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Abstract

The track bound sliding sport of Skeleton was permanently added to Winter Olympics programme in 2002.
This has led to increased interest in the sport. Engineering has already proved to be a vital contributor to
improved performance in the related sport of Bobsleighing. We hope that engineering can do the same for
Skeleton.

This report describes an attempt at developing a platform to be used as a real-time training simulator for
the sport of Skeleton. For a multitude of reasons athletes are, on average limited to a total of two hours of
practice and competitive on-track time in any given year. When compared with time spent practising and in
competition in most sports, this is extremely low. It is hypothesized that a simulator can augment track time
by providing a realistic environment to practise in, even when access to a track is not available.

This work is guided by simulators that have been developed for Bobsleighing. The main components are
the models to describe the dynamics of the sport, an input method and visualization of the simulation. The
main considerations for the dynamic model are of the track surface, the sled and contact between sled and
track surface. These models lead to a system of equations which when solved provide accelerations and con-
tact forces. The accelerations are integrated over a fixed time interval to determine changes in velocities,
position and orientation. The position and orientation obtained after the integration is passed on to a game
engine which provides the user with real-time visual output of the position and orientation along a digitally
recreated track surface. A video game controller was chosen to serve as the input device. It has two joysticks,
which can be mapped so as to mimic the forces applied by an athlete.

A number of descents were performed using this platform both at real-time speed and at a slower speed to
give the user, unfamiliar with the sport, a better chance to steer the sled. We were able to consistently reach
the exit of curve 2 in real-time speed and curve 4 at the slower play speed before failure of the simulation. In
most cases the algorithm used here proves to take lesser time for computation than the chosen integration
time step, which is a great sign for future development as we did not make any attempts to optimise its com-
putation time.

We made an attempt at validation using time elapsed to traverse a certain distance and the sum of magni-
tude of Lagrangian multipliers. We had poor results with the time elapsed comparison, with simulated runs
being 15% slower than competitive descents. While the sum of Lagrangian multipliers showed good relation
to expected behaviour. This first attempt was reasonably successful, and we believe that the lessons learnt
from this work has brought us one step closer to realizing a training simulator that can be useful to Skeleton
athletes.
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1
Introduction

Skeleton along with Bobsleighing (or Bobsledding) and Luge, belongs to the category of track-bound winter
sliding sports. In Skeleton, a single athlete begins a run by sprinting while pushing their sled besides them.
Once they have reached top speed, they jump onto the sled and assume a head first, prone position, this mo-
tion is referred to as “loading”. The sprinting and loading phase together are referred to as the “push-start"
phase. The remainder of a run is a gravity-powered descent down a track that is around 1.5 km long with an
average vertical gradient of 10%. The three phases are shown below in Fig. 1.1. A single run lasts close to 1
minute, with speeds exceeding 130 km/hr and athletes experiencing forces up to 5 times that of gravity. The
winner of a competition has the lowest cumulative time over two or four runs and often winning margins are
fractions of a second. More information about the sport, sleds used and steering methods can be found in
Appendix A.

(a) Sprint start (b) Loading

(c) Descent

Figure 1.1: The different phases of a Skeleton run. Figures a and b with the sprint and loading comprise the push-start phase. Figure c
shows an athlete during the gravity powered descent down a track

1.1. Motivation
Even though the majority of the descent is gravity-powered, athletes must perform accurate steering manoeu-
vres to achieve good finish times. Previous analyses have shown that steering errors can lead to substantial

1



2 1. Introduction

time losses and have also shown a positive correlation between competitive experience and performance [1–
5]. Hence practising steering skills and spending as much time as possible on the ice is critical, but in reality
is severely lacking. First, track access is limited geographically, with only 5 out of the functioning 16 tracks
located outside Europe1. The Netherlands does not have a track. Second, tracks are closed for athletes dur-
ing the summer. They are repurposed to serve as promotion centres using wheeled sleds with tourists as the
riders. Third, there are a limited number of descent slots available at a track per day and due to the forces ex-
perienced during a descent, the number of runs any individual athlete can make in a single day is restricted.
The above factors combine together to limit athletes to an average of two hours of on-track sliding time over a
competitive season [6]. A season is active for roughly half the year. For the remainder of the year, athletes are
consigned to strength and conditioning workouts and push-start practice2. This is in stark contrast to many
sports where an athlete may spend several hours practising requisite skills in just a single day.

We hypothesize that a real-time training simulator will help to overcome these disadvantages. Also, given
the high speeds and G-forces involved, more often than not an athlete must steer conservatively due to the
risk of injury. A simulator could hypothetically give athletes the opportunity to try a wider range of steering
techniques and strategies before attempting to execute them on track [7]. While there have been attempts at
developing real-time simulation capabilities for the related sport of Bobsleighing, we are not aware of such
attempts for Skeleton [6–9]. These Bobsleigh simulators served as a guide for a majority of the work described
in this thesis.

1.2. Thesis Outline
This thesis describes a platform for real-time simulation of Skeleton. Along with the published information
regarding Bobsleigh simulators, a second guiding theme was simplicity, be it in the track reconstruction or
formulation of the dynamic model for the sport.
Being a track-bound sport, creating an accurate representation of the track surface is essential. This was
achieved for the Olympic track at Park City, Utah, The USA using construction data and video footage of
a descent, this serves as the second chapter. The third chapter describes the dynamic model used for the
simulation. This chapter also includes details of the time-stepping algorithm used. The work presented here
is only concerned with the simulation of the descent once the athlete has loaded on to the sled at the end
of the push-start phase. Chapter 4 explains the simulation set-up including input and output methods and
devices used. It further includes estimation of the various parameters. Chapter 5 discusses the results of
simulated runs along with an attempt to validate the simulator. We end with recommendations for future
work and conclusions in Chapter 6. The appendices contain a more involved description of the sport of
Skeleton, Bezier curves used for creating the track model in Chapter 2.

1https://en.wikipedia.org/wiki/List_of_bobsleigh,_luge,_and_skeleton_tracks Retrieved: 01/12/2019
2Personal correspondence with Akwasi Frimpong, a Skeleton athlete

https://en.wikipedia.org/wiki/List_of_bobsleigh,_luge,_and_skeleton_tracks


2
Track Model

The track surface plays a vital role in realizing a realistic simulation of Skeleton. An analytical or numeri-
cal approximation of the track is needed for the physics simulation. Additonally, a graphical representation
of the surface is needed for the visualization of a descent. The following chapter describes the process fol-
lowed to generate a numerical track surface model, used for both the physics simulation and its visualization.

The method to reconstruct the 3D track surface is based on the approaches used by Rempfler and Glocker
[6] and Braghin et al. [9, 10], who have developed simulations for Bobsleighing. In brief, one begins by first
approximating the Track Profile (or Centre) Line in 3D space. The second step is to assemble curves that de-
scribe the geometry of the ice surface transverse to the Track Profile Line, henceforth referred to as transverse
cross-sections, along the Track Profile Line. The third step is to interpolate between these transverse cross-
sections. At the end of this step, one obtains a distribution of points in 3D space. The fourth step involves
connecting the points, 3 at a time to obtain a mesh of triangles. This step is known as Triangulation. The final
step is a parametrization of this triangular mesh to obtain useful quantities for use in the dynamic model.

The aforementioned studies had complete access to construction and planning data for the tracks they use
(Whistler, Canada and Cessana Pariol, Italy respectively). This contains data on the Track Profile Line and
transverse cross sections as one moves down the track. The Netherlands does not have its own track and
requests for this data from track authorities of several tracks were not successful. Only information regard-
ing the Track Profile Line for the Olympic Track at Park City, Utah, The USA was obtained. To overcome this
deficit, video footage of a descent down the track is used to approximate the transverse cross-sections.

2.1. Method
2.1.1. Track Profile Line
The reference frame N used here is represented by a right handed orthogonal coordinate system X Y Z with
basis vectors êNx , êNy , êNz . Gravity acts in the −êNz direction. The Track Profile Line is first determined in the
horizontal X Y plane. In the available data there are two sources. The first is a plot of the right and left ex-
tremes of the track surface shown in Fig. 2.1 & 2.2 and is hereafter referred to as “Graph Source". The second
shows among others, horizontal curvature and elevation of the track profile line as a function of distance
along the track. It is shown in Fig. 2.3 and 2.4, it will be referred to as “Numerical Source".

Graph Source
The graph has two lines, the left side and right side extremes of the track surface, along with cross bars ev-
ery two meters measured along track direction, these can be seen in Fig. 2.2. By taking the mean between
the two extreme lines one obtains an approximation of the Track Profile Line. The line obtained is limited
in usefulness, for example it is hard to determine the exact point of transition between straights and curves
and neither does it contain elevation data. The importance of this will be made clear in subsequent sections.
It is however, used to overcome a deficit of the line obtained from the Numerical Source, which will also be
explained later.

3



4 2. Track Model

Figure 2.1: Graph Source for Track Profile Line at Park City, Utah. Curve 6 is highlighted by the red square, an enlarged view of this area
is shown in Fig. 2.2 below.

Figure 2.2: Graph Source - Enlarged view of curve 6. The numbers are distance measured along the track with cross-bars every 2 m

Numerical Source
The graphs here contain two important pieces of information used to reconstruct the Track Profile Line, they
are the horizontal curvature and elevation of the track surface at Track Profile Line and can be seen in Fig. 2.4.
The data from the horizontal curvature and slope is used to divide the line into straight and curved segments
as shown in Fig. 2.5. The Track Profile Line was divided into 34 segments. The segments are constructed
individually and for a straight segment of the track, a straight line of the required distance is created. While
for each curved segment, the data contains the length of the segment and radius of curvature, which are used
to create the segment. Starting with the first segment, the angle between the tangent to the line at its last
point and X axis is determined. The succeeding segment is first rotated by this angle and then translated to
the last point of the preceding segment. This process is repeated for all the segments to form the complete
Track Profile Line.
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Figure 2.3: Numerical Source for Track Profile Line at Park City, Utah, The USA. Region highlighted by red square is shown in Fig 2.4
below. It contains the data for the first 200 m of the track.

Figure 2.4: Numerical Source - Enlarged view of the data for first 200 m of the track at Park City, Utah, The USA
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Figure 2.5: Numerical Source - Using Horizontal Curvature to divide first 160 m of Track Profile Line into 5 segments

As in roads and railway track lines, the transition for straight segment (radius of curvature = ∞) to a seg-
ment with a finite radius of curvature or vice-versa is not instantaneous but gradual and can be described
by ‘clothoids’ [11]. A clothoid is a curve whose radius of curvature increases or decreases linearly along the
length of the curve. This information is missing from Numerical Source and leads to a Track Profile Line that
varies greatly from the one obtained from Graph Source as shown in Fig. 2.6.

Corrections were made to the line obtained using Numerical Source by trial and error, varying the ratio of
the length of a curved segment that is comprised of clothoids, starting from curve - 1 and then continuing
forward. Furthermore, each curved segment is assumed to have a clothoid of same length at the start and
at the end. For example, if the clothoid length to segment length ratio is 0.25. The entry clothoid is 0.125 of
curve length and so too is the exit clothoid. The clothoid at the start of a curved segment, the radius of curva-
ture decreases linearly, while it increases for the clothoid at the end of a segment. This proved suitable for all
curves apart from curve - 6 which appears to not have a clothoid at the end of the segment. Figures 2.6 and
2.7 compare the two profile lines before and after addition of clothoids to the line obtained from Numerical
Source.

Now that the Track Profile Line in X Y plane has been obtained the next step is to determine the line in 3D
space. From the Numerical Source, ‘Elevation At Finished Inside Surface of Track At Profile Line’ contains
elevation data measured every 10 metres along the Track Profile Line. When a value of elevation is required
for a point, whose distance is not a multiple of 10, it is obtained by linear interpolation. The Track Profile Line
in 3D space is shown in Fig. 2.8.



2.1. Method 7

Figure 2.6: Comparison of Track Profile Lines obtained from the two sources, Numerical Source without clothoids

Figure 2.7: Comparison of Track Profile Lines after clothoids are added to the line from Numerical Source
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Figure 2.8: Track Profile Line after addition of elevation as z-axis co-ordinates.

Discretization and Parametrization
To be able to assemble the transverse cross-sections in the next step, we need points along the profile line.
For straight segments we take a point every 0.5 m. For a curved segment, the number of points is determined
by the number of frames obtained from the video for that segment. For each point, a direction angle θd and
a slope angle θs are computed.

The direction angle θd is determined from the slope of the tangent to the profile line in X Y plane as shown
in Fig. 2.9. The slope angle θs is determined as follows

θs = arctan
(zi+1 − zi )

si
, (2.1)

where si is the arc length between point i and (i +1) measured along the Track Profile Line. These two an-
gles along with (xi , yi , zi ) coordinates of a point determine the rotation and translation of transverse cross-
sections.

Figure 2.9: Determining the direction angle at point (xi , yi )T of the Track Profile Line using the tangent to the line at that point. O is the
origin of the coordinate system associated with frame N

2.1.2. Assembly of Transverse Cross-sections
Approximation of Transverse Cross-Sections
The approximation of the transverse cross-sections is different for straight segments and curved segments of
the track, while the number of points that describe each cross-section is always 80.

Straight Segment
The transverse cross-sections of straight segments is assumed to be the same for all such segments of the
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track. The dimensions of this “standard cross-section" used here is taken from [11], it describes the dimen-
sions of transverse cross-section of the track at Whistler, Canada and is shown in Fig. 2.10.

Figure 2.10: Standard cross-section of track surface in all straight segments. PL stands for Profile Line. CL for Centre Line. FL for
Foundation Line. This image is from [11]

Curved Segment
For curved sections, the transverse cross-sections are approximated using video footage of a descent down
the track. Frames (still images) during traversal of a curved segment are extracted from the video footage. For
each frame, points are marked using ImageJ software [12]. An example is shown in Figure 2.11. The first 4
points comprise the side wall. These four points are used to rotate and scale the cross section. The distance
between points 1 and 4 is assumed to be equal to the height of the side wall in the cross-sections of straight
segments (0.475 m, Figure 2.10) and is used to scale the cross-section. The angle between the line formed
by joining point 1 to point 4 and y axis of the image is used to rotate the cross-section such that the line is
parallel to y axis of the image as shown in Fig. 2.11. Between point 4 and 5 is assumed to be a quarter circle
(of radius 0.125 m, Fig. 2.10) between side wall and flat floor. The points 5 to 8 represent approximately half
of the flat floor (0.625 m, Fig. 2.10) of the cross-section. Finally a Bezier curve [13] is interpolated between
points 8 and 20. More details about Bezier curves can be found in Appendix B. The resulting cross-section is
shown in Figure 2.12.
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Figure 2.11: Example of using ImageJ to approximate the transverse cross section of curved segments of the track. The x and y axes
form a local co-ordinate system to represent locations of pixels in the image

Figure 2.12: Transverse cross section of 80 points obtained by interpolating between the 20 points of Figure 2.11

Choice of Bezier Curves
Figures 2.13a and 2.13b show examples of the actual shape of a transverse cross-section. Such curves with
multiple types of conic sections would be better represented by B-Splines [6, 14], rather than Bezier curves
(which are a special case of B-Splines). But in the frames obtained from the video, we could neither determine
the transition between conic sections nor the nature of these sections with reasonable confidence. Though in
most cases it was possible to determine when the cross-section transitioned from the straight line of the floor
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to the curve, i.e. the start of the curve. The end-point interpolation property of Bezier curves [L1.1] is useful
here. Hence the decision to approximate a single smooth Bezier curve from the start of the curve (point 9 in
Fig. 2.11) to the end of the curve (point 20 in Fig. 2.11).

(a) From [11] (b) From [14]

Figure 2.13: Examples of the actual shape of transverse cross-sections

Assembly of Transverse Cross-sections
The next step is to assemble these cross-sections along the Track Profile Line. Each cross-section is first ro-
tated by the direction angle θd about Z axis and then by the slope angle θs about Y axis. After rotation, the
cross-section is translated to its position along the Track Profile Line. Figure 2.14 shows transverse cross-
sections aligned along the Track Profile Line for curve - 4 of the track. During a descent the athlete and sled
experience increases and decreases in velocity during traversal of a curved segments. This is not taken into
consideration when assembling the transverse cross-sections of these segments. Instead, cross-sections are
placed along the Track Profile Line such that they are equally distant to each other.

2.1.3. Interpolation Between Cross-sections
The minimum distance between individual cross-sections is 0.5 m in the straight segments. This distance is
even larger in curved segments. If one were to carry out triangulation now, it would lead to triangles with
a bad aspect ratio, that in turn adversely effect the simulation [6]. To reduce this distance we obtain more
cross-sections using interpolation. Here again, Bezier curve interpolation is used to obtain additional cross-
sections along the Track Profile Line. The interpolation is carried out at the segment level, that is the we start
by interpolating between the cross-sections of segment 1 only and then segment 2 only and so on.

Let the points obtained after assembling all cross sections as shown in Fig. 2.14 be represented by pk,i where
k identifies which cross section the point belongs to (along track distance) and i identifies the point within
the cross section (across track). Since each cross-section consists of 80 points i = 1,2,3, ...,80. Here, we inter-
polate between the points pk,i for a given i , so for each segment we are interpolating 80 curves. For a straight
segment, the parameter u of the Bezier curves is evaluated such that we obtain a cross-section every 0.1 m,
whereas each curved segment is made to comprise of 500 cross-sections.

Choice of Bezier Curves
While interpolating between cross-sections of a track segment, from the Numerical Source data we see that
a curved segment is preceded and succeeded by a straight segment. This is true for the track at Park City, we
are not aware if it is true for all other tracks. Thus we know the start and end of the curves with reasonable
confidence. The end-point interpolation property of Bezier curves (L1.1) is handy once again.

For a physics simulation one aims to attain surfaces with C 2 continuity. Due to the infinite differentiabil-
ity of B-splines in the interior span between two knots (property 2 of Bezier curves, L1.2), when interpolating
between cross-sections of a segment, continuity only needs to be considered at the end points. To achieve
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some level of continuity at the end points, the cross-sections that comprise a segment will be slightly altered.
If one were to consider the last three cross sections of a straight section as part of the succeeding curved seg-
ment then the points pk−2,i , pk−1,i , pk,i , pk+1,i , pk+2,i , where k is the cross-section at the altered end of the
straight segment and altered start of the curved segment. All these points will lie in straight line. Since the
cross-sections of a straight segment are equally distant from each other (0.5 m, this distance is before inter-
polation between cross-sections), the distances between these five points will also be equal. Subsequently
Eqn. (B.12) will be satisfied resulting in G2 between segments. The degree of the two Bezier curves will be
different as the number of control points are usually different in our case, but since one of them is a straight
line, degree elevation or reduction can be easily done to result in C 2 continuity at the junctions.

The use of video footage to approximate the individual transverse cross-sections, leads to noticeable dif-
ferences in shape and scale of the cross-sections obtained. This can be clearly seen in Fig. 2.14. The global
influence of a control point on the entire curve (L1.3) becomes useful. Properties 1 to 3 of Bezier curves (L1.1
to L1.3) combine to result in one smooth curve for a given i when interpolating between cross-sections of a
given segment. The cross-sections obtained after this round of interpolation are shown in Fig. 2.15. Above all
the most convenient aspect of the above method is that the points determined from video frames themselves
can be used as control points for the Bezier curves. Eliminating the need for computing them separately.

2.1.4. Triangulation
After interpolation between cross-sections, we obtain a distribution of points in 3D space. To obtain a sur-
face, a triangular mesh is generated which approximates a planar surface defined by these points. Triangles
are commonly used in computer graphics and physics simulations to represent plane surfaces as the mini-
mum number of points needed to define a plane is 3. Each cross section is defined by 80 points and conse-
quently, 158 triangles are obtained between two cross-sections. The final mesh contains approximately 1.7
million triangles and for each triangle, the centroid, surface unit normal and (two) unit tangential vectors are
computed. Figures 2.16 and 2.17 show the 3D point cloud and the triangular mesh obtained from it. Along
with ImageJ, MATLAB [15] is used throughout the track reconstruction process.
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Figure 2.16: Distribution of points obtained after interpolating between transverse cross-sections

Figure 2.17: Triangular mesh obtained from the points in Fig 2.16 above





3
Dynamic Model

This chapter describes our model of athlete-sled body and more importantly the contact model between the
sled and track surface as it descends down the track. For this simulator, we consider the motion of the sled
once the athlete has loaded on to the sled at the end of push-start phase. Later on, the time-stepping scheme
for the equations of motion is explained.

3.1. Sled Model
We assume the athlete and sled to be a single body, S. A frame B, is attached to the centre of mass of this
body. This body fixed frame is represented by a right-handed orthogonal coordinate system X ′Y ′Z ′ with X ′
as the longitudinal axis (forward/backward directions), Y ′ as the lateral axis (left/right directions) and Z ′ as
the vertical axis. The basis vectors of this frame are êBx , êBy , êBz . The combined body has mass m and mass

moments of inertia BIxx , BIy y , BIzz . For the mass moments of inertia of combined athlete-sled body we
consider a cuboid body, having dimensions of the athlete with height h, along X ′. The width w , measured
across frontal plane is along Y ′ and finally d , measured across sagittal plane is along Z ′.

Each of the two runners is represented by a line of length 2a. The runners are parallel to X ′ axis at all times.
The mid-point of each runner is fixed with respect to the centre of mass . These mid-points are a distance c
below the centre of mass and a distance b on either side of the centre of mass as shown in Fig. 3.1. The run-
ners are assumed to make contact with the track surface at the end points of the line. Thus there are 2 contact
points for each runner. At their mid-points, each runner can rotate about an axis parallel to Y ′ axis. These two
rotations are constrained such that they are equal and opposite to each other. α is the relative angle between
the two runners measured about an axis parallel to Y ′ axis. A mass moment of inertia Iα is associated with
α. While the dimensions b and c are very similar to the height and width of the sled. The length of the sled
can range from 0.8 m to 1.2 m. We assume the centre of mass to be located at the centre of a 1 m long sled.
With this assumption the athlete head would be displaced from S by approximately B(0.5,0,0)T . Henceforth,
when we say sled, we mean the combined athlete-sled body.

3.2. Forces
The Inertial Reference Frame N used for the dynamic model is the same as that used for the track reconstruc-
tion, represented by a right handed orthogonal coordinate system X Y Z with gravity acting along −êNz . We
categorise the forces acting on the sled into two types:

1. Contact forces:

• Normal (reaction) forces

• Friction forces

2. Non-Contact forces:

• Gravity

17
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• Aerodynamic forces

Figure 3.1: The figure shows the sled body S with axes X ′,Y ′, Z ′ of frame B. The dimensions a, b, c and angle α define the position of
four contact points pk w.r.t. S.

3.2.1. Contact Forces
We will only consider the contact forces that arise due to interaction of sled runners with the track surface.
Forces that arise due to contact of other elements of the sled with the track surface are neglected.

As mentioned in Section 3.1, the sled has four contact points and a contact is considered to be “closed" if
the the contact point lies on the track surface. The model assumes that all the four contacts are closed for
the entire duration of a descent, that is, bilateral constraints. The track is represented by a triangular mesh as
described in Chapter 2. During each time step of the simulation, the nearest triangle centroid to each contact
point is determined. Let pk be the position of a contact point and ck , n̂k be the position of the centroid and
unit normal vector of the nearest triangle (to point pk ) respectively. These three vectors are measured in In-
ertial frame N coordinate system. Then the displacement rk , between the contact point and triangle centroid
is

rk = pk −ck , k = 1,2,3,4. (3.1)

The dot product of rk with n̂k gives the distance of contact point pk from the surface. For the contact to be
closed, this distance must be zero. Thus the k constraint equations, one for each contact point are given by

Ck = rk · n̂k = 0. (3.2)

A closed contact experiences a normal (reaction) force and friction forces. Figure 3.2 shows a single contact
point and the vectors associated with the constraint equation.

Normal (Reaction) Forces
The magnitude of a Lagrangian multiplier λk , represents the magnitude of normal reaction force that acts on
a closed contact. The direction of these normal forces is the same or opposite to that of the respective normal
vector, n̂k when the contact point is above or below the surface respectively. Thus the net normal force is
given by

fN =
4∑

k=1
sgn(rk · n̂k ) |λk | n̂k . (3.3)

In Figure 3.2, we show a single contact point and the vectors related to the normal reaction force. Since these
normal reaction forces are implicitly taken care of through the constraint equations Ck , we omit them and
the resulting moments in the remainder of this chapter.
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Figure 3.2: This figure shows a contact point pk , the centroid ck and normal vector n̂k of the nearest triangle. Enforcing the constraint
Ck = rk · n̂k = 0, leads to Lagrangian multiplier λk whose action is represented by the dashed lines. Finally we show the normal reaction

force fn acting on pk .

Friction Forces
At each contact point pk , a friction force acts in the direction opposite to that of the relative velocity between
contact point and track surface. As we have a bilateral constraint at each contact point and a static track
surface, the relative velocity reduces to the velocity of contact point itself. Figure 3.3 shows the sled when
viewed from above. Let S be moving with a linear velocity vS and let Bωωω be the angular velocity of S in frame
B. The velocity of a contact point pk is given by

vk = vS +NRB(Bωωω×Bpk ), (3.4)

where, rotation matrix NRB rotates from B to N and Bpk is the position of contact point k with respect to S
in frame B. We do not consider the effect of α here hence Bpk is constant. This velocity can be resolved into
vlong parallel to the X ′ axis and vl at parallel to Y ′ axis as shown in Figure 3.3.

The simulation begins after the athlete has loaded onto the sled and and ideally ends when they cross the
finish line, at no point during a competitive descent should the sled come to a stop. In other words, we do
not encounter stick (static) state and are always in a state of slip (dynamic) friction in the longitudinal direc-
tion. This longitudinal friction force acting opposite to vl ong is modelled using a simple Coulomb dry friction
model and is given by

fC =−NRBêBx
4∑

k=1
µk |λk |, (3.5)

where, µk is the coefficient of friction at pk .

To quantify the lateral friction forces observed during motion of the sled, we use a model applied to tires
in vehicle dynamics. According to this model, the lateral force is the product of the normal contact force, the
angle between the longitudinal axis of the tire and velocity of the tire. For our case, the angle δk is the angle
between the velocity vector of the contact point vk and vlong as shown in Fig. 3.3. The lateral friction force
fL , acting opposite to vl at is given by
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fL =−NRBêBy
4∑

k=1
δkCS |λk | , (3.6)

where, the scalar CS is the cornering stiffness parameter.

The friction forces acting at the contact points lead to moments about the centre of mass S which are

BmC =−
4∑

k=1

Bpk ×µk |λk | êBx , (3.7)

BmL =−
4∑

k=1

Bpk ×δkCS |λk | êBy . (3.8)

Figure 3.3: Figure shows the decomposition of velocity of contact point k vk , into two components and the friction forces that act
opposite to the velocities.

3.2.2. Non-contact Forces
Gravity
The force due to gravity fG is

fG =−mg êNz , (3.9)

where, m is the mass of sled, g is the acceleration due to gravity and is equal to 9.81 m/s2.

Aerodynamic Forces
As the sled descends down the track it is subject to two aerodynamic forces. First, a resistive drag force that
acts in the direction opposite to its velocity. Second, a lift force that acts normal to the velocity in the positive
z-axis direction of the body-fixed frame B. Here lift force is neglected and only the drag force fD is considered
and is

fD =−1

2
CD AFρ|vS |vS , (3.10)

where, CD is the coefficient of drag, AF is the frontal area, ρ is the density of air and vS is the linear velocity of
S.

3.3. Athlete Steering Input
3.3.1. Shoulder and Knee Steering
One method by which a Skeleton athlete steers is by applying forces with their shoulders and knees on the
sled to deform it. This deformation changes the contact location and geometry between the runners and the
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ice surface leading to a change in friction force distribution and in turn to lateral forces and a moment. An
athlete has the freedom to apply forces using a single shoulder or single knee or combinations of shoulder
and knee, but due to the relative angle constraint between the two runners in our model the user effectively
has only two choices. They are using right shoulder with left knee simultaneously or left shoulder with right
knee.

This is realized through a generalized moment Mα acting on the relative angle between the two runners α.
Consider the two runners and track surface shown in Fig. 3.4 and let a moment couple Mα act on the relative
angle α between them. This generalized moment has the effect to reduce the Lagrangian multipliers λ1 and
λ4, while increasing λ2 and λ3. Since the friction force fC and lateral force fL are functions of λ values, this
changes the distribution of friction forces and the moments mC and mL . The final result is an acceleration
about the body Z ′ axis.

Figure 3.4: The effect of generalised moment Mα on Lagrangian multipliersλλλ. A positive Mα has the effect of reducing the magnitudes
of λ1 and λ4 while increasing λ2 and λ3. A negative Mα will increase λ1 and λ4 while reducing λ2 and λ3

3.3.2. Head Steering
A second method of steering involves tilting their heads to one side, changing the lateral distribution of aero-
dynamic drags forces and distribution of mass over the two runners to create small turning moments. This
method of steering is realized using an external moment MHS that acts on S about Z ′ axis.

3.3.3. Toe Steering
As toe steering is considered to be an emergency steering manoeuvre that considerably reduces velocity and
used in extreme cases only, it is neglected. More details about steering in Skeleton can be found in Appendix
A.

3.4. Equations of Motion
For a rigid body, the constrained equations of motion can be written in the form of Differential Algebraic
Equations (Eqn. (12.11) of [16]) as(

Mi j Ck,i

Ck, j 0kk

)(
ẍ j

λλλk

)
=

(
fi

−Ck, j l ẋ j ẋl

)
, (3.11)
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where, Mi j is the mass matrix, Ck, j is the Jacobian of the k constraints Ck with respect to the j generalized
coordinates x j and Ck,i = C T

k, j . The vector ẍ j , are accelerations of generalized coordinates x j . λλλk are the La-

grangian multipliers for the constraints Ck , whose physical meaning depends on the constraints. The vector
fi contains external forces and moments acting on the generalised coordinates. Finally −Ck, j l ẋ j ẋl contains
the convective terms of the constraint equations.

The generalized co-ordinates x j are

x j =
(
pS , qS , α

)T ,

where, pS = (x, y, z)T represents the position of the centre of mass of the body S. The orientation of the
body-fixed frame B w.r.t. N is parametrized using Euler Parameters, represented by the unit quaternion
qS = (q0, q)T . With the use of Euler parameters, the mass matrix Mi j is no longer constant. α is the rela-
tive angle between the two runners. Later on, we also use a Yaw-Pitch-Roll convention for describing the
orientation of the sled. In that context, X is the roll axis, Y is the pitch axis and Z is the yaw axis.

The vector fi contains the contact forces that are functions of the unknown Lagrangian multipliers λλλk and
can be moved the L.H.S. of Eqn. 3.11 using the matrix W defined as

W =



∂ fC
∂λλλk

+ ∂ fL
∂λλλk

∂BmC
∂λλλk

+ ∂BmL
∂λλλk

0k

 . (3.12)

fi can now be written as

fi =
 fG + fD

e
Mα

+Wλλλk , (3.13)

where e arises from the use of Euler parameters and is,

e = 2Q
(

0
BMC

)
+8Q̇

(
0 0T

0 BIC

)
Q̇T

(
q0

q

)
. (3.14)

The reader is referred to Chapter 19 and Appendix D of [16] for further reading on the terms that comprise e.

Using (3.12) and (3.13), Equations (3.11) now become(
Mi j Ck,i −W
Ck, j 0kk

)(
ẍ j

λλλk

)
=

(
f

i
−Ck, j l ẋ j ẋl

)
, (3.15)

where,

f
i
=

 fG + fD

e
Mα

 .

In succeeding sections, we will no longer use the Einstein Summation convention for subscripts and the
above system of equations are written as(

M C T
,x −W

C,x 0

)(
ẍ
λλλ

)
=

(
f

−C,x x ẋ ẋ

)
. (3.16)

3.5. Numerical Integration
For the numerical integration of accelerations obtained from (3.16), we use an implicit time-stepping scheme
based on the Generalised-α method [17]. It was first developed for use in structural dynamics, it allows for
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direct integration of second order differential equations and numerical dissipation of spurious high frequen-
cies that result from finite element discretization methods. Our implementation of the α method has two
parts. First, if the time at start of a time step is tn and end of the step is tn+1 with tn+1 = tn +∆t , the positions
and velocities at tn+1 are defined using Newmark-β expansions (exactly as Eqn. (4) and (5) in [17]) shown
below

xn+1 = xn +∆t ẋn +∆t 2
((

1

2
−β

)
ẍn +βẍn+1

)
, (3.17)

ẋn+1 = ẋn +∆t
((

1−γ)
ẍn +γẍn+1

)
. (3.18)

Second, we apply (6),(10-13) of [17] to (3.16). One way to think of this expanded system of equations is as
weighted averages between quantities at tn and tn+1. Accelerations are weighted by the parameter αm while
remaining quantities are weighted by the parameter α f as shown below(

(1−αm) Mn+1
(
1−α f

)
(C T

,x −W )n+1

(1−αm) (C,x )n+1 0

) (
ẍn+1

λλλn+1

)
+

(
αm Mn α f (C T

,x −W )n

αm(C,x )n 0

) (
ẍn

λλλn

)
−

(
1−α f

)( fn+1

−(C,x x ẋ ẋ)n+1

)
+α f

(
fn

−(C,x x ẋ ẋ)n

)
= 0.

(3.19)

If xn , ẋn , ẍn andλλλn are known, the only unknown quantities in the above 3 equations are ẍn+1 andλλλn+1 and
can be obtained using a Newton-Raphson type iteration. Below we present the time stepping algorithm that
solves (3.17), (3.18), (3.19) and prevents drift-off from the constraint equations at position and velocity level.

3.5.1. The Time-stepping Algorithm
1. xn , ẋn , ẍn and λλλn are known. Initial guesses for accelerations and Lagrange multipliers are ẍk

n+1 = ẍn

andλλλk
n+1 =λλλn , with iteration counter k = 0.

2. For the values of λλλk
n+1, we set the sign of corresponding coefficients µ and Cs such that for all con-

tact points. the products µλ and Csλ are positive. This ensures correct direction for all friction forces
irrespective of the sign of individual Lagrangian multipliers.

3. ẋk
n+1 and xk

n+1 are determined using (3.17) and (3.18). For the positions xk
n+1, an iterative Gauss-Newton

correction is performed to satisfy the constraint equations Ck . While the velocities are corrected in a
single step. Both corrections make use of Moore-Penrose pseudo-inverse [16].

4. The quantities quantities are used in (3.19). When ẍk
n+1 andλλλk

n+1 are not exact solutions the right hand

side will not be zero. These are the residuals r k
ẍ and r k

λλλ
. If maximum absolute value of residuals is lower

than desired tolerance, ẍk
n+1 and λλλk

n+1 are accepted as the solutions at tn+1. We move to the next time
step, starting from step 1. If not, proceed to next step.

5. Correct accelerations and Lagrange multipliers

ẍk+1
n+1 = ẍk

n+1 +∆ẍk ,

λλλk+1
n+1 =λλλk

n+1 +∆λλλk ,

with the correction values ∆ẍ and ∆λλλ given by(
∆ẍk

∆λλλk

)
=−

(
(1−αm) Mn+1

(
1−α f

)
(C T

,x −W )n+1

(1−αm) (C,x )n+1 0

)−1 (
r k

ẍ
r k
λλλ

)
.

6. Increment k and repeat steps 2 to 5 while maximum absolute value of residuals is greater than consid-
ered tolerance or until kmax .

The parameters of numerical damping γ,β,αm andα f are given by Eqn. (17), (20) and (25) in [17]. With these
values the Generalised-αmethod achieves unconditionally stability (in linear regime), second order accuracy
and minimal low frequency dissipation. For computingαm andα f from (25) of [17], we choose ρ∞ = 0, which
means any high frequency response should be eliminated after one time step. We have then set a limit for the
number of iterations kmax = 20 and tolerance for the residuals is 10−12 for both accelerations and Lagrange
multipliers. Finally, the initial accelerations and multipliers at tn = t0, ẍ0 and λλλ0 are determined by solving
(3.16).





4
Simulation Setup

This chapter goes into detail regarding the platform for the real-time simulation that makes use of the equa-
tions of motion and integration algorithm described in the previous chapter. Following which the estimation
of the various parameters and validation of the platform is discussed.

4.1. Input Device
The input device that allows one to interact with simulation is an Xbox One game controller. We read the
positions of the two joysticks along their respective x axes which are normalised to be between −1 and +1.
Figure 4.1 below shows the controller along with the considered joysticks. The output of joystick axes are
preferred to those of buttons as the output of the latter is binary, either a 0 or 1. The x position of joystick 1 is
considered for Mα that represents shoulder and knee steering force, while that of joystick 2 is considered for
head steering moment MHS .

Figure 4.1: The game controller used as steering input device. The figure shows the two joysticks along with considered axes. x axis of
joystick 1 acts as input for shoulder and knee steering through Mα while that of joystick 2 acts as input for head steering through MHS .

25



26 4. Simulation Setup

4.2. Visualization and Output Device
The code for the numerical integration and most of the track reconstruction was written in MATLAB as it
offers advantages for vectorized operations that are performed. Unfortunately, MATLAB is not well suited for
real-time graphics rendering. This task is handled by Unity game engine. A TCP/IP network connection is
established between MATLAB and Unity with Unity as the server and MATLAB as the client. After each time
step of the numerical integration, the position and orientation of athlete head location is sent from MATLAB
to Unity. Athlete head orientation is that of frame B w.r.t N. From Sec. 3.1, the position of athlete head is
estimated as

p A = pS +NRB

 0.5
0
0

 . (4.1)

This position and orientation is used to control that of a virtual camera in an environment that contains the
track surface. The position and orientation of the camera is updated at a rate of 30 Hz. For the simulated runs
performed, the output device is a stationary screen as shown in Fig. 4.2 below.

Figure 4.2: The simulation setup. On the left, a user provides steering input using a controller. The computation is performed in
MATLAB on the laptop in the centre. The position and orientation on track is displayed in Unity on the screen in the background.

4.3. Parameter Estimation
The equations of motion described in Chapter 3, contain a large number of parameters whose values must
be appropriately estimated for a successful simulation. The reasoning behind this will be explained here, the
parameters will appear in the same order as their appearance in Chapter 3.

Sled Model Parameters
The mass of the sled m, is assumed to be 115 kg, which is the maximum permissible limit for combined mass
of athlete and sled for participation in IBSF competitions [18]. Most athletes perform runs close to this max-
imum limit by adding additional weight on to the sled. The dimensions of the sled is assumed to be that of
just the athlete. The athlete chosen for the simulation is Akwasi Frimpong from Ghana, having a height h of
1.73 m, this was obtained from the International Bobsleigh and Skeleton Federation website1. The remaining
two dimensions w and d were approximated to be 0.45 m and 0.23 m respectively [19].

The distance between two contact points on the same runner was initially chosen to be 0.035 m based on
the results of the model formulated in [20]. Thus, a = 0.0175 m. The distances b and c are chosen based on
the restrictions set by IBSF rules for Skeleton [18]. The distance between two runners along the lateral Y ′ axis

1https://www.ibsf.org/en/athletes/athlete/263856/Frimpong Retrieved 01/11/2019

https://www.ibsf.org/en/athletes/athlete/263856/Frimpong
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of the body fixed frame is restricted to be between 0.340 m and 0.380 m. For our model, we take the mean of
these two distances resulting in b = 0.180 m. The frame on the sled upon which the athlete rests is between
0.08 to 0.12 m above the track surface. As the body is the combined athlete and sled body, we take c = 0.125
m. The moment of inertia associated with generalized coordinate α is initially assumed to be zero.

Coefficients of Friction
The coefficient of friction between runners and ice surface is itself dependent on a number of parameters.
Here will consider only the differences that arise due to the changes in contact geometry between the front
half and rear half of a Skeleton runner. The geometry front half of the runners is identical to that of a Bob-
sleigh runner [20]. This coefficient is chosen to be µ f r ont = 4× 10−3. The value was used by Rempfler and
Glocker for their Bobsleigh simulator [6] and is considered to be on the lower side of previously reported val-
ues for Bobsleigh runners.

The geometry of the rear half of the runner differs significantly, more closely resembling that of a speed skat-
ing blade. There has been one previous attempt to quantify it and the maximum reported value is 5.7×10−3

[20]. This is at the higher end of the values reported by de Koning et al. [21] for speed skate blades. To begin
with, we take µr ear = 6×10−3.

Cornering Stiffness
The magnitude of a steering force given by Eqn. (3.6) is,

fL =Csδ|λ|, or

fL

|λ| =Csδ.

The steering force fL can not be larger than the contact normal force |λ|, therefore

Csδ≤ 1, or

Cs ≤ 1/δ

The maximum value of the steering angle δ is estimated to be 0.0873 rad. (5°). The value is half of the maxi-
mum allowable steering angle for a particular Bobsleigh construction [6]. Given that the runners of a Skeleton
sled cannot be rotated like those of Bobsleigh, it is not expected that the an angle greater than this will be en-
countered during a descent. Thus,

Cs ≤ 11.5

Aerodynamic Drag Parameters
This drag force is dependent on three parameters. First, the coefficient of drag CD , we take this to be 0.38,
which was used by Roche et al. in their model for Skeleton [5]. Next, the frontal area AF is assumed to be
equal to the rectangular area formed by the dimensions w and d of the athlete. Finally the density of air ρ is
1.275 kg/m3.

Integration Time Step
The time step for the simulator was chosen based on the average iteration times for 2 seconds of simulated
descents on a flat and straight segment. This mean iteration time was usually close to 0.5×10−3 s and hence
we use a time step, ∆t = 0.01 s.

4.3.1. Initial Conditions
Athletes begin steering once they jump on to the sled close to the 35 m mark. We take this as the starting posi-
tion, with a speed of 40 km/hr. The position is corrected using a Gauss-Newton algorithm and subsequently
the velocity is corrected to ensure that they satisfy the constraints Ck . The initial accelerations ẍ0 are then
determined by solving Eqn. (3.16).
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4.3.2. Trial Simulations
With the parameters and initial conditions above, attempts were made to replicate the path taken as seen in
the accompanying video2. First observations were that lateral movement of the sled was larger than expected
while the amount of rotation about Z ′ axis was lesser than observed in the video. The coefficient for the rear
contact points was tuned to by a factor of 2 to be µr ear = 12×10−3. While the cornering stiffness parameter
was reduced by a factor of four. Thus Cs = 2.5.

The second preliminary observation was oscillations in the values of Lagrangian multipliers as the sled tra-
verses a curved segment. To mitigate this, first we tuned the moments of inertia BIy y and Iα to be

BIy y = 0.675× 1

12
m(h2 +d 2),

Iα = 0.325× 1

12
m(h2 +d 2).

Second, the distance between contact points on the same runner was tuned to a = 0.175 m. The differences
are shown in Fig. 4.3 and 4.4.

Scaling Mα & MHS Steering Input
The position of the joystick is normalised to be between −1 and +1 and has to be scaled appropriately. To de-
cide the maximum value of Mα for joystick 1, we observed the effect that a linear increase of its value from 0 to
200 has on the yaw acceleration during traversal of a straight flat section of track. This is shown in Fig. 4.5. We
saw that Mα has a maximum effective value beyond which further increases do not increase the yaw acceler-
ation. This happens when the magnitude of the two Lagrange multipliers that are reduced as a consequence
of Mα (see Fig. 3.4) reach zero. Further increase in Mα, leads to a change in sign and increase in magnitude.
This means there is no further increase in difference of magnitudes between opposite side multipliers (Left
Front vs. Right Front & Left Rear vs. Right Rear). We actually see small decreases in the difference between
the rear contact points as Mα increases further. We attempt to illustrate this in Fig. 4.6. This occurred close to
Mα increasing past 100 and we take this as the limit. For MHS we took an arbitrary maximum magnitude of 10.

Figure 4.3: The above plots show the oscillations of Lagrangian multipliers as the body rotates during traversal of curve, with zero
steering action and parameters a = 0.0175, BIy y = 1

12 m(h2 +d2), Iα = 0.

2https://www.youtube.com/watch?v=bgPEQ4rWLNI Retrieved 01/11/2019

https://www.youtube.com/watch?v=bgPEQ4rWLNI
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Figure 4.4: The above plots show the Lagrangian multipliers as the body rotates during traversal of curve 1, with zero steering action.
The effect of changing the parameters to a, BIy y , Iα can be clearly seen when compared to Figure 4.3
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5
Results and Discussions

In this chapter we examine the results of simulated runs. We initially look at paths traversed and computation
times before making more detailed observations. Finally, we attempt to validate the simulator using time
elapsed for traversal of certain segment of the track and the sum of Lagrangian multipliers.

5.1. Results
First attempts were made at real-time, the furthest distance travelled was past the exit of curve 2. We then
proceeded to run the simulator at a slower speed, 4 times slower to be exact. At this play speed we were
able to reach the end of curve 4 consistently. We present the results of five runs that were longest in terms of
duration. The paths traversed can be seen in Fig. 5.1. In Table 5.1 we show the total duration and mean of
computation times for each time step of these runs.

Figure 5.1: Paths traversed in X Y plane during simulated runs at real-time speed.

Table 5.1: Total duration of and mean computation time per time step for real-time simulation runs

Run # 1 2 3 4 5
Total Duration (s) 8.59 11.36 8.37 8.82 10.14

Mean Computation Time (s) 0.0060 0.0064 0.0064 0.0063 0.0068

33



34 5. Results and Discussions

We carried out 15 runs at a slower speed. Here again we restrict our results to the five runs that last the longest
in terms of duration. The path traversed is illustrated in Figures 5.2 and 5.3. While computation times are pre-
sented in Table 5.2. The simulation speed is reduced using ‘pause’ command in MATLAB at the end of the
computation of a time step and hence we can still determine the computation time for each time step.

Table 5.2: Total duration of and mean computation time per time step for slower simulation runs

Run # 1 2 3 4 5
Total Duration (s) 15.99 16.39 17.05 17.82 18.25

Mean Computation Time (s) 0.0063 0.0061 0.0065 0.0062 0.0059

Next, we plot the (absolute of the) sum of magnitudes of contact Lagrangian multipliers for these 5 simula-
tions in Figure 5.4. The rolling action during traversal of curve 4 can be seen in the reduction of these sums
towards the end. In both Runs 4 and 5, the user was able to reach the exit of curve 5 before losing control and
subsequent stoppage of the simulation. We choose Run 4 for further investigation as both traversed the same
distance as seen in Fig. 5.2 but 4 did it quicker than run 6.

Figure 5.2: Path traversed in slower simulation runs in X Y plane.

For Run 4 we present more data, starting with the steering input given by the user in Fig. 5.5. Followed with
linear velocity and accleration in Fig. 5.6 and 5.7. We then proceed to show the orientation of sled frame B

w.r.t. Inertial frame N in terms of Euler angles using a Yaw-Pitch-Roll convention along with velocities and
accelerations of these angles. This is shown in Fig. 5.8. Finally we show the change in energy per time step in
Fig. 5.9 and the angle δ for all four contact points in Fig. 5.10.
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Figure 5.5: Steering Input given by user for Run 4

Figure 5.6: Linear Velocity of centre of mass S for Run 4 of slower descents.

Figure 5.7: Linear Acceleration of centre of mass S for Run 4 of slower descents. Unusually high acclerations are seen close to stoppage
of the simulation.
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Figure 5.9: Change in Energy during Run 4. Excluding a peak close to the 1400th time step, energy is dissipated at every time step.

Figure 5.10: Steer angles of all four contact points during Run 4. For most of the simulation, the angle stays within reasonable bounds.
Unexpected high values are seen as the simulation begins to fail.

5.1.1. Validation
Computation Times
In Figure 5.11, we highlight time steps for which the computation time was longer than the time step for the
simulations run in real-time. Our initial choice for time step, ∆t = 0.01 s based on computation time on a
straight flat section seems to hold even for longer distances travelled and traversal of curves. Out of little
more than 4700 steps, 136 took longer than the integration time step. Most of these time steps are clustered
towards the end of a run just before the simulator fails. The stoppage is seen with the increase in number of
iterations needed to solve the equations of motion (3.19) as seen in Fig. 5.12. The first few time steps also
seem to take longer in every run even though only 3 or 4 iterations are needed. The exact cause is unknown.
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Figure 5.11: The plot shows computation times that were longer than the integration time step ∆t for real-time simulations. The longer
steps are clustered just before stoppage of the simulation for that run.

Figure 5.12: The number of iterations taken to solve (3.19) for real-time simulations. which increases to the maximum 20 as the
simulation begins to fail.

For the slower simulations, we show the same computation time data for Run 4 in Fig. 5.13 & 5.14. We see
similar trends to the real-time simulations.
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Figure 5.13: The plot shows computation times that were longer than the integration time step ∆t . The longer steps are clustered just
before stoppage of the simulation for that run. This considers Run 4 of the slower speed simulations.

Figure 5.14: The number of iterations taken to solve (3.19) for Run 4 of slower speed simulations. which increases to the maximum 20 as
the simulation begins to fail.

Elapsed Time
Next, we compare time elapsed during traversal of a segment of the track in simulated runs to those of actual
races. At the Park City Utah track, the first split time is recorded at the entry to curve 1 and the second time is
recorded at the entry to curve 6. Since we have reliable data only up to curve 4. We consider the time taken
from split 1 to entry of curve 4. We take the mean times of the first three competitors from footage available
for Heat 1 of Men’s Skeleton event at the IBSF World Cup during the 2017/18 season 1. To extract this time
from the simulated runs we determine the number of time steps taken from entry of curve 1 to entry of curve
4. Based on the divsion of segments and interpolation between cross-sections in Sec. 2.1.3, entry to curve 1

1https://www.youtube.com/watch?v=hMz8q5syGrE&t=378s

https://www.youtube.com/watch?v=hMz8q5syGrE&t=378s
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is approximated to when the centre of mass crosses the set of triangles formed by the 500th and 501st cross-
sections, while entry to curve 4 is when it crosses those formed by 2800th and 2801st cross-sections. For this
we consider the simulated runs that were run at slower speed. These times along with speed at the entry to
curve 1 are shown in Table 5.3.

Table 5.3: Comparison of Time taken to travel from entry to curve 1 to entry to curve 4 and speeds at entry to curve 1 between simulated
descents and actual descents.

Mean Time - Curve 1 to 4 (s) Mean Speed - Entry to Curve 1 in (m/s)
Competition descents 9.127 12.611

Simulated runs 10.534 12.470
Percentage Difference 15.41% 1.12%

Sum of Lagrange Multipliers
The sum of magnitude of Lagrangian multipliers provides a second means to validate the model. We compare
this sum to the weight of the sled body acting normal to the track surface for Run 4 in Fig. 5.15. The weight of
the sled normal wS to surface is computed using

wS = m|g |cosφ. (5.1)

where, m is the mass of combined athlete-sled body, g is the acceleration due to gravity andφ is the roll angle.

Figure 5.15: (Absolute of) Sum of Lagrange multipliers and weight of sled normal to track surface for Run 4.

5.2. Discussions
5.2.1. Validation
Computation Times
For most of the simulated time steps, the algorithm (Section 3.5.1) proves to be fast enough. For the runs
simulated at real-time speeds, out of around 4728 time steps, around 136 took longer than the integration
time step ∆t chosen. This is around just 2.87 %. We look closer at the computation times for Run 4 of the
slower simulations. In total 27 steps took longer to be computed than chosen ∆t . Out of these 18 are clus-
tered towards the end of the simulation. If we were to neglect them, just 9 of the 1700-odd time steps took
longer, which is just 0.016 %.

We see a minor correlation in the number of iterations needed to solve the equations (3.16) and traversal
of curved segments. To illustrate this we plot the number of iterations against the roll angle in Figure 5.16.
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The roll angle serves as an approximation for radius of curvature as it tends to increase as radius of curvature
of segment reduces. On first glance it may appear that high angles cause problems in solving the equation of
motion but we look back to fig. 5.14 we see that most the 20-iteration time steps occur towards the end just
before stoppage of the simulation. We believe it is a good sign that the number of iterations does not increase
drastically with the roll angle. For flat sections it appears that the algorithm requires between 3 to 4 iterations.

Figure 5.16: Number of iterations as a function of roll angle for Run 4

Elapsed Time
In Table 5.3 see that the simulated runs take around 1.5 seconds longer. There are multiple reasons for the
mismatch. First, are errors in the approximation of time elapsed for simulated runs and time at entry to curve
4 in the actual descents. Second we don’t believe the path taken during the simulated runs are optimal, there
are impacts with side wall in most runs. Finally, either the damping introduced through the time stepping
scheme (Section 3.5.1) or the increase in rear contact point friction coefficients (from 0.006 to 0.012) could
be too high. The difference of 15% is quite high for a sport where the winning margins are fractions of a sec-
ond. Even so, whether this slower descent time actually makes the simulator less effective as training tool is a
question that needs to be answered. Not today, but when complete descents are possible.

Sum of Lagrange Multipliers
In Figure 5.15, we see that the sum of Lagrange Multiplier values closely follows that of the weight of sled
normal to track surface. The two troughs as the sled traverses curve 4 are a result of the rise and fall of the
sled, this is a well known phenomenon in the sport [24]. The sled usually will not travel a curve in such a way
that there is zero across track movement due to the changes in components of both inertial (centrifugal or
centripetal) forces and weight of sled that are normal to track surface.

On the whole we consider the validation a partial success. The algorithm is fast enough, the contact La-
grangian multipliers behave as expected, but the elapsed time compared poorly to real world ones. The ideal
scenario is one in which we are able to complete a descent of the entire track and the descent time matching
that of real world descents.

5.2.2. Additional Observations
We would like to discuss a few more observations from Run 4. First, the choice of using joysticks over buttons
seems inconsequential as the user tends to use them at their respective maximum values as seen in Figure
5.5. This could mean that the effect produced is not enough to steer the sled down the optimal trajectory.
Next, there is a drastic increase in loss of energy and extremely high (linear and rotational) accelerations are
seen prior to stoppage of the simulation as seen in Fig. 5.7, 5.8 and 5.9, which needs further investigation.

Third, we turn your attention to Fig. 5.10, that shows the steering angle δ for the four contact points dur-
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ing Run 4. We see that all four angles have the same sign and nearly the same magnitude for the duration of
the simulation. This means that the contribution to vl at (Fig. 3.3) from the linear velocity of S vs , (term 1 of
R.H.S. of Eqn. (3.4)) is usually much higher than that of velocity given by NRB(Bωωω×Bpk ) (term 2 of R.H.S. of
Eqn. (3.4)).

Now we turn our focus towards the experience of using the simulator. The users found it very hard to control
the sled in real-time. An obvious reason is that they are not accustomed to the speeds involved with the sport.
Slowing down the playback speed of the simulation did help but still a complete descent of the track was not
possible. It would be a good idea to have a Skeleton athlete try the simulator, they might be able to provide
better feedback based on their experience of sliding down tracks and would naturally be better judges of the
simulation.

5.2.3. Track Model
A video of a descent following a pre-determined path down the generated surface was shown to a skeleton
athlete, Akwasi Frimpong who regularly trains at the Park City track and positive feedback was received re-
garding likeness to the actual track. But due to the nature of the source information, mainly the use of video
footage to approximate the transverse cross-sections, the surface generated is an approximation of the track
surface. First, using 2D images to approximate a line in 3D space leads to errors. Second, the decision to
assemble the cross-sections in curved segments equally distant from each other leads to further deviation
from actual track surface. We believe this could be one of the reasons that controlling the sled while exiting
a curve is difficult. Usually, the sled accelerates as the roll angle reduces and the cross-sections towards the
end might have to be placed further apart.



6
Conclusions

We begin this chapter by summarising the work presented in this thesis and the results of this first attempt
at developing a real-time simulator for the sport of Skeleton. We end by providing directions for future work
that could help realize a real-time training simulator.

6.1. Conclusions
This work started out with the single goal of developing a real-time simulator for the sport of Skeleton. We
haven’t achieved that goal yet but we have come a very long way towards it. In Chapter 2, we presented a
simple method to approximate the track surface used in the sport. This method relies on video footage and
the use of Bezier curves. It’s reliance on video footage is both a boon and a bane. Not being heavily reliant
on construction data allows one to circumvent the lack of access to said data. The problem is that the ap-
proximated surface can deviate substantially from the actual surface due to human error. The repeated use
of Bezier curve interpolation quite easily generates a surface that has been successfully used for simulations,
albeit for partial descents.

In Chapter 3, we presented a model to describe the behaviour of the sled and athletes steering capabilities.
It utilizes changes in distribution of contact forces between the two runners to allow for steering, this in line
with previous literature [20, 23, 24]. In the simulated runs we also observe that one can steer the sled down
the track using this model. In these simulated runs, of those that were performed at real-time speeds, the
user is able to steer up to exit of curve 2 before encountering troubles. While for a simulation run four times
slower, users could reach the fourth curve on a regular basis. Most of the troubles arise during the exit of
curves. For these simulated runs, we used an integration time stepping scheme based on the Generalised-α
method. This scheme proved to be quick enough for almost all time steps. This is a great sign for us as we did
not put any efforts towards optimizing the run time of the MATLAB code.

We chose a video game controller to serve as input and visualize the position and orientation along the track
on a stationary screen. With all the bits and pieces of the simulator setup and working, we attempted to vali-
date the simulator comparing times for traversing a segment of the track and the sum of contact Lagrangian
multipliers. This was met with mixed results. The elapsed time for simulated runs 15% slower than actual de-
scents. While the Lagrangian multipliers showed a behaviour that was expected, closely following the weight
of the sled acting normal the track surface. We are quite pleased with the performance of the simulator and
hope that future improvements can bring the simulator to a stage where athletes use it. We present possible
directions for future work in the section that follows

6.2. Recommendations for Future Work
We believe this simulator lays a solid foundation to explore multiple topics related to real-time simulation of
the sport. The shear number of parameters mean that multiple studies can be done to determine their effects
on the simulation. Take for example the magnitude of integration damping ρ∞, it could be that it is introduc-
ing excessive damping and thus an optimal value other than 0, needs to be determined. The dynamic model
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(Chapter 3) can also be extended to include the effect of contact between the athlete-sled body and the track
surface other than the runner contact. This could mean extending the current system of equations with those
that describe impact like in [6].

For a second direction on improvements, we go back to the original motivation for this project and ask, how
might this be made into a ’training simulator’ that athletes use on a regular basis?

We have previously noted that the track model created using the method presented in Chapter 2 is a rough
approximation of the actual surface. The more accurately the surface can be represented, the more beneficial
will the experience of using the simulator be for the athletes. To this end, a better method must be developed.
A method that could eliminate human error from this process would be interesting direction to start with.
Since track authorities are reluctant to grant access to construction data, this new method would also have to
rely on using the video footage of descents, which is more easily obtainable.

Concurrent to the development of this simulator at TU Delft, there was a project to develop a sensor package
to instrument a Skeleton sled. One part of this package are novel force sensors that measure the forces an
athlete applies on the sled through their shoulders and knees. We believe using such an instrumented sled
as the input device will drastically improve the realism and immersion for athletes using the simulator when
compared to using the controller.

Continuing on the immersion a user feels as they use the simulator, Levy and Katz [7] highlight several ideas.
They note sound and visual sensation of speed as important to improving immersion. In contradiction to
other simulators developed for Bobsleighing [6, 8], they chose against using a motion platform to simulate
roll rotation during a descent as coaches believed it would provide athlete with incorrect feedback. Realism
and immersion aside, questions regarding feedback and analysis of simulated runs need to be answered. The
use of the instrumented sled for practice runs on track and simulated runs will lead to much more data being
made available to athletes and coaches. Making this data useful to them will be a challenge of its own.



A
Skeleton - The Sport

A.1. Introduction
Skeleton is one of three track-bound sliding sports that feature in the Winter Olympics, Bobsleigh (or Bobsled)
and Luge being the other two. Skeleton was permanently added to the Winter Olympics programme in 2002.
Bobsleigh and Skeleton are governed by a single body the International Bobsleigh and Skeleton Federation
(IBSF).

The differences between these three sliding sports include the sled used, the ice skates (or runners), the num-
ber of participants and the posture maintained by the athletes during a run. In Skeleton, athletes ride on ice
covered tracks in a head first, prone position [22]. Another key difference between the three sports, is at the
start of each run as shown in Fig. A.1. With Skeleton, the athlete sprints while pushing the sled alongside
them until they have reached their top speed and then ‘load’ by jumping on to the sled and assuming race
position. This is a key component of the competition, as once they load onto the sled, gravity is the sole ac-
celerating force. No means of propulsion are allowed, yet speeds in excess of 130 km/h are routinely achieved.

(a) Skeleton (b) Luge

(c) Bobsleigh

Figure A.1: Start phases of track-bound winter sliding sports. Both Skeleton and Bobsleigh involve pushing a sled while running. In
Luge start phase, athletes use upper limbs for propulsion.

The athlete steers by changing the distribution of his weight on the sled or by applying forces on the sled to
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deform it and this in turn changes the contact area and force between the runners and track surface which
changes the distribution of friction forces, resulting in lateral forces and a turning moment about the centre
of mass and loss in energy [22, 23].

A.2. Skeleton Sled
From Roberts [24],
“The skeleton sled comprises of three main elements, (Fig 1.2):

1. Frame: the frame of the skeleton sled is a steel construction, approximately shoulder width and shoul-
der to knee in length. In its most basic form, it is a rectangular steel frame with a centre saddle to
support the athlete’s body.

2. Bellypan: mounted onto the underside of the frame is a smooth outer covering usually of fibreglass or
carbon fibre composite which not only acts as an aerodynamic aid sealing the underside of the sled but
also ensures the outer of the sled is smooth for athlete protection.

3. Runners: securely fixed to the left and right side of the frame are two steel runners that pass through the
bellypan at the mounting points and run beneath the sled. They are the components in direct contact
with the ice which enable the athlete to control the position of the sled."

Figure A.2: The three main components of a Skeleton sled. From left to right, the frame, the bellypan and the runners. From [24]

A.3. Runner-Ice Surface Interaction
Apart from aerodynamic drag, the other resistive force to the sliding motion in these winter sports is the fric-
tion between the runners and ice surface. It is estimated that a change in coefficient of friction from 0.004
to 0.006 is sufficient to cause a potential first place finish to end up outside the top six [25]. In reality, it is
not just a question of minimizing the coefficient of friction at all costs, but is actually a compromise between
steering control and friction [24]. The lower the coefficient of friction, the lower the effect of steering actions
as well. So with reduced friction, an athlete will slide faster but will have less control over the direction of
sliding. There have been a few attempts to determine the coefficient of friction of Bobsleigh runners from
experiments, the results are summarized in Table A.1.
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Coeff. of Friction (x 10−3) Velocity in m/s Ice Temp. in oC Source
9±2.5 1.5 −1 to −10 [26]

4.2±0.9 1 to 10 −2.2 to −4.6 [27]
5.3±2.0 16 to 35 −10.6 [28]

4±1 5 Not stated [29]

Table A.1: Values of coefficient of friction for Bobsleigh runners sliding on ice determined from experiments

The parameters that have been observed to affect runner-ice friction include:

• Ice temperature [25]

• Air humidity [30]

• Shape of runners [31]

• Material properties of runner

– Heat transfer coefficient [25]

– Elastic strength [25]

• Sliding speed [25, 32]

Based on a model for speed skating blades Lozowski et al. developed a model for the friction between Bob-
sleigh runners and ice surfaces [31]. This model was later extended to Skeleton runners [20]. The model
assumes that the friction force between runner and ice surface is the sum of two forces. The first force is due
to the plastic deformation of the ice as the runner penetrates the ice surface and is called the ploughing force,
Fp . A key aspect is the contact geometry. Bobsleigh and Skeleton runners have a longitudinal and a trans-
verse radii and the resulting contact area is a semi-ellipse. The longitudinal radius is commonly referred to as
the ’rocker’ radius. Figure A.3 shows the key variables of this model when viewed normal to the direction of
sliding.

The second force arises from the flow of the liquid water layer that is present on the ice surface and is the
shear force, Fs . The thickness of this layer is increased by heat conduction into ice and by frictional heating
between runner and ice. As the runner slides over the ice, this water is squeezed out by the pressure between
runner and ice surface as seen in Fig. A.4. Due to the viscosity of water, a shear force acts opposite to the
direction of motion.

Figure A.3: The figure shows the deformation of ice surface as the runner slides along it, where longitudinal (rocker) radius is r1, the
maximum depth of penetration is dm , thickness of lubrication layer is h and length of contact region is l . Taken from [31].
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Figure A.4: The figure shows the transverse cross section of the runner at maximum depth of penetration while it slides across the ice
surface, where the arrows outward from the lubrication layer at ice surface show the direction of flow of the water. dm is maximum

depth of penetration and ym is half the contact width at that point. Taken from [31]

A.4. Steering In Skeleton
Compared to steering in Bobsleigh where the front pair of runners can be rotated, steering in Skeleton is a
more complex process primarily involving changes in the runner-ice contact geometry and force distribution.
A Skeleton runner differs from a Bobsleigh runner due to presence of a spine which is the result of one or two
grooves that are cut in to the runners. These grooves are what allow for steering manoeuvres to be possible
from the deformation of the runners and also provide increased lateral stability when the runners penetrate
deeper into the ice surface. Figures A.5a and A.5b show an example of the runners and the restrictions placed
by the IBSF on the dimensions of the runner and grooves.

(a) Grooves with resulting spine. From [24] (b) IBSF restrictions on grooves. Dimensions in mm. From [18]

Figure A.5: Grooves found on the rear half a Skeleton runner

There are 3 methods of steering in Skeleton categorized based on body part used and they are1 [20, 23, 24, 33]:

1. Head steering

2. Shoulder and Knee steering

3. Toe steering

1Personal Correspondence - Akwasi Frimpong, Skeleton Athlete
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Head Steering
This method of steering is used for small direction changes in straight sections. The athletes tilt their head
towards the side they wish to turn as shown in Fig. A.6. This leads to a small change in the distribution of
aerodynamic drag forces and the weight distribution between the two runners. The magnitude of steering
achieved by this method is small and it is restricted to straight sections of the track where shoulder and knee
steering cannot be used effectively.

Figure A.6: A Skeleton athlete attempting to steering using his head, the unequal distribution of body mass about a vertical plane at the
mid-point of sled width approximated by A-A can be seen.

Shoulder and Knee Steering
This method of steering involves applying forces with the shoulders and knees on to the sled frame, deform-
ing it. This deforms the runners, changing the contact area and increasing the friction force on one runner
compared to the other. Athletes use either a single shoulder or a single knee, or they use a combination of
a shoulder and a knee to apply the force as shown in Fig. A.7. When a shoulder is used, it shifts the contact
area forward compared to the no force applied condition. This reduces the length of spine contact of that
runner. Subsequently friction on the side of the shoulder used is reduced and the sled turns towards the op-
posite side. When a knee is used, the opposite is true. Contact area shifts backward, length of spine contact
increases, friction on that runner increases and sled turns to the side of application of force. Changes in con-
tact area are visualized in Figure A.9. A combination of shoulder and opposite side knee are used when large
steering forces need to be applied.
In his thesis, I. Roberts describes two types of sleds based on the steel frame construction, they are shown in
Figure A.8. While not highlighted in the figure, sled B has a more rigid frame compared to sled A. The pivot
point of Sled A is closer to the shoulders than the knee. This according to Roberts leads to knee-dominant
steering, possibly as the bending moment acting on the hinge increases due to increase in distance from
hinge to knee. While sled B with its pivot point almost half way between shoulder and knee does not favour a
particular limb of steering like sled A does [24].

Figure A.7: By applying forces with his left shoulder and/or his right knee (represented by red dots) the athlete deforms the sled and the
runners such that friction force on the right side runner is increased compared to the left side runner causing the sled to turn about the

yaw axis to the right as shown by the red arrow. From [23]
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Figure A.8: Representation of two types of Skeleton sled frame constructions from [24]. Based on the position of the hinge and the pivot
point, sled A favours knee steering over shoulder steering, while sled B does not favour one over the other.

Toe steering
During a run, the limbs of an athlete normally do not make contact with the track surface. Toe steering
involves striking the ice surface with the toes and is also known as Toe tapping. This adds an additional
contact point with the surface and leads to a turning moment about the centre of gravity. Use of toes is
considered an emergency steering action as it leads to a substantially larger reduction of speed and is more
commonly used by beginners.
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(a) No steering force applied

(b) Steering force applied by shoulder

(c) Steering force applied by knee

Figure A.9: Changes in contact area of skeleton runner when shoulder or knee is used to deform sled and runner according to Lozowski
et al. [20]. The area shaded in blue is the region of the runner that penetrates into the ice surface. When the shoulder is used the contact
area moves forward and spine contact length is reduced as can been seen by comparing A.9a to A.9b. The opposite happens when the

knee is used as shown in A.9c.





B
Bezier Curves

B.1. Introduction
Bezier Curves were chosen for use in two interpolation steps, for the approximation of individual transverse
cross-sections of curved segments and for interpolation between the transverse cross-sections. This chapter
briefly explains the characteristics of Bezier curves.

Bezier curves are a type of parametric polynomial curve [13]. They are a special case of B-spline which does
not possess any knots other than the first and last control points. A Bezier curve C (u) is defined as,

C (u) =
n∑

i=0
Bi ,n(u) pi 0 ≤ u ≤ 1 (B.1)

where, n is the degree of the Bezier curve defined by (n+1) control points pi . In the case of approximating
individual transverse cross-sections, the points obtained from the video frame are the control points. And,
Bi ,n(u) are the Bernstein polynomials and are defined as,

Bi ,n(u) = n!

i !(n − i )!
ui (1−u)n−i (B.2)

The Bernstein polynomials can be recursively defined as,

Bi ,n(u) = (1−u) Bi ,n−1(u)+u Bi−1,n−1(u) (B.3)

that leads to a second definition for Bezier curves, representing them as the result of repeated linear in-
terpolations. For example, a quadratic Bezier curve (n = 2) can be computed from interpolation between two
linear Bezier curves as shown below,

C (u) =
2∑

i=0
Bi ,2(u) pi

= (1−u)2 p0 +2u(1−u)p1 +u2p2

= (1−u)((1−u)p0 +up1)+u((1−u)p1 +up2)

where, (1−u)p0+up1 and (1−u)p1+up2 are two linear Bezier curves that are straight lines from p0 to p1

and p1 and p2 respectively.

Figure B.1 shows the process of repeated linear interpolation for a cubic Bezier curve (n=3) with 4 control
points and for u = 2

5 . The points p1,0, p1,1, p1,2 are obtained by interpolation between points p0 and p1, p1

and p2, p2 and p3 respectively. Points p2,0, p2,1 are obtained by interpolation between p1,0 and p1,1, p1,1 and
p1,2 respectively. Finally point p3,0 is obtained by interpolation between p2,0 and p2,1. For all the linear in-
terpolation operations the value of the parameter u is 2

5 . By varying u from 0 to 1, one obtains the complete
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cubic Bezier curve from p0 to p3 defined by control points p0, p1, p2, p3.

Figure B.1: Cubic Bezier Curve obtained through repeated linear interpolation. From [13]

B.2. Derivatives
B.2.1. Definitions
The first derivative of a Bezier curve is,

C 1 = d

du

(
n∑

i=0
Bi ,n(u) pi

)

=
n∑

i=0
B 1

i ,n(u) pi

= n
n−1∑
i=0

Bi ,n−1(u) (pi+1 −pi ) (B.4)

At the end points, u = 0 and u = 1, the derivatives reduce to,

C 1(0) = n(p1 −p0) (B.5)

C 1(1) = n(pn −pn−1) (B.6)

Similarly the second derivative is,

C 2 = d

du

(
n

n−1∑
i=0

Bi ,n−1(u) (pi+1 −pi )

)

= n
n−1∑
i=0

B 1
i ,n−1(u) (pi+1 −pi )

= n(n −1)
n−2∑
i=0

Bi ,n−2(u) (pi+2 −2pi+1 +pi ) (B.7)

Comparing equations B.4 & B.7 with B.1, it is clear that the k th derivative of a Bezier curve of degree n is a
Bezier curve of degree (n −k). Hence (n −1) non-zero derivatives exist for such a curve.

The second derivatives at the end points u = 0 and u = 1 are given by,

C 2(0) = n(n −1)(p0 −2p1 +p2) (B.8)

C 2(1) = n(n −1)(pn −2pn−1 +pn−2) (B.9)
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B.2.2. Continuity
As a type of B-splines, Bezier curves are also infinitely differentiable in the span between two knots. Since a
Bezier curve does not posses any knots other than its end-points, such a curve will also be infinitely differen-
tiable and hence infinitely continuous except for at its end-points. Thus when using Bezier curves to describe
the track surface, we have to consider continuity at the transition between segments.

Let C1(u) be a Bezier curve of degree n defined by (n + 1) control points and C2(u) be an adjoining Bezier
curve of degree m defined by (m +1) control points, such that pn of curve C1(u) is p0 for curve C2(u) or in
other words,

C1(1) =C2(0)

For such curves, there are two types of continuity, a geometric continuity Gk and parametric continuity C k .
For visual purposes often G2 continuity is sought after as it means that the curvature vector is continuous and
the human eye is not good at distinguishing discontinuities of third-order or higher derivatives. For physics
simulation we would like to have curves or surfaces with C 2 continuity, which means the acceleration vector is
continuous. To obtain this continuity when transitioning from curve C1 to C2, the second derivatives should
be equal at the common point. That is C 2

1 (1) =C 2
2 (0) and from Eqn. (B.8) and (B.9),

n(n −1)(pn −2pn−1 +pn−2) = m(m −1)(p0 −2p1 +p2) (B.10)

Let the (n +1) control points of curve C1 and (m +1) control points of curve C2 be represented by a common
index o where, o = 0,1,2,3, ..., (n +m + 1). Then for C 2 continuity at the common control point o = (n + 1),
equation B.10 is,

n(n −1)(po −2po−1 +po−2) = m(m −1)(po −2po+1 +po+2) (B.11)

Therefore the two conditions for C 2 parametric continuity at the junction between two Bezier curves are:

1. n = m

2. points po−2, po−1, po , po+1, po+2 are collinear and the distance between pairs of successive points are
equal.

If only condition 2 above is satisfied, that is

(po −2po−1 +po−2) = (po −2po+1 +po+2) (B.12)

we obtain G2 geometric continuity.

B.3. Advantages
Along with the simplicity derived from the repeated interpolation definition, the properties of Bezier curves
that favoured their use are:

L1.1 While the curve passes through the end points p0 and pn , it does not necessarily pass through the
remaining control points. This is known as end-point interpolation property.

L1.2 Apart from the end points, Bezier curves have infinite continuity. At the endpoints p0 and pn , the
continuity, C k depends solely on the k +1 control points and the degree n at the respective ends. This
property extends to a surface S(u, v) defined by the tensor product of a bidirectional set of control
points n and m. Where apart from the knot points, the surface will be infinitely continuous.

L1.3 Bezier Curves lack local control, each control point effects the entire curve but the effect diminishes as
you move further away from that control point. For example in Figure B.1, changing any of the points
pi will affect the entire curve.
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