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For a simple graph Γ and for unital C*-algebras with GNS-
faithful states (Av, ϕv) for v ∈ V Γ, we consider the reduced 
graph product (A, ϕ) = ∗v,Γ(Av, ϕv), and show that if every 
C*-algebra Av has the completely contractive approximation 
property (CCAP) and satisfies some additional condition, 
then the graph product has the CCAP as well. The additional 
condition imposed is satisfied in natural cases, for example 
for the reduced group C*-algebra of a discrete group G that 
possesses the CCAP.
Our result is an extension of the result of Ricard and Xu in 
[28, Proposition 4.11] where they prove this result under the 
same conditions for free products. Moreover, our result also 
extends the result of Reckwerdt in [27, Theorem 5.5], where 
he proved for groups that weak amenability with Cowling-
Haagerup constant 1 is preserved under graph products. Our 
result further covers many new cases coming from Hecke-
algebras and discrete quantum groups.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

In this paper we look at graph products of operator algebras. These graph prod-
ucts are a generalization of free products, where certain commutation relations are 
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added. The notion of graph products was first introduced for groups, by Green in her 
thesis [20]. For groups Gi the free product G = ∗iGi consists of all reduced words 
g1 · · · gl with gj ∈ Gij and the group operation consists of concatenation, and reduc-
tion. For a given simple graph Γ, and groups Gv for every vertex v, the graph product 
GΓ = ∗v,ΓGv is obtained from the free product by declaring elements g1 · · · gkgk+1 · · · gl
and g1 · · · gk−1gk+1gkgk+2 · · · gl to be equal whenever gk ∈ Gv and gk+1 ∈ Gw and v and 
w share an edge in Γ. Graph products preserve many interesting properties like: soficity 
[12], residual finiteness [20], rapid decay [13] and other properties, see [2,11,22,23]. In par-
ticular, approximation properties like the Haagerup property [1] and weak-amenability 
with constant 1 [27] are also preserved by graph products of groups.

Graph products of operator algebras were introduced in [7] by Caspers and Fima 
as a generalization of free products. Their notion of graph products agrees with that 
for groups in the sense that for discrete groups Gv one has ∗v,ΓC∗

r (Gv) = C∗
r (∗v,ΓGv)

and ∗v,ΓL(Gv) = L(∗v,ΓGv). In their paper, they also showed stability of exactness (for 
C*-algebras), Haagerup property, II1-factoriality (for von Neumann algebras) and rapid 
decay (for certain discrete quantum groups) under graph products. Also, in [6] it was 
proven that embeddability is preserved under graph products.

The notion of weak amenability for groups originates from the work of Haagerup [21], 
De Cannière-Haagerup [16] and Cowling-Haagerup [14]. The corresponding notion for 
unital C*-algebras is given by the completely bounded approximation property (CBAP) 
in the sense that a discrete group is weakly amenable if and only if its reduced group 
C*-algebra possesses the CBAP. We say that a C*-algebra A has the CBAP if there 
exists a net of completely bounded maps Vn : A → A that are finite rank, converge 
to the identity in the point-norm topology and such that supn ‖Vn‖cb � Λ < ∞ for 
some constant Λ. The minimal such Λ is called the Cowling-Haagerup constant. If the 
Cowling-Haagerup constant is 1, then we say that A has the completely contractive 
approximation property (CCAP).

Weak amenability and the CBAP/CCAP play a crucial role in functional analysis and 
operator algebras. Already in case of the group G = Z weak amenability allows, in a 
way, to approximate a Fourier series by its partial sums. In operator space theory the 
CBAP has led to a deep understanding of several group C*- and von Neumann algebras. 
Already the results by Cowling and Haagerup [14] allow for the distinction of group 
von Neumann algebras of lattices in the Lie groups Sp(1, n), n � 2. Later, Ozawa and 
Popa used the (wk-∗) CCAP in deformation-rigidity theory of von Neumann algebras 
[25]. Much more recently also graph products have appeared in the deformation-rigidity 
programme, see e.g. [5], [4] [10], [9], [17]. This line of investigation, especially beyond the 
realm of group algebras, motivates the study of the CCAP for general graph products.

In this paper we are concerned with showing that the CCAP is preserved under graph 
products. While we are not able to show this in full, we prove this under a mild ex-
tra condition on the algebras (Av, ϕv), similar to the one imposed by [28] for proving 
the same result for free products. The conditions that we impose are stated in Sec-
tion 6, and we abbreviate them by saying that the algebra has a u.c.p extension for the 
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CCAP. This condition is satisfied by many natural unital C*-algebras, under which finite-
dimensional ones (with a GNS-faithful state), reduced C*-algebras of discrete groups 
(with the Plancherel state) that possess the CCAP [28], and reduced C*-algebras of 
compact quantum groups (with the Haar state) whose discrete dual quantum group is 
weakly amenable with Cowling-Haagerup constant 1 [19]. Our main result is the follow-
ing:

Theorem A. Let Γ be a simple graph and for v ∈ V Γ let (Av, ϕv) be unital C*-algebras 
that have a u.c.p. extension for the CCAP. Then the reduced graph product (A, ϕ) =
∗v,Γ(Av, ϕv) has the CCAP.

Along the way, in Corollary 4.4, we also obtain the following result for von Neumann 
algebras.

Theorem B. Let Γ be a simple graph and for v ∈ V Γ let Mv be a finite-dimensional 
von Neumann-algebra together with a normal faithful state ϕv. Then the von Neumann 
algebraic graph product (M, ϕ) = ∗v,Γ(Mv, ϕv) has the wk-∗ CCAP.

The method for proving above results is, on a large scale, similar to [28]. However, 
at most points, the proofs get more involved in order to work for graph products. This 
becomes most clear in Section 3, where we have to use different methods to show the 
completely boundedness of the word-length projection maps Pd that project on Ad, the 
homogeneous subspace of order d. For these maps we show for d � 1 the linear bound 
‖Pd‖cb � CΓd, where CΓ is some constant only depending on the graph Γ. In Section 4
we show that the graph product map θ of state-preserving u.c.p. maps θv on unital 
C*-algebras Av, is again a state-preserving u.c.p. map on the reduced graph product A. 
Together with our bound on ‖Pd‖cb we are then able to show the preliminary result, 
Corollary 4.4, that, when all C*-algebras, respectively von Neumann algebras, are finite-
dimensional, the reduced graph product has the CCAP, respectively the wk-∗ CCAP. 
In Section 5 we consider the same problem as in Section 4, but now for state-preserving 
completely bounded maps. We show that the graph product map T of state-preserving 
completely bounded maps Tv defines a completely bounded map, when restricted to a 
homogeneous subspace Ad (i.e. Td := T |Ad

is completely bounded). In order to do this 
we consider the operator spaces Xd from [8] (analogous to [28]) and use the Khintchine 
type inequality [8, Theorem 2.9] they proved. We moreover construct other operator 
spaces X̃d and prove the ‘reversed’ Khintchine type inequality (Theorem 5.2). Finally, 
in Section 6, using all our previous results, we are then able to show the main result 
Theorem A (Theorem 6.1).

Our results extend [28] (as well as [27]) in a natural way, and provide a unified ap-
proach to proving the CCAP and wk-∗ CCAP for various operator algebras. Specifically, 
Theorem B can be applied to the graph product ∗v,ΓNqv (Wv) of Hecke-algebras of finite 
Coxeter groups. Such a graph product is itself a Hecke-algebra, and by the result we 
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obtained, possesses the wk-∗ CCAP. This result is new, and was previously only known, 
by [5, Theorem A], for the case that Wv is right-angled for all v. Furthermore, the main 
theorem, Theorem A, can be applied to give new examples of C*-algebras that posses the 
CCAP, for example the graph product ∗v,Γ(Av, ϕv), where some algebras Av are finite-
dimensional, and others are reduced group C*-algebras of discrete groups that posses 
the CCAP.

2. Preliminaries

We will use basic notions from C*-algebras and von Neumann algebras, for which 
we refer to [24]. Also, in Section 5, we will use some theory from operator spaces for 
which we refer to [18], [26]. Here, in this section, we shall recall the definitions of weak 
amenability and of graph products of operator algebras, and establish the notation that 
we shall use for this throughout the paper. We also state Lemma 2.2 (see [8, Lemma 
2.5.]) and prove Lemma 2.3 that we shall need later for calculations.

Weak amenability with Cowling-Haagerup constant 1

We recall the definition of the CCAP for unital C*-algebras and the wk-∗ CCAP for 
von Neumann algebras. A unital C*-algebra A with state ϕ is said to have the CCAP if 
there exists a net (Vj)j∈J of completely contractive, finite-rank maps on A s.t. Vj → Id
pointwise in the norm-topology. A von Neumann algebra M is said to have the wk-∗
CCAP if there exists a net (Vj)j∈J of normal, completely contractive, finite-rank maps 
on M s.t. Vj → Id pointwise in the σ-weak topology.

Graph products of operator algebras

Let Γ be a finite graph that is simple (i.e. undirected, no multiple edges, no edges that 
start and end in the same vertex), with to each vertex v ∈ V Γ associated a unital C*-
algebra Av together with a state ϕv on Av. Moreover, for v ∈ V Γ, let πv : Av → B(Hv)
be a given faithful representation of Av on a Hilbert space Hv such that for a ∈ Av

we have ϕv(a) = 〈πv(a)ξv, ξv〉 for some unit vector ξv ∈ Hv. In the case that the states 
ϕv are GNS-faithful (meaning the GNS-representations are faithful), and we do not 
specify the representations, we take the GNS-representation (Hv, πv, ξv) for Av and 
simply consider Av ⊆ B(Hv) as a subalgebra. We will moreover denote Åv = kerϕv and 
H̊v := ξ⊥v . Moreover, for an element a ∈ Av, we will write å := a − ϕv(a) ∈ Åv and 
â := πv(a)ξv ∈ Hv. For a vector η ∈ Hv we will denote η̊ = η − 〈η, ξv〉ξv ∈ H̊v. We note 
that a ∈ Åv implies â ∈ H̊v.
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2.0.1. The Coxeter group
We will call a finite sequence (v1, . . . , vn) of elements of V Γ a word, and we will denote 

the set of all words by W. This includes the empty word. We equip the set W with the 
equivalent relation generated by

(v1, . . . , vn) ∼ (v1, . . . , vi−1, vi+2, . . . , vn) whenever vi = vi+1 (1)

(v1, . . . , vn) ∼ (v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vn) whenever (vi, vi+1) ∈ EΓ. (2)

We will call a word (v1, . . . , vn) reduced if it is not equivalent to a word (v′1, . . . , v′m) with 
m < n. We note that if two reduced words are equivalent, then they must have equal 
length. Also we note that every word is equivalent to a reduced word. We shall now 
denote W for the set of words W modulo the equivalence relation. We equip W with 
the operation of concatenating tuples, which makes W into a group. We denote e for the 
identity element in W , which is the equivalence class corresponding to the empty word 
in W. We note that, in fact, W equals the right-angled Coxeter group whose Coxeter 
diagram is the graph Γ (for references on Coxeter groups, see [15, Chapter 3]). For a word 
(v1, . . . , vn) ∈ W we will write v1 · · · vn for the corresponding element in W . For every 
Coxeter element w ∈ W , we will fix a reduced element (w1, . . . , wn) in the equivalence 
class w. This element will be called the representative of w. Furthermore, we will write 
|w| for the length of w, which we define as the length of its representative. We remark 
here that |e| = 0. If w1, . . . , wn ∈ W , we will say that the expression w1 · · ·wn is reduced
if it holds that |w1| + . . .+ |wn| = |w1 · · ·wn|. We will say that a word w ∈ W starts with 
a word u ∈ W when |w| = |u| + |u−1w|, and similarly we will say that w ends with a 
word u ∈ W when |w| = |wu−1| + |u|. A word w ∈ W with representative (w1, . . . , wn)
will be called a clique word when any two letters wi and wj with i �= j share an edge in 
Γ. For a word w ∈ W we define sl(w) and sr(w) as the maximal clique words that w
respectively starts with and ends with. We note that sl(w) = sr(w−1).

2.0.2. The Hilbert spaces
For a word w ∈ W , w �= e with representative (w1, . . . , wn) ∈ W define the Hilbert 

spaces

H̊w = H̊w1 ⊗ · · · ⊗ H̊wn
(3)

We also set

H̊e = CΩ (4)

where the vector Ω is called the vacuum vector. For d � 0 set

Fd =
⊕

w∈W,|w|=d

H̊w (5)
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and set

F =
⊕
w∈W

H̊w. (6)

2.0.3. The operator algebras
For an element w ∈ W , w �= e with representative (w1 . . . wl) ∈ W define the algebraic 

tensor products

Åw = Åw1 ⊗ · · · ⊗ Åwl
. (7)

Also define

Åe = B(H̊e). (8)

Moreover, for d � 0 we define the direct sums

Åd =
⊕
w∈W
|w|=d

Åw (9)

Now we set

A =
⊕
w∈W

Åw (10)

2.0.4. Identifying Hilbert spaces and operator algebras
Let (v1, . . . , vn) ∈ Wn be s.t. |v1 · · ·vn| = |v1| + . . . + |vn|. Write I for the set 

of all indices 1 � i � n s.t. vi �= e. For i ∈ I write (v(i,1), . . . , v(i,li)) ∈ W for the 
representative of vi. Also, write (ṽ1, . . . , ̃vl) ∈ W for the representative of v := v1 · · ·vn. 
By the assumption it holds that l =

∑
i∈I li. For convenience, we define a bijection σ

from {1, . . . , l} to {(i, j)|i ∈ I, 1 � j � li} as σ(m) = (i, j) where (i, j) is uniquely 
chosen with the property that m = j +

∑
k∈I,k<i lk. Now, we have by the definitions 

that (vσ(1), . . . , vσ(l)) ∼ (ṽ1, . . . , ̃vl). Therefore, by [7, Lemma 2.3] we obtain that there 
is a unique permutation π of {1, . . . , l} with the property that

(vσ(π(1)), . . . , vσ(π(l))) = (ṽ1, . . . , ṽl) (11)

and satisfying that if 1 � i < j � l are s.t. vσ(i) = vσ(j), then π(i) < π(j).
We will now define a unitary Q(v1,...,vn) : H̊v1 ⊗ · · · ⊗ H̊vn

→ H̊v1···vn
as follows. For 

i ∈ I choose pure tensors ηi = ηi,1⊗· · ·⊗ηi,li ∈ H̊vi
and for 1 � i � n with i �∈ I denote 

ηi = Ω. We define

Q(v1,...,vn)(η1 ⊗ · · · ⊗ ηn) =
{
ησ(π(1)) ⊗ · · · ⊗ ησ(π(l)) when I �= ∅
Ω when I = ∅

(12)
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and we extend this definition linearly to a bounded map.
Similarly, we define another map Q(v1,...,vn) : Åv1 ⊗· · ·⊗Åvn

→ Åv1···vn
, denoted by 

the same symbol, as follows. For i ∈ I choose pure tensors ai = ai,1 ⊗ · · · ⊗ ai,li ∈ Åvi

and for 1 � i � n with i �∈ I denote ai = IdH̊e
. We define

Q(v1,...,vn)(a1 ⊗ · · · ⊗ an) =
{
aσ(π(1)) ⊗ · · · ⊗ aσ(π(l)) when I �= ∅
IdF when I = ∅

(13)

and we extend this definition to a linear map.

2.0.5. Defining the graph product
For u ∈ W let WL(u) be the set of words w ∈ W , s.t. uw is reduced. We define

HL(u) =
⊕

w∈WL(u)

H̊w. (14)

We will now, for u ∈ V Γ, define a unitary Uu : Hu ⊗HL(u) → F by setting

Uu|H̊u⊗H̊w

= Q(u,w) for w ∈ WL(u) (15)

Uu(ξu ⊗ η) = η for η ∈ HL(u). (16)

Furthermore, we define for u ∈ V Γ an operator λu : B(Hu) → B(F) as

λu(a) = Uu(a⊗ Id)U∗
u . (17)

The definitions of Uu and λu(a) are the same as in [7] and the intuition behind these 
maps is as follows. The unitary U∗

u represents a pure tensor η = ηv1 ⊗· · ·⊗ηvn ∈ H̊v ⊆ F
by an element in Hu ⊗HL(u) by either shuffling the indices (when v starts with u), or 
tensoring with the vector ξu (when v does not start with u). The operator λu(a) acts 
on η ∈ F by rearranging the tensor η using U∗

u , acting with a on the part in Hu, and 
subsequently using Uu to map the vector back to an element from F .

This construction also coincides with [8, Section 1.5] where the shuffling is done im-
plicit by using an equivalence relation (called shuffle equivalence) to identify Hilbert 
spaces H̊w1 ⊗ · · · ⊗ H̊wn

and H̊w′
1
⊗ · · · ⊗ H̊w′

n
whenever w1 · · ·wn = w′

1 · · ·w′
n are two 

reduced expressions for the same word. The action is then defined by a ·η = ̂̊a⊗η+ϕ(a)η
when v does not start with u, and a · η = ˚(aη0) ⊗ η′ + 〈aη0, ξu〉η′ when v starts with u
and η is shuffle equivalent to η0 ⊗ η′ ∈ H̊u ⊗ H̊uv.

We will define a linear map λ : A → B(F) for w ∈ W with representative (w1, . . . wt) ∈
W and for a pure tensor a = a1 ⊗ · · · ⊗ at ∈ Åw as

λ(a1 ⊗ · · · ⊗ at) = λw1(a1)λw2(a2) . . . λwt
(at) (18)
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and we moreover define λ(IdH̊e
) = IdF . We note that λ is injective as â := λ(a)Ω =

â1⊗· · ·⊗ ân for a = a1⊗· · ·⊗an ∈ Åw. We moreover note that for words v1, . . . , vn ∈ W

with |v1| + . . .+ |vn| = |v1 · · ·vn| and elements ai ∈ Åvi
we have for a = Q(v1,...,vn)(a1⊗

· · · ⊗ an) that λ(a) = λ(a1) . . . λ(an).
Now, we define the graph product of unital C*-algebras as

A := ∗v,Γ(Av, ϕv) := λ(A)
‖·‖

(19)

Also, for d � 0 we define the homogeneous subspace of degree d as

Ad := λ(Ad)
‖·‖

. (20)

We moreover define a state ϕ on A as ϕ(a) = 〈aΩ, Ω〉, so that ϕ(IdF ) = 1 and ϕ(a) = 0
for a ∈ λ(Åw), with w �= e. We note that for v ∈ V Γ we have that Av is isomorphic to 
λ(Av) ⊆ A, and that ϕv = ϕ ◦ λ|Av

. When we are using the GNS-representations, we 
will call A the reduced graph products.

Similarly, when all Av for v ∈ V Γ are von Neumann algebras, and the states ϕv are 
all normal, we define the graph product of von Neumann algebras as

M := ∗v,Γ(Av, ϕv) := λ(A)
SOT

(21)

and the state ϕ is normal on M in that case. We also define the homogeneous subspace 
of degree d as

Md := λ(Ad)
SOT

(22)

2.0.6. Creation, annihilation and diagonal operators
For v ∈ V Γ denote Pv ∈ B(F) for the projection on the complement of HL(v). Let 

w ∈ W , w �= e and let a = a1 ⊗ · · · ⊗ an ∈ Åw = Åw1 ⊗ · · · ⊗ Åwn
. We now define the 

annihilation operator λann : A → B(F), the diagonal operator λdia : A → B(F) and the 
creation operator λcre : A → B(F) by

λann(a1 ⊗ · · · ⊗ an) = (P⊥
w1

λ(a1)Pw1)(P⊥
w2

λ(a2)Pw2) . . . (P⊥
wn

λ(an)Pwn
) (23)

λdia(a1 ⊗ · · · ⊗ an) = (Pw1λ(a1)Pw1)(Pw2λ(a2)Pw2) . . . (Pwn
λ(an)Pwn

) (24)

λcre(a1 ⊗ · · · ⊗ an) = (Pw1λ(a1)P⊥
w1

)(Pw2λ(a2)P⊥
w2

) . . . (Pwn
λ(an)P⊥

wn
) (25)

and by λann(IdH̊e
) = λdia(IdH̊e

) = λcre(IdH̊e
) = IdF and extended linearly. For η ∈ H̊v

for some v ∈ W and b ∈ Åw we see that λann(b)η ∈ H̊wv when v starts with w and that 
λann(b)η = 0 when v does not start with w. Also, we see that λdia(b)η ∈ H̊v when v
starts with w and that λdia(b)η = 0 when v does not start with w. Similarly, we see that 
λcre(b)η ∈ H̊wv when v does not start with w and that λcre(b)η = 0 when v starts with w. 
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Now, using the fact that λann(a) = λann(a1) . . . λann(an), λdia(a) = λdia(a1) . . . λdia(an)
and λcre(a) = λcre(a1) . . . λcre(an) we obtain by repetition that λann(a)η ∈ H̊wv and 
λdia(a)η ∈ H̊v and λcre(a)η ∈ H̊wv and that

• λann(a)η = 0 whenever v does not start with w−1 (i.e. wv �∈ WL(w−1))
• λdia(a)η = 0 whenever v does not start with wi for some 1 � i � d (equivalently: 

when v does not start with w, or w is not a clique word).
• λcre(a)η = 0 whenever wv does not start with w (i.e. when v �∈ WL(w)).

Last, we note that if a ∈ Åw and η ∈ H̊v are both pure tensors, then λann(a)η, λdia(a)η
and λcre(a)η are also pure tensors.

Let (w1, w2, w3) ∈ W 3 be s.t. w := w1w2w3 is a reduced expression. We then define 
a linear map λ(w1,w2,w3) : A → B(F) as follows. For a pure tensor a ∈ Åw, there is a 
unique tensor a1 ⊗ a2 ⊗ a3 ∈ Åw1 ⊗ Åw2 ⊗ Åw3 s.t. a = Q(w1,w2,w3)(a1 ⊗ a2 ⊗ a3). We 
then define

λ(w1,w2,w3)(a) = λcre(a1)λdia(a2)λann(a3) (26)

Furthermore, we define λ(w1,w2,w3)(a) = 0 for a ∈ Åw′ with w′ �= w1w2w3.
The operator λ(w1,w2,w3)(a) must be seen as the part of λ(a) that acts on a vector 

precisely by annihilating the w3-part, diagonally acting on a w2-part, and creating a 
w1-part.

For an element w ∈ W , we now define the set of triple splittings

Sw =

⎧⎪⎨⎪⎩ (w1,w2,w3) ∈ W 3

∣∣∣∣∣∣∣
w = w1w2w3
w2 is a clique word
|w| = |w1| + |w2| + |w3|

⎫⎪⎬⎪⎭ (27)

and also define S =
⋃

w∈W Sw.

Remark 2.1. We explain how the definitions of the sets Sv relate to permutations de-
fined in [8, Definition 2.3]. Let v = v1 · · · vd ∈ W be a reduced expression, let 0 � l � d, 
0 � k � d − l and let t, ul, ur ∈ W be clique words such that ult, tur are clique words, 
ultur is reduced, and |t| = l (in the notation of [8, Definition 2.3] t, ul, ur correspond 
to the cliques Γ0, Γ1, Γ2, and the conditions we put on t, ul, ur are equivalent to Γ0 ∈
Cliq(Γ, l) and (Γ1, Γ2) ∈ Comm(Γ0)). Then a permutation σ(= σv

l,k,t,ul,ur
) is defined (if 

existent) as the permutation such that (1) v = vσ(1) · · · vσ(d), (2) vσ(k+1) · · · vσ(k+l) = t, 
(3) |vσ(1) · · · vσ(k)s| = k − 1 for any letter s of ul, (4) |vσ(1) · · · vσ(k)s| = k + 1 for any 
letter s such that sult is a reduced clique word, (5) |svσ(k+l+1) · · · vσ(d)| = d − k − l − 1
for any letter s of ur, (6) |svσ(k+l+1) · · · vσ(d)| = d − k − l + 1 for any letter s such 
that surt is a reduced clique word. Furthermore σ is chosen such that the expressions 
v1 := vσ(1) · · · vσ(k), v2 := vσ(k+1) · · · vσ(k+l) and v3 := vσ(k+l+1) · · · vσ(d) are the repre-
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sentatives of their equivalence classes and such that vi = vj for i < j implies σ(i) < σ(j). 
Such permutation, if existent, is unique.

We make a few remarks. First of all we note that conditions (3)+(4) are equiva-
lent to sr(vσ(1) · · · vσ(k)t) = ult, and similarly that conditions (5)+(6) are equivalent 
to sl(tvσ(k+l+1) · · · vσ(d)) = urt. Secondly, we note that, when σ exists, the obtained 
triple (v1, v2, v3) lies in Sv. In fact, for v = v1 · · · vd ∈ W , this correspondence 
(l, k, ul, ur, t) �→ (v1, v2, v3) between tuples (l, k, ul, ur, t) for which σv

l,k,t,ul,ur
ex-

ists, and tuples (v1, v2, v3) in Sv, is bijective. Indeed, for (v1, v2, v3) ∈ Sv the tuple 
(l, k, ul, ur, t) such that the corresponding permutation σ satisfies v1 = vσ(1) · · · vσ(k), 
v2 = vσ(k+1) · · · vσ(k+l), v3 = vσ(k+l+1) · · · vσ(d) is given by k = |v1|, l = |v2|, t = v2, 
ul = sr(v1t)t, ur = sl(tv3)t.

The following lemma was essentially proven in [8, Lemma 2.5, Proposition 2.6], and 
tells in what ways an element a ∈ λ(A) can act on a vector.

Lemma 2.2. We have that

λ =
∑

(w1,w2,w3)∈S
λ(w1,w2,w3). (28)

Moreover, λ(w1,w2,w3) = 0 whenever w2 is not a clique word. In particular, for w ∈ W

and a ∈ Åw we find

λ(a) =
∑

(w1,w2,w3)∈Sw

λ(w1,w2,w3)(a). (29)

Proof. Let w = w1 · · ·wd ∈ W and (w1, w2, w3) ∈ Sw and let σ be the corre-
sponding permutation with w1 = wσ(1) · · ·wσ(k), w2 = wσ(k+1) · · ·wσ(k+l) and w3 =
wσ(k+l+1) · · ·wd. Then, for a = a1 ⊗ · · · ⊗ ad ∈ Åw we have

λ(w1,w2,w3)(a) = (30)

= λcre(aσ(1) ⊗ · · · ⊗ aσ(k)) (31)

· λdia(aσ(k+1) ⊗ · · · ⊗ aσ(k+l)) (32)

· λann(aσ(k+l+1) ⊗ · · · ⊗ aσ(d)) (33)

= (Pwσ(1)λwσ(1)(aσ(1))P⊥
wσ(1)

) . . . (Pwσ(k)λwσ(1)(aσ(k))P⊥
wσ(k)

) (34)

· (Pwσ(k+1)λwσ(k+1)(aσ(k+1))Pwσ(k+1)) . . . (Pwσ(k+l)λwσ(k+l)(aσ(k+l))Pwσ(k+l)) (35)

· (P⊥
wσ(k+l+1)

λwσ(m+1)(aσ(k+l+1))Pwσ(k+l+1)) . . . (P
⊥
wσ(d)

λwσ(d)(aσ(d))Pwσ(d)). (36)

Equation (29) now follows from [8, Proposition 2.6] and from the bijective correspondence 
between the tuples (l, k, ul, ur, t) and the elements in Sw as described in Remark 2.1. 
Equation (28) then follows from linearity and the fact that λ(w1,w2,w3)(b) = 0 whenever 
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b ∈ Åw′ with w′ �= w. Last, we note that by [8, Lemma 2.5] we have λ(w1,w2,w3)(a) = 0
whenever w2 is not a clique word, which completes the proof. �

We now prove the following

Lemma 2.3. Let v1, v2 ∈ W with |v1v2| = |v1| + |v2|. Let η ∈ H̊v1v2 be a pure tensor, 
and write η = Q(v1,v2)(η1 ⊗ η2) for some η1 ⊗ η2 ∈ H̊v1 ⊗ H̊v2 . Let w ∈ W and let 
a ∈ Åw. The following holds

(i) If |v1| = |w| + |wv1| then also |wv1v2| = |wv1| + |v2| and

λann(a)η = Q(wv1,v2)(λann(a)η1 ⊗ η2) (37)

λdia(a)η = Q(v1,v2)(λdia(a)η1 ⊗ η2). (38)

(ii) If |wv1v2| = |w| + |v1v2| then also |wv1| = |w| + |v1| and

λcre(a)η = Q(wv1,v2)(λcre(a)η1 ⊗ η2). (39)

(iii) If (w1, w2, w3) ∈ Sw and if |v1| = |w2w3| + |w2w3v1| and |w1w3v1v2| = |w1| +
|w3v1v2|, then also |w1w3v1v2| = |w1w3v1| + |v2| and

λ(w1,w2,w3)(a)η = Q(w1w3v1,v2)(λ(w1,w2,w3)(a)η1 ⊗ η2). (40)

Proof. (i) Assume that |v1| = |w| + |wv1|. Then

|v1v2| − |w| � |wv1v2| � |wv1| + |v2| = |v1| + |v2| − |w| = |v1v2| − |w|. (41)

Hence, |wv1v2| = |wv1| +|v2|, which proves the remark. We now prove that the equations 
by induction to the length |w|. First of all, it is clear that the statement holds when 
w = e, as then λann(a) = λdia(a) = a ∈ C IdH̊e

.
Thus assume that |w| � 1 and that the statement holds for w̃ with |w̃| � |w| − 1. 

Write w = w̃w with w̃ ∈ W and w ∈ V Γ and s.t. |w̃| = |w| − 1. Then we also have 
|v1| = |w| + |wv1|. Let us write a = Q(w̃,w)(a1 ⊗ a2) with a1 ⊗ a2 ∈ Åw̃ ⊗ Åw. Then 
λann(a) = λann(a1)λann(a2).

Now, write η = Q(w,wv1,v2)(ηw ⊗ η′1 ⊗ η2) for some ηw ⊗ η′1 ⊗ η2 ∈ H̊w ⊗ H̊wv1 ⊗ H̊v2

and define

η′ = Q(wv1,v2)(η
′
1 ⊗ η2) (42)

η1 = Q(w,wv1)(ηw ⊗ η′1) (43)

so that also η = Q(w,wv1v2)(ηw ⊗ η′) = Q(v1,v2)(η1 ⊗ η2).
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We now have, using the definitions, that

λann(a2)η = P⊥
w λw(a2)Pwη = P⊥

w Uw((a2ηw) ⊗ η′) = 〈a2ηw, ξw〉η′ (44)

λann(a2)η1 = P⊥
w λw(a2)Pwη1 = P⊥

w Uw((a2ηw) ⊗ η′1) = 〈a2ηw, ξw〉η′1 (45)

and

λdia(a2)η = PwUw((a2ηw) ⊗ η′) = Q(w,wv1v2)( ˚(aηw) ⊗ η′) (46)

λdia(a2)η1 = PwUw((a2ηw) ⊗ η′1) = Q(w,wv1)( ˚(aηw) ⊗ η′1). (47)

Now this means that

λann(a2)η = ϕw(a2ηw)η′ (48)

= Q(wv1,v2)(〈a2ηw, ξw〉η′1 ⊗ η2) (49)

= Q(wv1,v2)(λann(a2)η1 ⊗ η2) (50)

and

λdia(a2)η = Q(w,wv1v2)( ˚(a2ηw) ⊗ η′) (51)

= Q(w,wv1,v2)( ˚(a2ηw) ⊗ η′1 ⊗ η2) (52)

= Q(v1,v2)(Q(w,wv1)( ˚(a2ηw) ⊗ η′1) ⊗ η2) (53)

= Q(v1,v2)(λdia(a2)η1 ⊗ η2). (54)

Now, we note that |wv1| = |w̃| + |w̃wv1| so that using the induction hypothesis and the 
fact that |w̃| = |w| − 1 we find

λann(a)η = λann(a1)λann(a2)η (55)

= λann(a1)Q(wv1,v2)(λann(a2)η1 ⊗ η2) (56)

= Q(w̃wv1,v2)(λann(a1)λann(a2)η1 ⊗ η2) (57)

= Q(wv1,v2)(λann(a)η1 ⊗ η2). (58)

Similarly

λdia(a)η = λdia(a1)λdia(a2)η (59)

= λdia(a1)Q(v1,v2)(λdia(a2)η1 ⊗ η2) (60)

= Q(v1,v2)(λdia(a1)λdia(a2)η1 ⊗ η2) (61)

= Q(v1,v2)(λdia(a)η1 ⊗ η2). (62)
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This finishes the induction, and proves the statement.
(ii) Assume that |wv1v2| = |w| + |v1v2|. Then

|wv1v2| � |wv1| + |v2| � |w| + |v1| + |v2| = |w| + |v1v2| = |wv1v2|. (63)

Hence |wv1| = |w| + |v1|, which shows the first remark. Again we prove the equation 
by induction to the length |w|. Again, it is clear that the statement holds when w = e. 
Thus assume that |w| � 1 and that the statement holds for w̃ with |w̃| � |w| − 1. 
Write w = w̃w with w̃ ∈ W and w ∈ V Γ and s.t. |w̃| = |w| − 1. Then we also have 
|wv1v2| = |w| + |v1v2|. Let us write a = Q(w̃,w)(a1 ⊗a2) with a1 ⊗a2 ∈ Åw̃⊗ Åw. Then 
λcre(a) = λcre(a1)λcre(a2).

We now have by definition

λcre(a2)η = Pwλw(a2)P⊥
w η = (PwUw)((a2ξw) ⊗ η) = Q(w,v1v2)(â2 ⊗ η) (64)

λcre(a2)η1 = Pwλw(a2)P⊥
w η1 = (PwUw)((a2ξw) ⊗ η1) = Q(w,v1)(â2 ⊗ η1). (65)

Now this means that

λcre(a2)η = Q(w,v1v2)(â2 ⊗ η) (66)

= Q(w,v1,v2)(â2 ⊗ η1 ⊗ η2) (67)

= Q(wv1,v2)(Q(w,v1)(â2 ⊗ η1) ⊗ η2) (68)

= Q(wv1,v2)(λcre(a2)η1 ⊗ η2). (69)

Now, we note that |w̃wv1v2| = |w̃| + |wv1v2| so that using the induction hypothesis 
and the fact that |w̃| = |w| − 1 we find

λcre(a)η = λcre(a1)λcre(a2)η (70)

= λcre(a1)Q(wv1,v2)(λcre(a2)η1 ⊗ η2) (71)

= Q(w̃wv1,v2)(λcre(a1)λcre(a2)η1 ⊗ η2) (72)

= Q(wv1,v2)(λcre(a)η1 ⊗ η2). (73)

This finishes the induction, and proves the statement.
(iii) Let (w1, w2, w3) ∈ Sw be s.t |v1| = |w2w3| + |w2w3v1| and |w1w3v1v2| =

|w1| + |w3v1v2|. We will write λ(w1,w2,w3)(a) = λcre(a1)λdia(a2)λann(a3) for some a1 ⊗
a2 ⊗ a3 ∈ Åw1 ⊗ Åw2 ⊗ Åw3 . Now, first, as |v1| = |w2w3| + |w2w3v1|, we also have

|v1| � |w3| + |w3v1| (74)

� |w2| + |w3| + |w2w3v1| (75)

= |w2w3| + |w2w3v1| (76)

= |v1| (77)
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and therefore |v1| = |w3| + |w3v1|. By (i) this gives us

λann(a3)η = Q(w3v1,v2)(λann(a3)η1 ⊗ η2) (78)

and also |w3v1v2| = |w3v1| + |v2|. Now, we also find

|w3v1| = |v1| − |w3| = |w2w3| + |w2w3v1| − |w3| = |w2| + |w2w3v1|. (79)

Let us set v′
1 = w3v1 and v′

2 = v2, so that |v′
1v′

2| = |v′
1| + |v′

2| and |v′
1| = |w2| + |w2v′

1|. 
Moreover set η′ = λann(a3)η and η′1 = λann(a3)η1 and η′2 = η2. Now η′ = Q(v′

1,v′
2)(η

′
1 ⊗

η′2) and we see that the conditions for applying (i) are satisfied. This thus gives us that

λdia(a2)λann(a3)η = Q(w3v1,v2)(λdia(a2)λann(a3)η1 ⊗ η2). (80)

Now, set ṽ1 = v′
1 = w3v1 and ṽ2 = v′

2 = v2 so that again |ṽ1ṽ2| = |ṽ1| + |ṽ2|. 
Also we get |w1ṽ1ṽ2| = |w1w3v1v2| = |w1w3v1| + |v2| = |w1ṽ1| + |ṽ2|. Also set η̃ =
λdia(a2)λann(a3)η and η̃1 = λdia(a2)λann(a3)η1 and η̃2 = η2 Then η̃ = Q(v′

1,v′
2)(η̃1 ⊗ η̃2)

and all conditions for applying (ii) are satisfied. By (ii) we thus get

λcre(a1)λdia(a2)λann(a3)η = Q(w1w3v1,v2)(λcre(a1)λdia(a2)λann(a3)η1 ⊗ η2) (81)

and moreover |w1w3v1| = |w1| + |w3v1|. The previous equation is precisely what we 
needed to show, and we moreover obtain |w1w3v1v2| = |w1| + |w3v1v2| = |w1| +
|w3v1| + |v2| = |w1w3v1| + |v2|, which proves the statement. �
3. Polynomial growth of word-length projections

In this section we shall fix a simple finite graph Γ, together with unital C*-algebras 
Av for v ∈ Γ and states ϕv on Av for which the GNS representation is faithful. We shall 
look at the reduced graph product (A, ϕ) = ∗v,Γ(Av, ϕv) and investigate for d � 0 the 
natural projections Pd : A → Ad. The main result of this section, Theorem 3.10, is that 
these maps are completely bounded, and that we can obtain a bound on ‖Pd‖cb that 
depends only linearly on d. To prove this, we can not use the same method as [28], since 
that relies on the fact that each element either does not act diagonally on a pure tensor 
η ∈ H̊v ⊆ F , or acts diagonally on η on precisely one letter. This holds true for elements 
in the free product, but not generally for elements in the graph product, as they may 
act diagonally on any clique. Therefore, we will instead introduce completely contractive 
maps Hτ (and completely bounded maps H̃ρ) and write Pd as linear combination of 
these.

3.1. The maps Hτ

We introduce some extra notation. Let W be the right-angled Coxeter group asso-
ciated to the graph Γ. Recall, for a word w ∈ W we defined sl(w) and sr(w) as the 
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maximal clique words that w respectively starts with and ends with. For a word u ∈ W , 
n � 0, we define

WL(u) = {w ∈ W : |uw| = |u| + |w|} (82)

WR(u) = {w ∈ W : |wu| = |w| + |u|} (83)

W̃L(u) = {w ∈ WL(u) : sl(uw) = sl(u)} (84)

W̃R(u) = {w ∈ WR(u) : sr(wu) = sr(u)} (85)

W̃L
n (u) = {w ∈ W̃L(u) : |w| = n} (86)

W̃R
n (u) = {w ∈ W̃R(u) : |w| = n}. (87)

Now, let u ∈ W and let uL, uR ∈ W be s.t. |u| = |uu−1
L | + |uL| and |u| = |uR| + |u−1

R u|, 
i.e. uL is some word that u ends with and uR is some word that u starts with. Then we 
have for wL ∈ WL(u) and wR ∈ WR(u) that uLwL and wRuR are reduced expressions. 
Let n � 0. We define

HL(u,uL) =
⊕

w∈WL(u)

H̊uLw HR(u,uR) =
⊕

w∈WR(u)

H̊wuR
(88)

FL(u,uL) =
⊕

w∈W̃L(u)

H̊uLw FR(u,uR) =
⊕

w∈W̃R(u)

H̊wuR
(89)

FL
n (u,uL) =

⊕
w∈W̃L

n (u)

H̊uLw FR
n (u,uR) =

⊕
w∈W̃R

n (u)

H̊wuR
. (90)

For u ∈ W and n � 0 we moreover define

FM
n (u) =

⊕
w1∈W̃R

n (u)
w2∈WL(u)

H̊w1uw2 . (91)

We note that for w1 ∈ W̃R
n (u) and w2 ∈ WL(u) we have that w1uw2 is a reduced 

expression. Indeed, it is clear that w1u and uw2 are reduced by definition. Now, since 
moreover sr(w1u) = sr(u), we have that no letter from w1 can cancel out a letter of w2, 
so that the expression is reduced.

Definition 3.1. Let u ∈ W and let r ∈ W be any clique word that u ends with. Then 
ur is a word in W that u starts with, and |ur| + |r| = |u|. For n � 0 we define a 
partial isometry V u,r

n : F ⊗F → F with initial subspace FR
n (u, ur) ⊗HL(u, r) and final 

subspace FM
n (u) as

V u,r
n |H̊ ⊗H̊ = Q(vrur,rvtail) for vr ∈ W̃R

n (u),vtail ∈ WL(u). (92)

vrur rvtail
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We note that this is well-defined. Indeed, as just pointed out, for vr ∈ W̃R
n (u) and 

vtail ∈ WL(u) we have that vruvtail is reduced. Therefore, we get |vruvtail| � |vrur| +
|rvtail| � |vr| + |ur| + |r| + |vtail| = |vr| + |u| + |vtail| = |vruvtail|. This shows that 
|vrur| + |rvtail| = |vruvtail|, so that Q(vrur,rvtail) is well-defined.

Definition 3.2. We denote

T =
{

(ul,ur, t) ∈ W 3

∣∣∣∣∣ ult, tur clique words,
ultur reduced

}
. (93)

We remark that it follows from the definition that ul, ur and t must also be clique words 
and that ulur must be reduced.

Definition 3.3. Let (ul, ur, t) ∈ T . Also let r ∈ W be a sub-clique word of t and let 
nl, nr � 0. For the tuple τ = (nl, nr, ul, ur, t, r) define a map Hτ : B(F) → B(F) as

Hτ (a) = V (ult),r
nl

(a⊗ IdF )
(
V (urt),r
nr

)∗
. (94)

It is clear that Hτ is completely contractive.

Example 3.4. We note that the partial isometry V e,e
0 : F ⊗ F → F has initial subspace 

FR
0 (e, e) ⊗HL(e, e) = CΩ ⊗F and final subspace FM

0 (e) = F and that on CΩ ⊗F it is 
given by V e,e

0 (zΩ ⊗η) = zη for z ∈ C, η ∈ F . Setting τ = (0, 0, e, e, e, e) and letting a ∈ A
be a pure tensor a = a1⊗· · ·⊗at, we can for η ∈ F calculate Hτ (λ(a))η = V e,e

0 (λ(a)Ω ⊗η). 
Now, if λ(a)Ω �∈ CΩ, then we get Hτ (λ(a))η = 0. On the other hand, if â = λ(a)Ω ∈ CΩ, 
then we must have that λ(a) ∈ C IdF and we get Hτ (a)η = aη. We conclude that 
P0 = H(0,0,e,e,e,e) and ‖P0‖cb = 1.

Similarly to Example 3.4, we aim to write Pd for d � 1 as a linear combination of Hτ ’s 
for different tuples τ , in order to give a bound on ‖Pd‖cb. To achieve this, we introduce 
some convenient notation.

Definition 3.5. Let H1 and H2 be closed subspaces of F . For an operator b ∈ B(F) we 
define a closed subspace Jb(H1, H2) of F as

Jb(H1,H2) = {η ∈ H1|bη ∈ H2}. (95)

Proposition 3.6. Let (ul, ur, t) ∈ T . Also let r ⊆ t be a sub-clique, and let nl, nr � 0. 
Set τ = (nl, nr, ul, ur, t, r). For w ∈ W and ω = (w1, w2, w3) ∈ Sw and for pure tensor 
a = a1 ⊗ · · · ⊗ at ∈ Åw we have that

Hτ (λω(a)) = λω(a)Pa(τ, ω) (96)
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where Pa(τ, ω) is the projection in B(F) on the closed subspace spanned by⋃
vl∈W̃R

nl
(ult),vr∈W̃R

nr
(urt)

vtail∈WL(ult)∩WL(urt)
|vrurtr|=|w2w3|+|w2w3vrurtr|

|w1w3vrurtvtail|=|w1|+|w3vrurtvtail|

Jλω(a)(H̊vrurtvtail
, H̊vlultvtail

). (97)

Proof. We show that the identity holds on pure tensors. First, let v ∈ W and let 
η ∈ H̊v ⊆ F be a pure tensor s.t. λω(a)Pa(τ, ω)η = 0. If η ⊥ FM

nr
(urt), then clearly 

(V urt,r
nr

)∗η = 0 so that Hτ (λω(a))η = 0 = λω(a)Pa(τ, ω)η, and we are done. Thus, as-
sume that η ∈ FM

nr
(urt) and η �= 0, so that η ∈ H̊vrurtvtail

for some vr ∈ W̃R
nr

(urt), 
vtail ∈ WL(urt). Let us write V urt,r∗

nr
η = η1 ⊗ η2 with η1 ∈ H̊vrurtr, η2 ∈ H̊rvtail

. Then 
Hτ (λω(a))η = V ult,r

nl
(λω(a)η1 ⊗ η2). We can assume that 0 �= λω(a)η1 ∈ FR

nl
(ult, ultr)

and η2 ∈ HL(ult, r) since otherwise we find directly Hτ (λω(a))η = 0. Now we thus 
have that λω(a)η1 ∈ H̊vlultr for some vl ∈ W̃R

nl
(ult) and that η2 ∈ H̊rv′

tail
for some 

v′
tail ∈ WL

nr
(ult).

As η2 is non-zero, and as η2 ∈ H̊rvtail
∩H̊rv′

tail
we find that vtail = v′

tail ∈ WL(ult) ∩
WL(urt). Also, since η1 ∈ H̊vrurtr we find that λω(a)η1 ∈ H̊w1w3vrurtr. Now, we already 
had λω(a)η1 ∈ H̊vlultr and by the assumption that λω(a)η1 is non-zero, we thus find 
vlultr = w1w3vrurtr. Moreover, as λω(a)η1 is non-zero, we must have that |vrurtr| =
|w2w3| + |w2w3vrurtr| and |w1w3vrurtr| = |w1| + |w3vrurtr|

Set v1 = vrurtr and v2 = rvtail, so that |v1v2| = |v1| + |v2|, and by the above

|v1| = |w2w3| + |w2w3v1| (98)

|w1w3v1| = |w1| + |w3v1| (99)

Moreover, we now find

|w1w3v1v2| � |w1| + |w3v1v2| (100)

� |w1| + |w3v1| + |v2| (101)

= |w1w3v1| + |v2| (102)

= |w1w3vrurtr| + |rvtail| (103)

= |vlultr| + |rvtail| (104)

= |vlultvtail| (105)

= |w1w3vrurtvtail| (106)

= |w1w3v1v2|. (107)

This shows that

|w1w3v1v2| = |w1| + |w3v1v2| (108)
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Now as η ∈ H̊v1v2 , and as all conditions of Lemma 2.3(iii) are satisfied, this gives us

Hτ (λω(a))η = V ult,r
nl

(λω(a)η1 ⊗ η2) (109)

= Q(w1w3v1,v2)(λω(a)η1 ⊗ η2) (110)

= λω(a)Q(w1w3v1,v2)(η1 ⊗ η2) (111)

= λω(a)η. (112)

Moreover we find λω(a)η ∈ H̊w1w3v1v2 = H̊vlultvtail
. However, this shows that η ∈

Jλω(a)(H̊vlultvtail
, H̊vrurtvtail

). By all the conditions we have shown for vl, vr, vtail, and 
as we have shown that |v1| = |w2w3| + |w2w3v1| (Equation (98)) and |w1w3v1v2| =
|w1| + |w3v1v2| (Equation (108)) it follows that Pa(τ, ω)η = η. We conclude that 
Hτ (λω(a))η = λω(a)η = λω(a)Pa(τ, ω)η.

Alternatively, let η ∈ H̊v ⊆ F be a pure vector s.t. λω(a)Pa(τ, ω)η �= 0. Then we must 
have that Pa(τ, ω)η = η and moreover that λω(a)η is non-zero. We thus get that η ∈
Jλω(a)(H̊vrurtvtail

, H̊vlultvtail
) with vl ∈ W̃R

nl
(ult), vr ∈ W̃R

nr
(urt), vtail ∈ WL(urt) ∩

WL(ult) and so that

|vrurtr| = |w2w3| + |w2w3vrurtr| (113)

|w1w3vrurtvtail| = |w1| + |w3vrurtvtail|. (114)

Set v1 = vrurtr and v2 = rvtail, so that |v1v2| = |v1| + |v2|. Moreover the above 
equations state that |v1| = |w2w3| + |w2w3v1| and |w1w3v1v2| = |w1| + |w3v1v2|. As 
η ∈ H̊vrurtvtail

⊆ FM
nr

(urt), we can write V urt,r∗
nr

η = η1 ⊗ η2 ∈ H̊vrurtr ⊗ H̊rvtail
=

H̊v1 ⊗ H̊v2 . By the above properties we get from Lemma 2.3(iii) that

λω(a)η = Q(w1w3v1,v2)(λω(a)η1 ⊗ η2) ∈ H̊w1w3v1v2 . (115)

However, we also know that λω(a)η ∈ H̊vlultvtail
. Therefore, as λω(a)η is non-zero we 

find vlultvtail = w1w3v1v2 = w1w3vrurtvtail. We thus find vlultr = w1w3vrurtr =
w1w3v1, and hence λω(a)η1 ∈ H̊w1w3v1 = H̊vlultr ⊆ FR

nl
(ult, ultr). Note moreover that 

η2 ∈ HL(ult, r) by the assumption on vtail.
Hence, as λω(a)η1 ⊗ η2 ∈ FR

nl
(ult, ultr) ⊗HL(ult, r) we find that

Hτ (λω(a))η = V ult,r
nl

(λω(a)η1 ⊗ η2) (116)

= Q(w1w3v1,v2)(λω(a)η1 ⊗ η2) (117)

= λω(a)η (118)

= λω(a)Pa(τ, ω)η (119)

which proves the statement. �
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3.2. The maps H̃ρ

We shall now introduce other maps, H̃ρ, that are linear combinations of the maps Hτ

for different τ ’s, and that satisfy a nice equation. We use these maps to show that Pd is 
completely bounded, and give a bound on ‖Pd‖cb.

Definition 3.7. Let nl, nr � 0 and (ul, ur, t) ∈ T . For w ∈ W and for the tuple ρ =
(nl, nr, ul, ur, t) define the set

Sw(ρ) =
{

(w1,w2,w3) ∈ Sw

∣∣∣∣∣ w1 = vlul,w2 = t and w3 = u−1
r v−1

r

for some vl ∈ W̃R
nl

(ult),vr ∈ W̃R
nr

(urt)

}
. (120)

Also denote |ρ| := nl + |ul| + |t| + |ur| + nr.

Remark 3.8. We note that we can partition Sw as {Sw(ρ)}|ρ|=|w| where we run over 
all tuples ρ = (nl, nr, ul, ur, t) for nl, nr � 0, (ul, ur, t) ∈ T with |ρ| = |w|. Indeed, if 
(w1, w2, w3) ∈ Sw(ρ) then w1 = vlul, w2 = t, w3 = u−1

r v−1
r for some vl ∈ W̃R

nl
(ult) and 

vr ∈ W̃R
nr

(urt) and we obtain that t = w2, ul = (ult)t = sr(vlult)t = sr(w1w2)w2 and 
ur = (urt)t = sr(vrurt)t = sr(w−1

3 w2)w2 and nl = |w1| − |ul| = |w1| − |sr(w1w2)w2|
and nr = |w3| −|ur| = |w3| −|sr(w−1

3 w2)w2|. Since we can retrieve ρ from (w1, w2, w3), 
this shows the sets Sw(ρ) are disjoint.

Now let (w1, w2, w3) ∈ Sw and set t := w2, ul := sr(w1t)t, ur := sr(w−1
3 t)t. Then 

ult and tur are clique words and

|w| � |w1w2sr(w1w2)| + |sr(w1w2)w2sl(w2w3)| + |sl(w2w3)w2w3| (121)

= (|w1w2| − |sr(w1w2)|) + |ultur| + (|w2w3| − |sl(w2w3)|) (122)

= |w| + |ultur| − |sr(w1w2)| + |w2| − |sl(w2w3)| (123)

= |w| + |ultur| − |sr(w1w2)w2| − |w2| − |sl(w2w3)w2| (124)

= |w| + |ultur| − |ul| − |t| − |ur| (125)

� |w|. (126)

Thus all inequalities must be equalities and we get |ultur| = |ul| + |t| + |ur| so ultur is 
reduced. This shows (ul, ur, t) ∈ T . Now, set nl := |w1| −|ul| � 0, nr := |w3| −|ur| � 0. 
Then we have vl := w1u−1

l ∈ W̃R
nl

(ult) and vr := w−1
3 u−1

r ∈ W̃R
nr

(urt). Set ρ =
(nl, nr, ul, ur, t) and observe that |ρ| = nl + |ultur| + nr = |w1| + |w2| + |w3| = |w|. 
Now, as w1 = vlul, w2 = t and w3 = u−1

r v−1
r we obtain (w1, w2, w3) ∈ Sw(ρ). This 

proves the claim.

Proposition 3.9. For nl, nr � 0 and (ul, ur, t) ∈ T define for the tuple ρ =
(nl, nr, ul, ur, t) an operator H̃ρ : B(F) → B(F) as
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H̃ρ =
∑
r⊆t

(−1)|r|H(nl,nr,ul,ur,t,r). (127)

Then we have for w ∈ W , ω ∈ Sw and a ∈ A that

H̃ρ(λω(a)) =
{
λω(a) if ω ∈ Sw(ρ)
0 else

. (128)

Proof. Let w ∈ W , ω ∈ Sw and let a = a1 ⊗ · · · ⊗ at ∈ A be a pure tensor. By 
Proposition 3.6 we have

H̃ρ(λω(a)) =
∑
r⊆t

(−1)|r|λω(a)Pa((ρ, r), ω). (129)

Let v ∈ W and let η ∈ H̊v ⊆ F be a pure tensor. If λω(a)η = 0, then it is clear that 
H̃ρ(λω(a))η = 0, so that Equation (128) applied to η holds in either case. Thus assume 
λω(a)η �= 0. Let Iη,ω be the set of all sub-clique words r ⊆ t s.t. Pa((ρ, r), ω)η = η, that 
is

Iη,ω = {r ⊆ t|Pa((ρ, r), ω)η �= 0}. (130)

We prove the proposition using the following steps.
1) We prove that Iη,ω is closed under taking sub-cliques. Let r1 ⊆ r2 ⊆ t, and 

suppose that r2 ∈ Iη,ω. Then we must have η ∈ Jλω(a)(H̊vrurtvtail
, H̊vlultvtail

) with 
vl ∈ WR

nl
(ult), vr ∈ WR

nr
(urt) and vtail ∈ WL(ult) ∩ WL(urt), and |vrurtr2| =

|w2w3| + |w2w3vrurtr2| and |w1w3vrurtvtail| = |w1| + |w3vrurtvtail|
Now this means that also

|vrurt| � |vrurtr1| + |r1| (131)

� |w1w2| + |w1w2vrurtr1| + |r1| (132)

� |w1w2| + |w1w2vrurtr2| + |r2r1| + |r1| (133)

= |vrurtr2| + |r2| (134)

= |vrurt| (135)

and therefore |vrurtr1| = |w1w2| + |w1w2vrurtr1|. This shows Pa((ρ, r1), ω)η = η, 
hence r1 ∈ Iη,ω.

2) We prove that Iη,ω is closed under taking unions. Let r1, r2 ⊆ t be sub-
cliques with r1, r2 ∈ Iη,ω. Then Pa((ρ, r1), ω)η = Pa((ρ, r2), ω)η = η. Moreover, 
by previous step we moreover have Pa((ρ, e), ω)η = η. We must now have η ∈
Jλω(a)(H̊vrurtvtail

, H̊vlultvtail
) with vl ∈ W̃R

nl
(ult), vr ∈ W̃R

nr
(urt) and vtail ∈

WL(ult) ∩WL(urt), and |w1w3vrurtvtail| = |w1| + |w3vrurtvtail| and moreover
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|vrurt| = |w2w3| + |w2w3vrurt| (136)

|vrurtr1| = |w2w3| + |w2w3vrurtr1| (137)

|vrurtr2| = |w2w3| + |w2w3vrurtr2|. (138)

Now we note that also |vrurt| = |vrurtr1| + |r1| = |vrurtr2| + |r2|, hence

|w2w3vrurt| = |w2w3vrurtr1| + |r1| = |w2w3vrurtr2| + |r2|. (139)

As r1, r2 are cliques, this implies r1, r2 ⊆ sr(w2w3vrurt) so that for r = r1 ∪ r2 it holds 
that r ⊆ sr(w2w3vrurt). But this implies

|w2w3vrurt| = |w2w3vrurtr| + |r|. (140)

Now, as also |vrurt| = |vrurtr| + |r| we find using (136) that |vrurtr| = |w2w3| +
|w2w3vrurtr|. It now directly follows that P ((ρ, r), ω)η = η. This shows that r ∈ Iη,ω, 
and thus that Iη,ω is closed under taking unions.

3) We prove the equation H̃ρ(λω(a))η = 1(Iη,ω = {e})λω(a)η. Here 1(Iη,ω = {e})
denotes 1 whenever Iη,ω = {e} is satisfied, and 0 otherwise. In the case that Iη,ω is 
empty we directly find H̃ρ(λω(a))η = 0, so that the equation is satisfied. Thus assume 
that Iη,ω is non-zero. Then as Iη,ω is closed under taking unions, there exists a maximal 
element rη,ω ∈ Iη,ω. However, since Iη,ω is also closed under taking sub-cliques, we then 
find Iη,ω = {r ⊆ rη,ω}. We conclude that

H̃ρ(λω(a))η =
∑
r⊆t

(−1)|r|λω(a)Pa((ρ, r), ω)η (141)

=
∑

r⊆rη,ω

(−1)|r|λω(a)η (142)

= 1(rη,ω = e)λω(a)η (143)

= 1(Iη,ω = {e})λω(a)η. (144)

4) We will now show, for a pure tensor η ∈ H̊v ⊆ F with λω(a)η �= 0, that 
Iη,ω = {e} if and only if ω ∈ Sw(ρ). First, suppose that ω ∈ Sw(ρ). Then we 
can write ω = (w1, w2, w3), where w1 = vlul and w2 = t and w3 = u−1

r v−1
r for 

some vl ∈ W̃R
nl

(ult) and vr ∈ W̃R
nr

(urt). Then as λω(a)η �= 0, we must have that 
η ∈ Jλω(a)(H̊vrurtvtail

, H̊vlultvtail
) for some vtail ∈ WL(ult) ∩WL(urt). It is clear that

|w1w3vrurtvtail| = |vlultvtail| (145)

= |vlul| + |tvtail| (146)

= |w1| + |w3vrurtvtail|. (147)
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Moreover, as w2w3vrurt ⊆ t it is also clear that |vrurt| = |w2w3| + |w2w3vrurt|. This 
shows that Pa((ρ, e), ω)η = η, hence e ∈ Iη,ω.

Now let r ⊆ t be a sub-clique with r �= e. Then we have w2w3vrurtr = r. Hence, we 
have

|vrurtr| + |r| = |vrurt| (148)

= |w2w3| + |w2w3vrurt| (149)

= |w2w3| + |w2w3vrurtr| − |r|. (150)

Now as r �= e we have |r| � 1, which shows that |vrurtr| �= |w2w3| + |w2w3vrurtr|. 
This proves that Pa((ρ, r), ω)η = 0. Thus r �∈ Iη,ω. This shows Iη,ω = {e}.

Now, let ω ∈ Sw for some w ∈ W be s.t. Iη,ω = {e}. Then P ((ρ, e), ω)η = η. 
Hence η ∈ Jλω(a)(H̊vrurtvtail

, H̊vlultvtail
) for some vl ∈ W̃R(ult), vr ∈ W̃R(urt) and 

vtail ∈ WL(ult) ∩WL(urt) and |w1w3vrurtvtail| = |w1| +|w3vrurtvtail| and |vrurt| =
|w2w3| + |w2w3vrurt|. Now as also λω(a)η ∈ H̊w1w3vrurtvtail

, and as λω(a)η �= 0, 
we have that w1w3vrurtvtail = vlultvtail. Hence, w1w3 = vlulu−1

r v−1
r . Now, as 

Pa((ρ, r), ω)η = 0 for all r ⊆ t with r �= e, we must have that sr(w2w3vrurt) ∩ t = e. 
However, multiplying w2w3 with vrurt removes all letters from w2w3. This means that 
sr(w2w3vrurt) ⊆ sr(vrurt) = sr(urt). Now we also have

|vlult| � |w2w−1
1 | + |w2w−1

1 vlult| (151)

= |w2w−1
1 | + |vrurt| − |w2w3| (152)

� |w2w−1
1 | + |w3vrurt| − |w2| (153)

= |w1| + |w3vrurt| (154)

= |w1w3vrurt| (155)

= |vlult| (156)

so that |vlult| = |w2w−1
1 | + |w2w−1

1 vlult|. Now this means that sr(w2w−1
1 vlult) ⊆

sr(vlult) = sr(ult). Hence, as w2w3vrurt = w2w−1
1 vlult, we find sr(w2w3vrurt) ⊆

ult ∩urt = t. However, as also sr(w2w3vrurt) ∩t = e, we conclude that sr(w2w3vrurt) =
e, that is w2w−1

1 vlult = w2w3vrurt = e. But this means that w−1
3 w2 = vrurt and 

w1w2 = vlult. From this it follows that w2 ⊆ sr(vlult) ∩ sr(vrurt) = t. Now, we can 
not have that w2 ⊆ t strictly, as this would mean that w3 starts with a part of t that 
w1 ends with, which would contradict the fact that w1w2w3 is reduced. Thus we now 
find w2 = t and then also w1 = vlul and w3 = u−1

r v−1
r . This means that ω ∈ Sw(ρ).

5) We now conclude the proof of the proposition as we have shown for w ∈ W , ω ∈ Sw, 
pure tensor a = a1 ⊗ · · · ⊗ at ∈ A and pure tensor η ∈ H̊v ⊆ F with λω(a)η �= 0 that

H̃ρ(λω(a))η =
{
λω(a)η Iη,ω = {e}
0 else

=
{
λω(a)η ω ∈ Sw(ρ)
0 else

. (157)
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Now, as noted earlier, the equation is also satisfied when η is a pure tensor with λω(a)η =
0. Therefore, by linearity and continuity, the equation in the proposition holds for all 
η ∈ F . By linearity of H̃ρ and λω the equation also holds for all a ∈ A. This proves the 
statement. �

We now prove our main theorem of this section, that shows that ‖Pd‖cb is polynomially 
bounded in d.

Theorem 3.10. For d � 0 we have (on A) that

Pd =
∑

(ul,ur,t)∈T
0�n�d−|ultur|

∑
r⊆t

(−1)|r|H(n,d−n−|ultur|,ul,ur,t,r). (158)

Moreover, for d � 1 we get the linear bound ‖Pd‖cb � CΓd, where CΓ denotes the 
constant

CΓ =
∑

(ul,ur,t)∈T
2|t|. (159)

Proof. For d � 0 define

Td = {ρ = (nl, nr,ul,ur, t) ∈ Z2
�0 × T ||ρ| = d}. (160)

We recall for w ∈ W that {Sw(ρ)}ρ∈T|w| is a partition of Sw by Remark 3.8. Fix some 
a ∈ A. For d � 0 we find using Lemma 2.2 that

Pd(λ(a)) =
∑

w∈W,|w|=d

∑
ω∈Sw

λω(a) (161)

=
∑
ρ∈Td

∑
w∈W,|w|=d

∑
ω∈Sw(ρ)

λω(a) (162)

=
∑
ρ∈Td

H̃ρ

(∑
w∈W

∑
ω∈Sw

λω(a)
)

(163)

=
∑
ρ∈Td

H̃ρ(λ(a)) (164)

=
∑

(ul,ur,t)∈T
0�n�d−|ultur|

∑
r⊆t

(−1)|r|H(n,d−|ultur|−n,ul,ur,t,r)(λ(a)). (165)

Therefore, the equation holds on λ(A) and hence, by continuity, on A.
Now let d � 1, we show that the bound holds. We note first that by definition V e,e

n = 0
for n � 1. This implies directly that H(n,d−n−|ultur|,ul,ur,t,e) = 0 for 0 � n � d − |ultur|
whenever (ul, ur, t) = (e, e, e). Therefore we find
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‖Pd‖cb �
∑

(ul,ur,t)∈T \{(e,e,e)}
0�n�d−|ultur|

∑
r⊆t

‖H(n,d−n−|ultur|,ul,ur,t,r)‖cb (166)

�
∑

(ul,ur,t)∈T \{(e,e,e)}
0�n�d−|ultur|

2|t| (167)

�

⎛⎝ ∑
(ul,ur,t)∈T

2|t|
⎞⎠ d. � (168)

4. Graph products of state-preserving u.c.p maps

In Section 4.1 we show that the graph product of state-preserving u.c.p maps extends 
to a state-preserving u.c.p map. Thereafter, in Section 4.2, we use this to obtain the 
result that the graph product of finite-dimensional algebras with GNS-faithful states is 
weakly amenable with constant 1.

4.1. Graph products of state-preserving ucp maps

Let Γ be a graph, and for v ∈ V Γ let θv : Av → Bv be state-preserving maps 
between unital C*-algebras (with states s.t. the GNS representation is faithful). Let 
(A, ϕ) = ∗v,Γ(Av, ϕv) and (B, ψ) = ∗v,Γ(Bv, ψv) be their reduced graph products. As 
θv is state preserving it maps Åv to B̊v. We can look at the map θ : λ(A) → λ(B) for 
a1 ⊗ · · · ⊗ as ∈ Åv1 ⊗ · · · ⊗ Åvs for a reduced word v1 · · · vs given as

θ(λ(a1 ⊗ · · · ⊗ as)) = λ(θv1(a1) ⊗ · · · ⊗ θvs(as)) (169)

and we set θ(Id) = Id. We denote this map by θ = ∗v,Γθv and call it the graph product 
map. The map is clearly state-preserving. To prove the main theorem, we need the result 
that the graph product map θ = ∗v,Γθv of state-preserving u.c.p. maps θv extends to a 
bounded map on the graph product, and that it is again u.c.p. This result was already 
proven by Blanchard-Dykema in [3] for the case of free products. For graph products 
the result has been proven by Caspers-Fima in [7, Proposition 3.30] in the setting of von 
Neumann algebras.

Proposition 4.1. [7, Proposition 3.30] Let Γ be a simple graph and for v ∈ V Γ, let 
θv : Mv → Nv be state-preserving normal u.c.p. maps between von Neumann algebras 
Mv and Nv that have faithful normal states. Let (M, ϕ) = ∗v,Γ(Mv, ϕv) and (N , ψ) =
∗v,Γ(Nv, ψv) be the von Neumann algebraic graph products. Then there exists a unique 
normal u.c.p. map θ : M → N s.t. for all pure tensors a1 ⊗ · · · ⊗ as ∈ Mv1 ⊗ · · · ⊗Mvs

we have

θ(λ(a1 ⊗ · · · ⊗ as)) = λ(θv1(a1) ⊗ · · · ⊗ θvs(as)). (170)
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The map θ will be denoted as θ = ∗Γθv

We give here a proof for the case of C*-algebras.

Proposition 4.2. For v ∈ V Γ Let θv : Av → Bv be state-preserving, unital completely 
positive maps between unital C*-algebras (Av, ϕv) and (Bv, ψv), and assume ϕv and ψv

are GNS-faithful. Then the graph product map θ = ∗v,Γθv extends to a state-preserving 
unital completely positive map between the reduced graph products A and B.

Proof. We will use the notation HA
v , H̊A

v , FA, λA, ΩA, et cetera, corresponding to 
the reduced graph product (A, ϕ) := ∗v,Γ(Av, ϕv), and use similar notation for the 
reduced graph product (B, ψ) := ∗v,Γ(Bv, ψv). By the Stinespring’s dilation theorem we 
can write θv(a) = V ∗

v πv(a)Vv for some Hilbert space Ĥv and unital ∗-homomorphism 
πv : Av → B(Ĥv) of Av and some isometry Vv ∈ B(HB

v , Ĥv). We note that for a ∈ Av

we have ϕv(a) = ψv(θv(a)) = 〈θv(a)ξBv , ξBv 〉 = 〈πv(a)ξ̂v, ξ̂v〉 with ξ̂v = Vvξ
B
v . Also πv is 

faithful, as πv(a) = 0 implies for b ∈ Av that 0 = ‖πv(a)πv(b)ξ̂v‖2 = ‖πv(ab)ξ̂v‖2 =
〈πv(b∗a∗ab)ξ̂v, ξ̂v〉 = ϕv(b∗a∗ab), which implies a = 0 since ϕv is GNS-faithful. By these 
properties we conclude that we can construct the graph product of the Av’s w.r.t. the 
representations πv. To distinguish the notation from the other graph products we use hat-
notation like Ĥv, ˚̂Hv, F̂ , λ̂, Ω̂. Define a contraction V : FB → F̂ for η = η1⊗· · ·⊗ηl ∈ H̊B

v
as

V |H̊v

(η1 ⊗ · · · ⊗ ηl) = Vv1η1 ⊗ · · · ⊗ Vvlηl (171)

and V (ΩB) = Ω̂. We note that ηi ∈ H̊B
vi implies 〈V ηi, ξ̂vi〉 = 〈V ηi, V ξBvi〉 = 〈ηi, ξBvi〉 = 0

and hence V ηi ∈ ˚̂Hvi . This shows that V is well-defined.
By [7, Proposition 3.12], we know that there is a state-preserving, unital ∗-

homomorphism π : A → B(F̂) that for a = a1 ⊗ · · · ⊗ al ∈ Åv is given by

π(λA(a1 ⊗ · · · ⊗ al)) = λ̂(πv1(a1) ⊗ · · · ⊗ πvl(al)) (172)

We will now show that θ(λA(a)) = V ∗π(λA(a))V for a ∈ A, which then shows that θ
can be extended to a u.c.p. map on A.

Let η = η1⊗· · ·⊗ηl ∈ H̊B
v for some v ∈ W and let a ∈ Åv for some v ∈ V Γ. We will cal-

culate λ̂v(πv(a))V . First suppose that vv is reduced. We have 〈(I−VvV
∗
v )πv(a)ξ̂v, ξ̂v〉 =

〈πv(a)ξ̂v, 0〉 = 0 so that

λ̂v((I − VvV
∗
v )πv(a))V η = Ûv((I − VvV

∗
v )πv(a) ⊗ IdF̂ )(ξ̂v ⊗ V η) (173)

= Ûv((I − VvV
∗
v )πv(a)ξ̂v ⊗ V η) (174)

= Q̂(v,v)(((I − VvV
∗
v )πv(a)ξ̂v ⊗ V η). (175)

Also we have 〈VvV
∗
v πv(a)ξ̂v, ξ̂v〉 = ϕv(a) = 0 and so we find
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λ̂v(VvV
∗
v πv(a))V η = Ûv(VvV

∗
v πv(a) ⊗ IdF̂ )(ξ̂v ⊗ V η) (176)

= Ûv(VvV
∗
v πv(a)ξ̂v ⊗ V η) (177)

= Q̂(v,v)((VvV
∗
v πv(a)ξ̂v) ⊗ V η) (178)

= Q̂(v,v)((Vvθv(a)ξBv ) ⊗ V η) (179)

= VQB
(v,v)((θv(a)ξBv ) ⊗ η) (180)

= V λB
v (θv(a))η. (181)

Now, on the other hand suppose that v starts with v. Then we can write η =
QB

(v,vv)(η0 ⊗ η′) for some η0 ∈ H̊B
v and η′ ∈ H̊B

vv and we have V η = Q̂(v,vv)(Vvη0 ⊗ V η′). 
Again 〈(I − VvV

∗
v )πv(a)Vvη0, ξ̂v〉 = 0 and so

λ̂v((I − VvV
∗
v )πv(a))V η = Ûv((I − VvV

∗
v )πv(a) ⊗ IdF )Û∗

vV η (182)

= Ûv((I − VvV
∗
v )πv(a) ⊗ IdF )(V η0 ⊗ V η′) (183)

= Ûv (((I − VvV
∗
v )πv(a)Vvη0) ⊗ V η′) (184)

= Q̂(v,vv) (((I − VvV
∗
v )πv(a)Vvη0) ⊗ V η′) . (185)

Furthermore, we have

λ̂v(VvV
∗
v πv(a))V η = Ûv(VvV

∗
v πv(a) ⊗ IdF )Û∗

vV η (186)

= Ûv(VvV
∗
v πv(a) ⊗ IdF )(V η0 ⊗ V η′) (187)

= Ûv (VvV
∗
v πv(a)Vvη0) ⊗ V η′) (188)

= Ûv ((Vvθv(a)η0) ⊗ V η′) (189)

= V UB
v ((θv(a)η0) ⊗ η′) (190)

= V UB
v (θv(a) ⊗ IdF ) (UB

u )∗η (191)

= V λB(θv(a))η. (192)

Now, when a = a1 ⊗ · · · ⊗ ak ∈ Åw, then we have

V ∗π(λA(a))V η = V ∗λ̂(πw1(a1)) . . . λ̂(πwk−1(ak−1))λ̂(Vwk
V ∗
wk

πwk
(ak))V η (193)

+ V ∗λ̂(πw1(a1)) . . . λ̂(πwk−1(ak−1))λ̂((I − Vwk
V ∗
wk

)πwk
(ak))V η (194)

= V ∗λ̂(πw1(a1)) . . . λ̂(πwk−1(ak−1))λ̂(Vwk
V ∗
wk

πwk
(ak))V η (195)

= V ∗π(λA(a1 ⊗ · · · ⊗ ak−1))V λB(θwk
(ak))η. (196)

Note here that the reason why we can remove the second summand is because one 
tensor leg of λ̂((I − Vwk

V ∗
wk

)πwk
(ak))V η is of the form (I − Vwk

V ∗
wk

)πwk
(ak)Vwk

η0 for 
some η0 ∈ HB

w . This tensor leg is not changed by the operator π(λA(a1 ⊗ · · · ⊗ ak−1))
k
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as it may not act on the same letter. Now after the application of V ∗ we obtain for this 
tensor leg that V ∗

wk
(I − Vwk

V ∗
wk

)πwk
(ak)Vwk

η0 = 0, so that this term vanishes.
By what we showed, it now follows from induction to the tensor length k that 

V ∗π(λA(a))V = θ(λA(a)) for all a ∈ A. This then shows the statement. �
4.2. CCAP for reduced graph products of finite dimensional algebras

We now state the following generalization of [28, Proposition 3.5.] to graph prod-
ucts. The proof uses Theorem 3.10 and Proposition 4.1 and Proposition 4.2 and goes 
analogously to [28, Proposition 3.5.].

Proposition 4.3. Let Γ be a finite simple graph. For v ∈ V Γ let Av be a unital C*-algebra 
together with a GNS-faithful state ϕv. Let (A, ϕ) := ∗v,Γ(Av, ϕv) be the reduced graph 
product. For d � 0 let Pd : A → Ad be the natural projection. Let 0 � r � 1, n ∈ N and 
define

Tr =
∞∑
k=0

rkPk Tr,n =
n∑

k=0

rkPk. (197)

Then Tr and Tr,n are completely bounded with

‖Tr‖cb � 1 and ‖Tr − Tr,n‖cb �
CΓnr

n

(1 − r)2 . (198)

The maps Te−t for t � 0 form a one-parameter semi-group of unital completely positive 
maps on A preserving the state ϕ. Moreover, the sequence (T1− 1√

n
,n)n�1 tends pointwise 

to the identity of A and limn→∞ ‖T1− 1√
n
,n‖cb = 1.

Proof. For v ∈ V Γ we define a state-preserving u.c.p map Ur,v : Av → Av as Ur,v(a) =
ra +(1 −r)ϕv(a) IdHv

. It can be seen that ∗v,ΓUr,v = Tr on λ(A) and by Proposition 4.2
this map extends to a state-preserving u.c.p map on A. Thus ‖Tr‖cb = 1. Furthermore,

‖Tr − Tr,n‖cb �
∞∑

k=n+1

rk‖Pk‖cb � CΓ

∞∑
k=n

krk = CΓr
d

dr

(
rn

1 − r

)
(199)

Therefore, as d
dr

(
rn

1−r

)
= nrn−1(1 −r)−1+rn(1 −r)−2 � nrn−1(1 −r)−2 this proves (198). 

It is furthermore clear that (Te−t)t�0 forms a semi-group since PmPn = 0 when n �= m. 
By (198) and by the triangle inequality we have ‖T1− 1√

n
,n‖cb � 1 +CΓn

2(1 − 1√
n
)n → 1 as 

n → ∞ which shows lim
n→∞

‖T1− 1√
n
,n‖cb = 1 since the maps T1− 1√

n
,n are unital. Moreover, 

on λ(A) it is clear that (T1− 1√
n
,n)n�1 tends pointwise to the identity. Therefore, as 

(T1− 1√
n
,n)n�1 is uniformly bounded it follows by density that this holds true on A as 

well. �
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Corollary 4.4. For v ∈ V Γ let Av be a finite-dimensional C*-algebras together with a 
GNS-faithful state ϕv. Then the reduced graph product A has the CCAP. Similarly, for 
finite dimensional von Neumann algebras Mv together with normal faithful states ϕv, we 
have that the graph product M has the wk-∗ CCAP.

We give an application of this result to Hecke-algebras (for references on Hecke-
algebras see [15, Chapter 19]). Let W be a Coxeter group generated by some set S
and let q = (qs)s∈S be a Hecke tuple (i.e. qs > 0 for all s ∈ S and qs = qt whenever s and 
t are conjugate in W ). We denote Nq(W ) for the Hecke algebra corresponding to W and 
q. Our application uses the following proposition which asserts that we can decompose 
Hecke algebras as graph products. This result for right-angled Coxeter groups is stated 
in [5, Corollary 3.4].

Proposition 4.5. Let Γ be a graph, and for v ∈ V Γ let Wv be a Coxeter group generated 
by a set Sv and let qv = (qv,s)s∈Sv

be a Hecke-tuple. Set W = ∗v,ΓWv and q := ∗v,Γqv =
(qv,s)v∈V Γ,s∈Sv

. Then we get a graph product decomposition Nq(W ) = ∗v,ΓNqv(Wv).

Proof. This follows from [7, Proposition 3.22] by considering the natural embeddings 
πv : Nqv(Wv) → Nq(W ) that send generators to generators. �

The following was already known from [5, Theorem A], but we believe our approach 
is more conceptual.

Example 4.6. Let W be a right-angled Coxeter group generated by a finite set S, and 
q = (qv)v∈S a Hecke-tuple. Then as W = ∗v,Γ(Z/2Z) for some (finite) graph Γ, we can 
by Proposition 4.5 write Nq(W ) = ∗v,ΓNqv(Z/2Z). As Nqv(Z/2Z) is finite dimensional 
we obtain by Corollary 4.4 that Nq(W ) has the wk-∗ CCAP.

The result for the following example is new.

Example 4.7. Let Γ be a finite simple graph, and for v ∈ V Γ let Wv be a finite Coxeter 
group generated by some set Sv and let qv = (qv,s)s∈Sv

be a Hecke-tuple for Wv. Then if 
we let W = ∗v,ΓWv and q = ∗v,Γqv := (qv,s)v∈V Γ,s∈Sv

, we have by Proposition 4.5 that 
Nq(W ) = ∗v,ΓNqv(Wv). Since Nqv(Wv) is finite dimensional we obtain by Corollary 4.4
that Nq(W ) possesses the wk-∗ CCAP.

5. Graph product of completely bounded maps on Ad

The main result of this section is Theorem 5.3, which shows that the graph product of 
completely bounded maps Tv defines a completely bounded map Td on the homogeneous 
subspace Ad of degree d. The proof of these results follows the lines of [28] (where they 
use the different convention 〈â, ̂b〉 = ϕ(a∗b)), and uses the construction of the operator 
space Xd as in [8] and another operator space X̃d, to extend it to graph products.
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5.1. Free products and operator spaces

When given a finite graph Γ and algebras (Av, ϕv) we will denote the reduced free 
product of the algebras as (Af , ϕf ) = ∗v(Av, ϕv). Let Γf be the graph with vertex 
set V Γf = V Γ and no edges. Note that the free product is simply the reduced graph 
product corresponding to Γf . For the graph product corresponding to Γf we will use 
notation using superscript f , that is we will write W f , λf , P f

v , Ff , H̊f
v, Åf

w, et cetera. 
We remark that F ⊆ Ff and A ⊆ Af as linear subspaces and that Av = Af

v for v ∈ V Γ. 
For w ∈ W \ {e} with representative (w1, . . . , wn) we will define Hw = Hw1 ⊗ · · ·Hwn

and Aw = Aw1⊗· · ·⊗Awn
, and we define He = CΩ and Ae = B(He). Define a subspace 

L1 of B(Ff ) by the closed linear span

L1 = Span{P f
v λ

f
v (a)P f⊥

v |v ∈ V Γ, a ∈ Åf
v}, K1 = L∗

1. (200)

For a Hilbert space H denote HC , HR respectively for the column and row Hilbert space, 
see [26]. In [28, Lemma 2.3 and Corollary 2.4] it is shown that

L1 � (⊕v∈V ΓH̊v)C , K1 � (⊕v∈V ΓH̊op
v )R (201)

completely isometrically, and that the maps θ1 : Af
1 → L1 and ρ1 : Af

1 → K1 given 
for a ∈ Åv by θ1(λf

v (a)) = P f
v λ

f
v (a)P f⊥

v and ρ1(λf
v (a)) = P f⊥

v λf
v (a)P f

v are completely 
contractive. We denote ⊗h for the Haagerup tensor product, see [18, Chapter 9]. We 
denote Ld = L⊗hd

1 and Kd = K⊗hd
1 for the d-fold tensor product and we write θ⊗d

1 for 
the map Af

d → Ld defined for b = b1 ⊗ · · · ⊗ bd ∈ Ad by θ⊗d
1 (λf (b)) = θ1(λf (b1)) ⊗h

· · · ⊗h θ1(λf (bd)) and we write ρ⊗d
1 for the map Af

d → Kd defined similarly.
We introduce notation similar to [8, Section 2]. Let w ∈ W f s.t. in the graph product 

w is equivalent to some clique word vΓ0 for some clique Γ0 ⊆ Γ (which we will denote 
by w ≡ vΓ0). Let a = a1 ⊗ · · · ⊗ ad ∈ Af

w. We define an operator Diagw(a) : Ff → Ff

on H̊f
v for v ∈ W f with |v| = |w| + |w−1v| as

Diagw(a)|H̊f
v

= Pv1a1Pv1 ⊗ · · · ⊗ PvdadPvd ⊗ IdH̊vd+1
⊗ · · · ⊗ IdH̊v|v|

(202)

and we define Diagw(a)|H̊f
v

= 0 if v ∈ W f is not of the given form. Extending this, 
we obtain a linear map Diagw : Af

w → B(Ff ). For a clique Γ0 in Γ, we now define 
the operator space AΓ0 = Span{Diagw(Af

w)|w ∈ W f , w ≡ vΓ0}. Also, for w ∈ W f we 
consider Af

w as an operator space by the embedding Af
w ⊆ B(Hf

w).

Proposition 5.1. For a clique Γ0 and a word w ∈ W f with w ≡ vΓ0 we have that the 
map Diagw : Af

w → AΓ0 is completely contractive.

Proof. We define a map Vw : Ff → Hf
w ⊗Ff as

Vw|H̊f
v

:= Qf∗
(w,w−1v) (203)
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whenever v ∈ W f is s.t. |v| = |w| + |w−1v| and set Vw|H̊f
v

= 0 when v is not of this 
form. We then obtain that

Diagw(a) = V ∗
w(a⊗ IdF )Vw (204)

which shows the statement. �
As in [28] and [8] we define operator spaces Xd and additionally we will define other 

operator spaces X̃d. For t ∈ W a clique word, denote Γt for the clique in Γ. We now set

Xd =
⊕

nl,nr�0,
(ul,ur,t)∈T

nl+|ultur|+nr=d

Lnl+|ul| ⊗h AΓt
⊗h Knr+|ur| (205)

X̃d =
⊕

nl,nr�0,
(ul,ur,t)∈T

nl+|ultur|+nr=d

Lnl+|ul| ⊗h At ⊗h Knr+|ur| (206)

equipped with the sup-norm. We remark here that the operator space structure on At is 
given by the inclusion At = Af

t′ ⊆ B(Hf
t′) where t′ ∈ W f is the representant of t. Also, 

recall that T was defined in Definition 3.2 and that in Definition 3.7 for a tuple ρ =
(nl, nr, ul, ur, t) with nl, nr � 0, (ul, ur, t) ∈ T we defined |ρ| = nl+ |ul| + |t| + |ur| +nr. 
By the above, we can find a completely contractive map Dd : X̃d → Xd by defining 
Dd = (Dρ)ρ,|ρ|=d where Dρ = (IdLnl+|ul|

⊗ Diagt′ ⊗ IdKnr+|ur|) for ρ = (nl, nr, ul, ur, t).
We now define two linear maps Θ̃d : Ad → X̃d and jd : Ad → Xd as follows. Fix 

a tuple ρ = (nl, nr, ul, ur, t), |ρ| = d. We denote ñl = nl + |ul| and ñr = nr + |ur|. 
Let a ∈ Åw be a pure tensor with w ∈ W . Suppose that w = vlultu−1

r v−1
r for some 

vl ∈ W̃R
nl

(ult) and vr ∈ W̃R
nr

(urt). We can then write a = Q(vlul,t,u−1
r v−1

r )(a1 ⊗ a2 ⊗ a3)
for some a1 ∈ Åvlul

, a2 ∈ Åt and a3 ∈ Åu−1
r v−1

r
. We then defined

Θ̃d(λ(a))ρ = θ⊗ñl
1 (λf (a1)) ⊗ a2 ⊗ ρ⊗ñr

1 (λf (a3)) (207)

jd(a)ρ = θ⊗ñl
1 (λf (a1)) ⊗ Diagt′(a2) ⊗ ρ⊗ñr

1 (λf (a3)). (208)

In the case that w is not of the given form we define Θ̃d(λ(a))ρ = 0 and jd(a)ρ = 0. 
This is extended linearly and we set Θ̃d(λ(a)) = (Θ̃d(λ(a))ρ)ρ and jd(a) = (jd(a)ρ)ρ. 
We moreover define the map Θd := Dd ◦ Θ̃d and see that jd = Θd ◦ λ|Ad

. We note that 
the definition of jd agrees with that in [8, Equation (2.16)], and that, in the case of 
dealing with free products, the map Θd compares with a restriction of the map Θd in 
[28]. In [8, Equation (2.24)] a completely bounded map πd : Ed → B(F) was defined, 
where Ed := jd(Ad) ⊆ Xd, and that satisfied πd ◦ jd = λ|Ad

. For d � 1 the norm bound 
‖πd‖cb � (# Cliq(Γ))3d holds by [8, Theorem 2.9], where # Cliq(Γ) denotes the number 
of cliques in the graph Γ. We get the following commuting diagram:
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X̃d

Ed

Ad

Ad

Af
d

Xd

⊆

⊆

Θ̃d Dd

λ

πd

jd

For a clique word t ∈ W with representative (t1, . . . , t|t|) we define a unitary U : Ht →⊕
r⊆t H̊r in a natural way. Let η = η1 ⊗ · · · η|t| ∈ Ht be a tensor with either ηi ∈ H̊ti or 

ηi ∈ Cξti . For 1 � i � |t| set ri := ti when ηi ∈ H̊ti and ri = e when ηi ∈ Cξti . Then 
r := r1 · · · r|t| is a subword of t since t is a clique word. Using the identification Cξti � H̊e

given by ξti → Ω we can define U(η) = Q(r1,...,r|t|)(η) ∈ H̊r. This extends linearly to a 

unitary. We remark that for a ∈ Åt we have U∗λ(a)U = a. Indeed, it can be checked 
that for ai ∈ Åti we have U∗λ(ai)U = IdHt1

⊗ · · · IdHti−1
⊗ai⊗ IdHti+1

⊗ · · ·⊗ IdHt|t|
so 

that the statement follows as λ(a1 ⊗ · · · ⊗ an) = λ(a1) · · ·λ(an).

Theorem 5.2. The map Θ̃d is completely contractive.

Proof. Choose d � 0. Fix a tuple ρ = (nl, nr, ul, ur, t) with |ρ| = d and write ñl =
nl + |ul|, ñr = nr + |ur|. We define two partial isometries

JL
ρ : Ff⊗ñl ⊗Ht → Ff⊗ñl ⊗F (209)

JR
ρ : Ht ⊗Ff⊗ñr → F ⊗Ff⊗ñr (210)

as follows. Let rl ⊆ t, let η = η1 ⊗ · · · ⊗ ηñl
⊗ η0 ∈ Ff⊗ñl ⊗ (U∗H̊rl) be a pure tensor 

and denote η′0 := Uη0 ∈ H̊rl . If for i � 1 we can write ηi = η′i ⊗ η̃i for some η′i ∈ H̊vi

and η̃i ∈ Ff for which (v1, . . . , vn) is the representative of vlul for some vl ∈ W̃R
nl

(ult), 
then we define

JL
ρ η = η̃1 ⊗ · · · ⊗ η̃ñl

⊗Q(v1,...,vñl
,rl)(η

′
1 ⊗ · · · ⊗ η′ñl

⊗ η′0) ∈ Ff⊗ñl ⊗ H̊vlulrl (211)

and we define JL
ρ as 0 on the complement of all such tensors. Similarly, let rr ⊆ t let 

η = η0 ⊗ η1 ⊗ · · · ⊗ ηñr
∈ (U∗H̊rr) ⊗ Ff⊗ñr , denote η′0 := Uη0 ∈ H̊rr and suppose that 

for i � 1 we can write ηi = η′i ⊗ η̃i for some η′i ∈ H̊vi and η̃i ∈ Ff for which (v1, . . . , vn)
is the representative of u−1

r v−1
r for some vr ∈ W̃R

nr
(urt) we define

JR
ρ η = Q(vñr ,...,v1,rr)(η′ñr

⊗ · · · ⊗ η′1 ⊗ η′0) ⊗ η̃1 ⊗ ..⊗ η̃ñr
∈ H̊vrurrr ⊗Ff⊗ñr (212)

and we define JR
ρ as 0 on the complement of all such tensors.
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We shall show that

Θ̃d(λ(a))ρ = (JL∗
ρ ⊗ Id⊗ñr

Ff )(Id⊗ñl

Ff ⊗λ(a) ⊗ Id⊗ñr

Ff )(Id⊗ñl

Ff ⊗JR
ρ ) (213)

which then shows the statement.
Let w ∈ W , |w| = d, let a ∈ Åw be a pure tensor, let ω = (w1, w2, w3) ∈ Sw, 

vl ∈ W̃R
nl

(ult), vr ∈ W̃R
nr

(urt) and rl, rr ⊆ t. Now let η ∈ H̊vrurrr be a pure tensor, 
in which case λω(a)η is also a pure tensor. Suppose that λω(a)η ∈ H̊vlulrl and that it 
is non-zero, so that vlulrr and vrurur start with w1w2 and w−1

3 w2 respectively and 
so that w1w3vrurrr = vlulrl. Then put wtail := w2w3vrurrr = w2w−1

1 vlulrl so that 
w1w2wtail and w−1

3 w2wtail are reduced expressions for vlulrl and vrurrr respectively. 
We claim that sr(w2wtail) ⊇ sr(w1w2wtail) ∩ sr(w−1

3 w2wtail). Indeed, let v be a letter 
in sr(w1w2wtail) that is not in sr(w2wtail). Then v is a letter at the end of w1 that 
commutes with w2. If v is at the same time a letter in sr(w−1

3 w2wtail) then v is also a 
letter at the end of w−1

3 , i.e. a letter at the start of w3. But this would contradict the 
fact that w1w2w3 is reduced. Thus we established the inclusion and obtain

sr(w2wtail) ⊇ sr(w1w2wtail) ∩ sr(w−1
3 w2wtail) = sr(vlulrl) ∩ sr(vrurrr) ⊇ rl ∩ rr

so that |w2wtail| � |rl ∩ rr|. Now, combining all this, we find

d + |rl ∩ rr| + |wtail| � |w1w2w3| + |w2wtail| + |wtail| (214)

= |w1| + 2|w2| + 2|wtail| + |w3| (215)

= |w1w2wtail| + |w−1
3 w2wtail| (216)

= |vl| + |ul| + |rl| + |rr| + |ur| + |vr| (217)

= d + |rl| + |rr| − |t| (218)

� d + |rl| + |rr| − |rl ∪ rr| (219)

= d + |rl ∩ rr| (220)

We conclude that all the above inequalities must be equalities, in particular |wtail| = 0, 
|t| = |rl∪rr| and |w2wtail| = |rl∩rr|. This means t = rl∪rr and w2 = w2wtail. Now as 
also w2 = w2wtail ⊇ rl ∩ rr we conclude that w2 = rl ∩ rr. Set tl := rlw2 = (rl ∩ trr), 
tm := rl ∩ rr and tr := w2rr = (trl ∩ rr). Then, as we know vlulrl = w1w2wtail =
w1w2 and vrurrr = w−1

3 w2wtail = w−1
3 w2, we then obtain that w1 = vlultl and 

w3 = tru−1
r v−1

r . Hence, ω is of the form ω = (vlultl, tm, tru−1
r v−1

r ). We note that 
tl, tm, tr are disjoint subcliques of t with tltmtr = t. In particular we find that the 
assumption implies w = vlultu−1

r v−1
r . For a closed subspace K ⊆ F denote PK for the 

orthogonal projection on K. We conclude that

PH̊vlulrl
λ(a)PH̊vrurrr

= λ(vlultl,tm,tru−1
r v−1

r )(a)PH̊vrurrr
(221)
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and moreover that this expression is zero whenever a �∈ Åvlultu−1
r v−1

r
. This shows that for 

a ∈ Åw with w not of the form w = vlultu−1
r v−1

r for any vl ∈ W̃R
nl

(ult), vr ∈ W̃R
nl

(urt), 
the right-hand side of (213) is zero. In this case also the left-hand side is zero by definition 
of Θd(λ(a))ρ so that we get equality.

Let v ∈ W . We define.

KL
ρ,v =

⊕
rl⊆t

H̊vulrl KR
ρ,v =

⊕
rr⊆t

H̊vurrr (222)

KL
ρ =

⊕
vl∈W̃R

nl
(ult)

KL
ρ,vl

KR
ρ =

⊕
vr∈W̃R

nr
(urt)

KR
ρ,vr

. (223)

Let us now assume a ∈ Åw with w = vlultu−1
r v−1

r for some vl ∈ W̃R
nl

(ult), vr ∈
W̃R

nr
(urt) and write a = Q(vlul,t,u−1

r v−1
r )(a1 ⊗a2 ⊗a3) for some a1 ∈ Åvlul

, a2 ∈ Åt and 

a3 ∈ Åu−1
r v−1

r
. Note that in such case the words vl, vr are uniquely determined. By the 

above, we now find

PKL
ρ
λ(a)PKR

ρ
= (224)

= PKL
ρ,vl

λ(a)PKR
ρ,vr

(225)

= PKL
ρ,vl

⎛⎜⎜⎝ ∑
tl,tm,tr

partition of t

λ(vlultl,tm,tru−1
r v−1

r )(a)

⎞⎟⎟⎠PKR
ρ,vr

(226)

= PKL
ρ,vl

⎛⎜⎜⎝ ∑
tl,tm,tr

partition of t

λ(vlul,e,e)(a1)λ(tl,tm,tr)(a2)λ(e,e,u−1
r v−1

r )(a3)

⎞⎟⎟⎠PKR
ρ,vr

(227)

Lemma 2.2= PKL
ρ,vl

λ(vlul,e,e)(a1)λ(a2)λ(e,e,u−1
r v−1

r )(a3)PKR
ρ,vr

(228)

= PKL
ρ,vl

λ(vlul,e,e)(a1)(Ua2U
∗)λ(e,e,u−1

r v−1
r )(a3)PKR

ρ,vr
(229)

where we use that λ(a2)|H̊r

= Ua2U
∗ for r ⊆ t. Now, a calculation shows that

(U∗λ(e,e,u−1
r v−1

r )(a3)PKR
ρ,vr

⊗ Id)JR
ρ = (IdHt

⊗ρ⊗ñr
1 (λf (a3))) (230)

JL∗
ρ (Id⊗PKL

ρ,vl
λ(vlul,e,e)(a1)U) = (θ⊗ñl

1 (λf (a1)) ⊗ IdHt
) (231)

We describe the calculation for (230) (the calculation for (231) is similar by taking 
adjoints and using that θ⊗ñl

1 (λf (a1))∗ = ρ⊗ñl
1 (λf (a∗1))). Let η = η0 ⊗ η1 ⊗ · · · ηñr

∈
(U∗H̊rr ) ⊗ Ff⊗ñr for some rr ⊆ t and so that ηi is a pure tensor for i = 0, . . . , ̃nr. 
Assume that for i = 1, . . . , ̃nr we can write ηi = η′i ⊗ η̃i with η′i ∈ H̊vi and η̃i ∈ Ff for 
which (v1, . . . , vñr

) is the representative of u−1
r v−1

r . Indeed, if η is not of this form then 
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both (PKR
ρ,vr

⊗Id)JR
ρ η = 0 and (IdHt

⊗ρ⊗ñr
1 (λf (a3)))η = 0 which gives the equality. Now 

by definition JR
ρ η = ζ1 ⊗ ζ2 where ζ1 := Q(vñr ,...,v1,rr)(η′ñr

⊗ · · · ⊗ η′1 ⊗ Uη0) ∈ H̊vrurrr
and ζ2 := η̃1 ⊗ · · · ⊗ η̃ñr

. Now

(λ(e,e,u−1
r v−1

r )(a3)PKR
ρ,vr

⊗ Id)JR
ρ η = (λ(e,e,u−1

r v−1
r )(a3)PKR

ρ,vr
ζ1) ⊗ ζ2 (232)

= (λ(e,e,u−1
r v−1

r )(a3)ζ1) ⊗ ζ2 (233)

= ϕ(λ(e,e,u−1
r v−1

r )(a3)Q(vñr ,...,v1)(η
′
ñr

⊗ · · · ⊗ η′1))(Uη0) ⊗ ζ2 (234)

= (Uη0) ⊗ (ρ⊗ñr
1 (λf (a3))η1 ⊗ · · · ηñr

) (235)

= (U ⊗ ρ⊗ñr
1 (λf (a3)))η (236)

This shows equality (230). Hence, combining (230) and (231) we obtain

Θ̃d(λ(a))ρ = θ⊗ñl
1 (λf (a1)) ⊗ a2 ⊗ ρ⊗ñr

1 (λf (a3)) (237)

= (JL∗
ρ ⊗ Id)(Id⊗PKL

ρ,vl
λ(vlul,e,e)(a1)Ua2 ⊗ ρ⊗ñr

1 (λf (a3))) (238)

= (JL∗
ρ ⊗ Id)(Id⊗PKL

ρ
λ(a)PKR

ρ
⊗ Id)(Id⊗JR

ρ ) (239)

= (JL∗
ρ ⊗ Id)(Id⊗λ(a) ⊗ Id)(Id⊗JR

ρ ) (240)

This shows the equality holds for all a ∈ Ad, and hence, by density it holds on Ad. This 
then finishes the proof. �
Theorem 5.3. Fix d � 1 and for v ∈ V Γ, let Tv : Av → Av be a state-preserving 
completely bounded map that naturally extends to a bounded map on L2(Av, ϕv) and 
L2(Aop

v , ϕv). Then, for the reduced graph product, the map Td : Ad → Ad defined for 
a = a1 ⊗ · · · ⊗ ad ∈ Åv ⊆ Åd as

Td(λ(a1 ⊗ · · · ⊗ ad)) = λ(Tv1(a1) ⊗ · · · ⊗ Tvd(ad)) (241)

admits a completely bounded extension on Ad with

‖Td‖cb � (# Cliq(Γ))3d ·
(
max

v
C(Tv)

)d
, (242)

where

C(Tv) := max{‖Tv‖cb, ‖Tv‖B(L2(Av,ϕv)), ‖Tv‖B(L2(Aop
v ,ϕv))}. (243)

We will denote this map as Td := ∗v,ΓTv. Moreover, if (Sv)v∈V Γ are maps satisfying the 
same conditions as (Tv)v∈V Γ then

‖Td − Sd‖cb � (# Cliq(Γ))3d2
(
max max{C(Tv), C(Sv)}

)d−1
maxC(Tv − Sv).(244)
v v
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Proof. Fix d � 1 and suppose first that for all 1 � i � d we are given maps Ev,i :
Av → Av satisfying the assumptions of the theorem for Tv. Now for 1 � i � d the 
direct sum 

⊕
v∈V Γ Ev,i extends to a bounded map on (⊕v∈V ΓH̊v)C . Moreover, by [18, 

Theorem 3.4.1] this map is in fact completely bounded with the same norm. Hence by 
(201) the map EL,i := (

⊕
v∈V Γ Ev,i) is completely bounded on L1 with norm ‖EL,i‖cb �

maxv∈V Γ ‖Ev,i‖B(L2(Av,ϕv)). Similarly we obtain that ER,i := (
⊕

v∈V Γ Tv,i) is completely 
bounded on K1 with norm ‖ER,i‖cb � maxv∈V Γ ‖Ev,i‖B(L2(Aop

v ,ϕv)). Now, fix a tuple 
ρ = (nl, nr, ul, ur, t) and denote ñl = nl + |ul| and ñr = nr + |ur|. Then by [18, 
Proposition 9.2.5] we obtain that

Πρ[(Ev,i)v,i] := EL,1 ⊗· · ·⊗EL,ñl
⊗Et1,ñl+1 ⊗· · ·⊗Et|t|,ñl+|t|⊗ER,ñl+|t|+1 ⊗· · ·⊗ER,d

is a completely bounded map on Lñl
⊗h At ⊗h Kñr

with norm

‖Πρ[(Ev,i)v,i]‖cb �
ñl∏
i=1

‖EL,i‖cb
|t|∏
i=1

‖Eti,ñl+i‖cb
d∏

i=ñl+|t|+1

‖ER,i‖cb �
d∏

i=1
max

v
C(Ev,i).

(245)

Now let the maps (Tv) be given and set Tρ = Πρ[(Tv)v,i] (i.e. taking Ev,i = Tv for all i). 
Hence, we get a completely bounded map T̃d = (Tρ)ρ on X̃d. Denote T ′

d for the natural 
product map on Ad that is given by Tv1 ⊗ · · · ⊗ Tvd on Åv for v = v1 · · · vd. We then 
find

Td ◦ λ|Ad
= λ ◦ T ′

d|Ad
= πd ◦ jd ◦ T ′

d|Ad
= πd ◦Dd ◦ T̃d ◦ Θ̃d ◦ λ|Ad

. (246)

This shows that Td extends to a completely bounded map on Ad. The norm-bound now 
follows from the bound ‖πd‖cb � (# Cliq(Γ))3d, the bound on ‖T̃d‖cb and the fact that 
Dd and Θ̃d are completely contractive.

Now suppose we are given maps (Tv)v∈V and (Sv)v∈V satisfying the assumptions 
of the theorem. Set Sρ := Πρ[(Sv)] and S̃d := (Sρ)ρ. Set Ev,i,j = Tv for i < j, set 
Ev,i,j = Tv − Sv for i = j and set Ev,i,j = Sv for i > j. Then by cancellation it follows 
that Πρ[(Tv)] − Πρ[(Sv)] =

∑d
j=1 Πρ[(Ev,i,j)v,i]. Thus it follows that

‖Tρ − Sρ‖cb �
d∑

j=1
‖Πρ[(Ev,i,j)v,i]‖cb �

d∑
j=1

d∏
i=1

max
v

C(Ev,i,j) (247)

� d
(
max

v
max{C(Tv), C(Sv)}

)d−1
max

v
C(Tv − Sv). (248)

Then as (Td − Sd) ◦ λ|Ad
= πd ◦Dd ◦ (T̃d − S̃d) ◦ Θ̃d ◦ λ|Ad

we obtain ‖Td − Sd‖cb �
‖πd‖cb maxρ ‖Tρ − Sρ‖cb which proves the bound. �

Additionally we prove an analogue of Theorem 5.3 for the Hilbert spaces.
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Theorem 5.4. Let Γ be a finite graph and for v ∈ V Γ let (Av, ϕv) and (Bv, ψv) be unital 
C*-algebras with GNS-faithful states and consider the reduced graph products A and B
respectively. Fix d � 1 and for v ∈ V Γ, let Tv : Av → Bv be state-preserving maps that 
extend to bounded maps from L2(Av, ϕv) (= HA

v ) to L2(Bv, ψv) (= HB
v ). Then the map 

Td : FA
d → FB

d defined for η = η1 ⊗ · · · ⊗ ηd ∈ H̊A
v ⊆ FA

d as

Td(η) = Tv1(η1) ⊗ · · · ⊗ Tvd(ηd) (249)

extends to a bounded map. Moreover, if (Sv)v∈V Γ are maps satisfying the same conditions 
as (Tv)v∈V Γ then

‖Td − Sd‖B(FA
d ,FB

d ) (250)

� d(max
v

max{‖Tv‖B(H̊A
v ,H̊B

v ), ‖Sv‖B(H̊A
v ,H̊B

v )})d−1 max
v

‖Tv − Sv‖B(H̊A
v ,H̊B

v ) (251)

Proof. Fix d � 1 and for v ∈ V Γ and 1 � i � d let Ev,i : Av → Bv be state-preserving 
that extend to a map in B(HA

v , HB
v ). Then as Ev,i is state-preserving we have Ev,i(H̊A

v ) ⊆
H̊B

v so that the map Π[(Ev,i)] : FA
d → FB

d defined for η = η1 ⊗ · · · ⊗ ηd ∈ H̊A
v ⊆ FA

d as

Π[(Ev,i)v,i](η) = Ev1,1(η1) ⊗ · · · ⊗ Evd,d(ηd) (252)

is well-defined algebraically and maps H̊A
v to H̊B

v for v ∈ W . Hence, since these subspaces 
are mutually orthogonal for v ∈ W we obtain

‖Π[(Ev,i)]‖B(FA
d ,FB

d ) = max
v∈W,|v|=d

‖Π[(Ev,i)]‖B(H̊A
v
,H̊B

v
) (253)

= max
v∈W,|v|=d

d∏
i=1

‖Evi,i‖B(H̊A
vi

,H̊B
vi

) (254)

�
d∏

i=1
max

v
‖Ev,i‖B(H̊A

v ,H̊B
v ) (255)

Now let (Tv) and (Sv) be maps satisfying the conditions from the theorem. We see that 
Td = Π[(Tv)v,i] (i.e. taking Ev,i = Tv for all 1 � i � d) and Sd = Π[(Sv)v,i] so these 
maps are indeed bounded. Now set Ev,i,j = Tv for i < j, set Ev,i,j = Tv − Sv for i = j

and set Ev,i,j = Sv for i > j. It follows from cancellation that

Π[(Tv)v,i] − Π[(Sv)v,i] =
d∑

j=1
Π[(Ev,i,j)v,i] (256)

Hence ‖Td−Sd‖B(FA,FB) �
∑d

j=1 ‖Π[(Ev,i,j)v,i]‖B(FA,FB) from which (250) follows. �

d d d d
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6. u.c.p extension for CCAP is preserved under graph products

We will introduce the following definition, originating from [28, Section 4]. Let (A, ϕ)
be a unital C*-algebra with GNS-faithful state ϕ. We will say that it has a u.c.p extension 
for the CCAP, when the following are all satisfied:

(1) There is a net (Vj)j∈J of finite rank state-preserving maps on A that converge to 
the identity pointwise and with lim sup

j
‖Vj‖cb = 1.

(2) There is a unital C*-algebra (B, ψ) that contains A as a unital subalgebra, and s.t. 
ψ is GNS-faithful and extends the state ϕ.

(3) There exists a net (Uj)j∈J of state-preserving u.c.p. maps Uj : A → B s.t. ‖Vj −
Uj‖cb, ‖Vj −Uj‖B(L2(A,ϕ),L2(B,ψ)) and ‖Vj −Uj‖B(L2(Aop,ϕ),L2(Bop,ψ)) all converge to 
0 as j → ∞.

Note that by the first property (A, ϕ) must posses the CCAP. It is clear that any finite 
dimensional C*-algebra possesses the above property. In [28, proof of Theorem 4.13] it 
was proven that the reduced group C*-algebra of any discrete group that possess the 
CCAP, also satisfies above criteria. In [19, proof of Theorem 4.2] it was proven that the 
same is true for reduced C*-algebra of a compact quantum group with Haar state whose 
discrete dual quantum group is weakly amenable with Cowling-Haagerup constant 1.

We will now show in the next theorem that the property of having a u.c.p extension for 
the CCAP is being preserved under graph products, for finite simple graphs. The proof 
imitates the proof method of [28, Proposition 4.11]. We will use here Proposition 4.1, 
Proposition 4.2, Proposition 4.3 and Theorem 5.3 and Theorem 5.4

Theorem 6.1. Let Γ be a finite simple graph and for v ∈ V Γ let (Av, ϕv) be unital C*-
algebras (with GNS-faithful states ϕv) that have a u.c.p. extension for the CCAP. Then 
the reduced graph product (A, ϕ) = ∗Γ(Av, ϕv) has a u.c.p. extension for the CCAP.

Proof. We let (Vv,j)j∈Jv
, (Bv, ψv) and (Uv,j)j∈Jv

be a u.c.p extension for the CCAP for 
(Av, ϕv). As for all v the algebras Av, Bv have GNS-faithful states, their reduced graph 
products (A, ϕ) and (B, ψ) respectively are well-defined, and the states ϕ and ψ are GNS-
faithful as well. Hence, by [7, Proposition 3.12] there exists a unital ∗-homomorphism π :
A → B that intertwines the graph product states. Now for a ∈ kerπ and b ∈ λ(A) we have 
ϕ(b∗a∗ab) = ψ(π(b∗)π(a)∗π(a)π(b)) = 0. By the faithfulness of the GNS-representation 
of A, this shows that a = 0 and hence π is injective. We will hence consider π as an 
inclusion A ⊆ B.

We construct a single directed set J =
∏

v∈V Γ Jv with partial order (jv)v∈V Γ ≺
(j′v)v∈V Γ if and only if jv ≺ j′v for all v ∈ V Γ. We can now define nets (Vv,j)j∈J , 
(Uv,j)j∈J as follows: for j = (jv)v∈V Γ we set Vv,j := Vv,jv , and Uv,j := Uv,jv . Note that 
these nets still satisfy the assumptions of a u.c.p. extension for CCAP. For v ∈ V Γ, j ∈ J
we will set
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εv,j = ‖Vv,j−Uv,j‖cb+‖Vv,j−Uv,j‖B(L2(Av,ϕ),L2(Bv,ψ))+‖Vv,j−Uv,j‖B(L2(Aop
v ,ϕ),L2(Bop

v ,ψ))

and by restricting to a subnet we can assume εv,j < 1. Since the maps Uv,j are u.c.p and 
state-preserving we have that Uv,j is a contraction from L2(Av, ϕv) to L2(Bv, ψv) and 
from L2(Aop

v , ϕv) to L2(Bop
v , ψv). Hence we also obtain

‖Vv,j‖cb, ‖Vv,j‖B(L2(Av,ϕ),L2(Bv,ψ)), ‖Vv,j‖B(L2(Aop
v ,ϕv),L2(Bop

v ,ψv)) � 2

We can now by Theorem 5.3 construct for j ∈ J , the finite rank c.b. maps Fd,j =
∗v,ΓVv,j on Ad. We then obtain completely bounded, finite rank maps DN,j =

∑N
d=0(1 −

1√
N

)dFd,jPd on A that on the dense subset λ(A) tend in norm to the identity as N, j →
∞. We can now by Proposition 4.2 construct the state-preserving u.c.p maps Uj :=
∗v,ΓUv,j , and by Proposition 4.3 construct the u.c.p maps T1− 1√

N
and the c.b. maps 

T(1− 1√
N

),N on A. This gives us state-preserving u.c.p maps EN,j = Uj ◦ T1− 1√
N

and 

state-preserving c.b. maps D̃N,j = Uj ◦ T1− 1√
N

,N . Applying Theorem 5.3 and using that 
C(Vv,j), C(Uv,j) � 2 and C(Vv,j − Uv,j) � εv,j we obtain

‖Fd,j − Uj |Ad
‖cb � (# Cliq(Γ))3d22d−1(max

v
εv,j) → 0 as j → ∞. (257)

Similarly, by Theorem 5.4 we obtain

‖Fd,j − Uj‖B(FA
d ,FB

d ) � d2d−1(max
v

εv,j) → 0 as j → ∞. (258)

Now

‖EN,j −DN,j‖cb � ‖EN,j − D̃N,j‖cb + ‖D̃N,j −DN,j‖cb (259)

� ‖T1− 1√
N
− T1− 1√

N
,N‖cb +

N∑
d=0

‖Uj |Ad
− Fd,j‖cb‖Pd‖cb (260)

and similarly

‖EN,j −DN,j‖B(FA,FB) (261)

� ‖EN,j − D̃N,j‖B(FA,FB) + ‖D̃N,j −DN,j‖B(FA,FB) (262)

� ‖Uj‖B(FA,FB)‖T1− 1√
N
− T1− 1√

N
,N‖B(FA,FA) (263)

+
N∑

d=0

‖Uj |Ad
− Fd,j‖B(FA

d ,FB
d )‖Pd‖B(FA,FA

d ) (264)

and we note that ‖Pd‖cb � CΓd (by Theorem 3.10), ‖Pd‖B(FA,FA
d ) � 1 and 

‖Uj‖B(FA,FB) = 1. We now obtain using Proposition 4.3 that
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lim
N

lim
j

‖EN,j −DN,j‖cb � lim
N

‖T1− 1√
N
− T1− 1√

N
,N‖cb (265)

� lim
N

CΓN
2(1 − 1√

N
)N = 0 (266)

so that in particular limN limj ‖DN,j‖cb = 1. Similarly we obtain

lim
N

lim
j

‖EN,j −DN,j‖B(L2(A,ϕ),L2(B,ψ)) � lim
N

‖T1− 1√
N
− T1− 1√

N
,N‖B(FA,FA) (267)

� lim
N

sup
d�N

(1 − 1√
N

)d = 0 (268)

and analogously limN limj ‖EN,j − DN,j‖B(L2(Aop,ϕ),L2(Bop,ψ)) = 0 can be shown. Now 
the construction of (DN,j), (B, ψ) and (EN,j) shows that (A, ϕ) has a u.c.p extension for 
the CCAP. �

Reasoning similarly to [7, Corollary 3.17] we show for arbitrary (possibly infinite) 
simple graphs that, under the assumptions on the algebras Av, we have that the reduced 
graph product possesses the CCAP.

Theorem 6.2. Let Γ be a simple graph and for v ∈ V Γ let (Av, ϕv) be unital C*-algebras 
that have a u.c.p. extension for the CCAP. Then the reduced graph product (A, ϕ) =
∗Γ(Av, ϕv) has the CCAP.

Proof. It follows from Theorem 6.1 that for any finite subgraph Γ0 ⊆ Γ, the reduced 
graph product ∗v,Γ0Av possesses the CCAP. As the reduced graph product over Γ is the 
induced limit of all reduced graph products over finite subgraphs and as the CCAP is 
preserved under inductive limits, this shows the result �
Corollary 6.3. Let Γ be a simple graph and for v ∈ V Γ let Av be one of the following:

(1) (Av, ϕv) is a finite-dimensional C*-algebra with GNS-faithful state ϕv.
(2) (Av, ϕv) is the reduced group C*-algebra of a discrete group with Plancherel state ϕv

that possesses the CCAP
(3) (Av, ϕv) is the reduced C*-algebra of a compact quantum group whose discrete dual 

quantum group is weakly amenable with Cowling-Haagerup constant 1. Here ϕv de-
notes the Haar state.

Then the reduced graph product C*-algebra (A, ϕ) = ∗v,Γ(Av, ϕv) has the CCAP.

We recall, that for a discrete group G we have that G is weakly amenable with constant 
1 if and only if the reduced group C*-algebra C∗

r (G) possesses the CCAP, if and only if 
the group von Neumann algebra L(G) possesses the wk-∗ CCAP. Using this we obtain 
the following result for von Neumann algebras.
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Corollary 6.4. Let Γ be a simple graph and for v ∈ V Γ let Mv = L(Gv) be the group von 
Neumann algebra of a discrete group with the canonical state. If Mv has the wk-∗ CCAP 
for all v ∈ V Γ, then the graph product von Neumann algebra M = ∗v,ΓMv possesses the 
wk-∗ CCAP as well.

Proof. Note that M = ∗v,ΓL(Gv) = L(∗v,ΓGv) has the wk-∗ CCAP if and only if 
C∗

r (∗v,ΓGv) = ∗v,ΓC∗
r (Gv) has the CCAP. The result then follows from Corollary 6.3 �

We note that Corollary 6.4 was already known by [27] where using different techniques 
it was shown that for discrete groups weak amenability with constant 1 is preserved under 
graph products. However, Corollary 6.3 does give new examples of algebras that posses 
the CCAP as you can consider graph products of the form ∗v,Γ(Av, ϕv) where some of 
the algebras (Av, ϕv) satisfy condition (1), some satisfy condition (2) and some satisfy 
condition (3).
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