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a b s t r a c t

Machine Learning (ML) for real-time Dynamic Security Assessment (DSA) promises a probabilistic
approach to secure lower safety margins and costs. However, future systems with a high share
of renewables have low inertia and converter-interfaced devices resulting in faster dynamics. Past
research on ML-based DSA used high inertia systems to study ‘the best’ ML data, features, and models
building upon each other’s work for decades. Seldom has ML-based research for DSA questioned
whether the underlying assumptions for (and the conclusions of) these studies are still valid for low
inertia systems.

This work studies exemplary changes in assumptions (and conclusions) for ML-based DSA when
moving from High Inertia (HI) to Low Inertia (LI) systems. The dynamical system of the LI system is
brought in perspective with the most typical ML-based approaches, which are organised in sequential
steps. The steps consider the generation of the training database, the data pre-processing and feature
selection, the model training and validation. This work analyses each step individually for the changed
assumptions in the dynamical LI system, and subsequently, a case study provides the evidence that
considering a LI system to identify the ‘best’ ML approaches is important. The case studies on IEEE 14
and 68 bus systems confirm that LI systems must be optimised for security (otherwise, they result in
80% less security than HI systems). The key findings, however, are that using ML makes significantly
more sense in LI systems than in HI systems as the LI dynamics are in shorter timescales (and the
advantage of ML is to predict security in milliseconds) and that secure/insecure operations can be
separated more straightforwardly in LI systems as ML increases the accuracy by up-to 40% towards
close to 100% when using neural networks.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Power system operation with a high share of renewables be-
omes more uncertain and has lower inertia to respond securely
o disrupting dynamics [1,2]. Not only new renewable generation
ut also new flexible loads and new transmission devices have
ompletely different dynamics than conventional synchronous
enerations with which the power system was designed. These
ew technologies are interfaced with converters that result in
ower inertia in the system [3] and faster dynamics, as the tech-
ology can interact and generate unexpected time couplings with
xisting system components as synchronous generators [4,5]. The
imescale of such relevant dynamics is similar to electromagnetic
ransients (and gets reduced from a few microseconds to sev-
ral milliseconds as shown in Fig. 1). In response, operators can
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harden the power infrastructure or develop new software tools
for uncertain operation (much cheaper) to keep up the security of
supply [2]. Unfortunately, most current real-time software tools
are limited to only the assessment of the static security of a
shortlist of system faults. With current software, the assessment
of the dynamic security is infeasible in real-time as they require
time-domain simulations that have long computational times as
they rely on numerical integration [6,7] (e.g., 56 s for the French
system [8]).

Methods from ML show high potential for real-time proba-
bilistic DSA [9,10]. The idea is to carry out simulations offline,
then train an ML model offline that can be used in real-time for
predicting the security instead of simulating it. This approach is
a promising idea as ML predictions require nearly zero computa-
tional time, and hence very large numbers of possible operating
conditions (OCs) can be assessed in real-time for a very large
number of possible fault scenarios. In the last decades, many
researchers investigated this idea with different settings [11,
12]. Most works, however, propose the same sequence of steps
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Timescales in low inertia systems [5].

rom generating data over data pre-processing, selecting features
owards training and validating the ML model. These works anal-
sed the individual steps in detail, e.g. for data generation [13,
4], for data processing and feature selection (FS) [15–17], for
odel training [18,19] and selection. Over decades this line of

esearch has built upon each other improving successively previ-
us conclusions in each of the steps. However, most of the works
ollowing this ML-based idea have carried out their studies on
tandard IEEE test systems, which typically assume HI in their
ynamical models representing power systems from the past.
nfortunately, most works do not consider large amounts of
enewable energy sources or adequate demand models and their
lexibility or converter-interfaced generations or storage.

This paper aims to investigate whether the conclusions in
L-based real-time DSA made in the past HI systems are still
alid for LI systems. A few research has considered more LI-
ased assumptions in their proposed ML-based DSA concepts. For
nstance, [20] considers 30 % renewable energy sources, HVDC
inks, and forecasts for 2030 for generating OCs, but the static and
mall-signal analysis does not involve simulating the full dynamic
odel. [21] considers dynamic models for converter-interfaced
enerators (CIGs) and assumes uncertainty in photovoltaic and
ind power.
This paper has three contributions that offer insights, for the

irst time, on whether the conclusions from ML-based DSA on
I systems can be transferred to LI systems. These insights are
mportant to verify which findings from past research in ML-
ased DSA need to be revisited and how researchers may carry
ut ML-based research for LI DSA in the future. The first con-
ribution summarises the changing assumptions of dynamics LI
ower systems that influence ML-based DSA, including the dy-
amical modelling of CIGs, transmission lines, and loads. The
econd contribution is analysing the impact of these assumptions
n ML-based DSA. The impact of each assumption is analysed
or each step individually in the ML-based DSA. The third con-
ribution proposes a modified test system in the case study that
orresponds to a LI system and can be used for ML-based research
or DSA. Case studies on the original and the proposed modified
ersions of the IEEE test systems with 14 and 68 buses compare
he performance of ML-based DSA in HI and LI systems consid-
ring transient stability. The rest of the paper is structured as
ollows. Section 2 describes the full dynamical model of the future
ow inertia system. Section 3 discusses the impact of the new
ynamics on the ML-based security rules. Subsequently, Section 4
resents the case study, and Section 5 concludes the paper.
2

Fig. 2. Block diagram of LI network.
Source: modified version of [23]).

2. Dynamic security of low-inertia systems

This section describes the general ordinary differential equa-
tion (ODE) formulation of the dynamical model of LI systems [22].
In addition, this section introduces the new security definition
and the new classes of security for such systems.

The nodal and generation sets are N and G, respectively, where
G includes synchronous generators S and converter-interfaced
generators C , i.e. G = S∪C . The set C is further classified into grid-
orming converters CF ⊂ C and grid-following Cf ⊂ C converters.
The dynamical model of LI system (Fig. 2) can be then described
as follows:

ẋ = f (x, u) (1)

where

x =(xFc1 , . . . , x
F
ccF

, xfc1 , . . . , x
f
ccf

, xg1 , . . . , xgS , xn)

u =(uF
c1 , . . . , u

F
ccF

, uf
c1 , . . . , u

f
ccf

, ug1 , . . . , ugS )
(2)

re the system states and inputs, respectively. The models of the
ynamical components to consider in LI systems, i.e. CIGs, syn-
hronous generators, loads and transmission lines, are described
n the following sections.

.1. Dynamics of converter-interfaced generators

A three-phase power converter model is considered for both
rid-forming and grid-following operation mode. The two opera-
ion modes are shown in Fig. 3. The model consists of a DC-link
apacitor, a lossless switching block, which transforms the DC
oltage vdc into a three-phase AC voltage vsw , and an output RLC
ilter (rf , lf , cf ). The detailed description of the dynamical model
f CIGs, including a filter, transformer, AC-side controller and
hase-Locked Loop (PLL), can be found in [22].
Given these dynamics, the following state and control inputs

an be defined for CIGs:

xFc =(if , vf , ig , ξ , p̃c, q̃c, θc)

xfc =(if , vf , ig , ξ , ε, θs, p̃c, q̃c, θc)

uF
c =(p∗

c , q
∗

c , V
∗

c , ω∗

c , v
∗

dc)

uf
c =(p∗

c , q
∗

c , v
∗

dc)

(3)

with vf and if the filter voltage and current, ig the transformer
current that is injected into the grid and (p̃ , q̃ ) the internal state
c c
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Fig. 3. System-level control of grid-following operation mode (top) and
grid-forming operation mode (bottom) [22].

variables. ε and ξ are the integrator states, θc is the reference
ngle at which the AC-side controller operates and θs is the
stimate of the phase angle from the PLL. Finally, ω∗

c , V
∗
c , p∗

c , q
∗
c

epresent the setpoints for frequency, voltage, active and reactive
ower, respectively.

.2. Dynamics of synchronous generators

For a traditional two-pole synchronous generator, the internal
ynamics are described by the swing equation:

g ω̇r = ∆pe − Dg (ωr − ω0) (4)

ith Mg and Dg the inertia and damping constants and ∆pe
he difference between mechanical and electrical power at the
enerator’s output.

.3. Load dynamics

Dynamic models of loads express the active and reactive pow-
rs as a function of voltage and time. Two main dynamical models
or loads can be distinguished, the inductive model, and the
xponential recovery load model [24]. These two models are
ainly characterised by different time recovery ranges following
isturbances. The inductive model is derived from the equivalent
ircuit of an induction motor with static and rotor resistances
orresponding to a recovery time in the range of seconds (sim-
lar to electromagnetic transients). In this model, the active and
eactive power, and hence the load current, are represented as
unctions of the past and present voltage magnitude and fre-
uency of the load bus allowing to inject or withdraw current
rom the bus instantaneously when needed (current injection
odel [25]). Conversely, the exponential recovery load model is
sed to represent loads that slowly recover from a disturbance
ver large time periods (from several seconds to tens of minutes,
imilar to electromechanical transients).

.4. Transmission line dynamics

Grid dynamics are typically neglected in synchronous
enerator-dominated power systems as these dynamics are much
aster than those of the excitation and governor systems. With the
nclusion of fast-acting CIGs, the line dynamics become relevant
s they are of the same order of magnitude as the ones of
onverters (electromagnetic phenomena). The line dynamics can
e represented using a conventional RL formulation:

jk =
ωb (vnj − vnk) −

(
rjk

ωb + jωbω
∗

c

)
ilj, ∀j ∈ N, k ∈ Kj (5)
ljk ljk
3

ith ik and vn being the nodal current and voltage, rjk and ljk being
the resistance and inductance of the line connecting j ∈ N and
k ∈ Kj where Kj ⊂ N is the subset of nodes adjacent to node j.

2.5. Security definition and classification

There is a need for new considerations on the classifica-
tion and definition of the power system stability phenomena
as a result of the increasing share of CIGs into bulk power
systems [5]. The different dynamic behaviour of CIGs compared
to synchronous generators behaviour leads to a mix of new
types of transient phenomena that need to be constantly as-
sessed. As long as the dynamic response to a fault affects only
the CIG and does not cause the cascading instability of the
main system, the conventional definition of power system secu-
rity still applies. The conventional definition of security defines
the ability of an electric power system to withstand sudden
disturbances without major service interruptions in real-time.
However, two new stability classes, i.e. converter-driven stability
and resonance stability, need to be considered as the integration
of power electronics devices scales the timescale of interest
down to electromagnetic transients (Fig. 1). Resonance instabil-
ity occurs when the magnitudes of voltage, current or torque
exceed specific thresholds following the oscillations of periodic
energy exchanges. These instabilities are caused by the resonance
between series compensation and the mechanical torsional fre-
quencies of the turbine-generator shaft (i.e. torsional resonance)
or by the resonance between the series compensation and the
electric characteristics of the generator (i.e. electrical resonance).
Converter-driven instabilities involve a wide range of unstable
frequency oscillations due to cross-couplings of CIG control loops
with both the electromechanical dynamics of machines and the
electromagnetic transients of the network.

The integration of CIGs does not affect the stability definitions
for the existing stability classes, i.e. rotor angle, voltage and
frequency stability. In terms of rotor angle stability, there is no
consensus regarding the effects of CIGs on the small disturbance
rotor angle stability. However, the fast control of such converters
during and after the fault can significantly influence the transient
rotor stability. Regarding voltage stability, the new dynamics of
fast-acting load components, e.g. induction motors, controlled
loads, HVDC links, may represent new potential causes of insta-
bilities. Finally, although CIGs do not provide an inertial response
as they are typically associated with renewable sources, they can
provide fast primary frequency response, and this is crucial in LI
systems in which fast controllers are needed to arrest frequency
drops and keep the system’s frequency within the acceptable
range at all times.

3. ML-based security rules for LI systems

This section investigates the impact of increasing the share
of CIGs on conventional ML-based approaches for DSA. The four
steps of these approaches are shown in Fig. 4, i.e. data generation,
data pre-processing, model learning and model validation [11].
The following investigates these steps one by one with regards to
past HI-based assumptions that may be outdated in LI systems.

3.1. Data generation

In conventional data-driven DSA workflows, database genera-
tion is the pivotal first step that lays a foundation for training a
good quality model, and it is usually performed offline, starting
from a list of possible OCs. The final database is a collection
of these OCs that serve as pre-fault states, together with their
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Fig. 4. ML-based workflow for DSA [11].
espective post-fault security status after a contingency. In gen-
rating the pre-fault states, a combination of possible load levels
nd generator parameters are matched by solving the optimal
ower flow. In situations where historical data is insufficient,
he loads are sampled from a multivariate normal distribution
hat assumes some correlation between the loads [13,14]. In the
uture, power systems with high renewable sources integration
hallenge this status quo with increased uncertainty. Firstly, there
s a need to consider more ‘‘rare’’ cases that were previously
gnored. Secondly, the search space that defines the OCs becomes
uch larger than that of current power systems. Current OCs
f a power system are defined by a predefined set of variables,
lso known as features, i.e. currents, active and reactive power
njections, load levels, bus voltages and phase angles. However, in
uture LI systems, the number of features to consider for each OC
s expected to be significantly larger as each CIG will be, in turn,
haracterised by the terminal current/voltage. Therefore, gener-
ting possible OCs becomes more computationally intensive [20].

.2. Data pre-processing

Once the data is generated, the data is typically processed
efore being fed to a learning algorithm. This step becomes neces-
ary in future LI systems to improve the predictive performance,
educe the training time and make the training data more inter-
retable. Many features are necessary to describe the OC of LI
ystems, and thus, the input features are expected to be highly
edundant. Redundancy is one of the leading causes of low predic-
ive performances in ML classifiers. Consequently, considering a
arge set of input features significantly increases the training time,
aking the training computationally infeasible in large systems
ven if done offline. FS supports reducing the training time and
mproves the quality of predictions by selecting the features most
elevant to the given classification target, and hence reducing
he input space [20]. However, some of the most accurate FS
pproaches, i.e. wrapper methods and embedded methods, are
ery time-consuming. Therefore, their performance on the large
nput spaces of future OCs should be further investigated. Con-
ersely, filter methods are another class of FS approaches based
n statistical tests, which are fast even on large input spaces but
enerally result in low predictive performance [26].

.3. Model learning

The high complexity of the dynamics of LI systems could be
ne of the leading causes of the low predictive performance of
L-based models for DSA. The dynamics of synchronous gener-
tors, CIGs and transmission lines have significant differences in
he time constants. Training a single classifier for such different
imescales could result in very low accuracies. A classifier that
orks for short timescales, such as converters, may not work
n much longer timescales such as turbines. Therefore, different
odels for each generator/converter insecurity pattern may be
4

required to improve the predictive performance in a real-time
setting. Clustering the different dynamics following the clearing
of a fault and then training a different classifier for each clus-
ter of dynamics could be a potential solution to overcome this
challenge [21]. Since DTs have been proven to be suitable for real-
time DSA purposes, multiple DTs may be used for these clusters
of dynamics.

3.4. Model validation and real-time assessment

The increasing uncertainty in future power system opera-
tions resulting from the integration of renewable sources will
significantly impact the quality of prediction of the ML-based
models for DSA. In the traditional two-stages workflow of these
approaches, the time distance between the offline and real-time
stages compromises the performance of the offline trained clas-
sifier as the real-time OCs may be very different from those
included in the training database. In such an uncertain scenario,
training the classifier on immediate-future states or periodically
updating the classifier may overcome the challenge of frequent
changes in the distributions of the OCS [18,19,21]. However, these
updates are computationally challenging as they are carried out in
the real-time environment to minimise as much as possible the
discrepancies between offline and real-time OCs. Therefore, the
retraining or updating of the model with new data acquisition
needs to be very fast [17].

4. Case study

This section studies the impact of lowering the inertia on ML-
based DSA. ML-based workflows for DSA were designed in HI
systems and may not be valid anymore in LI systems. This case
study aims at demonstrating this impact on each step individually
in the ML-workflow (i.e. data generation, data pre-processing, and
model learning/validation). Subsequently, this study analyses the
individual findings to provide insights on whether past research
in ML-based DSA needs to be revisited or can be assumed as
granted for LI systems and if the findings and assumptions also
transfer to larger systems, such as to the IEEE 68-bus system.

The tested HI and LI systems had different assumptions. The
tested HI systems were the original IEEE 14-bus [27] and IEEE
68-bus systems [28]. In these two HI systems, the dynamics were
governed exclusively by synchronous generation and only static
transmission lines. The tested LI systems were modifications of
the IEEE 14 and 68-bus systems, where all the static transmission
lines were replaced by dynamic lines, except the faulted line, and
the 40% and 25% of thermal generation was replaced by CIGs
in the IEEE-14 bus and IEEE-68 bus systems, respectively. The
considered CIGs (the model in Section 2.1) were wind farms of
similar power rating to the replaced synchronous generators. The
wind farm model is a static generator connected to the network
through the inverter model shown in Fig. 5 [29,30]. The control
of power systems assumed an inner current control loop and an
outer voltage control loop. The two systems were modelled in
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Fig. 5. The block diagram of the grid-supporting inverter of wind farm models [29].
ulia 1.6.2 with the packages PowerSystems.jl [30], PowerSimula-
ionsDynamics.jl [29]. Most of the defaults settings of the inverters
or the LI system were used. The damping constant and the
requency droop gain of the outer controller were reduced by 99%
o assume faster controls in the future and to study the impact of
he faster controls with lower inertia on future system security.

The training data included |Ω| = 10,000 pre-fault OCs and
orresponding post-fault security labels for each of the HI and
I test systems. The pre-fault OCs considered different sampled
etpoints for active and reactive power injections. The active load
etpoints were sampled from a multivariate Gaussian distribution
ith a Pearson’s’ correlation coefficient c = 0.75. The method
f inverse transformation was used to convert to a marginal
umaraswamy distribution, where a = 1.6, b = 2.8 are distri-

bution shape parameters. Then, the active load setpoints were
scaled to be within ±25% and ±10% of the nominal values for
the 14 and 68 bus system, respectively. The reactive powers fol-
lowed the active powers proportionally as constant impedances
were assumed. The AC power flow was then computed with
the Newton–Raphson algorithm to obtain pre-fault OCs power
generation. The solution to the AC power flow provides the full
pre-fault variables Xi for each OC i ∈ Ω , where the variables are
active and reactive power generations, active and reactive power
loads and voltages magnitudes and phase angles. The post-fault
security label considered the transient security for 3 different
three-phase faults k on line 2–3 (Fault 1), 3–4 (Fault 2), and 2–5
(Fault 3) for the 14 bus system (Fig. 6) and for a fault on line
31–38 for the 68 bus system (Fig. 7) with each a clearance time
of 0.6 s. The fault on line 2–3 for the 14 bus system was used for
the following studies unless indicated otherwise. If within 10 s
simulation time after the fault, all differences between each two
phase angles of the generators were less than 180°, than the OC
i was considered transient secure Yi,k = 1, otherwise insecure
Yi,k = 0 and with that, the security label was computed. These
transient simulations were modelled with the same packages
PowerSystems.jl and PowerSimulationsDynamics.jl. The simulations
were solved with the IDA package from Sundials solvers [31].
These simulations were performed twice, evaluating the security
labels for the two systems, the HI and LI systems. The pre-fault OC
and post-fault labels built the different databases for evaluating
the impact on the ML workflow for DSA. All simulations were
carried on a standard machine with six cores and 16 GB RAM.

The ML-methods studied included different FS methods as
Minimum Redundancy Maximum Relevance (MRMR),
Correlation-based Feature Selection (CFS), Joint Mutual Informa-
tion (JMI), Support Vector Machine Recursive Feature Elimination
5

Fig. 6. The IEEE 14-bus system with three-phase faults on lines 2–3, 2–5 and
3–4.

(SVM-RFE), Sequential Forward Selection (SFS) and different ML
models, as Decision Trees (DTs), SVMs, XGBOOST, feed-forward
Artificial Neural Networks (ANNs). A linear kernel for the SVM,
50 estimators for the XGBoost and 3 layers with 30, 15 and 5
neurons for the ANN, were used. Across the studies, 5 different
combinations of training/testing sets were computed for each
classification model. DTs were used to measure the classification
performance unless indicated otherwise. The F1-score was most
of the time used to assess classification performance as this score
penalises the false negative and false positive. The false negatives
have the highest cost in power system DSA (as false negatives
can result in partial power blackouts in the worst case). For the
fault on line 2–3, 9000 OCs were used for training with a split
of 70%/30% for training/testing and the remaining 1000 OCs for
validation. For the other faults, 600 OCs were used for training
with a split of 70%/30% for training/testing and the remaining
100 OCs for validation.

4.1. Differences in generating data for HI and for LI systems

This study focuses on the differences between an HI and
an LI system when generating ML training data. The study fo-
cuses on three parts as a good training database for ML-based
DSA (i) avoids redundancy in the data e.g., balanced shares of
secure/insecure data, (ii) is easily separable (e.g., by a binary
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Fig. 7. The IEEE 68-bus system with three-phase fault on line 31–38.

lassifier), and (iii) is small while containing high levels of infor-
ation.
The analysis (i) investigated the redundancy in the database.

he share of secure/insecure OCs was a metric to investigate
his redundancy, e.g., if all OCs in the database are secure, an
L model cannot learn a security rule for classifications. Fig. 8
hows the share of secure OCs N+

N++N− in the HI and LI system for
the same feature P1

Q1
active/reactive power generator level. Each

point in the figure represents an average of secure OCs over 200
OCs with similar Pi

Qi
values. The share of secure OCs decreased

with increasing power generation in the two systems. However,
the decrease in the LI system was much steeper and quickly
converges to almost no secure OCs. This analysis showed that LI
systems must be improved to keep the security as high as in HI
systems (the tested LI system was not optimised for security), and
the steep decrease showed the importance of optimising power
generations to ensure the system’s security.

The analysis (ii) investigated the separability of the data. Fig. 9
shows the distributions of secure and insecure OCs for the two
systems, HI and LI, according to two generator power levels
(active and reactive). A key finding was that the data is more
separable in the LI system than in the HI system, e.g., even a linear
function could separate secure from insecure OCs in the LI system,
however, the security boundary (that is the function separating
the secure from insecure OCs) seemed highly non-linear in the
HI system (at least in these two features). The high non-linearity
of the input data in the HI system suggested that in such a
system (i) more training features than in the LI system would be
needed to obtain similar accuracy performance, (ii) the depen-
dence between system security and changes in power generations
is not as strong as in LI systems. In LI systems, small changes
in the generation make the system highly secure/insecure and
this dependence results in a clearly defined boundary. Fig. 9 is
zoomed in to better show the separating boundary between the
secure/insecure OCs. When zooming out, some rare OCs (clearly
separated from the others) can be noticed in both systems. Their
number was reduced by 40% in the LI system compared to the HI
system.

The analysis (iii) investigated the information per data (effi-
ciency of database) in two methods: the first method was to train
classifiers for the two systems with varying training database
sizes, figuring out the classifiers with the same predictive per-
formance, and the second method was to analyse the informa-
tion content of the two databases for LI and HI systems. In the
6

Fig. 8. Share of secure OCs with increasing load levels for HI and LI systems.

first method, DTs were trained for the two systems for different
sizes of training database Ω then their F1-score performances
were analysed. Fig. 10 shows that the F1-score performance in-
creased in the two systems. However, the F1-score was signif-
icantly higher in the LI system, which is related to the easier
separability as pointed out in analysis (ii) and Fig. 9. The low
DT performance in the HI system is related to the small test
system size as in small systems, faults may result in very complex
transients, which may be difficult to predict. These low numbers
of around ∼ 80% were also found for the IEEE-68 bus system
Section 4.4, and in the literature, e.g., [17]. Additionally, the
LI system classifier was very robust against reductions of the
training database varying only around 2% compared to 20% in
the HI system. In the second method, the mutual information
I was computed to study the information content of the two
training databases with the same size for HI and LI systems. The
mutual information I between feature subsets and target Y and
a summary of the two analyses, (i–ii) are in Table 1. The higher
information in features Xi about the target Y resulted in higher
classification performance in the LI system. The accuracy and
F1-score were higher in LI than in HI systems, respectively by
23%, and 39%. The findings of high classification performance, the
improved separability of security/insecurity in LI systems, seem
promising for a key role of ML for future real-time DSA.

4.2. Selecting features in LI systems

This study focuses on the differences between a HI and a LI
system when pre-processing data to select features, the second
step in ML-based workflows for DSA. Effective pre-processing
of data reduces redundancy, enhances classification performance
and reduces the training computational times. The past research
on HI systems showed two findings: (i) the active and reactive
power levels of generators are effective features for DSA, and
(ii) typically, the wrapper and embedded FS methods have the
highest performance for offline applications, and the filter FS
methods are the fastest and hence best for real-time applications.
The following two analyses investigate whether the same findings
hold for LI systems.

The analysis (i) investigates the importance of the feature
subsets power generations, power loads, voltage magnitudes and
phase angles. This analysis used two metrics, the F1-score of
a trained DT and the mutual information I(X; Y ). The analysis
restricts the training data X to the corresponding feature subset.
In other words, the subset providing the highest F1-score and
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Fig. 9. Secure and insecure OCs are less separable in (a) HI systems than in (b) LI systems.
Fig. 10. Prediction performance for different training database sizes.

Table 1
Performance metrics of training database.

N+

N++N− I(X; Y ) Accuracy F1-score

HI system 0.7 2.1 75.3% 59.2%
LI system 0.2 10.4 97.8% 98.5%

mutual information are the best features. This analysis was un-
dertaken for the LI and HI systems, and the results in Table 2
show that the subset of power generations was the best feature
subset in both systems. E.g., in the HI system, the F1-score is
20 % higher when choosing power generation as features than
when choosing other features. This finding is aligned with Fig. 9
which showed power generation as a strong indicator for system
security in LI systems. However, in LI systems, voltage phase
angles show to provide significantly higher mutual information,
and this is also confirmed in the literature, as voltage phase angles
have conditional correlation properties allowing to capture the
system’s topology, and hence more relevant information for the
security [32].

The analysis (ii) investigates whether the same FS methods
re the best in LI systems as in HI systems, where the different
S methods select the best features out of all available features.
or each different FS method, a DT was trained on the selected
eatures. Then, the DT classification performance was compared
o identify the best FS method for the LI system and for the HI
7

system. The compared FS methods were MRMR, CFS JMI as filter
method, SVM-RFE as embedded methods, and SFS as wrapper
methods. The results in Table 3 show that the embedded method
SVM-RFE and the wrapper method SFS had the highest F1-scores
in the LI and HI systems, respectively. The analysis showed that
SFS selected power generation and voltage phase angles feature
as the mutual information values and F1-scores were high (Ta-
ble 2). Similarly, SVM-RFE selected most features from voltage
phase angles according to the high mutual information value as
in Table 2. However, SVM-RFE also selected features from power
generation and loads as they improved the accuracy.

These two analyses showed that the conclusions made in
the past that corresponded to data pre-processing in ML-based
workflows remain valid in the future LI systems: wrapper and
embedded approaches typically result in the highest classification
performance.

4.3. Training ML models for LI and HI systems

This study aims at investigating whether the classification
models recommended for HI systems will still be high-performing
in future LI systems. The best ML model and the criteria to
select the best model highly depend on the type of problem
and application. In the following criteria finding a good trade-off
between interpretability of the model and accuracy (F1-score) of
the model was studied as an example [33]. The models studied
were DTs, SVM, XGBoost, and feed-forward ANN and the training
considered all the 60 available input features. Cross-validation
was used to tune the hyper-parameters of the models.

The results in Table 4 show that ANN outperforms the other
models in LI and HI systems in terms of the F1-score. E.g., ANN
outperforms SVM by around 8 % and 2 %, in HI and LI systems,
respectively. The performance however of all models improved
from HI to LI systems which were caused by the higher sepa-
rability in LI systems as discussed earlier with Fig. 9. However,
the values in the HI system are generally lower than what has
been reported in the literature which is caused by the hard DSA
classification problem at hand. The system security is represented
by a highly non-linear security boundary and it seemed challeng-
ing to predicting for these selected faults with little training data
and high load variability. Interestingly, the DTs showed high F1-
score accuracy in LI systems of up to 98.5%. Additionally, DTs
were promising regarding the selecting criteria of the trade-off to
interpretability, as DTs offer higher levels of interpretability over
ANN models. Other criteria can be selected in different applica-
tions, e.g. accuracy performance is prioritised in energy and load
forecasting applications where ANN can be preferable [34,35].



F. Bellizio, A.-A.B. Bugaje, J.L. Cremer et al. Sustainable Energy, Grids and Networks 30 (2022) 100656

f
y
d
i

f
t
T
b
c
T
t
p
a
p
b
s

d
f
T
T
t
o
6
t
L

S
t

Table 2
F1-score (of trained DTs) and mutual information I for different feature subsets.

Power
generation

Power
loads

Voltage
angles

Voltage
magnitudes

HI system F1-score
I(X; Y )

64.9%
0.5

46.3%
0.5

43.2%
0.6

42.6%
0.5

LI system F1-score
I(X; Y )

98.5%
1.7

97.2%
2.4

93.4%
4.7

95.8%
1.6
Table 3
F1-scores of different FS methods for training DTs.

CFS MRMR JMI SVM-RFE SFS

HI system 52.1% 60.4% 60.5% 62.0% 64.5%
LI system 98.2% 98.2% 98.5% 98.8% 98.7%

Table 4
F1-score with different classification models.

DT SVM Xgboost ANN

HI system 59.2% 55.4% 62.9% 63.1%
LI system 98.5% 97.2% 98.5% 99.1%

Table 5
Performance metrics for different faults.

N+

N++N− I(X; Y ) Accuracy F1-score

HI system Fault 2
Fault 3

0.7
0.7

2.1
2.1

70.2%
72.5%

47.5%
49.5%

LI system Fault 2
Fault 3

0.6
0.5

11.9
14.3

93%
92%

94.1%
94.2%

4.4. Larger LI systems and other faults

This study aims to generalise the previous studies to other
aults (analysis i) and larger HI and LI systems (analysis ii). Anal-
sis (i) investigated the 14-bus system with faults on two ad-
itional lines 3–4 (Fault 2) and 2–5 (Fault 3), and analysis (ii)
nvestigated a fault on the IEEE 68-bus system.

The analysis (i) investigated whether the same conclusions
or data generation, feature selection and model training (Sec-
ions 4.1–4.3) were drawn for other faults in the 14-bus system.
he results in Table 5 show that the same conclusions can indeed
e found for these faults. The LI system experienced more inse-
ure OCs than the HI system as a result of the reduced inertia.
he training features Xi had an information content about the
arget Y 10 times higher in the LI system resulting in an enhanced
redictive performance with improvements of ∼ 20% in the
ccuracy and ∼ 45% in the F1-score. Again, the higher accuracy
erformance in the LI System resulted from the linear separating
oundaries making the classification task much easier in the LI
ystem than in the HI system.
The analysis (ii) investigated whether the same conclusions for

ata generation, feature selection and model training count also
or a larger system, e.g. the IEEE 68-bus system. The results in
able 6 show that, indeed, most of the conclusions are the same.
he share of secure OCs decreased by around 80% from the HI
o the LI system. One difference is that the information content
f the database was similar in the LI 68-bus system and the HI
8-bus system, and also the DT accuracy was similar. However,
he F1-score performance was around ∼ 20% higher in HI than in
I systems.
These two analyses showed that most conclusions drawn in

ection 4 for the overall workflow (Sections 4.1–4.3) generalise

o different faults and on a large system.

8

Table 6
Performance metrics for a larger system.

N+

N++N− I(X; Y ) Accuracy F1-score

HI system 0.9 8.2 91.5% 77.1%
LI system 0.1 8.5 89.6% 94.5%

4.5. Discussion

The key finding of this work is that using ML for real-time DSA
becomes even more promising in LI systems as it was already in
HI systems. It is known that LI systems result in lower system
security (when not optimised), but this paper’s key insight is that
the prediction of security (and learning of it by ML) becomes
easier in LI systems. Additional findings of this work are the fol-
lowing differences (and similarities) when learning an ML model
for a HI and a LI system:

1. When generating data, more OCs in LI systems may be
insecure as the inertia is lower and dynamic couplings may
occur.

2. The wrapper and embedded FS methods perform well in
both LI and HI systems. Power levels are valuable features
to assess future system security as lowered inertia results
in a stronger dependence of system security to changes in
power generations.

3. ML can easier learn the classification boundary in LI
systems than in HI systems which results in strong im-
provements of security predictions. The reason for this
improvement is that LI systems may have clear (e.g. linear)
separating boundaries between secure/insecure OCs.

4. Wrapper methods for FS (such as SFS) result in the highest
predictive performance, above all in HI systems. Therefore,
they can be preferred when there are no limitations on
computational resources, for example in the offline stage.
Otherwise, a filter method such as JMI may be preferred.

5. ANNs result in the highest predictive performance in both
LI and HI systems. However, DTs have a higher perfor-
mance in LI than in HI systems, and hence are promising
as DTs are more interpretable than ANNs.

This paper and its case study were designed for a typical ML-
based workflow for DSA that corresponds to the majority of ML
for DSA approaches from the literature. However, there may be
other ML-based DSA approaches that use completely different
workflows. For these workflows, the conclusions of this work are
likely to correspond to as well as they relate to the underlying
changes of the stability phenomena and how this changes the
training data, however, this cannot directly be concluded from
this work.

A limitation of this work is that the model and design of the
LI system were not optimised. In contrast to some commercial
software packages such as DSA Tools or PSS/E, the CIG model used
in this work cannot differentiate between the types of generation
behind or consider the weather conditions [36]. Advanced fre-
quency modes and whether these influence the dynamics were
not studied, and this paper is limited to the dynamic model used.
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The analysis of advanced dynamic models and their impact on
the overall system is an interesting analysis to conduct in the
context of ML-based DSA aiming at predicting system security.
This work, however, provided only the first step towards more
sophisticated studies on ML-based real-time DSA for lower inertia
power systems.

5. Conclusion

This paper aims at investigating whether findings from past
esearch on Machine Learning approaches for DSA are still valid
hen moving from high to low inertia systems. ML is promising

or real-time DSA as it can predict instantaneously the security,
hich becomes even more important in low inertia systems
ith shorter dynamic timescales. This paper describes the full
ynamical model of future low inertia systems, including the
ynamics of CIGs, loads, lines and synchronous generators. Then,
his paper investigates the effect of these new dynamics on the
esign of ML-based approaches for real-time DSA. This design was
uccessively optimised over the last decades but unfortunately
nly studied on high inertia systems. The studies on LI and HI IEEE
4 and 68-bus systems demonstrated the increased promising
ole of ML approaches in future ML-based DSA for LI systems.
he predictive accuracies of these approaches improved by up to
0% and 20% for the 14 and 68 systems, respectively. ANNs and
Ts show accuracies close to ∼ 99%. In the future, LI systems
ust be optimised for higher security, and regular updating of

est systems is needed to develop future real-time DSA methods
nd tools.
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