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Abstract

In turbomachinery optimisation problems, run time is often a critical factor due to high dimensionality
of the design search space. This work explores the use of the multi-fidelity method to speed up an
aerodynamic optimisation algorithm applied to axial compressor blades. A rotor blade is optimised in a
two-stage blade geometry for maximum isentropic efficiency. The single-fidelity reference optimisation
uses a high-fidelity evaluation process employing Menter SST turbulence equations and a mesh of 903, 000
cells. Five multi-fidelity optimisation setups are tested, which employ the same high-fidelity process, but
distinct low-fidelity processes ranging from a fine mesh and RANS turbulence equations to a coarse mesh
and inviscid Euler equations. It is found that multi-fidelity optimisation could cause a delay in run time
of up to 39.9%, equivalent to almost three days and a loss in optimum efficiency of 0.11%. The best
result is a speed-up of 14.1%, equivalent to 1 day of time savings and an improvement in efficiency of
0.02%. The speed-up of 50% demonstrated in literature could not be achieved since the high-fidelity
model in this work is much cheaper. The best cost ratio achieved in this work is comparable with 0.14,
but the correlation coefficient of 0.46 is insufficient. It is shown that at their optimum efficiencies, two
selected single-fidelity and multi-fidelity optima have different geometries and aerodynamic behaviour.
For improving performance using the multi-fidelity method, it is recommended to increase the fidelity
gap between the low-fidelity and the high-fidelity processes. The cost ratio of a new low-fidelity process
can be estimated with an error of at most 5%, by using 10 member designs. Furthermore, the correlation
coefficient can be estimated with an error of at worst 35%, using 20 blade designs. From the results in
this thesis, it is recommended to employ a cheaper low-fidelity process using for instance through-flow
calculations or to make the high-fidelity process more expensive by adding more design features.

Keywords: multi-fidelity method, aerodynamic optimisation, axial compressor blade, fidelity reduction,
Kriging, Co-Kriging, RANS turbulence modelling, Euler equations
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1 Introduction

In the introduction chapter, the context of this master thesis is explained and the research question is
motivated.

This chapter starts by explaining the context of this work in Section 1.1. Afterwards, a short summary
of the current state-of-the-art in compressor optimisation is given by Section 1.2. The objective of this
thesis is explained in Section 1.3. At last, in Section 1.4, the structure of this report is outlined.

1.1 Industrial context

Heavy-duty gas turbines have become an established means for power generation. The average power
output of gas turbines has multiplied over a hundred-fold because of their rapid development in the
last century. Primarily driven by advancements in the aerospace sector, the performance of stationary
land-based gas turbines has seen a drastic increase, through increasing the overall pressure ratio and the
firing temperature for combustion. In a combined cycle configuration, where waste heat from the gas
turbine exhaust gasses is used to make steam and drive an additional steam turbine, an efficiency can be
attained in the order of 50%. Recent demonstration has seen a combined efficiency of 60%. While gas
turbines were initially used for emergency back-up in case of blackouts or peaking power in the USA and
Europe, from 1980 there has been a trend to replace steam powered plants with gas turbines [2].

Gas turbines are now considered amongst the cleaner means to convert chemical energy from fossil fuel
to electrical energy. In a forecast on the outlook of the world’s energy consumption by the International
Energy Agency [14], the demand for natural gas is expected to rise by 50% in the year 2040. This
rise will be mainly due to rapidly developing countries that share a large interest in power provision
using industrial gas turbines. However, there is an increasing share of renewable energy sources
expected to be introduced into the system. Moreover, energy production is expected to take place in
decentralised systems, instead of in the centralised system effective today. These future challenges drive
innovation with a focus to improve powerplant flexibility for scaling up or down the power output and to
accommodate various types of fuels and easy adaptation in configuration. In order to stay competitive
with an increasing share of clean energy sources, the manufacturing and operating cost needs to be reduced.

Major gas turbine engine manufacturers, such as Siemens are challenged to stay competitive in a global
market. Over a broad portfolio of turbines ranging from 4 to 450 MW, Siemens has set goals to provide
high reliability, load flexibility, low life cycle cost and environmental compatibility. Besides searching for
innovative new concepts, the main components of the gas turbine are individually improved for delivering
optimal efficiency. Those components are generally separately designed: the compressor, combustion
chamber and turbine. Achieving small improvements in efficiency can result in huge savings in operating
cost spent on fuel. Those improvements also contribute to the objective of lowering emissions and reducing
environmental impact. Within this context, in this thesis project, the optimisation of one blade row in an
axial compressor is considered.
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1.2 Aerodynamic optimisation of compressors

1.2 Aerodynamic optimisation of compressors

This section provides a short description on the current status of design and optimisation methods of an
axial compressor. Many research efforts are made to improve the performance of the axial compressor.
The main function of the axial compressor is to raise the total pressure of the air before it enters the
combustion chamber. It thereby employs alternating stator and rotor blade rows, which can contain up
to 20 blade stages in total. A fully assembled gas turbine shaft with 13 compressor stages is shown in
Figure 1.1.

Figure 1.1: Siemens gas turbine SGT6-5000F in a manufacturing facility [26]

The development process of the compressor has seen a drastic improvement through the application of
powerful simulation and optimisation codes. The aerodynamic design of compressor blades is established
by employing various methods with increasing complexity, starting at mean line and through-flow
calculations and followed by Computational Fluid Dynamics (CFD) simulations. Three-dimensional
aerodynamic optimisation is performed to increase the isentropic efficiency of the machine. In aerodynamic
shape optimisation, a variety of blade designs is explored, that improve one or more objectives as shown
in a typical Pareto diagram in Figure 1.2. This figure gives an indication of how an optimum design can
be selected on the basis of the objective functions.

Stage isentropic efficiency

M
as

s 
fl

ow
 r

at
e

Compromise

Max. mass flow

Max. efficiency

Initial

Figure 1.2: Pareto diagram with the initial blade design and optima per optimisation objective [12].
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1.3 Thesis objective

Generally, blade rows are separately optimised by applying inlet and outlet boundary conditions to ensure
matching with neighbouring blade rows. The downside of single-stage optimisation, is that the full design
is fixed intermediately, which restrains the design solution space. Instead, a more integrated approach
like multi-stage optimisation is preferable. A schematic of this approach is shown in Figure 1.3, which
shows how more blade rows are included in the multi-stage optimisation setup. Optimising multiple blade
stages simultaneously increases the optimisation duration to several weeks, using traditional optimisation
algorithm. Hence, multi-stage optimisations are hardly viable in industry due to limited computational
resources.

Several methods are proposed in literature to speed-up the optimisation process. Among these is
a method called “multi-fidelity optimisation” or “variable fidelity modelling”, which is often employed
in areas of fluid mechanics and solid mechanics [8]. A multi-fidelity optimisation employs an additional
“low-fidelity” simulation process, to evaluate the objective function values of a candidate design at a
much lower cost, with slightly reduced accuracy. When correlating low-fidelity simulation results with
results from the original high-fidelity process, the overall optimisation can be improved. In this thesis, the
multi-fidelity technique is investigated to speed-up the aerodynamic optimisation of an axial compressor
rotor.

inlet 
conditions

outlet 
conditions

inlet 
conditions

outlet 
conditions

R R RS S

Figure 1.3: Meridional diagram of the compressor, showing domains for single-row (left) and multi-row
optimisation (right).

1.3 Thesis objective

The multi-fidelity technique is demonstrated successfully in several compressor optimisation problems,
described in the works of Reimer [23] and Brooks et al. [3]. In those works, multi-fidelity optimisation
provides a speed-up or an improvement of the objectives in the optimum, compared to a single-fidelity
optimisation with the same computational budget. However, any enhancements are highly problem
dependent and greatly rely on the cost and quality of the low-fidelity model [10]. Previous research
generally does not substantiate the level of fidelity reduction required for the low-fidelity model in a
multi-fidelity framework. Therefore this thesis investigates the potential of multi-fidelity optimisation
with distinct low-fidelity processes.
The main research question answered in this work is the following:

1. How much fidelity reduction should be applied to the low-fidelity process chain, in order to
achieve the highest speed-up or improvement of the optimum by multi-fidelity optimisation with
respect to single-fidelity optimisation?

A second research question is posed which considers the differences in design optima, found by two
optimisation frameworks. This research question cannot be answered fully within the framework of this
thesis and is therefore of secondary importance. It is formulated as follows:

2. Are optimum designs from multi-fidelity and single-fidelity optimisations similar or different in
terms of shape and aerodynamic performance?

3



1.4 Report structure

These two research questions are answered in the closing chapter of this report. In this thesis, the
multi-fidelity technique is employed in an optimisation problem consisting of one parametrised rotor
cascade within a two-stage compressor. Five multi-fidelity optimisation setups are considered, with
distinct low-fidelity processes. Optimisation performance is quantified through a difference in optimisation
time and by a possible improvement of the objectives upon optimisation convergence. This research
investigates the multi-fidelity approach itself, rather than seeking a physical optimum design. The rotor
blade is optimised for its aerodynamic performance only, hence structural characteristics are not under
consideration. Fidelity reduction applied in this work is limited to the domain of 3D CFD simulations,
although also through-flow or meanline simulations would also be possible.

In order to choose a suitable fidelity level of the low-fidelity process, a designer is required to estimate
the differences in cost and quality between the two processes, employed in a multi-fidelity architecture.
This estimation can be based on the evaluation of various blade designs using the high-fidelity and
low-fidelity processes. In Figure 1.4, it is shown that in order to improve the accuracy of the estimation, a
designer needs to invest more effort by evaluating more designs. In the conclusions of this work, guidelines
are provided on the recommended number of design evaluations, required to forecast the suitability of a
low-fidelity process.

 Accurate estimation

One design
Few designs

Full population of designs

More accuracyLess effort

Rough estimation

Figure 1.4: Schematic of the accuracy for estimating suitability of a low-fidelity process for multi-fidelity
optimisation, by increasing the sample set of design evaluations.

1.4 Report structure

This thesis is structured as follows. In Chapter 2, the approach for establishing a compressor blade
design and the involved disciplines are discussed. Chapter 3 introduces major elements of aerodynamic
shape optimisation of compressors as well as parameters to quantify and estimate the performance of
multi-fidelity optimisations. This chapter also provides a short literature review of works relevant for
this research. Thereafter, Chapter 4 describes the optimisation problem, the setup of single-fidelity and
multi-fidelity optimisations considered in this work, as well as the convergence criteria for termination
and performance metrics for comparing the optimisation results. Subsequently, Chapter 5 presents results
of five multi-fidelity optimisations with respect to performance of a single-fidelity reference optimisation.
In an attempt to improve the potential of the multi-fidelity method, a slightly adjusted optimisation setup
is also introduced and discussed in this chapter, followed by guidelines to forecast performance of a
particular multi-fidelity optimisation. In Chapter 6, the aerodynamic performance of two selected design
optima of the best multi-fidelity optimisation and single-fidelity optimisation is compared. Conclusions
of this work are summarised in Chapter 7. This chapter also provides recommendations to improve the
potential of a multi-fidelity optimisation, besides giving examples of applications that could benefit from
the multi-fidelity method.
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2 Fundamentals of compressor design and
modelling

In this thesis, a compressor is optimised with the target to increase efficiency while maintaining a
minimum mass flow and pressure ratio. This chapter discusses the general approach for establishing a
compressor blade design and the disciplines involved. The resulting blade design, acts as a starting point
for aerodynamic optimisation.

This chapter is structured as follows. Section 2.1 describes the major function of a compressor and provides
a definition of pressure ratio and efficiency. The initial design is readily available in this work, and hence
is only touched upon shortly in Section 2.2. In this work, a compressor blade design is optimised for
maximum aerodynamic performance. Section 2.3 therefore provides an introduction into aerodynamic
simulation of compressor blades.

2.1 Compressor performance and operating principles

The first section of this chapter starts by explaining the main function of a compressor, after which
two parameters are defined to describe compressor performance: mass flow and pressure ratio. The
operating conditions of the compressor are then schematically shown by means of a compressor map.
Thereafter, typical features of the flow field in the compressor channel are described, which are important
for aerodynamic simulation.

The main function of a compressor is to increase the total pressure of the inlet air from ambient pressure to
an elevated pressure before it enters the combustion chamber. The ratio of channel inlet and exit pressures
is calculated through Equation 2.1 and is called the “pressure ratio”. In this work, an axial compressor
stage is optimised with the aim to increase its efficiency, while optimum candidate designs need to attain a
minimum pressure ratio. A blade stage consists of a rotor and a stator blade row. As the rotor adds energy
to the flow by means of rotation, which effectively creates a moment of momentum, the total pressure
and total temperature of the flow are increased. The stator in its turn removes this rotational energy and
converts kinetic energy from the circumferential velocity component to an increase in the static pressure
of the flow. Since the flow is very sensitive to aerodynamic separations during the deceleration process,
a large number of stages is required to reach the desired total pressure ratio. For industrial gas turbines,
this number can go up to 10 to 20 stages, depending on the type of application.

Πt =
pt,2
pt,1

(2.1)
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2.1 Compressor performance and operating principles

The operational limits of the compressor are often shown on a compressor map, which shows its operating
performance as combinations of the total pressure ratio Πt and mass flow, at different rotational velocities.
A schematic of this map is shown in Figure 2.1 and will later be used to indicate the operating points
for aerodynamic simulation. The mass flow and rotational velocity are reduced by Equations 2.2 and
2.3 respectively. These parameters are reduced to ensure comparable flow conditions for different inflow
conditions pt,1 and Tt,1. For normalisation, pref and Tref consider the respective reference pressure and
temperature at International Standard Atmosphere (ISA).

ṁcorrected = ṁ ·
pref
pt,1
·

√
Tt,1
Tref

(2.2)

Ncorrected = N ·

√
Tref
Tt,1

(2.3)

The surge line indicates the upper limit of the total pressure for a certain reduced mass flow. This
line marks an area of unstable operating conditions where severe stall or surge occurs. The steady-state
operating points of the compressor are on the working line.

m

Pressure 
ratio

corrected

Surge line

Working line

.

Efficiency

N
corrected

Figure 2.1: Compressor map

At a stationary operating point, ideally the compressor operates at a maximum isentropic efficiency, to
minimise losses and maximise the amount of useful work to generate power. Hence, optimisations in
this thesis aim to improve the isentropic efficiency in two operating points. In the top segment of the
compressor map in Figure 2.1, the isentropic efficiency variation with mass flow for every speed line is
shown. The isentropic efficiency expresses the ratio of actual compressor work over isentropic “ideal”
work output of the compressor. This parameter can be calculated using air inflow and outflow conditions
of the compressor, as shown by Equation 2.4. The heat capacity ratio, denoted by γ, is assumed constant
over the entire considered range of temperatures.

ηis =

(
pt,2
pt,1

) γ−1
γ − 1

Tt,2
Tt,1
− 1

(2.4)

6



2.1 Compressor performance and operating principles

Flow features and loss mechanisms

A reduction in compressor efficiency is caused by flow losses in the compressor channel. This paragraph
identifies and describes those losses.

The flow field in an axial compressor is highly complex and features three-dimensional flow which is
turbulent and viscous. Flow features that impose a loss in compressor efficiency, can be ascribed to
classes of loss mechanisms. Losses are often attributed to a certain plane in which they are predominant.
In this work, a system of so-called stream surfaces is used for describing those planes, as shown in Figure
2.2. A traditional description of flow losses is provided by Denton [5]. In that work, three categories are
suggested, each approximately having an equal share towards all channel losses. Those three categories
are summarised in the following.

The first category, profile loss, is caused by the viscous boundary layers originating from the blade
surface, where flow can be assumed to be two-dimensional. The second loss mechanism, tip leakage loss,
considers the vortices generated at the rotor blade tips and the hub clearance for stator blades. Whether a
rotor blade is shrouded or un-shrouded plays a large role in the severity of tip leakage losses. The third
category of losses considers end-wall losses, includes all flow losses from secondary flows as shown in
Figure 2.3. Due to viscous friction at the hub and shroud casings, inlet flow has a non-uniform velocity
profile and causes vortical flow structures to develop in the secondary plane of the channel. After passing
through the passage, these vortices mix with the bulk flow, leading to mixing losses.

An important feature of the flow field in the transonic compressor is its shock structure. As the
circumferential velocity increases along the blade radius, close to the tip region, local areas of supersonic
flow are present. Because of the transonic nature of the flow, a complex shock structure is present in the
channel, which interacts with the boundary layer at the blade surfaces.

S3
S2

S1S1

S2
S3

Hub

Figure 2.2: Definition of three principle stream surfaces within blade passage, showing the blade-to-blade
surface (S1), meridional surface (S2) and secondary surface (S3) [22]

(a) (b)

Flow direction

Figure 2.3: Two types of vortex structures in the compressor channel: (a) end-wall vortices predominant
in the S2 surface and (b) secondary flows in the S3 surface [4].
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2.2 Design philosophy

Entropy generation

A convenient way to quantify loss and its effect on the compressor efficiency is through the notion of
entropy. Since the value of entropy is independent of the frame of reference in which it is regarded (i.e.
rotating or stationary), its application suits both rotor and stator rows. Moreover, there is a strong relation
between the loss in compressor efficiency and the amount of entropy created in the compressor channel1.

Entropy is generated in the compressor through several irreversible fluid dynamic processes that
are characterised by the losses mentioned above. For compressors, shear forces and non-equilibrium
processes are the most predominant, while heat transfer is less stringent compared to for example cooling
flows of turbine blades. Shear forces, or viscous friction, causes losses elaborated on above. Shock waves
can be attributed to the class of non-equilibrium processes. By imposing rapid compression, a shock
wave involves heat conduction and high viscous normal stresses [5].

When optimising the isentropic efficiency, the aim is to resolve entropy generating flow features as
accurately as possible. From above descriptions of irreversible processes, locations in the channel that
have special interest are blade surfaces and end-walls for simulating the boundary layers, blade tip where
a tip vortex develops, blade trailing edge in order to capture strong shear layers and the blade leading
edge where the shock wave has its onset.

2.2 Design philosophy

The compressor design phase aims to deliver the initial design, which is the starting point for further
optimisation. This section shortly touches upon the design process to illustrate the importance of
aerodynamic simulation.

In the design process of an axial compressor, various disciplines such as aerodynamics, structures
and mechanics need to be balanced with operating requirements related to noise, emissions and surge
characteristics. Moreover, it is desired to achieve optimal performance at multiple operating points
which often requires a trade-off. From these disciplines, the aerodynamic performance is generally the
most influencial. Therefore a common design approach starts at establishing a blade geometry to satisfy
aerodynamic requirements, after which the structural integrity is checked to satisfy mechanical failure
constraints [30].

Through-flow Blade-to-blade
3D aero 
analysis

Structural 
analysis

Design

Initial design

requirements

In:

Out:

Aerodynamics

Structures

Figure 2.4: Flowchart of the compressor blade design process

1Efficiency loss is directly proportional to the increase in specific entropy (total entropy over mass flow rate), assuming no external
heat transfer and neglecting differences between static and stagnation conditions [5].
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A typical design process is illustrated in Figure 2.4 which shows the process is highly iterative and involves
multiple levels of modelling complexity. In the preliminary design phase, the multi-stage compressor is
modelled using a one-dimensional through-flow code, that calculates inlet and outlet flow parameters for
every stage using axi-symmetric meridional analysis and loss models. In this step, top-level requirements
are specified like the desired pressure ratio and mass flow. The latter is imposed since it restricts the
output power of the entire gas turbine. Next the blade rows are modelled in the blade-to-blade plane
in a two-dimensional manner to allow for stacking in radial direction. Intermediately the design is
already fixed to a certain degree [11]. In the following step, the flow can be accurately resolved using
three-dimensional Computational Fluid Dynamics (CFD) simulations. Using CFD simulations, flow losses
can be calculated with higher accuracy than lower-dimensional methods, against a higher computational
cost. An example of a potential outcome from CFD simulation, the distribution of the Mach number
in the S1 surface (blade-to-blade), is shown in Figure 2.5. Next, structural characteristics are simulated
using Finite Element Analyis (FEA). An example of a potential result from FEA, the distribution of the
von Mises stress over the blade, is shown in Figure 2.6. The initial blade design has now reached a high
maturity level and serves as the starting point for optimisation. An overview of the optimisation process
steps is given in Section 3.1.

Although the previously described design process is divided into three steps, it is not necessarily
true that all of them are fully executed in practice. Due to considerable investments in research and
development in the past, industry generally improves upon the latest technology standards, rather than
starting a new design from scratch.

Figure 2.5: Illustration of the variation in Mach
number throughout the flow field of a compressor
channel, using aerodynamic flow simulation (CFD)

Figure 2.6: Illustration of the variation in von
Mises stresses acting on a compressor blade, using
structural analysis (FEA) [27].

2.3 Basics of CFD simulation for compressors

In this thesis, a compressor blade row is optimised for the maximum isentropic efficiency in certain
operating conditions. For approximating the efficiency, Computational Fluid Dynamics (CFD) simulation
is employed, using a RANS turbulence model or inviscid Euler equations for flow modelling. This
section explains the basics of CFD simulation for compressors.

CFD simulation uses algebraic equations to solve and analyse fluid flows. These equations are solved at
a grid of locations, which covers the geometry of the fluid problem. A CFD solution is characterised
by two main elements. First of all the type of flow equations, which specify characteristics of the flow
field. The second element is the mesh, which defines the locations at which flow equations are solved.
Choosing the mesh structure and solver settings requires a trade-off between solution accuracy and
simulation time. Both are tailored to capture the physical flow features in the channel, especially those
mainly responsible for entropy generation and affecting the isentropic efficiency.
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2.3 Basics of CFD simulation for compressors

The following two sections provide a general description on selection of the mesh and solver equations
for CFD simulation. This information is later used to decide on suitable settings for simulation processes
employed in this work.

Mesh configuration

The accuracy of the flow simulation can be maintained by choosing a mesh that highly resolves the areas
of interest mentioned above. Consequently, the error of the isentropic efficiency can be reduced.
Whereas unstructured meshes are beneficial for fast generation and can easily be adapted to large
variations in blade shapes seen throughout an optimisation, structured meshes allow for better control
and better alignment of cells with flow streamlines. Using a structured mesh, a locally higher density of
grid nodes can be implemented in regions where large velocity gradients are expected. Because of these
advantages, in this work a structured mesh is applied.

In order to resolve the near-wall sublayer of the boundary layer, it is common to use one of the following
approaches. The first approach is to use low-Reynolds models, which are relatively accurate. For resolving
the flow subject to viscous friction, the cell thickness adjacent to the walls needs to be very fine. The width
is determined by the dimensionless wall distance y+, the dynamic viscosity µ, flow density ρ and friction
velocity U∗, through Equation 2.5. Using low-Re models, a dimensionless wall distance of y+ ≈ 1 is
desired. A second approach is to apply wall-functions for calculating the velocity profile near to the wall
using empirical relations. This is less expensive compared to using low-Reynolds models. As a result,
the boundary layer behaviour is simplified and flow close to the walls is resolved with less accuracy. The
thickness of the first cell can be increased to only roughly resolve flow in the boundary layer region,
which reduces the mesh size. In this work, wall-functions are employed to save on computational time in
the aerodynamic simulation of a blade design. This is necessary since thousands of member designs are
evaluated.

y =
y+µ

ρU∗
(2.5)

At the blade tip, the cell density should be high for capturing tip leakage flow, whose loss mechanism has
been described previously. Using an increased number of radial streamlines in close vicinity to each other
at the blade tip, leakage flows can be resolved. The number of closely spaced streamlines is adjusted to
the tip gap size. In this work, including tip refinement is described as “enabling the tip gap”. In order
to resolve the leading edge and the trailing edge, generally the mesh resolution is also increased locally
at these locations. Usually it is hard to estimate the shock locations in advance, which prevents from
increasing the cell density in advance.

Turbulence modelling

In a typical simulation problem, the mesh setup and type of flow equations are adapted to each other.
For solving viscous flow, not only the mesh is to be refined in areas close to the wall, also a set of
turbulence equations needs to be selected. Two common turbulence models for aerodynamic simulation
of compressors are introduced in this section, from which one is selected in all viscous CFD simulations.

Solving the Reynolds Stress tensor
The introduction of a turbulence model is necessary when seeking an approximate solution of the
Navier-Stokes equations for fluid flow. Several approaches are available to obtain a solution for these
equations, which differ in accuracy. The most accurate approach would be to use a Direct Numerical
Simulation (DNS). This simulation type solves for all length and time scales of turbulent flow and
is therefore computationally expensive. A more practical approach for turbomachinery applications is
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2.3 Basics of CFD simulation for compressors

to average the smaller turbulence length scales and only solve the mean flow and largest turbulence
structures, which is done using a Large-Eddy Simulation (LES). The last option, a Reynolds Averaged
Navier-Stokes (RANS) simulation only solves the time-averaged solution of the Navier-Stokes equations,
resulting in an approximation of the mean of the flow. With this averaging step, a term called the
Reynolds stress tensor remains that needs to be approximated. In order to close the system of equations
a turbulence model is used. The turbulence model considered in this thesis, belongs to the class of Eddy
Viscosity Models (EVM). In this class of models, the Reynolds stress is assumed to be a function of
the mean shear rate and the eddy viscosity ν. This parameter in its turn, can be expressed using simple
algebraic 0-equation models or relatively complicated one-equation or two-equation models [13].

Two-equation models
A traditional example of a two-equation model is the k − ε model [17], that solves for the turbulence
kinetic energy k and turbulence dissipation rate ε. Although it is relatively cheap in computational terms,
it is known to poorly solve for complex flows with strong pressure gradients. A very popular two-equation
RANS model Wilcox k − ω [31] solves the transport equation for turbulence kinetic energy k and
the specific turbulence dissipation rate ω. Because it changes from wall-functions to a low Reynolds
formulation, it works good to solve wall-bounded boundary layers, although it overpredicts the onset of
separation. The later proposed Shear Stress Transport (SST) model, Menter SST k − ω [18], combines
the previous two models by applying k − ω close to the walls and k − ε outside of the boundary layer
region. In a study by Simoes et al. [28] on a rotor blade row of an axial compressor, simulation results
from the three aforementioned turbulence models are compared. Using the Menter SST turbulence model
has shown to best match the experimental data.

Inviscid flow simulation
Opposed to RANS models which solve viscous flow, Euler equations implement an additional
simplification to the Navier Stokes equations, by neglecting the effect of viscosity. An inviscid Euler
simulation is suitable for obtaining preliminary blade loadings and pressure distributions, on the
assumption that inertial forces are much more prominent than viscous forces, which is the case at high
Reynolds numbers. By neglecting shear stresses, boundary layers usually developing at solid boundaries
are no longer resolved during simulation. This rigorous assumption discards a number of flow features
including flow separation, viscous losses and secondary flows. Due to the strong connection between
the entropy generation and associated reductions in isentropic efficiency, a rather large deviation in
compressor efficiency is expected when solving using Euler equations, compared to RANS-based models.
This deviation can either be positive or negative and is for instance, very dependent on positioning of
mesh cells within the boundary layer. Regardless of this difficulty, successful use of the Euler equations
is presented by Padròn and Alonso [20]. That work employs the multi-fidelity method to a 2D airfoil
geometry optimisation, using Euler equations for the low-fidelity process and a RANS turbulence model
for the high-fidelity process. More details on this work are provided in Section 3.8.

Concluding statement

Concluding from the basics of CFD simulation explained in the previous section, the mesh and solver
equations affect the solution accuracy and simulation time for CFD analysis. This information is used
in Section 4.4 to choose suitable simulation processes for evaluation of aerodynamic performance of
compressor blades. This chapter has described the process to establish the initial blade design. The initial
design is the starting point for optimisation, whose process is considered in detail in the next chapter.
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3 Theory on aerodynamic shape optimisation

In this chapter, the reader is introduced to fundamental concepts of aerodynamic shape optimisation,
applied to axial compressors.

First of all, Section 3.1 introduces the optimiser used in this thesis “AutoOpti”. Section 3.2 consequently
presents the single-fidelity and multi-fidelity optimisation architectures. Respective Sections 3.3 and 3.4
provide an in-depth discussion on two essential elements of optimisations used in this work: evolutionary
algorithms and surrogate models. In Section 3.6, the “Pareto diagram” and “Cumulative Volume Gain” are
introduced, which are generally used to monitor and quantify optimisation progress. Section 3.5 then gives
a description of the decision function types employed in AutoOpti, which control the budget allocated
to low-fidelity members. Section 3.7 explains three metrics to estimate the potential of multi-fidelity
optimisations. At last, Section 3.8 gives a review of reference literature on multi-fidelity optimisations
applied to compressor blades.

3.1 AutoOpti and optimisation terminology

The first section of this chapter introduces the reader to the optimiser used in this work, called AutoOpti,
and basic optimisation terminology.

In the current work, optimisations are performed using AutoOpti. This program offers multi-disciplinary,
multi-objective optimisation using an evolutionary algorithm in combination with various surrogate
models. Besides using single-fidelity optimisation, AutoOpti can also employ the multi-fidelity
optimisation method. Development of AutoOpti started in 2006 by the Institute of Propulsion Technology
of DLR (Deutsches Zentrum für Luft- und Raumfahrt). Its intended use was aerodynamic shape
optimisation of compressor stages. With this application, attention was paid to allow for evaluation
of expensive objective functions, which do not contain gradient information and are depending on large
numbers of design variables [30]. Moreover, versatility of the program is demonstrated by the opportunity
to parallelise internal calculation processes within as well as by possibilities for the user to adjust the
region of interest during optimisation. Finally its suitability is evident from the freedom to setup a process
chain of choice. AutoOpti has therefore also found application in various other disciplines such as fan
optimisation and turbine stage optimisation.

The diagram in Figure 3.1 on the next page shows the basic elements of an optimisation scheme: 1) the
optimiser performing and coordinating the search activities, 2) the parametrisation of the blade geometry
and 3) an evaluation process which evaluates aerodynamic performance of a blade design. The optimiser
tries to maximise certain parameters, called optimisation objectives, by making adaptations to the design
variables [d1, d2, d3, ...] in the design vector. The design vector is sent to the evaluation process where
the blade is simulated and the objective function value is returned. The optimisations considered in this
thesis are of the type “multi-objective”, since two objectives are optimised simultaneously. The starting
point of an optimisation is the initial blade, whose design method was explained in Section 2.2. For a
candidate design to be satisfactory, several constraints and restrictions need to be met, which can concern
various disciplinary fields such as aerodynamics and structural mechanics.
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Figure 3.1: Diagram of the optimisation architecture for compressor blade shape optimisation

Automatic optimisation has allowed for design compromises between disciplines and in reduced design
time and cost [27]. Currently, optimisation algorithms in turbomachinery design could apply simulation
processes with a duration of over an hour. Such optimisations require several thousands of function
evaluations to converge. Therefore the total runtime of an optimisation could be in the order of weeks.

3.2 Optimisation architectures

This section introduces the single-fidelity and multi-fidelity architectures and explains their differences.
The single-fidelity technique represents the current state-of-the-art optimisation method employed within
Siemens. Its architecture is discussed next, by means of a diagram. Slightly adapting this framework
results in the multi-fidelity architecture that is explained consequently.

The single-fidelity optimisation architecture is presented in Figure 3.2. The central element in this
configuration is the master that coordinates the optimisation and implements the search strategy. Besides,
the slave executes a simulation process to evaluate performance of a blade design. The master sends each
candidate design, called a member, to the slave which calculates and returns performance parameters of
interest at simulated operating conditions. AutoOpti facilitates running multiple slaves in parallel, which
allows simultaneous evaluation of multiple member designs. After evaluating a member, the slave sends
member performance data to the master, which saves the results in a database.

SlaveMaster

CFD
simulation

Optimisation
coordination
and decision

making

Surrogate

Model
training

(Kriging)

Figure 3.2: Diagram of the single-fidelity optimisation architecture
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3.3 Evolutionary algorithm

In AutoOpti, the search strategy for choosing new members is a type of evolutionary algorithm. This
algorithm is explained in detail in Section 3.3. Since the evolutionary algorithm on its own requires
many design evaluations to find the optimum, additionally a surrogate model is incorporated to generate
many members at lower computational cost. As shown in 3.2, the surrogate model is trained during
optimisation. Model training and model application are explained in Section 3.4.

Multi-fidelity optimisation implements an architecture that has a number of similarities with the
single-fidelity framework. The master process is responsible for coordination and member evaluations are
executed by one or more slave processes running in parallel. One slave merely evaluates one member at a
time and relays performance information back to the master. In Figure 3.3, the multi-fidelity architecture
is illustrated. Comparing Figures 3.2 and 3.3 it can be seen that the multi-fidelity framework employs an
additional low-fidelity process for cheap evaluation of member designs as an alternative to the expensive
high-fidelity process. The use of a much faster low-fidelity process enables a multi-fidelity optimisation
to reduce the computational budget, compared to a single-fidelity optimisation.

When applying the multi-fidelity method, an optimiser can choose one of the two process chains to
evaluate new members. This decision is performed by a decision function, denoted by DF in Figure 3.3.
A discussion on potential decision function types in AutoOpti is considered in Section 3.5. Low-fidelity
members can assist the optimiser in quickly identifying regions offering large improvement in the objective
functions, while high-fidelity members are used to refine these regions and obtain performance information
more accurately. A certain level of correlation between the process chains of different fidelity is required
to fully benefit from the multi-fidelity technique. Successful applications of the multi-fidelity method in
compressor optimisation are described in Chapter 3.8.

…

Decision function decides which slave type is used

Surrogate Master Low-fidelity
slave

High-fidelity
slave

CFD
simulation

(slow & 
accurate)

CFD
simulation

(fast & 
inaccurate)

Optimisation
coordination
and decision

making

Model
training

(Co-Kriging)

DF

Figure 3.3: Diagram of the multi-fidelity optimisation architecture

3.3 Evolutionary algorithm

In order to find an optimal blade design, the optimisation code used in this thesis employs both a
surrogate model and an evolutionary algorithm (EA). This section explains the theoretical background of
the evolutionary algorithm.

Evolutionary algorithms are classified as non-deterministic search methods and saw their first development
in the 1990’s [15]. Non-deterministic search methods are employed in this work for two main reasons.
First of all, in the current optimisation problem, the objective functions are not continuous. Since
non-deterministic search methods do not require gradient information, like deterministic search methods,
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they are more convenient to use in this case. Secondly, non-deterministic search algorithms allow for
a trade-off between Pareto optimal members after finishing the optimisation. This is a benefit over
deterministic search methods, which force automatic selection of a final design, when reducing the
optimisation problem to a single-objective type [19].

Evolutionary algorithms consider a population of solutions and pick the most promising members to
improve the objective functions. In this process, which is analogous to biological evolution, evolutionary
algorithms use operations such as mutation and cross-over to propose new members showing improvement
in the objectives [30]. Applying these generation methods, the optimiser can explore unknown parts of
the search space and simultaneously prevent from getting stuck in local minima.

The optimiser AutoOpti implements various evolutionary operations interchangeably. Such operations
manipulate design vectors of existing members showing superior performance, in order to establish a new
member. First of all, the mutation operation scales all design parameters of an old member by a random
percentage, chosen within a narrow bandwidth. Secondly, cross-over merges design parameters of two
old members to establish a new member. The third operation, differential evolution is comparable to
cross-over, but establishes the merger on the basis of three old members [12].

3.4 Surrogate modelling

This section explains the advantages of using a surrogate model to reduce the number of high-fidelity
function evaluations. The following paragraphs provide a general motivation for using surrogate models
as well as a short comparison of popular models. In Section 3.4-1, the Kriging model is explained,
which is employed in this work by single-fidelity optimisations. In Section 3.4-2, the Co-Kriging model
is discussed, which is used by multi-fidelity optimisations.

Motivation for surrogate models

The main drawback of using Evolutionary Algorithms is that establishing an accurate response surface
requires many function evaluations, due to probabilistic nature of evolutionary operations [27]. Performing
these evaluations repeatedly using a high resolution evaluation process, could be very expensive. The
member selection process could be sped up considerably by applying an approximation model, also called
a surrogate model, meta-model or response surface model.

An historical outlook of surrogate-assisted evolutionary calculation is provided by Jin [15], where
it is suggested that this framework was first introduced in the mid 1990s. This work also mentions
benefits and challenges of this framework. Due to its interpolation step, optima can be introduced in
the surrogate model, that are not present in the original data set. One major challenge is to prevent the
optimiser from pursuing these false optima. In Siller and Voss [27] it states that the main goal of using
a surrogate model is to speed-up calculations by approximating the function of interest by means of a
“functional relationship of acceptable fidelity”. Taking this point of view, the surrogate actually provides
a lower fidelity approximation model alongside true function evaluations. AutoOpti allows parallel use of
a surrogate model with evolutionary assisted generation, providing two options for selecting new member
offspring. The surrogate model can only be used for member generation after the initialisation phase.
During this phase an initial set of members is acquired using evolutionary operations, which serve as a
training set for the surrogate model. The duration of the initialisation phase is decided by the engineer,
by specifying a minimum number of converged members. In this work, the number is set to 80, which is
equal to the number of design parameters used to generate a blade geometry.
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Surrogate types

Popular surrogate types for optimisation problems in turbomachinery are Kriging (KG), Neural Networks
(NN) and Response Surface Models (RSM). A suitable surrogate model type is selected on the basis of
different criteria such as its accuracy, robustness, efficiency and transparency [16]. For a description of
the application of these models in compressor blade shape optimisation, the reader is invited to consult the
works of Samad [24] and Siller and Voss [27]. These papers demonstrate the use of the aforementioned
surrogate types and their performance on reducing the number of function evaluations to find the optimum
design. In this thesis, the different model types are not extensively compared but are shortly explained
in the following. Response surface models fit a polynomial function to a training dataset of previous
function evaluations. This surrogate type performs very well for small data sets and is generally easy
to set up [24]. The application of a neural network is more preferable for complex, highly dimensional
problems [7]. This model mimics the human brain of interconnected pathways between neurons, whose
connections are given weights. The structure of a neural network imposes drawbacks such as a larger
effort for model establishment and limited transparency in its use. An alternative to the previous two
model types is Kriging, which is described as a Gaussian statistical model since it is based on normally
distributed random variables. This modelling technique has gained much interest in recent years, owing to
its flexibility and robustness [16]. Also it is successfully employed in aerodynamic optimisation problems
within turbomachinery [3, 21, 23]. Moreover, taking into account the experience within Siemens of using
Kriging for optimisations, this model type is used in this thesis in a single-fidelity optimisation setup.
The model is explained in detail in Section 3.4-1. In this work, an extension of the Kriging model,
called Co-Kriging, is used for multi-fidelity optimisation. Currently Co-Kriging is the only surrogate type
available in AutoOpti to apply the multi-fidelity method. This model is discussed in Section 3.4-2.

Optimisation progress variability

In the work of Reimer [23], the concern is raised that two identical optimisations may not take the same path
to converge towards an optimum. The variability, which can be interpreted as the variation in improvement
of the objectives over time, can be explained by the following. In AutoOpti, the evolutionary algorithm
selects the evolutionary operation type on a random basis, applying the weighting as previously discussed
in Section 3.3. Moreover, a second probability parameter is used to decide for member generation using
the evolutionary algorithm or using the surrogate model, which also influences the amount of potential
progress. Results from Reimer [23] show that variability in single-fidelity optimisation progress is larger
compared to variability in multi-fidelity optimisations. In the current thesis work, the progress variability
is investigated by repeating a single-fidelity optimisation two times.

3.4-1 Kriging

In this section, the surrogate model Kriging is explained, which is used in this work for single-fidelity
optimisations. The first paragraph explains Kriging model theory. The second paragraph describes the
Kriging approximation of a test function in order to demonstrate the model to the reader.

Model theory

The Kriging model was originally developed by D.G. Krige in the 1950’s as a statistical interpolation
model to determine promising locations for mining. In due time, it has been applied in a variety of
disciplines other than geostatistics, among which are environmental sciences, weather prediction and
engineering applications. The Kriging method generally allows to estimate the value of a parameter in
unexplored space, by interpolating values at surrounding probe locations where the values are known.
The correlation between values at probe locations is spatially dependent and determines a so-called
covariance of the dataset.

16



3.4 Surrogate modelling

The known locations for probing, from now on called “support locations”, are denoted ~x1, ..., ~xn. The
associated values of the parameter under consideration are described by y1(~x0), ..., yn(~xn). The value
to be estimated at the new location ~x0, is written as y∗(~x0) and is calculated through Equation 3.1.
Due to the statistical nature of the Kriging method, the variables will be modelled as random variables
Z(~x1), ..., Z(~xn), each having an expected value and a variance. The first major assumption is that
the parameter to be estimated Z∗(~x0), can be calculated by a linear sum of the known variables
Z(~x1), ..., Z(~xn) and their weights w1, ..., wn, as presented in Equation 3.2. The goal is to determine
these weights [23].

y∗(~x0) =
n∑
i=1

wiy(~xi) (3.1)

Z∗(~x0) =
n∑
i=1

wiZ(~xi) (3.2)

A modelling error exists between the estimated variable Z∗(~x0) and its true value Z(~x0). The error
function is defined in Equation 3.3. The Kriging approximation is formulated as a Best Linear Unbiased
Estimator, which can be explained as follows. The fact that it is best implies that the variance of the
error function is to be minimised, as described by Equation 3.4. This approximation approach can be
said to be linear from an analogy with linear regression, which fits data through interpolation. However,
instead of only taking spatial information, now also correlation information is used. Lastly, the estimation
is unbiased since the expected value of the error function is zero as shown in Equation 3.5 [25].

F ∗(~x0) = Z(~x0)− Z∗(~x0) = Z(~x0)−
n∑
i=1

wiZ(~xi) (3.3)

var[F ∗(~x0)] = min
wi,...,wn

var[Z(~x0)−
n∑
i=1

wiZ(~xi)] (3.4)

E[F ∗(~x0)] = 0 (3.5)

For determining the Kriging weights, the covariances between support locations need to be obtained.
These are collected in a covariance matrix K, calculated by the variance σ2 and a correlation matrix
R, as shown by Equation 3.6. Each entry of the correlation matrix contains the correlation between two
support locations, expressed by ρ(~xi, ~xj). For each pair of support locations xi and xj , the correlation
is to be calculated by application of Equation 3.7. Here k indicates the dimensionality of a location (i.e.
in three-dimensional space, k = 3) and l is the index of summation. The correlation function can be
considered similar to a Gaussian normal distribution, whereas it can take values between 0 and 1, where
a value close to 1 indicates strong correlation [25]. To solve its function, a so-called hyperparameter ~Θ
needs to be determined. The actual correlation between two support locations is high when they are in
close proximity. The value of the hyperparameter, in turn, influences how much the correlation decreases
for more remote support locations. It is recommended to consult the work of Schmitz [25] for a visual
impression of these two factors.

K = σ2R (3.6)

ρ(~xi, ~xj) = exp

(
−1

2

l≤k∑
l=1

(e~Θl |~xi,l − ~xj,l|2)

)
(3.7)

The optimisation of the hyperparameter is called training of the Kriging model. The hyperparameter
is found by applying a the Maximum Likelihood method, which is an estimation method from statistics
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based on maximisation of the likelihood function. For a detailed description of this optimisation step,
it is recommended to consider the work of Schmitz [25]. Due to high computational cost for surrogate
model training, it is cheaper to generate members using an evolutionary algorithm compared to using a
surrogate model [23].

Model demonstration

In this paragraph, the application of the Kriging model is demonstrated to gain a better understanding
of the theoretical concepts explained in the previous section. By using Kriging to approximate a
three-dimensional testing function, in the following it is shown that model accuracy can be improved by
increasing the number of function evaluations on the domain.

The test function considered in this demonstration is a scaled variant of the Mishra’s Bird function often
seen in optimisation testing. The surface z = f(x, y) is shown in Figure 3.4 on a rectangular domain
[0, 10] for both x and y. The three-dimensional surface sees a couple of minima and optima of unequal
heights over the selected domain. This testing problem can be considered analogous to approximation of a
performance parameter subject to variation of two design variables. For higher dimensional optimisation
problems, this surface would scale up in multiple dimensions.

Over the effective domain, a square grid is established with a resolution of 30 in both x and y directions.
The Kriging surrogate model is initialised and trained over all grid locations, when supported by a sample
set of support locations. Training takes place over the course of 10 iterations, during which the optimum
value of Θ is determined. The sample points, indicated as green dots in Figure 3.5, are exact evaluations
of the test function at equally spaced support locations. In the following, the improved precision of the
Kriging is demonstrated by increasing the number of sample points. The sampling resolution is indicated
by SR, which denotes the number of samples in x and y directions. Precision of the surrogate model can
be assessed locally by inspecting the height of the error bars indicated directly underneath the surfaces,
showing the absolute difference between the Kriging approximation and the test function at a every grid
node (x, y). Additionally, the Root Mean Squared Error (RMSE) is calculated to quantify the global
approximation error. The performance of the Kriging model is assessed for sampling resolutions SR = 3,
SR = 6 and SR = 9. The resulting approximation from the Kriging model is shown in Figures 3.5, 3.6
and 3.7 respectively.
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Figure 3.5: Kriging model for SR = 3
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Figure 3.6: Kriging model for SR = 6
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Figure 3.7: Kriging model for SR = 9

Table 3.1: RMSE of the surrogate approximation
Sampling resolution, SR RMSE

3 19.0
6 5.9
9 1.9

By inspecting the error bars, it can be concluded that the Kriging model is able to approximate the region
directly surrounding sample points with higher precision, compared to areas far away from those points.
The error exactly at a support location reduces to zero. Considering the global error, which is quantified
by the RMSE in Table 3.1, it is demonstrated that adding function evaluations enhances overall accuracy
of the surrogate model. The process of calculating the hyperparameters during surrogate training, can be
envisioned as matching of the valleys contained in the surrogate model with the minima in the true fitting
function.

3.4-2 Co-Kriging

For implementation of the multi-fidelity method, in this thesis the Co-Kriging surrogate model is employed.
This section considers the theoretical background of Co-Kriging and shortly explains the correlation
assessment between two datasets. In the first paragraph, Co-Kriging theory is explained. Its demonstration
is discussed in the second paragraph.

Model theory

Currently, the Co-Kriging model is the only model available in AutoOpti for multi-fidelity optimisation. In
Co-Kriging, a second data set of lower-fidelity function evaluations is correlated with high-fidelity data. In
this thesis, the evaluation process entails CFD simulation of two axial compressor stages. The low-fidelity
process chain is established by reducing the mesh and solver settings of the high-fidelity process chain.
Co-Kriging is, just like Kriging, also based on the BLUE estimation method, which implies a similar
linear summation of random variables and weights is utilised. Now a summation is required over all
fidelity levels. Since two fidelity levels are used in this thesis, m = 2 in Equation 3.8.
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3.5 Decision function

Z∗(~x0) =
m∑
j=1

n∑
i=1

wi,jZ(~xi,j) (3.8)

The covariance matrix from Equation 3.6 is also adapted when including a data set of low-fidelity function
evaluations. Elaborating on the subsequent calculation is refrained from due to its complexity. Instead, it
is recommended to consider the work of Reimer [23] for a detailed approximation. In the following, only
significant deviations from the Kriging model are summarised.

First, it is assumed that every function result from the high-fidelity process yhigh, can be decomposed
in a function value from the low-fidelity process ylow and an error term yerr. Consequently, three types of
covariance functions are required: one type considers covariance between function evaluations from two
different data sets, and the other two types consider the covariance between two evaluations out of the
same data set. Moreover, the error functions Zerr do not correlate with associated low-fidelity function
values Zlow, as shown in equation 3.10.

yhigh = ylow + yerr (3.9)

Cov(Zlow, Zerr) = Cov(Zerr, Zlow) = 0 (3.10)

Using the three covariance functions to correlate the results between two support locations, but also
between two fidelity levels, the covariance matrix can be established as demonstrated by Fogel [9]. The
Co-Kriging model uses twice as many hyperparameters compared to Kriging and therefore requires more
time to train. Apart from the parametric background, also the nature of error between low-fidelity and
high-fidelity results can influence training efforts. When, for instance, low-fidelity results are heavily
fluctuating with a certain amount of noise, many support functions may be required to optimise the
hyperparameters and calculate the covariances.

Model demonstration

In this work, the Co-Kriging model is not illustrated on the basis of an example. However, one can
imagine its workings by referring back to the demonstration case of Kriging in Figures 3.5 to 3.7. In
this example, the response surface of the Co-Kriging surrogate would be constructed from two sets of
support locations. Function evaluations from the two datasets are not necessarily located identical x, y, z
locations, but can be spread independently.

3.5 Decision function

In AutoOpti, the choice for selecting either the low-fidelity or high-fidelity process for evaluation is made
by a decision function. The decision function has a large influence on how much computational budget
is allocated to low-fidelity member evaluations, hence it has a considerable impact on the benefits of
multi-fidelity optimisation.

In this section, the decision function types available in AutoOpti are explained in the first paragraph. In
the second paragraph, the automatic decision function, called variance, is considered in more detail. This
decision function takes into account the solver time of the two process chains and the quality of their
results to choose a suitable low-fidelity process. In the closing paragraph of this section, the impact of
this decision function on optimisation progress is considered.
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3.5 Decision function

Available decision functions in AutoOpti

Three decision function types can be employed in AutoOpti: constant, linear and variance. First, the
type constant allows the user to take manual control over the decision function. The user chooses a
constant ratio of low-fidelity over high-fidelity members for the entire optimisation. Second, the linear
type employs a ramp that increases with the number of evaluated members. Applying one of the former
two function types, the user needs to think of the desired ratio of low-fidelity and high-fidelity members
at different phases of the optimisation. Third, an automated function type called variance is available in
AutoOpti. This function bases a decision on the member results available at the moment a decision is to
be made. The results from the work of Reimer [23] have shown that employing the variance decision
function for multi-fidelity optimisation could attain the best speed-up and improvement in optimum
efficiency, compared to an equivalent single-fidelity optimisation. Based on this proven result, in the
current work the variance decision function is selected for most optimisations, unless stated otherwise.

Method of variance decision function

In this paragraph, the approach of the variance decision function is demonstrated by means of an application
case of the Co-Kriging surrogate model. The variance decision function uses two types of information to
decide for either low-fidelity or high-fidelity member evaluation. It considers the time for evaluating the
processes and the benefit in quality each of them can offer.

The following explanation is a short summary of the description provided by Reimer [23]. Instead
of revisiting the testing function of Section 3.4-1, where two design variables influenced a performance
parameter, the example case now only considers one design variable, evaluated by two separate processes.
The aim of this example is to demonstrate the influence of two data sets with different fidelity for the
construction of the surrogate model.

The selected fitting function is a pure sinusoid. Both the fitting function and its Co-Kriging
approximation are visible in the top part of Figure 3.8. The modelling inaccuracy with respect to the
sinusoid function, expressed by the standard deviation of error, is presented in the lower part of the
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Figure 3.8: Co-Kriging surrogate model of a sinusoid function using several high-fidelity and low-fidelity
members [23].
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3.5 Decision function

same figure. This plot shows that zero error is achieved at locations where high-fidelity members are
included (blue rectangles), meaning the surrogate model exactly attains the value of the fitting function.
At locations where only a low-fidelity member is included (red triangles), a non-zero deviation is still
present. At x = −1.5 the standard deviation of the error is relatively large. In order to make a decision
to either include a low-fidelity or high-fidelity member at this location, four steps are taken as explained
in the following.

Step 1: Determine the effect on quality by high-fidelity member forecast

First a high-fidelity member is added at x = −1.5, indicated by the black rectangle in Figure 3.9. Due
to inclusion of this member, the forecasted reduction in standard deviation of the surrogate at x = −1.5
reduces to zero. The reduction is denoted by σCK,HF , where index CK is the abbreviation for Co-Kriging.
One should realise that, although the standard deviation reduces to zero, the surrogate will not perfectly
approximate the sinusoid function due to small modelling error of the surrogate model.
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Figure 3.9: Co-Kriging approximation, including a forecasted high-fidelity member at x = −1.5 [23]

Step 2: Determine the effect on quality by low-fidelity member forecast

In step 2, a low-fidelity member is added at x = −1.5 to assess the effect on standard deviation reduction
of the Co-Kriging model, achieved when choosing the low-fidelity process. The reduction in standard
deviation due to this anticipated member cannot be obtained directly. This can be accomplished by
consequently adding a high-fidelity member and applying Equation 3.11. In this equation, the reduction
after low-fidelity and high-fidelity member forecasts is denoted by σCK,(LF&HF ), while the reduction
in standard deviation from only a high-fidelity member (step 1) is written as σCK,HF . The result in
anticipated Co-Kriging approximation and forecasted standard deviation can be observed in Figure 3.10.

σCK,LF = σCK,HF − σCK,(LF&HF ) (3.11)
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Figure 3.10: Co-Kriging approximation, including a forecasted low-fidelity member at x = −1.5 [23]

Step 3: Determine time effects

Besides the effects on quality σCK,HF and σCK,LF , also the time influences the decision-making. The
average process time is calculated for all high-fidelity members tavg,HF and low-fidelity members tavg,LF .
Consequently a ratio is calculated of the reduction in standard deviation of the model error and the average
process time. The ratios are denoted by RLF for the low-fidelity process and RHF for the high-fidelity
process and described by Equations 3.12 and 3.13 respectively. A performance factor crit is obtained by
dividing RLF by RHF , through Equation 3.14. This factor is used in the next step.

RHF =
σCK,HF
tavg,HF

(3.12)

RLF =
σCK,LF
tavg,LF

(3.13)

crit =
RLF
RHF

(3.14)

Step 4: Make the final decision

Steps 1 to 3 are repeated for every available surrogate model, effectively applied during the optimisation.
In this thesis, the total number of surrogate models is equal to nCK = 4 and includes two objective
functions and two restrictions. The parameter critExp determines the final decision and is calculated by
Equation 3.15. This parameter includes the arithmetic average off all contributions crit1 to critnCK . When
critExp reduces below 1, the high-fidelity process chain is selected. For its calculation, the parameter
POI is introduced, called Probability of Improvement. In short, the POI allows to give higher priority to
high-fidelity members compared to low-fidelity ones. This is necessary when the low-fidelity process is
highly correlated and therefore constantly preferred over high-fidelity members. Since only high-fidelity
members can contribute towards improvement in the optimum, they ought to be given priority. In another
scenario where low-fidelity members show mediocre correlation with high-fidelity results, it is expected
that the low-fidelity part of the surrogate model no longer improves its accuracy after evaluating many
members. In this scenario, the reduction σLF becomes smaller than σHF , causing the final decision
parameter critExp to decrease and choose only high-fidelity member evaluations.
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3.6 Optimisation progress quantification

Implications on multi-fidelity optimisation

From the previous explanation of the variance decision function, the following can be concluded. The
variance decision function in multi-fidelity optimisation, calculates the cost and the accuracy of the
low-fidelity model with respect to the high-fidelity model and uses this information to decide which
process chain is used for the next member evaluation. Thereby the variance decision function has a
large influence on the number of low-fidelity members that is evaluated during an optimisation. This
implication is reconsidered in Section 4.6, when estimation guidelines are introduced to forecast the
potential of multi-fidelity optimisations. These guidelines take into account cost, quality and the number
of low-fidelity member evaluations.

critExp =
∑nCK

i=1 criti
nCK

(1− POI) (3.15)

3.6 Optimisation progress quantification

In this work, optimisation progress is described as the combined improvement of objectives over time.
This section explains how progress is quantified in this work. The first paragraph of this section introduces
the Pareto diagram used to visualise the improvement of the objectives. The second paragraph explains
how improvement in both objectives is quantified by a single parameter, called the Cumulative Volume
Gain.

Pareto diagram

The optimisation algorithm in this thesis aims to simultaneously improve two objectives: compressor
isentropic efficiency in ISO and in HOT operating conditions. Objectives are enhanced until the point
at which new members can only improve in one objective by degrading the other. These members are
described as Pareto optimal or non-dominant solutions [1]. In AutoOpti, Pareto optimal members have a
rank 1, while non-optimal members have higher Pareto ranks. In this thesis, improvement is visualised by
means of a Pareto diagram that presents the two objectives attained by the entire population of members
in one chart. A Pareto diagram of a single-fidelity optimisation is illustrated on the left of Figure 3.11.
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Figure 3.11: Pareto diagrams for single-fidelity optimisation (a) and multi-fidelity optimisation (b),
visualised with Pareto fronts
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3.6 Optimisation progress quantification

The members achieving the highest improvement in both objectives are shown in the top right corner of
Figure 3.11. The Pareto diagram of a multi-fidelity optimisation presents both member populations, as
shown on the right in Figure 3.11. When the optimiser has identified a design space region providing high
gain in both objectives, the Pareto optimal solutions line as a Pareto front. In multi-fidelity optimisations,
only high-fidelity members form a Pareto front, since the optimisation algorithm uses the high-fidelity
process chain to accurately resolve the design space region where the optimum is located. Due to an
offset in accuracy, low-fidelity members are spread randomly as shown in the sketch of Figure 3.11. In
the initial phase of the optimisation, improvement in objectives can be large over time causing the front
to move relatively quickly in the direction of combined improvement. This movement slows down as
achievable improvements become smaller. Movement of the Pareto front is an indication of optimisation
progress. Therefore it is quantified by a new parameter, described in the next section.

Out of the final set of Pareto optimal solutions, a single optimum design is chosen to calculate the
average efficiency gain with respect to the initial design. In this work, the isentropic efficiencies in ISO
and HOT operating conditions are considered equally important, hence the optimum member is located
on the diagonal of the Pareto diagram (dashed line in diagram (a) of Figure 3.11). The member closest
to the point of intersection of the diagonal and the Pareto front is selected as the optimum design of the
optimisation. The average efficiency of this member is calculated by applying Equation 3.16 and is used
in Chapter 5 to compared optima from different optimisations.

ηavg = (ηISO + ηHOT )/2 (3.16)

Cumulative Volume Gain

In this paragraph, the parameter Cumulative Volume Gain is introduced that quantifies combined
improvement of the objectives. This parameter is used in this work to compare performance of multiple
optimisations.

In Figure 3.12, a sketch of the Pareto diagram is shown for high-fidelity members at three time instances.
At time instance 1, a front has been formed. At a later time instance 2, new members have been evaluated
that shift the front and enclose an area with respect to the previous front location. This area is called the
Volume Gain by AutoOpti.
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Figure 3.12: Pareto diagram visualising the Volume Gain at Pareto front shift
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When summing all contributions to the volume gain, the Cumulative Volume Gain (CVG) is obtained.
The CVG increases with optimisation time and is used in this work to quantify optimisation progress. An
increase in CVG can give an indication of improvement in ISO and HOT isentropic efficiencies during an
optimisation, as the CVG parameter captures the combined improvement by all Pareto optimal members.
In Section 4.6, a difference in CVG will be used to compare performance of two optimisations.

Previously in Section 3.4 the occurrence of variability in optimisation progress was introduced,
which is caused by two internal probability parameters in AutoOpti. In the remainder of this paragraph,
the effect of variability on the CVG improvement over time is discussed. The concept presented here
is referred to when defining the convergence criterion (Section 4.5) and when presenting the metrics for
comparing multi-fidelity performance (Section 5.2). Optimisation progress, which is expressed in this
work as the improvement in CVG over time, sees large variations. Improvements in terms of ∆CV G can
be very small in the initialisation phase, when the optimiser has not yet identified the direction of largest
improvement of the objectives. Conversely, periods of small improvement could be followed by a sudden
steep increase in CVG. The optimisation then achieves a ‘breakthrough’, by identifying a new region in
the design search space that can considerably improve the objectives. Figures 3.12 and 3.13 show that
members evaluated at time 3 can drastically enhance the CVG. The moment these members are evaluated,
could vary slightly through repetition of identical optimisations. When they are large, these unanticipated
variations in optimisation progress complicate the assessment of convergence, as well as the comparison
of two optimisations.
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Figure 3.13: Demonstration of CVG improvement, with two time instances highlighted

3.7 Potential metrics

In this section, an estimation method is introduced which evaluates the potential benefit of a multi-fidelity
optimisation. The estimation method is employed in this work to estimate potential of a multi-fidelity
optimisation over a single-fidelity optimisation on the same computational budget. The method evaluates
four guidelines developed in the work of Toal [29], which require the definition of three potential metrics.

The first three paragraphs of this section each look into one of the potential metrics: cost ratio, correlation
coefficient and replacement ratio. The fourth paragraph explains the guidelines for potential estimation.

Potential metric 1: Cost ratio

The cost ratio Cr, indicates the ratio of computational cost for evaluation of the high-fidelity process
compared to evaluation of the low-fidelity process, given by Equation 3.17. In this work, the cost of a
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3.7 Potential metrics

process is referred to as the time to run the process. The cost ratio is thus the speed-up factor of the
low accuracy process chain with respect to high-fidelity process. The higher the speed-up, the lower is
tavg,LF with respect to tavg,HF , hence the lower is Cr.

Cr =
Clofi
Chifi

=
tavg,LF
tavg,HF

(3.17)

Potential metric 2: Correlation coefficient

In this thesis, the correlation coefficient r2, quantifies the accuracy at which low-fidelity evaluations
can approximate high-fidelity evaluations. Unless specified otherwise, the calculation of the correlation
coefficient is performed after the optimisation is finished. This calculation is explained in the following.

First, every high-fidelity member evaluation is probed in the Co-Kriging surrogate model, to obtain
its predicted low-fidelity response. Second, the so-called Pearson correlation coefficient rxy is calculated
using Equation 3.18, where x and y represent results from two different fidelity levels. The Pearson
correlation rxy can take values on the interval [−1, 1]. At last, Equation 3.19 is applied as recommended
by Toal [29] to discard any negative correlation coefficients.
The approach described above allows to calculate the correlation coefficient only for parameters for which
a surrogate model is established. The setup employed in this work uses four surrogate models, for
two objectives and two restrictions. In this work, an average correlation coefficient is calculated for a
multi-fidelity optimisation, by applying Equation 3.20.
Figure 3.14 presents an illustration of all member evaluations from well-correlated low-fidelity and
high-fidelity processes. An illustration of evaluations from poorly correlating processes is shown in
Figure 3.15. Comparing results in these two figures, one could observe that evaluations from poorly
correlating processes are further away from the line of positive correlation.

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

(3.18)

r2 = r2
xy (3.19)

r2
avg =

(
4∑
i=1

ri

/
4

)2

(3.20)
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Figure 3.14: Sketch of member evaluations
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Potential metric 3: Replacement ratio

The last parameter to assess performance criteria is called the replacement ratio, fr. This parameter
describes the fraction of total budget allocated to low-fidelity members in multi-fidelity optimisation,
compared to a single-fidelity optimisation with an identical computational budget. The replacement ratio
is calculated by Equation 3.21, where nHF,MF and nHF,SF denote the number of high-fidelity members
in multi- and single-fidelity optimisations respectively. Using optimisation diagnostics, nHF,MF can be
obtained straight away. For obtaining nHF,SF , first the total computational budget spent in a multi-fidelity
setup needs to be calculated. This computation is shown in Equation 3.22. The budget for multi-fidelity
optimisation equals the summation of total UDP times for high-fidelity processes (nHF,MF · tavg,HF ) and
for low-fidelity processes (nLF,MF · tavg,LF ), where any training and waiting times are disregarded. In
single-fidelity optimisations, all budget is spent on evaluating high-fidelity members, hence tavg,HF is in
the denominator of Equation 3.22.

fr = 1−
nHF,MF

nHF,SF
(3.21)

nHF,SF =
nHF,MF · tavg,HF + nLF,MF · tavg,LF

tavg,F
(3.22)

Guidelines for potential estimation

This paragraph describes four guidelines recommended in the work of Toal [29] to estimate multi-fidelity
potential. In this work, multi-fidelity optimisation performance is estimated by employing these
guidelines. The results of the potential assessment are presented in Chapter 5. The four guidelines A,B,C
and D are formulated as follows:

A. The correlation between the low and high fidelity function should be reasonably high,
r2 > 0.9.

B. More than 10% of the total evaluation budget should be converted to cheap evaluations,
fr > 0.1.

C. No more than 80% of the total evaluation budget should be converted to cheap evaluations,
fr < 0.8.

D. There should always be more cheap data points than expensive, according to
fr > 1.75/(1 + 1

Cr
)

3.8 Literature review on multi-fidelity compressor optimisations

In this section, literature is discussed which considers the multi-fidelity method in shape optimisation of
compressor blades. From a short overview of previous work in this field, two major reference works are
selected and described in detail. These two publications discuss the benefits of the multi-fidelity method,
compared to single-fidelity optimisation of the same initial blade design.

A recent review by Fernández-Godino et al. [8] summarises the main areas for application of multi-fidelity
models, the processes of different fidelity and the types of surrogate models frequently used. From
information published in 18 papers, a diagram is established that shows both the cost savings of employing
the multi-fidelity method and the cost ratio between high-fidelity and low-fidelity processes. This diagram
is shown in Figure 3.16. In the work of Fernández-Godino et al. [8], it is concluded that there is no clear
relationship between the cost of multi-fidelity (MUFI) versus single-fidelity (SIFI) optimisations and the
cost ratio between low-fidelity and high-fidelity processes. That is because savings also depend on the
correlation between low-fidelity and high-fidelity processes and are therefore highly problem dependent.
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3.8 Literature review on multi-fidelity compressor optimisations

Figure 3.16 illustrates that a low cost ratio does not guarantee high savings. It also shows that a cost ratio
of as low as Cr = 0.10 is required to achieve cost savings of up to 90%. An example case with high
savings, is presented in the work of Padròn and Alonso [20], highlighted in Figure 3.16. In that work,
the multi-fidelity method is used for optimising a 2D airfoil geometry. The setup employed inviscid Euler
equations for the low-fidelity process and a RANS-based turbulence model for the high-fidelity process.
Computational cost could be reduced by 64%, compared to cost from single-fidelity optimisation. Cost
savings are interpreted as an optimisation speed-up of 64%. The observations presented in this paragraph
are reconsidered in Chapter 5, to evaluate performance of optimisations presented in this thesis.

In the following paragraphs, two research works are discussed in more detail, which serve as references
for the setup and findings presented in this thesis. To avoid confusion, in this section this thesis is called
“the current work”.
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Figure 3.16: Cost of multi-fidelity versus single-fidelity optimisations described in 18 papers, plotted
against the cost ratio of low-fidelity and high-fidelity processes [8]. Highlighted are the works from
Reimer [23] and Padròn and Alonso [20].

Reimer - Multi-fidelity optimisation of a compressor fan

The first reference work is the thesis by Reimer [23], which employs the multi-fidelity method for
aerodynamic optimisation of a single-stage compressor fan. The objective of this thesis is to test and
evaluate various optimisation setups which differ in the type of decision function used. Hence the
low-fidelity process is identical for all setups. The performance of these setups is compared to the
performance of a single-fidelity reference optimisation. The optimisation objectives are the isentropic
efficiency under nominal operating conditions and the increase in pressure ratio between two operating
points, over a certain mass flow. All optimisations are repeated four times, in order to take into account
progress variability. A total of 64 design parameters is used to parametrise the geometry of the rotor
and stator. This number is 20% lower than the number used in the current work (see Chapter 4.1).
Low-fidelity and high-fidelity process chains contain an aerodynamic simulation step using CFD and
a structural analysis step using FEM. The FEM calculation is merely used to calculate blade strain,
which is restricted during the optimisation. No information is provided on the convergence criterion
employed in this thesis. Details about the models used in this thesis are presented in Table 3.2. In
this table, the mesh ratio indicates the low-fidelity mesh size versus the high-fidelity mesh size. From
this table it could be seen that the mesh size per row is 550, 000 cells. This is 59% more than used
in the high-fidelity model in this thesis. For the low-fidelity model of Reimer [23], the number of
radial streamlines is reduced by 75%, which is 20% more than the reduction of the best low-fidelity
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model in the current work. Furthermore, the tip vortex is not resolved by the low-fidelity model in the
work of Reimer [23]. At last, both process chains employ the same RANS-based turbulence model
Wilkox k − ω. In the current work, also a two-equation turbulence model Menter SST is employed
by both processes. The most important differences in optimisation setups are reconsidered in Section 4.3-1.

The results presented in the work from Reimer [23] are as follows. All optimisations have outperformed the
single-fidelity reference optimisation. The best multi-fidelity optimisation outperforms the single-fidelity
reference optimisation with a speed-up of 50% and the worst with a speed-up of 13%. The best
multi-fidelity optimisation employs the variance decision function1. This multi-fidelity optimisation has
led to an efficiency improvement of 0.75% with respect to the intial design. This is an excess of 0.35%
in efficiency on top of 0.40% of efficiency improvement using single-fidelity optimisation. The cost ratio
between low-fidelity and high-fidelity processes is equal to Cr = 0.11. Information about the correlation
coefficient is not available from this work. The replacement ratio is fr = 0.42. In Section 5.3-2, these
values are compared to optimisations considered in this thesis. For this work, aerodynamic performance
of the optimum blade from multi-fidelity optimisation is only compared to performance of the initial blade
design. Hence, no information is available on the comparison of multi-fidelity and single-fidelity optimum
designs.

Table 3.2: Differences between high-fidelity and low-fidelity process in the work of Reimer [23]
Parameter High-fidelity model Low-fidelity model
Total mesh size [cells] 1, 100, 000 136, 000
Mesh per row [cells] 550, 000 68, 000
Mesh ratio [-] 1 0.12
Radial streamlines [#] ≈ 80 ≈ 20
Tip gap resolution (Enabled) (Disabled)
Turbulence model Wilkox k − ω (RANS) Wilcox k − ω (RANS)

Comment: Although exact resolutions were not specifically stated, from
figures in the thesis of Reimer [23] it could be observed that tip gaps were
enabled in the high-fidelity model and disabled for the low-fidelity model.

Brooks et al. - Multi-fidelity optimisation of a transonic compressor rotor

The second reference work is a research paper by Brooks et al. [3], presenting the implementation of
a multi-fidelity method for aerodynamic optimisation of a transonic compressor rotor. The aim of this
paper is to demonstrate budget savings for optimisation, by comparing performance of the new setup with
a single-fidelity optimisation. Both multi-fidelity and single-fidelity setups use the same computational
budget. Many low-fidelity function evaluations on a coarse CFD mesh are combined with few high-fidelity
function evaluations on a high resolution mesh, in order to improve accuracy of the Co-Kriging surrogate
model. The optimisation objective is to maximise the isentropic efficiency of the rotor, while constrained
by the pressure ratio and mass flow. A total of 28 design parameters is used to parametrise the blade
geometry of the rotor. The process chain for member evaluation only contains CFD simulation. No
information is provided about the convergence criterion employed to terminate optimisations. Additional
data on the high-fidelity and low-fidelity models is presented below in Table 3.3. From this table, one
could observe that a mesh ratio is used of 0.32. This is a 10% smaller reduction than applied to the
best low-fidelity model in the current work. The number of radial streamlines is reduced by almost
70%, which is 16% more than the reduction applied to the best low-fidelity model of the current work.

1The decision function type is called ‘variance without POI’. AutoOpti normally uses POI to favour high-fidelity members as
explained in Section 3.5. However in the work of Reimer [23], 15% of all members were high-fideltiy, and 85% were low-fidelity.
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Furthermore, the tip vortex is resolved in both high-fidelity and low-fidelity model by a similar number
of 6 streamlines. The tip vortex is resolved by 9 radial streamlines in the high-fidelity model (see Section
4.3-1) and 3 in the most suitable low-fidelity model. At last, both process chains employ the same
RANS-based turbulence model from Spalart-Allmaras, while this work employed Menter SST turbulence
equations. The impact of differences in settings on optimisation performance is discussed in Section 5.2-1.

The results presented in this paper are as follows. An efficiency improvement of 2.34% with respect to
the initial design is gained using the multi-fidelity method. This is an excess of 0.55% in efficiency on top
of 1.79% of efficiency improvement using single-fidelity optimisation. The cost ratio between low-fidelity
and high-fidelity processes is equal to Cr = 0.33 and the correlation coefficient is equal to r2 = 0.90.
The replacement ratio is fr = 0.50. In Section 5.3-2, these values are reconsidered.
The optimised blade designs from multi-fidelity and single-fidelity optimisations both show similarities in
three-dimensional shape (blade leaning), and differences in shape (blade stagger). The optimum design
from multi-fidelity optimisation improves the efficiency at a larger radial span (from 10% to 80% span),
compared to the optimum design from single-fidelity optimisation (from 30% to 80% span). Hence it
can be concluded that the geometrical shape and the aerodynamic performance of these optimum designs
are different. From this conclusion in the work of Brooks et al. [3], no conclusions drawn on the search
method multi-fidelity method. This fact is reconsidered in Chapter 6.

Table 3.3: Differences between high-fidelity and low-fidelity process in the work of Brooks et al. [3]
Parameter High-fidelity model Low-fidelity model
Mesh size [cells] 740, 000 240, 000
Mesh per row [cells] 740, 000 240, 000
Mesh ratio [-] 1 0.32
Radial streamlines [#] ≈ 70 ≈ 22
Tip gap resolution 6 radial streamlines 6 radial streamlines
Turbulence model Spalart-Allmaras (RANS) Spalart-Allmaras (RANS)

Concluding statement

This chapter has provided an introduction to the fundamental concepts of shape optimisation, applied
to axial compressors. Essential elements of single-fidelity and multi-fidelity optimisations have been
presented. Most notably, the multi-fidelity architecture employs a second evaluation process with lower
fidelity. The main conclusion of this chapter is as follows. Three parameters, so-called potential metrics,
determine the benefit of a multi-fidelity optimisation: the cost ratio Cr, the correlation coefficient r2

and the replacement ratio fr. These parameters are strongly affected by the amount of fidelity reduction
applied to the low-fidelity process. In the next chapter, it is described how suitable low-fidelity processes
are selected for test optimisations.
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4 Methodology for shape optimisation

The multi-fidelity technique is applied to an optimisation geometry, comprising of two blade stages at
the front-end of an axial compressor. The benefits offered by the multi-fidelity method are assessed
with respect to a single-fidelity reference optimisation that considers the same geometrical problem.
This chapter describes the optimisation problem, the setup of both optimisation types as well as the
convergence criteria for termination and performance metrics for comparison of optimisations.

In Section 4.1, the optimisation problem is specified. Consequently, Section 4.2 gives an overview of
optimisation settings selected in AutoOpti. Setups of both single-fidelity and multi-fidelity optimisations
are explained in Section 4.3. The selection of low-fidelity models for multi-fidelity optimisations is
motivated in Section 4.4. Optimisations are terminated by employing a convergence criterion, explained
in Section 4.5. This chapter is closed by an overview of performance metrics for comparing two
optimisations, given in Section 4.6.

4.1 Problem specification

The single- and multi-fidelity optimisation techniques both aim to maximise the same optimisation
objectives. A region of interest is defined around the initial design in the design solution space to
guide the optimisation. The region of interest is specified by means of a range on the design variables
at the input side and limits on operating parameters at the output side. In this section, the optimisation
problem is explained by considering the objectives, restrictions, constraints, geometry and parametrisation.

Objectives

In search of an optimum, candidate blade designs are evaluated on the basis of two performance parameters,
so-called optimisation objectives. The first objective is the isentropic efficiency in the design point at 100%
operating speed, which is from now called the “ISO” operating point. The second objective is the isentropic
efficiency in a point of operation where the ambient temperature is slightly higher. This operating point
is denoted by “HOT”. As can be seen in the compressor map of Figure 4.1, the two operating points
both lie on one single equilibrium running line, but are positioned along two different speed lines. That
is because for the HOT operating point, the normalised rotational velocity of the machine is lower due to
an increase in temperature. This relation was previously described by Equation 2.3.

Restrictions

In AutoOpti, a user can steer optimisation results and objectives towards a desired interval, through
specification of certain intervals that define a Region of Interest (ROI). The ROI of optimisation objectives
is determined by lower and upper limits. The ROI employed for objective functions in this work is given
by Equation 4.1. This equation indicates an optimum design is desired which achieves an efficiency in
the ISO and HOT operating points of at least 90%.

90% < ηis < 100% (4.1)
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Figure 4.1: Compressor map with three operating points for analysis

Secondly, a Region of Interest can be specified on performance parameters by definition of restrictions.
Restrictions constrain the design search space and serve as a secondary means to steer the optimisation
and separate satisfactory members from inadequate designs. In this thesis, two restrictions are applied.
The first restriction considers aerodynamic performance in the near stall operating point, that marks the
onset of compressor surge. In Figure 4.1, the near stall operating point is denoted by “NS” and lies on
the same speed line as the HOT operating point. The first restriction applies to the pressure ratio in NS
(ΠNS) and is expressed as a range around the pressure ratio achieved by the intial blade design (ΠNS,init),
as shown by Equation 4.2.

0.99 ·ΠNS,init < ΠNS < 1.01 ·ΠNS,init (4.2)

The second restriction constrains the mass flow (ṁ) that passes through the channel. This restriction
considers the true mass-flow instead of the non-dimensionalised mass flow. The restriction is defined as
such, that the mass flow is equal to, or higher than the mass flow effective for the initial design (ṁinit).
This mass flow rate guarantees a minimal power output of the gas turbine. Equation 4.3 shows the effective
limits.

ṁinit < ṁ <∞ (4.3)

As long as objective functions are outside the aforementioned intervals and restrictions are not satisfied,
AutoOpti calculates the distance towards the restriction intervals. First it is attempted to minimise this
distance, before the objective functions are maximised [12].

Geometry

The geometry considered by all optimisations described in this work, consists of two blade stages in the
front-end of the axial compressor. This geometry is established using the Siemens Integrated Design
program (SID). Taking advantage of rotational symmetry of the flow field, only one blade is included per
row, as shown in Figure 4.2. Within this four-blade setup, only the second rotor (highlighted in Figure
4.2) is parametrised and optimised. Surrounding blade stages are included in CFD simulations to capture
how a change in R2 leads to changes in the flow field for the other blades and vice versa.
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R1 S1 R2 S2

Figure 4.2: Meridional view of geometry used for simulation

Parametrisation

In this research work an existing optimisation framework is used. Therefore the parametrisation scheme
describing blade designs was readily available and not further adapted. The shape of the second rotor
blade is described by 80 design variables, which is 16 design variables (25%) more than in the work of
Reimer [23] and 62 variables (185%) more than in the work of Brooks et al. [3]. The blade consists of
five separate cross-sectional slices which are stacked in radial direction. Within such a cross-sectional
slice, the camberline is defined by three control point positions at chord-wise positions, dividing the
blade into three camberline sections. Curvature is introduced by three coefficients within these camberline
sections. Blade thickness varies smoothly from the leading edge towards the trailing edge, controlled by
two coefficients as well as the maximum thickness. The latter is specified as a function of the blade chord
length. The three-dimensional shape of the blade is obtained by stacking the slices in radial direction.
This positioning requires centre of gravity (COG) coordinates xcog and ycog and stagger offsets, as shown
in Figure 4.3. The design variables are varied over a range limited by a lower and upper value, as specified
in AutoOpti input settings.

x

y

z

cog

cog

Stagger

COG

Figure 4.3: Parametrisation of a the rotor showing radial slices

4.2 Optimisation settings

Single- and multi-fidelity optimisations are controlled in AutoOpti through settings distributed across
several input files. This section describes those settings, which have the most impact on optimisation
progress. A complete overview of settings cannot be disclosed due to confidentiality reasons.

Optimisation problem

First of all, the objectives, regions of interest and restrictions formulating the optimisation problem are
specified in a straightforward manner. Those settings have been explained in Section 4.1.
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Optimisation phases

Initialisation duration is defined as the total number of valid members to be evaluated by evolutionary
algorithms before enabling the surrogate model. The duration is set to 80 members, which equals the
number of design variables described in Section 4.1. Choosing this value allows to vary every design
parameter at least once. Members created in the initialisation phase, are derivations of the initial design
and will therefore show many similarities. For multi-fidelity optimisations, in the initialisation phase also
the percentage of low-fidelity members with respect to the total number of members is specified. To obtain
a large share of low-fidelity members during initialisation, the parameter is set to 0.8. The value of this
parameter is very comparable to the value used in the work of Reimer [23], in which good multi-fidelity
performance was demonstrated.

Furthermore, a termination criterion is specified, expressed as the number of evaluated members
after which the optimisation should be stopped. The disadvantage of this criterion is that a user would
need to estimate the convergence time. Therefore in this work, optimisations are terminated on the basis
of a custom convergence criterion presented in Section 4.6. The setting in AutoOpti is set to a member
number which is much higher than can be achieved during the total optimisation time1.

Generation methods

Thirdly, a weighting distribution is employed to rank the optional generation methods. For optimisations
in this work, all four evolutionary operations are given a weight of 1, while member generation using the
surrogate model2 is given a weight of 8. With this probability distribution, there is a probability of 66%
the surrogate model is used for member generation. Therefore the emphasis is put on directional search
using the surrogate model, instead of employing random exploration using evolutionary operations.

Multi-fidelity decision function

When implementing the multi-fidelity architecture, the decision function type needs to be specified. For
the first round of test optimisations described in this work, the variance decision function is selected,
which is motivated in Section 3.5.

Surrogate model training

The definition and training behaviour of the surrogate model can be controlled through various settings
parameters. In this work, default settings from AutoOpti are applied in general as suggested by Goinis
et al. [12], since adaptations to Kriging and Co-Kriging models are not in the scope of this research.
However, only the surrogate model training frequency is controlled, as specified through TrainMM. The
frequency parameter regulates the occurrence of surrogate training, which is expressed as an interval of
high-fidelity members for all optimisations in this work. Normally a user would manually decrease the
training frequency in later stages of an optimisation. That is done because training efforts increase over
time due to a growing member population. However, an automatic ramp option is not yet available in
AutoOpti. Hence, the average of such ramp is chosen, which is approximately equal to TrainMM = 5.

Process control settings

AutoOpti can perform simulation processes in parallel by distributing member evaluations over several
slaves. A user can control the number of slaves during optimisation, using two parameters specified in
the file ProcessControl.input. First of all, the user can specify the time limit in hours before a new slave
is created. Secondly, the user can set the target number of slaves. The number of slaves can be changed
dynamically without changing optimisation progress considered for comparison. This is taken into account

1The total number of members is set to MAX = 10, 000.
2Member generation using the surrogate model is denoted by EXPIMPR in the AutoOpti settings file.
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by the definition of optimisation progress applied in this work, which is independent of parallelisation of
slave processes. Optimisation progress is defined in Section 4.6.

4.3 Setup of optimisations

The multi-fidelity technique will be tested and compared to a single-fidelity optimisation. In this work,
the single-fidelity setup thereby serves as the reference optimisation for benchmarking multi-fidelity
performance.

4.3-1 Single-fidelity optimisation

The single-fidelity framework employs only one evaluation process to simulate the aerodynamic flow field
at high-fidelity, as previously explained in Section 3.2. In this section, the high-fidelity evaluation process
applied in single-fidelity optimisation is considered in detail. Elements that are touched upon in the
following, are the high-fidelity process chain, CFD mesh setup and solver settings.

Process chain

In single-fidelity optimisation, every member design is evaluated using a high-fidelity evaluation process.
Its process chain is represented in a flow chart in Figure 4.4. Subprocesses used for CFD simulation
in TRACE are highlighted in blue, while the mesh creation step in GMC is green. Processes meant to
support the aerodynamic simulation in preparation and evaluation are grey. An indication of the time for
every subprocess is presented by Table A1 in the Appendix.

Create blade

Position blade

Create mesh

       CFD 
pre-processing

CFD flow 
simulation

         CFD
post-processing

Evaluate results

GMC

TRACE

Other tools

Figure 4.4: Process chain executed for high-fidelity member evaluation

The input for the first step is a design vector. This vector of geometrical design parameters is sent by
the master to the slave, which then uses it to generate the blade geometry of the rotor. First the airfoil
cross-sections are established after which stacking is carried out, as shown in Section 4.1. Consequently,
the 3D blade is positioned in the next step, while subject to geometrical constraints. This assures that the
blade fits within a fixed boundary box. Next, the geometry is extended by adding the other three blade
rows and later sent for meshing. Boundary conditions and solver options for CFD simulation are specified
in GMC, a pre-processor developed by MTU Aero Engines that is capable of connecting a multi-block
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4.3 Setup of optimisations

mesh. Pre-processing settings are explained later in this section. Simulation and post-processing steps
are performed by flow solver TRACE. This aerodynamic solver was developed by DLR, specifically
for development and optimisation of turbomachinery components. TRACE is particularly useful for
multi-row setups, owed to its capability to split the mesh in blocks and solve processes in parallel. The
mesh, pre-processing settings and solver setup for high-fidelity simulation are explained in the following
subsections.

Mesh setup

A structured mesh is implemented in order to maintain control over mesh complexity and accuracy of
resolving flow features, as motivated in Section 2.3. The resolution of the mesh for all four blades is
defined by distributions in the S1 and S2 planes, previously shown in Figure 2.2. In the S1 plane, a dense
blade-to-blade resolution is specified. Furthermore, in the S2 plane a parabolic distribution of radial
streamlines is selected. For the sake of simplicity, these two resolutions are shown in Figure 4.5 for the
second rotor blade only. A parabolic radial distribution of cells is chosen such that cell density is highest
in blade root and tip regions, for better resolving the end-wall boundary layers. Furthermore, the green
highlight at the blade tip indicates the mesh is highly refined by 9 streamlines in the tip region. This
mesh refinement allows for resolving tip vortices.

6161
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x

y

31

9

Figure 4.5: Radial and blade-to-blade mesh resolutions for high-fidelity CFD analysis for R2 only.
(Note: geometry skewed for confidentiality reasons)

In this investigation, resolving viscous effects within the boundary layers is not of primary interest.
Therefore wall-functions are applied to resolve near-wall regions instead of low Reynolds models. A
discussion on both of these options was provided in Section 2.3. The dimensionless wall distance y+ can
be increased when using wall-functions, compared to using low-Reynolds models. Figure 4.6 shows the
blocking structure applied in the blade-to-blade plane. This structure implements a O-H grid topology.
The inner O-grid (indicated in blue) surrounds the blade surfaces with very high resolution for capturing
large velocity gradients. The H-grid (indicated in green) aligns the mesh with the flow further away from
blade surfaces. Details of the finalised mesh are summarised in Table 4.1.
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H-grid

O-grid

Figure 4.6: Mesh blocking scheme of the rotor blade for high-fidelity CFD analysis (Note: geometry
skewed for confidentiality reasons)

Table 4.1: Properties of high-fidelity CFD mesh
Parameter Value
Total mesh size, four rows [#] 904, 000
Mesh cells per blade row [#] 226, 000
Dimensionless wall distance y+ [-] 24.2

Pre-processing

In GMC, boundary conditions are selected for walls of the flow domain. These conditions determine the
type of flow interactions with the blade geometry. The conditions are either inviscid, viscous or moving.
Rotor blades are marked as “moving”, while the stator blade surface is labelled “viscous”, introducing
a no-slip boundary condition. Moreover, stationary parts of the hub and shroud are given ‘inviscid’
boundary conditions. Between two consecutive blade cascades, mixing planes are introduced where flow
is averaged circumferentially. This averaging step is enforced at the mixing plane such that a continuous
flow field can be calculated, even though the flow domain switches from stationary to rotating when
moving between stators and rotors.

Solver settings

Aerodynamic simulations for evaluating a blade design are run in steady-state. The convergence control
settings specify limits to the relative changes in mass flow, efficiency and pressure ratio. If these physical
quantities are all within their specified thresholds, an aerodynamic simulation is said to be converged and
is automatically terminated in TRACE. For CFD simulations in this work, default settings from GMC are
applied, in accordance with the thesis of Reimer [23]. All convergence settings are presented in Table 4.2.
The time step is included at which convergence is checked for the first time. Furthermore, the convergence
interval is indicated. This is the interval during which convergence criteria need to be fulfilled before
starting another new measurement interval.

In TRACE an implicit time stepping scheme is employed to solve the turbulence equations. The
turbulence model Menter SST is selected according to best practice in state-of-the-art optimisation cases
and offers a good trade-off in accuracy and simulation time. The pseudo-time at which these calculations
are performed, differs from the physical time step through the Courant-Friedrichs-Lewy number, as
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Table 4.2: Convergence control settings
Convergence criterion Value
Mass flow 0.01%
Efficiency 0.01%
Pressure ratio 0.01%
Time step at first convergence check [#] 200
Convergence interval for checking [#] 100

defined by Equation 4.4. This number indicates how fast the flow is moving with respect to the time step
size ∆t and the mesh cell size ∆x. The CFL setting is shown alongside with other solver settings in
Table 4.3. A ramp setting is used rather than a constant CFL value, because increasing the pseudo-time
initially might destabilise the simulation when residual values are still large. Robust convergence is a
solver feature provided by TRACE to neglect small scale fluctuations in the flow field and apply robust
algorithms at solid walls. This helps to quickly obtain a stable flow solution in steady-state simulation
[6]. However, this solver mode needs to be switched off before satisfying all convergence criteria, such
that the original flow field is solved. Pre-processing, aerodynamic simulation and post-processing steps
are performed for all three operating points.

The initialisation of the flow field is organised by means of a through-flow calculation, providing a
two-dimensional preliminary solution which is homogeneous in circumferential direction. The three
dimensional flow field that serves as a starting point for simulation is obtained by interpolating this flow
domain. The initial flow field is described by velocity components U in axial, circumferential and radial
directions, as well as the pressure p and temperature T variations in axial and radial directions.

CFL = U∗
∆t
∆x

(4.4)

Table 4.3: High-fidelity solver settings
Parameter Setting
Solver mode Steady simulation
Turbulence model Menter SST 2003 k − ω
CFL ramp 1 to 50 in time steps 1 to 500
Robust convergence switch Time step 600

Overview of high-fidelity process chain

A summary of settings of the high-fidelity process chain is presented in Table 4.4. This model is the only
simulation process employed for member evaluation, in single-fidelity optimisations considered in this
work. The model is given the name HIFI for a clear distinction with models of lower fidelity, which are
described in Section 4.4. The radial number of streamlines and the blade-to-blade resolution are presented
in a small diagram in column 4 of Table 4.4.
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Table 4.4: Details of the high-fidelity process for single-fidelity optimisation
Name Governing Mesh size Mesh resolutions Description

equations (S2,S1)

HIFI Menter SST 903,000 61

79 31
Highest accuracy evaluation process

4.3-2 Multi-fidelity optimisation

The multi-fidelity architecture used in this work employs a low-fidelity process besides a high-fidelity
evaluation process. This short section outlines the setup of multi-fidelity optimisations which are tested
in this thesis.

In this work, five multi-fidelity optimisations are tested in order to verify achievements of the multi-fidelity
technique in comparison with single-fidelity optimisation. The high-fidelity process chain is identical to
the process in single-fidelity optimisation, which was described in Section 4.3-1. Thereby the meshing,
pre-processing and simulation settings are also identical. Whereas all five multi-fidelity setups apply the
same high-fidelity process chain, the low-fidelity process chain is varied to study the effects of reducing
fidelity on optimisation progress. By reducing the fidelity level of the low-fidelity process, both its
accuracy and simulation time are affected. These two elements influence the capability of a low-fidelity
process in supporting the multi-fidelity framework. The selection of suitable low-fidelity processes is
explained in the next section. At the end of the next section an overview is provided summarising the
employed process chains.

4.4 Low-fidelity model selection

In order to use the full potential of multi-fidelity optimisation, a low-fidelity process is required that is
significantly faster to evaluate, but still sufficiently accurate compared to the high-fidelity process. In this
section, suitable low-fidelity processes are identified and down selected for further investigation within
the multi-fidelity framework. Multi-fidelity optimisations considered for testing are presented later in this
section. The selection is based on an evaluation of the speed and prediction accuracy of a single CFD
simulation with reduced fidelity with respect to a high-fidelity baseline case. In this thesis, this selection
is called “single-member analysis”.

This section starts by introducing the scope of fidelity reduction and applicable reduction methods in
Subsection 4.4-1. This introduction is followed by the single-member analysis, described in Subsection
4.4-2. In Subsection 4.4-3, five low-fidelity processes are selected for testing the multi-fidelity method.

4.4-1 Identification of fidelity reduction methods

In the following, a definition is provided of fidelity reduction. This definition helps to identify reduction
methods suitable for establishing the low-fidelity process chain.

Fidelity reduction
is the act of neglecting certain flow phenomena within the aerodynamic field or resolving them
with less accuracy in order to save process time, by which an error is introduced to the objective
function.
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4.4 Low-fidelity model selection

Settings categories

The low-fidelity process of lower simulation time is obtained by applying fidelity reduction methods to the
high-fidelity process. In this work, only fidelity reduction methods within 3D CFD simulation are studied,
although normally it is also possible to consider one-dimensional and two-dimensional through-flow
simulations to act as low-fidelity processes. The most expensive subprocesses in the high-fidelity process
chain are mesh generation and flow simulations, which can be identified from the process times presented
in the Appendix. Hence, only two categories of fidelity reduction methods are applied in this work: 1)
mesh reduction and 2) changes in solver settings. The two categories are indicated in the high-fidelity
process chain in Figure 4.7. Table 4.5 on the next page summarises possible mesh and solver adaptations
to the process and their impact on time and accuracy as indicated by 3and 7 . An argumentation for
the impact on time and accuracy by these adaptations is provided in the next two subsections. From
the markings in Table 4.5, one can observe that four settings influence both time and accuracy. These
settings are considered fidelity reduction methods because they are in agreement with the definition above.
The fidelity reduction methods considered in this work are therefore: reduction in the number of radial
streamlines, removing tip gaps, reduction in blade-to-blade mesh resolution and changing to a cheaper
turbulence model. These four methods are illustrated in Figure 4.8.

Create blade

Position blade

Create mesh

CFD simulation

Evaluate results

Mesh settings

Solver settings

Figure 4.7: High-fidelity process chain with categorised settings

(a) (b) (c) (d)

Figure 4.8: Fidelity reduction methods for establishing the low-fidelity process chain: (a) number of radial
streamlines, (b) tip gap refinement, (c) blade-to-blade resolution, (d) Turbulence model
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Table 4.5: Mesh and solver settings and their effects on simulation time and solution accuracy

Category Method Effect on time Effect on accuracy
Mesh Reduce b-to-b resolution 33 33

Mesh Reduce radial streamlines 33 33

Mesh Remove tip refinement 33 33

Solver Switch turbulence model 33 33

Solver Adapt CFL setting 3 7

Solver Adapt convergence criteria 3 3

33 Large effect
3 Small effect
7 Very little effect

Effects of mesh settings

In Table 4.5 it can be seen that all mesh settings influence simulation time and accuracy. Mesh settings
determine the density of mesh cells in regions of the flow domain. Therefore the effect on simulation
time is evident: reducing mesh resolution reduces the total number of cells and therefore the run time of
a CFD simulation. Reducing the mesh resolution in certain areas also affects the local accuracy of the
flow solution. In Section 2.3, it is described how the mesh contains local refinement regions to capture
physical flow phenomena. By removing mesh refinements in the tip regions, tip leakage flows can no
longer be resolved. Analogously, by reducing the radial number streamlines, secondary flows are resolved
with less accuracy.

Effects of solver settings

In Table 4.5, one can observe that the first method in the category of solver settings affects both time
and accuracy. By switching the turbulence model, potentially the simulation time can be reduced. This
is expected in particular, when changing from a two-equation to a one-equation model. The accuracy is
then influenced depending on how the model handles small-scale flow fluctuations or viscosity.

Other solver settings in Table 4.5 influence time, but do not affect accuracy directly. First of all, the
CFL setting is strongly tailored to the ∆x value of cells, whose relation was shown by Equation 4.4 in
Section 4.3-1. In general, the CFL setting determines the time for simulation but has little influence on
the simulation result itself. However, it can impact the numerical stability of the solver and hence lead
to no converged solution at all. In the sketch of Figure 4.9, it is shown that using a basline CFL ramp,
the solver residual gradually decreases until the convergence point. Increasing the steepness of this ramp
could prevent the simulation to converge. The CFL setting is hence not a fidelity reduction method and
all low-fidelity models employ identical CFL settings.

The convergence criterion is the second setting that does not affect accuracy directly. For instance,
reducing the mass flow convergence criterion improves accuracy of the solution. The sketch of Figure
4.10 shows two settings of the convergence threshold. While the simulation shown in this figure reaches
convergence according to the baseline criterion, using a lower criterion threshold is unattainable for the
depicted simulation. As a result, the simulation does not reach convergence. Concluding from this effect,
adaptation of the convergence criteria is not a primary fidelity reduction method. This setting is kept
constant for all low-fidelity models. The CFL ramp and convergence criteria specified for the low-fidelity
processes are identical to those of the high-fidelity process chain, which was presented in Section 4.3-1.
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Figure 4.9: Sketch of decreasing solver residual
for two CFL ramp settings.
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4.4-2 Fidelity reduction study

This section assesses the impact of previously introduced adaptations in mesh and solver settings on
simulation time and accuracy. This assessment motivates the choice of low-fidelity processes employed
in multi-fidelity optimisations, whose results are described in the next chapter.

A low-fidelity process is established by applying various fidelity reduction methods to a high-fidelity
baseline model. The high-fidelity baseline model is the CFD simulation described in Section 4.3-1, which
evaluates the isentropic efficiency in the ISO operating point at 100% normalised speed. The performance
assessment of a low-fidelity model is based on comparing two CFD simulations of a single member: one
high-fidelity simulation and one low-fidelity simulation. The results of the single-member analysis are
gathered in Table 4.6. In the following, first the parameters in each of the columns in Table 4.6 are
explained. Thereafter, the data contained in each of the rows is discussed.

Columns 1 to 7 provide information about the model setup. In column 1, it is shown which
fidelity reduction methods are applied to a given model. Here “B2B” means a reduction in blade-to-blade
resolution and “RSL” means a reduction in the number of radial streamlines. Column 2 presents the
model number. The high-fidelity model has been given the number 0, and every low-fidelity model takes
an ascending number. The blade-to-blade resolution is presented in column 5 according to the numbering
explained in Table 4.7 and Figure 4.11. Furthermore, column 6 indicates whether refinement in tip regions
is enabled or disabled.

In Table 4.6, columns 8 to 11 contain the parameters that evaluate the performance of a low-fidelity
model. These parameters are shortly explained next, in order to clarify the final scoring of each model.
The time ratio tratio in column 8 is calculated by applying Equation 4.5. In this equation, subscript hifi
denotes the baseline high-fidelity model, and m represents a low-fidelity model index. After evaluating
the time ratio for all models, the maximum time ratio (tratio)max can be determined. The normalised
time offset ∆tnorm of column 9 is then determined for every model using Equation 4.6. Analogously, the
efficiency ratio ηratio of column 10 is calculated by applying Equation 4.7, while the normalised offset
∆ηnorm of column 11 is found by Equation 4.8. Finally, the score of each low-fidelity process LFscore
of column 12 is obtained by multiplying the normalised time and normalised accuracy offsets through
Equation 4.9. This score can attain values within the interval [0, 1], where a value close to 1 indicates a
large reduction in simulation time is achieved while maintaining a high solution accuracy.
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Table 4.6: Ranking low-fidelity models using single-member analysis. The high-fidelity baseline model is highlighted in blue. The most suitable low-fidelity
process is highlighted in green.

1 2 3 4 5 6 7 8 9 10 11 12
# Cells RSL B2B Tip gap Turb. model tratio ∆tnorm ηratio ∆ηnorm LFscore
0 931,000 61 79 / 31 Enabled Menter SST 0.00 0.00 0.00 0.00 0.00

B2
B

1 700,000 61 63 / 27 Enabled Menter SST 0.38 0.39 0.07 0.96 0.37
2 486,000 61 47 / 19 Enabled Menter SST 0.46 0.47 -0.04 0.98 0.46
3 310,000 61 35 /15 Enabled Menter SST 0.72 0.73 -0.53 0.70 0.51
4 236,000 61 27 /15 Enabled Menter SST 0.80 0.82 -1.27 0.27 0.22

RS
L

5 731,000 49 79 / 31 Enabled Menter SST 0.22 0.22 -0.50 0.71 0.16
6 575,000 39 79 / 31 Enabled Menter SST 0.39 0.40 -0.89 0.49 0.20
7 414,000 28 79 / 31 Enabled Menter SST 0.51 0.52 -0.11 0.94 0.49

RS
L

+
B2

B

8 401,000 28 79 / 31 Disabled Menter SST 0.51 0.52 0.50 0.71 0.37
9 223,000 28 47 / 19 Enabled Menter SST 0.75 0.77 -0.15 0.91 0.70

10 213,000 28 47 / 19 Disabled Menter SST 0.72 0.73 0.45 0.74 0.54
11 205,000 28 35 / 15 Enabled Menter SST 0.72 0.73 -0.60 0.66 0.48
12 132,000 17 47 / 19 Disabled Menter SST 0.81 0.83 0.31 0.82 0.68
13 13,000 6 19 / 15 Disabled Menter SST 0.98 1.00 -1.75 0.00 0.00

A
ll

14 931,000 61 79 / 31 Enabled Wilkox k − ω 0.11 0.11 -0.24 0.86 0.10
15 132,000 17 47 / 19 Disabled Wilcox k − ω 0.83 0.85 0.55 0.69 0.58
16 13,000 6 19 / 15 Disabled Euler 0.98 1.00 -1.65 0.06 0.06

� High-fidelity reference model
� Best low-fidelity model overall
� Best LFscore in category
� Worst LFscore overall



4.4 Low-fidelity model selection

Table 4.7: Indicators of blade-to-blade (S1) resolution settings
Resolution indicator Applied resolution

[X / Y] [x1 − x2 − x3 / y1 − y2 − y3]

79 / 31 13-53-13 / 13-5-13
63 / 27 9-45-9 / 9-9-9
47 / 19 5-37-5 / 5-5-9
35 / 15 5-25-5 / 5-5-5
27 / 15 5-17-5 / 5-5-5
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Figure 4.11: Diagram demonstrating conversion of blade-to-blade resolution

tratio =
thifi − tm
thifi

(4.5)

∆tnorm =
thifi − tm
thifi

/(
thifi − tm
thifi

)
max

= tratio/(tratio)max (4.6)

ηratio =
ηhifi − ηm
ηhifi

(4.7)

∆ηnorm = 1−
∣∣∣∣ηhifi − ηmηhifi

∣∣∣∣/∣∣∣∣ηhifi − ηηhifi

∣∣∣∣
max

= 1− |ηratio|
|(ηratio)max|

(4.8)

LFscore = ∆tnorm ·∆ηnorm (4.9)

In the following, the scores of low-fidelity models are explained on the basis of the categories of column
1 in Table 4.6.
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4.4 Low-fidelity model selection

1. Reducing blade-to-blade resolution

Out of all four fidelity reduction methods described in Section 4.4-1, only the blade-to-blade resolution
can be varied solitarily. Therefore models [1 − 4] see a descending blade-to-blade resolution, while all
other settings are similar to those from the hifi baseline model. From the first category, model 3 shows
the highest score (LFscore = 0.51), followed by model 2 (LFscore = 0.46).

2. Reducing radial streamlines

In the second model category, a reduction of the number of radial streamlines is applied in a range from
RSL = 49 to RSL = 28. Further reduction in radial streamlines while using a 79/31 blade-to-blade
resolution, results into formation of skewed cells, causing the CFD simulation to fail. Within the second
model category, model 7 employing RSL = 28 obtains the highest score (LFscore = 0.49).

3. Reducing both blade-to-blade resolution and radial streamlines

Judging on high scores of models 3 and 7, a combined reduction in blade-to-blade resolution and radial
resolution might give a high LFscore. Therefore models [8−13] implement different combinations of these
two reduction methods. The following can be concluded from model scores attained within this category.
Since model 8 scores lower than model 7, it is concluded that mesh refinement in tip regions should be
kept for higher simulation accuracy of the isentropic efficiency. However, tip gaps cannot be maintained
when the radial distribution reduces below RSL = 28. The scores of model 9 (RSL = 28) and model 12
(RSL = 17) are of a similar high values, being LFscore = 0.70 and LFscore = 0.68 respectively. These
models achieve the best balance of reduced time while maintaining a low offset in efficiency with respect
to the high-fidelity baseline model.

It could be observed that high-fidelity baseline model 0 as well as model 13 employing the most
severe fidelity reduction both scored LFscore = 0.00. The reason for this is that the baseline model
obtained ∆tnorm = 0.00 due to zero time savings, and model 13 attains the highest efficiency offset,
automatically resulting in ∆ηnorm = 0.00.

4. Adapting turbulence model

Changing turbulence equations for low-fidelity models could help to decrease the CFD simulation time
even further. Hence, the last category of low-fidelity models considers two alternative solver options. In
this work, the Wilcox k−ω model is considered as a first alternative to the Menter SST turbulence model,
since it is often used for this type of turbomachinery applications as discussed in Section 2.3. The second
alternative is to employ inviscid Euler equations. It is considered because it is very cheap to evaluate and
suits simulations using rough meshes.

The settings of low-fidelity models 14 and 15 are similar to the respective models 0 and 12, except
for that they employ Wilcox k−ω turbulence equations. On the basis of their scores, it is concluded that
it is beneficial to use Menter SST. The time savings from switching to Wilcox k − ω are too small to
compensate for the increased accuracy offset. This agrees with the expectation of achieving little benefit,
since Menter SST and Wilcox k − ω are both two-equation models.

Instead of employing a turbulence model, one could simulate the flow using Euler equations which
assume zero viscosity. In Section 2.3, it is explained that Euler equations are only suitable for low
resolution meshes with high y+ values, since boundary layers are not resolved. Euler equations might
therefore cause a large accuracy offset. However, the reduction in accuracy might be compensated by a
larger reduction in simulation time. The settings of model 16 are similar to model 13, except for that
model 16 employs the Euler equations. The time savings and offset in accuracy for model 16 are similar
to those obtained by model 13. Hence the score is also equally low, with LFscore = 0.06.

One major conclusion is drawn from the previous performance assessment of low-fidelity models.
High scores could be attained by models out of different fidelity reduction categories. Hence, results
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4.4 Low-fidelity model selection

from this approach show that models with two very distinct levels of fidelity can both achieve a large
simulation time reduction, while maintaining sufficient solution accuracy. In the following section, suitable
low-fidelity models are selected for multi-fidelity optimisation.

4.4-3 Down-selection of models

The assessment strategy of low-fidelity model performance presented in previous sections, provides
preliminary insight to select models for supporting multi-fidelity optimisation. In this section, the
down-selection of low-fidelity models for multi-fidelity optimisation is described and motivated. First
the expectedly most suitable low-fidelity process is identified and thereafter the selection of low-fidelity
processes is motivated.

Best performing low-fidelity process

Out of all models presented in Table 4.6, low-fidelity model 9 attains the highest score of LFscore = 0.70.
This score is based on a large reduction in simulation time of 77% and decrease in efficiency of only 15%
with respect to the high-fidelity baseline model.

Lofi processes for multi-fidelity optimisations

In this work, the influence of the fidelity level of the low-fidelity model is assessed by testing five
multi-fidelity optimisation setups with distinct low-fidelity processes. The first low-fidelity process that is
employed multi-fidelity optimisation is the best performing low-fidelity model 9. Furthermore, four extra
low-fidelity models are selected, preferably from other fidelity reduction categories, previously presented
in Table 4.6. This approach results in five contrasting multi-fidelity architectures, which help to answer
the research question on the most suitable low-fidelity level for maximum multi-fidelity benefit. Also it
assists to verify the applicability of single-member analysis. The verification of this assessment method
is described in Section 5.5.

In Table 4.8, an overview is given of the process chains employed by multi-fidelity optimisations
considered in this work. All multi-fidelity optimisation employ the same high-fidelity process chain,
shown in the top row. The low-fidelity processes that distinguish multi-fidelity optimisations are shown
from row 2 and onwards, and ordered by an increasing amount of fidelity reduction. In the following,
first the columns are explained, after which the model selection is motivated.

In Table 4.8, column 1 shows the type of process chain. Column 2 presents the model
number, previously shown in Table 4.6. Column 3 shows the turbulence model employed during the
simulation. Column 4 shows the number of total mesh cells. In column 5, the rotor blade mesh
is illustrated in radial and blade-to-blade planes by means of a schematic. Each figure presents
three numbers (from left to right): the mesh resolutions in radial, axial and circumferential direction.
Column 6 shows what type of fidelity reduction is applied with respect to the high-fidelity baseline model.

The first four low-fidelity models implement Menter SST, since models employing this turbulence model
have attained higher scores than models employing Wilcox k − ω. Besides model 9, also models 7 and
12 have obtained high scores in their respective categories. In the category of reducing the blade-to-blade
resolution, model 2 is selected over model 3, although model 2 attains a slightly lower score. The reason
is that model 2 has the same blade-to-blade resolution as models 9 and 12. The fifth low-fidelity model
selected for multi-fidelity optimisation is model 16, which applies inviscid Euler equations. This model
attains the lowest score in the entire performance assessment, and calculates efficiency with a large offset.
However, it is employed to investigate if the multi-fidelity method can provide a benefit over single-fidelity
optimisation, using low-fidelity process results with very little information content.
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4.4 Low-fidelity model selection

Table 4.8: High-fidelity process and selected low-fidelity process chains for multi fidelity optimisation
1 2 3 4 5 6

Process Model Governing Mesh size Mesh resolutions Adaptation with respect
chain number equations (S2,S1) to HIFI

HIFI 0 Menter SST 903,000 61

79 31
No adaptation.

LOFI 1 2 Menter SST 486,000 61

47 19
Reduced B2B.

LOFI 2 7 Menter SST 414,000 28

79 31
Reduced RSL.

LOFI 3 9 Menter SST 223,000 28

47 19
Reduced RSL and B2B.

LOFI 4 12 Menter SST 132,000 17

47 19
Reduced RSL, B2B, tip gap.

LOFI 5 16 Euler 12,800 6

19 5

RSL, B2B, tip gap
and solver equations.

—– Tip refinement enabled
- - - Tip refinement disabled

Conclusions of assessment method

This chapter has presented a simple approach for a designer to setup multi-fidelity optimisations. The
models 9, 7 and 12 have been selected to support multi-fidelity test optimisations, because they attained
high scores in their respective fidelity reduction categories. Moreover, model 2 is chosen to fit the
fidelity reduction steps of other selected models. Lastly, model 16 is selected with lowest fidelity to test
multi-fidelity potential providing low information content.

The method discussed in this chapter is a first attempt to forecast the behaviour of a thousand
members simulated during the optimisation, on the basis of only a single member evaluation. At this
moment, it is not certain wether a single member evaluation is sufficient to setup a successful multi-fidelity
optimisation. In Section 5.5, the applicability of this method is reconsidered by evaluating optimisation
results.
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4.5 Convergence criterion

4.5 Convergence criterion

In this section, a convergence criterion is defined for optimisation termination. First, it is explained why
a convergence criterion is required to terminate optimisations. Thereafter, the implementation of the
convergence criterion is discussed.
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Figure 4.12: Sketch of a possible speed-up achieved by multi-fidelity optimisations with respect to a
single-fidelity optimisation and its dependence on the convergence criterion.

Motivation for convergence criterion application

The following motivates the use of a convergence criterion. Multi-fidelity and single-fidelity optimisations
in this work employ the same high-fidelity process to resolve the design solution space. In Figure 4.12,
a theoretical progress sketch of both optimisations is shown. In this idealised representation, both
optimisations approach the same theoretical limit of improvement at infinite time, indicated by Time C.
Provided that optimisations do not get stuck in local optima and that two identical global optimum designs
do not exist, both optimisations converge towards the same global optimum. Obviously, using an infinite
optimisation is not practical and optimisations need to be terminated before reaching the theoretical
optimum. The duration of an optimisation is determined on the basis of two requirements. The duration
needs to be 1) sufficiently long to allow for good optimisation convergence and 2) short enough to fit the
optimisation phase within the compressor design schedule. Using the setup for single-fidelity optimisation
described in Section 4.3, good convergence is achieved after a run time of 7 days using 10 parallel slave
processes. Moreover, this run time is within the available time frame for single-row optimisations. Hence,
an optimisation time of 7 days is taken as the basis for defining the convergence criterion in the next
paragraph.

In Figure 4.12 it can be observed that at Time C there is no speed-up obtained using multi-fidelity
optimisation. Considering two earlier instances Time A and Time B, one could observe that the speed-up
at is larger at Time B. From this it could be concluded that the moment for comparing multi-fidelity
and single-fidelity optimisations influences the measured speed-up by the multi-fidelity method. This
dependency is later revisited in the conclusions of this work, to evaluate the selected convergence criterion.
Concluding from what is stated above, the convergence criterion has two functions. First of all, it is used to
terminate the single-fidelity optimisation at an optimisation time of approximately 7 days and thereby fixes
the available computational budget. Secondly, using this criterion the convergence status of multi-fidelity
optimisations is checked at the time instance of single-fidelity convergence. This allows to determine how
well multi-fidelity optimisations have progressed for the same computational budget.
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4.5 Convergence criterion

Criterion implementation

Next, the implementation of the convergence criterion is explained. Section 3.6 has illustrated the
variation in CVG over time, caused by optimisation variability. Local variations in progress prevent one
to identify a local trend in optimisation progress. The trend of the CVG curve is therefore approximated
on a global scale by means of least-squares fitting. An inverse exponential function described by
Equation 4.10 is selected for two fundamental characteristics: this function passes through the origin
(CV Gfit(0) = 0) and has zero gradient for large values of x (limx→∞

δCV Gfit
δx = 0), regardless of

coefficients a, b and c. For making a least-squares fit, the three shape coefficients a, b and c are optimised
using an internal function in Python.

A fit is established for the CVG progress curve as a function of the number of valid high-fidelity
members. This approach discards the time contributions by low-fidelity members in multi-fidelity setups
and thus enables a proper comparison of multi-fidelity and single-fidelity convergence behaviour. The
latter would not be possible when considering CVG improvement over time, since optimisation time also
includes the time for low-fidelity member evaluations.

Now the application of the convergence criterion is discussed. The gradient of the fitting function is given
by Equation 4.11. In Figure 4.13, it is shown that the member number at convergence, HFconv, is found at
the intersection of the gradient of the fit function and the convergence criterion threshold. This threshold is
defined by Equation 4.12 and its value is selected as such that the single-fidelity optimisation is terminated
at 7 days (as described above). Figure 4.14 demonstrates the CVG obtained at the convergence point,
indicated as CV Gconv.

CV Gfit(x) = a ·
(

1− e−b(x−c)
)

(4.10)

dCV G
dx

(x) = a · b · e−b(x−c) (4.11)

Threshold on CVG gradient:
(

dCV G
dx

)
conv

= 0.25 · 10−6 [1/member] (4.12)

As shown earlier in Figure 4.12, a small improvement in CVG is expected after reaching convergence. By
testing two single-fidelity optimisations, it is determined that the CVG value could be increased by 6%
when continuing the optimisation for a 20% longer time. This CVG gain amounts to an average efficiency
improvement of approximately 0.07% with respect to the average efficiency attained in the convergence
point. This efficiency gain is found to be sufficiently small. Hence in this thesis, the CVG gradient
threshold of 0.25 · 10−6 is applied as the convergence criterion.
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Figure 4.13: Intersection of convergence limit with gradient of fitting curve, marking the high-fidelity
member number at convergence.
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Figure 4.14: Sketch of single-fidelity optimisation progress with gradient fit and convergence point.

4.6 Performance metrics

This section explains two performance metrics used in this work to compare actual performance of one
optimisation with respect to another. The first metric is the speed-up measured in time. This metric is
of primary interest when using the multi-fidelity method, because this method is employed to reduce the
computational cost of optimisation and thereby provide savings in optimisation run time. The second
metric is an improvement in Cumulative Volume Gain (CVG). The definition of this parameter was
previously explained in Section 3.6.

In the first paragraph, the parameter “‘Theoretical Optimisation Time” (TOT) is introduced. In the
second paragraph, the performance metrics are explained.

Optimisation time

In this work, optimisation progress is compared on the basis of the CVG development over time. The
time scale considered in this thesis is Theoretical Optimisation Time (TOT), which essentially takes the
sum of all process times and time spent on surrogate training. The key assumptions for defining this
time scale are: 1) all members are evaluated by a single slave, 2) members are created after surrogate
training is completed and 3) cluster waiting times are not taken into consideration. For this comparison,
actual “wall-clock” time is not used, because wall-clock time highly depends on parallelisation of slave
processes and any cluster waiting times.

The definition of TOT is given by Equation 4.13, where tprocess indicates the time to run the process
chain for evaluation and ttraining represents time for surrogate training. In multi-fidelity optimisations,
the contribution tprocess includes all time spent on both high-fidelity and low-fidelity member evaluations.
Figure 4.15 on the next page shows a schematic of CVG improvement against TOT. It can be observed that
the CVG can only be improved by high-fidelity member evaluations (H), while evaluation of low-fidelity
members (L) and surrogate training time (T ) merely add time and do not add CVG.

TOT =
∑

tprocess +
∑

ttraining (4.13)
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Figure 4.15: Schematic of CVG improvement over TOT, illustrating contributions of process times and
training time.

Application of performance metrics

In this paragraph two modes of comparison are defined to determine the benefits of multi-fidelity
optimisations with respect to the single-fidelity baseline optimisation.

Multi-fidelity performance is assessed at the time instant of single-fidelity convergence, according to the
criterion described in Section 4.5. Figure 4.16 illustrates the two modes used in this work, for comparing
a multi-fidelity optimisation to a single-fidelity optimisation.

The first mode concerns the optimisation speed-up, denoted by tspeedup. This speed-up considers
the ratio of two TOT instances, as shown by Equation 4.14. In this equation, parameter tMF describes the
TOT at which a multi-fidelity optimisation reaches the CVG value obtained at single-fidelity convergence.
The time instant of single-fidelity optimisation convergence is denoted by tSF . The second mode of
comparison considers the potential gain in CVG improvement at the time of single-fidelity convergence,
expressed as CV Ggain. This parameter is calculated by applying Equatio 4.15.

tspeedup = (tSF − tMF )/tSF · 100% (4.14)

CV Ggain = (CV GMF − CV GSF )/CV GSF · 100% (4.15)
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Figure 4.16: Modes for comparing multi-fidelity and single-fidelity optimisations
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The convergence criterion has previously been motivated in Section 4.5. It is expected that the efficiency
gain by the multi-fidelity method will not be significant, whereas the speed-up by multi-fidelity optimisation
could be large, as shown at point B in Figure 4.12.

Concluding statement

This chapter has presented the optimisation problem, the setup of the single-fidelity reference optimisation
and the setup of five multi-fidelity optimisations. Each multi-fidelity setup employs a low-fidelity process
with a distinct fidelity level. Low-fidelity processes are selected using an assessment based on comparing
high-fidelity and low-fidelity CFD simulations of one member design. This selection method is evaluated
in the next chapter, by considering the performance of the five multi-fidelity test optimisations.
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5 Results of the multi-fidelity method

In this chapter, performance results of six multi-fidelity optimisations are compared to the performance
of a single-fidelity reference optimisation.

This chapter is structured as follows. First, the single-fidelity reference optimisation is presented in
Section 5.1. Then in Section 5.2, an overview is provided of the first five multi-fidelity optimisation
results, from which the best and worst multi-fidelity optimisations are identified. Besides evaluating
previously introduced potential metrics, also the information transfer from the low-fidelity process
is investigated. In order to identify if information transfer could be enhanced, results from a sixth
multi-fidelity optimisation are presented in Section 5.3. Conclusions of all results are summarised
in Section 5.4. Finally, Section 5.5 provides the reader with guidelines on how to select a suitable
low-fidelity process for the multi-fidelity method before starting an optimisation.

5.1 Single-fidelity reference optimisation

This section presents the single-fidelity optimisation that is later used as a reference for comparison with
multi-fidelity optimisations, presented in Section 5.2.

In this work, two single-fidelity optimisations of identical setup have been performed in order to assess the
variability of optimisation progress. The variability is imposed by probability parameters employed in the
optimisation algorithm of AutoOpti, whose influence was previously explained in Section 3.4. Due to time
constraints, in the current work the number of optimisation repetitions could not be increased to more than
two. The progress of the two single-fidelity optimisations referred to as SIFI 1 and SIFI 2 is presented
in Figure 5.1. This figure shows the improvement in Cumulative Volume Gain (CVG) over Theoretical
Optimisation Time (TOT), as well as the the optimisation convergence points. For more details on the
two aforementioned parameters and the convergene criterion, the reader is referred to Section 4.5.
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5.2 Multi-fidelity results using variance decision function

Table 5.1: Convergence details and average efficiency gain of single-fidelity optimisations
Optimisation Members Slaves Wall-clock TOTconv CV Gconv ∆ηavg

[#] [#] run time [dd:hh] [hrs] (·10−3) [%]
SIFI 1 3200 3 25 : 21 1666 1.23 1.15
SIFI 2 3220 5 18 : 18 1725 1.15 1.11

It can be observed in Figure 5.1 that the progress curves of SIFI 1 and SIFI 2 show a similar converging
trend. In this figure, three regions can be identified of distinct behaviour. From optimisation start to
TOT = 250 hrs, marked as region A, SIFI 1 is faster than SIFI 2. Then from TOT = 250 hrs
to TOT = 600 hrs, optimisation progress is identical. In the third region B that spans from
TOT = 600 hrs to approximately TOT = 1700 hrs, again SIFI 1 outperforms SIFI 2. Convergence
details of SIFI 1 and SIFI 2 are presented in Table 5.1. Concerning the number of evaluated valid
members, in column 2, both optimisations have spent almost an identical computational budget. The SIFI
2 has more parallel slave processes, due to beneficial cluster availability compared to SIFI 1, as shown
in column 3. The optimisation wall-clock run time of SIFI 2 was therefore 7 hours less, as shown in
column 4. Comparing the CVG values at convergence in column 5, SIFI 1 attains CV Gconv = 1.23 ·10−6

which is ∆CV G = 6.5% higher than CV Gconv = 1.15 · 10−6 attained by SIFI 2. This value is attained
at an earlier TOT instance as shown in column 6 of Table 5.1. The average gain in isentropic efficiency
by SIFI 1 is 1.15%, which is indicated in column 7.

The Pareto diagram of SIFI 1 is shown in Figure 5.2. From this figure, it can be observed that its
front is resolved by a large number of Pareto optimal members. This generally indicates the optimisation
has converged well. Although not shown, SIFI 2 has resolved an almost identical Pareto front. SIFI
2 achieves an average efficiency gain of ∆ηavg = 1.11% which is 0.04% lower than SIFI 1. From the
observations described above, it could be concluded that SIFI 1 and SIFI 2 progress is overall similar,
but has slight differences in the amount of CVG improvement. This is due to progress variability1, which
was previously explained in Section 3.4.

Because of superior performance, SIFI 1 is selected as the single-fidelity reference optimisation for
comparison with multi-fidelity optimisations, described next in Section 5.2. The CVG gain or speed-up
of a multi-fidelity optimisation are hence measured with respect to SIFI 1 performance, obtaining
CV Gconv = 1.23 · 10−3 and TOTconv = 1666 hrs respectively, as shown in Table 5.1. From this
point onwards, single-fidelity optimisation SIFI 1 is simply referred to as SIFI.

5.2 Multi-fidelity results using variance decision function

In this section, the performance of five multi-fidelity optimisations is presented in terms of CVG
improvement and optimisation speed-up. These optimisations employ the same high-fidelity process
(described in Section 4.3-1) and employ distinct low-fidelity processes (whose selection is described
in Section 4.4-3). These low-fidelity processes differ in fidelity level, whereas the most expensive
process uses a fine mesh and Menter SST turbulence equations and the cheapest uses a rough
mesh and inviscid Euler equations. The main finding from the results shown in the following, is that
benefits from the multi-fidelity method applied to this optimisation problem does not meet the expectations.

In the following, first optimisation results are presented, after which they are discussed and consequently
recommendations for improvement are given.

1Based only on SIFI 1 and SIFI 2 results, single-fidelity optimisations in this thesis are less affected by variability than optimisations
in reference works. The difference in CVG at convergence of ∆CV G = 0.08 is much smaller compared to deviations in
single-fidelity optimisation shown in the work of Reimer [23], in which four optimisation repetitions were performed.
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5.2-1 Performance assessment

An overview of the optimisation setups and results of the five considered multi-fidelity optimisations is
given in Table 5.2-1. The following paragraph explains the structure and contents of this table.

In the top row, the single-fidelity reference optimisation, denoted by SIFI, is included to allow for quick
comparison of the employed evaluation processes. Column 1 indicates the optimisation name. For
SIFI, columns 2 to 5 present the mesh size, mesh ratio, turbulence model and mesh resolution of the
high-fidelity evaluation process. Multi-fidelity optimisations all employ this process for high-fidelity
member evaluations.

Optimisations MUFI 1 to MUFI 5 distinguish themselves purely on the basis of the employed
low-fidelity process. For these optimisations, columns 2 to 5 present the mesh size, mesh ratio, turbulence
model and mesh resolution of the low-fidelity process chain. The motivation for selecting these models
was previously presented in Section 4.4. The mesh resolution is presented by a small diagram illustrating
the radial and blade-to-blade mesh resolutions. A green tip marker indicates the mesh is refined in tip
regions, whereas a red tip marker indicates this refinement is disabled. Columns 6, 7 and 8 present
the potential metrics: cost ratio, correlation and replacement ratio introduced previously in Section 3.7.
Columns 9 and 10 indicate the initial member offset and the low-fidelity score described in Section
4.4-2. At last, columns 11 and 12 describe the two performance metrics CVG gain speed-up respectively,
for which the reader is referred to Section 4.6. CVG gain is defined as the percentage gain in CVG
by a multi-fidelity optimisation with respect to SIFI, measured at the TOT time of SIFI convergence.
Speed-up is expressed as the percentage reduction in time by a multi-fidelity optimisation with respect
to SIFI, measured at the CVG at SIFI convergence. The average efficiency gain, whose calculation was
described in Section 3.6, is indicated within brackets in column 11.

In the following, the focus is on the performance metrics (CVG gain and speed-up), whereas values of
potential metrics (Cr, r2

avg and fr) are discussed later in this section. From column 11 in Table 5.2-1,
it could be observed that the highest CVG gain is achieved by MUFI 5, equal to 2.57% on top of SIFI.
This CVG gain translates to an efficiency gain of 0.02%, with respect to the efficiency gain of the SIFI
optimum design. This gain is small relative to the gain obtained in previous research, as will be discussed
in the next paragraph. The lowest CVG gain is achieved by MUFI 1 which underperforms SIFI by 6.03%,
and thereby loses an average efficiency improvement of 0.11%. This loss is small relative to the average
efficiency gain by SIFI equal to 1.15%. From column 12 in Table 5.2-1, one could observe that the
highest speed-up is achieved by MUFI 3, equal to 14.1% measured from SIFI convergence. The lowest
speed-up is attained by MUFI 1, which has slown down by 39.9% with respect to SIFI. This speed-up is
further discussed in the next paragraph.

Only based on the values of performance metrics (CVG gain and speed-up) of MUFI 1 to MUFI
5, there is no clear connection between the benefit of the multi-fidelity method and the fidelity level of
the low-fidelity process. Because performance metrics alone cannot explain which fidelity level is most
suitable, another assessment is required on the basis of potential metrics, as will be discussed in Section
5.2-2. In the next paragraph, the best and the worst multi-fidelity optimisations are examined more closely.
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Table 5.2: Overview of multi-fidelity optimisation performance results
1 2 3 4 5 6 7 8 9 10 11 12

Opti. Mesh Mesh Turbulence Mesh Cr r2avg fr Initial LFscore CVG gain [%] Speed-
name size ratio model resolution [−] [−] [−] offset [%] [-] (ηavg gain [%]) up [%]

SIFI 903,000 1.00 Menter SST 61

79 31

- - - - - - -

MUFI 1 486,000 0.54 Menter SST 61

47
19

0.53 0.90 0.06 −0.10 0.46
−6.03

(−0.11) −39.9

MUFI 2 414,000 0.46 Menter SST 28

79 31
0.49 0.87 0.05 −0.05 0.49

−1.65
(+0.02) −29.0

MUFI 3 223,000 0.25 Menter SST 28

47 19

0.29 0.98 0.07 −0.16 0.70
+1.12

(+0.01) +14.1

MUFI 4 132,000 0.15 Menter SST 17

47 19

0.25 0.86 0.04 +0.55 0.68
−3.61

(−0.05) −33.4

MUFI 5 12,800 0.01 Euler 6

19 5

0.14 0.46 0.01 −1.86 0.06
+2.57

(+0.02) +12.0

—– Tip refinement enabled (Column 5)
- - - Tip refinement disabled (Column 5)
� Best result for the performance metric (Columns 11 and 12)
� Worst result for the performance metric (Columns 11 and 12)



5.2 Multi-fidelity results using variance decision function

Progess of best and worst optimisations

This paragraph considers optimisation progress of the best and the worst performing multi-fidelity
optimisations.

In Section 4.6, it was explained that the speed-up is of primary interest in this work. That is because the
convergence criterion (discussed in Section 4.5) is chosen as such that the Pareto front is well-resolved
upon optimisation termination. On the basis of the speed-up results in column 12 of Table 5.2-1, MUFI 3 is
found to be the best optimisation out of all five multi-fidelity optimisations. Figure 5.3 shows that progress
curves of MUFI 3 and SIFI look very similar. The progress curve of MUFI 3 has four clear intersections
with SIFI, where it alternatingly underperforms and outperforms the single-fidelity optimisation. These
intersections are at approximate TOT instances 200 hrs, 400 hrs, 800 hrs and 1400 hrs. After the last
intersection at TOT = 1400 hrs, MUFI 3 outperforms SIFI and attains a speed-up of 14.1%, as indicated
in Figure 5.3. In this figure several regions are indicated of high variability, where a sudden change in
CVG gradient is present. The cause of progress variability was previously discussed in Section 3.6.
Taking into account this variability, as well as the fact that SIFI and MUFI 3 progress curves intersect
four times, one could conclude that there is little guarantee a similar speed-up can be achieved when
using the setup of MUFI 3 repetitively. Furthermore this speed-up is very dependent on the convergence
criterion, whose concern was previously raised in Section 4.5. The speed-up of 14.1% is equivalent to
an absolute time savings of approximately 1 day, for an optimisation run time of 7 days. It is 36% lower
compared to a speed-up of 50% described in the work of Reimer [23]. Concluding from the effect of
variability described above, this time savings is a good result in absolute terms, but should be taken with
care.

The CVG gain of MUFI 3 is equal to 1.12%, as shown in Figure 5.3. From this diagram, the
multi-fidelity optimisation seemingly small with respect to the single-fidelity optimisation result. In the
next paragraph, the gains and losses in CVG are put into perspective by considering the efficiency gain
with respect to single-fidelity optimisation.
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Figure 5.4: Progress diagram of the worst
multi-fidelity optimisation, MUFI 1, showing
performance evaluated with respect to SIFI

In Figure 5.4, it is shown how the worst multi-fidelity case, MUFI 1, underperforms SIFI during two
major parts of the optimisation. In region A, from optimisation start until a point of intersection at
TOT = 600 hrs, MUFI 1 is slower than SIFI. In region B, from TOT = 600 hrs and onwards, MUFI 1
again underperforms SIFI. At SIFI convergence, MUFI 1 has a delay of 39.9%. This amounts to an
absolute delay of 3 days over a run time of 7 days, which is hence very large. The progress curve
in Figure 5.4 only shows one region of a large change in CVG gradient, located at TOT = 200 hrs.
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5.2 Multi-fidelity results using variance decision function

Compared to progress of MUFI 3, multi-fidelity optimisation MUFI 1 therefore underperforms SIFI with
a higher certainty. The reason for poor performance of MUFI 1 is explained in Section 5.2-2.

Lastly although not shown here, all multi-fidelity optimisations (MUFI 1 to MUFI 5) reach the
convergence criterion faster than SIFI. Using the threshold defined in Section 4.5, this implies that
multi-fidelity optimisations have approached their theoretical optimum using less high-fidelity members
than SIFI. The implication of the number of high-fidelity members to reach the optimum is further
explained in Section 5.2-3.

Evaluation of efficiency gains

This paragraph considers the efficiency gain of all optimisations and compares these values to
achievements described in reference works.

In Figure 5.5, the Pareto fronts of all multi-fidelity test optimisations and the single-fidelity reference
optimisation are presented. For every optimisation, the optimum member is identified closest to the
intersections of the respective Pareto front with the diagonal in Figure 5.5.

It can be observed in Figure 5.5 that optimisations MUFI1 and MUFI 4 underperform SIFI in terms
of average efficiency achieved by the optimum member. Although these optimisations underperform SIFI
using the current convergence criterion described in Section 4.5, they are expected to achieve the same
efficiency gain for a longer optimisation duration. According to the convergence criterion applied in this
work, the optimisations are terminated. Also it is shown in Figure 5.5 that Pareto fronts of MUFI 2,
MUFI 3 and MUFI 5 overlap with the Pareto front of SIFI. Therefore, their optima have attained very
similar gains in average efficiency, as shown by values in between brackets in column 11 of Table 5.2-1.
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Figure 5.5: Pareto fronts of optimisations MUFI 1 to MUFI 5 and SIFI, at the time of SIFI convergence

The best multi-fidelity optimisation (MUFI 3) achieves an average efficiency gain of 0.01% with respect
to SIFI performance. Optimisations in this work are affected by progress variability, a concept that was
introduced in Section 3.4 and illustrated in Section 3.6. Due to variability, there is a considerable chance
that repeating the best multi-fidelity optimisation does not result in a positive efficiency gain. Considering
the height of the efficiency gain of 0.01%, this value falls within the accuracy limits of CFD simulations
employed in this work. Those limits are defined by threshold criteria for convergence control, presented
previously in Table 4.2 of Section 4.3-1. The value especially falls short compared to results from works
of Reimer [23] and Brooks et al. [3], considered previously in Section 3.8. In these reference works,
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5.2 Multi-fidelity results using variance decision function

the efficiency gain from employing the multi-fidelity method is in the order of 0.40% to 0.50%, which
is approximately a factor of 25 higher than the highest efficiency gain of 0.02%, achieved in this work.
An important factor that largely impacts the efficiency gain is the choice of convergence criterion for
optimisation termination. Terminating the optimisations at a point in time close to time A in Figure 4.12,
would give the multi-fidelity method a larger percentage gain over single-fidelity optimisation, but reduces
the obtained efficiency increase in absolute terms. In Section 5.3-2, a more extensive explanation is
given for the difference in benefit of the multi-fidelity method presented in this work and the performance
achieved in previous research.

Because the improvement in average efficiency is comparable for the best multi-fidelity optimisation
and single-fidelity reference optimisation, the question is raised whether the multi-fidelity algorithm has
led to a similar or different blade design. This investigation is described in Chapter 6.

Observations from performance assessment

From the performance metrics presented in the previous paragraphs, below the three main observations
are summarised:

1. In the worst case, employing the multi-fidelity method has caused an increase in run time of 39.9%,
equivalent to a delay of almost 3 days. The highest obtained speed-up is equal to 14.1%, equivalent
to a time savings of 1 day in run time. One should take the speed-up with care, due to uncertainty
imposed by progress variability. It is not guaranteed a speed-up is achieved when running the best
optimisation setup twice.

2. In the worst case, a decrease in CVG of 6.03 is obtained, equivalent to a decrease in average optimum
efficiency of −0.11%. The largest gain in CVG is equal to +2.57%, equivalent to an average
efficiency improvement of 0.02%. This improvement is considered low relative to the accuracy of
aerodynamic simulation employed in this work, as well as with respect to the achievements of the
multi-fidelity method described in reference works.

3. Findings on performance metrics (speed-up and CVG gain) do not show a clear connection between
the benefit of the multi-fidelity method and the fidelity level of the low-fidelity process. Therefore
another assessment based on potential metrics is used, as discussed in the next section.

5.2-2 Potential assessment

In this section, performance of all five multi-fidelity test optimisations is evaluated on the basis of
potential metrics, previously introduced in Section 3.7.

The first paragraph evaluates optimisation potential to explain why the multi-fidelity technique only gives
relatively small benefits, when applied to the current optimisation problem. The second paragraph suggests
a strategy to improve multi-fidelity potential. In the third paragraph, this strategy is assessed using an
adapted optimisation test setup.

Evaluation of potential metrics

The potential of multi-fidelity optimisations is assessed by means of three potential metrics: cost ratio Cr,
correlation coefficient r2 and replacement ratio fr. In Section 3.7, four guidelines developed by Toal [29]
were explained which serve to assess the potential of a multi-fidelity optimisation setup. The guidelines
are listed below as A,B,C and D. In Table 5.3, the guidelines are evaluated for all five multi-fidelity
optimisations.
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5.2 Multi-fidelity results using variance decision function

Guidelines for potential estimation (presented in Section 3.7)

A. The correlation between the low and high fidelity function should be reasonably high,
r2 > 0.9.

B. More than 10% of the total evaluation budget should be converted to cheap evaluations,
fr > 0.1.

C. No more than 80% of the total evaluation budget should be converted to cheap evaluations,
fr < 0.8.

D. There should always be more cheap data points than expensive, according to
fr > 1.75/(1 + 1

Cr
)

Table 5.3: Evaluation of guidelines for multi-fidelity potential assessment

Opti. name Cr r2avg fr A B C D
MUFI 1 0.53 0.90 0.06
MUFI 2 0.49 0.87 0.05
MUFI 3 0.29 0.98 0.07
MUFI 4 0.25 0.86 0.04
MUFI 5 0.14 0.46 0.01

� Satisfaction of guideline
� Violation of guideline

In the following, the evaluation results in Table 5.3 are discussed. Optimisations MUFI 1 to MUFI 5
indicated in column 1, employ low-fidelity processes with a decreasing fidelity level of the low-fidelity
process. As shown in column 2, the cost ratio Cr reduces along with the fidelity level, as intended. For
optimisations MUFI 1, MUFI 3 and MUFI 5, the calculation of the cost ratio is presented per subprocess
in the Appendix. The average correlation coefficient is given in column 3. With reducing fidelity of the
low-fidelity process, the correlation does not decrease monotonically as would be expected2. However, the
correlation coefficient is generally similar for models MUFI 1 to MUFI 4, with approximately r2 = 0.90
and much lower for MUFI 5, with r2 = 0.46. The replacement ratio is presented in column 4. From
all five multi-fidelity optimisations, MUFI 3 has the highest replacement ratio of fr = 0.07 (fraction of
budget allocated to low-fidelity member evaluations). MUFI 5 allocates the least amount of budget to
low-fidelity members with fr = 0.01.
When considering the evaluation of guidelines A to D in columns 5 to 8 respectively, the following is
observed. Guideline A on the minimum correlation coefficient, r2 = 0.90, is only satisfied by MUFI 1
and MUFI 3. All multi-fidelity optimisations violate guideline B on the recommended minimum value of
the replacement ratio, fr = 0.10. All multi-fidelity optimisations satisfy guideline C on the recommended
maximum value of the replacement ratio, fr = 0.80. At last, all optimisations violate guideline D, which
considers the cost ratio and replacement ratio.
The main conclusions from these observations are as follows:

1. In case of MUFI 3, the variance decision function has allocated the largest share of computational
budget to low-fidelity members, equal to fr = 0.07. From this result it is concluded that the
low-fidelity process employed by MUFI 3 is the most suitable for applying the multi-fidelity method
to this optimisation problem, compared to other low-fidelity processes. This process employs a mesh
of 223, 000 cells, which is a mesh ratio of 4 compared to the high-fidelity process and employs the
same Menter SST turbulence model.

2The correlation coefficient increases between MUFI 2 and MUFI 3, while fidelity of the low-fidelity process is reduced by only
reducing the blade-to-blade mesh resolution. In Section 5.5, this increase in correlation coefficient is further discussed.
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2. However, all five multi-fidelity optimisations (MUFI 1 to MUFI 5) evaluate too little low-fidelity
members. The low-fidelity budget is at least 3% lower than the recommended bottom limit. For all
five optimisations, the variance decision function has more often selected the high-fidelity process
over the low-fidelity process. The cause of this problem is explained in the next paragraph.

Improving the fidelity gap

In this paragraph, the main shortcoming of the current optimisation setup is illustrated. In Figure 5.6,
the correlation coefficient and cost ratio from Table 5.3 are plotted for all five multi-fidelity optimisations
(MUFI 1 to MUFI 5). Cost ratio and correlation combinations leading to beneficial multi-fidelity
performance are highlighted by region X. The horizontal upper limit to region X is Cr = 0.11. This
cost ratio is derived from the work of Reimer [23], where it resulted in a high performing multi-fidelity
setup (among which was a speed-up of 50%, mentioned earlier in Section 3.8). The vertical lower limit to
region X is r2 = 0.90. This correlation coefficient is recommended by Toal [29]. Figure 5.6 shows that
all optimisations (MUFI 1 to MUFI 5) do not fall within region X of high potential. It is observed that
when reducing fidelity of the low-fidelity process to reduce the cost ratio, the correlation coefficient sinks
too fast. The main conclusion from this observation can be formulated in two ways: 1) the high-fidelity
process currently used is of a too low fidelity or 2) the low-fidelity processes lose too much in correlation,
when subject to the current fidelity reduction methods (mesh and solver adaptations in 3D CFD).

Figure 5.7 again shows a diagram with identical correlation coefficients for all optimisations (MUFI 1
to MUFI 5), which use the same low-fidelity processes as in the first scenario. However in this hypothetical
scenario, the cost ratio is calculated with respect to a different high-fidelity process HIFI B. The cost of this
high-fidelity process is theoretically increased by a factor of two compared to high-fidelity process HIFI A.
This implies that the range for fidelity reduction, in this work called the “fidelity gap”, is increased between
high-fidelity and low-fidelity processes. Because all multi-fidelity optimisations (MUFI 1 to MUFI 5) move
towards lower cost ratios and presumably maintain similar correlation coefficients, the chances are higher
they lie within region X. Hence, one can better exploit the benefit from multi-fidelity optimisation if the
high-fidelity process is more expensive. Comparing diagrams shown in Figure 5.6 and Figure 5.7, it is
concluded the fidelity gap needs to be increased to gain more benefit from the multi-fidelity method. A
more suitable simulation problem, would for instance consider a compressor model with resolved shocks
and real geometry features such as penny gaps. These require a very expensive mesh, hence a simulation
model of higher fidelity.
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The main conclusion from the previously explained potential assessment is as follows. The optimisation
problem considered in this work can have little benefit from the multi-fidelity method, because the
high-fidelity process is already at a low fidelity. The cost ratio cannot be sufficiently reduced using the
current fidelity reduction methods in 3D CFD, without considerably reducing the correlation coefficient.
The main recommendation is therefore, to apply multi-fidelity optimisation to a different optimisation
problem with a greater fidelity gap. The new problem has either one of following attributes: 1) a more
expensive high-fidelity process, or 2) a very cheap low-fidelity process. These processes have a large
difference in cost (Cr < 0.11) and a high correlation (r2 > 0.90), as previously derived from reference
works.

The consequence of the lack in fidelity gap in the current problem, is that an optimiser employing the
automatic decision function decides for too few low-fidelity members. In the next section, the effects on
optimisation progress are examined from using a larger share of low-fidelity members. However, the last
paragraph of this section first explains why a larger share of low-fidelity members could be useful.

5.2-3 Investigation of information transfer

Previously, optimisations MUFI 3 and MUFI 5 have shown similar benefit with respect to the single-fidelity
baseline optimisation. This section aims to find differences between these optimisations in the
implementation of the multi-fidelity method. In the first paragraph of this section, it is discussed how
these optimisations differ in the amount of information transferred by the low-fidelity process. In the
second paragraph, a recommendation is given to enhance information transfer and thereby improve the
current multi-fidelity setup.

Information transfer in the current setup

The following investigates how the benefit of the multi-fidelity method differs between MUFI 3 and
MUFI 5, by considering the number of low-fidelity members. In the end of the previous section, it
was concluded that all multi-fidelity optimisations MUFI 1 to MUFI 5 have spent too little budget
on low-fidelity member evaluations. For these optimisations, the total number of low-fidelity member
evaluations is primarily determined by the variance decision function, whose method is explained in
Section 3.5. Optimisation MUFI 3 has evaluated the highest fraction of low-fidelity members (fr = 0.07)
from all test optimisations, as was previously shown in Table 5.3. MUFI 5 on the contrary, has the lowest
fraction of low-fidelity members (fr = 0.01). Judging on the budget spendings by the variance decision
function, the low-fidelity process of MUFI 3 seems more useful than the low-fidelity process of MUFI 5.

Next, on the basis of three observations it will be argued that the low-fidelity process of MUFI 3 indeed is
more suitable for applying the multi-fidelity method, through the amount of useful information transferred
to the high-fidelity process.

First of all, Figures 5.8 and 5.9 show the progress curves of respective optimisations MUFI 3 and
MUFI 5 as the improvement in CVG over high-fidelity members. In Figure 5.8, it can be observed that
MUFI 3 generally shows a similar converging trend as shown by SIFI. In Figure 5.8, there is one distinctive
region indicated in green. In this region between 500 and 1500 members, MUFI 3 attains at most 17%
higher CVG values compared to SIFI. This indicates that MUFI 3 has an advantage over SIFI, owing to the
information intermediately provided by low-fidelity evaluations. In this thesis, the information supplied
by low-fidelity members is called information transfer. In Figure 5.9, it can be observed that MUFI 5 also
has a similar shape as the progress curve of SIFI. However, MUFI 5 attains lower CVG values between
1200 and 2800 members, by at most ∆CV G = −7%. This region is highlighted in red in Figure 5.9. It
is concluded that comparing MUFI 3 and MUFI 5 progress in CVG, MUFI 3 has a large benefit from
information transfer, while MUFI 5 has close to none.
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Secondly, the idea that MUFI 3 has better information transfer compared to MUFI 5, is supported
by considering the Pareto diagrams of these optimisations. The Pareto diagram of MUFI 3, showing
high-fidelity and low-fidelity members, is shown in Figure 5.10. In this figure, one can observe that many
low-fidelity members are evaluated and that the low-fidelity Pareto front has a shape which is similar to
the high-fidelity front. It is located at lower objective function values, which is in agreement with the
offset between initial members equal to ∆η = −0.16, indicated in Figure 5.10 and mentioned in column
9 of Table 5.2-1. The Pareto diagram of MUFI 5 is presented in Figure 5.11. When considering the
low-fidelity members in the Pareto diagram of MUFI 5, it can be seen that they do not resolve a Pareto
front as clearly as low-fidelity members of MUFI 3. Also the initial member offset between high-fidelity
and low-fidelity processes is equal to ∆η = −1.86, which is almost 12 times larger compared to MUFI 3.
This large offset is in agreement with expectations described in Section 2.3, which stated that employing
Euler equations can introduce a large discrepancy in accuracy due to the assumption of inviscid flow.

Thridly, the correlation can be considered. In line with this large accuracy offset, it was previously
identified that MUFI 5 has the lowest correlation coefficient of all multi-fidelity optimisations considered
so far, which is equal to r2 = 0.46. Its low-fidelity model was selected in Section 4.4, already taking into
account a low correlation.
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Figure 5.8: Progress diagram of MUFI 3
showing CVG over high-fidelity members, with
respect to SIFI.

Valid high-fidelity members[#]

C
um

ul
at

iv
e 

vo
lu

m
e 

ga
in

 (
10

  )
 [

-]

0.0

0.4

0.8

1.2

0 1000 2000 3000

0.2

0.6

1.0

1.4

-3

MUFI 5
SIFI
SIFI conv.

500 1500 2500 3500

ΔCVG = -7%Poorly informed 
region

1200
mem.

2800
mem.

Figure 5.9: Progress diagram of MUFI 5
showing CVG over high-fidelity members, with
respect to SIFI.
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5.3 Multi-fidelity results using constant decision function

Based on these observations on the CVG progress diagrams, the Pareto diagrams and the correlations, it is
concluded that low-fidelity members evaluated in MUFI 3 have informed high-fidelity member evaluations
better in MUFI 5. In the next section, results from an adapted optimisation setup are discussed for which
the amount of information transfer is enhanced.

5.3 Multi-fidelity results using constant decision function

In this section, results from an adapted optimisation (MUFI 6) are analysed, which employs a constant
ratio of low-fidelity members over high-fidelity members after initialisation. Because in the previous
section it was shown that all optimisation setups have spent too little budget on low-fidelity evaluations,
optimisation MUFI 6 is meant to demonstrate if multi-fidelity potential can be enhanced by increasing
the replacement ratio and thereby increasing the level of information transfer. Optimisation progress
of MUFI 6 is analysed in Section 5.3-1. It will be shown that no speed-up is achieved with respect to
an equivalent single-fidelity optimisation. Another performance assessment is performed and presented
in Section 5.3-2 to determine if MUFI 6 fulfils the potential guidelines.

5.3-1 Performance assessment

In this section, performance of optimisation MUFI 6 is considered. The setup of optimisation MUFI 6
is identical to MUFI 3, except for the type of decision function employed. For MUFI 6, a probability
is specified to select the low-fidelity process for member evaluations. This ratio is selected at a constant
value of 85%, such that approximately half of the computational budget is spent on low-fidelity member
evaluations. By choosing this decision function type for MUFI 6, the share of low-fidelity members
approximately stays constant3 at 80% and attains a final value that is 60% higher than MUFI 3 as shown
in Figure 5.12.

The progress diagrams of MUFI 6 is shown against valid hifi members in Figure 5.14. In this figure,
it can be seen that MUFI 6 has evaluated a total of almost 800 members over its run time. Due to time
constraints, this optimisation could not be run until the convergence point of SIFI. In Figure 5.14, the
region is highlighted at which MUFI 6 outperforms SIFI and hence is well-informed. It is observed that
high-fidelity members achieve at most 31% higher CVG values than SIFI, owing to information transfer
from low-fidelity members. The enhancement in CVG by MUFI 6 is 14% larger than achieved by MUFI
3, whose progress was previously shown in Figure 5.8. This implies that the information from low-fidelity
members is enhanced by increasing the fraction of low-fidelity members from fr = 0.07 to fr = 0.51, on
the condition that processes are well-correlated (r2 = 0.98).

Considering CVG progress over theoretical optimisation time in Figure 5.15, it is observed that
MUFI 6 underforms SIFI over the entire optimisation run time, until the point manual termination at
TOT = 1000 hrs. Although MUFI 6 is not run up to SIFI convergence, from the previous observation it
is expected that no speed-up will be achieved. The fact that MUFI 6 outperforms SIFI in terms of CVG
gain over high-fidelity members, but underperforms in terms of CVG gain over TOT is explained by two
competing effects. These are shown in Figure 5.13. First of all, additional low-fidelity evaluations inform
high-fidelity member evaluations. Secondly, those low-fidelity members delay the optimisation, because
they take too long to evaluate. Although the correlation of MUFI 6 results is high enough, the cost ratio is
not sufficient. In the next section, previously introduced performance metrics are employed to investigate
the influence of the fraction of low-fidelity members on expected performance.

3The share of low-fidelity members stays constant at 80% over time, while it was set to 85%. The small offset in low-fidelity
member fraction is not investigated in this work, but is assumed to be of minor importance in this investigation.

65



5.3 Multi-fidelity results using constant decision function

Evaluated members [-] L
ofi

 m
em

be
rs

 /
 T

ot
al

 m
em

be
rs

 [
%

] 100

MUFI 3

MUFI 6

80

60

40

20

0
1000 2000 3000 40000

80%

20%

Figure 5.12: Low-fidelity members over total
evaluated members for MUFI 3 and MUFI 6.

Theoretical optimisation time [hrs]

SIFI
MUFI 

Greater delay
high Cr

2

r

Greater information transfer
high r  and f

C
um

ul
at

iv
e 

vo
lu

m
e 

ga
in

 (
10

  )
 [

-]
-3

Figure 5.13: Schematic of progress curves
showing competing effects on mufi benefit.

Valid high-fidelity members[#]

C
um

ul
at

iv
e 

vo
lu

m
e 

ga
in

 (
10

  )
 [

-]

0.0

0.4

0.8

1.2

0 1000 2000 3000

0.2

0.6

1.0

1.4

-3

MUFI 6
MUFI 3
SIFI
SIFI conv.

500 1500 2500 3500

Well-informed region

ΔCVG = 31%

800 members

Figure 5.14: Progress diagram of MUFI 6
showing CVG over high-fidelity members.

Theoretical optimisation time [hrs]

C
um

ul
at

iv
e 

vo
lu

m
e 

ga
in

 (
10

  )
 [

-]

0.0

0.4

0.8

1.2

0 500 1000 1500 2000

MUFI 6
SIFI
SIFI conv.

0.2

0.6

1.0

1.4

-3
MUFI 6 underperforms

Termination

Figure 5.15: Progress diagram of MUFI 6
showing CVG over optimisation time.

5.3-2 Potential assessment

The performance assessment metrics of Toal [29] are employed in this section to evaluate the expected
performance of multi-fidelity optimisation MUFI 6. These metrics support the comparison of MUFI
6 with optimisations from reference works extensively discussed in Section 3.8. Recommendations for
further improvement of the multi-fidelity setup are given at the end of this section.

Guidelines A to D used in this assessment, have been introduced in Section 3.7. In Table 5.4, performance
of MUFI 6 is evaluated as well as reference optimisations Brooks Brooks et al. [3] and Reimer4 For
convenience sake, MUFI 3 is added to this list which attained best multi-fidelity performance using the
variance decision function.

Results in Table 5.4 show that MUFI 6 satisfies all criteria and attains similar values of Cr, r2 and
fr compared to Brooks. However, MUFI 6 does not achieve a speed-up nor it is expected to enhance
optimisation improvement with respect to single-fidelity optimisation, as concluded in the previous section.
Possible explanations for this contradiction are given on the next page.

4Optimisation Reimer employs the variance decision function and attains the highest speed-up of 50%.
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Table 5.4: Evaluation of guidelines for assessment of multi-fidelity potential

Source Opti. name r2avg Cr fr A B C D

Current thesis MUFI 3 0.98 0.29 0.07 0.98 0.07 0.07 -0.33
MUFI 6 0.98 0.24 0.51 0.98 0.51 0.51 +0.15

Brooks et al. [3] Brooks 0.90 0.33 0.50 0.90 0.50 0.50 +0.06
Reimer [23] Reimer N/A 0.11 0.42 N/A 0.42 0.42 +0.25

Comment: In this table, it could be seen that no correlation information was provided by
Reimer [23]. It is assumed the correlation of the optimisation in this work was above
r2 = 0.90, because the multi-fidelity optimisation achieved a speed-up of 50%.
� Satisfaction of guideline
� Violation of guideline

The contradiction that MUFI 6 satisfies all guidelines for potential estimation, without gaining from the
multi-fidelity method could be explained by the following:

1. Potential estimation guidelines B and C on fr define an interval between 10% and 80%. Regarding
that these guidelines were developed on the basis of four analytical testing functions, this guideline
might not be applicable or too large for the current physical problem. It could be for instance, that
the replacement ratio should be at least fr = 50% for this optimisation problem, as is the case in
the work of Brooks et al. [3].

2. Potential metrics of Toal [29] consider the status of an optimisation at its very end, while the timing
of low-fidelity member evaluations is important. For instance, if first only high-fidelity members are
evaluated and then only low-fidelity members, benefit of multi-fidelity is low while fr may seem
sufficient.

3. Potential metrics do not take into account the quality of the Co-Kriging surrogate model. In
multi-fidelity optimisation, the duration of initialisation and the frequency of training are two
important factors of influence. The dataset for initialisation for Reimer [23] is approximately 1.5
times the number of design variables (100 members for initialisation). The dataset in this work is
1.0 times the number of design parameters (80 members for initialisation).

4. Potential metrics do not consider the employed methods for member generation. In this work after
initialisation, members are generated using the surrogate model according to a ratio of 2/3. The
remaining 1/3 of all members is generated using evolutionary operations. It is not certain whether
the random search strategy of EA has provided any benefit to multi-fidelity optimisations in this
thesis. In the work of Reimer [23], all members are generated using the Co-Kriging model. By
only using the Co-Kriging model for member generation, benefits from the multi-fidelity method
can be fully exploited.

The main conclusion of this section is that using a manual ratio of many low-fidelity members for
a well-correlated optimisation MUFI 6, a positive effect has been demonstrated on the amount of
information transfer. However, a negative effect on optimisation time has been observed. The benefit
of the multi-fidelity method could therefore not be enhanced by increasing the replacement ratio.
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5.4 Conclusions on multi-fidelity optimisation results

In this section, the main conclusions are summarised on performance of multi-fidelity optimisations
considered in this work.

1. One single-fidelity optimisation (SIFI) is chosen from two test cases of identical setup. The best
single-fidelity optimisation is selected as a reference optimisation for comparison with multi-fidelity
optimisations. The selected optimum has an increased average isentropic efficiency of ∆η = 1.15%
with respect to the intial blade design and the run time until convergence was 1666 hours. This
time is equivalent to an absolute duration of approximately 7 days.

2. Five multi-fidelity optimisation setups are tested (MUFI 1 to MUFI 5) and their performance
is compared to the single-fidelity reference optimisation. The worst multi-fidelity optimisation
(MUFI 1) has a delay in optimisation run time of 39.9%, equivalent to almost three days of time
loss. The selected optimum design found by this optimisation has a loss in average efficiency of
0.11%. The best multi-fidelity optimisation (MUFI 3) has a speed-up of 14.1%, equivalent to 1
day of time savings. The selected optimum design has a an improvement in average efficiency
of 0.02%. This result is 36% lower compared to the result of 50% in time savings described in
reference literature. Although a 14.1% speed-up is useful in absolute time savings, it is low when
taking into account progress variability and dependency on the convergence criterion. There is little
guarantee this speed-up can be achieved when repeating the same optimisation. If a designer is not
careful choosing the fidelity level of the low-fidelity process, an optimisation might be delayed by
almost 40%.

3. The multi-fidelity method is not suitable for improving the current optimisation problem. The fidelity
level of the high-fidelity process is too low, since it uses only 226, 000 mesh cells per blade row. The
current fidelity reduction methods, consisting of mesh reduction and adaptation of solver settings in
3D CFD, do not a allow a sufficient reduction in the cost ratio without a considerable reduction in
the correlation coefficient. The best cost ratio is achieved by MUFI 5, equal to Cr = 0.14. However,
MUFI 5 only attains a very low correlation coefficient of r2 = 0.46. The best correlation coefficient
is achieved by MUFI 3, equal to r2 = 0.98. However, MUFI 3 attains a mediocre cost ratio of
Cr = 0.29. Using the (automatic) variance decision function, at most a fraction of only fr = 7%
of computational budget is allocated to low-fidelity member evaluations. This fraction is manually
increased in the setup of MUFI 6, to a value of fr = 51% which is very comparable to the fractions
used in reference works. By MUFI 6, the maximum improvement in CVG with respect to SIFI is
increased by 14%, owing to enhanced information transfer from low-fidelity members. However,
low-fidelity members are too expensive and delay the optimisation in terms of its run time.

4. Multi-fidelity optimisation would be more suitable to an optimisation problem with a larger fidelity
gap. A more suitable setup either has a very expensive high-fidelity process or it has a very
cheap, but well-correlated low-fidelity process. As an example, in Section 3.8 it was shown that
the high-fidelity model presented in the work of Reimer [23] has a 59% larger mesh size per row,
allowing for a mesh reduction of 0.12 to establish the low-fidelity model. The most successful
low-fidelity model in this thesis only achieves a mesh ratio of 0.25, which illustrates a too low
fidelity gap. Examples of recommended optimisation setups are given below.

Based on the previous conclusions, it is recommended to investigate the benefits of multi-fidelity
optimisation for another problem. First of all, the setup should have a large fidelity gap. One example is
to use an expensive high-fidelity process with detailed design features such as penny gaps, while keeping
similar low-fidelity processes as considered in this work. Alternatively one could consider the same
high-fidelity process, but use through-flow simulation as a low-fidelity model. The cost of the low-fidelity
process should be reduced to at most 11% of the high-fidelity process, while the correlation coefficient
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should be above 90%. These values were previously derived from the works of Reimer [23] and Toal
[29].

Secondly, it is expected using the settings mentioned in the following, the performance of the
multi-fidelity method can be increased. An initialisation duration of 1.5 times the number of design
variables could be used. Furthermore, only the surrogate model should be selected for member generation
after initialisation. Lastly, it is recommended to employ the variance decision function, such that the
optimiser can automatically decide on the optimum ratio of low-fidelity members to total members and
the timing of low-fidelity member evaluations.
In the next section, a forecasting method is presented which a designer could use to determine the
suitability of a low-fidelity model for a new multi-fidelity optimisation setup.

5.5 Multi-fidelity performance forecasting

This is the last section that considers the multi-fidelity optimisation algorithm. The previous three sections
of this chapter have considered results of multi-fidelity optimisations tested in this thesis project. On the
basis of these results, the current section provides the reader with guidelines to forecast multi-fidelity
performance with a certain level of confidence, before starting a multi-fidelity optimisation.

In subsection 5.5-1, the method is evaluated, which was used to select the low-fidelity processes for
multi-fidelity optimisations. In subsection 5.5-2, an approach is presented on the number of members
required to approximate the cost ratio and correlation coefficient applicable to a particular low-fidelity
process.

5.5-1 Forecasting using one member

This section verifies the suitability of single-member analysis, which was used to choose low-fidelity
processes for multi-fidelity optimisation.

Suitability of a low-fidelity process chain for multi-fidelity optimisation is governed by the cost ratio
between the two employed processes and the correlation of their results. In this thesis, low-fidelity
processes for multi-fidelity optimisation are selected using a single-member analysis, which was discussed
in Section 4.4. This approach evaluates the performance of a low-fidelity process in terms of simulation
time and solution accuracy merely on the basis of one member simulation. The cost ratio is estimated
by the time spent on one high-fidelity and one low-fidelity CFD simulation. The correlation coefficient
is estimated as an offset in efficiency, calculated by the two simulations. The combined effect of time
and quality is expressed in a single parameter, called LFscore. In the following, it is discussed whether
accuracy and time effects can be captured in a single parameter.

Table 5.5: Optimisation performance of multi-fidelity optimisations for verification of single-member
analysis.

Opti. name LFscore [-] Cr [-] r2avg [-]
MUFI 3 0.70 0.29 0.98
MUFI 4 0.68 0.25 0.86
MUFI 2 0.49 0.49 0.87
MUFI 1 0.46 0.53 0.90
MUFI 5 0.06 0.14 0.46

� Best forecast score or best performance value
� Worst forecast score or worst performance value
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The results of five multi-fidelity optimisation setups (MUFI 1 to MUFI 5) are shown in Table 5.5 on
the previous page, ordered by the value of the LFscore. These results only include the potential metrics
which were previously discussed in Section 5.2-2. Performance metrics (speed-up and CVG gain) are
not considered in this discussion, because it was concluded in Section 5.2-1 that no clear connection was
observed between the values of performance metrics and the level of fidelity reduction employed.

First, the scores are compared to the cost ratio, shown in column 3 of Table 5.5. MUFI 5 has the
best cost ratio, but its low-fidelity process has obtained the lowest LFscore. MUFI 1 has the worst cost
ratio, while its low-fidelity process has the second worst LFscore. It is concluded the cost ratio cannot be
estimated easily using the scoring system.

Second, the scores are compared to the correlation coefficient, shown in column 4 of the table.
MUFI 3 has the highest correlation coefficient of r2 = 0.98 and its low-fidelity model has obtained the
highest LFscore. MUFI 5 has the lowest correlation coefficient of r2 = 0.46 and its low-fidelity model
has obtained the lowest LFscore. Although the scoring system has given insight into a large contrast
in correlation, subtle differences in the correlation coefficient for MUFI 1 to MUFI 4, could hardly be
estimated.

Concluding from these observations, the scoring system could not capture both the time and quality
of the low-fidelity process using one parameter, the LFscore. In the next subsection, an alternative method
is presented which uses a larger sample set of members, in order to better forecast low-fidelity suitability.

5.5-2 Forecasting using set of members

In the previous subsection it was concluded that single-member analysis is inadequate to analyse small
differences in correlation and cost ratio values, for a particular low-fidelity process. Hence in this
subsection, a forecasting method is presented which forecasts suitability of a low-fidelity model on the
basis of a larger sample set of member evaluations. A designer can use this estimation method to decide
on which low-fidelity model to employ for using the multi-fidelity method.

In the following, the average correlation coefficient and cost ratio are calculated from a sample set of
members, with a size in the range of [2, 3, 5, 10, 20, 50, 100, ..., 1500, 2000] members. This analysis is
performed for three multi-fidelity optimisations specifically because of their distinct correlation values:
MUFI 3 (best correlation r2 = 0.98, average cost ratio 0.29), MUFI 5 (worst correlation r2 = 0.46,
best cost ratio Cr = 0.14) and MUFI 1 (average correlation r2 = 0.90, worst cost ratio Cr = 0.53).
Performance results of these optimisations were presented in Section 5.2-1. Members are randomly
selected from all members evaluated during these optimisations. In order to calculate the correlation
coefficient, a random sample set of high-fidelity members is probed into the Co-Kriging surrogate model
to obtain their low-fidelity approximations. Estimating the low-fidelity response is possible with high
accuracy, because the Co-Kriging model is based on the entire finalised database consisting of > 3000
evaluated members. The cost ratio is calculated on the basis of randomly selected high-fidelity members
and randomly selected low-fidelity members. Two repetitions are performed for each sample size, except
if indicated otherwise. Results from these repetitions are consequently averaged. In the following two
paragraphs, the results of this analysis are discussed.

Forecasting cost ratio

In Figure 5.16 on the next page, the cost ratio error for the three optimisations is shown, calculated with
respect to the average cost ratio of the full set of evaluated members.
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Two observations are made from the forecasting error of the cost ratio in Figure 5.16:

• The error in cost ratio generally decreases when increasing the sample size of member evaluations.

• The reduction in cost ratio error of optimisations MUFI 3 and MUFI 5 is similar, with a difference
of only 0.05%. The cost ratio error of MUFI 1 is 2% higher than for MUFI 3 and MUFI 5. This
result is unexpected because the variation in simulation duration (cost) is not expected to be related
to the fidelity level of the low-fidelity process. However, a 2% difference in error is considered very
small.
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Figure 5.16: Forecasting error of cost ratio of three multi-fidelity setups

The main conclusion is that the cost ratio can be estimated with a good accuracy, regardless of the average
cost ratio of the considered processes. An estimation can be performed on the basis of a small sample
set of 5 members, with an accuracy of 5% or less. This accuracy is sufficient for estimating multi-fidelity
potential using guidelines from Toal [29], presented in Section 3.7.

Forecasting correlation coefficient

In Figure 5.17, the correlation error is shown for the three optimisations. In total, five repetitions are
performed for sample sets [5, 10, 20, 50] because large deviations were observed for small sample sets of
members. For these sample sizes, an uncertainty range around the average error is shown in Figure 5.17,
indicating the minimum and maximum error obtained from five repetitions.

Three observations are made from the forecasting error of the correlation coefficient in Figure 5.17:

• The error in correlation coefficient generally decreases when increasing the sample size of member
evaluations.

• Forecasting the correlation has a larger error than the cost ratio. While the maximum error calculated
for the cost ratio is 7.8%, the maximum error of the correlation coefficient is 98%.

• The higher the correlation coefficient r2 of an optimisation, the smaller is the error in forecasting
its correlation. MUFI 3 (r2 = 0.98) has only 2% correlation error after 50 members, MUFI 1
(r2 = 0.90) has 15% error and MUFI 5 (r2 = 0.46) has 35% error.
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The main conclusion is that the accuracy at which the correlation can be estimated, depends on the actual
correlation of the process results. When the actual correlation is relatively high (r2 = 0.98) an estimation
with an accuracy of 5% can be performed on the basis of a sample set of 5 members. When the actual
correlation is slightly lower (r2 = 0.90) an estimation with similar accuracy can be performed using
a slightly larger sample set of 10 members. When the actual correlation is very low (r2 = 0.46) an
estimation accuracy of 5% can only be achieved using a much larger sample set of 200 members.

Because the main goal is to estimate if correlation is above the limit of sufficient correlation
r2 = 0.90 for good multi-fidelity performance (according to guideline A defined by Toal [29] in Section
3.7), the convergence trends towards absolute correlation coefficients need to be investigated. In Figure
5.18, the absolute convergence trend of the correlation coefficient is shown for the three optimisations
(MUFI 1, MUFI 3 and MUFI 5). Again a similar number of repetitions is performed at indicated sample
sets to show the uncertainty range of the correlation coefficient. Three observations are made:

• The absolute correlation coefficient approaches but does not reach the final correlation coefficient
for all three multi-fidelity optimisations, as indicated in Figure 5.18.
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• Using a sample size of 50 members, the uncertainty range of a well-correlated optimisation (MUFI 1)
is ∆r2 = 0.03. This is smaller than the ranges 0.09 and 0.18 of optimisations MUFI 1 and MUFI 5
respectively, having lower correlation values. This corresponds to the percentage error presented in
Figure 5.17.

• If the actual correlation value is very high (MUFI 3, r2 = 0.98), the average correlation coefficient
is likely to be above the limit of sufficient correlation for all sample sizes. Additionally, if the
actual correlation coefficient is low (MUFI 5, r2 = 0.46), the uncertainty range of the estimation
is found below the limit of sufficient correlation after 10 member evaluations. Lastly, if the actual
correlation value is around the limit of sufficient correlation (MUFI 1, r2 = 0.90), the observed
uncertainty range contains the limit itself. For such an optimisation, more members are required to
estimate if the correlation value is above the limit of sufficient correlation.

The main conclusion from observations of Figure 5.18, is that in order to estimate the correlation for
performing a potential assessment by Toal [29], it is often not necessary to simulate up to 200 high-fidelity
members when a model under consideration is of poor correlation. First one should check if the upper
limit of the uncertainty range of r2 is crossing the limit of sufficient correlation. Using this insight, in the
next paragraph an approach is presented that guides a designer through the process of selecting a suitable
low-fidelity model.

Estimation approach of low-fidelity model suitability

In this paragraph, the steps are discussed for estimating low-fidelity model suitability for multi-fidelity
optimisation. In Figure 5.19, the approach is shown by means of a flow chart. As shown in this figure,
the first step is to generate a low-fidelity process by applying fidelity reduction methods to a high-fidelity
process. Next, 10 members need to be simulated using both high-fidelity and low-fidelity process chains. It
should be noted that a Co-Kriging model cannot be used for this analysis, since this has not been established
before starting an optimisation. After this step, the cost ratio can be calculated with an error of at most
5%. Consequently, a check needs to be performed concerning the uncertainty range of the correlation
coefficient, bounded by the minimum and maximum obtained correlations. If the range overlaps with the
limit of sufficient correlation r2 = 0.90, then 10 additional members are simulated and the aforementioned
steps are repeated. If there is no overlap of the range with the limit, one needs to check if the average
correlation is above the limit of sufficient correlation. If this is not the case, this low-fidelity process
is not suitable for multi-fidelity optimisation. However, if a correlation coefficient above 0.90 has been
obtained, the low-fidelity process chain under consideration can be used for multi-fidelity optimisation.
The error at which the correlation is estimated has been reduced to at most 10%.

The following is concluded from this section. The cost ratio of a new low-fidelity process can be
estimated with at most 5% error using only 2 random member evaluations. For the same process, an
initial estimate of the correlation coefficient can be made by evaluating 10 random member designs.
Depending on the obtained average correlation and uncertainty range, it might be necessary to evaluate
10 additional members. On the basis of the multi-fidelity optimisation with worst correlation r2 = 0.46,
it has been demonstrated that 20 members are sufficient to check if the correlation coefficient is higher
than the limit of sufficient correlation. This number of members however, is merely an indication and
could be higher depending on the simulation process under consideration.

Previously it was explained that the average correlation is calculated by contributions from two restrictions
and two objectives for each of which a Co-Kriging model is established. When performing the
aforementioned calculation steps, a designer may see large differences in these contributions. Therefore,
in the next paragraph the individual Co-Kriging model correlations are considered to investigate their
impact on the average correlation.
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Figure 5.19: Flow chart to estimate the cost ratio and correlation coefficient and estimate low-fidelity
process suitability.

Investigating Co-Kriging model correlations

In this work, the average correlation coefficient r2
avg is calculated by averaging the individual Co-Kriging

model correlations, as explained in Section 3.7. Because contributions might be differently affected by
a certain fidelity reduction method, in the following the effects of fidelity reduction on individual model
correlations is investigated.

The optimisation problem in this thesis had two objectives and two restrictions. For each of these four
parameters, a Co-Kriging model is established. The individual model correlations are rηISO , rηHOT ,
rPR and rṁ. By taking the average of these correlations, for each multi-fidelity optimisation an average
correlation coefficient r2

avg is calculated. In Table 5.6 below, the individual correlations are shown in
column 2 to column 5, for all five tested multi-fidelity optimisations. The average correlation coefficients
are shown in column 6 of this table. Next, observations are made on the basis of these values.

Table 5.6: Individual correlations of objectives and restrictions and the average correlation coefficients
for multi-fidelity optimisations tested in this thesis.

Opti. name rηISO rηHOT rPR rṁ r2avg
MUFI 1 0.98 0.99 0.85 0.98 0.90
MUFI 2 0.98 0.97 0.80 0.98 0.87
MUFI 3 0.99 0.98 0.99 0.99 0.98
MUFI 4 0.96 0.93 0.90 0.92 0.86
MUFI 5 0.99 0.34 0.84 0.56 0.46

By inspecting the correlations in column 2 to column 5 in Table 5.6, one could notice that there
might be a large difference between individual coefficients and the average correlation coefficient. The
largest variation can be seen for optimisation MUFI 5, where rηISO = 0.99 is 115% higher than the
average correlation r2

avg = 0.46 and almost 200% higher than the individual correlation of the second
objective rηHOT = 0.36. From this observation, it is concluded that two Co-Kriging models of the same
optimisation could have very different correlations.
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Previously in Section 5.2-2, it has been observed that MUFI 3 obtains a higher average correlation
than MUFI 2. This is unexpected, since the low-fidelity process of MUFI 3 is subject to more fidelity
reduction which usually results in a reduction in correlation. By inspecting individual correlations of these
optimisations in Table 5.6, one can observe that the average correlation of MUFI 2 is highly reduced by
the correlation of the Co-Kriging model approximating the pressure ratio in near stall operating conditions.
The correlation of the pressure ratio rPR = 0.80 for MUFI 2 is almost 20% lower than the correlation
rPR = 0.99 for MUFI 3.

In Figure 5.20 and Figure 5.21, the complete set of member evaluations of the pressure ratio in
the near stall point are shown for MUFI 2 and MUFI 3 respectively. The interpretation of this type of
diagram was previously explained in Section 3.7. When comparing the spread in member evaluations,
it can be observed that the evaluations of MUFI 2 are indeed located further from the line of positive
correlation compared to MUFI 3, as is suggested by difference in value of the correlation coefficient.
In Figure 5.20 for every member also an error bar is included, which shows the absolute error to the
low-fidelity approximation of the Co-Kriging model of MUFI 2. On the contrary for MUFI 3, error bars
of member evaluations in Figure 5.21 are so small that they are not visible. Considering diagrams of
other Co-Kriging models (not shown here), it is found that the error bars increase in size for models with
low correlation coefficients. Regardless of the error bars, due to the spread of evaluations for MUFI 2,
the correlation is certainly lower compared to the pressure ratio evaluations of MUFI 3.
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Figure 5.20: Diagram of pressure ratio
evaluations of MUFI 2 by low-fidelity and
high-fidelity processes
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Figure 5.21: Diagram of pressure ratio
evaluations of MUFI 3 by low-fidelity and
high-fidelity processes

An explanation for a change in model correlation of the PR in NS operating could be a sensitivity of
the pressure ratio to the employed fidelity reduction methods. Compared to MUFI 2, the low-fidelity
process of MUFI 3 is subject to a larger mesh reduction in the S1 plane. The number of axial cells is
reduced from 79 to 47 and the tangential resolution is reduced from 31 to 19. However in this thesis, the
dependency of the pressure ratio on this type of mesh reductions could not be investigated.

As shown by correlation values in the bottom row of Table 5.6, the mass flow (ṁ) and efficiency in HOT
operating conditions (ηHOT ) are mostly affected by severe fidelity reduction. For future research, one is
advised to take into account the effects of fidelity reduction on individual model correlations.
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5.5 Multi-fidelity performance forecasting

Concluding statement

This chapter has presented and discussed the performance results of six multi-fidelity optimisations. By
identifying the best and the worst multi-fidelity performance with respect to single-fidelity optimisation
in Section 5.2-1 and evaluating these optimisations using potential metrics in Section 5.2-2, it has been
concluded that the multi-fidelity method is not suitable for improving the current optimisation problem.
The method should be applied to a problem with a higher fidelity gap. When an appropriate problem
is identified and several low-fidelity processes are established, it is possible to calculate the correlation
coefficient and cost ratio with an accuracy explained in Section 5.5. A designer can then estimate suitability
of a low-fidelity process for multi-fidelity optimisation. Because the best multi-fidelity optimisation and the
single-fidelity reference optimisation have found very comparable design optima as shown in Section 5.2-1,
in the next chapter the geometry and aerodynamic performance of these blade designs are investigated.
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6 Aerodynamic analysis of optimum members

Optimisation results from Chapter 5 have shown that selected optimum members from the best performing
multi-fidelity optimisation MUFI 3 and single-fidelity reference optimisation SIFI attain almost the same
improvement in the objectives. In this chapter, the geometrical shape and aerodynamic performance
of optimum members from MUFI 3 and SIFI are investigated, to verify if those optima either show
similarities or differences.

This chapter starts by visually inspecting the 3D blade shape in Section 6.1. A discussion of the radial
distribution of isentropic efficiency and total pressure is described in Section 6.2. Finally in Section 6.3,
the Mach distribution is presented at two radial span locations. This chapter is closed by explaining
physical differences and their implications on aerodynamic performance.

6.1 Three-dimensional blade shape

Optimum members of MUFI 3 and SIFI are selected using the approach described in Section 3.6. In this
section, the these optimum blade designs are investigated on the basis of their geometrical shapes.

The position of the member designs in the Pareto diagram, as well as the three-dimensional blade shapes
are shown in Figures 6.1 and 6.2. It is observed that the Pareto fronts have a very similar shape. The
optimum members of SIFI and MUFI 3 are located at the intersection point of the diagonal line (dashed)
and the Pareto front. The motivation for this selection approach can be found in Section 3.6. The
optimum of SIFI attains an average efficiency gain of ∆η = 1.15%. The gain by the MUFI 3 optimum
is ∆η = 1.16% and is hence only 0.01% higher. The blade shapes of the selected optimum blade design
from SIFI (blue) the initial rotor design (grey) are shown in Figure 6.1.
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Figure 6.1: Pareto diagram of SIFI with
isometric view of selected SIFI optimum blade
design and initial design. (Note: blade shapes
skewed for confidentiality reasons).
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Figure 6.2: Pareto diagram of MUFI 3 with
isometric view of selected MUFI 3 optimum
blade design and initial design. (Note: blade
shapes skewed for confidentiality reasons).
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6.2 Radial distributions

Purely from a visual perspective1, it is observed that at the blade root, the chord length of the SIFI
optimum is smaller than the chord length of the initial blade. By inspecting Figure 6.2 showing the
selected optimum from MUFI 3 (green) and the initial design (grey), it is observed that close to the blade
root, the chord of MUFI 3 is larger than the initial design. From these observations, it is concluded
that MUFI 3 and SIFI optimum designs are geometrically different. In Section 3.8 is was explained that
differences between optimum designs have been identified in previous research. In the work of Brooks
et al. [3], single-fidelity and multi-fidelity optimisations spending the same computational budget have
found blades with different blade leaning and blade twist. In this thesis, study on the blade design
parameters was not be performed, hence geometrical differences are not quantified in this section. In the
next section, differences in aerodynamic performance are investigated by analysing radial variations.

6.2 Radial distributions

In this section, the optimum members of single-fidelity and multi-fidelity optimisation are compared on
the basis of radial distributions of isentropic efficiency and total pressure ratio.

The radial distributions of isentropic efficiency for the initial blade design, SIFI optimum and MUFI 3
optimum are presented in Figure 6.3. The isentropic efficiency applies to the second stage efficiency
simulated in the ISO operating point is investigated, which is an optimisation objective in the current
setup. In Figure 6.3, it is observed that both SIFI and MUFI 3 distributions attain higher efficiency
values compared to the initial design, over a blade span ranging from R = 8% to R = 91%. Taking the
integral of these radial efficiency distributions should amount the same efficiency gain of approximately
ηISO = 1.15%. However, it can be observed in Figure 6.3 that the efficiency gain is obtained at different
radial locations. The MUFI 3 optimum has a higher efficiency gain than the SIFI optimum between
R = 8% and R = 60%, by at most ∆η = 0.3%. The SIFI optimum has a higher efficiency gain than
the MUFI 3 optimum between R = 60% and R = 91%, by at most ∆η = 0.5%. However, both attain
their maximum gains at approximately R = 10%. A similar analysis is performed of the radial variation
in isentropic efficiency in the HOT operating point. Although results from ηHOT analysis are not shown
here, they are in agreement with previous observations based on the ISO efficiency variation.

The radial distributions of total pressure ratio for all three blade designs (initial, MUFI 3 and SIFI)
are presented In Figure 6.4. From this figure it can be observed that the radial variation of at most
∆PR = 0.3 in total pressure ratio of the initial blade design is smaller than the radial variations of the
SIFI and MUFI 3 optima. Compared to the radial distribution of the initial blade design, the SIFI optimum
design attains a higher pressure ratio between R = 8% and R = 70%, with a maximum difference of
∆PR = 0.1 at R = 45%. The MUFI 3 optimum designs attains a higher pressure ratio compared to
the initial design between R = 0.30% and R = 0.85%, with a maximum difference of ∆PR = 0.75 at
R = 60%.

From this analysis, it is concluded that SIFI and MUFI 3 optimum designs are not only geometrically
different, but that they also differ in terms of aerodynamic performance. Whereas the SIFI optimum
design obtains a higher efficiency gain in the tip region, the MUFI 3 optimum design obtains a higher
gain in the hub region of the blade compared to the intial design. To further investigate aerodynamic
differences, two cuts are generated at span locations R = 0.40% and R = 0.75%. The reason for
choosing these spanwise locations is that both the isentropic efficiency and the total pressure ratio show
distinct values, as is shown in Figures 6.3 and 6.4. The cross-sectional blade shapes at R = 0.40%
and R = 0.75% are shown in Figures 6.5 and 6.6 respectively. In both figures, one could observe the
differences in the blade stagger and maximum thickness of the optimum blades with respect to the initial
blade design. At R = 0.40%, compared to the initial blade design, the maximum blade thickness of the

1Although the 3D blade shapes are scaled, geometrical differences relative to the initial blade design can still be observed.
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Figure 6.5: Blade cross-sections at R = 0.40%
of SIFI optimum, MUFI 3 optimum and initial
rotor design. Cross-sectional shapes are scaled
for confidentiality reasons.
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Figure 6.6: Blade cross-sections at R = 0.75%
of SIFI optimum, MUFI 3 optimum and initial
rotor design. Cross-sectional shapes are scaled
for confidentiality reasons.

MUFI 3 optimum is 20% less and the maximum thickness of the SIFI optimum is almost 35% less.
The stagger of the MUFI 3 optimum is 5% less and the stagger of the SIFI optimum is 5% more. At
R = 0.75, compared to the initial blade design, the maximum blade thickness of the MUFI 3 optimum
is 45% less and the maximum thickness of the SIFI optimum is 40% less. The stagger of the MUFI 3
optimum is 4% more and the stagger of the SIFI optimum is 2% less. Due to time constraints, the
link between aforementioned differences in blade geometry and the radial distributions presented in this
paragraph have not been investigated.

In the next section, the aerodynamic flow field in the blade-to-blade plane (S1) is analysed at the span
locations indicated previously.
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6.3 Distributions in the blade-to-blade plane

In this section, the aerodynamic performance in the blade-to-blade plane of the initial blade and the two
optimum blade designs is considered. The Mach number distribution is presented for these blade designs
at two radial positions, whose selection was motivated in the previous section.

The Mach number distributions of the initial member, SIFI optimum and MUFI 3 optimum at r = 0.40%
and r = 0.75% can be inspected in Figure 6.7 to Figure 6.12. In these figures, only the second stage of
the two-stage blade geometry is considered. In the following, the local regions of supersonic flow are
compared, bounded by the shock wave at the rotor blades.

When comparing the Mach number distributions of the SIFI optimum and the initial blade at a
radial span of R = 0.40% (Figure 6.7 and Figure 6.9), it can be observed that the region of supersonic
flow at the SIFI rotor covers a 14% larger portion of the blade suction side (indicated by L). Comparing
the distributions of the MUFI 3 optimum and the initial blade at the same radial span (Figures 6.7
and 6.11), the local supersonic region at the MUFI 3 rotor blade covers 11% more of the suction side.
Making the same comparison at R = 0.75%, comparing the Mach distributions of the SIFI optimum and
the initial blade (Figures 6.8 and 6.10), the shock wave at the SIFI rotor covers 20% more of the suction
side. From a comparison of the MUFI 3 optimum and the initial blade design (Figures 6.8 and 6.12), a
similar increase in length of the supersonic region over the blade suction side is observed, equal to 20%.

The maximum shock strength of the MUFI 3 optimum at R = 0.40% is M = 1.20, which is 7%
lower compared to a strength of M = 1.29 for the SIFI optimum and 6% lower compared to M = 1.27
for the initial design. At spanwise location R = 0.75%, the maximum shock strength of the MUFI 3
optimum is M = 1.25, which is 2% higher compared to both a strength of M = 1.23 for the SIFI
optimum and M = 1.22 for the initial design.

These observed differences in shock location and strength could determine the variations in isentropic
efficiency at hub and tip, identified in the previous section and illustrated in Figure 6.3. However, in
Section 2.3 it is explained that many flow phenomena have an impact on the isentropic efficiency, besides
the shock structure. Hence, an extended aerodynamic study needs to be performed in order to explain
radial variations in isentropic efficiency. That study could investigate the flow field at more than two
radial locations. Furthermore, such a study should be targeting losses in the boundary layer and in the tip
region due to tip clearance, amongst others.
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Concluding statements on aerodynamic analysis

In the last paragraph of this chapter, conclusions are drawn from the comparison on geometrical features
and aerodynamic performance of MUFI 3 and SIFI optimum designs and the initial blade.

This comparison study has considered two members out of all Pareto optimal solutions, obtained by the
optimisations MUFI 3 and SIFI. From results discussed in this chapter, it is concluded that the optimum
blades of MUFI 3 and SIFI optimisations are geometrically and aerodynamically different. Compared
to the intial design, the MUFI 3 optimum design obtains a higher gain at the blade hub at a radial
span from R = 8% to R = 60% by at most ∆η = 0.3%. The SIFI optimum design obtains a higher
efficiency gain in the tip region at a radial span from R = 60% and R = 91% by at most ∆η = 0.5%.
Furthermore, comparing the radial distribution of total pressure ratio for MUFI 3 with the initial blade
design, a maximum difference in pressure ratio is obtained of ∆PR = 0.75 at R = 60%. The SIFI
optimum attains a maximum difference of ∆PR = 0.1 at R = 45%. Furthermore the Mach number
distributions of the three blade designs are considered at two spanwise locations. Concerning the region
of supersonic flow as a fraction of the overall rotor suction side, for SIFI and MUFI 3 optima these
regions are both 20% larger at R = 0.75% compared to the intial blade design. At R = 0.40%, this
region is also 14% and 11% larger, respectively. The highest flow velocity for the MUFI 3 is M = 1.20
at R = 0.40%. This shock is 7% weaker than the shock at the rotor blade of the SIFI optimum design
and 6% weaker than the shock of the initial design. Differences observed in shock location and strength
could determine the variations in isentropic efficiency at hub and tip. However, an extended aerodynamic
study needs to be performed on other flow mechanisms causing channel losses, in order to fully explain
the radial variations in isentropic efficiency. Because distinct aerodynamic performance of two optimum
blade designs is demonstrated, three hypothetical scenarios are formulated to describe the multi-fidelity
algorithm:

1. Optimisations SIFI and MUFI 3 are not equally converged. The optimisations might eventually
search the same design space, but only at a later point in time. In Section 4.5, it has been shown
how the convergence criterion influences the amount of CVG improvement that is remaining after
termination.

2. The blade geometries look different, but design parameters causing geometrical differences hardly
affect the optimisation objectives. To verify this scenario, one is required to analyse the sensitivity
of the objectives to all blade design parameters. An approach for analysing the sensitivities, is to
consider the hyperparameter ~Θ for every Co-Kriging model. In Section 3.4-1, it was explained that
model hyperparameters are optimised during surrogate training. It was shown that every design
parameter has its own hyperparameter ~Θl. Therefore impact of a design parameter on a Co-Kriging
approximation can be interpreted through the value of its hyperparameter. If the objectives are
insensitive to many blade parameters, one can say the optimum blade designs are located in the
same design space.

3. Optimisation MUFI 3 did resolve a different part of the design space. The multi-fidelity
optimisation has found a different optimum design, which obtained an almost identical improvement
in compressor efficiency. To visualise the design space, one needs to reduce a multi-dimensional
solution space to an intuitive graphical representation. A clustering algorithm can be used to visually
group similar designs in a 2D or 3D diagram. Such a diagram could help to identify shared design
features.

Because analysis of two optimum members does not allow to distinguish one of these scenarios, it can not
be concluded whether the multi-fidelity optimisation found a different global optimum. In order to test
the hypotheses above, the current research needs to be extended by an analysis of various Pareto optimal
member designs and the development of an optimum blade design over the course of an optimisation.
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7 Conclusions

In the final chapter of this thesis, the research questions are answered and supported by conclusions from
the previous chapters.

In Section 7.1, the most important conclusions are summarised. Subsequently in Section 7.2,
recommendations are given for future research on the multi-fidelity method, applied to aerodynamic
shape optimisation of axial compressor blades.

7.1 Answers to research questions

This paragraph summarises the main conclusions of this thesis. In this work, the use of the multi-fidelity
method is explored to speed up the aerodynamic shape optimisation process of axial compressor blades.
A multi-fidelity optimisation differs from a single-fidelity optimisation by employing an additional
low-fidelity process for cheap evaluation of member designs, as an alternative to the expensive high-fidelity
process.

In Chapter 3, it is concluded from the work of Toal [29] that three metrics determine the benefit of
a multi-fidelity optimisation: the cost ratio of process expenses, the correlation between process results
and replacement ratio representing the fraction of low-fidelity members. Previous work in which the
multi-fidelity method is employed to compressor optimisation problems has shown a 50% savings in
overall optimisation run time can be achieved, besides an increase in the optimum efficiency of 0.35%. In
the works of Reimer [23] and Brooks et al. [3] cost ratios of 0.11 and 0.33 respectively were achieved. The
optimisation problem considered in this thesis consists of two compressor blade stages from which only
the second rotor is parametrised. The optimiser “AutoOpti” is used for automatic optimisation of the rotor
blade geometry. Aerodynamic performance is evaluated on the basis of the isentropic stage efficiency,
using the flow solver “TRACE”. The optimisation objective is to increase the isentropic efficiency in two
operating points, while subject to two constraints.

In Chapter 4, the high-fidelity process for CFD simulation is presented. This model employs a mesh
with a total of 903, 000 cells and solves using Menter SST turbulence equations. Five multi-fidelity
optimisation setups are tested, which all employ this high-fidelity process, but distinct low-fidelity
processes ranging from a fine mesh and Menter SST turbulence equations to a coarse mesh and inviscid
Euler equations. The five low-fidelity models are selected based on the simulation of one member design
using both high-fidelity and low-fidelity processes.

In Chapter 5, the results from the single-fidelity baseline optimisation and five test optimisations are
presented and discussed. The single-fidelity reference optimisation has increased the average isentropic
efficiency by 1.15% with respect to the intial blade design, in a theoretical optimisation time of 1666 hours.
This time is equivalent to an absolute duration of approximately 7 days. The worst multi-fidelity
optimisation has a delay in optimisation run time of 39.9%, equivalent to almost 3 days of time loss. The
selected optimum design found by this optimisation has a loss in average efficiency of 0.11%. The best
multi-fidelity optimisation has a speed-up of 14.1%, equivalent to 1 day of time savings. The selected
optimum design has a an improvement in average efficiency of 0.02%. The primary research question of
this work is answered on the next page.
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7.1 Answers to research questions

Research question 1

How much fidelity reduction should be applied to the low-fidelity process chain, in order to achieve
the highest speed-up or improvement of the optimum by multi-fidelity optimisation with respect to
single-fidelity optimisation?

Answer

The most suitable low-fidelity process employs a mesh of 223, 000 cells in total (a mesh ratio of 4
compared to the high-fidelity process), with 28 radial streamlines and a blade-to-blade resolution of
47 axial and 19 tangential cells. The low-fidelity employs the same Menter SST turbulence model
as the high-fidelity process. The multi-fidelity optimisation employing this low-fidelity process,
MUFI 3, achieves a speed-up of 14.1%. This result is useful in terms of absolute time savings,
but 36% lower compared to findings described in reference literature. Due to uncertainty imposed
by progress variability, there is little guarantee this speed-up can be achieved when repeating the
optimisation. The main conclusion of this work is that the fidelity level of the high-fidelity process
in this work is too low to obtain a large benefit from the multi-fidelity method.

The current fidelity reduction methods, consisting of mesh reduction and adaptation of solver settings
in 3D CFD, do not a allow a sufficient reduction in the cost ratio without a considerable reduction in
the correlation coefficient. The best cost ratio is achieved by optimisation MUFI 5, equal to Cr = 0.14.
However, MUFI 5 only attains a very low correlation coefficient of r2 = 0.46. The best correlation
coefficient is achieved by MUFI 3, equal to r2 = 0.98. However, MUFI 3 attains a mediocre cost ratio
of Cr = 0.29. From all test optimisations using the (automatic) variance decision function, for MUFI 3
the highest fraction of computational budget was allocated to low-fidelity member evaluations, equal to
fr = 7%. This fraction is 3% below the lower limit recommended by Toal [29] and 35% lower than
used in the work of Reimer [23]. Repeating the optimisation as MUFI 6 with an increased computational
budget equal to 51%, the maximum improvement in CVG with respect to SIFI is increased by 14%,
owing to enhanced information transfer from low-fidelity members. However, low-fidelity members are
still too expensive and delay the optimisation in terms of its run time. It is recommended to apply the
multi-fidelity method to a different optimisation problem, whose setup is described in Section 7.2.

In Section 5.5, convergence trends of the cost ratio and correlation error are analysed by calculating
these parameters for randomly sampled sets of member designs with increasing size. From this analysis it
is found that a designer needs to evaluate 2 blade designs using a low-fidelity and high-fidelity simulation
process, to estimate the cost ratio with an accuracy of 5%. Furthermore, a designer needs to evaluate at
most 20 blade designs to estimate the correlation coefficient with an error of at most 35%. It is argued
that this accuracy is sufficient to check the minimum required amount of correlation of r2 = 0.90,
specified by Toal [29]. In order to investigate the suitability of a low-fidelity process with respect to a
selected high-fidelity baseline model, a designer can apply these guidelines.

In Chapter 6, the geometrical shape and aerodynamic performance of selected optimum members
from the best multi-fidelity optimisation (MUFI 3) and the single-fidelity reference optimisation (SIFI)
are compared, which attained almost the same average efficiency gain of ∆η = 1.16% and ∆η = 1.15%
respectively. In the following, the second research question of this thesis is answered.

Research question 2

Are optimum designs from multi-fidelity and single-fidelity optimisations similar or different in terms
of shape and aerodynamic performance?
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Answer

The selected multi-fidelity and single-fidelity optima are geometrically different and perform
aerodynamically different. The observed differences are summarised below. Three possible
scenarios are presented which could explain why a different optimum blade design may have been
found using the multi-fidelity method.

It is shown that compared to the initial design, the MUFI 3 optimum obtains a higher gain in the hub
region of the blade at a radial span from R = 8% to R = 60% by at most ∆η = 0.3%. The SIFI
optimum design obtains a higher efficiency gain in the tip region at a radial span from R = 60% and
R = 91% by at most ∆η = 0.5%. At two radial locations the Mach number distribution is considered.
Concerning the region of supersonic flow on the suction side as a fraction of the overall rotor chord
length at R = 0.75%, this region is 20% larger for both SIFI and MUFI 3 optima compared to the intial
blade design. At R = 0.40%, the supersonic regions are respectively 14% and 11% larger. The highest
reduction in shock strength is at R = 0.40% by MUFI 3, with a shock strength of M = 1.20. The shock
strength is 7% lower than the shock strength at the rotor blade of the SIFI optimum design and 6% lower
than the shock strength of the initial design. Differences observed in shock location and strength could
cause the variations in isentropic efficiency at hub and tip. However, the aerodynamic study needs to be
extended to other flow mechanisms in order to fully explain the radial variations in isentropic efficiency.
This discussion cannot ascertain that multi-fidelity and single-fidelity algorithms have led to different parts
of the design solution space. Firstly, one of the optimisations could be non-converged and could later find
a more similar design. Secondly, contradicting geometrical parameters could have a very weak influence
on the current design objectives. The investigation should be extended, by monitoring the development
of the optimum blade design over the course of an optimisation.

7.2 Future work

In this thesis it is found that the multi-fidelity method is not suitable for improving current optimisation
performance. However, the method can be tested to a different optimisation problem with a higher
potential. This section gives recommendations of such an optimisation setup and suggestions for future
work in this field of research.

The first paragraph of this section describes a more suitable setup for multi-fidelity optimisation with
higher potential. The second paragraph describes adaptations to optimisation settings to fine-tune the
setup.

1. Adaptations to optimisation setup

For better performance of the multi-fidelity method, the fidelity gap between the low-fidelity and the
high-fidelity process should be increased. In Figure 7.1, the fidelity gap is illustrated for the current
setup and a recommended optimisation setup. The current high-fidelity process simulates the four-row
geometry using 903, 000 mesh cells and solves the flow using Menter SST turbulence equations. The
process of lowest fidelity uses a mesh of 12, 800 cells and solves the flow using Euler equations. The
first option is to use a setup with a more expensive high-fidelity process that simulates detailed design
features such as penny gaps by employing a more refined mesh. The second option is to employ a cheaper
low-fidelity process for simulation such as through-flow calculations. Alternatively, additional simulation
methods could be added to the high-fidelity process chain such as heavy structural simulations, which
can then be greatly simplified in the low-fidelity process. One should consider if these methods provide
additional value to compressor blade shape optimisation. Generally a larger fidelity gap is seen for other
problems, such as optimisation of the rear compressor stages requiring a larger mesh to solve for stronger
cross-flow. Another example is optimisation of turbine blades where heat transfer plays a predominant
role besides flow aerodynamics. A new setup satisfies the guidelines defined by Toal [29] and attains
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similar values in correlation, cost ratio and replacement ratio as demonstrated for the works of Reimer
[23] and Brooks et al. [3]. The cost of the low-fidelity process should be at most 11% of the high-fidelity
process (Cr = 0.11) and a high correlation coefficient should be maintained (r2 = 0.90). A considerable
part of the computational budget should be taken up by low-fidelity members (fr = 0.40).

Current setup

M
od

el
 c

os
t

LOFI

HIFI

HIFI

LOFI

Gap 1 Gap 2

Recommended setup

902,300 cells
Menter SST

12,800 cells
Euler equations

Through-flow

>1 mln cells
Additional
design features
and disciplines
(FEA, HT)

Figure 7.1: Fidelity gaps of the current and recommended optimisation setup. Increasing the cost ratio of
processes in an improved setup, increases the chances of successful multi-fidelity optimisation, provided
that process results are well-correlated.

2. Adaptations to optimisation settings

In this subsection, optimisation settings are recommended to possibly improve the benefit of multi-fidelity
optimisation. These settings are based on reference literature and inspired by a discussion with AutoOpti
developer C. Voss1.

1. Based on successful multi-fidelity optimisations described in the work of Reimer [23], it is
recommended to employ the variance decision function to let the optimiser decide on whether
to evaluate high-fidelity or low-fidelity members. When a more suitable optimisation problem is
available, the automatic decision function is better capable of estimating when to evaluate using the
low-fidelity process, compared to manually setting the low-fidelity member ratio.

2. The initialisation duration could be increased to at least 1.5 times the number of design variables.
Increasing the duration, improves quality of the Co-Kriging model and enhances information transfer
from low-fidelity members, hence it could improve potential of the multi-fidelity method.

3. Third, for maximising the difference between single-fidelity and multi-fidelity optimisations, the
member generation method should discard evolutionary operations. Only the surrogate model
should be used for member generation after initialisation, which allows to take full advantage
of the Co-Kriging model in multi-fidelity optimisation.

4. It is recommended to employ asynchronous training. The training time of the Co-Kriging is longer
than the Kriging model used in single-fidelity optimisation. By using asynchronous training, the
master no longer needs to wait for training to finalise before generating new member designs.
Multi-fidelity optimisation then has less of a disadvantage compared to single-fidelity optimisation.

1Personal communication, October, 2017
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Table A1: Process times of the hifi and lofi process chains of MUFI 1 (multi-fidelity setup with lofi
process of highest accuracy and worst optimisation performance).

Process name Hifi time Lofi time Cost ratio
CleanSlaveDir 00:00:06 00:00:03 0.50
MultistageAirfoilCreation 00:00:07 00:00:05 0.71
FEM MeshBL Ccx 00:00:02 00:00:02 1.00
GAT3003 1 Mesh 00:02:40 00:02:05 0.78
GAT3003 2 SetupTrace 00:00:03 00:00:02 0.67
GAT3003 2 SetupTrace 00:00:03 00:00:02 0.67
GAT3003 2 SetupTrace 00:00:03 00:00:02 0.67
GAT3003 3 RunTrace 00:11:21 00:05:45 0.51
GAT3003 4 PostProTrace 00:00:37 00:00:28 0.76
GAT3003 3 RunTrace 00:10:10 00:04:52 0.48
GAT3003 4 PostProTrace 00:00:36 00:00:28 0.78
GAT3003 3 RunTrace 00:09:41 00:04:26 0.46
GAT3003 4 PostProTrace 00:00:36 00:00:27 0.75
EvaluateMember 00:00:03 00:00:03 1.00
CleanUnimportant 00:00:01 00:00:01 1.00
Total 00:36:56 00:19:31 0.53

� Expensive subprocess
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Table A2: Process times of the hifi and lofi process chains of MUFI 3 (multi-fidelity with lofi process of
moderate accuracy and best optimisation performance).

Process name Hifi time Lofi time Cost ratio
CleanSlaveDir 00:00:05 00:00:05 1.00
MultistageAirfoilCreation 00:00:06 00:00:05 0.83
FEM MeshBL Ccx 00:00:01 00:00:01 1.00
GAT3003 1 Mesh 00:02:45 00:01:21 0.49
GAT3003 2 SetupTrace 00:00:03 00:00:02 0.66
GAT3003 2 SetupTrace 00:00:03 00:00:02 0.66
GAT3003 2 SetupTrace 00:00:03 00:00:02 0.66
GAT3003 3 RunTrace 00:08:03 00:01:55 0.18
GAT3003 4 PostProTrace 00:00:38 00:00:21 0.55
GAT3003 3 RunTrace 00:06:56 00:01:32 0.22
GAT3003 4 PostProTrace 00:00:38 00:00:21 0.55
GAT3003 3 RunTrace 00:06:40 00:01:30 0.23
GAT3003 4 PostProTrace 00:00:37 00:00:21 0.57
EvaluateMember 00:00:03 00:00:02 0.66
CleanUnimportant 00:00:02 00:00:01 0.50
Total 00:27:00 00:07:57 0.29

� Expensive subprocess

Table A3: Process times of the hifi and lofi process chains of MUFI 5 (multi-fidelity setup with lofi
process of lowest accuracy).

Process name Hifi time Lofi time Cost ratio
CleanSlaveDir 00:00:05 00:00:04 0.80
MultistageAirfoilCreation 00:00:06 00:00:05 0.83
FEM MeshBL Ccx 00:00:01 00:00:01 1.00
GAT3003 1 Mesh 00:02:46 00:00:45 0.27
GAT3003 2 SetupTrace 00:00:03 00:00:02 0.66
GAT3003 2 SetupTrace 00:00:03 00:00:02 0.66
GAT3003 2 SetupTrace 00:00:03 00:00:02 0.66
GAT3003 3 RunTrace 00:07:53 00:00:36 0.08
GAT3003 4 PostProTrace 00:00:38 00:00:15 0.40
GAT3003 3 RunTrace 00:07:07 00:00:33 0.08
GAT3003 4 PostProTrace 00:00:38 00:00:15 0.40
GAT3003 3 RunTrace 00:06:44 00:00:34 0.08
GAT3003 4 PostProTrace 00:00:37 00:00:15 0.41
EvaluateMember 00:00:03 00:00:01 0.33
CleanUnimportant 00:00:01 00:00:02 2.00
Total 00:27:07 00:03:43 0.14

� Expensive subprocess
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