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Unambiguous Sparse Recovery of Migrating

Targets with a Robustified Bayesian Model

Stéphanie Bidon, Member, IEEE, Marie Lasserre and François Le Chevalier

Abstract

The problem considered is that of estimating unambiguously migrating targets observed with a wideband radar.5

We extend a previously described sparse Bayesian algorithm to the presence of diffuse clutter and off-grid targets. A

hybrid-Gibbs sampler is formulated to jointly estimate the sparse target amplitude vector, the grid mismatch and the

(assumed) autoregressive noise. Results on synthetic and fully experimental data show that targets can be actually

unambiguously estimated even if located in blind speeds.

Index Terms10

Wideband radar, high range resolution, velocity ambiguities, range migration, Bayesian sparse recovery, Monte-

Carlo Markov chain, Metropolis-adjusted Langevin algorithm.

I. INTRODUCTION

The primary functions of a radar system are often divided into two main categories: moving target detection

(MTD) and radar imaging [1]. While the latter usually uses wideband waveform to obtain high resolution images

(e.g., 1 GHz), MTD radars scan a search volume with a narrowband waveform (e.g., 20 MHz). Detection schemes

are then based on the assumption that moving targets remain in their low range resolution cell during the coherent

processing interval (CPI). A current limitation of such detection radars is the inherent presence of range and/or

velocity ambiguities in the measurements. They not only prevent from unambiguously estimating target’s features

but also result in so-called blind zones where clutter folding makes detection impossible [2]. The unambiguous

range and velocity are defined respectively as

Ra =
cTr

2
and va =

λcFr

2

where c is the speed of light, Fr = 1/Tr is the pulse repetition frequency (PRF), λc is the carrier wavelength. The

resulting unambiguous range-velocity coverage Rava = cλc/4 is independent of the PRF. Consequently, changing15
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the PRF to decrease one type of ambiguity inevitably results in an increase of the alternate. If one concentrates on

the case of a low PRF mode (as done in this work), there are no range ambiguities but many velocity ambiguities

and thus blind speeds.

A common approach to resolve ambiguities and enable detection in blind zones is to use a series of bursts that

cycles through several carefully selected PRFs. Since the clear zone depends on the PRF, one may expect to detect5

a target at least for some of the PRFs [3], [4]. Nonetheless, this classical solution entails some drawbacks including

ghosting (when the number of PRFs are less than the number of targets), a decrease of the time-on-target per PRF,

etc. [4].

Another possible solution to obtain an unambiguous radar mode is to use a single low PRF wideband waveform

for MTD radars [5]. The idea behind this approach is simple: benefit from the range walk of moving targets,10

significant then for high range resolution (HRR) radar, to resolve velocity ambiguity and enable detection in blind

speeds. As a matter of fact, range migration constitutes an unambiguous measurement of the radial velocity unlike

Doppler phase measurement. Conventional detection algorithms are not designed to handle range migration so that

techniques have been implemented to compensate the phenomenon [6]–[8]. The interpolation method known as

Keystone transform is certainly one of the most popular [8]. However, these algorithms do not exploit migration15

to either alleviate velocity ambiguity or detect targets in blind speeds. Alternatively, “wideband” algorithms have

especially been developed for that purpose but are experiencing limitations [9]. A primary challenge is actually to

distinguish the main peak response from its high velocity sidelobes specific to the wideband ambiguity function.

To achieve this, a sparse Bayesian algorithm has recently been proposed in [10]. Indeed, a sparse signal recovery

(SSR) algorithm seems particularly relevant to this problem since it has the potential to represent a scatterer by a20

single peak deprived of sidelobes. Despite the encouraging results in [10], the algorithm is not designed to support

either diffuse clutter or targets straddling range-velocity bins and may thus fail in practice.

In the literature, handling colored noise in a sparse recovery framework has been addressed mainly into two

different ways. In the first approach, a two-step processing is recommended where data are firstly prewhitened so

that a conventional SSR technique can then be applied in white noise scenario [11]–[13]. The first stage implies that25

the noise covariance matrix can be estimated from reliable secondary data and/or prior knowledge. In the second

approach, a joint estimation of the sparse signal-of-interest and colored noise is favored [14]–[16].

Unlike the presence of colored noise in SSR, the problem of straddling targets (better known as the grid mismatch

problem) has been widely covered in the SSR literature. Several strategies of robustification have been suggested

including i) a local refinement of the grid [17]; ii) the joint estimation of the grid mismatch and the target amplitude30

vector [18]–[22]; iii) the development of grid-free based techniques [23].

In this work, we propose an extended version of the hierarchical Bayes model [10] that is robustified to both

diffuse clutter and off-grid targets. This study is actually based on the preliminary results presented in [24], [25] while

deepening the analysis (merging of both robustifications, details of calculation, more efficient sampling strategy,

refined numerical analysis including new performance metrics and real data). More specifically, a primary-data-35

only approach is favored to avoid the presence of heterogeneous samples (likely to happen with an HRR radar).
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Nonetheless, to regularize the noise estimation, an AR noise model is assumed [26], [27]; a common approach in

radar [28]. Additionally, the grid mismatch is modeled as a perturbation that parametrizes nonlinearly the sparsifying

dictionary. Both robustification leads to an original Bayesian model allowing for the joint estimation of the sparse

target amplitude vector, the grid mismatch and the AR noise parameters. The resulting algorithm can then be

reasonably applied on fully experimental data to unambiguously recover targets even when located in the blind5

speeds (at least to a certain extent).

The remaining of the paper is organized as follows. Section II introduces the observation model within an SSR

framework. Sections III and IV describe the hierarchical model and its estimation procedure. Numerical simulations

are provided in Sections V and VI on synthetic and fully experimental data while the last Section includes some

concluding remarks.10

II. OBSERVATION MODEL IN AN SSR FRAMEWORK

In this Section we extend the observation model of [10] to robustify it towards off-grid targets as well as diffuse

clutter.

A. Radar system and received signal

We consider a radar system transmitting a series of M pulses at a PRF Fr with carrier frequency Fc and bandwidth

B. A low PRF is chosen meaning that radar ambiguities occur only in velocity. Additionally, a wideband waveform

is assumed so that fast moving scatterers are not confined in a single range resolution cell but migrate during the

CPI. To coherently sum the scatterer response and preserve its peak gain, the cell under test is thought of as a

low range-resolution (LRR) segment of K range gates allowing for range walk. Applying a range transform to

the LRR segment (a discrete Fourier transform), the signature of a single point scatterer can be expressed in the

fast-frequency/slow-time domain as, for k = 0, . . . ,K − 1 and m = 0, . . . ,M − 1, [9]

[a]m+kM = exp

⎧⎨⎩j 2π[−frk + fdm+ fdμkm︸ ︷︷ ︸
migration term

]

⎫⎬⎭ (1)

where μ � B/(KFc) is the fractional bandwidth per subband; fr and fd are the conventional (normalized) range

and Doppler frequencies. They are defined by

fr = τ0
B

K
and fd =

v

va

where τ0 and v are the initial round-trip delay and the supposedly constant radial velocity of the scatterer. Compared15

to a narrowband waveform, the scatterer response to a wideband waveform (1) entails cross-coupling terms that

model range migration.

In what follows, the whole signal received on the LRR segment is thought of as the sum of point scatterers plus

noise, i.e.,

y =
∑
�

α�a� + n (2)
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where

y is the KM -length observation vector;

α�,a� are the complex amplitude and signature of the �th scatterer;

n is the noise matrix modeling the receiver’s internal noise and possibly diffuse clutter.

B. Likelihood function in an SSR framework5

Our goal is to unambiguously recover the target scene represented by the scatterers even that in blind speeds.

For that purpose, a sparse representation is favored as previously explained in Section I. The signal model (2) is

then recast as

y = Hx+ n (3)

where H is the sparsifying dictionary that stems from a discretization of the range and velocity axes and x is the

target amplitude vector to be estimated1. In practice the domain of reconstruction is selected as10

[0,K)×
[
−nva

2
va,

nva

2
va

)
(4)

with nva the unfolding factor in velocity. The latter can be set by the radar operator to ensure that the range of all

possible velocities is covered. The grid of analysis is then obtained by discretizing the domain (4) in K̄ = nr
zpK

and M̄ = nv
zpnvaM equally spaced points respectively, nr

zp and nv
zp being oversampling factors (see Fig. 1). The

dictionary H is thus of size KM × K̄M̄ and its īth colon is, at this modeling stage, defined as

[hī]i =
1√
KM

exp

(
−j2π[

k̄

K̄
k + nva

¯̄m

M̄
m(1 + μk)]

)
(5)

where i = m+kM and ī = m̄+ k̄M̄ with k̄ = 0, . . . , K̄−1 and m̄ = 0, . . . , M̄−1. In (5), it is worth noticing that15

the velocity index ¯̄m corresponds to a “signed version” of m̄ to properly account for the range walk of receding

targets. Typically, if M̄ is even, one has ¯̄m = m̄ if m̄ < M̄/2 otherwise ¯̄m = m̄ − M̄ . The dictionary (5) is

different from a simple 2D-Fourier matrix since it entails cross-coupling terms in conjunction with an unfolding

factor allowing for velocity ambiguity removal.

1) Mismatch modeling: To robustify the model of [10] to off-grid scatterers, we parametrize the dictionary H20

by two perturbation vectors, denoted εv, εr, each modeling the mismatch in velocity and range respectively. Both

are K̄M̄ -length vectors and their īth elements εv
ī
, εr

ī
represent the grid mismatch of the īth range-velocity bin. The

īth column (5) is consequently redefined as[
hī

(
εvī , ε

r
ī

)]
i
=

1√
KM

exp

(
−j2π[

k̄ + εr
ī

K̄
k + nva

¯̄m+ εv
ī

M̄
m(1 + μk)]

)
(6)

with εv
ī
, εr

ī
∈ [−.5, .5]× [−.5, .5] (see Fig. 1).

[Fig. 1 about here.]25

1In [10] the dictionary was designed from a compressed sensing point of view; it actually led to an approximated version of (5).
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2) Noise modeling: To pursue our model robustification, we further take into account the presence of a diffuse

clutter component that might arise in practice. In search of simplicity and to keep the computational complexity as

low as possible, the following hypotheses are made. The noise n is assumed to be Gaussian distributed and represent

simultaneously thermal noise and diffuse clutter. Since the latter usually corresponds to low velocity components,

its range walk is neglected in our model, leading to a decoupled signature in range and velocity. Furthermore, the5

noise is assumed to be independent and identically distributed (iid) over range. Merging these hypotheses leads to

n|R ∼ CNKM (0,R) with R = IK ⊗ Γ (7)

where CN (, ) is the complex Gaussian distribution and ⊗ it the Kronecker product. R denotes the noise covariance

matrix in range and velocity while Γ is the noise covariance matrix in velocity only. To model the corresponding

correlation in slow-time, an autoregressive (AR) model of finite order P < M is chosen so that the Cholesky

factorization of Γ−1 can be expressed as [27]10

Γ−1 = σ−2
ar (IM −Φ)H(IM −Φ) (8)

where σ2
ar is the variance of the white input to the AR model and Φ is a lower triangular Toeplitz matrix with zero

diagonal elements

Φ = Toeplitz
{[

0,φT , 0, . . . , 0
]}

with φ =
[
φ1, . . . , φP

]T
the P -length vector containing the AR parameters. An equivalent useful notation is

Φ =
P∑

p=1

φpLp (9)

where Lp is the pth lower shift matrix. Note that σ2
ar represents the thermal noise power only in the case P = 0.

In this work, P is assumed to be known.

3) Likelihood function: Using (6)-(7)-(8), the likelihood function of the observation vector (3) can be defined as

f(y|x, εv, εr, σ2
ar,φ) = (πσ2

ar)
−KM exp

{
−σ−2

ar ‖y̆ − H̆(εv, εr)x‖22
}

(10)

where whitened versions of the observation vector and the dictionary have been introduced, i.e.,

y̆ = [IK ⊗ (IM −Φ)]y (11a)

H̆(εv, εr) = [IK ⊗ (IM −Φ)]H(εv, εr) (11b)

and where we have used |R−1| = σ−2KM
ar . The parameters of interest in (10) are those describing the target scene,

namely x, εv, εr, whereas σ2
ar and φ can be seen as nuisance parameters. Unfortunately, estimating the target scene15

only from the observation is an ill-posed problem since the dictionary H is not invertible. Indeed, to unfold the

velocity axis, one necessarily has nva > 1 leading to M̄ > M (in practice M̄ � M ). To regularize the estimation

problem additional information needs to be injected in the signal model. As explained in Section I a full Bayesian

approach is chosen where each unknown parameter is considered as a random variable with a given prior pdf

(probability density function).20
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III. HIERARCHICAL BAYESIAN MODEL

Herein we describe the priors selected in our robustified algorithm. The resulting hierarchical Bayesian model is

represented graphically in Fig. 2. Compared to that of [10], the model incorporates two new branches due to each

robustification. In what follows, we recall priors related to old branches and detail the new ones. Priors are selected

to convey meaningful a priori knowledge while allowing for computationally tractable estimators.5

[Fig. 2 about here.]

A. Target amplitude vector

As in [10], we assume that the elements of the target amplitude vector xī are iid with a Bernoulli-Student-t

distribution, i.e.,

π(x) =
∏
ī

1

2

{
δ(xī) +

β0/β1

π

[
1 +

|xī|2
β1

]β0+1
}

(12)

with δ() the Dirac delta function. This prior has a two-stage hierarchical structure useful for both computational10

tractability and interpretation, viz

π(x) =

∫ ∫
π(x|w, σ2

x)π(w)π(σ
2
x)dwdσ

2
x (13)

with

π(xī|w, σ2
x) = (1− w) δ(xī) + wCN

(
xī|0, σ2

x

)
(14a)

π(w) = I[0,1](w) (14b)

π(σ2
x) =

ββ0

1

Γ(β0)

e−β1/σ
2
x

σ2
x
(β0+1)

IR+(σ2
x) (14c)

where IA(.) is the indicator function on the set A, Γ(.) is the gamma function and CN (.|., .) is the complex

Gaussian pdf with given mean and variance. Hence, the Bernoulli-Gaussian prior recognized in (14a), denoted

BerCN
(
w, 0, σ2

x

)
, indicates that for each range-velocity bin ī, a scatterer is a priori present with a probability w

and, if so, its amplitude is Gaussian distributed with power σ2
x. The uniform distribution of w (14b) expresses our15

lack of knowledge about the sparsity level in the target scene. Additionally, given that the amplitude of a scatterer

may significantly vary from one to another, the inverse gamma distribution of σ2
x (14c) enables to cover a more or

less wide range of target amplitudes according to the setting of the scale and shape parameters β0, β1.

The mixed-type nature of (12) actually allows one to decouple the sparsity level from the target power. Without

the atom at zero, the lone hyperparameter σ2
x would have to monitor both criteria though opposite for high power20

targets. As a matter of fact, mixed-type distributions [29], [30], or in a similar way spike and slab priors [31], have

been successfully used in the literature to induce sparse recovery, including the Bernoulli-Gaussian distribution [32]–

[34]. Interestingly, when removing the atom at zero, the prior (12) turns into that encountered in the well known

sparse Bayesian learning or relevance vector machine approach [35]–[37]. Furthermore, replacing (14c) by a gamma

distribution leads to the famous Laplace prior [38], [39]25
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B. Off-grid vectors

In this work, we adopt a simple prior model to describe the grid mismatch. The latter is assumed iid between

range-velocity bins so that

π(εv, εr|x) =
∏
ī

π(εvī , ε
r
ī |xī). (15)

In (15), we have intentionally conditioned the prior by the target amplitude x to enable, later on, the design of

estimation scheme where grid mismatch is evaluated only if a scatterer is present at a given bin. Similar approaches

have been suggested in [19]–[21]. Assuming further that the grid errors in velocity and range are independent, we

propose

π(εvī , ε
r
ī |xī) =

⎧⎨⎩ δ(εvī )δ(ε
r
ī ) if xī = 0 (16a)

I[−.5,.5](ε
v
ī )I[−.5,.5](ε

r
ī ) if xī �= 0 (16b)

where the last equation means that the location of a scatterer within its range-velocity bin is a priori equally likely.

C. Noise vector5

To complete the prior model, we now turn to the statistical specification of the AR noise parameters. Conjugate

priors to the likelihood are favored [40]. In particular, an inverse gamma pdf is chosen for σ2
ar, i.e.,

π(σ2
ar) =

γγ0

1

Γ(γ0)

e−γ1/σ
2
ar

(σ2
ar)

γ0+1
IR+(σ2

ar). (17)

In [10], an identical prior was selected to describe the thermal noise power (denoted σ2) for the same mathematical

reason. Nonetheless, in the general case P > 0, σ2
ar and σ2 have a different physical meaning so that σ2

ar requires

its own tuning regarding the scale and shape parameters γ0, γ1. Concerning the AR vector φ, we select a complex10

Gaussian prior pdf with mean m̄φ and covariance matrix R̄φ, i.e.,

π(φ) =
1

πP |R̄φ|
exp

{
− [φ− m̄φ]

H
R̄

−1
φ [φ− m̄φ]

}
. (18)

Beyond mathematical convenience, we stress that both priors (17) and (18) can convey relevant prior information

about noise provided an appropriate setting of the hyperparameters γ0, γ1 and m̄φ, R̄φ. Accordingly, they can be

made very, moderately or non-informative. For example, if no prior knowledge is available about the AR noise,

one may choose flat priors, namely (17) and (18) boils down to [41]15

π(σ2
ar) ∝

1

σ2
ar

IR+(σ2
ar) and π(φ) ∝ 1 (19)

where ∝ means proportional to. In the remainder of the paper, unless otherwise stated, we use (17) and (18) to

design our estimator. To switch to the non informative priors (19), it suffices to set γ0 and γ1 to zero and/or the

precision matrix R̄
−1
φ to the null matrix in the following expressions.

IV. BAYESIAN ESTIMATION

According to the previously described hierarchical model we propose a Bayesian estimation algorithm. Its outputs20

are samples from which the target scene is estimated. Neither at the input nor at the output of the algorithm a

number of targets is either fixed or determined.
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A. Posterior model

In a Bayesian framework, the posterior pdf merges information brought by the observation and the prior model.

Particularly in this work, the posterior distribution of the target scene x, εv, εr is after applying Bayes theorem

f(x, εv, εr|y) ∝ f(y|x, εv, εr)π(εv, εr|x)π(x) (20)

where

f(y|x, εv, εr) =
∫∫
φ,σ2

ar

f(y|x, εv, εr,φ, σ2
ar)π(φ)π(σ

2
ar)dσ

2
ardφ. (21)

The latter pdf is derived in Appendix A and leads to a posterior that is, to our knowledge, too complicated to5

analytically obtain standard Bayesian estimators. Alternatively, we use a numerical iterative approach that can

sample intricate multivariate pdfs, especially that arising from hierarchical model. The method is computationally

intensive; nonetheless with a sufficient number of samples, not only Bayesian estimators can be empirically obtained

but also posterior pdfs which are more informative than a single point estimate. In what follows, we use the following

notations: θ =
(
x, εv, εr, w, σ2

x, σ
2
ar,φ

)
is the random variable of all unknown variables, θ−ζ is the random variable10

θ deprived of ζ (e.g., θ−x), and θ(t) =
(
x(t), εv(t), εr(t), w(t), σ2

x
(t)
, σ2

ar
(t)
,φ(t)

)
are the samples simulated at the

t-th iteration.

B. Principle of estimation

The sampling procedure implemented is a Monte Carlo Markov Chain (MCMC) method resulting here in a so

called hybrid Gibbs sampler [40, p.387]. Each unknown random variable ζ in θ is iteratively sampled according to15

its full conditional, namely f(ζ|y,θ−ζ). After discarding some first Nbi samples representing the burn in period,

θ(t) is distributed according to the joint posterior f(θ|y) and each sample ζ(t) is distributed according to its posterior

f(ζ|y). Hence, with enough samples (denoted Nr in total), Bayesian estimators can be obtained empirically. In this

extended work, we concentrate on minimum mean square error (MMSE) estimation since it already led to satisfying

target scene recovery in a simpler context [10]. The posterior mean E {ζ|y} �
∫
ζf(ζ|y)dζ is practically assessed20

via

ζ̂mmse �
1

Nr

Nr∑
t=1

ζ(t+Nbi). (22)

Not only the MMSE estimators of the parameters of interest x, εv, εr can be obtained but also that of the nuisance

parameters σ2
ar,φ.

At this stage, each full conditional f(ζ|y,θ−ζ) remains to be determined. They are directly obtained by consid-

ering the joint posterior pdf

f(x, εv, εr, σ2
ar,φ|y) ∝ f(y|x, εv, εr, σ2

ar,φ)π(ε
v, εr|x)π(x|w, σ2

x)π(w)π(σ
2
x)π(φ)π(σ

2
ar) (23)

while fixing all but one parameter as discussed hereafter.
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C. Sampling of w, σ2
x, x, and σ2

ar

In the non-robustified approach [10], the full conditionals of w, σ2
x, x, and σ2

ar (denoted σ2 with P = 0)

were explicitly derived. With our augmented hierarchical model, it can straightforwardly be shown that the full

conditionals keep the same functional forms as follows

w|y,θ−w ∼ Be
(
1 + ‖x‖0, 1 + K̄M̄ − ‖x‖0

)
(24a)

σ2
x|y,θ−x ∼ IG

(
‖x‖0 + β0, ‖x‖22 + β1

)
(24b)

xī|y,θ−xī
∼ BerCN

(
w̆ī, μ̆ī, η̆

2
ī

)
(24c)

σ2
ar|y,θ−σ2

ar
∼ IG

(
KM + γ0,

∥∥∥y̆ − H̆(εv, εr)x
∥∥∥2
2
+ β1

)
(24d)

where ‖.‖0 is the number of nonzero elements in a vector and the parameters in (24c) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̆ī =

[
1− w

w

σ2
x

η̆2
ī

exp

{
−|μ̆ī|2

η̆2
ī

}
+ 1

]−1

η̆2ī =

{
1

σ2
x

+
‖h̆ī‖22
σ2

ar

}−1

μ̆ī =
η̆2
ī

σ2
ar

h̆
H

ī ĕī

with h̆ī denoting the īth colon of H̆ and

ĕī = y̆ −
∑
j̄ �=ī

xj̄h̆j̄(ε
v
j̄ , ε

r
j̄). (25)

Interestingly enough, the parameters involved in (24c)-(24d) depends now on the whitened observation y̆ and

the whitened-and-robustified dictionary H̆(εv, εr) of (11). The distributions in (24) are well known and easy to

sample. We refer the interested reader to [10] for further details and rather focus on the technical novelty, namely5

the sampling of εv, εr and φ.

D. Off-grid sampling

1) Full conditional: Similarly to the target amplitude vector x, the conditional posterior pdf of the grid errors

εv, εr has not a known functional form (not explicited here) and seems hardly sampleable. As a result, we sample

the grid errors on a range-velocity bin basis. Using (23), the conditional posterior of the grid errors at the īth bin is

f(εvī , ε
r
ī |y,θ−(εv

ī
,εr

ī
)) ∝ f(y|x, εv, εr, σ2

ar,φ)π(ε
v, εr|x).

Injecting the definition (25) of ĕī in the likelihood (10) and using the off-grid prior (15)-(16), the joint posterior

conditional of the grid mismatches becomes

f(εvī , ε
r
ī |y,θ−(εv

ī
,εr

ī
);xī = 0) = δ(εvī )δ(ε

r
ī ) (26a)

f(εvī , ε
r
ī |y,θ−(εv

ī
,εr

ī
);xī �= 0) ∝ exp

(
−σ−2

ar ‖ĕī − xīh̆ī(ε
v
ī , ε

r
ī )‖22

)
I[−.5,.5](ε

v
ī )I[−.5,.5](ε

r
ī ). (26b)
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To lighten the notations, the target distribution (26b) is also denoted later by

τ(εī) � f(εvī , ε
r
ī |y,θ−(εv

ī
,εr

ī
);xī �= 0)

with εī �
[
εv
ī

εr
ī

]T
. The pdf is represented in Fig. 3 in case of low and high signal-to-interference-plus-noise-

ratios (SINR); see definition in (32). If a strong scatterer is present at the īth bin, the target distribution (26b)

becomes highly informative and thus peaked. As a result, since the latter does not belong to a known class of

distribution, a sampling strategy remains to be determined.

Different methods can be thought of in practice: 1) ad-hoc techniques; 2) commonly used Bayesian methods [40];5

3) or more advanced strategies [45]. The former approach has been tested in [43]. The sampling scheme relies

on deriving (26b) on a uniform grid that needs to become extremely fine for strong scatterer thereby rendering

the method computationally inefficient if not unrealistic. Alternatively, a very common Bayesian method is the

Metropolis-Hastings (MH) algorithm which is based on a two-step principle: propose and accept-reject a sample [40,

Ch.7]. It has been tested in [42] in a simplified scenario where there is no-range migration and only white noise. The10

proposed sample is drawn from a Gaussian distribution resulting from an approximation of the target distribution.

Unfortunately, the approximated pdf can undesirably depart from the target distribution if |εv
ī
− εr

ī
| → 1. This leads

to an inefficient sampling scheme where the proposed sample may be almost systematically rejected. Within the

class of MH algorithms, an adequate proposal distribution is often obtained within a so-called Gaussian random

walk [40, ch7.5]. The proposed sample is then drawn from a local Gaussian perturbation around the former accepted15

sample. Unfortunately, it still leads with (26b) to a slow sampler convergence. In light of these limitations, we opt in

this work for the last strategy namely an advanced sampling technique as reviewed in [45]. We particularly choose

an advanced MH approach known as Metropolis-Adjusted Langevin algorithm (MALA) [44]. So far, the MALA

approach gave us the most satisfying results; though we do not claim any optimality here.

[Fig. 3 about here.]20

2) MALA sampling: An MH algorithm is an iterative MCMC method that aims at sampling a target distribution

τ . Here, it consists in drawing at the t̃-th iteration a candidate c from a so called proposal distribution q(c|ε(t̃−1))

and accept this candidate as the new sample ε(t̃) with a given acceptance probability [40, ch.7]

ρ = min

(
1,

τ(c)

τ(ε(t̃−1))

q(ε(t̃−1)|c)
q(c|ε(t̃−1))

)
.

In case of MALA, the proposal distribution is chosen according to a local quadratic approximation to log τ around

ε(t̃−1), i.e., q(c|ε(t̃−1)) such as

q(c|ε) = N

(
c|ε+

1

2
Σε(ε)dε(ε),Σε(ε)

)
(27)

where N (.|., .) is the Gaussian pdf, dε is the gradient of log τ and Σε is a positive definite matrix. As underlined

in [45], the matrix Σε ought to account for the correlation structure of τ . A self-evident choice for Σε is the inverse

of the Hessian matrix. Nonetheless, given the form of (26b), its positiveness is not always ensured. To bypass this25
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problem, we have followed the path of [46] by selecting Σε as an inverse Fisher information matrix (FIM); other

strategies are reviewed in [45]. Expressions of dε and Σε are given in Appendix B. The proposed MH sampling

scheme is summarized in Fig. 5 and incorporated in the main algorithm of Fig. 4. It is worth noticing that, to ensure

convergence of the so obtained hybrid Gibbs sampler, only one MH occurrence suffices [40, ch.10], i.e., NMH = 1

in Fig. 5.5

E. AR parameters sampling

It remains to sample φ according to its full conditional. Using (23), the latter can be expressed as

f(φ|y,θ−φ) ∝ f(y|x, εv, εr, σ2
ar,φ)π(φ)

∝ exp
{
−σ−2

ar ‖ [IK ⊗ (IM −Φ)]ν‖22
}
exp

{
− [φ− m̄φ]

H
R̄

−1
φ [φ− m̄φ]

}
(28)

where we have set ν � y−H(εv, εr)x. The pdf (28) actually represents a complex Gaussian distribution. To see

it, it suffices to develop the squared norm in (28) as

‖ [IK ⊗ (IM −Φ)]ν‖22 =

K−1∑
k=0

‖(IM −Φ)νk‖22

=

K−1∑
k=0

νH
k

[
IM +ΦHΦ−�{Φ}

]
νk

where νk is the M -length-vector such that[
νT
0 . . . νT

K−1

]T
� y −H(εv, εr)x.

Then replacing Φ by its expression (9), one gets

‖ [IK ⊗ (IM −Φ)]ν‖22 = ‖ν‖2 + φHP φφ− 2�
{
φHmφ

}
(29)

where P φ is a P × P matrix and mφ is a P -length vector defined as, for p, p′ ∈ {1, . . . , P},

[P φ]p−1,p′−1 =

K−1∑
k=0

νH
k LH

p Lp′νk

[mφ]p−1 =

K−1∑
k=0

νH
k Lpνk.

(30)

Finally, injecting (29) in (28) yields

f(φ|y,θ−φ) ∝ exp
{
−σ−2

ar

[
φHP φφ− 2�

{
φHmφ

}]
− φHR̄

−1
φ φ+ 2�

{
φHR̄

−1
φ m̄φ

}}
∝ exp

{
−
[
φ− μφ

]H
Σ−1

φ

[
φ− μφ

]}
where, in the last line, we have completed the square with Σφ =

[
σ−2

ar P φ + R̄
−1
φ

]−1

and μφ = Σφ

[
σ−2

ar mφ + R̄
−1
φ m̄φ

]
.

We recognize the complex Gaussian distribution10

φ|y,θ−φ ∼ CNP

(
μφ,Σφ

)
(31)

which is easy to sample. This completes the description of our hybrid Gibbs sampler that is summarized in Fig. 4.
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[Fig. 4 about here.]

[Fig. 5 about here.]

V. NUMERICAL SIMULATIONS

In this Section, performance of the proposed hybrid Gibbs sampler is illustrated on synthetic data. Numerical

values used to run the simualtions can be found in the caption of each depcited Figure.5

A. Parameter setting

Data are generated according to the model (1), (2) and (7). The AR parameters are selected to approximately

mimic the disturbance estimated from experimental data (see Section VI-B). In the same spirit scatterers are also

added at zero velocity. Other scatterers injected in the scene represent moving targets. The SINR of a scatterer is

defined as10

SINR = E
{
|α|2

}
aHR−1a. (32)

We consider that no information is available about the AR components and thus select the noninformative priors (19)

for σ2
ar and φ. Concerning the average target power σ2

x, we use the results of [47] and accordingly choose a prior

centered around high power values (with respect to the scatterers). Concretely, we set the mean mσ2
x

and standard

deviation stdσ2
x

of the prior of σ2
x (14c) to some finite desired values and convert them in terms of scale and shape

parameters via β0 = m2
σ2
x
/std2σ2

x
+ 2 and β1 = mσ2

x

[
m2

σ2
x
/std2

σ2
x
+ 1

]
.15

To assess the benefits of our robustified approach (identified by the tag ‘AROFF’), we additionally run its

initial version [10] that assumes a White noise with ON-grid targets (‘WON’) as well as two partially robustified

versions; one with respect to OFF-grid targets only (‘WOFF’) and the other with respect to an AR disturbance

only (‘ARON’). Outputs of a simple coherent integration, defined as aHy/
√
aHa, is also depicted to indicate the

location of conventional sidelobes.20

B. Example on a single run

Representative range-velocity maps recovered by the four algorithms are depicted in Fig. 6. Firstly, when range-

velocity bin straddling occurs, estimating grid mismatch (WOFF and AROFF) prevents from i) misestimation of

small discretes; ii) false estimation due to splitting of strong discretes. Note that split occurs in range-velocity

bins corresponding to the columns of the (whitened) dictionary sharing a high coherence. Secondly, estimation25

schemes based on a white noise model (WON and WOFF) fails at describing clutter properly, namely numerous

false estimations arise in blind velocities. By nature, diffuse clutter cannot be represented with a finite number of

(slow) discretes. The remaining part is then absorbed by discretes sharing a high coherence in the dictionary, i.e.,

that located in the clutter velocity sidelobes. Thirdly, discretes located in blind velocities can also be well recovered

especially when both grid mismatch and AR noise are estimated. Overall, we clearly see the advantage of our30

doubly robustified algorithm (AROFF) to obtain an unambiguous mode.
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To reinforce this view, AR spectrums associated with the estimated AR vectors are depicted in Fig.7, i.e.,

Sar(v) � σ2
ar

∣∣∣∣∣1−
P∑

p=1

φpe
−j2πp v

va

∣∣∣∣∣
−2

.

AROFF spectrum is very close to that of the true AR spectrum enabling a near-optimal noise whitening within the

algorithm. On the other hand, ARON spectrum may falsely identify spectral components located at the velocities

of range-off-grid targets whose mismatch cannot be estimated. These peaks may appear aliased since our model

assumes a slow moving disturbance (cf. Section II-B2). In any event, the associated ARON whitening filter will

entail undesired notches at these velocities.5

Finally, empirical pdfs estimated from the hybrid Gibbs sampler (AROFF) are depicted in Fig. 8. Even in

case of flat priors, posteriors are highly peaked indicating that the measurement significantly informs the model.

Additionally, MMSE estimates are close to the true parameter values.

[Fig. 6 about here.]

[Fig. 7 about here.]10

[Fig. 8 about here.]

C. Monte-Carlo runs

Monte-Carlo simulations are conducted to confirm trends observed on single outputs. A Swerling 0 point target

is simulated amid AR noise. Three main zones in the range-velocity domain are then defined as illustrated in Fig. 1:

the target’s bin (T ), the blind speeds (B) and the white noise zone (W). The power of each reconstructed zone

after whitening is chosen as a performance metrics, namely

PZ � E

⎧⎨⎩‖R̂−1/2 ∑
j̄∈Z

hj̄(ε̂
v
j̄
, ε̂r

j̄
)x̂j̄‖2

⎫⎬⎭
where Z ∈ {T ,B,W} is the index set of one of the three considered zone and the notation ζ̂ refers to the parameter

ζ either estimated or assumed by the algorithm (e.g., for WON and ARON ε̂v
j̄
= ε̂r

j̄
= 0).

In the first numerical example the target is placed on the grid in the first blind speed; performance of the WON and15

ARON algorithms is then illustrated in Fig. 9. The estimated power PB confirms that significant false estimations

arise in the blind speeds when the diffuse component is ignored2. Alternatively, the estimated power PT shows

that a strong enough target is well recovered (i.e., for SINR � 14 dB) provided that diffuse clutter is estimated

otherwise the latter contributes to overestimating the target. As for the estimated power PW , it shows that false

estimation in the white noise zone might be very rare whether or not diffuse clutter is estimated.20

In the second numerical example the target is still in the blind speed but placed off the grid; performance of the

ARON and AROFF is then illustrated in Fig 10. Ignoring a strong off-grid leads to tremendous loss. Hence, both

examples illustrate the benefit of the proposed robustification.

2For the ARON technique, PB is very low and would appear smoother with a very large number of Monte-Carlo runs.
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[Fig. 9 about here.]

[Fig. 10 about here.]

VI. RESULTS ON FULLY EXPERIMENTAL DATA

Herein, we process fully experimental radar data to show, in practice, the feasibility of estimating unambiguously

targets using range migration even that located in blind velocities.5

A. Experimental setup

Data are collected with the Software-Defined Radio (SDR) radar 2400AD2 from c©Ancortek Inc. A linear

frequency modulated continuous waveform (LFMCW) is selected on transmit with a 2 GHz bandwidth operating at

25 GHz with a PRF of 250 Hz. The radar delivers IQ samples at baseband after a mixing operation. A conventional

inverse-range-transform is then applied and a LRR segment of interest is selected to apply our wideband algorithms.10

The radar scene consists of 1) an empty corridor with plants located in the LRR 2) a remote control car endorsing

the role of target (its length is ca. 15 cm). Additionally a fan hidden from the radar can be activated to simulate a

windy vegetation. Data sets and videos of the measurement can be downloaded from URL [48].

B. Diffuse and correlated clutter components

To begin with, target-free datasets are used. The mean vector and covariance matrix of the observation y are

estimated via a simple empirical mean

μ̂ =
1

T

T∑
t=1

yt and R̂ =
1

T

T∑
t=1

yty
H
t − μ̂μ̂H

with T the length of the training interval and yt the measurement collected in the LRR from sweeps tM, . . . , (t+

1)M − 1. To represent them in a comprehensible manner the two following metrics are chosen

Â � |aHμ̂|2 and L̂ � aHR̂
−1

a/(aHa)

which can be viewed as an adapted pattern and a SINR-loss respectively. Results are depicted in Fig. 11. Turning the15

fan on actually produces a diffuse clutter component otherwise the environment can be approximately assimilated

to a white noise with clutter discretes. Furthermore, the experimental SINR-loss obtained in case of strong diffuse

clutter indicates that estimating weak target in the first blind speed may remain challenging (though SINR-loss in

blind velocities can be reduced by increasing the CPI).

[Fig. 11 about here.]20
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C. Target estimation

A dataset containing the target is now considered when the latter is about to exit the first blind speed −va at

range-gate ca. 61. Range-velocity maps and AR spectrums obtained are represented in Figs. 12-13. Trends observed

on synthetic data are confirmed: robustifing the initial algorithm of [10] enables estimation of a target in the blind

speed with fully experimental data. (Outputs of consecutive bursts can be also seen in a movie at the URL [48]5

where the target recedes within the blind speed).

[Fig. 12 about here.]

[Fig. 13 about here.]

VII. CONCLUSION AND PERSPECTIVES

We have described an extended version of a sparse Bayesian algorithm that unambiguously recovers migrating10

targets from real wideband radar data. Two robustifications have been brought to the hierarchical model to handle

both diffuse clutter (in absence of secondary data) and off-grid targets. The disturbance is modeled as an AR

noise while grid mismatch is defined as a nonlinear perturbation in the sparsifying dictionary. The resulting

estimation algorithm is an hybrid Gibbs sampler that generates samples according to the posterior distributions

of both the nuisance and parameters of interest (i.e., target amplitude vector, mismatch, AR noise). Performance15

of the MMSE estimators is assessed on synthetic and fully experimental data. Modeling diffuse clutter reduces

greatly false estimation in blind speeds. Modeling grid mismatch reduces significantly target splits (thus false or

missed estimation). Our robustification actually enabled unambiguous estimation of a target located in a blind speed

from real data. As in conventional processing, a sufficiently high SINR remains necessary to ensure an appropriate

recovery.20

Extensions to this work include i) developing alternative algorithms to decrease the complexity of our sampler ii)

refining the target and noise models as observed from some experimental datasets iii) incorporating the hierarchical

model into a detection scheme.

APPENDIX A

POSTERIOR PDF25

In this Appendix, we develop the expression of the posterior (20) of x, εv, εr|y. To that end we derive the

pdf (21) of y|x, εv, εr

f(y|x, εv, εr) =
∫
φ

∫
σ2

ar

f(y|x, εv, εr, σ2
ar,φ)π(σ

2
ar)π(φ)dσ

2
ardφ

∝
∫
φ

π(φ)

∫
σ2

ar

e−[‖y̆−H̆(εv,εr)x‖2
2+γ1]/σ2

ar

σ2
ar
(KM+γ0+1)

IR+(σ2
ar)dσ

2
ardφ

∝
∫
φ

π(φ)

‖y̆ − H̆(εv, εr)x‖22 + γ1
dφ.
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In the special case of a noninformative prior for φ, as defined in (19), the pdf can be further simplified observing

that its denominator becomes

d(φ) � γ1 + ‖y̆ − H̆(εv, εr)x‖22

=
(29)

γ1 + ‖y −H(εv, εr)x‖22 + φHP φφ− 2�
{
φHmφ

}
= γ1 + ‖y −H(εv, εr)x‖22 −mH

φ P−1
φ mφ +

[
φ− P−1

φ mφ

]H
P−1

φ

[
φ− P−1

φ mφ

]
= d(P−1

φ mφ) +
[
φ− P−1

φ mφ

]H
P−1

φ

[
φ− P−1

φ mφ

]
where P φ and mφ are defined in (30). Hence, we obtain

f(y|x, εv, εr) ∝
∫
φ

[
d(P−1

φ mφ) +
[
φ− P−1

φ mφ

]H
P−1

φ

[
φ− P−1

φ mφ

]]P+KM−P+γ0

dφ

∝ |Pφ|−1d(P−1
φ mφ)

−(KM−P+γ0) (33)

where we have used the definition of the complex multivariate t distribution with shape parameter ν, location vector

μ, and scale matrix Σ [50], i.e.,

T(φ|ν,μ,Σ) =
Γ(P + ν)

|πΣ|Γ(ν)νP
{
1 + [φ− μ]

H
Σ−1 [φ− μ] /ν

}−(P+ν)

.

Otherwise in case of an informative prior, deriving (21) in closed form seems intractable. Nonetheless, a closed-form

could be similarly obtained as in (33) while redesigning the AR vector prior as π(σ2
ar|φ) = CNP

(
φ|m̄φ, σ

2
arR̄φ

)
.

APPENDIX B

GRADIENT AND FISHER INFORMATION MATRIX IN PROPOSED MALA

In this Appendix, we derive the analytical expressions of dε and Σε used in the MALA proposal distribution (27).

To that end, we firstly notice that the target distribution (26b) can be interpreted as the posterior distribution of

εī|eī with respect to the “observation” eī and the prior (16b) while considering σ2
ar and xī known, viz

τ(εī) ∝ CN (eī|xīhī(εī),R)π(εī|xī)

where R has been defined in (7)-(8) and where we have redefined hī(εī) � hī(ε
v
ī
, εr

ī
). Hence, noting that the

prior of εī|xī is uniform and following [46], dε and Σε represent respectively the gradient of the log-likelihood

and the FIM inverse associated with the observation model eī|εī ∼ CN (xīhī(εī),R). Since εī is real-valued, we

can directly apply results from [51, App.15C], i.e.,

dε(εī) = 2�
{
x∗
ī

[
∂hī(εī)
∂εv

ī

∂hī(εī)
∂εr

ī

]H
R−1 [eī − xīhī(εī)]

}
Σ−1

ε (εī) = 2|xī|2�
{[

∂hī(εī)
∂εv

ī

∂hī(εī)
∂εr

ī

]H
R−1

[
∂hī(εī)
∂εv

ī

∂hī(εī)
∂εr

ī

]}
where, using the definition of hī(εī) in (6), it follows

∂hī(εī)

∂εv
ī

= jδv 
 hī(εī) and
∂hī(εī)

∂εr
ī

= −jδr 
 hī(εī)
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with [δv]m+kM = 2πnva(1 + μk)m/M̄ and [δr]m+kM = 2πk/K̄. It is worth noticing that to avoid the sampling

chain to be stuck in a local minima, we restart sampling randomly in [−.5, .5]× [−.5, .5] as soon as the Hessian

matrix at εī is nonpositive definite.
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Fig. 1. Grid of analysis in the range-velocity domain and grid mismatch phenomenon. T , B, W designate the set of indices of the target, the
blind zone, and the white noise zone respectively. Star marker represents the true target location.
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Fig. 2. Graphical representation of the proposed hierarchical Bayesian model. Arrows represent statistical dependence. Parameters in dotted
circle are set by radar operator according to prior knowledge about radar scene. Compared to the model of [10], new branches are depicted in
thick line.
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Fig. 3. Conditional posterior distribution (26b) of the grid mismatch: influence of the SINR. Scenario: M = 16, K = 6, nva = 2,
B/Fc = 10%, σ2

ar = 2.5, φ = [−0.9e−j0.05], single point scatterer with ī = 40 (i.e., m̄ = 8, k̄ = 3), εv40 = −.25, εr40 = .25, variable
SINR. Processing: nv

zp = nr
zp = 1. (a) SINRī = 10 dB. (b) SINRī = 25 dB.
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{Initialization}
x(0), εv(0), εr(0), φ(0)

{Iterations}
for t = 1 to Nbi +Nr do

w(t)|y,θ−w ∼ Be
(
1 + ‖x‖0, 1 + K̄M̄ − ‖x‖0

)
σ2
x
(t)|y,θ−σ2

x
∼ IG

(
‖x‖0 + β0, ‖x‖22 + β1

)
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2
ī
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Fig. 4. Proposed hybrid Gibbs sampler to estimate off-grid migrating targets in AR noise. Conditional terms actually depends on the most
updated samples in the iteration though not explicitly written due to space limitation. Convergence of the sampler can be reached independently
of the initial conditions [40]. ζ represents any of the sampled variables.
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Ensure: εī
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∼ τ(εī)
{Initialization}
ε(0) = εī

(t−1)

{Iterations}
for t̃ = 1 to NMH do
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end for

Fig. 5. Proposed MALA algorithm to sample the conditional posterior of the grid errors at the īth bin τ(εī). NMH is the number of iterations
of the algorithm. When MALA algorithm incorporated in hybrid Gibbs sampler of Fig. 4 then NMH = 1.
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Fig. 6. Range-velocity map (modulus of the complex amplitude only). Data parameters: Fc = 10 GHz, B = 1 GHz, Tr = 1 ms, M = 32,
K = 10 (va = 15 m/s and c/(2B) = 15 cm), σ2

ar = 1.7, φ = [0.5, 0.3, 0.25]T . Processing parameters: nva = 3, nv
zp = nr

zp = 1, β0, β1

such that mσ2
x
= 45 dB and stdσ2

x
≈ 15 dB, γ0 = γ1 = 0, R̄

−1
φ = 0, P = 3, Nbi = 1E+3 and Nr = 200. Square markers indicate true

scatterer location. Diamond markers indicate estimated scatterers. Coherent integration depicted as a transparent background.
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Fig. 9. Power of the reconstructed scene after whitening. Scenario is that of Figure 6 except: K = 6, a single point scatterer in first blind
speed with varying SINR and ī = 318 (i.e., m̄ = 30, k̄ = 3), εv318 = εr318 = 0). 500 Monte-Carlo runs.
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Fig. 10. Power of the reconstructed scene after whitening. Scenario is that of Fig. 9 except single point scatterer with varying off-grid
εv318 = εr318 = ε and fixed SINR=20 dB. T includes the nearest range-velocity bins to that of the scatterer.
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Fig. 11. Estimated SINR-loss from experimental radar data (velocity cut plot at each range-gate). Data parameters: Fc = 25 GHz, B = 2 GHz,
Tr = 4 ms, M = 32, K = 6 (range-gate: 58–64) [according to [49] μ = B/(Fc − B/2)/K, va = 2Tr(Fc − B/2)/c; μ = 0.0104,
va ≈ 1.56 m/s c/(2B) = 7.5 cm]. Processing parameters: nva = 5, T ≈ 2.4KM . (a)-(b) Free-target data set 2017-07-27-14-05-00 with fan
off. (c)-(d) Free-target data set 2017-07-27-13-57-54 with fan on.
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Fig. 12. Range-velocity map (modulus of the complex amplitude only). Data set: 2017-07-27-13-42-41. Data parameters: Fc = 25 GHz,
B = 2 GHz, Tr = 4 ms, M = 32, K = 8 (va = 1.56 m/s and c/(2B) = 7.5 cm). Processing parameters: nva = 3, nv

zp = nr
zp = 1, initial

pulse: 1178), initial range-gate: 57, β0, β1 such that mσ2
x
= 45 dB and stdσ2

x
≈ 15 dB, γ0 = γ1 = 0, R̄

−1
φ = 0, P = 3, Nbi = 2E+3 and

Nr = 200. Diamond markers indicate estimated scatterers. Coherent integration depicted as a transparent background.
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Fig. 13. AR spectrum. Scenario is that of Fig. 12.


