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Abstract
To monitor temporal variations of the Earth’s gravity field and mass transport in the Earth’s system, data from gravity recov-
ery and climate experiment (GRACE) satellite mission and its successor GRACE Follow-On (GFO) are used. To fill in the 
temporal gap between these missions, other satellites’ kinematic orbits derived from GPS-based high-low satellite-to-satellite 
tracking data may be considered. However, it is well known that kinematic orbits are highly sensitive to various systematic 
errors. These errors are responsible for a non-stationary noise in the kinematic orbits, which is difficult to handle. As a result, 
the quality of the obtained gravity field solutions is reduced. In this research, we propose to apply an epoch-difference (ED) 
scheme in the context of the classical dynamic approach to gravity field recovery. Compared to the traditional undifferenced 
(UD) scheme, the ED scheme is able to mitigate constant or slowly varying systematic errors. To demonstrate the added 
value of the ED scheme, three sets of monthly gravity field solutions produced from 6 years of GRACE kinematic orbits are 
compared: two sets produced in-house (with the ED and UD scheme), and a set produced with the undifferenced scheme in 
the frame of the short-arc approach (Zehentner and Mayer-Gürr in J Geodesy 90(3):275–286, 2015. https://doi.org/10.1007/
s00190-015-0872-7). As a reference, we use state-of-the-art ITSG-Grace2018 monthly gravity field solutions. A comparison 
in the spectral domain shows that the gravity field solutions suffer from a lower noise level when the ED scheme is applied, 
particularly at low-degree terms, with cumulative errors up to degree 20 being reduced by at least 20%. In the spatial domain, 
the ED scheme notably reduces noise levels in the mass anomalies recovered. In addition, the signals in terms of mean mass 
anomalies in selected regions become closer to those inferred from ITSG-Grace2018 solutions, while showing no evidence 
of any damping, when the ED scheme is used. We conclude that the proposed ED scheme is preferable for time-varying 
gravity field modeling, as compared to the traditional UD scheme. Our findings may facilitate, among others, bridging the 
gap between GRACE and GFO satellite mission.

Keywords Time-varying gravity field · Dynamic approach to gravity field recovery · Epoch-difference · Kinematic orbit · 
GRACE

1 Introduction

Knowledge of temporal variations of the Earth’s gravity 
field is of importance to understand large-scale mass trans-
port at and below the Earth’s surface. In the past decade, it 
was mostly observed with the ultra-precise K-Band rang-
ing (KBR) measurements from the gravity recovery and 
climate experiment (GRACE) mission (Tapley et al. 2004). 
However, the GRACE mission was completed in October 
2017, so that there exists a gap between GRACE and its suc-
cessor, GRACE Follow-On (GFO), which was launched in 
May 2018. Nowadays, there is a consensus that GPS-based 
high-low satellite-to-satellite tracking (hl-SST) can play an 
important role in bridging the gap (Bezděk et al. 2016; Guo 
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et al. 2017a; Guo and Zhao 2019; Jäggi et al. 2014, 2016; 
Visser et al. 2014; Weigelt et al. 2013). For that purpose, 
kinematic orbits are usually derived from the hl-SST GPS 
data by a precise point positioning approach (Švehla and 
Rothacher 2005) and then taken as pseudo-observations in 
gravity field modeling. In the last decade, several techniques 
have been developed to convert kinematic orbits into a grav-
ity field model (Baur et al. 2014). In this study, we will focus 
on the classical dynamic approach (CDA) (Reigber 1989). 
Our general goal is further improving the accuracy of gravity 
field modeling from kinematic orbit data.

Since GPS data are about 3 orders of magnitude less pre-
cise than the KBR data, they are only sensitive to temporal 
variations at low spherical harmonic degrees (< 20) of the 
Earth’s gravity field. Furthermore, it is well known that kin-
ematic orbits are very sensitive to observation geometry and 
various systematic errors, e.g., mismodeling of GPS antenna 
phase center, high-order ionosphere-induced errors, near-
field multipath, and uncalibrated hardware delays (Bock 
et al. 2014; Jäggi et al. 2009; Montenbruck et al. 2017). 
As a result, the recovered gravity field solutions usually 
suffer from systematic errors, particularly at low degrees 
(Jäggi et al. 2011a). Therefore, efforts are still ongoing to 
further improve the GPS-based gravity field solutions. For 
that purpose, previous authors mostly focused on develop-
ing dedicated algorithms to model systematic errors in GPS 
data, e.g., phase center variations (PCVs) (Bock et al. 2011; 
Jäggi et al. 2009) and high-order ionosphere-induced errors 
(Jäggi et al. 2014; Zehentner and Mayer-Gürr 2015). How-
ever, systematic errors may still exist in the kinematic orbits 
due to model deficiencies and/or unknown error sources. 
In this research, our focus is on the systematic errors that 
are constant or slowly varying in time, possibly showing a 
strongly non-stationary behavior. We propose to process the 
kinematic orbits through an epoch-difference (ED) scheme 
instead of the traditional undifferenced (UD) one in the con-
text of the classical dynamic approach. When differences 
between neighboring positions are used as input instead of 
positions themselves, the systematic errors under considera-
tion are largely eliminated, so that an improvement in the 
resulting gravity field solutions can be expected.

To demonstrate the added value of the proposed ED 
scheme, two sets of monthly gravity field solutions are pro-
duced using the classical dynamic approach from six years 
(2005–2010) of GRACE kinematic orbits. One is based on 
the traditional UD scheme, and the other on the ED one. To 
evaluate the quality of the GPS-based solutions, we use as 
the reference the latest ITSG-Grace2018 monthly gravity 
solutions produced at the Institute of Geodesy, Graz Uni-
versity of Technology (Mayer-Gürr et al. 2018). Those solu-
tions are mainly based on the GRACE KBR measurements 
and therefore are much more accurate than any GPS-based 
solution.

This paper is organized as follows: Sect. 2 presents in 
detail the data and methods adopted for gravity field mod-
eling. Results are shown in Sect. 3 and discussed in Sect. 4. 
Finally, Sect. 5 is left for conclusions.

2  Strategy

2.1  Data and models

Data processing in this study is performed with the Posi-
tion And Navigation Data Analyst (PANDA) software, 
which is developed at the GNSS Research Center of Wuhan 
University and has been widely used in precise orbit deter-
mination for both GNSS satellites and low Earth orbiters 
(Liu and Ge 2003; Shi et al. 2008). Recently, the dynamic 
approach to gravity field modeling has been implemented 
in PANDA and successfully applied to produce GRACE 
monthly gravity field solutions (Guo et al. 2017b, 2018). In 
this approach, data processing consists of two steps when 
gravity field is estimated from kinematic orbits. In the first 
step, a priori dynamic orbits are computed by fitting to the 
kinematic orbits through numerically integrating the equa-
tion of motion defined by the a priori force models (cf. 
Table 1). During this process, orbits are expressed as trun-
cated Taylor series with respect to the unknown parameters 
(cf. Table 1), about the computed a priori orbits. The partials 
with respect to those parameters are obtained by resolving 
the so-called variational equations. Only non-gravity param-
eters are adjusted at this step. In the second step, the gravity 
parameters are included. Based on the partial derivatives 
with respect to all unknown parameters, daily normal equa-
tions (NEQs) are set up for the purpose of the subsequent 
least-squares adjustment. Arc-specific parameters are then 
pre-eliminated, and the daily NEQs are accumulated into 
monthly NEQs. The monthly NEQ matrix is eventually 
inverted in order to obtain the corrections of the spherical 
harmonic coefficients (SHCs) with respect to the a priori 
gravity values.

Details about the data and models used in this study 
are also described in Table 1. For observing temporal 
variations of the Earth’s gravity field, the a priori static 
gravity field model should be as accurate as possible to 
reduce errors in the computed a priori dynamic orbits. 
For that purpose, we adopt the static part of the EIGEN-
6C4 model, which is compiled from 25 years of satellite 
laser ranging observations of Lageos, 10 years of GRACE 
KBR data, 3.5 years of GOCE satellite gravity gradient 
observations, and terrestrial surface data (Förste et al. 
2014). Importantly, old version of the products for the 
atmosphere and ocean de-aliasing and satellite attitudes 
have been used in this study, though more recent versions 
(RL06 and RL03, respectively) are currently available. 
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This is in order to keep consistency with the other GPS-
based solutions considered in this study. We compute our 
gravity field solutions only up to degree and order 60. 
Such a high maximum degree is definitely beyond the 
sensitivity range of GPS data. It was deliberately chosen 
to avoid spectral aliasing of high-frequency signals into 
low-degree coefficients.

The computed solutions are compared against those 
produced at the Institute of Geodesy, Graz University of 
Technology (Zehentner and Mayer-Gürr 2015), which are 
complete to degree and order 100. We also did a limited 
number of test computations up to degree 100. The results 
showed that the differences between the solutions com-
plete to degrees 60 and 100 were in all cases negligible 
below degree 55. This implies that the chosen resolution 
has little influence on the long-wavelength gravity field 
determination from kinematic orbits. We remind that the 
same finding has also been reported by Baur et al. (2012). 
This justifies our decision to produce solutions up to a 
reduced maximum degree (i.e., 60), which allowed us to 
reduce the time of computations substantially. For the 
sake of further consistency, we use the orbits produced 
by Zehentner and Mayer-Gürr (2015) as input. Finally, the 
arc length is set equal in our data processing scheme to 
24 h in order to keep consistency with the parameteriza-
tion of the exploited kinematic orbits.

2.2  Epoch‑difference scheme

The linearized undifferenced observation equation can be 
expressed as follows:

where y is the observation vector, A the design matrix, �0 
the vector composed of a priori values of parameters, Δ� 
the vector composed of parameter corrections to be esti-
mated (cf. Table 1). By denoting the associated noise vari-
ance–covariance matrix as C, we can get the weighted least 
square (WLS) solution:

where d = y − Ax0 is the ‘observed minus computed’ (O–C) 
vector. As mentioned above, the observations (the kinematic 
orbits in this study) may be contaminated by systematic 
errors. In addition, according to the Hill’s equation (Kaplan 
1976), errors in the background force models would also 
lead to constant and time-varying perturbations in the com-
puted a priori orbits. As soon as these perturbations cannot 
be explained by the adopted gravity field model, they form 
another source of non-stationary systematic errors in the 

(1)� = �
(
�0+Δ�

)
,

(2)Δ� =
(
�T�−1�

)−1
�T�−1�,

Table 1  Data and models used 
for gravity field modeling

Background force models Description

Mean gravity field model EIGEN-6C4 (Förste et al. 2014) (120 × 120)
Solid Earth and pole tides IERS Conventions 2010 (Petit and Luzum 2010)
Ocean tides EOT11a (Rieser et al. 2012) (120 × 120)
Ocean pole tides Desai (Desai 2002) (30 × 30)
Atmosphere and ocean de-aliasing AOD1B RL05 (Flechtner et al. 2015)
Third-body perturbations DE421 (Folkner et al. 2009)
General relativistic effects IERS Conventions 2010 (Petit and Luzum 2010)
Reference frames
 Conventional inertial reference frame IERS Conventions 2010 (Petit and Luzum 2010)
 Precession/nutation IAU 2006/2000A (Petit and Luzum 2010)
 Earth orientation parameters IERS EOP 08 C04

Input data
 Kinematic orbits 10 s sampling
 GRACE attitudes Level 1B RL02, 5 s sampling
 Non-gravitational accelerations Level 1B RL02, 5 s sampling

Estimated parameters
 Initial state vector Position and velocity per satellite and per arc
 Accelerometer bias Piecewise constant with an interval of 24 or 1.5 h
 Accelerometer scale factor One per month per component
 Spherical harmonic coefficients Between degrees 2 and 60
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data. All these systematic errors will enter into the O–C 
vector and contaminate the final solutions.

To mitigate the systematic errors, we introduce the epoch-
difference matrix M. This matrix consists of blocks, one 
block per an uninterrupted fragment of the data set within 
an orbital arc:

Then, the linearized epoch-difference observation equa-
tion can be expressed as follows:

where �̃ is the transformed data vector: �̃ = �� , and �̃ is 
the associated design matrix: �̃ = �� . The corresponding 
WLS solution is:

where �̃ is the error variance–covariance matrix associated 
with the transformed data vector. As soon as this matrix 
is close to matrix MCMT, solutions (2) and (5) are nearly 
equivalent (they would be fully equivalent if the matrix 
MCMT were invertible). This allowed previous authors to 
claim that a linear transformation of the data vector must 
not affect the final results (Ditmar and van Eck van der 
Sluijs 2004). In practice, however, the exploited error vari-
ance–covariance matrices are defined differently. They are 
either proportional to a unit one (white-noise assumption) 
or have the Toeplitz structure (color-noise assumption). 
In both cases, possible non-stationarity of data noise is 
ignored, since this would make an estimation of the error 
variance–covariance matrix problematic (if not impossible). 
As a result, different approaches may not be equivalent in 
practice. Better results could be expected in the case when 
non-stationary errors in the data are suppressed. We believe, 
therefore, that Eq. (5) is likely preferable in the presence of 
non-stationary systematic errors in the data, particularly if 
the errors are (piecewise) constant or show slow temporal 
variations. Indeed, let us assume that the O–C vector suf-
fers from systematic errors and that these errors are partly 
formed by a bias � , which is constant per an uninterrupted 
data fragment (or per orbital arc). Then, the UD solution, 
according to Eq. (2), suffers from a bias given by:

On the other hand, the ED solution is free from such a 
bias because �� = 0.

(3)

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 0 ⋯

0 1 −1 0 ⋯

0 1 −1 ⋯

⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ 1 −1

⎤
⎥⎥⎥⎥⎥⎦

.

(4)�̃ = �̃Δ�

(5)Δ� =
(
�̃T�̃−1�̃

)−1
�̃T�̃−1�̃

(6)
(
�T�−1�

)−1
�T�−1�.

2.3  Data weighting scheme

Generally speaking, errors in kinematic orbits are often tem-
porally correlated. This is mainly due to the float-estimated 
ambiguity parameters (Jäggi et al. 2011b; Montenbruck et al. 
2018). This is the case, among others, for the kinematic orbits 
under consideration. On the other hand, deficiencies in the 
background force models lead to correlated errors in the com-
puted dynamic orbits (Ditmar et al. 2012). A traditional way to 
handle such noise is based on the assumption that it is station-
ary (e.g., (Klees et al. 2003)). A correlated stationary noise is 
called colored (or frequency dependent). This implies that the 
statistically optimal data inversion can be realized by means 
of frequency-dependent data weighting (FDDW). Recently, 
the FDDW concept has successfully been applied to GRACE 
KBR data processing with the classical dynamic approach and 
has notably reduced noise in the WHU-RL01 monthly grav-
ity solutions (Guo et al. 2018). As far as kinematic orbits are 
concerned, a successful application of FDDW was shown so 
far for sampling intervals not less than 30 s (Farahani et al. 
2013; Guo et al. 2017a). To fully exploit the gravity informa-
tion in the 10-s sampled kinematic orbits, we have applied an 
extended differentiation scheme similar to the one proposed 
by Baur et al. (2012). To be specific, the sampling points for 
epoch-differencing are chosen to be 30-s apart, whereas the 
differentiation moves along the original 10-s sampled orbit 
track. As such, there are three sets of observation equations, 
each set being shifted by 10 s. In fact, we also tried a larger 
differencing interval of 60-s and did some test experiments. 
The results revealed that the differences between the solutions 
produced with 30-s and 60-s intervals were negligible.

In this study, we adopt the FDDW variant proposed by 
Ditmar et al. (2007); we do so in the context of both the UD 
and ED schemes. To represent the dependence of noise on 
frequency, we consider noise power spectral density (PSD), 
which is estimated from the respective postfit observation 
residuals. For that purpose, we start from a simple assump-
tion of white noise in the observations during the first itera-
tion. Then, the noise PSDs are estimated from the postfit 
residuals and are used for applying the FDDW scheme in 
the second iteration. No further iterations are needed due 
to the accurate background models. The reader is referred 
to Ditmar et al. (2007) for more details. We would like to 
stress that the same procedure was applied to UD and ED 
residuals.

3  Results

3.1  Analysis in the spectral domain

As shown in Table 1, the accelerometer biases are estimated 
as piecewise constant parameters. It has been shown that 
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accelerometer biases are rather effective to absorb model 
deficiencies (Guo et al. 2018). To investigate the reactions 
of the UD and ED schemes to the estimation interval of 
accelerometer biases, here we consider two intervals: 24 and 
1.5 h. We did not try shorter intervals to avoid a risk of an 
over-parameterization and a signal absorption.

Figure 1 shows the square-root PSD, hereafter denoted as 
 PSD1/2, estimated from the postfit residuals of the GRACE 
A satellite for a typical month of January 2010 (GRACE 
B behaves similarly and, therefore, is not addressed in the 
discussion below). It can be seen that the residuals obtained 
by different differentiation schemes exhibit clearly different 
noise patterns. In general,  PSD1/2s in the case of the ED 
scheme are lower than those in the case of UD scheme up to 
about 8 mHz for both estimation intervals of accelerometer 
biases. This is not surprising, since the k-th order differentia-
tion in the time domain corresponds to the multiplication of 
 PSD1/2 with ωk in the frequency domain (where ω denotes 
the angular frequency). In other words, a differentiation 
reduces the low-frequency noise on the one hand and ampli-
fies the high-frequency noise on the other hand.

In the case of the UD scheme, the low-frequency noise 
is notably reduced when an estimation interval of 1.5 h is 
applied, implying that the additionally estimated biases 
absorb errors in observations and background models. On 
the other hand, the  PSD1/2s in the case of the ED scheme 
are rather insensitive to the choice of the estimation interval 

when compared to the UD scheme, as can be seen in Fig. 1. 
This is in line with our expectation that the ED scheme is 
more immune to slowly varying systematic errors than the 
UD scheme.

As mentioned above, the KBR-based ITSG-Grace2018 
solutions (denoted here as ‘ITSG2018’ for brevity) are 
chosen as the ‘ground truth’. They consist of three sets of 
solutions, which have been computed up to degrees 60, 96, 
and 120, respectively. In this study, we use the solutions 
complete to degree 60. Therefore, to assess the computed 
GPS-based gravity field solutions, we subtract from them the 
ITSG2018 solutions. After that, we calculate the RMS (root 
mean square) for each SHC time series. Figure 2 displays the 
results in terms of geoid height errors per degree. It can be 
seen that the degree-errors in the case of the ED scheme are 
systematically smaller in the entire degree range than those 
in the case of the UD scheme for both estimation intervals 
of accelerometer biases. While a shorter estimation interval 
(1.5 h) improves the very low degree terms in the case of 
the UD scheme, the improvements are negligible when the 
ED scheme is applied. These results are well consistent with 
the analysis of residuals as shown in Fig. 1. Table 2 further 
lists the RMS values of cumulative geoid height errors up to 
degree 5, 10, 20 and 60. It reveals that the cumulative errors 
up to degree 20 can be reduced by at least 20% when the ED 
scheme is applied. From the above results, we can conclude 
that the proposed ED scheme is rather effective in mitigating 

Fig. 1  PSD1/2s estimated from 
postfit residuals produced with 
different differentiation schemes 
and estimation intervals of 
accelerometer biases; the left 
and right columns are for 
the 24- and 1.5-h estimation 
intervals, respectively; the top, 
middle and bottom rows are for 
the along-track, cross-track and 
radial components, respectively
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non-stationary systematic errors in kinematic orbits and 
force models. It can notably improve the low-degree terms, 
which are of particular importance for recovery of temporal 
variations in the Earth’s gravity field. Finally, the obtained 
results allow us to choose the 1.5-hour estimation interval 
of accelerometer biases to perform the further calculations, 
since it can provide better gravity field solutions, particularly 
when the UD scheme is applied (cf. Table 2).

Hereafter, we also compare our GPS-based solutions with 
those produced at the Institute of Geodesy, Graz University 
of Technology (Zehentner and Mayer-Gürr 2015). Those 
solutions were computed to degree and order 100 based 
on the same kinematic orbits using the short-arc approach 
(SAA) (Mayer-Gürr 2006). During the solution process, no 
differentiation scheme was applied. In our study, we truncate 
those solutions to degree and order 60 and denote them as 
the ‘UD-SAA’ solutions. Similarly, our solutions produced 
with the UD and ED schemes are denoted as ‘UD-CDA’ 
and ‘ED-CDA’ solutions, respectively. To compare the ‘UD-
SAA’ solutions with ours, we also subtract from them the 
ITSG2018 monthly solutions. After that, we calculate the 
RMS for each SHC time series spanning the same interval 
as before, i.e., from Jan. 2005 to Dec. 2010. Figure 3 dis-
plays the obtained RMS errors in terms of geoid heights per 
degree for different solutions. Apparently, the ED-CDA solu-
tion outperforms the other two in the entire degree range. We 
also note clear discrepancies at very low degrees (below 
degree 8) between the UD-SAA and UD-CDA solutions. 

This is in spite of the fact that both the SAA and CDA solu-
tions are obtained on the basis of the Newton’s second law 
of motion and, therefore, theoretically must be equivalent. 
Probably, these discrepancies can be attributed to a differ-
ent choice of some data processing parameters. A further 
investigation is needed to shed more light on this difference, 
but this is beyond the scope of this study. Table 3 lists the 
cumulative geoid height errors up to degree 5, 10, 20 and 60 
for different solutions. Again, the errors at low-degree terms 
are considerably reduced (by at least 22%) in the case of the 
ED-CDA solution, when compared to the other two.

3.2  Analysis in the spatial domain

In this section, we compare the ability of the ED and UD 
schemes to recover temporal gravity field variations and 
mass anomalies in the spatial domain. Since the unfiltered 

Fig. 2  Geoid height errors per degree for the solutions produced with 
different differentiation schemes and estimation intervals of acceler-
ometer biases (RMS values in 2010)

Table 2  Cumulative geoid 
height errors (cm) up to 
degree 5, 10, 20 and 60 for 
solutions produced with 
different differentiation schemes 
and estimation intervals of 
accelerometer biases (RMS 
values in 2010)

Degree 24 h 1.5 h

UD ED ED−UD

UD
 (%) UD ED ED−UD

UD
 (%)

5 0.26 0.15 − 42 0.21 0.15 − 29
10 0.34 0.22 − 35 0.30 0.22 − 27
20 0.65 0.49 − 25 0.61 0.48 − 21
60 24.0 15.1 − 37 21.2 15.1 − 29

Fig. 3  Geoid height errors per degree for different gravity field solu-
tions (RMS values in 2005–2010)

Table 3  Cumulative geoid height errors (cm) up to degree 5, 10, 20 
and 60 of different solutions (RMS values in 2005–2010)

Degree UD-
SAA

UD-
CDA

ED-
CDA

(ED - CDA) - (UD - SAA)

(UD - SAA)
 

(%)

(ED - CDA) - (UD - CDA)

(UD - CDA)
 

(%)

5 0.35 0.24 0.16 − 54 − 33
10 0.42 0.32 0.23 − 45 − 28
20 0.66 0.64 0.50 − 24 − 22
60 24.7 26.8 17.5 − 29 − 35
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solutions are dominated by high-frequency noise, post-
processing is required. In this study, we use the Gaussian 
filter (Wahr et al. 1998). To account for the impact of the 
filter width on the results, we consider two radii: 500 and 
750 km. Hereafter, we denote the corresponding solutions as 
the ‘G500’ and ‘G750’ filtered solutions, respectively. As it 
was done in the spectral domain, we also compare the GPS-
based solutions with the KBR-based ITSG2018 solutions. 
To keep consistency with the GPS-based solutions, the latter 
are post-processed with the same Gaussian filters. In addi-
tion, the  C20 terms, to which GRACE is less sensitive due 
to the polar orbits (Cheng and Ries 2017), are replaced in 
all KBR- and GPS-based gravity field solutions by the SLR-
derived values (Cheng et al. 2013). As regards the degree 1 
terms, which cannot be derived from GRACE data alone, we 
use the estimates obtained by combining GRACE data and 
geophysical models as described in Sun et al. (2016, 2017).

To perform the analysis in the spatial domain, we first 
transform the monthly SHCs to mass anomalies in terms 
of equivalent water heights (EWHs) on a 1° × 1° grid as 
explained in Wahr et  al. (1998). The correction for the 
Earth’s oblateness has been applied as proposed by Ditmar 
(2018). As mass variations (if exist) are primarily linear or/
and seasonal, a deterministic model composed of an offset, 
trend, annual, and semi-annual terms is fitted to the time 
series of mass anomalies per grid node. Then, a comparison 
with the ITSG2018 solutions allows us to assess the signals 
and noise of the mass anomalies inferred from the GPS-
based solutions.

To make the following discussion more comprehensive, 
we also quantify the level of random noise in the mass 
anomaly time series using an independent approach. The 
approach is based on the regularization concept and assumes 
that (1) the target signal is close to a combination of an 
arbitrary annual periodic function and a long-term linear 
trend; (2) noise in the time series is white. An estimation 
of the noise variance �2

d
 and signal variance �2

x
 is a part of 

the regularization procedure. For that purpose, the variance 
component estimation (VCE) technique (Koch and Kusche 
2002) is used. The resulting value of �

d
 is used as an esti-

mate of standard deviation (SD) of random noise in the con-
sidered data time series. For a more extended presentation of 
this approach, the reader is referred to Ditmar et al. (2018).

3.2.1  Gridded mass anomalies

Figure 4 displays geographical maps of the derived trends 
and periodic annual signals in mass anomalies inferred from 
the G500 filtered solutions. It can be seen that after applying 
the G500 filter, the estimates are still dominated by strong 
high-frequency noise. In the case of the G750 filtered solu-
tions (Fig. 5), high-frequency noise is largely suppressed and 
the signal patterns inferred from the GPS-based solutions 

become rather similar to ITSG2018. Many signals can be 
clearly seen in the GPS-based solutions in that case, e.g., 
linear signals over Greenland and West Antarctica; annual 
signals over the Amazon River basin (marked by the red 
polygons in the plots in the left column of Fig. 5) and South 
Africa; and many others.

We have also computed the RMSs over the time series 
of gridded mass anomaly differences between the GPS-
based solutions and ITSG2018. The geographical distribu-
tion of the RMS differences is displayed in Fig. 6. It can be 
observed that the RMS differences in the case of the ED-
CDA solutions are systematically smaller than those for the 
other two solutions. A further calculation reveals that the 
weighted mean of the gridded RMS differences (weighted 
by the cosine of latitude) in the case of the ED-CDA solu-
tions is reduced by 19–23% (depending on the filter width), 
when compared to the UD-CDA solutions (cf. Table 4), and 
by 15–23% when compared to the UD-SAA solutions. These 
results demonstrate that the mass anomalies inferred from 
the ED-CDA solutions are more consistent with ITSG2018 
and, therefore, are more accurate, as compared to the other 
two solutions.

3.2.2  Regional mass anomalies

To compare the performance of the ED and UD schemes 
in the context of mean regional signals, we select the 
Amazon River basin (~ 6.22 × 106  km2) and Greenland 
(~ 2.26 × 106 km2) as the target regions. Again, Gaussian 
filters of 500-km and 750-km half-widths are applied.

As shown in Fig. 5, the Amazon River basin exhibits sig-
nificant annual variations, which are mainly of hydrological 
origin (Chen et al. 2010; Xavier et al. 2010). As regards 
Greenland, it is known that mass anomalies there show sea-
sonal variations superimposed by a strong negative long-
term trend (Ran et al. 2018; Schrama et al. 2014; Shepherd 
et al. 2012; Siemes et al. 2013; Velicogna and Wahr 2013). 
Therefore, our selection of regions allows us to analyze the 
performance of the considered schemes over regions exhibit-
ing different temporal behaviors of mass anomalies.

Figure 7 displays the time series of mean mass anomalies 
over the Amazon River basin and Greenland inferred from 
different solutions. To evaluate the consistency between the 
GPS-based solutions and ITSG2018, we calculate the cor-
relation coefficients and RMS differences between the mass 
anomaly time series. The results confirm that the GPS-based 
solutions obtained with the ED scheme are more consistent 
with ITSG2018, as evidenced by larger correlation coeffi-
cients and smaller RMS differences (cf. Tables 5 and 6).

Table 7 further lists the annual amplitudes and phases, as 
well as the associated formal errors over the Amazon River 
basin, inferred from different solutions. One can see that the 
GPS-based solutions (after applying a Gaussian filter) can 
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reproduce the signals as ITSG2018 does, particularly when 
the ED scheme is applied. Regarding the mass anomaly 
trends over Greenland, all the GPS-based solutions are also 
consistent with ITSG2018, and the differences stay within 
the 2-σ error margins (Table 8). Remarkably, the signals 
inferred from the ED-CDA solutions are systematically 
closer to the ITSG2018 ones over both regions. This prompts 
not only that the ED-CDA solutions are more accurate but 
also that their higher accuracy is not compromised by an 
intrinsic signal damping.

In addition, one may note that the signal powers obtained 
over the two target regions are notably smaller than those 
reported by other studies. This is primarily due to the sig-
nal damping triggered by the truncated spherical harmonic 
expansion and Gaussian filtering (Chen et al. 2015). To 
achieve more realistic estimates of the signals, one has to 
correct for that signal damping. For that purpose, we up-
scale the obtained estimates (Chen et al. 2007; Velicogna 
and Wahr 2006). In order to determine the scaling factors, 
we use as the truth the signals inferred from the GRACE 

mascon solutions. For that purpose, we adopt those gener-
ated by the Center of Space Research of the University of 
Texas at Austin, which are released in the form of SHCs up 
to degree and order 720 (Save et al. 2016). For the sake of 
consistency, we replace the  C20 terms and restore the degree 
1 terms in the mascon solutions as done in other solutions. 
The signal inferred from these mascon solutions is regarded 
as the true signal (St). Then, we truncate the mascon solu-
tions to degree and order 60 and apply the Gaussian filters 
with radii of 500 and 750 km to them. The signal inferred 
from them is denoted as the filtered signal (Sf). After that, 
the scaling factor k is determined as: k = St/Sf. We consider 
the annual amplitudes to estimate the scaling factors for the 
Amazon River basin and the trends to estimate the scaling 
factors for Greenland. Finally, we use the scaling factors to 
up-scale the estimated annual amplitudes and trends over the 
Amazon River basin and Greenland, respectively.

The scaling factors over the Amazon River basin are 
determined to be 1.150 and 1.333 for the G500 and G750 
solutions, respectively. The up-scaled annual amplitudes 

Fig. 4  Linear trends and periodic annual signals in mass anomalies in terms of equivalent water heights, inferred from different G500 filtered 
solutions. From top to bottom, the plots display the results based on the ITSG2018, UD-SAA, UD-CDA, and ED-CDA solutions, respectively
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(Table 7) agree much better with other studies than the 
original ones. For example, Zhou et al. (2019) estimated 
the annual amplitude in 2005–2010 over the Amazon River 
basin as 19.5 ± 1.5 cm. Interestingly, one may note that all 
the annual amplitudes inferred from the GPS-based solu-
tions are somewhat larger than those from the KBR-based 
solutions. A similar observation has also been reported in a 
recent study of Meyer et al. (2019). There, they reveal that 
the annual signals inferred from the SWARM GPS-based 
solutions are larger than the KBR-based estimates over the 
Amazon River basin. Specific reasons of this effect are not 
clear yet and require a further investigation.

Regarding the Greenland, the scaling factors are deter-
mined to be 2.077 and 2.621 for the G500 and G750 filtered 
solutions, respectively. The up-scaled trends are listed in 
Table 8. One can see that the scaled values agree well with 
those from literature. For instance, Shepherd et al. (2012) 
estimated the mean rate of Greenland Ice Sheet mass losses 
in 2005–2010 as − 263 ± 30 Gt/yr.

We also tried to estimate the scaling factors over the 
two target regions on a monthly basis. The results dem-
onstrated that up-scaling in that way didn’t change our 
conclusions regarding the relative performance of the 
GPS-based solutions in general. However, we found that 
the estimated monthly scaling factors suffered from occa-
sional large jumps. They occurred when the mean mass 
anomaly in a given region approached zero. Those jumps 
degraded the signal estimates in the months when they 
occurred, so that we ultimately decided to refrain from 
such an approach.

Noise SDs of the mass anomaly time series estimated 
with the VCE procedure are also considerably reduced when 
the ED scheme is applied (cf. Table 9). The observed error 
reduction is even more substantial than the one derived from 
the differences between GPS-based and ITSG2018 solutions 
(Table 6). Most probably, this can be explained by the pres-
ence of systematic errors in the compared time series, which 
cannot be taken into account by VCE.

Fig. 5  Same as in Fig. 4, but for the G750 filtered solutions. Red polygons in the plots in the left column denote the Amazon River basin (mark-
ing it in the middle and right columns will degrade the visibility of the annual signals)
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All these results make us conclude that the proposed ED 
scheme is able to provide better regional mass anomaly esti-
mates, when compared to the UD scheme.

4  Discussion

Since the ED scheme is applied to the residual quantity, 
i.e., the O–C vector, one may concern whether it may bias 
the estimates toward the a priori gravity field model. In our 
opinion, this is unlikely to happen. On the one hand, the 
ED scheme is applied not only to the O–C vector, but also 
to all the columns of the design matrix. As explained in 
Sect. 2.2, the ED scheme is even nearly equivalent to the UD 
one, provided that the error variance–covariance matrices 
are defined consistently. On the other hand, the adopted a 
priori gravity field model, i.e., EIGEN-6C4, only includes 
the static part of the Earth’s gravity field. If the ED scheme 

biased the estimates toward the a priori information, it would 
damp the temporal signals. However, this is not the case. 
In fact, the signals inferred from the ED-CDA solutions 
are closer to ITSG2018, showing no visible damping. The 
recovered mass loss trend over Greenland is even slightly 
larger than that inferred from the UD-CDA solutions (cf. 
Table 8).

To further clarify this issue, we have repeated the data 
processing, using an alternative static gravity field model, 
i.e., AIUB-CHAMP03S, as the a priori one. That model was 
compiled to degree and order 100 from 8 years of GPS data 
collected by the CHAMP mission from 2002 to 2009. As 
such, AIUB-CHAMP03S is definitely of a lower quality than 
EIGEN-6C4. To investigate the possible impacts of chang-
ing the a priori model, we produce the monthly solutions 
with both the UD and ED schemes over the period from 
January 2005 to December 2010. Then, we subtract from 
them their counterparts produced based on EIGEN-6C4 

Fig. 6  Geographical distribution 
of the gridded RMS differences 
with respect to ITSG2018 for 
different GPS-based solutions. 
The top, middle, and bottom 
rows show the results for the 
UD-SAA, UD-CDA, and ED-
CDA solutions, respectively

Table 4  Weighted mean of 
the gridded RMS differences 
of mass anomalies (cm) with 
respect to consistently filtered 
ITSG2018 solutions, for 
different GPS-based solutions

UD-SAA UD-CDA ED-CDA (ED - CDA) - (UD - SAA)

(UD - SAA)
 

(%)

(ED - CDA) - (UD - CDA)

(UD - CDA)
 

(%)

G500 42.5 45.0 36.3 − 15 − 19
G750 11.5 11.5 8.9 − 23 − 23
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and calculate the RMS over the difference time series for 
each SHC. Figure 8a displays the results in terms of geoid 
height differences per degree (thicker lines), together with 
the degree-errors of the monthly solutions with respect to 
ITSG2018 (thinner lines). One can see that the degree-differ-
ences are 1–2 orders of magnitude smaller than the respec-
tive degree-errors for both monthly solutions [increased dif-
ferences near degree 60 are mainly due to spectral aliasing 

caused by truncating the solutions to degree 60 (Baur et al. 
2012)]. This indicates that a CHAMP-only static gravity 
field model is also qualified for temporal gravity field recov-
ery from the GRACE GPS data and the impact of using it 
instead of a more accurate model is negligible for both data 
processing schemes. Remarkably, the degree-differences 
between the two sets of ED-CDA solutions are even smaller 
than those between the two sets of UD-CDA solutions in the 

Fig. 7  Time series of mean mass anomalies over the Greenland (top) and Amazon River basin (bottom) inferred from the G500 (left) and G750 
(right) filtered solutions

Table 5  Correlation coefficients 
between (1) mass anomaly time 
series over the Amazon River 
basin and Greenland inferred 
from the GPS-based solutions 
and (2) ITSG2018

Amazon Greenland

UD-SAA UD-CDA ED-CDA UD-SAA UD-CDA ED-CDA

G500 0.86 0.92 0.95 0.88 0.85 0.93
G750 0.90 0.94 0.97 0.92 0.85 0.94

Table 6  RMS differences (cm) 
between (1) mass anomaly time 
series over the Amazon River 
basin and Greenland inferred 
from the GPS-based solutions 
and (2) ITSG2018

UD-SAA UD-CDA ED-CDA (ED - CDA) - (UD - SAA)

(UD - SAA)
 

(%)
(ED - CDA) - (UD - CDA)

(UD - CDA)
 

(%)

Amazon
 G500 9.2 6.4 5.1 − 45 − 20
 G750 6.5 4.5 3.4 − 48 − 24

Greenland
 G500 6.4 7.2 4.7 − 27 − 35
 G750 4.1 6.0 3.6 − 12 − 40
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entire degree range. This demonstrates that the ED scheme 
is probably somewhat more robust against changing the a 
priori static gravity field model, when compared to the UD 
scheme.

Furthermore, we have also computed the mean static 
gravity field solutions over 2005–2010 using both the UD 
and ED schemes. Figure 8b shows the geoid height errors 
per degree for the two computed solutions with respect to 
EIGEN-6C4. In general, the ED solution again outperforms 
the UD one in the entire degree range. The cumulative 
errors up to degree 20 are reduced by 20% (from 1.45 cm to 
1.16 cm) when the ED scheme is applied. These results are 
fully consistent with those obtained for monthly solutions 
(cf. Table 3).

To further demonstrate the superior performance of the 
ED scheme, we have also done some simulations. In a first 
step, we compute the dynamic orbits for the GRACE A sat-
ellite by integrating the equation of motion defined by the a 
priori force models as described in Table 1 with three excep-
tions. First, we use the latest version of the AOD products, 
i.e., AOD1B RL06, which are truncated to degree and order 
100. Second, the accelerometer observations, which record 
the non-gravitational accelerations, don’t allow a direct use 
due to unknown scales and biases. Therefore, we calculate 
the non-gravitational accelerations using empirical models, 
which account for atmospheric drag, solar radiation, and 
Earth albedo. All the computed non-gravitational accelera-
tions are transformed into the science reference frame using 
the satellite attitude data. As such, they can be used in the 
same way as the accelerometer observations. Third, we also 
incorporate the temporal gravity field signals, which are 
obtained by subtracting EIGEN-6C4 from the ITSG2018 
monthly solutions. The orbits obtained in the first step are 
taken as noise-free observations in the subsequent tempo-
ral gravity field recovery. For that purpose, we set up two 
scenarios. In the first one, the nominal force models are 
error-free, i.e., they are identical to those used to produce 
the dynamic orbits. In the second one, the nominal force 
models suffer from errors. To be specific, the static gravity 
field model EIGEN-6C4 is replaced with a GPS-only model, 
i.e., AIUB-CHAMP03S. In addition, we further replace the 
ocean tide model EOT11a with FES2004 (80 × 80) (Lyard 

Table 7  Annual amplitudes (cm) and phases (deg) and the associated formal errors of mass anomalies over the Amazon River basin derived 
from different solutions

The time interval under consideration is 2005–2010

Amplitude (cm) Phase (deg)

ITSG2018 UD-SAA UD-CDA ED-CDA ITSG2018 UD-SAA UD-CDA ED-CDA

Unscaled
 G500 18.0 ± 0.6 19.7 ± 1.7 20.0 ± 1.1 19.4 ± 1.0 − 22.0 ± 2.0 − 19.9 ± 4.9 − 19.2 ± 3.1 − 20.6 ± 2.9
 G750 15.6 ± 0.6 17.0 ± 1.2 17.2 ± 0.8 16.7 ± 0.8 − 22.4 ± 2.0 − 20.6 ± 4.1 − 20.1 ± 2.8 − 21.2 ± 2.6

Up-scaled
 G500 20.7 ± 0.7 22.6 ± 1.9 23.0 ± 1.3 22.3 ± 1.2 − − − −
 G750 20.8 ± 0.7 22.61.6 22.9 ± 1.1 22.2 ± 1.0 − − − −

Table 8  Mass anomaly trends and the associated formal errors (Gt/yr) 
over Greenland inferred from different solutions. The time interval 
under consideration is 2005–2010

ITSG2018 UD-SAA UD-CDA ED-CDA

Unscaled
 G500 − 130 ± 2 − 142 ± 9 − 122 ± 10 − 125 ± 7
 G750 − 103 ± 2 − 115 ± 6 − 98 ± 8 − 101 ± 5

Up-scaled
 G500 − 270 ± 5 − 295 ± 20 − 254 ± 22 − 260 ± 15
 G750 − 270 ± 5 − 301 ± 16 − 257 ± 21 − 265 ± 14

Table 9  VCE-based noise 
standard deviations (cm) of the 
mass anomaly time series over 
the Amazon River basin and 
Greenland inferred from the 
GPS-based solutions

UD-SAA UD-CDA ED-CDA (ED - CDA) - (UD - SAA)

(UD - SAA)
 

(%)
(ED - CDA) - (UD - CDA)

(UD - CDA)
 

(%)

Amazon
 G500 8.7 5.5 3.9 − 55 − 29
 G750 6.0 3.8 2.7 − 55 − 29

Greenland
 G500 6.0 6.2 3.4 − 43 − 45
 G750 3.7 4.9 2.8 − 24 − 43
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et al. 2006) and replace AOD1B RL06 with AOD1B RL05. 
For each scenario, the monthly solutions for January 2010 
are produced using both the UD and ED schemes in exactly 
the same way as they have been produced from real data. 
Then, we compare the obtained solutions to the true model, 
i.e., ITSG2018. Figure 9a displays the results in terms of 
geoid height errors per degree for the first scenario. One 
can see that the errors of both solutions are orders of magni-
tude smaller than the signal. They likely represent a limited 
numerical accuracy of the computations. The differences 
between the UD and ED solutions are negligible: within 
1% of their errors. Thus, the first scenario demonstrates that 
both UD and ED schemes do not introduce any bias into 
the estimates. Figure 9b shows the results for the second 
scenario. It can be observed that the degree-errors of the ED 
solution are generally smaller than those of the UD solution. 
This means that the ED solution is more accurate in the pres-
ence of force model errors.

To conclude, we hold the view that the ED scheme can 
indeed reduce the non-stationary systematic errors origi-
nated from kinematic orbits and background models. Thus, 
the gravity field recovery improves. This is in line with the 
fact that differencing is often utilized as an effective tool for 

reducing non-stationary errors in time series analysis (Box 
et al. 2015).

5  Conclusions

In this study, we have proposed to apply an epoch-differ-
ence scheme (ED) in the context of the classical dynamic 
approach to the Earth’s gravity field recovery from kinematic 
orbit data. We have shown that this leads to a substantial 
improvement of the estimated gravity field model param-
eters. We explain this by the presence of non-stationary 
systematic errors in kinematic orbits and background force 
models. We have shown that the ED scheme allows this 
noise to be largely suppressed, particularly when it concerns 
the disturbances that show slow temporal variations. As a 
result, the data noise becomes more stationary, so that a 
well-known frequency-dependent data weighting is capable 
of handling it properly.

The observed increase in the quality of data processing is 
particularly relevant in the estimation of low-degree terms, 
which contain most of the time-varying gravity signals. To 
demonstrate the added value of the proposed scheme, two 
sets of monthly gravity field solutions have been produced 
based on six years of kinematic orbits of the GRACE satel-
lites using both the ED and undifferenced (UD) scheme. 

Fig. 8  a Geoid height errors per degree (thinner lines) for the 
monthly solutions produced based on AIUB-CHAMP03S, as well as 
the degree-differences (thicker lines) with respect to their counter-
parts produced based on EIGEN-6C4 (RMS values in 2005–2010); 
the errors are produced as differences with respect to ITSG2018 
model. b Geoid height errors per degree of the computed mean static 
gravity field solutions with respect to EIGEN-6C4

Fig. 9  Geoid height errors per degree of different solutions for a the 
first simulation scenario where the data are error-free and b the sec-
ond scenario where the data suffer from errors in the background 
force models. The red and blue lines are for the UD and ED solutions, 
respectively. The green line denotes the temporal gravity field signals 
represented by ITSG2018
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Furthermore, gravity field solutions produced with the UD 
scheme in the frame of the short-arc approach have also 
been considered (Zehentner and Mayer-Gürr 2015). As a 
reference, we have used the latest ITSG-Grace2018 monthly 
gravity solutions produced at the Institute of Geodesy, Graz 
University of Technology. A comparison in the spectral 
domain shows that the low-degree terms can be notably 
improved when the ED scheme is applied, with cumulative 
errors up to degree 20 being reduced by at least 20%. Analy-
sis in the spatial domain also shows that gravity field solu-
tions obtained with the ED scheme are more consistent with 
the ITSG-Grace2018 solutions. This is evidenced by larger 
correlation coefficients and smaller RMS differences when 
time series of mean mass anomalies over the Amazon River 
basin and Greenland are considered. Importantly, parameters 
of the estimated signals (more specifically, the amplitude of 
seasonal variations in the Amazon River basin and the linear 
trend in Greenland) show the best agreement with the ITSG-
Grace2018-based estimates when the ED scheme is applied. 
This implies that the improved accuracy of the ED scheme is 
not compromised by a signal damping. We conclude that the 
proposed ED scheme is preferable for time-varying gravity 
field modeling, as compared to the traditional UD scheme.

Our findings may facilitate, among others, bridging the 
gap between GRACE and GFO missions by using hl-SST 
GPS data from other satellites.
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