
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

WALL-EYE: Taking a
look at CubeSat
security
Security analysis of CubeSats on a physical testbed

Wouter Jehee

WALL-EYE: Taking a
look at CubeSat

security
Security analysis of CubeSats on a physical

testbed

by

Wouter Jehee

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Friday August 23, 2024 at 13:00

Student number: 4953355

Project duration: December 6, 2023 – August 23, 2024

Thesis committee: Prof. G. Smaragdakis, TU Delft, Thesis advisor

A. Voulimeneas, TU Delft, Daily supervisor

G. Iosifidis, TU Delft

Y. Roiron, European Space Agency

A. Atlasis, European Space Agency

Cover: Hubble mosaic of the majestic Sombrero Galaxy by ESA/Hubble

under CC BY-NC 4.0

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

With the rise of new space, space missions are becoming increasingly more accessible. This is caused by

the increased use of commercial-off-the-shelf components as well as the possibility of having multiple

parties operating on a single satellite platform.

This development combined with a new attitude towards the security of these systems has exposed

some flaws in current designs. These concerns are in the lack of defense-in-depth measures on board

the satellite and the fully trusted nature of the internal bus.

In this thesis we perform a high-level risk analysis for CubeSat missions and map them to the SPACE-

SHIELD framework. We then implement several mitigations based on the identified risks, with a focus

on less explored research areas. The performance of the mitigations is then evaluated in order to test

their viability for use in the industry.

We provide a simulator setup for testing and evaluating the mitigations. In order to improve the security

of CubeSats we ran several fuzzing campaigns, which have led to the discovery of potentially vulnerable

sections of code. Furthermore, we implemented mitigations to achieve network segmentation and

end-to-end security on the internal bus of the device. The authenticated encryption scheme implemented

for end-to-end security uses the NIST standard for lightweight cryptography known as Ascon. The

measurements show that our reference implementation of this AEAD scheme has an overhead of 15%

for message payload sizes of 200 bytes. Lastly, we contribute to several entries in the SPACE-SHIELD

framework which were lacking before.

i

Contents

Abstract i

Nomenclature iii

1 Introduction 1

2 Background 3
2.1 Space environment . 3

2.2 CubeSats . 6

2.3 Related work . 7

3 Methodology 9
3.1 Overview . 9

3.2 Threat sources . 10

3.3 Risk register . 11

4 Experimental setup 16
4.1 Physical test bed . 16

4.2 Simulating the lab setup . 18

5 Mitigations 19
5.1 Mitigations during development . 19

5.1.1 Fuzzing . 19

5.2 Mitigations during the operational phase . 20

5.2.1 Security gateway . 21

5.2.2 Authenticated encryption . 22

6 Results 25
6.1 Fuzzing . 25

6.2 Performance evaluation of authenticated encryption . 26

7 Discussion 29
7.1 Implementation hurdles . 29

7.2 Limitations . 30

8 Conclusion 31
8.1 Future work . 32

References 33

A Software versions 36

ii

Nomenclature

Abbreviations
Abbreviation Definition

ADCS Attitude Determination and Control System

AFL American Fuzzy Lop

OBC On Board Computer

CAN Controller Area Network

CCSDS Consultative Committee for Space Data Systems

C-I-A Confidentiality, Integrity, Availability

COTS Commercial-off-the-shelf

CPS Cyber Physical System

CSP Cubesat Space Protocol

GS Ground Segment

IT Information Technology

SDLS Space Data Link Security (protocol)

SPP Space Packet Protocol

SS Space Segment

TC Telecommand

TM Telemetry

TT&C Telemetry, Tracking and Command

iii

1
Introduction

Deploying to space is becoming more accessible than ever, with the shift to using Commercial-off-the-

shelf (COTS) products instead of custom components, the greater prevalence of open-source software in

these components and the decreased cost of launching satellites into space. This has led to a significant

increase in the number of devices launched into- and operating in space [1]. This trend change in the

industry, referred to as "New Space" [2], has made security research into the space industry much more

accessible in contract to the past [3]

Devices in space are Cyber Physical Systems (CPS), which have historically been considered inherently

secure due to general their lack of connectivity [4], leaving security as an afterthought. With the new

developments and transition to New Space, potential vulnerabilities have been identified in older

systems [4]. The shift towards New Space brings along a different attitude towards security, namely

defense-in-depth [2]. The principle of defense-in-depth is that security must be considered at multiple

different layers, such that if one part of the system fails, other measures still protect the system. For the

older systems, there has mostly been a single point of failure, which is the security of the link between

the spacecraft and the ground station.

Another more recent development are hosted payloads, where third-parties can bring custom hardware

on board of another satellite. Examples of hosted payloads include the European Data Relay System

hosted on a commercial telecom satellites and a classified US payload on a Norwegian satellite. Satellite-

as-a-Service (SaaS) models, which allow third-parties to run their own experiments on the platform of

other satellites. This is very financially attractive [5] since not everyone needs to own their own satellite.

This approach also brings along it’s fair share of security risks [6], as there is a lack of understanding on

the security of payloads and the internal connection to other components [7]. In order to verify the

security of the hosted code, extensive testing needs to be done, unless another approach is used.

A zero trust architecture on board the satellite accounts for the fact that hosted payloads and/or

programs might be malicious by not trusting them from the start. Such a model reduces the need for

an extensive security analysis on the components of the third-parties involved, but it does require a

significant change in the design. Research on internal security has been done in automotive [8] [9], but

not for the space sector.

A large portion of new space missions use smaller satellites such as CubeSats. CubeSats might be small,

but they have important roles in crucial projects such as communication infrastructure [10] [11] and

reconnaissance [12]. Therefore, security is critical for CubeSats and must be considered when designing

a system [13]. Although there have been security analyses on CubeSats, none have done an applied

security analysis on real hardware.

1

2

In the past, standardization has been limited with regards to the security of space systems [14]. Several

initiatives in the industry are trying to change this. One such example is the Space Attacks and

Countermeasures Engineering Shield (SPACE-SHIELD) [15], a knowledge base for cyber threats and

mitigations for space systems. The SPACE-SHIELD framework is still relatively new however, so many

techniques are not yet documented in detail or at all.

Due to the previous factors, this research aims to answer the following main research question, by

answering the 4 defined subquestions.

How to establish a methodology to manage the security of CubeSats?

• What attack vectors are CubeSats vulnerable to?

• How can we create an environment for doing applied security testing?

• Which SPACE-SHIELD mitigations can we apply to improve security?

• How can we improve the SPACE-SHIELD framework?

The rest of this thesis is structured as follows. Chapter 2 will provide background information on the

space industry, CubeSats specifically and general security practices. Chapter 3 contains the risk analysis

and how it relates to the SPACE-SHIELD framework. Chapter 4 describes details about the physical and

simulated testing environment. Chapter 5 explains the mitigations and their implementation. Chapter 6

shows the results of the security testing and includes a performance analysis of one of the implemented

mitigations. Chapter 7 discusses the results and limitations of the study. Chapter 8 concludes this thesis

and suggests topics for future research.

2
Background

This section provides background information about some of the core technologies used for the space

sector and for CubeSats specifically. It also discusses the security of these technologies as well as any

related work.

2.1. Space environment
Operations in space usually consist of three main elements, as can be seen in Figure 2.1. The Space

Segment (SS) includes all of the assets in space, it listens for TeleCommands (TC) and sends out TeleMetry

(TM). The Ground Segment (GS) is a station on the ground that sends TC and receives TM. The user

segment is the third segment, it provides some kind of service and is therefore optional, since not all

satellite missions provide a service directly to users (such as Earth observation missions). The last

important thing to consider is the communication between these segments (the TC and TM), which we

call the link segment, even though it is not an actual (set of) device(s). Communication over the link

segment is usually done over Radio Frequency (RF), although there have been developments in using

optical communication for Inter-Satellite Links (OISL) [16].

Figure 2.1: Overview of different segments in satellite operations [3].

Architecture
A Reference Architecture (RA) can be used to provide a better understanding of complex systems. RAs

can be used at various stages of development, e.g. to define the requirements of a system but also to

identify weaknesses in the design. For a cybersecurity analysis, the functional and communication

viewpoints are the most critical [17]. The functional viewpoint defines what components perform which

tasks, whereas the communication viewpoint describes how the components inter-operate.

3

2.1. Space environment 4

One of the outputs of the Space AVionics Open Interface aRchitecture is an example of such a reference

architecture for space systems. The SAVOIR initiative aims to: "federate the space avionics community

and to work together in order to improve the way that the European Space community builds avionics

sub-systems" [18]. The avionics reference architecture, as described by SAVOIR, can be seen in Figure

2.2.

Figure 2.2: SAVOIR functional avionics reference architecture [18]

This reference architecture specifies which functional components are necessary in most space systems

and how these components interact with each other, thus combining the functional and communication

viewpoints. Physical components in the final design may fulfill the tasks of multiple functional

components.

Spacecraft operate in a very hostile environment, this is not only a problem in and of itself, but it also

makes them very hard to service in case something does go wrong. In the diagram one can see that some

operations have redundancy built in, this allows the spacecraft to continue operating that component in

case of failure. As such most spacecraft are at least one failure tolerant.

We generally refer to the main components required for the operation of the satellite as the platform.

The payload modules are mission specific components such as sensors, this distinction can also been in

Figure 2.2. The payload modules make use of the power and communication of the satellite, but operate

independently from it [5]. Such payloads can be owned by the developer of the satellite, but also by

third-parties. Bringing along a module on board of an existing platform is known as hosting. This way

the third party does not have to have it’s own satellite, but can make use of an already existing platform.

Payload computers on board newer satellites take this even further, by operating on a multi-tenant

model, which allows multiple third parties to access a single payload computer and it’s mission specific

equipment. In the multi-tenant model, a single payload supports multiple entities, either through

virtualization or some other kind of memory isolation [6].

2.1. Space environment 5

Computers on board of satellites have a wide range of capabilities, some devices are very constrained

whilst others support fully fledged desktop operating systems. We classify the software running on

these (embedded) systems into 3 classes [19]:

• Type 1: General purpose operating systems (e.g. Linux)

• Type 2: Embedded / real-time operating systems (e.g. FreeRTOS)

• Type 3: Monolithic / bare-metal systems

Protocols
In the space sector, several protocols are defined by the CCSDS to be used for the link between the

ground- and space segment. An overview of the different recommended space communication protocols

can be seen in Figure 2.3.

Figure 2.3: Overview of space protocols [20]

For the security of the link, the SDLS standard [21] and it’s extended procedures are used [22]. An

overview of how security is applied to the protocols can be seen in Figure 2.4.

2.2. CubeSats 6

Figure 2.4: Security of CCSDS protocols [23]

Once on the satellite, information also has to flow to the right place inside of the satellite, since the

final design of a satellite often has multiple physical components that together achieve all the required

functionality. These components need to be able to communicate with each other in order to operate.

For this internal communication, satellites can use various different technologies, such as 𝑖2𝑐, CAN,

UART, MIL-STD-1553, Time-Triggered Ethernet (TTE), etc. Many satellites use a single bus to connect

all the components on board, as this is often the simplest and cheapest solution.

One such bus is CAN, it is used in both the automotive industry [24] as well as in space [25]. CAN is a

simple broadcast-based, message-oriented protocol meant for efficient communication. Broadcast-based

protocols are of particular interest when considering security, since there practically is none, any

component can listen in on all communication and can send arbitrary messages [4].

It is also possible to connect internal components using point-to-point based protocols, such as SpaceWire

[26] and it’s successor SpaceFibre [27]. This approach might mitigate some of the security concerns with

broadcast based protocols, but has it’s own drawbacks.

2.2. CubeSats
CubeSats [2] are part of a class of satellites called nanosatellites. Nanosatellites come in sizes ranging

from 1U to 12U (1U or unit, is 10 × 10 × 10 cm) and are currently the most prevalent class of satellites [3].

They are often used by universities and research institutes because of their relatively low cost.

Their small size obviously limits the amount and size and size of components that can be integrated,

this in turn also limits their computation power. Many CubeSats use a CAN bus for communication

between internal components.

2.3. Related work 7

A diagram showing SAVOIR applied to cubesats [28] can be seen in Figure 2.5. Each color in the diagram

on the left side is mapped to a component in the table on the right, the functional components within

this color are fulfilled by the component on the right, the names of these components are also listed in

the table.

Figure 2.5: SAVOIR functional reference architecture for CubeSats [28]

CubeSats most commonly use either the Space Packet Protocol (SPP) or Cubesat Space Protocol (CSP)

[10]. Since CubeSats have limited resources, a lightweight communication protocol such as CSP [29] is

preferred. The goal of CSP is to provide developers with a similar protocol to TCP/IP, but with less over-

head. The CSP stack also provides some high-level functionality for debugging, allowing users to ping

nodes, peek into memory, etc. CSP provides optional encryption and authentication implementations

using XTEA and HMAC-SHA1 respectively, which are both known to have cryptographic weaknesses

[2]. XTEA has been removed in the newest versions of CSP, but since devices using this technology are

not trivial to update, there might still be devices in operation using these features.

CubeSats generally use type 2 software such as FreeRTOS [30] or ZephyrOS [31], but bare-metal systems

are also used. There is also a more recent development to use more type 1 software, such as fully-fledged

Linux operating systems [32], which consume more resources but are also more flexible.

2.3. Related work
There have been various studies into the assessment and improvement of security for space systems and

CubeSats, we highlight some of those studies here.

In order to assess vulnerabilities, some have made attack tree analyses for attacks on CubeSats [13],

showing different attack paths based on the attackers goals. There also exists a framework for triaging

vulnerabilities for space similar to MITRE ATT&CK, known as SPACE-SHIELD [15].

Fuzzing is a technique for testing software that involves continuously sending randomly generated

inputs to a program in order to test a program [33]. This technique is becoming increasingly popular

to test the security of various devices and protocols. Besides fuzzing there is also symbolic execution,

which looks at which parts of the program are being executed based on the input in order find new

paths more quickly [34]. Researchers have used fuzzing to try and find vulnerabilities in firmware by

simulating the firmware through a process known as rehosting [35]. Other work specifically fuzzed

the firmware of CubeSats using this technique [36]. In order to reduce vulnerabilities, some have tried

porting Rust to space systems, they also fuzzed CSP [37]

2.3. Related work 8

When hosting payloads, it can be beneficial to do sandboxing in order to limit the capabilities of the

payload. This can be done through Virtual Machines (VMs), hypervisors, containers or application

sandboxes [38]. Another method to improve the security of CubeSats is through Trusted Execution

Environments (TEEs), which was looked into by [39].

In automotive there has been research into several methods of securing the internal communication bus

between components in the vehicle:

• Secure communication on CAN bus [40] [8]

• Access control for vehicles [9]

• Several countermeasure similar to an IDS/IPS are suggested in [41]

• Anomaly detection based on packet timing [42]

Since CubeSats have relatively limited resources, some have looked into lightweight cryptography for

communication [43] [44].

3
Methodology

This section discusses the methodology used to perform the security analysis. In order to identify the

most vulnerable parts of the system, we analyzed the risks associated with a CubeSat space mission,

following the risk analysis framework of the European Space Agency (ESA).

3.1. Overview
This risk analysis focuses on a generic CubeSat architecture, classifying the risks that are possible on

such as a system. Any mission specific risks are considered out of scope, such as the threats to the

Ground Segment (GS) and the supply chain procedures that happen before the launch. The link between

the Space Segment (SS) and GS is taken into account however.

We consider the following four factors for security:

• Confidentiality (C): The importance of this factor is very much dependent on the nature of the

mission.

• Integrity (I): The most critical for maintaining control over the satellite, also affects reputation if

compromised.

• Availability (A): Not the most important factor to consider as the device can run autonomously for

a limited time.

• Non-repudiation: Importance depends on the mission and the entities it will communicate with.

The specifics of the mission must define how this is handled. This factor is thus not studied in

depth in this thesis.

The following are the objectives we consider in the risk analysis:

• General objectives:

– Protect ESA member states investments in space

– Protect ESA & member states reputation, image & interests

– Provide secure space systems, developed in a secure environment

• Mission specific objectives:

– Ensure confidentiality of the mission data (limited time) and status of the space segment

– Preserve integrity of the mission data

– Maintain control over the on board components (OBC, payload, etc.)

9

3.2. Threat sources 10

Metrics
For us to prioritize the risks, we need metrics for how likely something is to happen and how severe the

consequences are if they do. These metrics are the likelihood and severity, which are defined below.

• Rare: < 1% probability

• Unlikely: 1-5% probability

• Possible: 5-10% probability

• Likely: 10-50% probability

• Very likely: > 50% probability

In Table 3.1, we define the impact of the various severity levels on the technology and security of the

system. The technology of the system refers to how well the device is able carry out it’s mission.

Severity Technology Security

Low

The impact is minimal, with little to no effect on the

exploration, science, or technological objectives. This severity

level suggests that the risk is so minor that it could almost be ignored.

The flaw, even if exploited, would have an insignificant

impact on the system. The security breach would be minor

and easily contained, with no substantial effect on the mission.

Low/medium

The impact would cause minor degradation of the exploration or science value,

affecting specific, non-critical parts of the project.

The severity here suggests that while there is an impact,

it is limited and does not threaten the overall success of the mission.

The flaw, if exploited, would have a limited impact on the system, causing

minor security issues that are unlikely to significantly affect the overall mission.

The damage would be contained and manageable.

Medium

The impact would cause a noticeable degradation of the exploration

or science value on a few instruments or technological aspects.

While not crippling, the severity is significant enough to cause

concern and warrant focused mitigation efforts.

The flaw, if exploited, would result in moderate damage to the system,

affecting its functionality or security in specific areas.

The impact is concerning but manageable.

Medium/high

The impact would lead to a significant degradation of the science

or technology value across most instruments or units.

The severity here indicates that while the project could continue,

its objectives would be severely compromised.

The flaw, if exploited, would cause major damage, leading to a

significant security breach that could severely affect the system’s integrity.

This impact is considerable and could jeopardize large parts of the mission.

High

The impact would be catastrophic, causing a failure to achieve the exploration,

science, or technology objectives.

This severity level represents the maximum possible harm, where the

risk could critically undermine the entire project or mission if it materializes.

The flaw, if exploited, would cause severe and irreparable damage

significantly compromising the entire system or mission.

This level of severity means that the impact on security would

be devastating, even if the flaw could be corrected.

Table 3.1: Severity levels for different factors

In Table 3.2, we classify the risk levels based on the likelihood and severity of an incident occuring.

Likelyhood / Severity Very low Low Medium High Very High
Rare Very low Very low Very low Low Low

Unlikely Very low Very low Low Low Medium

Possible Very low Low Low Medium High

Likely Low Low Medium High Very high

Very likely Low Medium High Very high Very high

Table 3.2: Risk level based on likelihood and severity

Lastly, we consider the following possible treatments for each risk:

• Mitigate: reduce likelihood and/or impact of the risk until acceptable

• Avoid: eliminate the cause of the risk, by either stopping the activity all together or a fundamental

change in the activity that completely avoids this risk

• Transfer: transfer the risk to a third party

• Accept: accept the consequences of a risk if they happen, do not provide any additional mitigations

• Out-of-scope: out-of-scope for this research, not (fully) analyzed

3.2. Threat sources
Threat sources can be grouped into multiple categories [45], namely adversarial-, insider-, environmental-

and structural sources. Given the scope of this research is focused on the security domain and not safety,

we will only be considering adversarial and insider sources, these will be referred to as threat actors

from now on.

3.3. Risk register 11

Threat actors can again be grouped according to multiple criteria. The four major types of threat actors

described by [46] are:

• States seeking strategic advantage

• "Organized criminal efforts for financial gain"

• "Terrorist groups seeking recognition"

• "Individual hackers proving their skill"

These threat actors are a good start, but only adversarial sources and not insider sources are included,

we therefore add insider threats as well. Threat actors can also be subdivided into three groups, those

being: individuals, groups and organizations [17], we include this categorization in our list of threat

actors. The threat model used in this case is based on the ESA standard for space missions, the threat

actors we consider can be seen in Table 3.3. In the case we divide the threat actors between inside and

outside threats (insider and adversarial sources).

Threat actor Type Internal/External Objective
Public Group External Defeat

Hacker/script kiddie Individual External Defeat

Disgruntled employee Individual Internal Resist

Hacktivist/hacking group Group External Resist

Insider helping other Group Internal Deter

Foreign espionage Organization External Deter

Unfunded terrorist Individual External Deter

State sponsored Group External Deter

Nation state Organization External Deter → Accept

Table 3.3: Overview of threat actors considered

3.3. Risk register
The risk register shows the identified risks and how they fit into the analysis, Table 3.4 shows an overview

with the area (broad category), relevant threat actors and assets, as well as the severity, likelihood

and treatment for that risk. The subsections after are divided per area and provide a mapping to the

SPACE-SHIELD [15] framework as well as a more detailed explanation for each of the risks.

Risk ID Area Threat Actors Assets CIA Severity Likelihood Treatment

1 Design & Development

Cyber criminal

Insider threat

Design CI Medium/High Possible Out-of-scope

2 Ground Segment

Cyber criminal

Hacktivist group

Insider Threat

Ground Segment CIA Medium/High Likely Out-of-scope

3 Supply Chain, Testing & Validation

Cyber Criminal

Insider Threat

Design

Space Segment

I Medium/High Rare Out-of-scope

4 On Board Processing & Storage

Cyber Criminal

Insider Threat

Mission Data

Space Segment

IA Medium Rare Mitigate

5 On Board Processing & Storage

Cyber Criminal

Insider Threat

Mission Data

Space Segment

IA Medium Rare Mitigate

6 On Board Processing & Storage

Cyber Criminal

Insider Threat

Mission Data

Space Segment

CIA Medium Rare Mitigate

7 TT&C, Payload communication

Cyber criminal

Hacktivist group

Insider Threat

Space Segment I Medium Rare Mitigate

8 TT&C, Payload communication

Cyber criminal

Hacktivist group

Insider Threat

Telecommands (TC)

Telemetry (TM)

C Low Unlikely Mitigate

9 TT&C, Payload communication

Cyber criminal

Hacktivist group

Insider Threat

Space Segment A Low/Medium Unlikely Accept

Table 3.4: Risk register

3.3. Risk register 12

Design & Development (risk 1)
Reconnaissance Resource development Defense evasion Discovery

Gather Victim Mission Information

Gather Victim Org Information

Phishing for Information

Develop/obtain Capabilities Impair Defences

Key Management Policy

Spacecraft Components

System Services

Trust Relationships

Table 3.5: SPACE-SHIELD mappings for risk 1

In design and development, confidentiality is affected when there is leakage of information about the

design specification. This can occur by an insider threat leaking the information (on accident or on

purpose), or by exfiltration by a cybercriminal. The leaked information can include information about

the mission and the organization, but also specifics about the hardware and protocols being used. Based

on the specifics of the design, a threat actor can also develop capabilities to attack the system at another

time.

Integrity of the design can be affected if the threat actor alters the design beyond the original intention.

This falls under the develop/obtain capabilities technique, as well as the impair defenses technique,

since faults can be introduced that can be exploited later.

Risks related to the design and development are considered out of scope for this thesis because this is

specific to the project and not a general CubeSat mission.

Ground segment (risk 2)

Reconnaissance Resource development Initial access
Gather victim mission information

Gather victim org information

Phishing for information

Compromise infrastructure

Compromise account

Ground segment compromise

Valid credentials

Table 3.6: SPACE-SHIELD mappings for risk 2

Compromising the ground segment can have quite severe consequences. The attacker can use it to get

initial access on a satellite, but also steal credentials for later use. Any compromised infrastructure and

accounts can also be used for further exploitation, affecting the integrity of the system. Besides stealing

credentials, the attacker is also able to retrieve information about the mission and organization, affecting

confidentiality. Lastly, a cyber attack on the ground segment (such as a ransomware attack) can also

cause a loss of availability, as the systems can no longer be operated.

We do not look into risks for the ground segment in more detail because the ground segment is more

similar to a regular IT system, and thus not the main object of this study.

3.3. Risk register 13

Supply chain, testing & validation (risk 3)
Initial Access Persistence Impact

Supply Chain Compromise Backdoor installation

Data Manipulation

Permanent / temporary loss to Telecommand Satellite

Resource damage

Resource Hĳacking

Saturation/exhaustion of Spacecraft Resources

Service stop

Table 3.7: SPACE-SHIELD mappings for risk 3

This risk includes unintended or malicious alterations made to the device in the pre-launch phase [47]

(during assembly, transport, etc.), which can result in failure or vulnerabilities at a later stage of the

integration process. These modifications directly affect the integrity of the system. This can include

modification of software (on board software modification), installing malicious hardware components

(hardware trojans), etc.

In this study we do not investigate these risks as they are project specific.

On board processing & storage
Risk 4

Execution Credential Access Discovery
Modification of on board control procedures

Native API

Payload exploitation to execute commands

Adversary in the middle

Spacecraft components

System services

Lateral Movement Collection Impact

Lateral movement via common avionics bus

Compromise the satellite platform starting from a compromised Payload

Compromise a payload Starting from the main satellite platform

Adversary in the middle

Temporary loss to telecommand satellite

Saturation/exhaustion of spacecraft resources

Resource hĳacking

Service stop

Table 3.8: SPACE-SHIELD mappings for risk 4

This risk refers to corruption of an OBC or payload through a malicious software update or patch,

known as a post launch supply-chain attack [47]. This allows an adversary to install malicious software

on one of the on board computers, affecting the integrity of the system. It can impact availability as well,

as the original software can be overwritten, potentially locking out authorized parties.

This risk is considered rare as it requires a high level of understanding of the hardware target and

update procedures. It also requires that the attacker has either compromised the link segment or already

has a foothold in the space segment.

Risk 5
Execution Credential Access Discovery

Modification of on board control procedures

Native API

Payload exploitation to execute commands

Adversary in the middle

Spacecraft components

System services

Lateral Movement Collection Impact

Lateral movement via common avionics bus

Compromise the satellite platform starting from a compromised Payload

Compromise a payload Starting from the main satellite platform

Adversary in the middle

Temporary loss to telecommand satellite

Saturation/exhaustion of spacecraft resources

Resource hĳacking

Service stop

Table 3.9: SPACE-SHIELD mappings for risk 5

This risk refers to flaws in the OBC (software) allowing attackers to execute arbitrary code. This leads to

loss of integrity as the original software is overwritten. Availability is also easy to affect if arbitrary code

execution is possible. The flaw could also be limited to only crashing the OBC, which would only cause

a loss of availability.

3.3. Risk register 14

On board data handling (risk 6)
Execution Credential Access Discovery

Modification of on board control procedures

Native API

Payload exploitation to execute commands

Adversary in the middle

Spacecraft components

System services

Lateral Movement Collection Impact
Lateral movement via common avionics bus

Compromise the satellite platform starting from a compromised Payload

Compromise a payload Starting from the main satellite platform

Adversary in the middle

Temporary loss to telecommand satellite

Saturation/exhaustion of spacecraft resources

Data manipulation

Table 3.10: SPACE-SHIELD mappings for risk 6

This risk refers to a malicious hosted payload or third-party software module affecting the operation

of the device. The adversary can trivially flood the internal bus with data, exhausting the satellites

resources as well as blocking communication between other components [48]. Loading malicious

software is not a breach of integrity by itself, since the third-party was already allowed to load custom

software / hardware on board. However, the adversary has a direct foothold in the system and can use

the internal bus to talk to the other components

The bus has a broadcast structure, meaning any component can spy on all messages exchanged on the

bus [40], affecting confidentiality if the attacker is able to communicate back. The adversary can also

send malicious bus messages to command critical systems [49]. If mitigations are in place to prevent

direct commands, flaws in the on board data handling could still allow the attacker to move laterally.

TT&C, payload communication
For risks in this category, we consider threat actors listening in on and tampering with the link segment.

As discussed earlier, communication is almost always done over RF, so the threat actors must have the

appropriate equipment.

Risk 7

Reconnaissance Initial Access Credential Access

Active scanning (RF/Optical)

Direct attack to space communication links

Trusted relationship

Valid credentials

Brute force

Command and control Impact X
Protocol tunnelling

Telecommand a spacecraft

TT&C over ISL

Loss of spacecraft telecommanding

Permanent loss to telecommand satellite

Resource hĳacking

X

Table 3.11: SPACE-SHIELD mappings for risk 7

In this risk scenario, an unauthorized party is able to control the during it’s operational phase or during

the Launch & Early Orbit Phase (LEOP). This can be done through a vulnerability in the system or by

using valid credentials. These credentials could be stolen during an earlier attack, brute forced or a

trusted relationship with another device.

These risks result in either a full compromise of the system (i.e. hĳack attack) or the ability for the threat

actor to telecommand the satellite, compromising the integrity of the system.

3.3. Risk register 15

Risk 8

Reconnaissance Credential Access Discovery Collection

Passive interception (RF/optical) Communication Link Sniffing

Key management policy discovery

Spacecraft’s components discovery

System service discovery

Data from link eavesdropping

Table 3.12: SPACE-SHIELD mappings for risk 8

This risk considers the risk of an unauthorized party receiving and decoding telemetry/telecommand

data. This affects confidentiality as the adversary is able to read incoming and outgoing data. Telemetry

data is generally considered more impactful for confidentiality, but that also depends on the mission.

Telecommand data is not particularly interesting in and of itself, but it is relevant for reconnaissance

purposes. This kind of data can give insight into which services and components are available on the

device, which can be relevant for further attacks and techniques.

Risk 9

Impact
Ground segment jamming

Spacecraft jamming

Saturation of inter satellite links

Transmitted data manipulation

Table 3.13: SPACE-SHIELD mappings for risk 9

This risk is about denial of service attacks on the communication with the spacecraft. By overwhelming

the link segment, the device can not send TM or receive TC commands, this affects the availability of the

device. The spacecraft can operate autonomously for some period of time, which decreases the impact

of such loss of availability.

4
Experimental setup

This section describes the physical testbed as well as the simulated setup we used to perform all the

tests. The simulated setup was used to perform the initial testing for each of the mitigations. Whereas

the physical test bed was used to verify the mitigations.

4.1. Physical test bed
For this research, access was granted to a lab version of a CubeSat, known as a Flatsat, a picture of the

Flatsat can be seen in Figure 4.1. The Flatsat is basically a folded out version of the normal compact

form. This allows for easy access to all the components for testing purposes.

This particular Flatsat (Flatsat-P3) has 12 slots for components, which are divided into two halves with 6

components each. As can be seen in Figure 4.1, only one half of the FlatSat is in use, the most relevant

installed components are:

• 2 OBC-P3 modules

• ADCS computer (Cortex M7)

• Power Conditioning and Distribution Unit (PCDU)

• Reaction wheel

In Figure 4.2 one can see how these components are connected.

16

4.1. Physical test bed 17

Figure 4.1: Picture of the test bed

OBC 1

OBC 2

ADCS PCDU

Reaction wheel Solar charger

TT&CGround Segment

Space Segment

Figure 4.2: Diagram showing the components of the physical testbed and how they are connected

The specifications of the on board computers (OBC-P3) on the testbed are as follows:

• ARM Cortex-M7

• 384 kB SRAM

• 64 GB eMMC storage

• 32 kB FRAM memory

• 2 MB flash memory

The firmware for the OBC runs on hardware specifically designed for the space environment, it is an

application built on top of FreeRTOS [30]. The communication stack used on the FlatSat is CSP [29],

which transmits over CAN to the other components in the system. It also uses a library known as

libparam [50], which is a library to manage settings on the system at runtime. For C standard library

functionality, the setup uses picolibc [51]. An overview of the software and the versions used can be

seen in Table A.1.

4.2. Simulating the lab setup 18

4.2. Simulating the lab setup
Even though the lab setup is meant for easier testing than on a normal CubeSat, there are still some

limitations with testing. In order to test things, the firmware of the device needs to be flashed with the

new code every time, this is a somewhat time-consuming process. Furthermore, it’s quite hard to access

logs and crash information on embedded devices. Lastly, in order to interact with the system we have to

send messages over a physical medium, causing latency which in turn makes testing slower.

In order to do this, we had to remove some hardware specific code and change out some libraries that

were used in the physical setup [52]. To simulate the OBC code, we needed to upgrade the FreeRTOS

version to be able to simulate it on POSIX (and Windows / MAC) systems [30]. A list of all major

software packages and their versions can be found in Table A.1 in Appendix A In order to enable

networking capabilities on the host machine, we use the FreeRTOS extension FreeRTOS-Plus-TCP which

in turn uses libslirp [53] for network access.

In Figure 4.3 one can see the setup for simulating the environment of the physical test bed, each OBC

node is a FreeRTOS simulator. We only simulate on board computers in this setup, but any component

could be simulated in this environment. The internal communication between the nodes is done via

ZMQ with a central proxy which broadcasts all the messages to all nodes, just like CAN is used on

the physical testbed (Figure 4.2). The external node represents any communication coming from the

outside, this can be done through any medium implemented by the bridge node, the simplest protocol

was UDP so this was used.

ZMQ proxy

OBC 1 OBC 2

Bridge

External

Space Segment

Figure 4.3: Diagram showing how the test bed is simulated

5
Mitigations

In this chapter, we consider different mitigations for the risks identified in the risk analysis and classify

them as per the SPACE-SHIELD framework. The mitigations are divided into two sections. Section 5.1

introduces mitigations for during the development phase. Whilst Section 5.2 discusses mitigations that

are used in the operational phase.

Because the mitigations related to link security are already considered state of the art by researchers, we

wanted to focus on the identified risks not covered by the literature.

Table 5.1 shows a general overview of which tactics are relevant for each implemented mitigation, which

techniques it aims mitigate, and which SPACE-SHIELD mitigations it covers. Lastly, it shows which

risks identified in the previous section it helps to mitigate.

Mitigation Tactics Techniques Mitigations Phase Risks
Fuzzing Resource development Develop/obtain capabilities Fuzzing/testing Development 5, 7

Security gateway

Lateral movement

Collection

Exfiltration

Lateral movement via common avionics bus

Compromise the satellite platform starting from a compromised payload

Compromise a payload starting from the main satellite platform

Adversary in the middle

Exfiltration over payload channel

Exfiltration over TM channel

Side-channel exfiltration

Network segmentation

Filter network traffic

Defense-in-depth

Access control (application of least priviledge principle)

Operational 6, 9

Authenticated encryption

Discovery

Lateral movement

Collection

Exfiltration

Spacecraft’s Components Discovery

System Service Discovery

Lateral movement via common avionics bus

Compromise the satellite platform starting from a compromised payload

Compromise a payload starting from the main satellite platform

Adversary in the middle

Exfiltration over payload channel

Exfiltration over TM channel

Side-channel exfiltration

Authenticated encryption

CCSDS SDLS sequence numbers

On board authentication for executing critical commands

Access control (application of least priviledge principle)

Anti-replay protection

Defense-in-depth

Operational 4, 6

Table 5.1: Implemented mitigations’ mapping to SPACE-SHIELD tactics, techniques and mitigations

5.1. Mitigations during development
This section describes a mitigation that can be applied during the development stages of a mission.

Mitigations at this step in the process help with identifying vulnerabilities before the operational phase.

5.1.1. Fuzzing
Fuzz testing (fuzzing) allows developers to detect flaws in the system during the development stage. In

SPACE-SHIELD this would fall under the software vulnerabilities and space protocol vulnerabilities

sub-techniques of develop/obtain capabilities. We run the fuzzer on two different versions of CSP and

libparam in order to test both the version currently being used on the FlatSat, as well as a newer version.

We originally considered directly fuzzing the physical testbed, but there are some difficulties with this

approach. The way the devices are setup makes it hard to retrieve logs and other information as soon as

the device crashes. That is because the device has four flash slots which can contain programs; as soon

as a program crashes, the device will load the next slot in line, overwriting the memory of the previous

run. That is why we perform fuzzing on the simulated version of the OBC instead.

19

5.2. Mitigations during the operational phase 20

For fuzzing, we use AFL++ [54] as well as it’s CMPLOG/Redqueen [34] extension. Since the fuzzing

target is a networked program we need a way for AFL to send packets. Preeny [55] is library that can be

preloaded to change socket operations such that STDIN and STDOUT can be used as network input and

output. Preeny is the most realistic in terms of results, any crashes will crash the program again since

they directly emulate being sent on the network.

When fuzzing, a vulnerability might be present but might not always cause a crash in the program.

That is why sanitizers exists, they detect behavior that can lead to exploitation and crash the program.

Several fuzzing sanitizers are listed below:

• Address sanitizer: detects use-after-free, buffer overflows, and other memory corruption vulnera-

bilities.

• Memory sanitizer: detects uninitialized memory accesses.

• Undefined behavoir sanitizer: detects undefined behavior as specified by C and C++ standards.

• Control flow integrity sanitizer: detects illegal control flow.

• Thread sanitizer: detects race conditions when working with multiple threads.

AFL requires example inputs to be provided in order to start it’s fuzzing procedure, in order to create

sample inputs, we use CSH [56]. CSH is a command line utility that can be used to interact with devices

using CSP, we capture the packets sent for several commonly used commands as the initial examples.

Initial experiments using this technique turned out to be quite slow, so in the end we modified some of

the code to inject packets directly into the program. This combined with switching to AFL’s persistent

mode, which fuzzes the target multiple times in one process, instead of only sending one packet to a

freshly started program. Both of these techniques combined resulted in a 20x speed up in the fuzzing

execution speed. We also slightly modified part of CSP in order to decrease the amount of packets

discarded by checks such as CRC, HMAC, etc.

After each fuzzing campaign, we minimize the crash input using AFL’s test case minimizer in order to

find the simplest case that crashes the program. This makes it easier to identify any problems in the

code.

5.2. Mitigations during the operational phase
This section describes a set of issues in the operational phase that we developed a mitigations for.

For the internal communication on board the satellite, a broadcast-based network (such as CAN) is

used. The most glaring issue with broadcast-based networks is the fact that every node connected to the

network can read any message sent on the network. The second issue is spoofing, which is explained in

Figure 5.1 below.

In the examples below we consider a network with four nodes. There are two OBC’s as well as two

payload computers. However, one of the payload computers is controlled by a malicious actor. This can

be through an earlier exploitation of the module or because they were one of the third-parties allowed

on the satellite platform.

5.2. Mitigations during the operational phase 21

OBC 1

OBC 2

Payload

Malicious Payload

Allowed Request

OBC 1

OBC 2

Payload

Malicious Payload

Reply

OBC 1

OBC 2

Payload

Malicious Payload

Denied Request

OBC 1

OBC 2

Payload

Malicious Payload

No reply

OBC 1

OBC 2

Payload

Malicious Payload

Spoofed Request

OBC 1

OBC 2

Payload

Malicious Payload

Reply

Figure 5.1: Example of spoofing on a broadcast based network

Figure 5.1 shows an example where a threat actor controlling a payload computer wishes to operate

OBC 1, but OBC 1 only accepts requests from OBC 2. The malicious actor can send a CSP packet with

the node ID set to OBC 2, this way OBC 1 will reply to message as normal. The malicious payload is

also able to read the response that OBC 1 sends as a reply to the request.

This problem is (partially) solved by both of the mitigations listed below.

5.2.1. Security gateway
One possible solution to the above issues is a security gateway or firewall. The firewall acts as a form of

access control by filtering out messages it deems not allowed. This filtering can be a simple rule based

system, but also arbitrarily complex. Of course we have limited computation resources on such a device,

so the filtering system should not be too computationally expensive.

5.2. Mitigations during the operational phase 22

Since CAN is a broadcast network, the firewall will only have effect on the boundaries between networks.

These segments can be separate buses inside the system, but can also be used to filter packets coming

from outside the device going in and vice-versa. We can not limit what nodes send to each other on one

side of the network and we can not distinguish between devices in a single network. Thus if the gateway

forwards traffic to the network with a malicious node, that node can still read the messages sent. The

gateway only prevents the malicious node from seeing messages on the other side of the gateway.

In Figure 5.2 the gateway sits between two separate networks. The gateway can enforce rules on

the boundaries between these two networks. Given the spoofing capability, each network should be

considered it’s own node when creating rules, since any node can pretend to be another node on their

network. In the example, the gateway can stop a spoofed message from the malicious node, because

it knows which nodes are on which side of the network, thus recognizing it as a spoofed message.

However, the normal payload computer is not able to differentiate messages coming from the malicious

payload and coming from the gateway (a separate network). This means that the malicious actor can

pretend to send a message from the other side of the gateway (pretending to be one of the OBC’s) to

command the payload module.

OBC 1

OBC 2

Payload

Malicious Payload

Gateway

Allowed Request

OBC 1

OBC 2

Payload

Malicious Payload

Gateway

Reply

OBC 1

OBC 2

Payload

Malicious Payload

Gateway

Spoofed Request

Intended path

OBC 1

OBC 2

Payload

Malicious Payload

Gateway

Figure 5.2: Security gateway example

The countermeasure allows the developer to e.g. only allow communication from one side of the network

(OBC 1 + 2) to the other (Payload + malicious payload) or only allow certain types of messages (only

pings, etc.). This way the developer/designer can isolate critical components from being affected by

certain nodes, in case they are compromised. This technique can be good to limit access to a set of simple

components that don’t have to capability to process expensive authentication/encryption schemes.

5.2.2. Authenticated encryption
As discussed in previously, messages on a broadcast-based network such as CAN can be read by any

node and nodes can easily spoof messages. An authenticated encryption is another solution to this

problem.

5.2. Mitigations during the operational phase 23

Encryption prevents nodes from listening in on the communication of other nodes. While we use

authentication to verify that a message is actually send by the node that it claims to be sent by. In order

to prevent replay attacks, we use a counter in the message so that duplicate message are not processed.

With AEAD, the contents of all messages sent on the network are encrypted and thus can not be read by

any node except the intended recipient. Among the associated data in the packet, is the node ID, which

will be authenticated. Based on the node id, the recipient can verify the signature in the message and

verify that the sender has the associated node ID, if this is not the case, the message is known to be

spoofed and can be dropped.

This approach is more comprehensive in terms of the security it provides and also more flexible, since

access control rules can be defined on a node level compared to the networks in the security gateway

approach.

Implementation details
For this proof of concept implementation we assume pre-shared symmetric keys between each component

that is communicating. The cryptographic operations were implemented using Ascon [57]. Ascon is the

new NIST standard for lightweight cryptography, we use the Ascon-128 variant.

This implementation [52] proposes a header similar to IPSEC/SDLS as recommended in [23]. We use 1

byte for the SPI, which is used to differentiate the use of different encryption keys, algorithms and other

rules [21], in case the underlying algorithm is ever changed for example. We use counter mode for the

cypher, so we also add a three byte sequence number to the additional data. That combined with the 16

byte authentication header, we end up with a 20 byte header.

Ascon-128 uses a 64 bit (8 bytes) block size, the Initialization Vector (IV) needs to be the same size. The

IV consists of a static part of five bytes and a counter (sequence number) which is three bytes. The

sequence number gets incremented with every message sent. For every encryption, an internal block

counter also gets increased, but this is part of the underlying implementation of Ascon.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Prio Source Destination

Destination

port

Source port Reserved

H

M

A

C

X

T

E

A

R

D

P

C

R

C

Figure 5.3: CSP version 1 header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Prio Source Destination

Destination

port

Source port

Re

se

rv

ed

H

M

A

C

X

T

E

A

R

D

P

C

R

C

Figure 5.4: CSP version 2 header

In order to achieve the spoofing protection, we also need to authenticate the CSP header, such that the

source address (node identifier) can not be changed. An overview of the AEAD scheme can be seen

in Figure 5.5. Figures 5.3 and 5.4 show versions 1 and 2 of the CSP header respectively, we apply a

mask to the CSP header to authenticate only the required fields. In the proposed scheme, we include

all fields except for the priority field and Cyclic Redundancy Check (CRC) flag bit, in the code the

mask can be configured however. The CSP header, the SPI and the sequence number are the associated

data, the payload of the packet is encrypted and then both are used to produce the authentication

tag. Our implementation does this step where CSP would normally to XTEA encryption and HMAC

authentication, afterwards a CRC code is calculated an appended.

5.2. Mitigations during the operational phase 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Authentication mask

00 29*1 0 8*1 24*0

CSP v1 header Flags

p src dst sport dport res hx r c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Security header

SPI Sequence number

IV (64 bits)

Static IV Counter

Frame data Key

Ascon-128

CSP + security header Encrypted data MAC

64 bits Payload size 128 bits

Bit-wise AND

Sequence number

Plaintext

Initialization Vector

Additional data

Key

Ciphertext

MAC

Figure 5.5: Overview of the AEAD construction

6
Results

The performance implications of these countermeasures is also measured on the real hardware setup in

the lab to show how viable they are in a real scenario.

6.1. Fuzzing
In Table 6.1 and Table 6.2, one can see the results of the different fuzzing campaigns. The tables show

the sanitizer/strategy used, the version of the software under evaluation and the amount of crashes

found during the run. Each of the fuzzing campaigns was run for 2 hours, this was deemed sufficient as

no new paths were found for a while before stopping the run. Table 6.1 shows the results of the old

versions of the software and Table 6.2 uses the newer versions. Table A.1 in Appendix A shows the

exact versions of the software in use.

Technique CSP Header Version Crashes
Address Sanitizer v1 91

CMPlog v1 165

Address Sanitizer v2 110

CMPlog v2 146

Table 6.1: Fuzzing results for old versions

Technique CSP Header Version Crashes
Address Sanitizer v1 249

CMPlog v1 1057

Address Sanitizer v2 247

CMPlog v2 3909

Table 6.2: Fuzzing results for newer versions

25

6.2. Performance evaluation of authenticated encryption 26

Libparam findings
The results in this section were found on both version libparam.

During fuzzing, a lot of crashes were caused by memory leaks. During the investigation we found that

most of these crashes were found when libparam was interacting with MPack, one of the underlying

dependencies that is used to manage serialization in the MessagePack format [58]. After further

investigation, we were not able to identify any security risks with this implementation.

To null terminate string parameters in libparam, a null byte is copied at the end. Because of this, we can

leak one byte of memory if the string is already at maximum size because we copy one byte more. The

place in the code where this happens can be seen Figure 6.1 This is technically considered an overflow

of memory, but we can not abuse this mechanism as the overflowing byte is not user controlled.

1 """
2 void param_set_string(param_t * param, const char * inbuf, int len) {
3 param_set_data_nocallback(param, inbuf, len);
4 /* Termination */
5 if (param->vmem && param->vmem->write) {
6 param->vmem->write(param->vmem, (uint32_t) (intptr_t) param->addr + len, "", 1);
7 } else {
8 memcpy(param->addr + len , "", 1);
9 }

10 /* Callback */
11 if (param->callback) {
12 param->callback(param, 0);
13 }
14 }

Figure 6.1: Code snippet showing where the memory leak was found

CSP findings
In the CSP library we were unable to find any direct vulnerabilities. We were able to identify a few

issues that are important for developers to do to properly.

The CSP service handlers define some basic behavior can be enabled by the developer. Enabling this

functionality register 2 service handlers that are relevant to consider for security.

The first being the peek and poke functionality, this allows packets to respectively read and modify

memory on the device. Any packet can read confidential information on the device or read undefined

memory (e.g. NULL) which crashes the OBC. Lastly, the poke functionality allows packets to directly

write to memory on the device, allowing malicious actors to do practically anything.

The second issue exists only on the old version of CSP if the developer improperly configures the devices

by using the incorrect API. In the CSP configuration structure, there are several fields that must be set,

namely: hostname, model and revision. If one of these is not set, sending an ident (identification) command

to the OBC, it will try to read one of these values and cause a segmentation fault. The newer version of

CSP fixes this issue by initializing these variables with default values.

6.2. Performance evaluation of authenticated encryption
For the measurements we measure the round trip time, that means the procedure takes the following

steps:

1. Encrypt packet

2. Send over CAN

3. Decrypt and verify MAC

4. Encrypt again

5. Send back over CAN

6. Decrypt and verify MAC again

6.2. Performance evaluation of authenticated encryption 27

We measure the time it takes to execute this procedure 200 times. A diagram explaining this procedure

in more detail can be seen in Figure 6.2

Figure 6.2: Diagram showing how the measurements were taken

We take the measurements this way because we want to enable others to think about the possibility of

integrating this, which requires a relevant metric for the actual latency of receiving a reply to a message.

We measure the times of sending regular CSP packets as a baseline, we compare this to doing the full

AEAD on the packet as specified earlier, as well as sending messages with additional bytes to simulate

the header. We do this in order to see how much of the overhead is just for the computation of Ascon

and how much is due to the increased size of the packet.

For both the full AEAD and the dummy security header, we test 3 different schemes

1. 16 bytes: just the authentication tag

2. 20 bytes: authentication tag + 4 bytes of additional data (the proposed scheme for the mitigation)

3. 32 bytes: authentication tag + 16 bytes of additional data

6.2. Performance evaluation of authenticated encryption 28

The results of these experiments can be found in Table 6.3, the times are in milliseconds. In Figure 6.3

one can see the overhead in % compared to not having a header.

MSG Length No header Dummy header 16 Dummy header 20 Dummy header 32 Ascon 16 Ascon 20 Ascon 32
50 bytes 530 650 660 760 680 690 790

100 bytes 910 1030 1080 1150 1070 1120 1190

150 bytes 1300 1420 1460 1530 1460 1510 1580

200 bytes 1710 1840 1850 1950 1890 1910 2010

Table 6.3: Overhead in ms for 200 messages

Figure 6.3: Overhead % for different header sizes

7
Discussion

This section discusses the results of the research and considerations on which mitigations of should be

applied to space systems.

Fuzzing applications and especially protocols and libraries shared between multiple projects is almost

always worth the time. Reducing the chance of initial access on the satellite is key in preventing security

incidents. But it must not be forgotten that bypassing this outer layer is often enough to compromise the

entire systems as all the components are fully trusted. Therefore defense-in-depth mitigations should

be considered all systems.

Packet filtering for incoming and outgoing packets is worth doing on practically all satellites as it is very

low cost to do simple rule based filtering. Including security gateways between buses can be worth

doing on certain systems, but is likely to be expensive as it requires design changes. This perhaps makes

it not very feasible for CubeSats, as they are meant to be affordable devices. It might be more useful to

include on larger satellite systems, as there is usually a higher budget and higher security requirements.

As a defense-in-depth measure, this mitigation is particularly useful for segregating components with

little computational power, as the heavy lifting is done by the gateway component.

The authenticated encryption scheme prevents most of the issues with regards to internal communication

and only requires changes in the software. This makes it a relatively attractive option to integrate, but

the performance overhead of using it is quite significant. Most applications in space are luckily not as

time sensitive as e.g. the automotive industry, so the delay is not as critically important.

Another factor to consider are the conditions in space (i.e., radiation), which can introduce faults (bit

flips, damaged memory) in the on board components. These faults can often be resolved by manually

manipulating memory through peek and poke (direct read and write) instructions. If such a fault would

cause the authentication mechanism to fail, this would prevent authorized parties from fixing potential

issues.

In the end, it really depends on the security requirements whether or not implementing AEAD is worth

doing.

7.1. Implementation hurdles
The Flatsat has proven to be a difficult platform to develop for. There is a microchip on board the

test bed which does not provide full access to the required source code. The developers have made

workarounds through some custom linker scripts and patches. This in and of itself is not a problem, but

it has caused problems for changing underlying dependencies. We failed upgrading CSP, FreeRTOS

and libparam to newer versions on the device and were thus left with the old versions.

29

7.2. Limitations 30

The simulator software relies on a newer version of FreeRTOS for simulation on POSIX. Therefore, we

had to use two different versions of most of the libraries. This required us to port any code we wrote to

the two different platforms. In order to do this, we developed a some compatibility in order to make

this step easier as can be seen in the source code [52].

Fuzzing
Our initial approach to fuzzing using preeny introduced a problem with sending multiple packets in

one fuzzing run. If we are not able to send multiple packets, we can not test any of connection based

parts of the code, as these keep state. Normally, AFL runs the program using the given the input and

then exits. In order to send multiple packets, one needs to split the input using e.g. a magic separator or

the Fuzzed Data Provider (FDP) [59].

Furthermore, preeny limits the amount of different lower level network interfaces we can use. This

required us to switch to the new approach after a lot of trial and error. The new approach (as described

in Section 5.1.1), required us to change the underlying interface every time we wanted to test it. This

cost some time, but in the end was worth it for the performance increase.

7.2. Limitations
Due to the hurdles with the implementation, the fuzzing campaigns were not as extensive as we would

have liked. We would have liked to use more different sanitizers and fuzzing strategies to try and find

vulnerabilities. In our research we also looked only at CSP and libparam, we would have liked to test

some of other libraries and protocols as well. It would have been interesting to also consider the SPP

and to verify CCSDS security standards (SDLS).

The implementation of the AEAD scheme uses the reference implementation for Ascon. This version is

less performant than the optimized version for the specific hardware platform. Using the optimized

version of the code should increase the performance of the implementation, resulting in less overhead.

Due to time constraints we were not able to test this.

8
Conclusion

In summary, this research looked into the security of CubeSats by first analyzing potential risks for

space systems and specifically CubeSats. We related all the risks to the SPACE-SHIELD framework

and contributed to it wherever it was necessary. Based on this analysis, we found a set of potential

vectors for compromising a CubeSat. A set of three mitigations was then implemented to improve the

security by mitigating these attack vectors. These mitigations were implemented and tested on the

custom simulator and later on the physical testbed.

A fuzzing campaign was applied to multiple versions of the CubeSat Space Protocol (CSP) and libparam,

an associated library for managing settings on the CubeSat. This resulted in the discovery of several

bugs in the tested libraries, some of which are relevant for security. These problems were also tested

and verified on the physical testbed.

Two additional countermeasures were proposed for use during the operational phase to try and

improve the security of CubeSats. Namely a security gateway that filters packets on the boundaries

between networks and a lightweight Authenticated Encryption with Associated Data (AEAD) scheme

for protecting the internal communication on the system. The source code of these mitigations is

released on Github [52] for anyone to use. The performance of this AEAD scheme was evaluated in

terms of latency and it showed that the overhead can range from 15-30% depending on the size of the

message.

Lastly, several improvements were made to the SPACE-SHIELD framework in order to increase the

knowledge base on space systems.

31

8.1. Future work 32

8.1. Future work
This research lays the ground work for further security analyses and mitigations to build upon. Some

possible directions for further studies could be:

• Point-to-point based protocols: The FlatSat that was used during this research only had a CAN

bus for internal communication. Future work could look into point-to-point based protocols such

as SpaceWire/SpaceFibre and whether these technologies solve some of the problems discussed

in this thesis.

• Crytography: This thesis only looked into one cryptographic algorithm, e.g. Ascon. We only eval-

uated Ascon’s reference implementation and only used latency as a measure for it’s performance.

Future work could look into other cryptographic algorithms and metrics in order to fully evaluate

which approach is the best.

• Lower level attacks: The implemented mitigation works on a higher layer in the Open Systems

Interconnection (OSI) model, than say CAN. New Research could look into attacks on this level

and whether it is able to bypass the security measures discussed in this thesis.

• Integration with CSP: Our implementation of the AEAD scheme is only a prototype. If one could

integrate our (or a similar) implementation into protocols more tightly in order to create a reference

implementation, that would allow for easier testing and research into the viability of such schemes.

Such an integration should include key management and use modern cryptographic algorithms

and standards.

References

[1] J. R. Kopacz, R. Herschitz, and J. Roney, “Small satellites an overview and assessment,” Acta
Astronautica, vol. 170, pp. 93–105, 2020.

[2] M. Manulis, C. P. Bridges, R. Harrison, V. Sekar, and A. Davis, “Cyber security in new space:

Analysis of threats, key enabling technologies and challenges,” International Journal of Information
Security, vol. 20, pp. 287–311, 2021.

[3] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt, T. Holz, and A. Abbasi, “Space odyssey: An

experimental software security analysis of satellites,” in IEEE Symposium on Security and Privacy,

2023.

[4] J. M. Willis, R. F. Mills, L. O. Mailloux, and S. R. Graham, “Considerations for secure and resilient

satellite architectures,” in 2017 International Conference on Cyber Conflict (CyCon US), IEEE, 2017,

pp. 16–22.

[5] M. Andraschko, J. Antol, S. Horan, and D. Neil, “Commercially hosted government payloads:

Lessons from recent programs,” in 2011 Aerospace Conference, IEEE, 2011, pp. 1–15.

[6] N. Yadav, F. Vollmer, A.-R. Sadeghi, G. Smaragdakis, and A. Voulimeneas, “Orbital shield:

Rethinking satellite security in the commercial off-the-shelf era,” in 2024 Security for Space Systems
(3S), IEEE, 2024, pp. 1–11.

[7] J. G. Oakley, Cybersecurity for Space: Protecting the Final Frontier. Apress, 2020.

[8] Q. Wang and S. Sawhney, “Vecure: A practical security framework to protect the can bus of

vehicles,” in 2014 International Conference on the Internet of Things (IOT), IEEE, 2014, pp. 13–18.

[9] D. Yu, R.-H. Hsu, J. Lee, and S. Lee, “Ec-svc: Secure can bus in-vehicle communications with

fine-grained access control based on edge computing,” IEEE Transactions on Information Forensics
and Security, vol. 17, pp. 1388–1403, 2022.

[10] F. Davoli, C. Kourogiorgas, M. Marchese, A. Panagopoulos, and F. Patrone, “Small satellites

and cubesats: Survey of structures, architectures, and protocols,” International Journal of Satellite
Communications and Networking, vol. 37, no. 4, pp. 343–359, 2019.

[11] L. Mazzarella, C. Lowe, D. Lowndes, et al., “Quarc: Quantum research cubesat—a constellation

for quantum communication,” Cryptography, vol. 4, no. 1, p. 7, 2020.

[12] I. F. Akyildiz and A. Kak, “The internet of space things/cubesats: A ubiquitous cyber-physical

system for the connected world,” Computer Networks, vol. 150, pp. 134–149, 2019.

[13] G. Falco, A. Viswanathan, and A. Santangelo, “Cubesat security attack tree analysis,” in 2021 IEEE
8th International Conference on Space Mission Challenges for Information Technology (SMC-IT), IEEE,

2021, pp. 68–76.

[14] G. Falco, “Cybersecurity principles for space systems,” Journal of Aerospace Information Systems,
vol. 16, no. 2, pp. 61–70, 2019.

[15] ESA SPACE-SHIELD, [Online; accessed 3. May 2024], Jun. 2023. [Online]. Available: https:
//spaceshield.esa.int.

[16] Z. Sodnik, B. Furch, and H. Lutz, “Optical intersatellite communication,” IEEE journal of selected
topics in quantum electronics, vol. 16, no. 5, pp. 1051–1057, 2010.

[17] M. Bradbury, C. Maple, H. Yuan, U. I. Atmaca, and S. Cannizzaro, “Identifying attack surfaces

in the evolving space industry using reference architectures,” in 2020 IEEE Aerospace Conference,
IEEE, 2020, pp. 1–20.

[18] J.-L. Terraillon, SAVOIR, [Online; accessed 10. Jul. 2024], Nov. 2021. [Online]. Available: https:
//savoir.estec.esa.int/SAVOIRMain.htm.

33

https://spaceshield.esa.int
https://spaceshield.esa.int
https://savoir.estec.esa.int/SAVOIRMain.htm
https://savoir.estec.esa.int/SAVOIRMain.htm

References 34

[19] M. Muench, J. Stĳohann, F. Kargl, A. Francillon, and D. Balzarotti, “What you corrupt is not what

you crash: Challenges in fuzzing embedded devices.,” in NDSS, 2018.

[20] Space Link Protocols Working Group (SLS-SLP), CCSDS 130.0-G-4: Overview of Space Communication
Protocols, [Online; accessed 3. Aug. 2024], Apr. 2023. [Online]. Available: https://public.ccsds.
org/Pubs/130x0g4e1.pdf.

[21] Space Data Link Layer Security Working Group (SLS-SEA-DLS), CCSDS 355.0-B-2: Space Data
Link Security Protocol, [Online; accessed 3. Aug. 2024], Aug. 2022. [Online]. Available: https:
//public.ccsds.org/Pubs/355x0b2.pdf.

[22] Space Data Link Layer Security Working Group (SLS-SEA-DLS), CCSDS 355.1-B-1: Space Data
Link Security Protocol - Extended Procedures, [Online; accessed 3. Aug. 2024], Feb. 2020. [Online].

Available: https://public.ccsds.org/Pubs/355x1b1.pdf.

[23] , CCSDS 355.0-G-3: The Application of Security to CCSDS Protocols, [Online; accessed 3. Aug. 2024],

Mar. 2019. [Online]. Available: https://public.ccsds.org/Pubs/350x0g3.pdf.

[24] M. Bozdal, M. Samie, S. Aslam, and I. Jennions, “Evaluation of can bus security challenges,”

Sensors, vol. 20, no. 8, p. 2364, 2020.

[25] C. Plummer, P. Roos, and L. Stagnaro, “Can bus as a spacecraft onboard bus,” in DASIA 2003-Data
Systems In Aerospace, vol. 532, 2003.

[26] S. Parkes and P. Armbruster, “Spacewire: A spacecraft onboard network for real-time communica-

tions,” in 14th IEEE-NPSS Real Time Conference, 2005., IEEE, 2005, pp. 6–10.

[27] ECSS-E-ST-50-11C – SpaceFibre – Very high-speed serial link (15 May 2019) | European Cooperation
for Space Standardization, [Online; accessed 11. Aug. 2024], May 2019. [Online]. Available: https:
//ecss.nl/standard/ecss-e-st-50-11c-spacefibre-very-high-speed-serial-link.

[28] K. Marinis and T. Szewczyk, SAVOIR4Cubesats Workshop, [Online; accessed 6. Aug. 2024], Oct.

2022. [Online]. Available: https://indico.esa.int/event/429/contributions/7545.

[29] libcsp, [Online; accessed 3. May 2024], May 2024. [Online]. Available: https://github.com/
libcsp/libcsp.

[30] FreeRTOS - Market leading RTOS (Real Time Operating System) for embedded systems with Internet
of Things extensions, [Online; accessed 3. May 2024], Dec. 2023. [Online]. Available: https:
//www.freertos.org.

[31] Zephyr Project – A proven RTOS ecosystem, by developers, for developers, [Online; accessed 10. Jul.

2024], Jul. 2024. [Online]. Available: https://www.zephyrproject.org.

[32] H. Leppinen, “Current use of linux in spacecraft flight software,” IEEE Aerospace and Electronic
Systems Magazine, vol. 32, no. 10, pp. 4–13, 2017.

[33] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz testing,” in Proceedings of the
2018 ACM SIGSAC conference on computer and communications security, 2018, pp. 2123–2138.

[34] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “Redqueen: Fuzzing with

input-to-state correspondence.,” in NDSS, vol. 19, 2019, pp. 1–15.

[35] L. Seidel, D. C. Maier, and M. Muench, “Forming faster firmware fuzzers.,” in USENIX Security
Symposium, 2023, pp. 2903–2920.

[36] F. Göhler, “Hacking the stars: A fuzzing based security assessment of cubesat firmware,”

[37] L. Seidel and J. Beier, “Bringing rust to safety-critical systems in space,” in IEEE Security for Space
Systems (3S), May 2024.

[38] G. Marra, U. Planta, P. Wüstenberg, and A. Abbasi, “On the feasibility of cubesats application

sandboxing for space missions,” arXiv preprint arXiv:2404.04127, 2024.

[39] Y. Michalevsky and Y. Winetraub, “Spacetee: Secure and tamper-proof computing in space using

cubesats,” arXiv preprint arXiv:1710.01430, 2017.

[40] A. S. Siddiqui, Y. Gui, J. Plusquellic, and F. Saqib, “Secure communication over canbus,” in

2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, 2017,

pp. 1264–1267.

https://public.ccsds.org/Pubs/130x0g4e1.pdf
https://public.ccsds.org/Pubs/130x0g4e1.pdf
https://public.ccsds.org/Pubs/355x0b2.pdf
https://public.ccsds.org/Pubs/355x0b2.pdf
https://public.ccsds.org/Pubs/355x1b1.pdf
https://public.ccsds.org/Pubs/350x0g3.pdf
https://ecss.nl/standard/ecss-e-st-50-11c-spacefibre-very-high-speed-serial-link
https://ecss.nl/standard/ecss-e-st-50-11c-spacefibre-very-high-speed-serial-link
https://indico.esa.int/event/429/contributions/7545
https://github.com/libcsp/libcsp
https://github.com/libcsp/libcsp
https://www.freertos.org
https://www.freertos.org
https://www.zephyrproject.org

References 35

[41] B. Elend and T. Adamson, “Cyber security enhancing can transceivers,” in Proceedings of the 16th
International CAN Conference, 2017.

[42] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly detection for the automotive

can bus,” in 2015 World Congress on Industrial Control Systems Security (WCICSS), IEEE, 2015,

pp. 45–49.

[43] O. Challa, G. Bhat, and J. Mcnair, “Cubesec and gndsec: A lightweight security solution for cubesat

communications,” 2012.

[44] S. Jackson, J. Straub, and S. Kerlin, “Exploring a novel cryptographic solution for securing small

satellite communications.,” Int. J. Netw. Secur., vol. 20, no. 5, pp. 988–997, 2018.

[45] Systems Architecture Working Group (SEA-SA), CCSDS 350.1-G-3: Security Threats against Space
Missions, [Online; accessed 3. Aug. 2024], Feb. 2022. [Online]. Available: https://public.ccsds.
org/Pubs/355x0b2.pdf.

[46] D. Livingstone and P. Lewis, Space, the Final Frontier for Cybersecurity?. Chatham House. The Royal

Institute of International Affairs, 2016.

[47] K. W. Ingols, “Design for security: Guidelines for efficient, secure small satellite computation,” in

2017 IEEE MTT-S International Microwave Symposium (IMS), IEEE, 2017, pp. 226–228.

[48] K. Tindell, “Can bus security attacks on can bus and their mitigation,” 2020.

[49] J. Pavur and I. Martinovic, “Building a launchpad for satellite cyber-security research: Lessons

from 60 years of spaceflight,” Journal of Cybersecurity, vol. 8, no. 1, tyac008, 2022.

[50] libparam, [Online; accessed 9. Aug. 2024], Aug. 2024. [Online]. Available: https://github.com/
spaceinventor/libparam.

[51] K. Packard, picolibc, [Online; accessed 9. Aug. 2024], Jan. 2024. [Online]. Available: https:
//keithp.com/picolibc.

[52] W. Jehee, Source code for the simulator, [Online; accessed 12. Aug. 2024], Aug. 2024. [Online].

Available: https://github.com/WJehee/thesis.

[53] slirp / libslirp · GitLab, [Online; accessed 10. Jul. 2024], Jul. 2024. [Online]. Available: https:
//gitlab.freedesktop.org/slirp/libslirp.

[54] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining incremental steps of fuzzing

research,” in 14th USENIX Workshop on Offensive Technologies (WOOT 20), USENIX Association,

Aug. 2020.

[55] preeny, [Online; accessed 3. May 2024], May 2024. [Online]. Available: https://github.com/
zardus/preeny.

[56] csh, [Online; accessed 4. Aug. 2024], Aug. 2024. [Online]. Available: https://github.com/
spaceinventor/csh.

[57] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.2: Lightweight authenticated

encryption and hashing,” J. Cryptol., vol. 34, no. 3, p. 33, 2021. doi: 10.1007/S00145-021-09398-9.
[Online]. Available: https://doi.org/10.1007/s00145-021-09398-9.

[58] MessagePack: It’s like JSON. but fast and small. [Online; accessed 16. Aug. 2024], Nov. 2022. [Online].

Available: https://msgpack.org.

[59] The LLVM Compiler Infrastructure Project, [Online; accessed 3. May 2024], May 2024. [Online].

Available: https://llvm.org.

https://public.ccsds.org/Pubs/355x0b2.pdf
https://public.ccsds.org/Pubs/355x0b2.pdf
https://github.com/spaceinventor/libparam
https://github.com/spaceinventor/libparam
https://keithp.com/picolibc
https://keithp.com/picolibc
https://github.com/WJehee/thesis
https://gitlab.freedesktop.org/slirp/libslirp
https://gitlab.freedesktop.org/slirp/libslirp
https://github.com/zardus/preeny
https://github.com/zardus/preeny
https://github.com/spaceinventor/csh
https://github.com/spaceinventor/csh
https://doi.org/10.1007/S00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://msgpack.org
https://llvm.org

A
Software versions

Table A.1 shows the version or truncated commit hash for each of major libraries used in this project.

Some parts of the software did not use a library at all, these cases are represented by N/A (Not

applicable).

Software Physical testbed Simulated
CSP 3ea1722f 91dc8992

FreeRTOS v10.2.0 v11.0.1

FreeRTOS-Plus-TCP N/A v4.0.0

libparam f21a54a9 ab4b5ddd

libslirp N/A 129077f9

picolibc 5ce50345 N/A

Table A.1: Software versions for simulated and physical setup

36

	Abstract
	Nomenclature
	Introduction
	Background
	Space environment
	CubeSats
	Related work

	Methodology
	Overview
	Threat sources
	Risk register

	Experimental setup
	Physical test bed
	Simulating the lab setup

	Mitigations
	Mitigations during development
	Fuzzing

	Mitigations during the operational phase
	Security gateway
	Authenticated encryption

	Results
	Fuzzing
	Performance evaluation of authenticated encryption

	Discussion
	Implementation hurdles
	Limitations

	Conclusion
	Future work

	References
	Software versions

