure 2.7, we can
see two feature maps resulted after applying 2 different kernels on two images. For the first image,
the filter detects the round shape of the sunflower with that particular feature being highlighted in the
activation map. For the second one, we want to detect the position of a character named Waldo, so
we use a filter similar to his shirt. From the appropriate feature map, we clearly observe that the most
activated part corresponds to Waldo’s location.

2.3.3. Spatial Pooling

The last important block of the feature learning layers is the spatial pooling. The pooling layers are
used to summarize the outcome over a region by reducing the size of the feature maps. The summary
can be achieved by applying different functions such as maximum or average in a similar manner to how
kernels are applied on an image. The spatial pooling kernel computes the result of the summarizing
function, maximum or average, based on the values from the feature map area covered by the kernel.
The stride will affect how much the feature maps will be down-sampled with either maximum pooling
or average pooling.

One of the advantages of pooling comes from reducing the memory due to smaller activation maps.
Another important aspect in regards to image domain is that it makes the network invariant to local
translations. This determines the feature presence to be more important than its location.
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Kernel Feature map

Waldo

Figure 2.7: Kernels as feature detectors, with two activation maps showing the regions of interest highlighted. The first kernel
activates for the round shape of the sunflower head and the second based on the pattern of Waldo’s shirt. The second kernel
facilitates the localization of Waldo in the scene by identifying the highest activated area from the feature map.2

An overview of one complete layer from the feature learning part of a CNN is presented in Figure 2.8.
Starting from the input image, using 3 filters F, F,, F;, we have the Convolution block, followed by the
Non-Linearity and finishing with the Spatial Pooling block that produces the output for the next layer.
The outputs for each filter resulted after applying the spatial pooling will be concatenated and served
as the new image channels to the next layer.

Learned | [ [ )
earne Convolution Non-Linearity | |Spatial Pooling
filters L \_ J

-
-
-

Figure 2.8: The summary of one layer of the Convolutional Network feature learning block, composed of a Convolution operation,
ReLU Non-Linearity and Spatial Pooling. Each of the three filters will detect different features, with F1 for the windmill blade, F2
for vertical lines and F3 for horizontal ones.2

2© Figure adapted from TU Delft CS4180 Deep Learning course slides



Action recognition

Action recognition involves assigning an action label to a video clip composed of a sequence of 2D
frames, with the action itself not necessarily being capture in all of the frames throughout the video.
This task comes with multiple challenges, such as a significant computational cost, the need to capture
the spatio-temporal context and the usage of different input flows such as RGB flow or optical flow
[29]. The training computation cost comes from the need to use multiple frames for each video or the
architecture increased number of parameters from adding 3D kernels. Motion information needs to be
capture to obtain relevant features that are robust to changes in camera position or background and
encode the meaning of the learned actions.

3.1. Common Deep Neural Network architectures for videos

Video feature learning architectures are design to extract both temporal and spatial information by
using either only RGB flow [12, 22, 67] or a combination of both RGB and optical flow [3, 14, 63]. Figure
3.1 presents an schematic overview of the architectures, with the models being recurrent networks
based [12], 2D cNNs based [14, 63] and 3D cNNs based [3, 14, 67].
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Figure 3.1: Schematic overview of the most common neural networks architectures ideas for video action recognition. All of
the methods are using either 2D or 3D CNNs, with the LSTM based one having also recurrent networks incorporated. Figure
adapted from [3].

3.1.1. Two Stream Networks

Two Stream Networks [63] are the successor of the failed experiment of Single Stream Networks
[34] which used 2D Convolutions with different ways to fuse the temporal information. While Single
Stream Networks performed worst compared to the state-of-the-art hand crafted features, Two Stream
Networks are able to capture the temporal dimension by using optical flow vectors. As displayed in
Figure 3.2, there are two parallel networks, both 2D CNN based, which receive different input in the
form of the RBG stream for the Spatial stream ConvNet and optical flow stream for the Temporal stream

19
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ConvNet. The two networks are trained separately and combined at the end by the means of an SVM
[8] classifier.
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Figure 3.2: The overview illustration of Two stream architecture for video classification. The incorporation of optical flow allows
the capturing of motion information and influence the class score in combination with the extracted spatial information from the
RBG input. Figure courtesy of [63].

3.1.2. Long-Term Recurrent Convolutional Networks

Long Short-Term Memory (LSTM) [28] are a type of recurrent neural networks (RNN) capable of
learning long-time dependencies. LTMs were designed to tackle the vanishing gradient problem en-
countered when training a classic RNN over a long sequence. Long-Term Recurrent Convolutional
Networks (LRCNs) [12] are based on LSTM ability to deal with sequences, being an encoder-decoder
architecture for video representations. In Figure 3.3, the LRCN arhitecture is shown with the input being
encoded by CNNs to generate visual features which are then decoded by LSTMs. The architecture is
trained end-to-end, with the output being averaged when used for action recognition tasks.

Input Visual Sequence  Output
Features Learning

Figure 3.3: Long-Term Recurrent Convolutional Network architecture. The variable length input is processed by 2D CNNs
followed by LSTM cells to generate a variable size output. The CNN block is used for visual features extraction and the LSTM
block for learning the sequence. Figure adapted from [12].

3.1.3. 3D Convolutional Networks

The novel 3D convolutions [32] are able to directly capture the motion information from multiple
adjacent frames. As seen in Figure 3.4, compared to 2D CNNs, 3D CNNs are capable to perform the
convolution operation on the video volume. Taking advantage of the 3D kernels, an 11 layers deep
3D CNN architecture [67] with 3x3x3 filters was proposed. The model was trained on a large scale
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supervised video dataset [34] and their learned spatio-temporal features, C3D, was able to outperform
the state-of-the-art by simply using a linear classifier SVM on the top of the pre-trained C3D architecture
used as a feature extractor.
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Figure 3.4: From left to right, applying a 2D convolution on each frame of the video volume results in another image compared
to applying a 3D convolution on the video volume which results in another volume. Figure courtesy of [67].

3.1.4. 3D Residual Networks

With the grow in the network depth, the problem of increasing training complexity arises. This issue
was addressed for image feature learning by presenting a residual learning framework [24] meant to
ease the training process of deeper networks. While using deeper model, ResNets made use of skip
connections to build residual blocks which are easier to optimize and promote the gradient propaga-
tion. Residual nets are capable of taking advantage of considerably increased depth without accuracy
saturation. In Figure 3.5, a schematic view of ResNet50 architecture can be visualized.
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Figure 3.5: Resnet50 arhitecture, B denoting batch normalization [31], R the ReLU [51] activation function and S Softmax. The
difference between Conv Block and Identity block is in the addition operation on the skip connection.®

Motivated by the success of the Convolutional Neural Networks with 3D kernels to directly extract
spatio-temporal features, a version of ResNets with 3D kernels was proposed [22]. 3D ResNets with
18 and 34 layers were implemented, achieving better performance compared to C3D. Later on, deeper
model like 3D ResNet50, 101, 152 and 200 were experimented.

2D Pooling 3D Pooling 3D Conv + 3D Pooling

P D00 00

Figure 3.6: Temporal information fusing methods, with 2D pooling, 3D pooling and a combination of a 3D Conv with a 3D pooling
by using a fusion kernel. Figure courtesy of [14].

3.1.5. 3D-Fused Two-Stream Networks
Two-Stream architecture was improved by modifying the way spatial and temporal streams are
fused. 3D-Fused Two-Stream Networks [14] add two elements of novelty on top of the Two-stream

%0 https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
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Network. The first one is early fusion at a convolutional layer, rather than at the softmax layer from the
end. The second one is from how they performed the fusing by 3D CNNs and 3D pooling, with different
ways of fusing temporal transformation illustrated in Figure 3.6.

3.1.6. Two Stream 13D

The 3D Convolutional Networks were also integrated into the Two Stream architecture, replacing
both the 2D Spatial Stream ConvNet and the 2D Temporal Stream ConvNet. In the new model, Two-
Stream Inflated 3D ConvNet (I13D) [3], the spatial stream input consist of frames stacked in time. The
two networks are trained independently based on the RGB input and optical flow input, with the two
outputs being average at inference time. Using pre-training on a new proposed large scale video
dataset, they improved the state-of-the-art in action classification on several benchmarks.

3.2. Action recognition datasets

In this part we will present the most common video datasets used for human action recognition.
The number of action classes varies from 51 all the way to 700.

3.2.1. HMDB51

HMDB51 [42] is an action recognition dataset with 6849 clips divided into 51 action categories with
a minimum of 100 clips per category. Clips have a frame rate of 30FPS (frames per seconds) and
frames of size 320x240. A class balanced version of the dataset is sampled with 3570 training clips
and 1530 testing clips.

3.2.2. UCF101

UCF101 [66] is a larger action recognition dataset composed of 101 actions divided into 5 types:
human-object interaction, body-motion only, human-human interaction, playing musical instruments
and sports. It has 13320 videos split in 9537 training and 3783 testing clips. The dataset contains 27
hours of videos sampled at 25 FPS frame rate with 320x240 frame size. In Figure 3.7, 12 human action
classes examples from both HMDB51 and UCF101 are displayed.

Figure 3.7: A couple of frame examples from HMDB51 and UCF101. For each dataset, 12 action classes are represented by 1
significant frame sampled from the video. Figure adapted from [2].

3.2.3. ActivityNet

ActivityNet [1] is a much bigger dataset having 203 activity categories with an average of 137
untrimmed videos per class and 1.41 activity instances per video. The total video hours of this database
is 849. Around 50% of the videos have frames of size 1280x720, with the majority using a frame rate
of 30 PFS.

3.2.4. Kinetics

Kinetics datasets aims to be for video action recognition what ImageNet[9] is for image classification.
Kinetics 400 [3] is the first version of this dataset, with 400 human action classes and more than 400
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clips per class, all collected from YouTube videos. The classes cover three types of human actions:
person actions (singular), person-person actions and person-object actions. Each clip lasts around
10s. There are several large versions of this dataset, like Kinetics 600 and 700. Several examples
from Kinetics 400 can be visualized in Figure 3.8.
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Figure 3.8: Kinetics examples from 15 human action classes, with 1 frame per video being displayed.*

3.2.5. Moments in Time

Moments in Time [50] is the latest large-scale human-annotated video dataset, with one million
short clips of 3s showing dynamic events. Each video is annotated with one action class among the
339 different possible ones. The visual and auditory events involve different agents: human, animals
and nature.

4@ https://medium.com/datadriveninvestor/a-guide-to-human-activity-recognition-flle4637dcde
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Self-supervised learning

Transfer learning [56] refers to the use of the NN weights learned while solving a problem for a
different related task. This is done by pre-training on a available large dataset to encapsulate the
knowledge derived from the data and saving the weights to be used on other possible related problem.
Pre-training can be done both supervised or unsupervised, depending on the dataset being annotated
or not.

Self-supervised learning [74] is a category of unsupervised learning methods in which the labels
are generated automatically without the need of a human annotator. The generated labels are called
pseudo-labels. To generate labels from unlabeled data a pretext task, also called self-supervised task,
is created which takes advantage of the intrinsic relationship existent in the data. By optimizing to solve
a pretext task which exploits different cues from the data, visual representation can be learned. During
the self-supervised training, we are not necessarily interested in the performance of the pretext task,
but rather in the quality of the learned features.

Based on the type of the pretext task, the self-supervised methods can be classified in a number of
different categories. We will present a series of self-supervised technique for both image and videos
feature generation by covering multiple pretext tasks.

4.1. Learning visual representations from images

4.1.1. Generative based methods
The generative based methods main goal is to create realistic and diverse images, but in this pro-
cess useful visual representations can also be learned.

Generative Adversarial Networks. Generative Adversarial Networks (GANs) [16] are composed of
two networks, the generator (G) and the discriminator (D). The generator G captures the data distri-
bution of the real images in order to generate realistic images, while the discriminator D estimates
the probability of an image to be part of the real data, rather than being generated by G. The training
is design as a competition between G and D, like a min-max two players game in which both of the
networks are helping in improving each other. After the adversarial training, G can be used to create
additional realistic data. To accomplish the task of distinguishing between real and fake images, D
needs to capture semantic features which could serve as a pre-trained model for fine-tuning to other
vision tasks.

Bidirectional Generative Adversarial Networks. Classic GANs does not have the ability to learn the
inverse mapping from the data space to the latent space. To tackle this issue, Bidirectional Generative
Adversarial Networks (BiGANs) [11] add an encoder E capable of learning the projection from the input
space to the latent one. A schematic view of BiGAN architecture can be seen in Figure 4.1.
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Figure 4.1: Bidirectional Generative Adversarial Networks structure. Encoder E maps data x to latent representation z, which
makes D to discriminate in both latent and data spaces: G(z), z vs x, E(x). Figure courtesy of [11].

Context Encoders. Context based pixel prediction in another pretext task, with Context Encoders
[567] trained to fill a gap from an image. The model training involves both a reconstruction loss and an
adversarial one. The context encoder removes the information from all of the color channels of the
dropped pixels to form the missing piece. Another method proposes the hiding of only a subset of
channels [73], rather than all three RGB channels. Context Encoder architecture can be analyzed in
Figure 4.2.
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Figure 4.2: Overview of the Context Encoder Architecture. The context image with the missing piece is served as input to the
encoder to generate features which are meant to be decoded by the decoder to obtain the absent pixels of the image. The loss
function is computed between the decoded missing patch and the real missing piece. Figure courtesy of [57].

Image colorization. Another example of a self-supervised task is training a model to color a grayscale
input. Image colorization [72] takes an input lightness channel L for a grayscale image and learns to find
a mapping to the two associated color channels ab in CIE L*a*b* color space [54], where L* is lightness
from black (0) to white(100), a* represent green(-) to red(+) component and b* is the blue(-) to yellow(+)
component. Their CNN based architecture is presented in Figure 4.3. Colorization demonstrates to be
a powerful pretext task acting as a cross-channel encoder and serving as a self-supervised pre-training
method for object classification, detection and segmentation.

Lightness L Color ab Lab Image
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Y, 32 32 32 32 64
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313 64 2

Figure 4.3: Colorful Image Colorization architecture with each conv block representing a series of 2-3 repeated convolutions with
ReLU activation and batch normalization. The mapping learned is from the lightness L of a grayscale image to the color ab to
form an image in Lab color space. Figure courtesy of [72].
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4.1.2. Relationships between patches
This category of self-supervised methods includes pretext tasks focused on making a model learn
the relationship between multiple patches selected from an image.

Relative position. Context prediction uses spatial context as the source for the self-supervise task.
The model is designed to classify the relative position [10] of two patches from the same image. The
patches are sampled as follows: from an input image, the first patch is randomly selected and the other
eight ones are cropped around the first to form a 3x3 grid. To make the task more difficult, all of the
8 neighbors of the initial sampled central patch have random noise added and are places in the 3x3
grid with gaps in between, as seen in Figure 4.4. Two CNNs are trained with shared weights, each of
the network receiving one patch. In the end, the outputs of the CNNs are combined. The training can
be seen as a 8-class classification problem, with the input being the pair of patches and the output the
position from the 8 possibilities in the 3x3 grid.

Figure 4.4: The 3x3 grid formed around the first randomly selected patch which generates 8 pairs denoting 8 different classes,
with the first member of the pair always being the central patch. Figure courtesy of [10].

Jigsaw puzzles. Having a 3x3 grid already built for each image, the task can be made more difficult
by using a training sample that includes all of the 9 patches, instead on only two at a time. With this idea
in mind, solving Jigsaw puzzles [52] is the next presented pretext task. The 9 patches formed similar to
the previous method are shuffled according to a randomly selected permutation from a predefined set,
set which is predefined to control the difficulty of the task. Each patch is then fed to a separate CNN
which shares weights with the other eight ones. The output of the nine CNNs is combined to generate
a classification problem with the number of classes equal to the size of the permutation set.

Feature counting. The last presented method which exploits the relationship between patches is
learning to count features [53]. Two transformations are used in the context of an equivariance relation:
scaling and tiling. Scaling an image should not influence the number of visual primitives and tiling an
image to a 2x2 grid followed by summing the features of each title should match the number of features
from the original image. From Figure 4.5 we can see that starting from an image x, a down-sampling
operation followed by a tilling to a 2x2 grid are performed. The 4 patches and the original down-
sampled image are fed to separate CNNs with shared weights. The features counted by the 4 CNNs
which correspond to the 4 patches are summed and the difference between this sum and the count
generated by the CNN which was fed with the original image is minimized. To make the task even
more difficult, a contrastive loss is added to promote the dissimilarity between another down-sampled
random image y and the sum of the 4 patches generated from x.

4.1.3. Geometric transformation based methods
The pretext task of the next category of self-supervised image based methods is to discriminate
between different versions of an image, obtained by applying one or more geometric transformations.
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Figure 4.5: Learning to count architecture overview. The CNN used to extract the features which are then summed and compare
is AlexNet. The constrative loss uses a experimentally determined constant scalar M = 10. Figure courtesy of [53].

Exemplar Convolutional Neural Networks. Exemplar Convolutional Neural Networks [13] are trained
to discriminate between a set of surrogate classes. This classes are created by modifying an initial
training set. This set was generated from unlabeled data by selecting fix size patches at regions with
considerable gradient, mainly edges which are an indication of objects, from different images at multi-
ple scales and positions. On each selected patch a variety of random elementary transformations such
as translation, scaling or rotation are applied to generate multiple new patches which are considered
part of the same surrogate class. A surrogate class is generated for each patch of the initial training
set. A CNN is trained to discriminate between these surrogate classes.
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Figure 4.6: 2D RotNet overview with examples of the four possible rotations (0°, 90°, 180°, 270°). The ConvNet is trained as a
4-class image classification problem. Figure courtesy of [15].

Predicting image rotations. A straightforward pretext task which involves geometric transformations
is to train a CNN to recognize what 2D rotation was applied on an image [15]. In Figure 4.6, 4 types of
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rotation with multiples of 90° are displayed. RotNets are trained as a 4-class classification task and in
the process of discriminating between the 4 types of rotations, semantic features are also learned.

4.1.4. Contrastive learning based methods

Contrastive learning represents a category of deep metric learning techniques [36] focused on
teaching a deep neural network to distinguish between similar and dissimilar data examples. Posi-
tive and negative pairs needs to be created from the unlabeled training data. Based on the created
pairs and using a contrastive loss [20, 37, 40, 65, 71], the network parameters are optimized.

Contrastive predictive coding. Contrastive predictive coding (CPC) [55] pretext task is to predict
the future in latent space by using autoregressive models. The contrastive loss used by this paper
is INfoNCE, loss inspired by the Noise Contrastive Estimation (NCE) employed in learning word em-
beddings [19]. InfoNCE uses cross-entropy loss to measure the performance of recognising the future
samples from a bunch of negative ones. CPC components are an encoder g.,. that compresses the
input x; to the latent representation z; = g.,,.(x;) and an autoregressive decoder g,,.. When applying
CPC on images, starting from a 256x256 image a 7x7 grid is created by using crops with 50% overlap.
All patches are encoded using a ResNet architecture for generating a matrix z; ; = g.nc(patches). The
autoregressive decoder makes predictions in connection to the activations from the latent space, in
following rows top-to-bottom. A schematic overview of CPC can be seen in Figure 4.7.
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Figure 4.7: Contrastive Predictive Coding (CDC) when applied on an input images using ResNet 101 as the image encoder
Jenc- From the input image of size 256x256, , crops of 64x64 with 32 pixels overlap are extracted and fed to the encoder. Figure
courtesy of [55].

Momentum Contrast. Momentum Contrast (MOCO) [26] tackles contrastive learning as a dictionary
look-up problem. The dictionary is represented by a dynamic moving queue of encoded data samples.
There is a query encoder f, and a momentum encoder f,. From Figure 4.8, we can see f, encoding
x14eTY to q = fu(x?) and fi generating a list of dictionary keys {ko, k, k,..} which are the projection
of other data samples into a latent space. Note that both x? and x* are data samples. In the queue
of size K, a positive example of x9, namely k*, exists. The positive sample k+ was generated by
encoding with f;, a different augmented version of x9. InfoNCE [55] contrastive loss is used to promote
the similarity between q and k* given other (K-1) negative keys. The queue is updating using FIFO
(First-in, first-out) protocol, with the newest batch replacing the last one when it is full. The gradient
flows only through the query encoder and the momentum encoder is moving slowing by a momentum
update, based on the query encoder.
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Figure 4.8: Momentum contrast illustration showing both the query encoder and the momentum encoder, with the similarity being
computed between the encoded query q and the dictionary keys from the FIFO queue. Figure courtesy of [26].

SimCLR. A Simple Framework for Contrastive Learning of Visual Representations (SimCLR) [4] uses
contrastive learning to maximize agreement between 2 augmented versions of the same image. The
components of SIMCLR can be analyzed in Figure 4.9 and consist of: a random data augmentation to
generate t and t’, a base encoder f to get the representation h, a projection head to arrive to z and
finally a contrastive loss, named NT-Xent, to maximize the agreement between z; and z;. Different
from MOCO, where the number of negatives pairs, derived from the queue size, is not limited by the
batch size, SImCLR loss is dependent on the size of the batch. The negative pairs are created from
the augmented versions of the current batch, therefore SImCLR relies on large batch sizes to generate
a large enough number of negative pairs. From a batch of N examples, 2(N — 1) negative pairs are
created and the positive ones are represented by the pairs of the two augmented versions of each
image from the batch.

Maximize agreement

Z; - > 2
0] o
h; <— Representation — h;

Figure 4.9: SimCLR schematic overview, illustrating the two spatial random transformations t, t’, the CNN based encoder f and
the fully-connected projector g. The representation h is used for down-stream tasks and the projection z for the contrastive loss
during the self-supervised training. Figure courtesy of [4].

Improved Momentum Contrast. The improved version of Momentum Contrast (MOCO V2) [5] applies
a couple of ideas from SimCLR to the MOCO framework. The paper finds out that using both a
projection head and stronger data augmentation helps in improving the quality of the learned features.
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4.2. Learning visual representations from videos

4.2.1. Generative based methods
For videos, generative based models learn visual features in the process of creating realistic videos.
The pretext task of generating video is done not using the training videos labels.

Video Generative Adversarial Networks. Video generation with GANs (VGAN) [68] uses a spatio-
temporal convolutional architecture to separate the video into two streams, the background and the
foreground. In this two-stream architecture, the first stream models the static part of the video (back-
ground) and the second one the dynamic objects (foreground). In this way, the method shows that the
scene dynamics can be a good signal for representation learning from unlabeled videos.

Video colorization. As seen applied on images, using colorization is a good pretext task for self-
supervision. Unlike in images, Video colorization [69] pretext task is to copy colors from a reference
colored frame to a target gray-scale frame by taking advantage of the temporal coherency between
the reference and target frame. As presented in Figure 4.10, starting from a gray-scale video with a
reference and a target frame, which are not far away in the video, a model generates embeddings for
both of the frames using a CNN architecture with shared weights. Using the computed embeddings, a
relation between f; and f; is established, which is going to be used to color c¢; based on the referenced
color ¢;.

Grayscale Video Embeddings
Reference A A f i Aci Reference
Frame Lo o Colors
1
Target Vi Py Predicted
Frame A A £ Ay ; | Colors

Figure 4.10: Video colorization model overview. The solid yellow line connection based on the learned embeddings is used to
generate the dashed yellow arrow to predict the color of the target frame. Figure courtesy of [69].

4.2.2. Relationship between frames

Compared to static images, the relation between the frames of a video contains both spatial and
temporal information. The sequentiality of the frames encodes temporal information that can be used
to design pretext tasks for self-supervised feature learning.

Space-Time Cubic Puzzles. The Jigsaw puzzles detailed for image visual representation learning
were transposed to a 3D version of arranging pieces of a space-time cuboid. Space-Time Cubic Puzzles
[38] train 3D CNNs to arrange permuted 3D spatio-temporal crops. In Figure 4.11, we can see that the
3D crops are extracted from a 4-cell grid of either 2x2x1 (displayed in red, spatial dimension) or 1x1x4
(shown in blue, temporal dimension). The crops are randomly permuted and spatio-temporal jittering
is applied.

Temporal Order Verification. Shuffle & Learn [48] is another self-supervised methods from videos
which teaches a model to determine if a sequence of frames is in the correct order. The technique uses
a Triplet Siamese Network with three 2D CNNs which receive a 3-frames tuple as input. The positive
(correct order) and negative (incorrect order) tuples are selected from the frames with significant motion,
based on optical flow. The tuples are shuffled and grouped in pairs. For the model to be able to
correctly verify the temporal order, small differences between the frames needs to be capture, such as
the movement of an object or person. By solving this task, semantic features can be learned.
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Figure 4.11: Space-Time Cubic Puzzles with both spatial sampling and temporal sampling for extracting the 3D crops. To
increase the complexity of the self-supervised task, spatio-temporal jittering is added. Figure courtesy of [38].

Temporal Order Prediction. Order Prediction Networks (OPN) [44] take advantage of the temporal
coherence in videos by creating a sequence sorting task. The frames sampled from an input video are
shuffled and a CNN is trained to sort them on the temporal axis. To promote the learning of semantics
features rather than low-level ones, the data sampling process contains spatial jittering and channel
splitting. Figure 4.12 contains an overview of OPN pipeline, with the network architecture being made of
two feature extraction stages, the first encoding for each frame and the second for each pair of frames.
Starting from a sequence of 4 frames, the order prediction can be viewed as a 12-class classification
problem.
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Figure 4.12: Order Prediction Networks overview, with two main stages. The Data Sampling stage creates the tuples by shuffling
the sampled frames and applying spatial jittering with channel splitting. The Network stage have CNNs which are trained on the
input tuple, first extracting features from frames and then from pairs of frames. The end of the entire pipeline is the Order
Prediction by selecting the right sequence from 12 possibilities. Figure courtesy of [44].

Arrow of Time. Another way of exploiting the sequentiality of frames is by understanding the Arrow
of Time (AoT) [70] in videos. The AoT is composed of cues that makes videos look like they are playing
either forward or backward. This cues can be physics based (e.g. smoke rises up) or event reasoning
based (e.q. cracking an egg cannot be reversed). Predicting the AoT, playing forward or backward,
is done by using a Temporal Class-Activation-Map Network (T-CAM). The network is design to enable
the visualization of the learned features and takes optical flow as input, not the RGB flow. In Figure
4.13, T-CAM network is summarized with the CNNs block introduced for late temporal fusion and global
average pooling (GAP) followed by logistic regression for classification.
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Figure 4.13: Temporal Class-Activation-Map (T-CAM) Network overview. The blue CNNs with shared weights are VGG-16 based
and the Conv block at the end contains three convolutional layers followed by global average pooling. Figure courtesy of [70].

4.2.3. Geometric transformation based method

Geometric transformations can also be used as a pretext task for self-supervised feature learning
from videos. Similar to the 2D RotNets analyzed at the image section, 3DRotNets [33] were design
to learn spatio-temporal features from unlabeled videos. 3DRotNet uses the same list of possible
rotations, 0°, 90°, 180°, 270°, replacing the 2D CNN with a 3D one. The training of the network is
conducted as a 4-class classification task, with the pipeline displayed in Figure 4.14.
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Figure 4.14: 3D RotNet pipeline. In Geometric Transformations stage the input volume is being rotated with four multiplea of 90°
and in Network Training stage the 3D CNN learns to recognize the rotation type. Figure courtesy of [33].

4.2.4. Contrastive learning based methods

Dense Predictive Coding. Following the same future prediction idea from the image feature learning
proposed by CPC, Dense predictive coding (DPC) [21] learns a dense encoding of spatio-temporal
blocks. Pixel-wise prediction of future frames is difficult due to appearance changes, camera shaking,
etc. In this way, it does not promote the learning of high-level semantics. Predicting features, instead
of frames, within a short temporal windows is needed. The model is trained with a contrastive loss to
select the correct future state from a group of distractors. This method overview can be seen in Figure
4.15, with the prediction task observing ta 2.5s of video segments from x; to x; and trying to generate
the future 1.5s. The video segments x4, ..., x; are encoded with a function f to the latent representations
z;. An aggregation function g is then used to obtain c¢;, as the temporal aggregation of z, ..., z;. The
future clip representation is made with the function ¢, based on the aggregated embedding c;. The
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predicted representation Z,,, = ¢(c;) and the ground truth representation z, will form the positive pair
for the contrastive loss. The loss used is a variant of NCE [49] that considers positive and negative
pairs in regards to both temporal and spatial sense. The only positive pair for the predicted vector Z;  is
(Zix,zi ) at the same time step i and the same spatial index k. For fine-tuning on a action recognition
down-stream task, they used a ten times smaller learning rate for the CNN backbone architecture
compared to the one used for the linear classifier.
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Figure 4.15: Summary of Dense Predictive Coding method, with the left part presenting the architecture for predicting the future
clip representation and the right part analyzing the contrastive loss, with positive and negative pairs constructed in regards to
both temporal and spatial axis. Figure courtesy of [21].

Temporally Coherent Embeddings. Explicitly enforcing temporal coherency in the embedding space
generates high-quality visual representations. Temporally Coherent Embeddings (TCE) [39] promote
the similarity between nearby frames from the same video and the dissimilarity with other frames from
different videos. The backbone architecture used to encode the video frames is a 2D CNN and the
cosine similarity is computed in the resulted embedding space. The Noise Contrastive Estimation
(NCE) [49] loss takes the temporally neighbouring frames of one video as positive examples and all
frames from other videos as negative samples. Figure 4.16 shows how the contrastive loss works in
the embedding space to promote the attraction between frames from V! and the separation between
frames from V! and all other frames from V2, ..., V™. Since the backbone architecture is a 2D CNN, the
evaluation on action recognition is done by averaging the output of the features generated by passing
through the network a couple of video frames. The fine-tuning is done with the same learning rate for
both the pre-trained backbone CNN architecture and the linear classifier.
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Figure 4.16: Temporally Coherent Embeddings overview with an illustration of the constrastive loss in the Embedding Space.
The loss enforces an anchor frame from V? to attract with an adjacent frame from the same video and to repel with N negative
frames sampled from all other videos V?, ..., V™. Figure courtesy of [39].
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