

Delft University of Technology

A Collaborative Approach to Teaching Software Architecture

van Deursen, Arie; Aniche, Mauricio; Aué, Joop; Slag, Rogier; de Jong, Michael; Nederlof, Alex; Bouwers,
Eric
DOI
10.1145/3017680.3017737
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings - 48th ACM Technical Symposium on Computer Science Education, SIGCSE 2017

Citation (APA)
van Deursen, A., Aniche, M., Aué, J., Slag, R., de Jong, M., Nederlof, A., & Bouwers, E. (2017). A
Collaborative Approach to Teaching Software Architecture. In Proceedings - 48th ACM Technical
Symposium on Computer Science Education, SIGCSE 2017 (pp. 591-596). Association for Computing
Machinery (ACM). https://doi.org/10.1145/3017680.3017737
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3017680.3017737
https://doi.org/10.1145/3017680.3017737

A Collaborative Approach to
Teaching Software Architecture

Arie van Deursen, Maurício Aniche, Joop Aué, Rogier Slag,
Michael de Jong, Alex Nederlof, Eric Bouwers

Delft University of Technology

ABSTRACT
Teaching software architecture is hard. The topic is abstract and is
best understood by experiencing it, which requires proper scale to
fully grasp its complexity. Furthermore, students need to practice
both technical and social skills to become good software architects.
To overcome these teaching challenges, we developed the Collab-
orative Software Architecture Course. In this course, participants
work together to study and document a large, open source software
system of their own choice. In the process, all communication is
transparent in order to foster an open learning environment, and the
end-result is published as an online book to benefit the larger open
source community.

We have taught this course during the past four years to classes
of 50-100 students each. Our experience suggests that: (1) open
source systems can be successfully used to let students gain expe-
rience with key software architecture concepts, (2) students are ca-
pable of making code contributions to the open source projects, (3)
integrators (architects) from open source systems are willing to in-
teract with students about their contributions, (4) working together
on a joint book helps teams to look beyond their own work, and
study the architectural descriptions produced by the other teams.

CCS Concepts
•Applied computing→ Collaborative learning;

Keywords
software architecture, software engineering education, open learn-
ing, collaborative book writing.

1. INTRODUCTION
In computer science curricula, software architecture is a key

component of a student’s software engineering education. Soft-
ware architecture refers to the high level structures of a software
system, the discipline of creating such structures, and the docu-
mentation of these structures [18]. Documenting software archi-
tecture facilitates communication between stakeholders, captures

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’17, March 08 - 11, 2017, Seattle, WA, USA
Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4698-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3017680.3017737

early decisions about the high-level design, and allows reuse of de-
sign components between projects [18, 8, 2].

To support teaching software architecture, lecturers can choose
from a range of text books [2, 18, 4, 21]. Nevertheless, a course on
software architecture has to overcome a number of challenges:

C1 The theory of software architecture (design principles, tradeoffs,
architectural patterns, product lines, etc) is often very abstract
and therefore hard for a student to master.

C2 The problems of software architecture are only visible at scale,
and disappear once small example systems are used.

C3 A software architect needs a combination of technical and social
skills: software architecture is about communication between
stakeholders, and the architect needs to be able to achieve and
explain consensus.

To address these challenges, we have designed a graduate course
on software architecture based on the following principles:

P1 Embrace open source: Students pick an open source system of
choice and study its architecture. Students use it to learn how to
apply architectural theories to realistic systems (C1, C2).

P2 Embrace collaboration: Students work in teams of four to
study one system in depth (C3).

P3 Embrace open learning: Teams share all of their work with
other students. Furthermore, students share their main result
with the open source community: their architectural description
is published as a chapter in an online book resulting from the
course (C3).

P4 Interact with the architects: Students are required to offer
contributions (in the form of GitHub pull requests) to the open
source projects, which will expose them to feedback from actual
integrators and architects of the open source projects (C1, C2,
C3).

P5 Combine breadth and depth: Students dive deeply in the sys-
tem they analyze themselves, and learn broadly from the analy-
ses conducted and presented by other teams (C1, C3).

In this paper, we describe the resulting Collaborative Software
Architecture Course (CSAC) which has been taught in the past four
years (2013-2016) to classes of 50-100 students each.1 We start
the paper by outlining the course objectives and its contents (Sec-
tion 2). We then present the results of teaching this course, covering
course outcomes and student evaluations (Section 3). Furthermore,
1See the resulting book Delft Students on Software Architec-
ture [23], the https://github.com/delftswa2016 GitHub organiza-
tion, and our 2013 blogpost [22].

we discuss possibilities to the underlying course ideas to other dis-
ciplines, as well as additional ideas for further strengthening the
course (Section 4). We conclude by summarizing related work and
the key contributions of this paper.

2. COURSE DESIGN

2.1 Educational Objectives
The Collaborative Software Architecture Course aims at offering

students a chance to learn and experience the concepts of design-
ing, modeling, analyzing and evaluating software architectures. In
terms of Bloom’s taxonomy [3], the following educational objec-
tives can be distinguished.

On the knowledge level, the course aims at enabling students to
familiarize themselves with key concepts in software architecture,
such as architectural views, perspectives, styles, design principles,
software product lines, technical debt, and Conway’s law.

On the application level, the course aims at enabling students
to apply these theories to concrete, existing systems that are main-
tained by a team of people and used around the world.

On the evaluation level, the course aims at enabling students to
assess and discuss the effect of architectural decisions made by
(open source) projects. Furthermore, the course aims at enabling
students to assess and discuss the relevance of certain architectural
theories for a given system.

Constraints The course takes 10 weeks and is worth 5 credit
points (ECTS), corresponding to 5 ∗ 28 = 140 hours of work per
student. Each week, there are two lectures of 90 minutes each.
The course is a graduate level master course for students who have
completed a bachelor in computer science or related field.

2.2 Method
In order to achieve its educational objectives, CSAC adopts two

central ideas. The first is to let students “adopt” an open source
system. They use this system to apply and evaluate architectural
theories, thus bridging the knowledge, application, and evaluation
levels. To deal with the complexity of realistic systems, students
work in teams of four.

The second key idea of the course is to open up all communi-
cation, so that students can learn as much as possible from each
other as well as from the broader open source community. Thus,
throughout the course, groups can see the work of other groups,
and are encouraged to help each other. Furthermore, results from
the course are shared publicly as much as possible, allowing for
feedback from and interaction with the broader open source com-
munity.

On a high level, each week consists of a theoretical lecture that
students apply to their own systems in the next week. In this way,
each week the students describe certain aspects of the architecture
of their system under study, which eventually forms the input for
their book chapter.

The course follows Nick Rozanski’s and Eoin Woods’ book
“Software Systems Architecture: Working With Stakeholders Using
Viewpoints and Perspectives” [18]. Based on this book, students
conduct, e.g., a stakeholder analysis, and create architectural doc-
umentation covering at least a context view, development view, ar-
chitectural patterns, and an evolution perspective. Furthermore, the
course covers selected additional topics in software architecture. In
the past years, we have included material on architectural metrics
[5], technical debt [12], the use of design sketches for communica-
tion [14], and software product lines [1]. For each of these topics,
students apply theories presented to their systems under study.

The course also includes guest lectures from software architects
working in industry. These lectures typically cover the role of the
architect in a complex organization. Students usually do not di-
rectly apply these lessons from industry to the systems they study;
instead, the guest lectures serve to illustrate how the topics covered
are relevant outside the scope of open source systems as well.

In the following, we present the most important aspects of our
methodology, and relate them back to the five principles P1–P5
formulated in the introduction.

Group formation and project selection (P1, P2). In the first
week of the course, students themselves form groups of 4. We
recommend students to form diverse groups so that they can benefit
most from their varying cultural and technical backgrounds.

In addition, students must choose a project that serves as case
study throughout the entire course. Students select a medium to
large open source project hosted on GitHub that is still active (de-
velopers are working on it every day) and open to external con-
tributions. Such projects typically will have several pull requests
from external contributors merged per day. Furthermore, students
should be confident that they are able to make a contribution to this
project. Although these rules are not strict constraints, each group
needs to submit their project for approval. This proposal contains
the name of the project, link to the repository, and a paragraph on
why they chose this project. Two different teams are not allowed to
work on the same project.

To help students find a project, we provide a list of the most pop-
ular GitHub projects, extracted using GHTorrent [10]. We also sug-
gest systems that we personally believe are interesting (in the 2016
edition, for example, we suggested Ruby on Rails, Tensorflow, or
SonicPi).

The use of Git and GitHub (P2, P3). Students are required to use
Git and GitHub from the start of the course. Even the course con-
tents, schedule, and assignments are made available in a GitHub
repository. We set up a dedicated GitHub organization for the
course, hosting all repositories used in the course.

In the first lecture, we introduce students to Git. We add all stu-
dents as collaborators to the relevant GitHub repositories. The stu-
dent repositories are only available to members of the organization,
and not to the outside world. Students can choose themselves to
make certain results publicly available.

After a team chooses their project, we create two repositories:
one empty repository to work on the assignments and the book
chapter, and a public fork of their chosen project. GitHub’s issues,
pull requests, code review comments, milestones, and releases are
used for inter and intra-team communication, and for distributing
finalized assignments.

We highlight the fact that students have access to the repositories
of all other teams. We encourage students to take a look at what
other students are doing as well as what other teams have done in
the past (which was already published in an online book). Students
are allowed to “reuse an idea” that belongs to other groups as long
as they explicitly mention it in their assignments.

Use of Slack for Communication (P2, P3). We introduce Slack2

as a tool for students to communicate among themselves and with
the teachers. Within Slack, we used different channels for various
course wide discussions, announcements for important messages
from the teachers, and to other technical points, such as Git.

We also created one channel per group, named after the project
studied by that group. We encourage groups to use their channels
for all internal group communication, as this enables the teachers

2http://www.slack.com.

to understand their way of working and effort. In case of questions,
students can involve teachers (or other students) in their group
channel simply by mentioning them in their channel. Again, all
student channels are open to all students, allowing students to learn
from and help each other.

Student presentations (P2, P5). As an exercise in communi-
cating architectural decisions and trade-offs, students present their
group’s progress to the full class at two occasions. The first presen-
tation is a project “pitch” around the middle of the course. In the
pitch, students should present their project to other students as well
as their current findings. Each group has 3 minutes of presentation
plus 2 minutes of Q&A from both other students and teachers.

The second set of presentations happens at the end of the course.
Each group has 15 minutes of presentation plus 10 minutes of ques-
tions. In this presentation, groups show all their findings as well
as the system contributions they have made throughout the course.
All presentations together usually take the entire day (from 9am to
5pm) and may be divided (depending on the number of teams) in
two (parallel) sessions.

2.3 Assignments
Students face four main assignments which are part of our

method as well: 1) applying theory to practice, 2) contributing to
the system, 3) integrating their architectural views and perspectives
into a single chapter and 4) providing feedback to other students.

Applying theory to practice (P5). After each theoretical lecture,
students apply what they learned to their system. As an example,
one of the first assignments is to conduct a stakeholder analysis:
understanding who has an interest in the project, what their interest
is, and which possibly conflicting needs exist.

To do this, the students follow the approach to identify and
engage stakeholders from Rozanski and Woods [18]. They dis-
tinguish various stakeholder classes, and recommend looking for
stakeholders who are most affected by architectural decisions, such
as those who have to use the system, operate or manage it, develop
or test it, or pay for it.

To find the stakeholders and their architectural concerns, the stu-
dent teams analyze any information they can find on the web about
their project. Besides documentation and mailing lists, this in-
cludes an analysis of recent issues and pull requests as posted on
GitHub, in order to see what the most pressing concerns of the
project at the moment are and which stakeholders play a role in
these discussions and the decision to integrate a change [11].

Students deliver the results of their analysis in a readable text file
via GitHub, and receive complete feedback (including the grade)
from the teachers within one or two weeks after the submission.
Thus, students can improve for their next deliverable.

Contributing to the system (P1, P4). As a parallel task, students
contribute to the system they are analyzing. This helps them in un-
derstanding the implications of key architectural decisions, and in
establishing contact with the architects and integrators of the sys-
tem they study.

We do not prescribe the number of contributions each team
should do. To help students, we teach them how open source devel-
opment and pull requests work at GitHub. We also suggest to start
with something small, such as fixing simple issues or contributing
to the documentation. Some open source projects provide explicit
open issues that are suitable for newcomers, which also provide a
good starting point.

Writing a Book Chapter (P3, P5). Inspired by the book series
covering the “Architecture of Open Source Applications” [6, 7],

the main goal of each team is to compose a chapter describing the
architecture of the system they study. At the end of the course,
these chapters are bundled into a book [23].

Each group should integrate views, perspectives, assignment re-
sults, and their experience in contributing to the system into a sin-
gle chapter. Each chapter should be around 5000 words, and stu-
dents are encouraged to include as many diagrams or images as
needed. We do not require a prescribed chapter structure, but many
teams follow the views and perspectives created in the earlier as-
signments.

The target audience for the chapter are system stakeholders and
fellow students. Students can opt to make their chapter public, im-
plying that their chapter should appeal to a wider audience. To
control quality, we make it clear to students that chapters will be
published only if the group’s chapter grade is higher than 7 (out of
10).

To facilitate integrating, sharing, versioning, and reviewing the
various chapters and the underlying drafts, all students (and teach-
ers) use Markdown3 for any document they create in the course.
This year, we created the final book using Gitbook4, which offers
an easy way to generate an online (HTML, EPUB, PDF) book from
a GitHub repository containing Markdown sources.

Providing feedback to other students (P2, P3). The course em-
braces collaboration. As one of their assignments, students review
a chapter from another group. We take this opportunity to teach stu-
dents how scientific papers are evaluated and simulate the process
with them. Using the conference management system EasyChair5,
students identify their conflicts, bid to chapters they are comfort-
able to review, and submit a full review of the chapter. In the end,
each group needs to evaluate their received feedback and improve
their chapter accordingly.

2.4 Grading
A team grade is based on the following items:

1. Series of intermediate deliverables corresponding to dedi-
cated assignments on, e.g, stakeholder analysis, code met-
rics, particular views, or design sketches. Each partial result
is evaluated using rubrics reflecting content, depth, writing,
and originality. We provide the 2016 rubrics in our online
appendix [24].

2. The final report (book chapter) of each team, providing the
relevant architectural documentation created by the team, is
graded according to the same rubrics.

3. Team presentations that were evaluated by both the teachers
and students in the audience (by means of an online ques-
tionnaire).

The individual grades are additionally based on:

1. The personal reviews to some other group. Students that
have been more critical as well as constructive receive more
points.

2. Active participation in the lectures. Students consistently
asking good questions or initiating useful discussions during
the class receive extra points. In addition, we allow students
to recommend other students that have done a great job dur-
ing the lectures.

3https://daringfireball.net/projects/markdown/
4http://www.gitbook.com/
5https://easychair.org/

3. Their workload. Students are required to keep a weekly jour-
nal of their activities. In this journal, we expect to see which
activities each student performed as well as the amount of
time each one required. The effort of each student in a team
should amount to the prescribed 140 hours allocated for this
course.

The latter point implies that all students are required to make a sim-
ilar time investment in this course, regardless of their background.
This reflects the idea that an architect never stops learning.

3. RESULTS OF THE 2016 COURSE
We performed a survey with the 104 students of the 2016 edition.

As the survey was optional, we obtained 48 answers (response rate
of 46%). Students had to answer questions in a Likert scale from 1
(no/I don’t agree at all) to 5 (yes/I completely agree). Thus, when-
ever we mention that students agree or believe with a statement, it
means that more than half of them answered a 4 or a 5 in that ques-
tion. Due to space constraints, the protocol of the survey as well as
full answers and charts can be found in our online appendix [24].

3.1 Participants’ profile
We have a diverse group of students when it comes to their ex-

perience. There are both students with and without industry and
programming experience.

In numbers, 10% of the respondents have less than one year of
programming experience, while 45% have 5 or more years of expe-
rience. 23% do not have experience in industry, 25% already have
more than 3 years of experience.

The vast majority (81%) has never contributed to open source
before. Half of the students claim to have good knowledge of Git,
while the other half believes to know the basics.

3.2 P1: Embrace open source
Selecting an appropriate project can be difficult. Nevertheless,

more than a half of the students were happy about their choice of
open source project. Many said that their projects were “relevant”,
“fun”, “interesting”, and “with a welcome community”.

This might explain the fact that all students were able to sub-
mit at least one pull request to their projects, and two thirds of the
participants performed 1 to 3 pull requests.

Some students also believe that projects were happy with the
achieved results (45.8%) and that the project was open to external
contributors (58.3%).

3.3 P2: Embrace collaboration
The majority of students affirm they learned much from their

own team mates. They provide varying reasons, such as the differ-
ent levels of experience among team members which fostered dis-
cussions, or the learning of technical skills, such as Git and Java,
from their peers. We quote a student:

“Everyone has something to teach, I was very happy to listen
to the constructive criticism of my team mates.”

On the other hand, 3 participants did not learn enough (they
chose 2 on the scale). One student indicates that there was some
friction among the team members, and another complained about a
team mate that did not work enough.

Concerning collaboration, Slack improves communication
among team members, according to 77% of students. In addition,
most students (79%) state that Slack helps them to get answers to
their questions quickly, from either teachers or fellow students.

The usage of Git and GitHub (and its collaborative features such
as issues and pull requests) also helps to improve student produc-
tivity. Some advantages mentioned by students are that Git and
GitHub make it easier for other students to review their work. On
the other hand, a few students indicate that more visual (WYSI-
WYG) document editors, such as Google Documents, can be better
for document collaboration as opposed to the combination of Git
and Markdown.

3.4 P3: Embrace open learning
Most students consider the chapter reviews they received from

other students as useful, although 25% thought they were not. Stu-
dents with positive feedback confirm that reviews helped them to
identify flaws as well as to make the document more intuitive and
interesting. Some other students indicate that reviews were super-
ficial while others believe that the reviewer did not read the entire
text.

Interestingly, most students find it useful to write reviews for
another groups — and no student disagreed with it at all:

“I liked reviewing them, as it gave me the opportunity to see
what other groups were doing, and giving me the opportunity
to help them out.”

Watching presentations about other architectures is also consid-
ered useful by a large group of students. Negative points are fre-
quently related to the strict and tight timing (students had 3 min-
utes to present their work) as well as with the lack of preparation
and presentation skills of some groups (to which students had to
listen).

Publishing a book at the end of the course was well received by
the students: 70% of them were very proud of their chapter. In their
opinion, it serves as an excellent motivational factor and inspired
them to work better:

“It’s a must have experience and you learn a lot and it brings
responsibility as your work is open and public.”

3.5 P4: Interact with the architects
Most students believe that contributing to the project helped

them to better understand the system they were analyzing. Only
8 students disagreed.

As teachers, we suggest students to submit a pull request before
trying to talk/interview the architects. This mostly worked well:
40% of the participants believe this was a good strategy for helping
them to get in contact with the senior architects of the project.

3.6 P5: Combine breadth and depth
In most lectures, students affirm that they learned much from ap-

plying the theoretical concepts to their projects. In Figure 1, we
present the results for each theoretical lecture we gave in this edi-
tion. The score average is 4 (out of 5), with the exception of the
variability topic, for which the median is 3. We highlight a quote
from a student:

“I learned a lot about how the open source team approach dif-
ferent problems (technical debt analysis) and how the project
interacts with it’s environment and all involved entities around
(stakeholder analysis and context view).”

On the other hand, some students complained about difficulties
in putting the theory to practice. As an example, a student thinks
that some concepts are not generalizable, and thus, hard to be ap-
plied in their projects:

Figure 1: Histogram of student’s evaluation on how much they learned in each theoretical topic that we taught in the course.
Scale: 1-Blue) Useless, learned nothing from it. 2-Red) Learned something, but not enough given the effort.

3-Yellow) Neutral, learned just enough, 4-Green) Good, useful exercise, and 5-Purple) Great way to learn about this.

“It was difficult to apply the theory to our project. While I
can see its value in other types of projects, it is not generally
applicable.”

3.7 Other findings
Time spent in the course. Students express that they spent more
time in our course when compared to other courses. Only 9% of
them spent the required amount of time (140 hours), while 45%
spent “a lot more time”. On the other hand, 19% spent around than
120 hours (less than required).

Points of improvement. Clearly, we can still make improve-
ments to our course. At the end of the survey, we asked students
about what we can improve. As an example, some students believe
the course could be more technical. Indeed, our textbook treats
software architecture in a highly conceptual way:

“I was hoping to focus more on architectural aspects of the
software than these general exercises that just describe the ap-
plication in a very broad sense.”

4. DISCUSSION
As demonstrated by the above, the current mix of teaching tools

and techniques works well for our course on software architecture.
As one of our former teaching assistants says: “it is their chance
to put hands on real applications that are not greenfield, and learn
how real world works”.

We believe these ideas could be extended or applied in other con-
texts in a number of ways:

Lectures used is a parameter of the course. The theoretical
topics that we present to students during lectures can be replaced
by other architectural topics of interest, such as more emphasis on
design patterns or system scalability.

Mix with industry systems. Although we only made use of open
source systems up to now, the course may also use projects from
companies (that are most likely to be closed source). This partner-
ship might be good for both students and companies: students can
get to know more about the company, and the company can get a
complete analysis of its software. On the other hand, teachers and
universities have to deal with the arrangements, such as confiden-
tiality agreements.

Collaborative book writing and publishing. This feature is
clearly not attached to a software architecture course, and can thus
easily be applied to any other course. As we presented before, this

was one of the points which students were happy and felt motivated
about. Gitbook also facilitated the generation of the final book in
different versions (PDF, EPUB). Therefore, we suggest other edu-
cators to experiment collaborative book writing and publishing in
their courses.

Contributions to open source. Our students were able to meet
real software architects and learn from them. This relationship
was initiated by these contributions and the consequent discussions
(common in GitHub’s pull requests) with the architects. Thus, this
strategy can be used in other related courses where students could
benefit from real and more experienced developers, such as soft-
ware testing courses.

5. RELATED WORK
Lago and Van Vliet [13] distinguish two approaches to teaching

architecture, one focusing on “programming in the large”, and the
other emphasizing the communication aspects of software archi-
tecture to a variety of stakeholders. Our course proposes a way to
blend these two approaches in a single course.

De Boer et al. propose a community of learners approach to
teaching software architecture [9]. Students collaborate on the
design of a single complex system, and learn from each other.
Through its openness, our course also creates a community of
learners, yet student teams work on different systems.

Pedroni et al. [16] discuss leveraging open source projects to
expose students to real life systems. As in our course, they re-
quire students to make contributions to open source projects. The
course focuses on programming skills as well as on the need to get
socially involved with other developers. The authors recommend
providing clear instructions on how to contribute – which we in-
deed cover in the lectures of our course, and which these days are
often also provided in contribution guidelines of projects on, e.g.,
GitHub. Smith et al. [19] discuss challenges and guidelines for
selecting open source projects for use in software engineering edu-
cation. Marmorstein [15] discusses experiences in letting students
contribute to open source systems in their class project.

GitHub plays a central role in our course: The teams use it to
collaborate, to write their book chapter, and to contribute to open
source projects. This emerging role of the GitHub platform as a
general collaborative tool in education is further discussed by Za-
galsky et al [25].

Our student based book series [23] was directly inspired by the
Architecture of Open Source Applications [6, 7] initiated by Brown
and Wilson. Based on these books, Robillard and Medvidovic pro-
vide an analysis of the dissemination processes in open source ar-
chitecures [17]. A description of the architectural beauty of (open
source) systems was provided by Spinellis and Gousios [20].

6. CONCLUSIONS
Teaching software architecture should be practical and challeng-

ing at the same time. Towards this goal, we propose a course struc-
ture that follows five main principles: embrace open source, em-
brace collaboration, embrace open learning, interact with the archi-
tects, and combine breadth and depth.

We have applied these ideas in four editions of our Software Ar-
chitecture course, and students’ feedback have always been posi-
tive. In this paper, we report the results of the evaluation with our
students in the most recent (2016) edition.

Our experience suggests that (1) open source systems can be suc-
cessfully used to let students gain experience with key software ar-
chitecture concepts; (2) students are capable of making meaningful
code contributions to the open source projects; (3) software archi-
tects from open source systems are willing to interact with students
about their contributions; (4) working together on a joint book helps
teams to look beyond their own work, and study the architectural
descriptions produced by the other teams.

Thanks to the open nature, results of the course (such as the on-
line book, and contributions to the open source systems made by
the students) are available in our online appendix [24]. Based on
a blog post covering the first edition of CSAC [22], similar courses
have emerged at various universities in Canada, Israel, France, and
US. Moreover, we anticipate that our collaborative approach makes
sense not only for software architecture courses, but to any other
topic in which practice and theory should walk together.

Acknowledgments We would like to thank Felienne Hermans
and Nicolas Dintzner (TU Delft) for repeatedly offering guest lec-
tures in this course, the various guest speakers from industry and
academia, all students participating in the courses, and the open
source developers who welcomed our student’s contributions.

7. REFERENCES
[1] S. Apel, D. S. Batory, C. Kästner, and G. Saake.

Feature-Oriented Software Product Lines - Concepts and
Implementation. Springer, 2013.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture
In Practice. Addison-Wesley, third edition, 2012.

[3] B. S. Bloom, M. D. Engelhart, E. J. Furst, W. H. Hill, and
D. R. Krathwohl. Taxonomy of educational objectives: The
classification of educational goals. Handbook I: Cognitive
domain. Longmans, Green, 1956.

[4] J. Bosch. Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach.
Addison-Wesley, 2000.

[5] E. Bouwers. Metric-based Evaluation of Implemented
Software Architectures. PhD thesis, Delft University of
Technology, 2013.

[6] A. Brown and G. Wilson. The Architecture of Open Source
Applications: Elegance, Evolution, and Fearless Hacks,
volume I. http://aosabook.org, 2012.

[7] A. Brown and G. Wilson. The Architecture of Open Source
Applications: Structure, Scale, and a Few More Fearless
Hacks, volume II. http://aosabook.org, 2013.

[8] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, P. Merson, R. Nord, and J. Stafford. Documenting
Software Architectures: Views and Beyond. Addison-Wesley,
2010.

[9] R. C. de Boer, R. Farenhorst, and H. van Vliet. A community
of learners approach to software architecture education. In
22nd Conference on Software Engineering Education and
Training. IEEE Computer Society, 2009.

[10] G. Gousios. The GHTorrent dataset and tool suite. In
Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR ’13, pages 233–236,
Piscataway, NJ, USA, 2013. IEEE Press.

[11] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen.
Work practices and challenges in pull-based development:
The integrator’s perspective. In 37th IEEE/ACM
International Conference on Software Engineering, ICSE,
pages 358–368. IEEE Computer Society, 2015.

[12] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical debt:
From metaphor to theory and practice. IEEE Software,
29(6):18–21, 2012.

[13] P. Lago and H. van Vliet. Teaching a course on software
architecture. In 18th Conference on Software Engineering
Education and Training. IEEE Computer Society, 2005.

[14] N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek.
How software designers interact with sketches at the
whiteboard. IEEE Trans. Software Eng., 41:135–156, 2015.

[15] R. M. Marmorstein. Open source contribution as an effective
software engineering class project. In Proceedings of the
16th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2011,
pages 268–272. ACM, 2011.

[16] M. Pedroni, T. G. Bay, M. Oriol, and A. Pedroni. Open
source projects in programming courses. In SIGCSE 2007,
pages 454–458. ACM, 2007.

[17] M. P. Robillard and N. Medvidovic. Disseminating
architectural knowledge on open-source projects. In
Proceedings of the 38th ACM/IEEE International
Conference on Software Engineering (ICSE), pages
476–487. ACM, 2016.

[18] N. Rozanski and E. Woods. Software systems architecture:
working with stakeholders using viewpoints and
perspectives. Addison-Wesley, 2012.

[19] T. M. Smith, R. McCartney, S. S. Gokhale, and L. C.
Kaczmarczyk. Selecting open source software projects to
teach software engineering. In The 45th ACM Technical
Symposium on Computer Science Education, SIGCSE’14,
pages 397–402. ACM, 2014.

[20] D. Spinellis and G. Gousios. Beautiful Architecture: Leading
Thinkers Reveal the Hidden Beauty in Software Design.
O’Reilly, 2009.

[21] R. N. Taylor, N. Medvidovic, and E. Dashofy. Software
Architecture: Foundations, Theory, and Practice.
Addison-Wesley, 2010.

[22] A. van Deursen. Teaching software architecture: With
GitHub! https://avandeursen.com, December 2013.

[23] A. van Deursen, M. Aniche, and J. Aué. Delft Students on
Software Architecture: DESOSA 2016. Delft University of
Technology, 2016.
https://www.gitbook.com/book/delftswa/desosa2016/details.

[24] A. van Deursen, M. Aniche, J. Aué, R. Slag, M. de Jong,
A. Nederlof, and E. Bouwers. A Collaborative Approach to
Teaching Software Architecture (SIGCSE 2017 Appendix).
https://doi.org/10.5281/zenodo.182614, Nov. 2016.

[25] A. Zagalsky, J. Feliciano, M. D. Storey, Y. Zhao, and
W. Wang. The emergence of github as a collaborative
platform for education. In Proceedings of the 18th ACM
Conf. on Computer Supported Cooperative Work & Social

Computing, CSCW 2015, pages 1906–1917. ACM, 2015.

