
Interpretability and performance comparisons of decision tree surrogate models
produced by AGGREVATE

Jonathan Simon Wols
Supervisor(s): Anna Lukina

EEMCS, Delft University of Technology, The Netherlands
j.s.wols@student.tudelft.nl, A.Lukina@tudelft.nl

Abstract

Imitation learning algorithms, such as AGGRE-
VATE, have proven successful in solving many
challenging tasks accurately and efficiently. In
practice, however, they have not been applied quite
as much. Black box policies produced by imita-
tion learning algorithms can not ensure the safety
needed for real-world applications. This paper ex-
tends this field by outputting a decision tree sur-
rogate model from AGGREVATE and comparing it
to other imitation learning algorithms (Behavioral
cloning, GAIL, DAGGER, VIPER) in terms of in-
terpretability as well as performance. A modifica-
tion to AGGREVATE is proposed to train decision
tree policies that can be used to explain individ-
ual decision-making of the model. Three simple
environments of open AI Gym have been used to
compare the multiple different imitation learning
algorithms. The experiments reveal that on perfor-
mance, AGGREVATE overall performs better than
the baseline behavioral cloning but slightly worse
than GAIL, DAGGER and VIPER. AGGREVATE
performs slightly better in terms of interpretabil-
ity on these simple environments. Both of these
conclusions could be explained by the fewer data
points used by AGGREVATE. Further study can
be done into the subjective interpretability of AG-
GREVATE as well as more difficult environments
where the extra exploring of AGGREVATE should
help with finding the best solution.

1 Introduction
Explainable reinforcement learning is the research field ded-
icated to making artificial intelligence processes, in this case
specifically reinforcement learning, more interpretable and
transparent [19]. The reinforcement learning models are of-
ten black boxes with no clear way of explaining what the
thought process of the AI is [10]. The field of explainable re-
inforcement learning tries to solve this by making a surrogate
model, such as a decision tree model or a rule based model,
of the decisions made by the AI [23]. Human engineers can
check if the AI makes the correct steps and conclusions and

can modify the process to improve the overall quality of the
AI processes.

There are multiple examples of machine learning systems
which are used to make critical life-changing decisions. For
example, checking steps would be very beneficial to the natu-
ral science field that has seen an increase in usage of machine
learning but has not been able to use all of its scientific con-
clusions because of the lack of explainability in the black box
process [20]. There are also applications in healthcare, the
military and major engineering breakthroughs, like for exam-
ple self-driving cars [7].

This lack of insight raises both ethical and judicial ques-
tions, leading to an increasing lack of trust in the black box
system [7]. The AIs can not give the desired worst-case
guarantees needed in those systems because their internal
decision-making can not be checked by human engineers.

Explainability in the reinforcement learning field is a
problem worth solving. Many complex reinforcement learn-
ing models are so called ’black boxes’. These models only
return the result, they however do not explain why a decision
was made and on what features of the data set the decision
was based. Making the black box systems interpretable will
increase the trust in the system for all parties involved.

Imitation learning is training a policy with the use of an ex-
pert. The policy will try to imitate the expert to get a reward
as high as possible. Imitation learning is used when demon-
strations are easier to find than to formulate difficult behav-
ior. Some imitation learning algorithms use interactive expert
access to question the expert while training, while other al-
gorithms base their policy on samples provided without inter-
acting with the expert.

In this project, the focus will be on a specific imita-
tion learning method called AGGREVATE[21] and its in-
terpretability in comparison to a Behavioral Cloning base-
line and three other methods investigated by fellow students.
These methods are GAIL [11], DAGGER [22] and VIPER [4].

AGGREVATE is an algorithm based on DAGGER with an
extension focused on extra random steps to explore all pos-
sible paths using the expert behavior. The paper introducing
this algorithm[21] focuses mainly on the implementation of
the algorithm and its analysis. There is however barely any
research into interpretability for this algorithm and its prede-
cessor.

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering



This project will help fill the interpretability gap by
comparing it to different imitation learning algorithms. The
algorithm has been recreated and further modified to produce
a surrogate decision tree model. The model can then be
compared on performance and interpretability to a behavioral
cloning baseline and aforementioned other imitation learning
algorithms.

The main research question is: How do decision tree surro-
gate models produced by the AGGREVATE algorithm com-
pare to a behavioral cloning baseline and other imitation
learning algorithms in terms of interpretability and perfor-
mance? The following sub-questions are used to answer this
question:

Which parameters is the AGGREVATE algorithm sensitive
to? This will provide better insight into how the algorithm
builds up its surrogate model and how the different parame-
ters influence its outcome in terms of performance and inter-
pretability.

On which tasks does AGGREVATE perform better than
the other imitation learning algorithms? This will help to
structure the comparison by checking specific tasks and
therefore getting concrete comparison results.

We present a modification to AGGREVATE to train a deci-
sion tree surrogate model that can be compared in terms of
interpretability and performance in comparison to other deci-
sion tree policies. The differences of the decision tree poli-
cies produced by different algorithms were investigated and
reported. This research concluded that, on the given parame-
ters, AGGREVATE in terms of performance performs slightly
worse on simple environments than the other imitation learn-
ing algorithms but slightly better in comparison to behavioral
cloning. In terms of interpretability, all imitation learning al-
gorithms performed fairly similar but AGGREVATE overall
has smaller decision trees due to the smaller number of data
points. There were still distinct differences in the decision
trees presented from the different algorithms that were dis-
cussed in this paper.

Related work
The paper introducing DAGGER[22] proposes this new
algorithm and verifies it theoretically as well as practically
by comparing its performance to two other iterative machine
learning algorithms. The extension on DAGGER, utilizing
cost of actions while learning, was introduced in the work
of Ross and Bagnell (2014) as AGGREVATE, short for
’Aggregate Values to Imitate’. In that paper AGGREVATE is
presented and theoretically analyzed. There is, however, no
practical comparison to its predecessor or any other compa-
rable imitation learning algorithm. The works on DAGGER
and AGGREVATE do not consider the interpretability of
their algorithms in any way, not theoretical nor practical.
There has been work on another imitation learning algorithm
based on DAGGER that does learn verifiable policies called
VIPER[4]. VIPER outputs decision trees that are verified
on correctness and stability but does not compare them to
any other policies in terms of interpretability. There has
been no practical comparison on AGGREVATE in terms

of performance, nor has it been researched in terms of
interpretability.

The next section focuses on the preliminaries concerning re-
inforcement learning, imitation learning and the difference
between explainability and interpretability. After that, there
will be a formal problem definition in section 3. Using that
definition, the methodology will be explained in section 4.
Section 5 explains the experimental setup and section 6 dis-
plays the corresponding results. Using these results section 7
will be used to discuss them and in section 8 the conclusions
will be drawn, and future work will be discussed. Section 9
will reflect on the ethical aspects and methods used in this
research.

2 Preliminaries
In this section all terms and variable definitions are given and
also all decisions that have been made are explained. The sec-
tion starts off with the preliminaries required to understand
the algorithm. Then the base algorithm DAGGER and its ex-
tension AGGREVATE are explained. After that, there is an
explanation on what a surrogate model is and how one spe-
cific one was chosen. The final subsection explains the com-
parison metrics and the decisions on the baselines.

2.1 Variable definition
Before we continue on to the algorithm and its interpretabil-
ity, it is useful to formally define the used variables first. In
this research, only finite horizon control problems are con-
sidered. They are modeled as Markov Decision Problems,
hereafter mentioned as MDP, with states s and actions a.

Denote
∏

as the class of all policies mapping states to ac-
tions considered by the learner. Define the expert as π*, the
learner as π and the trained learner as π̂. We assume the pol-
icy class

∏
contains good policies and that the expert π* is a

good policy.
The cost function C(s,a) returns the immediate cost of per-

forming action a in state s. The future cost-to-go function for
executing action a in state s and then predicting the rest of the
trajectory, t-1 steps, using some policy π is Qπ

t (s, a).
The state distribution received by executing policy π in the

MDP at time t is denoted as dtπ . Denote the average state
distribution over a time horizon of T as dπ = 1

T

∑T
t=1 d

t
π .

Combining the cost-to-go function and the state distribution
denotes the total cost of executing policy π for T time steps
as J(π) =

∑T
t=1Es∼dt

π
[C(s, π(s))], this can be used as the

overall performance metric for cost comparison.

2.2 Algorithm
AGGREVATE is an extension on the algorithm of DAG-
GER[22]. First the base algorithm of DAGGER is explained,
after which the idea and implementation of the extension will
be denoted.

DAGGER starts of with a data set D of the form [(s, π*(s)],
this is initially empty. Then in the very first iteration of the
algorithm the expert performs a certain number of trajectories
and adds these to the empty data set D, after which the first



Advantages Disadvantages

Decision trees Graphical model
Subset of relevant attributes

Prone to overfitting
Might include irrelevant values

Classification rules Textual structure shows implications
Better individual analyzing

Textual structure shows no importance distinction
Worse full picture analyzing
Possible conflicting classes

Decision table Table can fill in instances with most
frequent class matching the table cell Requires a lot of space

Nearest neighbors Explains classification of new instances Not a model but an explanation
Bayesian networks Graphical model Even small models might be confusing

Table 1: Advantages and disadvantages of classification models

policy π̂ gets trained which represents the expert as closely as
possible. Then for N iterations use the last trained policy π̂n

to obtain new trajectories, after which the expert is queried
for all states in these new trajectories to obtain new data Di

= (s, π*(s)) which get aggregated into data set D to train the
new policy π̂n+1.

AGGREVATE improves on this algorithm by letting the pol-
icy take a certain number of steps after which a random ex-
ploratory action is taken. The expert will continue the trajec-
tory for all possible actions giving a cost-to-go vector corre-
sponding to all actions. With this data point added to the data
set, the action with the minimal cost-to-go can be chosen to
train the next policy.

This approach explores more trajectories that would other-
wise not be found, leading to a more diverse data set and a
potential to obtain a route that would not have been found by
an imitation learning algorithm such as DAGGER. The cost-
to-go given by the expert also gives the policy a better idea
of which actions to take. Having a high cost-to-go for an ac-
tion means that that trajectory will probably not recover from
there, this action must be avoided at all cost if the policy still
wants to recover.

For the full pseudocode of the base algorithm of AGGRE-
VATE[21] see Algorithm 2 in the appendix, the underlined
lines of code are added or updated in comparison to the DAG-
GER pseudocode.

The implementation of AGGREVATE consists of a similar
iterative approach but differs to obtain samples. The execu-
tion of AGGREVATE starts, just like DAGGER, by initializing
the empty data set D. The difference however is that the tu-
ples entered into the data set are fairly different. DAGGER
only had the state and its expert his prediction while AGGRE-
VATE has the state, time step, action and a cost-to-go vector
for all possible actions afterwards. In the very first iteration,
AGGREVATE also queries the expert for trajectories to obtain
data. This is where the random exploration actions start to
come into play. In the trajectory at a random time t, in a state
s a random action will be taken and the cost-to-go of the ex-
pert will be observed for the rest of the trajectory. From this
data, the first minimized cost-to-go policy π̂ will be trained.
Now for N iterations the last trained policy π̂n will be used
to obtain a trajectory till a certain uniformly obtained time
step t. From there a random action will be taken after which
the cost-to-go is observed by the expert for all possible ac-

tions at that point. This generates a cost weighted data-point
Di = {(s, t, a, Q̂)} which gets aggravated to D. This com-
plete data set D will be the new basis for training the next
cost-sensitive classifier π̂n+1 on.

2.3 Surrogate model
A surrogate model is a more simplistic model that mimics the
input/output behaviour of the model that it represents. We use
imitation learning to extract an explainable surrogate model
from a black box expert model to give insight into the deci-
sions made by the policy. We can use these surrogate models
to compare on interpretability.

Different surrogate classification models found in a paper
on comprehensible models[9] were considered. These mod-
els are decision trees, classification rules, decision tables,
nearest neighbors and Bayesian network. The advantages
and disadvantages of these models[9] are summarized in table
1. Nearest neighbors is not taken into account, since nearest
neighbors explains classifications of new instances but does
not provide any model function for interpretability.

From this table in combination with surveys comparing de-
cision trees, classification rules and decision tables among
different users[24; 1] the conclusion can be drawn that a de-
cision tree is the best option for the surrogate classification
model to compare in terms of interpretability.

2.4 Comparison metrics
The metrics for comparing different imitation learning algo-
rithms can be split up in two parts, the more objective perfor-
mance and the more subjective interpretability comparison.

Performance To obtain the Performance of an algorithm,
we let the trained policy perform the trajectories a certain
number of times. From these trajectories we obtain their re-
wards, which we can see as our data set. From this data set
we can measure the average reward and how spread out this
data set is. The average reward shows how the algorithm per-
forms, and the standard deviation shows how consistent the
algorithm is.

Interpretability Interpretability is inherently more difficult
to compare on since interpretability has no, so called, math-
ematical rigour[14], this means that getting objective com-
parisons done is more difficult. Another difficulty is that all
algorithms that are being compared on also output decision



trees, which means that other metrics like local explanation,
visualization and parameter comparison are very similar.

The most straight-forward objective metric for inter-
pretability is the number of nodes, overall less nodes means
less rules to go through to understand the tree, which leads to
a more interpretable tree. There has also been a survey[8] that
noticed the opposite while questioning several users, these
users sometimes preferred larger decision trees if that meant
that more informative attributes would be shown. They also
disliked too small decision trees for complex scenarios, be-
cause they felt like there was critical information left out. For
the experiments done in this research, with a small number
of parameters and a simple environment, we choose to define
fewer nodes as more interpretable.

Another metric that relates to total number of nodes is the
max depth that it corresponds to, this parameter is set when
the decision tree is initialized and does give more information
on the former metric.

In this paper, only the interpretability metrics that can be
objectively compared will be used. Subjective metrics are
more useful to understand the trust in the algorithm that is
required to understand if users would be comfortable using
the imitation learning processes. Subjective comparisons,
made using a survey, are however really time-consuming and
hard to draw conclusions from due to less direct comparisons
among users. The limitation with purely objective compar-
isons is that less nodes might still be less interpretable due to
confusing predicates. Therefore, we will manually observe
the decision trees and compare their performance in terms of
interpretability.

2.5 Baselines
Before the imitation learning algorithms can be compared
among each other, there should first be a baseline to com-
pare to. Having this baseline allows more solid conclusions.
The most basic imitation learning algorithm is behavioral
cloning[2].

The way behavioral cloning works is as follows, an expert
is used to obtain demonstrations consisting of state-action
pairs. These pairs are used to train a policy using supervised
learning by minimizing the loss function L(a∗, π(s)). This
can be achieved by using a classifier or regressor to replicate
the expert[25]. Behavioral cloning is a simple approach that
can work excellently in several situations.

Behavioral cloning has a very distinctive flaw. Once the
policy makes a mistake and deviates from the expert trajec-
tories, it might add up to new mistakes leading to a state that
might not be in the data set obtained from the expert.

All imitation learning algorithms compared in this paper
improve on this initial most simplified version in one way
or the other, therefore it works perfectly as a baseline to
compare improvements on.

Another baseline is necessary for the comparison of learning
performance. For this, the expert Q-learning[26] is used. Q-
learning was chosen since it is simple, reliable and the exper-
iments performed are in a discrete action and state space. The
Q-learning baseline is the expert that all imitation learning al-
gorithms learn from, and is therefore interesting to compare

to. Knowing how well the expert performed and then com-
paring to the algorithms and knowing whether the algorithms
are far behind or maybe even ahead of the experts in terms of
performance should provide valuable information.

To clarify, the first baseline compares the imitation learning
performance while the second baseline compares the learning
performance itself.

3 Problem definition
How do the imitation learning algorithms AGGREVATE,
GAIL, DAGGER and VIPER, who have been modified to pro-
duce decision tree policies, compare to a Behavioral Cloning
baseline and each other in terms of interpretability and per-
formance? Can we explain the difference in performance
based on the decision trees that produce the results?
AGGREVATE has been theoretically analyzed in the paper it
was introduced in[21], there was, however, no practical com-
parison for this algorithm. DAGGER and AGGREVATE both
were only researched as outputting black box policies that can
not be interpreted by humans. Interpretability is a large gap
in imitation learning research and is a problem worth solving
since it can improve the trust in the algorithms significantly.
The VIPER[4] algorithm already started improving in terms
of interpretability by producing a verifiable policy in the form
of a decision tree. To determine how AGGREVATE performs
in terms of performance and interpretability, we must com-
pare it to other imitation learning algorithms, leading to the
following problems being investigated.

4 Methodology
Originally AGGREVATE does not specify what kind of policy
model is outputted. To be able to compare in the best possi-
ble way on an interpretability scale, we had decided on out-
putting a decision tree as mentioned in section 2. Therefore,
the code was modified to train a decision tree, for the new al-
gorithm pseudocode see algorithm 2. This has been done us-
ing inspiration from the VIPER[4] paper, which also outputs
a decision tree. To obtain a decision tree policy, we used a
classification tree from scikit-learn[18] to train (state, action)
tuples on. To get (state, action) tuples from the (state, time
step, action, cost-to-go) data set we had to get the minimal
cost-to-go action for every state and time step. We achieved
this by resampling the dataset using cost-sensitive weighted
classification[5] minimizing the expected cost and returning
the corresponding state action pairs.

To compare the decision tree policies outputted by AG-
GREVATE to the other imitation learning algorithms, we use
the metrics defined in section 2 as well as compare the de-
cision trees on a more individual level. Looking at decision
trees and their predicates can already explain a lot in terms
of interpretability as well as performance. Knowing that one
decision tree is performing better in terms of reward and stan-
dard deviation than the other can be explained by looking at
the different decisions made at different locations in the trees.

5 Experimental Setup
For the experiments we use the openAI Gym toolkit[6].
This toolkit allows our comparisons to be on a universal



(a) Mountain car (b) Cartpole (c) Acrobot

Figure 1: Snapshots of the environments

Algorithm 1 AGGREVATE algorithm training a decision tree

Initialize D ←− ∅, π̂1 to any policy in
∏

.
for i = 1 to N do

Collect m data points as follows:
for j = 1 to m do

Sample uniformly t ∈ {1, 2, ..., T}
Start new trajectory in some initial state
Execute current policy πi up to time t− 1
Take exploration action at in state st at time t
Execute expert from time t+ 1 to T and observe
estimate of cost-to-go Q̂ starting at time t

end for
Get dataset Di = {(s, t, a, Q̂)}
Aggregate datasets: D ←− D ∪Di.
Resample dataset D’ ←− {(s, a) ∼ p((s, a)) ∝

[C(s, a) ∈ D]}
Train decision tree π̂i+1 on D’

end for
Return best π̂i on validation

benchmark. The openAI Gym benchmark environments
all return the variables needed to perform the algorithms
described in section 2 and 4. The environments chosen can
be seen in figure 1.

The first experiment and most simple experiment has been
conducted on the mountain car environment, see figure 1a.
The goal of the mountain car problem[16] is for the car at the
bottom of the canyon to scale the right mountain to obtain
the flag. The issue is that the engine of the car is not powerful
enough to drive up the mountain from the lowest point of
the ravine in one go, the solution is to drive back and forth
building up momentum to have enough to get to the top.
The states in this environment are defined as (x-position,
velocity) tuples, where the x-position is -0.5 at the lowest
point of the canyon and negative to the left and positive to
the right of this lowest point. The velocity is positive if the
car is moving to the right and negative when moving to the
left. The actions possible are moving left, doing nothing and
moving right. The reward obtained from the action is -1 for
every time step taken when not arriving at the finish flag. The
time horizon T is 200 time steps and therefore not arriving
at the finish flag gives a total reward of -200, a decent run
arrives at the flag in 130 time steps and therefore has a total
reward of -130.

The second experiment, similar in difficulty, is on the
cartpole environment[13]. The environment consists of a

cart with a pole on top of it, see figure 1b. The goal of this
environment is to balance the pole by moving the cart left
and right to keep it from falling over for as long as possible.
The states in this environment are larger than the mountain
car problem, they consist of cart position, cart velocity, pole
angle and pole angular velocity. This gives a four dimen-
sional state space instead of two in the former experiment.
The number of actions available however are smaller, there
are only two actions available, either pushing left or pushing
right. The reward obtained is different in comparison to
the other experiments described in this section. For every
time step taken, where the pole does not fall over, the reward
goes up by one. The time horizon T is 500 time steps, this
horizon gets hit when the policy is trained to never get out of
balance.

The third, more difficult, experiment is on the acrobot
environment[17]. The acrobot is modeled after a gymnast
on a parallel bar, see figure 1c. The upper link corresponds
to the upper body and the lower one to the legs. The upper
joints can be seen as the wrists and the joint in the middle as
the waist. The goal of this problem is to get the lower link
to a certain height. Initially, the links are positioned straight
down and therefore the environment requires the links and
joints to work together to swing and pivot left and right to
get to the required height. The states in this environment are
even larger than the cartpole experiment, they consist of the
cosine and sine of both rotational joints and the velocity of
the angular joints. This gives a six dimensional state space.
The actions available are similar to mountain car, there are
three actions available applying -1, 0 or 1 torque on the joint
between the two links. The reward obtained is also identical
to mountain car, leading to -1 reward for not achieving the
height per step and 0 once achieved. The time horizon T
is 500 time steps and therefore the lowest reward, for not
achieving the height, is -500. A good run hits the threshold
between -80 to -100.

The parameters used in the algorithm all need to be similar for
the comparisons to hold up. For the AGGREVATE algorithm,
the number of iterations or the number of rollouts need to be
high since it only obtains a single data point per rollout. Max
depth has been established to be 1 for mountain car, 3 for cart-
pole and 2 for the acrobot. Increasing the max depth for all
3 leads to barely any improvement while drastically decreas-
ing interpretability. The decision trees are further improved
using cost complexity pruning[18], which removes the weak-
est link nodes to a certain extent. The value of this parameter
was found using scikit build in functions and is applied to



(a) Behavioral cloning (b) DAGGER (c) GAIL (d) VIPER (e) AGGREVATE

Figure 2: Decision trees on mountain car

MC BC DAG. GAIL VIPER AGG.
Reward -120.8 -120.3 -119.2 -119.6 -120.4

SD 4.0 3.6 3.8 3.7 4.5
Nodes 3 3 3 3 3

Table 2: Results for mountain car with depth 1

Behavioral Cloning, DAGGER and AGGREVATE.

6 Results
The performance results and decision trees for GAIL and
VIPER have been obtained from our colleagues Caspar Mei-
jer and Otto Kaaij respectively. For more information on
those results and how they were obtained see the papers on
the interpretability of GAIL[15] and VIPER[12]. These re-
sults were obtained using the same openAI Gym environ-
ments. DAGGER, VIPER and AGGREVATE are based on
the same kind of algorithm, they use the same parameters
to obtain a comparison as reliable as possible. There is one
discrepancy between the performance tests, namely the ex-
perts used to train the policies differ in quality between re-
sults from this experiment and those from our colleagues, the
expert mentioned in the environment results are used for be-
havioral cloning, DAGGER and AGGREVATE. Another inter-
esting fact is that the VIPER implementation does not prune
its decision trees algorithmically, but decides to do this man-
ually afterwards. The tables will show, in brackets, the man-
ually pruned number of nodes if possible.

An explanation on how to read the decision trees can be
found in appendix A.2, in that appendix all full size decision
trees can be found as well.
Mountain car The parameters used to obtain these results
were as follows. Number of samples per iteration was 100,
there were 10 iterations and the ccp alpha used for pruning
was found irrelevant since there was only one layer that would
never be pruned.

Table 2 shows the results obtained on mountain car to com-
pare the objective metrics between the baseline Behavioral
Cloning, DAGGER, GAIL, VIPER and AGGREVATE. The
corresponding decision trees can be seen in figure 2. The ex-
pert had an average reward of -125 with a standard deviation
of 13. From the table we can conclude that on this most sim-
ple environment there is not a big difference between all five
imitation learning algorithms in terms of average reward, they
all average around -120 score with limited standard deviation.

Looking at the objective interpretability there is no differ-
ence in the number of nodes, this is to be expected since the
minimum as well as maximum of depth one is three nodes.
Looking at the decision trees themselves, all five perform

Cartpole BC DAG. GAIL VIPER AGG.
Reward 207.2 499.8 498.2 500 488.4

SD 44.2 0.7 14.12 0 22.0
Nodes 9 7 11 15(9) 5

Table 3: Results for cartpole with depth 3

exactly the same operation to determine their outcome, they
check if the speed is negative and if that is the case they will
continue to go left to build more momentum. The moment the
car’s speed returns to zero because of gravity, all trees poli-
cies will determine to go right which should either get to the
finish or do the entire process again to get more momentum.

Cartpole The parameters used to obtain these results were
as follows, number of samples per iteration was 250, there
were 20 iterations and the ccp alpha used for pruning was
found to be 0.013 for cartpole.

Table 3 shows the results obtained on cartpole. The ex-
pert had an average reward of 475.5 with a standard deviation
of 59.8. From this table we can conclude that all algorithms
except for behavioral cloning performed really well. Behav-
ioral Cloning performed way worse than the others, probably
because that algorithm only learns the exact paths from the
expert, but once it arrives in a state yet unknown, then it will
not know the exact recovery action.

The objective interpretability of the algorithms on cartpole
is very interesting to compare since the number of nodes dif-
fer a lot, see figure 3 for all decision trees. Behavioral cloning
has the worst performance, it uses nine nodes while perform-
ing under half the time that the other algorithms perform.
DAGGER performs almost perfect and has a medium num-
ber of nodes, with seven. Trying to understand the decision
tree produced by DAGGER is already easier than Behavioral
Cloning but is still a bit confusing, it checks on pole veloc-
ity twice right after each other before continuing on to check
the angle. GAIL has the most amount of nodes and confus-
ingly checks on cart velocity twice in a row. VIPER has a bad
interpretability performance even when manually pruned. It
performs perfectly, however, it is also quite difficult to un-
derstand. VIPER and GAIL are the only two algorithms pro-
ducing a decision tree checking on the cart position and ve-
locity, the other three algorithms did not use that part of the
observation space and based their decision solely on the pole.
AGGREVATE has a score slightly worse than DAGGER but
objectively the most interpretable tree, it pruned the tree to
only use a depth of two in comparison to three that the other
decision trees used leading also to a smaller amount of nodes
in general. The tree also makes sense to the human reader by
checking on both pole parameters only once.



(a) Behavioral cloning (b) DAGGER (c) GAIL (d) VIPER (e) AGGREVATE

Figure 3: Decision trees on cartpole

Acrobot BC DAG. GAIL VIPER AGG.
Reward -94.5 -83.5 -83.0 -84.4 -85.5

SD 37.3 10.8 14.9 21.0 24.5
Nodes 5 5 7 7 3

Table 4: Results for acrobot with depth 2

Acrobot The parameters used to obtain these results were
almost equal to cartpole, number of samples per iteration was
also 250, there were 20 iterations just like cartpole only the
ccp alpha used for pruning was found to be different at a value
of 0.004.

Table 4 shows the results obtained on acrobot. The expert
had an average reward of -180.5 with a standard deviation of
75. From this we can conclude that the expert is not trained
consistently since it has a very high standard deviation. The
imitation learning algorithms all function a lot better than the
expert in terms of performance, this is probably because of
the high standard deviation of the expert leading to the imita-
tion learning algorithms learning from the best expert paths as
long as the number of samples and iterations is high enough.

The objective interpretability of the algorithms on acrobot
is quite similar, with only a small difference in nodes be-
tween the worst in VIPER and GAIL with seven nodes, the
standard in Behavioral Cloning and DAGGER with five nodes
and AGGREVATE with only three. Taking a closer look at
the decision trees produced by these algorithms in figure 4,
we can see that both five node trees can be easily reduced to
three node trees since the two leaves corresponding to going
right could be placed in a single leaf one layer up, without
the check since the outcome will be the same. Another in-
teresting comparison is that Behavioral cloning compares on
the velocity of joint 2 while both DAGGER and AGGREVATE
check on the velocity of joint 1.

7 Discussion
The simple experiments from section 6 are performed with
parameters specifically found for AGGREVATE due its slow
data collection. This leads to a large amount of rollouts which
benefits AGGREVATE but is a disadvantage for the other al-
gorithms. It should be noted that the experts of the GAIL and
VIPER experiments were different leading to the comparisons
being less conclusive.

The experiments show that AGGREVATE performs better
than behavioral cloning and slightly worse in comparison to
the other imitation learning algorithms in terms of perfor-
mance. It performs slightly better than all the other imitation
learning algorithms in terms of interpretability. The perfor-

mance decrease could be explained through the fewer num-
bers of data points usable by AGGREVATE. This probably
also leads to nodes being discarded more quickly while prun-
ing developing a more interpretable tree less prone to overfit-
ting.

On mountain car there was only a relatively small differ-
ence between Behavioral Cloning and the four other imitation
learning algorithms. All algorithms use the same number of
nodes, since the depth only allows three nodes.

Cartpole showed that AGGREVATE performed a bit worse
than the others, this might be because of the limited number
of data points. Cartpole with its four state observations can
quite easily get to a very specific combination of these ob-
servations that might not have been explored with the limited
data points of AGGREVATE. This may lead to the policy not
knowing what to do and failing near the end. They all func-
tion a lot better than Behavioral Cloning in terms of perfor-
mance. AGGREVATE has the most clear decision tree buildup
because it only checks on both pole parameters once and re-
quires one less depth. The base VIPER tree is very hard to
interpret and requires manual pruning to get to the same level
of interpretability as behavioral cloning. GAIL is even more
difficult to understand and confusing to read.

In the acrobot environment, all algorithms got a bit closer
together again, in all comparison metrics. The most notable
difference is that AGGREVATE pruned to a more clear 3 node
tree, while some other algorithms stayed in a 5 node tree.
VIPER and GAIL even went so far as to use all 7 nodes pos-
sible with depth 2. Both behavioral cloning and DAGGER
could be reduced to a 3 node tree as well when using man-
ual pruning. Performance wise, the values were not different
enough to draw a strong conclusion.

The interpretability of the decision trees seems to be
fairly similar on these simple environments. Mountain car
is very interpretable for humans and explains very clearly
the thought process with these parameters, namely that
only the velocity matters to get to the end goal. Acrobot is
slightly harder since these trees can be of depth two, leading
to more predicates as well as the observations being very
mathematical concerning angles and angular velocities in
comparison to velocity and distance of a car(t). Cartpole is
the least interpretable decision tree because of the number of
different paths and due to it sometimes checking the same
predicates twice, leading to possible confusion.

Looking forward at more difficult benchmarks, we expect
AGGREVATE to start to perform better than DAGGER when
multiple paths to the solution are available. This because
we think that once there are multiple correct solutions with



(a) Behavioral cloning (b) DAGGER (c) GAIL (d) VIPER (e) AGGREVATE

Figure 4: Decision trees on acrobot

different levels of reward the exploratory actions performed
by AGGREVATE should come to the correct conclusion on
the best possible solution in comparison to DAGGER that
might be stuck on one suboptimal solution.

The most significant limitation of AGGREVATE is how much
time it takes to obtain a valuable data set to train on. Every
sample only brings in one data point in comparison to time
horizon T data points for DAGGER and other imitation learn-
ing algorithms per iteration. All these extra steps do entail to
more exploration and possible better paths. So in short DAG-
GER is faster and more efficient, but AGGREVATE provides
more specific information and eventual improvements. When
combining the strongest elements of both algorithms, we
can get an algorithm that produces initial efficient students
using DAGGER that can then be trained on by AGGREVATE
to gain the improvements of AGGREVATE with fewer of the
time intensive trajectories that AGGREVATE is known for to
get the best possible students.

Another interesting approach to machine learning is using on-
line decision tree learning instead of batch learning. Using
online learning the decision tree will be trained whenever a
new data point arrives leading to the new data point already
being integrated into the model before the next trajectory is
started. This leads to all upcoming data points in that iter-
ation to already be updated with the previous data points in
that iteration.

Online learning makes the model more adaptable and data-
efficient. A disadvantage of this approach is that the model
will have to be trained every single data point, in practice this
is much harder to implement and manage than batch training.
Online learning is normally faster than batch learning, which
could be an improvement to the current slow single sample
algorithm. The problem with online learning is keeping track
of new and old samples, balancing them and maintaining ac-
curacy while training and continuously adapting the model.

8 Conclusions and Future Work
In this paper the imitation learning algorithm AGGREVATE
is compared to a baseline Behavioral Cloning and other im-
itation learning algorithms GAIL, DAGGER and VIPER, in
terms of interpretability and performance. To compare AG-
GREVATE in terms of interpretability, the algorithm has been
modified to output a surrogate model in the form of a decision
tree which can be evaluated on interpretability. The decision
tree paths were compared using their performance as a way
of establishing the different thought processes of the policies.

It could be concluded that in these three environments us-
ing the parameters defined AGGREVATE prunes slightly more

than Behavioral Cloning and the other imitation learning al-
gorithms leading to slightly more interpretable decision trees.
In terms of performance, AGGREVATE performs better than
behavioral cloning but slightly worse than the other algo-
rithms. Both of the conclusions drawn here can be explained
due to the smaller number of data points obtained by AGGRE-
VATE. Fewer data points lead to more possible failing paths
that have not yet been explored, but it also leads to a decision
tree less prone to overfitting.

The parameters AGGREVATE is sensitive to are the num-
ber of iterations N and the number of samples M, since the
AGGREVATE algorithm only obtains a single data-point ev-
ery sample and having a larger sized data set improves perfor-
mance substantially. The problem with this large number of
iterations and samples is that every test requires a substantial
amount of time to fully run.

The AGGREVATE algorithm performs better on tasks
with optimal paths not instantly found by the policy, this is
because of the random actions performed in the samples.
With the random actions performed at a random time step
t, it leads to more paths being explored which might lead
to the optimal path not yet discovered. These kinds of
environments have not been tested, and this conclusion is
therefore purely theoretical.

Not everything could be researched in this paper due to time
constraints. The current comparisons are on simple environ-
ments but where AGGREVATE improves on is random steps
and their cost to go, therefore for future work more difficult
environments can be fascinating to compare on.

Another compelling future research possibility is in the
subjective interpretability comparison metrics, to fairly com-
pare decision trees and their interpretability there could be
a survey among users of a specific process and ask them
whether the decision tree surrogate model is interpretable to
them and if it increases their trust in the system. The met-
rics for this research could be accuracy of understanding, re-
sponse time and confidence with which the survey partici-
pants answered questions about the decision trees.

A final interesting future possibility is the implementation
of the combination of DAGGER and AGGREVATE into a sin-
gle algorithm to improve performance in the early stages but
still having the extensive searches of AGGREVATE. This
does not directly improve the interpretability of the algorithm,
however, it should increase accuracy and performance by a
large margin.



9 Responsible Research
Ethical aspects
The fields of both reinforcement and imitation learning have
a dangerous responsibility for the greater good of society. As
mentioned in the introduction, examples of self-driving cars,
automated job application processes and artificial intelligence
in the military or police all lead to the question on how eth-
ically responsible the algorithms and their training data are.
These black box processes explain no inner workings of the
model and can therefore lead to ethical and judicial problems.

The following examples show that the lack of insight in
black box processes can be dangerous for society and there-
fore increases the lack of trust in these systems[7]. Self-
driving cars might seem to be working as intended, but when
faced with a situation unknown in the training data it might
still make the wrong decision because it does not make the
correct correlation that human drivers do. Bias in the train-
ing data of job application software might choose someone
who is more fitting to previous employees instead of picking
someone who is the best for the job. Automated military or
police devices might wrongly identify someone, leading to
innocent lives being ruined.

In this research, the emphasis is on making the black box
processes interpretable to increase this aforementioned trust
in the system and show explicitly the inner workings of the
models. If interpretable models can become the norm in the
future, we can understand why certain decisions are made
and therefore counteract the possible bias in training data and
guarantee the worst-case scenarios required to function in so-
ciety.

Reproducibility
Reproducibility is a large problem in the field of multiple
different sciences, as shown in a paper on the reproducibil-
ity crisis[3]. That paper states that in the physics and engi-
neering field, almost 70% of reproduced experiments failed.
From those shockingly high numbers, we can conclude that
we should look critically at all papers used to obtain infor-
mation and make sure the data and given information makes
sense. All results in this paper are obtained through the same
code and should be readily available once all code is complete
to make this paper as transparent as possible and give further
researchers easily reproducible data to check for themselves.

Research Integrity
The ’Netherlands Code of Conduct for Research Integrity
(2018)’ states there to be five main principles to guide re-
search integrity: honesty, scrupulousness, transparency, in-
dependence and responsibility. We will briefly reflect on all
these principles.

Honesty
This research has a lot of variables the output is dependent on,
we have tried to report every important decision and result in
this paper as accurately as possible. The conclusions drawn in
this paper are based on the results obtained using a specific set
of parameters, for other parameters these conclusions could
maybe not hold due to the different nature of the imitation

learning algorithms, we have tried to sufficiently make this
clear while drawing conclusions.

Scrupulousness
We have tried to create the algorithm as close to the author’s
theoretical creation as possible. We are however no experts
in the field of imitation learning algorithms. With the help
of our supervisor and peer reviews, we believe the results are
justified and scientific. We have tried to report all obtained
data and results as clear as possible.

Transparency
To be as transparent as possible, all parameters used in all
experiments were summarized, and all data was ordered as
neatly as possible. All code should be available once every-
thing is completed, leading to the most transparent possible
results. All the reasoning and explanation has been attempted
to be written as clear as possible, to make every step of the
thought process as transparent as possible.

Independence
In the writing of this report, there has been no commercial
or political nature involved. The paper is however not com-
pletely impartial since this paper has been written as the fi-
nal product of a course. This means that the paper had to
be shortened, leading to some observations or images being
removed that would otherwise be published. Another aspect
worth mentioning is the time frame we are set in, we only
had 10 weeks to perform all research, experiments and write
the entire report. There are still many questions that unfortu-
nately could not be answered due to time constraints.

Responsibility
The imitation learning field, as mentioned before, has a lot of
potential when looking at possible influence on society. We
therefore understand the responsibility for delivering scien-
tifically and societally relevant research. We think making
imitation learning algorithms interpretable is of legitimate in-
terests to most humans in society.

References
[1] Hiva Allahyari and Niklas Lavesson. User-oriented as-

sessment of classification model understandability. In
11th scandinavian conference on Artificial intelligence.
IOS Press, 2011.

[2] Michael Bain and Claude Sammut. A framework for
behavioural cloning. In Machine Intelligence 15, pages
103–129, 1995.

[3] Monya Baker. Reproducibility crisis. Nature,
533(26):353–66, 2016.

[4] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama.
Verifiable reinforcement learning via policy extraction.
arXiv preprint arXiv:1805.08328, 2018.

[5] Alina Beygelzimer, John Langford, and Bianca
Zadrozny. Machine learning techniques—reductions
between prediction quality metrics. In Performance
Modeling and Engineering, pages 3–28. Springer, 2008.



[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Woj-
ciech Zaremba. Openai gym. CoRR, abs/1606.01540,
2016.

[7] Arun Das and Paul Rad. Opportunities and challenges in
explainable artificial intelligence (xai): A survey. arXiv
preprint arXiv:2006.11371, 2020.

[8] Tapio Elomaa. In defense of c4. 5: Notes on learning
one-level decision trees. In Machine Learning Proceed-
ings 1994, pages 62–69. Elsevier, 1994.

[9] Alex A Freitas. Comprehensible classification models:
a position paper. ACM SIGKDD explorations newslet-
ter, 15(1):1–10, 2014.

[10] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri,
Franco Turini, Fosca Giannotti, and Dino Pedreschi.
A survey of methods for explaining black box models.
ACM computing surveys (CSUR), 51(5):1–42, 2018.

[11] Jonathan Ho and Stefano Ermon. Generative adversar-
ial imitation learning. Advances in neural information
processing systems, 29:4565–4573, 2016.

[12] Otto Kaaij and Anna Lukina. Interpretability and per-
formance of surrogate decision trees produced by viper.
TU Delft course CSE3000, 2022.

[13] Swagat Kumar. Balancing a cartpole system with
reinforcement learning–a tutorial. arXiv preprint
arXiv:2006.04938, 2020.

[14] Zachary C Lipton. The mythos of model interpretabil-
ity: In machine learning, the concept of interpretabil-
ity is both important and slippery. Queue, 16(3):31–57,
2018.

[15] Caspar Meijer and Anna Lukina. Using decision trees
together with generative adversarial imitation learning
to give insight into black box reinforcement learning
models. TU Delft course CSE3000, 2022.

[16] Andrew Moore. Knowledge of knowledge and intelli-
gent experimentation for learning control. 1991.

[17] Richard M Murray and John Edmond Hauser. A case
study in approximate linearization: The acrobat exam-
ple. Electronics Research Laboratory, College of Engi-
neering, University of . . . , 1991.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[19] Erika Puiutta and Eric M. S. P. Veith. Explainable rein-
forcement learning: A survey. CoRR, abs/2005.06247,
2020.

[20] Ribana Roscher, Bastian Bohn, Marco F Duarte, and
Jochen Garcke. Explainable machine learning for sci-
entific insights and discoveries. Ieee Access, 8:42200–
42216, 2020.

[21] Stephane Ross and J Andrew Bagnell. Reinforcement
and imitation learning via interactive no-regret learning.
arXiv preprint arXiv:1406.5979, 2014.

[22] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the
fourteenth international conference on artificial intelli-
gence and statistics, pages 627–635. JMLR Workshop
and Conference Proceedings, 2011.

[23] Alexander Sieusahai and Matthew Guzdial. Explain-
ing deep reinforcement learning agents in the atari do-
main through a surrogate model. In Proceedings of the
AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, volume 17, pages 82–90,
2021.

[24] Girish H Subramanian, John Nosek, Sankaran P Raghu-
nathan, and Santosh S Kanitkar. A comparison of the
decision table and tree. Communications of the ACM,
35(1):89–94, 1992.

[25] Faraz Torabi, Garrett Warnell, and Peter Stone. Behav-
ioral cloning from observation, 2018.

[26] Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 8(3-4):279–292, 1992.



A Appendix
A.1 DAGGER algorithm

Algorithm 2 Base algorithm of AGGREVATE

Initialize D ←− ∅, π̂1 to any policy in
∏

.
for i = 1 to N do

Collect m data points as follows:
for j = 1 to m do

Sample uniformly t ∈ {1, 2, ..., T}
Start new trajectory in some initial state
Execute current policy πi up to time t− 1
Take exploration action at in state st at time t
Execute expert from time t+ 1 to T and observe
estimate of cost-to-go Q̂ starting at time t

end for
Get dataset Di = {(s, t, a, Q̂)}
Aggregate datasets: D ←− D ∪Di.
Train cost-sensitive classifier π̂i+1 on D

end for
Return best π̂i on validation

A.2 Decision trees
The following information can be retrieved from a decision tree policy like in figure 5. The decision tree is trained with max
depth 2 on the mountain car environment. From this decision tree we can conclude what action will be taken when certain
conditions are met. Every node consists of four lines giving information about the model. The first line, the predicate, checks
whether the velocity of the car is negative or positive, if the predicate is satisfied for the state in which the model is in then the
model will check the next rule in the node following the ’True’ arrow. The second line shows the percentage of how many of
the samples are in the current node, in the first node this will always be 100% but from the second layer onward you can see
how often the model gets into that state. The third line shows the probability of going left, doing nothing or going right in that
specific node and the fourth line shows the action corresponding to the highest probability of line three.

Figure 5: Decision tree corresponding to the mountain car environment



(a) Behavioral cloning (b) DAGGER (c) GAIL

(d) VIPER (e) AGGREVATE

Figure 6: Decision trees on mountain car

(a) Behavioral cloning (b) DAGGER (c) GAIL

(d) VIPER (e) AGGREVATE

Figure 7: Decision trees on cartpole



(a) Behavioral cloning (b) DAGGER (c) GAIL

(d) VIPER (e) AGGREVATE

Figure 8: Decision trees on acrobot


	Introduction
	Preliminaries
	Variable definition
	Algorithm
	Surrogate model
	Comparison metrics
	Baselines

	Problem definition
	Methodology
	Experimental Setup
	Results
	Discussion
	Conclusions and Future Work
	Responsible Research
	Appendix
	DAgger algorithm
	Decision trees


