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Abstract—A Room Impulse Response (RIR) is a mathematical
model for sound propagation in a room. Estimating RIR pa-
rameters such as the reverberation time (T60) allows Automatic
Speech Recognition (ASR) systems to adapt to reverberation
in input signals by changing their behavior based on these
estimates. Currently, machine learning techniques provide the
most accurate T60 estimations. We propose a novel methodology
by using intrusive Speech Intelligibility Measures (SIMs) beyond
their traditional application. In this study we utilize SIIB,
SIIBGauss, STOI and ESTOI as SIMs. For each SIM we find
a best fit curve with respect to the reverberation time (T60)
using a statistical approach. The statistical analysis is applied on
simulated RIRs obtained by using the Image Source Method. The
estimator for SIIBGauss achieves the lowest Mean Squared Error
of 0.353 on simulated data. Although this does not outperform
state-of-the-art models, we offer recommendations for possible
improvements. Preliminary experiments suggest that enhancing
noise robustness is crucial and that the estimators could be
generalized to real-world scenarios. However, further research
is necessary to confirm this.

Index Terms—Reverberation time, speech intelligibility mea-
sure, room impulse response

I. INTRODUCTION

In today’s world, Automatic Speech Recognition (ASR)
systems are essential for human-computer interaction. These
systems typically do not perform well when distortions such as
reverberation are present in the input signal [1]. Historically,
ASR systems’ robustness to reverberation has been improved
by signal processing and dereverberation techniques [2]. More
recently Deep Neural Networks (DNNs) have been success-
fully used for this purpose [3]. This approach is however
not always desirable due to the large amount of training
and validation data required. Alternative approaches applying
adaptation schemes depending on estimated room acoustic
properties have also shown promising results [4].

The acoustic properties in a given space, including those
related to reverberation can be described by the Room Impulse
Response (RIR). The room impulse response can be seen as
a filter representing those acoustic properties. When this filter
is convolved with an input signal, it simulates that signal in
the conditions the RIR was recorded in [5]. Example acoustic
properties that influence reverberation are:

• Room dimensions and geometry
• Absorption coefficients of surfaces
• Speaker and receiver locations
A particularly interesting acoustic property of a room

closely related to reverberation is the reverberation time or
T60 which is the time it takes for the sound energy to decay
by 60 dB. This notion of a characteristic time for sound to die
out in a room was first mentioned by Wallace Clement Sabine.
He found an empirical equation to estimate the T60 in a
room, given its acoustic properties. Formula (1) gives Sabine’s
equation where T is the reverberation time in seconds, V is
the volume of the room in m3 and A is the total absorption
in sabins [6].

T =
0.161V

A
(1)

Sabine’s formula is however not always applicable as the
room’s acoustic properties might not be known. Traditionally

the estimation of the T60 in a room given only recordings
of audio signals in that room has been done by employing
signal-processing techniques, but currently this is mostly done
by DNNs as they are often more accurate [7].

Instead of using machine learning to estimate the T60,
we propose a methodology based on statistics which exploits
the relation between speech intelligiblity and reverberation.
Speech intelligibility refers to how well a listener can identify
spoken words, often evaluated using formal listening tests. It is
established that when the T60 increases, speech intelligibility
decreases [8]. Alternative to using costly and time consuming
formal listening tests, speech intelligibility can be objectively
estimated by various Speech Intelligibility Measures (SIMs).
The traditional SIMs such as the Speech Intelligibility Index
(SII) are known not to perform well when facing reverberation
in the input signal, while others have been designed to take
reverberation into account [9]. This supposed relation between
reverberation and certain SIMs brings forth the research ques-
tion this paper aims to answer:

“Can intrusive SIMs be used to estimate the T60 in
speech signals by using a statistical estimator?”

This unexpected, yet innovative application of SIMs con-
tributes to the field of ASR by giving new means to estimate
the T60 in audio, with more robust ASR systems as a final
goal, given that adaptation schemes can be applied using
these estimates. Literature does not show wide application
of statistical estimators for estimating the T60 using SIMs.
This paper discusses how we fill this research gap and is
structured as follows. First, background information required
to understand and justify the methodology is given in Section
II. Secondly, the methodology to obtain the estimator is
discussed in Section III. Thirdly, Section IV highlights efforts
made to ensure ethical and responsible research. Following
this, Section V discusses results obtained by performing the
experiments described by the methodology. Lastly, an inter-
pretation of the results is given along with a discussion about
limitations and recommended future work in Section VI.

II. BACKGROUND

Having established the hypothesis that SIMs can be used
to estimate the T60, we now discuss background information
to support the methodology based on statistics by explaining
the relevance of statistical methods and delving into SIMs.
Previous work has shown that DNNs can be used to estimate
RIR parameters such as the T60 [10]. However, the usage of
DNNs is not always desirable as they face limitations such
as their computational complexity and “black-box” principle.
[11]. Statistical estimators are tailored to a specific problem,
meaning they can outperform DNNs in certain cases [12]. The
possibility of finding an appropriate statistical estimator is fur-
ther motivated by the fact that the converse has previously been
applied to find a formula to calculate the Speech Transmission
Index (STI) SIM using the T60 in [13]. This was also done by
Tang and Yeung in [14], where they found the following best
fit for the STI as a function of the T60 as seen in Formula
(2).

s = (a+ b exp(−t))2 (2)
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In this formula, s represent the STI value (between 0 and
1), t represents the T60 value in seconds, and a and b are
optimized positive constants based on a curve fit. In their
experiment, these optimized values are a ≈ 0.64 and b ≈ 0.38.

As the relation between the STI and the T60 is already
well established, it is not investigated in this work. However,
many other different SIMs exist and are all developed with
a specific purpose, such as estimating speech intelligibility in
certain noisy environments. In an ideal situation non-intrusive
SIMs would be used for the estimator as they do not require
the clean speech signal and would thus allow to estimate the
T60 of this signal. However, this study only considers intrusive
SIMs, which require both the clean speech (no reverberation)
and the reverberant speech signal. The primary reason for
this limitation is that the relation between reverberation and
intrusive SIMs is better established than the relation between
reverberation and non-intrusive SIMs. Additionally, intrusive
measures generally show a higher correlation to speech in-
telligibility than non-intrusive measures [15], which makes
intrusive SIMs more interesting when investigating the relation
between reverberation and speech intelligibility.

Intrusive SIMs are all developed for different purposes,
but can generally be seen as functions which take the clean
and reverbed speech signals as input and produce a number
objectively describing speech intelligibility as an output. In [9]
an overview of intrusive SIMs is given. From this list of SIMs
a subset of SIMs is chosen to investigate for the estimator. The
remainder of this section justifies the subset of SIMs chosen.

In order for a measure to be suitable for the estimator,
it should first have a hinted or established relation to noise
and specifically reverberation. When considering their original
purpose, it is generally desirable for SIMs to be robust to all
kinds of noise, but for this specific case, an ideal measure is
sensitive to reverberation but robust to other types of noise
so that the estimator’s performance does not suffer too much
under these types of noise. Secondly, SIMs with a higher
correlation to speech intelligibility are preferred to further
support the relation between T60 and speech intelligibility.
Lastly, the SIMs should be widely applicable and available to
produce a widely applicable and available estimator.

Considering Table I, a list can be established with the
most generally noise robust SIMs which perform poorly in
reverberant conditions as: STOI, ESTOI, SIIB, SIIBGauss, and
sEPSMcorr. We do however not investigate sEPSMcorr as it
is not widely applied and is only implemented in Matlab,
which would not lead to an accessible estimator due to the
requirement of a Matlab license. The other measures are also
not discussed further in this work. In the methodology section
we elaborate on the calculation procedure for each SIM chosen
(STOI, ESTOI, SIIB and SIIBGauss).

TABLE I: An overview of SIMs’ robustness to noise mostly
obtained from [9]. Additional references are mentioned if the
information is not obtained from [9]. This overview is used to
defend the chosen SIMs used for the estimator, as it is largely
based on robustness to noise and sensitivity to reverberation.
The measures used in this paper are underlined.

Measure Noise Robustness
SII Performs well for stationary additive noise, but poorly for

modulated noise sources.
STI Similar to SII.

HEGP HEGP can only quantify distortion caused by additive noise
signals.

CSII-mid CSII is a generalization of the SII that can be applied to a
wider range of distortions.

HASPI Adapted to listener intelligibility data for various pro-
cessing conditions, including noise suppression, additive
noise, reverberation, nonlinear distortion, and hearing aid
processing. [16].

NCM-BIF Especially strongly correlated with intelligibility for speech
signals exposed to post-processing enhancement.

QSTI Good performance for non-linear distortions.
STOI Works well for most noise forms, but performs poorly

for modulated noise sources. Also fails to account for
reverberation [17].

ESTOI Developed to perform better for modulated noise sources
compared to STOI.

MIKNN Noise robustness is not documented well enough to hint
towards a relationship between reverberation time and this
measure [18].

SIMI Able to reliably estimate the average intelligibility of speech
signals containing by stationary and non-stationary noise.
No clear relation with reverberation documented [19].

SIIB Tested for different types of noise. However, it is suggested
that reverberant channels introduce undesired statistical
dependencies in its calculation. [20].

SIIBGauss The noise robustness is specified but performance is said
to be similar to SIIB so we assume noise robustness to be
similar too.

sEPSMcorr Accounts for the effects of stationary and fluctuating noise
interferers as well as for various forms of non-linear dis-
tortions, but fails to account for the effects of reverberation
[17].

III. METHODS

Up until now the hypothesized relation between SIMs and
the T60 has been discussed, now we propose a methodology to
provide support that this relationship exists. A full overview of
the methodology can be seen in Figure 1, which is discussed
in detail in the remainder of this section.

A. Obtaining Input Data

Since the SIMs chosen are intrusive, both clean and re-
verberant speech data is required in their calculation. The
clean speech data is taken from the EARS Dataset [21],
which has an Attribution-NonCommercial 4.0 International
license. The choice of this dataset as the clean speech dataset
is motivated by its anechoic nature and high quality. The
dataset also contains speech fragments sampled at 48 kHz
from 107 different speakers from diverse backgrounds. We
deem this to be a sufficient amount of different speakers for the
purpose of this estimator as is elaborated on in Section IV. The
audio dataset is pre-processed by filtering out audio fragments
which do not contain speech (such as coughing) and randomly
splitting the remaining speech signals into a training and
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Fig. 1: Schematic methodology to construct an estimator for
T60 using SIMs. Inputs are indicated in blue (underlined),
while outputs are indicated in red (bold).

validation dataset with a 50/50 split, both datasets comprise
150 speech samples. In order to obtain the reverberant speech
data, a dataset of RIRs is required.

Simulated RIRs of shoe-box rooms are used as large real
RIR datasets with diverse T60 values are not widely available.
The RIR dataset is simulated using the Image Source Method
proposed in [22]. We use Habets’ Matlab implementation of
the Image Source Method, which has an MIT license [23].
For both the training and validation datasets we generate 2000
samples. We generate the entire dataset of 4000 samples in two
batches. The first batch is for low T60s values, while the other
is for high T60 values. The two batches are merged before the
training and validation split. Desired T60 values are drawn
from a uniform distribution with a minimum value of 0.1 s
and a maximum value of 2 s in steps of 0.01 s. A uniform
distribution is chosen in an attempt to make the estimator
perform equally well for all values in the given range. For
each desired T60 value, room dimensions are chosen with a
baseline of 1.5 m and adjusted exponentially with the desired
T60 and with a random deviation of at most positive or
negative 0.5 m. This randomness adds more variation to the
data. The final parameters required to simulate the RIRs are the
sound absorption coefficients of all surfaces. Using the inverse
of Formula (1) the average sound absorption coefficient in
the room can be obtained. Absorption coefficients are chosen
so that they alternate between positive and negative values.
Random deviation is also added, while still respecting the
constraints that they sum up to the average coefficient and that
no reflection coefficient is larger than or equal to 1. Alternating
between positive and negative absorption coefficients results
in the mean amplitude of the RIR being 0 when excluding the
direct path, similar to real RIRs.

Note that Sabine’s formula is simply an estimation and
thus not completely accurate, as the T60 also depends on
other parameters like source and microphone positions in the
room. For each room configuration consisting of the room
dimensions and absorption coefficients, each combination of

20 microphone and 5 sound source locations in the room
are drawn from a uniform distribution. The NEN-EN-ISO
3382-2:2008 standards for measuring reverberation time also
state constraints on source and microphone placements for
consistent results [24]. Both should be at least 0.5 m away
from any surfaces in the room and no closer than 0.2 m to each
other. These constraints are also respected while generating
our RIR database. The RIRs generated by this method have a
sampling frequency of 48 kHz.

Since Sabine’s formula is not fully accurate, the T60 of
the generated RIRs do not exactly match the desired T60
value used as input to the formula. For this reason the T60
values used as ground truth for the estimator are calculated
based on the generated RIRs. The T60 are estimated us-
ing the rt60.measure rt60 function of the pyroomacoustics
library [25]. This function applies Schroeder’s approach which
uses backward integration to estimate the reverberation time
given a RIR [26]. Schroeder’s method struggles under certain
noise conditions but is widely used in practice. When the
background noise level is far outside of the measured decay
range, Schroeder’s method provides estimates of the T60
that we consider to be accurate enough for this work [27].
Extrapolating the T60 from the T30 (same as T60 but for 30
dB) gives us more consistent results, thus this is the approach
used to obtain the ground truth T60. Especially for high T60
values this estimation method can sometimes fail, which is
when the T20 (20 dB) or T15 (15 dB) values are tried in that
order to obtain the ground truth T60 values by extrapolation.

Given the generated RIRs and their ground truth T60 values,
the final type of input data, the reverberant speech, can be
obtained by convolving each RIR with a random sample from
the clean speech dataset using the fast Fourier transform. Now
for each reverbed signal, the corresponding T60 value and
clean speech signal are known.

B. Calculating Speech Intelligibility Measures

With the clean and reverbed speech signals we can calculate
the intrusive SIMs. Below we discuss the implementations of
the Short-Time Objective Intelligibility Measure (STOI), the
Extended STOI (ESTOI), Speech Intelligibility in Bits (SIIB),
and SIIB Gaussian (SIIBGauss) used in this paper.

STOI is introduced by Taal et al. in [28] and calculated using
a DFT-based time-frequency-decomposition, with computa-
tional efficiency and high correlation with speech intelligibility
being its primary benefits. Unlike STOI, ESTOI does not
assume mutual independence between frequency bands. Addi-
tionally, ESTOI incorporates spectral correlation by comparing
spectrograms of 400 ms of the distorted and the clean speech
signals [19]. In this paper we use the pystoi Python library by
Pariente [29] as an implementation for calculating STOI and
ESTOI. The pystoi library has an MIT license.

SIIB takes a different approach as it is a measure rooted
in information theory introduced by Kuyk et al. [20]. SIIB
estimates the amount of information in common between a
speaker and a receiver in bits per second. In its calculation, it
estimates information rate between both the environment and
speech production channels. Statistical dependencies within
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the input vectors are undesired when estimating information
rate in its calculation. For this purpose the Karhunen-Loève
transform is applied. However, this does not guarantee com-
pensation for statistical dependencies introduced by reverber-
ant channels. The SIIB algorithm defines distortion using a
KNN mutual information estimator, while SIIBGauss utilises
the information capacity of a Gaussian channel and is an order
of magnitude faster in its calculation than SIIB [9]. We use a
Python implementation of SIIB and SIIBGauss in the form of
the pySIIB library [30], which is a translation of the original
Matlab code. This library has a GPL-3.0 license.

After calculating the measures using the pySIIB and pystoi
libraries, the results are normalized by the intelligibility score
of the clean speech signal. The purpose of this is to account for
differences in intelligibility between the different clean signals.
This normalization procedure has the additional benefit of
providing values between 0 and 1, so that different estimators
can more easily be compared.

C. Mutual Information

Using mutual information, we can see how much infor-
mation the SIMs and T60 have in common [31]. Mutual
information is a metric rooted in information theory which
unlike correlation coefficients, can also identify non-linear
relations. There are several ways to calculate the mutual
information I(X;Y ) between two random variables X and Y ,
we use Formula (3) which is based on entropy. The entropy for
a random variable X is given by E(X). The work in this paper
uses the mutual info regression function from the scikit learn
Python package [32] to calculate mutual information, which
estimates entropy from k-nearest neighbors distances. This
methodology to calculate mutual information based on entropy
is based on descriptions from [33] and [34] according to the
function’s documentation. A value of 0 for mutual information
means that there is no shared information between X and Y .
Since the mutual information in this study is not known to be
bounded from above, many different interpretations of values
other than 0 exist. In this work we use it is to compare different
SIMs to find out which have the highest shared information
with the T60.

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (3)

D. Constructing the Estimators

For each SIM we construct an estimator for the T60 by
considering the T60 as a function of SIMs. Based on the
scatter plots of each SIM and T60, a possible shape of the
function or curve can be determined (e.g. exponential). This
function has specific parameters to be optimized. There are
many optimization approaches such as maximum likelihood
estimation. However, this requires the knowledge of a (log)
likelihood function, which can be complex to find [35]. Instead
of this we use a simpler approach where we minimize an
objective function. In the case of this study the Mean Squared
Error (MSE) is used as objective function. The MSE for
ground truth data y and estimated data ŷ for a dataset of size

n where yi corresponds to the i-th datapoint in y (similar for
ŷi) is given by Formula (4).

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4)

Alternative objective functions such as the Mean Absolute
Error (MAE) may also be used, but the MSE is regarded as
a suitable choice for this study as it is sensitive to strong
outliers of the estimator due to the square operation. Addi-
tional motivation for the usage of the MSE is its usage as
an evaluation metric in this study, as is elaborated on in the
next subsection. The minimisation process of the MSE is done
by applying the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm. Advantages of this commonly used minimisation
approach are fast convergence and high quality predictions
as claimed by Xue et al. [36]. It is however also claimed
that BFGS does not always perform well with many outliers
present in the input data. We postulate that the usage of the
MSE as objective function partially mitigates this disadvantage
of the BFGS algorithm.

In this study two types of functions are considered to fit to
the data X where x represents a value in X . The first is a
simple hyperbolic rational function f(x) given by Formula
(5), where the parameter to be optimized is a. The other
function is an inverse shifted exponential function g(x) given
by Formula (6), with parameters λ and θ to be optimized. To
fit the functions, initial parameters must be given which can
influence results, we chose: a = 1, λ = 1 and θ = 0.

f(x) =
a

x
(5)

g(x) = θ + λ(log(
1

λ
)− log(x)) (6)

E. Estimator Evaluation

To facilitate the comparison to machine learning models,
our estimator is evaluated using evaluation metrics often
utilised for machine learning regression tasks. According to
Botchkarev [37], the three most commonly used metrics for
these tasks are the MSE mentioned earlier, the MAE, and the
Mean Absolute Percentage Error (MAPE). Since the MAPE
values of the models the estimator is compared to are not
known, it is left out of consideration for this study. The
calculations of the MSE and MAE for ground truth data y and
estimated data ŷ for a dataset of size n where yi corresponds
to the i-th datapoint in y (similar for ŷi) are given by Formulas
(4) and (7) respectively.

MAE =
1

n

n∑
i=1

|yi − ŷi| (7)

We compare our model to two different state-of-the-art blind
estimation deep learning approaches. The first is by Prates et
al. [38], henceforth reffered to as Prates-DNN. The second is
a model by Gamper and Tashev [39], referred to as Gamper-
Tashev-CNN in this paper. These two “black-box” models take
as input the reverberant sound, our model takes this as an input
as well, but due to the intrusive nature of the SIMs it also
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requires clean speech. Prates-DNN achieves an MSE of 0.0394
and an MAE of 0.152 for small rooms. Gamper-Tashev-CNN
accomplishes an MSE of 0.0384, the MAE is not reported.

In addition to knowing how well the estimator performs
when compared to state-of-models, it is of interest to know
how generalisable it is to the real world, especially since
simulated RIRs are used. For this purpose we evaluate the
estimator on a set of real RIRs. We use the dEchorate dataset
originally proposed in [40] as real RIR dataset. The dataset
consists of 1800 multichannel RIR recordings sampled at 48
kHz recorded in a single room with different microphone and
sound source configurations. We consider each of the channels
as a separate recording and evaluate the trained model on a
subset of 300 samples randomly taken from the dEchorate
dataset. This is not an extensive evaluation on real RIRs but it
can provide a general idea on how well the estimator performs
in real world scenarios.

In realistic scenarios other types of additive noise may also
be present. Therefore, the estimator trained on speech without
noise is also evaluated on reverbed speech with additive
Gaussian noise to confirm the robustness to noise based on
which the SIMs were chosen. Parameters of the Gaussian noise
added are calculated per signal based on a desired Signal-to-
Noise Ratio (SNR). The clean speech fragment does not have
noise added to it for the evaluation, so it remains true “clean
speech”. The noise robustness evaluation is conducted on a
small sample size of 100 RIRs convolved with a clean speech
signal from the validation dataset for each SNR. The Gaussian
noise is added to the reverberant signal, so after convolution
with the RIR. For the SNR selection we use: 10, 20 and 30
dB. This noise robustness analysis is far from elaborate, but it
can hint towards the estimator’s robustness to additive noise.

IV. RESPONSIBLE RESEARCH

When conducting research, it is of utmost importance that
it is done responsibly by promoting: reproducibility, represen-
tativeness, and ethical considerations. This section highlights
how this research into SIMs and the T60 is performed respon-
sibly.

In order for the scientific community to be able to validate
the results this research presents, it is vital that they can
easily be reproduced. Reproducibility is primarily achieved
by applying open-science principles. Examples of how these
principles manifest in this research project are:

• Parameters such as those used to simulate the RIRs are
documented in this paper.

• All code used to obtain the RIRs, the estimator and results
is made publicly available on the 4TU repository [41]
under a GPL license.

• All code in this codebase is documented using code
comments and a README file, including recommended
parameters.

• Hardware used to obtain the results should not influence
results a lot as they can be obtained in a Python virtual
environment.

• External libraries used by the codebase are specified in
a requirements.txt file which also defines versions of the

libraries used to prevent dependency version differences
from influencing results.

• Only publicly available external libraries are used in the
code (MIT and GNU) this makes the estimator more
accessible.

• The clean speech dataset used has an Attribution-
NonCommercial license. It is therefore not allowed to
use the EARS dataset used to train and validate the
estimator for commercial purposes. When commercial
usage is desired, the dataset must be substituted for
another anechoic clean speech dataset. For more licensing
information you can read the README and LICENSE
files in the codebase [41].

Secondly, representativeness of the real world is a valid
concern in this research. Especially since the RIRs used are
simulated, one may wonder if this simulation is an accurate
representation of reality. Because of this, the estimator is
applied to a few real RIRs to further validate the model’s
generalizability to the real world.

TABLE II: Gender, ethnicity and native language division (in
%) for training and validation subsets of the EARS Dataset,
the division is exactly equal for both datasets.

Gender
Male 40.19
Female 56.07
Non-Binary / Third Gender 0.93
Prefer not to Answer 2.8

Ethnicity
Asian 3.74
White or Caucasian 68.22
Black or African American 14.95
Black or African American, White
or Caucasian

1.87

Hispanic or Latino 6.54
Prefer not to Answer 1.87
Hispanic or Latino, White or Cau-
casian

1.87

Black or African American, His-
panic or Latino

0.93

Native Language
Russian 0.93
American English 90.65
Spanish 0.93
Dari 0.93
Mandarin 0.93
Ukrainian 0.93
British English 0.93
German 0.93
Prefer not to Answer 2.8

Since the estimator uses speech fragments, another concern
is that the estimator might express biases towards certain
groups of society. Table II gives an overview of speaker
characteristics of the clean speech dataset the estimator is
trained on. Unfortunately, the division of groups is unevenly
distributed, especially of native language which could lead to
bias based on accents or dialects. We however still believe this
dataset to be the right choice for this purpose, as no other large
anechoic dataset with a large amount of speakers was found.
To the best of our knowledge any harm the estimator could
express to marginalised groups within society is minimal. As
a consequence we consider this unevenly distributed dataset to
be acceptable for this purpose, especially since the estimator
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itself might be inherently biased due to possible bias the SIMs
themselves show, which is out of our control. This is why we
recommend further research into potential racial, gender or
other bias the estimator possibly shows.

V. RESULTS

As discussed we construct the estimator by minimzing the
MSE. This section explains the obtained estimator using this
approach and highlights evaluation results.

A. Obtaining the Estimator

Applying the methodology explained in the previous section
we obtain the mutual information between each SIM and the
T60 for the simulated training data as can be seen in Table
III. From this table it is apparent that for the training dataset
SIIB, SIIBGauss and ESTOI have similar mutual information
with the T60, while STOI falls behind.

SIIB SIIBGauss STOI ESTOI
0.962 1.042 0.681 0.968

TABLE III: A table describing mutual information between
each SIM used in this paper and the T60 calculated using
the approach described in Section III. A value of 0 represents
no shared information, the higher the value, the more shared
information between a SIM and the T60. This table is used to
find the SIMs with the most shared information with the T60.

Considering the training and validation datapoints in Figure
2, it is observed that the data is shaped more like the hyperbolic
rational Formula (5) for SIIB and SIIBGauss and more like the
inverse shifted exponential Formula (6) for STOI and ESTOI.
The resulting estimator lines can also be seen in the figure
based on these curve fits, along with the optimized parameters.

B. Evaluating the Estimator

Given these estimator curves, we now evaluate how well
the estimators perform. Table IV displays the MSE and MAE
the estimators achieve for both the simulated and real RIR
validation datasets. Table V highlights the performance of each
estimator under Gaussian noise with SNRs of 10, 20 and 30
dB.

SIIB SIIBGauss STOI ESTOI
MSE Simulated 0.417 0.353 0.552 0.396
MAE Simulated 0.474 0.403 0.563 0.479

MSE Real 0.336 0.323 0.099 0.677
MAE Real 0.358 0.352 0.240 0.341

TABLE IV: Resulting MSE (squared seconds) and MAE
(seconds) rounded to three decimals of the T60 estimator are
reported for each SIM when evaluated on the simulated RIR
validation dataset (2000 samples) and on the real RIR dataset
(300 samples).

SIIB SIIBGauss STOI ESTOI
MSE (SNR = 10 dB) 3.644 3.05 0.795 1.50
MAE (SNR = 10 dB) 1.469 1.385 0.761 0.852
MSE (SNR = 20 dB) 2.970 3.27 0.751 0.481
MAE (SNR = 20 dB) 1.330 1.399 0.695 0.552
MSE (SNR = 30 dB) 2.760 3.768 0.742 1.206
MAE (SNR = 30 dB) 1.327 1.507 0.660 0.817

TABLE V: Resulting MSE (squared seconds) and MAE (sec-
onds) of the estimator when evaluated on a dataset of 100
samples for different SNRs, which give a general idea of the
estimator’s noise robustness.

VI. CONCLUSIONS AND FUTURE WORK

When comparing our lowest achieved MSE of 0.353 by
the SIIBGauss to those of Prates-DNN (0.0394) and Gamper-
Tashev-CNN (0.0384), we notice that it is worse by approx-
imately an order of magnitude. Our lowest achieved MAE
of 0.403 is also not close to the MAE Prates-DNN achieved
(0.152). Note that this comparison between models should
be taken with a grain of salt as the models are validated on
different datasets.

Despite the lesser accuracy, we still believe the insights of
this research to be valuable due, as we especially for SIIB
and SIIBGauss observe a tight curve fit. The statistical estimator
has an advantage over machine learning models that it is less
computationally complex than the machine learning models.
While constructing the estimator this high calculation speed
compared to a typical machine learning model was especially
apparent for STOI and ESTOI. Therefore, if the accuracy
can be improved the estimator can compete with state-of-the-
art models. We propose that combining both SIIBGauss and
ESTOI into a single estimator could improve results. This is
due to their calculation approaches being very different, thus
we believe that they capture different information about the
T60, which increases mutual information as a consequence. To
further improve accuracy we suggest attempting fitting func-
tions other than those proposed in this paper and attempting
different parameter optimization strategies such as maximum
likelihood estimation or finding a minimum variance unbiased
estimator. This would especially be beneficial for the ESTOI
estimator as for small T60 the fit is not great. Objective
functions other than the MSE should also be explored to
potentially improve the curve fits.

By considering at the results of the estimators evaluated
under the conditions of additive Gaussian noise, we observe
that results suffer heavily under noise. Most noticeable for
SIIB and least noticeable for ESTOI. The sample size for
noise robustness evaluation is very small so we cannot draw
any significant conclusions from this experiment. However, it
does lead us to believe the initial idea that these SIMs provide
enough noise robustness to produce a noise robust estimator
might be a naive approach. A future improvement could be to
add a pre-processing layer before inputting the speech data to
the SIMs to potentially decrease the negative impact additive
noise has on results.

Another limitation the research faces is that the estimators
are trained on simulated RIR data. Looking at the results of
the small real RIR evaluation experiment, it hints towards the
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Fig. 2: For each SIM the ground truth T60 data is plotted for both the training and validation datasets. The resulting curve
of minimizing the MSE is also plotted for each SIM. SIIB and SIIBGauss are fitted to Formula 5, while STOI and ESTOI are
fitted to Formula (6), optimized parameters of the functions a, θ and λ are also given for each estimator.

estimator being generalisable to real RIRs due to similar re-
sults compared to simulated RIR results. However, just like the
additive noise experiment, the sample size is small, thus further
research is required to confirm this idea of generalisability.

As mentioned in Section IV, the speech data the estimator
is trained on is inherently biased, which can also influence
generalisability of input data. We recommend further ex-
perimentation to research how well the estimator performs
for speakers of different genders and speakers with different
dialects or accents.

We believe that when the recommendations highlighted in
this paper are implemented, a good estimator for the T60 using
SIMs can be obtained. This work also motivates more research
into the relation between non-intrusive SIMs and the T60.
If these non-intrusive SIMs show similar or higher mutual
information with the T60 than those considered in this work,
it could lead to an estimator of the T60 which only requires
reverberant speech as an input. If successful, this would allow
for a framework where speech fragments could be inserted into
the model, and the reverberation time could be estimated from
solely this speech fragment. If ASR systems were to apply
adaptation schemes based on these estimated T60 values, it

could lead to improved ASR system performance.
In conclusion this paper presents four statistical estimators

for the T60 using Speech Intelligibility Measure (SIM), which
are currently limited in their application by their intrusive
nature and performance. Despite the limitations, more research
into the usage of SIMs for estimating the T60 is strongly
motivated by this work.

REFERENCES

[1] M. E. Sadeghi, H. Sheikhzadeh, and M. J. Emadi, “A
proposed method to improve the WER of an ASR
system in the noisy reverberant room,” Journal of the
Franklin Institute, vol. 361, no. 1, pp. 99–109, Jan.
2024, ISSN: 00160032. DOI: 10.1016/j.jfranklin.2023.
11.039.

[2] V. Mitra, J. Van Hout, W. Wang, et al., “Improving
robustness against reverberation for automatic speech
recognition,” in 2015 IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), IEEE,
Dec. 2015, pp. 525–532, ISBN: 978-1-4799-7291-3.
DOI: 10.1109/ASRU.2015.7404840.

https://doi.org/10.1016/j.jfranklin.2023.11.039
https://doi.org/10.1016/j.jfranklin.2023.11.039
https://doi.org/10.1109/ASRU.2015.7404840


8

[3] K. Kinoshita, M. Delcroix, H. Kwon, T. Mori, and T.
Nakatani, “Neural Network-Based Spectrum Estimation
for Online WPE Dereverberation,” in Interspeech 2017,
ISCA: ISCA, Aug. 2017, pp. 384–388. DOI: 10.21437/
Interspeech.2017-733.

[4] F. Xiong, S. Goetze, and B. T. Meyer, “Estimating room
acoustic parameters for speech recognizer adaptation
and combination in reverberant environments,” in 2014
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, May 2014,
pp. 5522–5526, ISBN: 978-1-4799-2893-4. DOI: 10 .
1109/ICASSP.2014.6854659.

[5] M. Pezzoli, D. Perini, A. Bernardini, F. Borra, F. An-
tonacci, and A. Sarti, “Deep Prior Approach for Room
Impulse Response Reconstruction,” Sensors, vol. 22,
no. 7, p. 2710, Apr. 2022, ISSN: 1424-8220. DOI: 10.
3390/s22072710.

[6] M. Long, “Sound in Enclosed Spaces,” Architectural
Acoustics, pp. 313–344, Jan. 2014. DOI: 10.1016/B978-
0-12-398258-2.00008-8.

[7] K. Zheng, C. Zheng, J. Sang, Y. Zhang, and X. Li,
“Noise-robust blind reverberation time estimation using
noise-aware time–frequency masking,” Measurement,
vol. 192, p. 110 901, Mar. 2022, ISSN: 02632241. DOI:
10.1016/j.measurement.2022.110901.

[8] J. Xia, B. Xu, S. Pentony, J. Xu, and J. Swaminathan,
“Effects of reverberation and noise on speech intelli-
gibility in normal-hearing and aided hearing-impaired
listeners,” The Journal of the Acoustical Society of
America, vol. 143, no. 3, pp. 1523–1533, Mar. 2018,
ISSN: 0001-4966. DOI: 10.1121/1.5026788. [Online].
Available: /asa/jasa/article/143/3/1523/609625/Effects-
of-reverberation-and-noise-on-speech.

[9] S. Van Kuyk, W. B. Kleijn, and R. C. Hendriks, “An
Evaluation of Intrusive Instrumental Intelligibility Met-
rics,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 26, no. 11, pp. 2153–2166,
Nov. 2018, ISSN: 2329-9290. DOI: 10 . 1109 / TASLP.
2018.2856374.

[10] W. Yu and W. B. Kleijn, “Room Acoustical Parameter
Estimation From Room Impulse Responses Using Deep
Neural Networks,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 436–
447, 2021, ISSN: 2329-9290. DOI: 10 . 1109 / TASLP.
2020.3043115.

[11] Y. Liang, S. Li, C. Yan, M. Li, and C. Jiang, “Explaining
the black-box model: A survey of local interpretation
methods for deep neural networks,” Neurocomputing,
vol. 419, pp. 168–182, Jan. 2021, ISSN: 09252312. DOI:
10.1016/j.neucom.2020.08.011.

[12] E. A. Hussein, M. Ghaziasgar, C. Thron, M. Vaccari,
and A. Bagula, “Basic Statistical Estimation Outper-
forms Machine Learning in Monthly Prediction of Sea-
sonal Climatic Parameters,” Atmosphere, vol. 12, no. 5,
p. 539, Apr. 2021, ISSN: 2073-4433. DOI: 10 . 3390 /
atmos12050539.
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