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Gambling for Success: The Lottery
Ticket Hypothesis in Deep
Learning-Based Side-Channel Analysis

Guilherme Perin, Lichao Wu, and Stjepan Picek

Abstract Deep learning-based side-channel analysis (SCA) represents a strong
approach for profiling attacks. Still, this does not mean it is trivial to find neural
networks that perform well for any setting. Based on the developed neural network
architectures, we can distinguish between small neural networks that are easier
to tune and less prone to overfitting but could have insufficient capacity to model
the data. On the other hand, large neural networks have sufficient capacity but can
overfit and are more difficult to tune. This brings an interesting trade-off between
simplicity and performance.

This work proposes to use a pruning strategy and recently proposed Lottery
Ticket Hypothesis (LTH) as an efficient method to tune deep neural networks for
profiling SCA. Pruning provides a regularization effect on deep neural networks
and reduces the overfitting posed by overparameterized models. We demonstrate
that we can find pruned neural networks that perform on the level of larger networks,
where we manage to reduce the number of weights by more than 90% on average.
This way, pruning and LTH approaches become alternatives to costly and difficult
hyperparameter tuning in profiling SCA. Our analysis is conducted over different
masked AES datasets and for different neural network topologies. Our results
indicate that pruning, and more specifically LTH, can result in competitive deep
learning models.
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1 Introduction

Several side-channel analysis (SCA) approaches exploit various sources of infor-
mation leakage from electronic devices. Common examples of side channels are
timing [15], power [16], and electromagnetic (EM) emanation [26]. Besides a
division based on side channels, it is possible to divide SCA based on the attacker’s
capabilities into non-profiling and profiling attacks. Non-profiling attacks require
fewer assumptions but often require thousands to millions of measurements (traces)
to break a target, especially if protected with countermeasures. Profiling attacks are
considered one of the strongest possible attacks as the attacker has control over a
clone device to build its complete profile [6]. This profile is given by a parametric
statistical model used by the attacker to generalize to side-channel information
collected from similar devices to recover the secret information.

The history of profiling side-channel analysis (SCA) spans around 20 years, and
it is possible to distinguish among several research directions. The first direction
used techniques like (pooled) template attack [6, 8] or stochastic models [28] and
managed to improve the attack performance over non-profiling attacks significantly.
Then, the second direction moved toward machine learning in SCA, and again, a
plethora of results [12, 17, 24] indicated that machine learning could outperform
other profiling SCA methods. More recently, as the third direction, we see a
change of focus to deep learning techniques. Intuitively, we can find at least two
reasons for this: (1) deep learning show superior practical results in breaking targets
protected with countermeasures [19], and (2) deep learning does not require pre-
processing like feature selection [22] or dimensionality reduction [1]. While the
SCA community progressed quite far in the deep learning-based SCA in just a few
years, there are many knowledge gaps. One example would be how to successfully
and systematically find neural networks that manage to break various targets.

Thus, we still need to find approaches that allow designing neural networks that
perform well for various targets. We aim to have an approach that transforms a
good-performing architecture for one scenario into a good-performing architecture
for a different scenario. Finally, it would be ideal if the top-performing architectures
could be small (so they are more computationally efficient, and hopefully, easier to
understand). Unfortunately, this is not easy as the search space turns into infinite
neural network configuration possibilities. There are no general guidelines on how
to construct a neural network that will break a target. Current efforts mainly con-
centrate on finding better hyperparameters by defining modest and optimal ranges
for hyperparameters, resulting in large and exhaustive search spaces. Examples of
applied hyperparameters search in profiling SCA are random search [21], Bayesian
optimization [32], reinforcement learning [27], or approaches following a specific
methodology [31, 35]. Still, there are alternatives to how to provide neural networks
that are small and perform well. Note that larger neural networks can also perform
well for profiling SCA. However, they suffer more from overfitting, and tuning large
models becomes more difficult due to the increased hyperparameter search spaces.
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Regularization techniques are indicated to correct large models by limiting their
capacity, although constructing efficient regularizers can be a highly complex task.

In the machine learning domain, there is a technique called pruning (or sparsi-
fication) that refers to a systematical removal of parameters from neural networks.
Commonly, pruning is used on large neural networks that show good performance.
The goal is to produce a smaller network with similar performance to be deployed in
memory-constrained devices. Also, pruning offers an alternative and cheap solution
for regularizing large deep learning models. While pruning [4, 13] is a rather
standard technique in deep learning, it has not been investigated before in the SCA
domain to the best of our knowledge. Similarly, the Lottery Ticket Hypothesis [9]
attracted quite some attention in the machine learning community, but none (as far
as we know) in the SCA community.

This chapter applies the recent Lottery Ticket Hypothesis (LTH) in the profiling
side-channel analysis. After training a (relatively large) neural network, we apply
the pruning process by removing the activity of small weights from the neural
network. We then re-initialize the pruned neural network with the same initial
weights set for the original large neural network. The pruned and re-initialized
network shows equal or, most of the time, superior performance compared to the
baseline trained network. We emphasize:

• Pruning is convenient for deep neural networks that overfit. Finding efficient and
small networks is more difficult than starting with a large model and then pruning
it. In this chapter, we consider neural network architectures with up to one million
trainable parameters.

• Pruning has two main advantages for SCA: (1) When the baseline model is not
carefully tuned and overfits or underfits, pruning (and specially LTH process)
may “tune” the model size. (2) Pruning acts as a strong regularizer, which
is important for noisy and small SCA datasets. Moreover, techniques such
as explainability and interpretability can be used to define pruning strategies
efficiently.

The results demonstrate that when the large network cannot reach a successful
attack (low guessing entropy), applying the Lottery Ticket Hypothesis leads to a
successful key recovery, even when the number of profiling traces is low. More
importantly, we verify that when training a large deep neural network provides
guessing entropy close to a random guess, a pruned and re-initialized neural network
can reduce the entropy of the target key. Our main contributions are:

1. We introduce the pruning approach into profiling SCA, enabling us to propose
a procedure that can work on top of other approaches. Our approach can be
applied to any neural network, regardless of whether it is selected randomly or
obtained through some other methodology. Naturally, depending on how good is
the original network, the results from our approach can differ.

2. We demonstrate that the Lottery Ticket Hypothesis holds for SCA, which
is a significant finding due to different metrics used in SCA. The original
publication [9] measures LTH efficiency through test accuracy. Here, our metric
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is guessing entropy from the attack traces. As reported in this chapter, we can find
smaller, better, and stable networks by using the pruning and weight initialization
based on LTH, even when the original network does not return successful attack
results.

2 Background

2.1 Notation

Let calligraphic letters likeX denote sets, and the corresponding upper-case letters
X denote random variables and random vectors X over X . The corresponding
lower-case letters x and x denote realizations of X and X, respectively. Next, let
k be a key candidate that takes its value from the keyspace K , and k∗ the correct
key. We define a dataset as a collection of traces T, where each trace ti is associated
with an input value (plaintext or ciphertext) di and a key ki . When considering only
a specific key byte j , we denote it as ki,j , and input byte as di,j .

The dataset consists of |T | traces. From |T | traces, we use N traces for the
profiling set, V traces for the validation set, and Q traces for the attack set. Finally, θ
denotes the vector of parameters to be learned in a profiling model, andH denotes
the hyperparameters defining the profiling model.

2.2 Supervised Machine Learning in Profiling SCA

Supervised machine learning considers the machine learning task of learning a
function f mapping an input X to the output Y (f : X → Y ) based on input-
output pairs. The function f is parameterized by θ ∈ R

n, where n represents the
number of trainable parameters.

Supervised learning happens in two phases: training and test, corresponding to
SCA’s profiling and attack phases. Thus, in the rest of this chapter, we use the terms
profiling/training and attack/testing interchangeably. As the function f , we consider
a deep neural network with the Softmax output layer.

The goal of the training phase is to learn parameters θ ′ that minimize the
empirical risk represented by a loss function L on a dataset T of size N .

In the attack phase, the goal is to make predictions about the classes

y(t1, k
∗), . . . , y(tQ, k∗),

where k∗ represents the secret (unknown) key on the device under the attack (or the
key byte). The outcome of predicting with a model f on the attack set is a two-
dimensional matrix P with dimensions equal to Q × c (the number of classes c
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depends on the leakage model as the class label v is derived from the key and input
through a cryptographic function and a leakage model). To reach the probability that
a certain key k is the correct one, we use the maximum log-likelihood approach:

S(k) =
Q∑

i=1

log(pi,v). (1)

The value pi,v denotes the probability that for a key k and input di , we obtain the
class v.

We are interested in reaching good generalization with machine learning algo-
rithms, denoting how well the concepts learned by a machine learning model apply
to previously unseen examples. At the same time, we aim to avoid underfitting
and overfitting. Overfitting happens when a model learns the detail and noise in
the training data, negatively impacting the model’s performance on unseen data.
Underfitting happens with a model that cannot model the training data or generalize
to unseen data.

In SCA, an adversary is not interested in predicting the classes in the attack phase
but in obtaining the secret key k∗. To estimate the effort required to obtain the key,
we will use the guessing entropy (GE) or success rate metrics [29]. An attack outputs
a key guessing vector g = [g1, g2, . . . , g|K |] in decreasing order of probability,
which means that g1 is the most likely key candidate and g|K | the least likely key
candidate. The success rate is the average probability that the secret key k∗ is the first
element of the key guessing vector g. Guessing entropy is the average position of
k∗ in g. Commonly, averaging is done over 100 independent experiments to obtain
statistically significant results. As common in the deep learning-based SCA, we
consider multilayer perceptron (MLP) and convolutional neural networks (CNNs).

2.3 Leakage Models and Datasets

During the execution of the cryptographic algorithm, the processing of sensitive
information produces a specific leakage. In this chapter, we consider the Hamming
weight leakage model since the considered datasets leak significantly in this model.
There, the attacker assumes the leakage is proportional to the sensitive variable’s
Hamming weight. This leakage model results in nine classes when considering a
cipher that uses an 8-bit S-box (c = 9).

ASCAD Datasets The first target platform we consider is an 8-bit AVR micro-
controller running a masked AES-128 implementation [3]. There are two versions
of the ASCAD dataset. The first version of the ASCAD dataset has a fixed key and
50,000 traces for profiling and 10,000 for testing.The second version of the ASCAD
dataset has random keys, and it consists of 200,000 traces for profiling and 100,000
for testing. For both versions, we attack the key byte 3 unless specified differently.
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For the ASCAD dataset, the third key byte is the first masked byte. For ASCADwith
the fixed key, we use a pre-selected window of 700 features, while for ASCAD with
random keys, the window size equals 1400 features. These datasets are available
at [2].

CHES CTF 2018 Dataset This dataset refers to the CHES Capture-the-flag (CTF)
AES-128 dataset, released in 2018 for the Conference on Cryptographic Hardware
and Embedded Systems (CHES). The traces consist of masked AES-128 encryption
running on a 32-bit STM microcontroller. We use 45,000 traces for the training
set (CHES CTF Device C), containing a fixed key. The attack set consists of 5000
traces (CHES CTF Device D). The key used in the training and validation set is
different from the key configured for the test set. CHES CTF 2018 trace sets contain
the power consumption of the full AES-128 encryption, with a total number of
650,000 features per trace. The raw traces were pre-processed in the following way.
First, a window resampling is performed. Later, we concatenated the trace intervals
representing the processing of the masks (beginning of the trace) with the samples
indicating the processing of S-boxes located after an interval without any particular
activity (flat power consumption profile). The resulting traces have 2200 features.
The original dataset is available at [7], and the processed traces are provided at [25].

3 Related Works

The goal of finding neural networks that perform well in SCA is probably the
most explored direction in machine learning-based SCA. The first works commonly
considered multilayer perceptron and reported good results even though there
were not many available details about hyperparameter tuning or the best-obtained
architectures [10, 11, 20, 33]. In 2016, Maghrebi et al. made a significant step
forward in the profiling SCA as they investigated the performance of convolutional
neural networks [19]. Since the results were promising, this paper started a series
of works where deep learning techniques (most dominantly MLP and CNNs) were
used to break various targets efficiently.

Soon after, works from Cagli et al. [5], Picek et al. [23], and Kim et al. [14]
demonstrated that deep learning could efficiently break implementations protected
with countermeasures. While those works also discuss hyperparameter tuning, it
was still not straightforward to understand the effort required to find the neural
networks that performed well. This effort became somewhat clearer after Benadjila
et al. investigated hyperparameter tuning for the ASCAD dataset [3]. Indeed, while
considering only a subset of possible hyperparameters, the tuning process was far
from trivial.

Zaid et al. proposed a methodology for CNNs for profiling SCA [35]. While the
methodology has limitations, the results obtained are significant as they reached top
performance with never smaller deep learning architectures. This direction is further
investigated by Wouters et al. [31] who reported some issues with [35] but managed
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to find even smaller neural networks that perform similarly well. Still, the proposed
methodologies have some issues. First, it is not easy to use those methodologies and
generalize for other datasets or neural network architectures. Second, the conflicting
results among those methodologies indicate it is difficult to find a single approach
that works the best for everything.

Perin et al. conducted a random search in pre-defined ranges to build deep
learning models to form ensembles [21]. Their findings showed that even random
search (when working on some reasonable range of hyperparameters) could find
neural networks that perform extremely well. Finally, van ver Valk et al. used a
technique called mimicking to find smaller neural networks that perform like the
larger ones [30]. Still, the authors did not use pruning but ran experiments until they
found a smaller network that outputs the same results as the larger one. Thus, the
approaches are significantly different.

Thus, while the approaches mentioned work as evident from the excellent attack
performance, there are still unanswered questions. What is clear is that we can reach
good results with (relatively) small neural networks. What remains to be answered is
how to adapt those methodologies for different datasets, or can we find even smaller
neural network architectures that perform as well (or better). We aim to provide the
answers to those questions in this work.

4 The Lottery Ticket Hypothesis (LTH)

The Lottery Ticket Hypothesis (LTH) was originally proposed by Franke and Carbin
in [9] as a technique to improve pruned neural network performances. The main
goal of pruning is to remove unnecessary weights to achieve the smallest neural
network by keeping the original baseline performance. The baseline model refers
to the trained neural network architecture that is not pruned. This way, pruned
neural networks are suitable for memory-constrained devices and can deliver faster
inference. With the LTH, authors verified that re-initializing the pruned neural
network with the same initial weights from the baseline neural network shows
equivalent or superior performance to the baseline model. In short, authors define the
following: “Lottery Ticket Hypothesis: a randomly initialized dense neural network
contains a sub-network that is initialized such that - when trained in isolation - it
can match the test accuracy of the original network after training for at most the
same number of iterations”.

A fixed sparsity level gives the amount of pruned weights and denotes the
percentage of the removed network (e.g., 90% sparsity on an MLP would remove
90% of weight connections). The top-performing sub-networks are then called the
winning tickets. There are two main ways to deploy LTH: one-shot pruning and
iterative pruning. The latter defines the next sparsity level according to the results
obtained from the previously evaluated sparsity level amount. This way, instead
of defining a fixed sparsity level as in the case of one-shot pruning, the process
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iteratively finds the maximum possible sparsity level that delivers satisfactory
results.

4.1 Pruning Strategy

To find an efficient pruned network, the large overparameterized baseline model
must be trained before applying pruning to remove unnecessary weights. The
pruning process applied in this work removes the smallest weights from the trained
weights obtained from training the baseline model for a fixed amount of epochs.
The activations in the forward propagation are mostly affected by larger weight
values. Therefore, pruning the smallest weights remove those weights that are
not significantly impacting the predictions. Different pruning strategies could be
considered. Here we show that even the most simple method based on weight
magnitude already delivers efficient results.

As shown in the experimental results section, we apply the LTH process on
public (and protected) AES datasets, which also works when considering other than
accuracy performance metrics (e.g., success rate, guessing entropy). The process
starts by training an overparameterized neural network model for a single target
AES key byte (note that our baseline models are assumed to be overparameterized
in comparison to state-of-the-art works, e.g., [27, 31, 35]). Afterward, the model
is pruned by removing smallest weights, and this pruned model is re-initialized and
retrained (with more efficiency, e.g., fewer epochs) for all AES key bytes. Therefore,
LTH reduces the complexity of deep neural network tuning in profiling SCA. We
give the pruning strategy procedure for LTH in Algorithm 1. Although our process
iterates over all sparsity levels s (in our case, from 1 to 99%), we do not consider
it as iterative pruning because we do not set a metric to stop the process. Our main
goal is to evaluate the profiling attack performance for all evaluated sparsity levels.

Algorithm 1 Pruning strategy
1: procedure PRUNING STRATEGY(original neural network f , original dataset x, random initial

weights θ0, training epoch θj , trained weight θj , pruning ratio P%, mask m)
2: for s = 1 to 99 do
3: θj ← Pretrain Model f (x,θ0) for j epochs
4: m ← Prune s% of the smallest weights from θj

5: for i = 1 to j do
6: Train f (x,θ0�m)

7: end for
8: end for
9: end procedure

In Fig. 1, we depict an one-shot pruning procedure. The first part of the figure
displays the reference training procedure with no pruning where the weights at the
beginning of the training process are different from those at epochs A and B. The
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Fig. 1 One-shot pruning procedure for LTH

lower figure shows the setup when we prune the smallest weights and are left to
choose whether we randomly initialize the remaining weights or re-initialize them
from the original weights.

4.2 Winning Tickets in Profiling SCA

In [9], a winning ticket is defined as a sub-network that, when trained in isolation
(after being re-initialized with the same baseline model initial weights), provides
classification accuracy equivalent or superior to the baseline model. For profiling
SCA, we define winning ticket as a sub-network that provides a test guessing
entropy lower than or equivalent to the guessing entropy obtained from the original
baseline model. Note that hyperparameters defined for the baseline model (which
affects the total number of training parameters) and the number of profiling traces
directly affect the chances to identify a winning ticket as demonstrated in Sect. 5.

Recall, pruning refers to removing neurons (neuron-based pruning) or weight
connections (weight-based pruning) from the neural network activity. The most
popular pruning technique consists of keeping a number of weight connections
based on their weight value. This means that the smallest weights are pruned out
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from the model.1 However, one should note that the concept of winning ticket does
not imply that pruning is applied to well-selected pruned weights or neurons. For
instance, if one prunes a certain percentage of elements selected at random and the
remaining sub-network still performs as well as the baseline model, the resulting
model is still called a winning ticket. Obviously, pruning techniques should also
be explored to find a sub-network with more efficiency. In Sect. 5, we provide
an extensive set of experimental results showing that pruning the smallest weights
provides excellent results for SCA. Still, we do not claim that pruning, e.g., random
weights, would not give good results for specific settings.

Ideally, deep learning-based SCA requires selecting the smallest possible neural
network architecture that provides good generalization for a given target. Small
models are faster to train and easier to interpret. The challenge of finding a well-
performing small architecture may grow proportionally to the difficulty of the eval-
uated side-channel dataset (misalignment, noise, countermeasures). Nevertheless,
side-channel traces usually provide a low signal-to-noise ratio, and regularization
techniques play an important role in leakage learnability. Small models are self-
regularized, mainly because they offer less capacity to overfit the training set.
This justifies the importance of finding winning tickets in SCA. Regardless of the
evaluated dataset, starting from a large baseline model and applying the Lottery
Ticket Hypothesis improves the chances to create a small and efficient neural
network model.

5 Experimental Results

5.1 Baseline Neural Networks

In our experiments, we define six different baseline models: three MLPs and
three CNNs. Here, the main idea is to demonstrate how pruning and weight re-
initialization (the Lottery Ticket Hypothesis) provide different SCA results if the
baseline model varies in size or capacity. The MLP models are selected based on
the sizes of commonly used architectures from the related works [3, 19, 21]. CNN
models contain relatively fewer trainable parameters, and we define them based on
efficient results obtained with smaller models as presented in [21, 31, 35].

Table 1 lists the hyperparameter configurations for MLP4, MLP6, and MLP8
models. The main idea is to verify how pruning and re-initialization work for MLP
architectures with different numbers of dense layers and, consequently, different
number of trainable parameters. Note that we have not selected very large neural
network models. All of them contain less than one million trainable parameters.
Here, the goal is to demonstrate that even a moderately-sized model can be signif-
icantly reduced according to the Lottery Ticket Hypothesis procedure presented in

1 Similarly, pruning can be considered as keeping the largest weights in model.
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Table 1 MLP architectures (batch size 400, learning rate 0.001, ADAM, selu activation func-
tions). Number of parameters vary for different datasets due to different input layer dimensions

Layer MLP4 MLP6 MLP8

Dense_1 200 neurons 200 neurons 200 neurons

Dense_2 200 neurons 200 neurons 200 neurons

Dense_3 200 neurons 200 neurons 200 neurons

Dense_4 200 neurons 200 neurons 200 neurons

Dense_5 – 200 neurons 200 neurons

Dense_6 – 200 neurons 200 neurons

Dense_7 – – 200 neurons

Dense_8 – – 200 neurons

Softmax 9 neurons 9 neurons 9 neurons

Parameters (ASCAD Random Keys) 402,609 483,009 563,409

Parameters (ASCAD Fixed Key) 262,609 343,009 423,409

Parameters (CHES CTF 2018) 562,609 643,009 723,409

Algorithm 1 and still keep or provide improved profiling SCA results. While it could
be said that neural networks with up to one million trainable parameters are small,
we note that the state-of-the-art results report significantly smaller architectures
(even significantly fewer than 100,000 trainable parameters) [27, 31, 35].

The principle also holds for the chosen CNN models. Table 2 shows three CNN
architectures, denoted as CNN3, CNN4, and CNN4-2. We defined relatively small
CNNs (but still larger than state-of-the-art in, e.g., [35]), which are sufficient to
break the evaluated datasets. CNN3 has only one convolution layer, while CNN4
and CNN4-2 contain two convolution layers each. In particular, CNN4-2 has larger
dense layers than CNN4 to allow more complex relations between the input-output
data pairs to be found (and allow more overfitting to happen). It is important to
note that we define the same models for three different datasets. It is expected
that for baseline models (without pruning), the performance might not be optimal
for all cases. Although it is out of this chapter’s scope to identify one model
that generalizes well for all scenarios, we demonstrate that applying the Lottery
Ticket Hypothesis procedure is a step forward in this important deep learning-based
profiling SCA research direction.

We also provide experimental results demonstrating that the procedure described
in Sect. 4 depends on several aspects such as the number of profiling traces and the
sparsity level in the pruning process. By identifying the optimal sparsity level for
pruning, we can drastically improve the performance of re-initialized sub-networks.
Moreover, in some scenarios, we show that even when a large baseline model cannot
recover the key, the pruned and re-initialized sub-network succeeds, especially when
the number of profiling traces is small.

Interpreting Plots
This section’s results are given in terms of guessing entropy for different baseline
models, datasets, and sparsity levels. The sparsity level is provided in the x-axis,



228 G. Perin et al.

Table 2 CNN architectures (batch size 400, learning rate 0.001, ADAM, selu activation function).
Number of parameters vary for different datasets due to different input layer dimensions

Layer CNN3 CNN4 CNN4-2

Conv1D_1 16 filters ks=10,
stride=5

16 filters ks=10,
stride=5

16 filters ks=10,
stride=5

MaxPool1D_1 ks=2, stride=2 ks=2, stride=2 ks=2, stride=2

– BatchNorm BatchNorm BatchNorm

Conv1D_2 – 16 filters ks=10,
stride=5

16 filters ks=10,
stride=5

MaxPool1D_2 – ks=2, stride=2 ks=2, stride=2

– – BatchNorm BatchNorm

Dense_1 128 neurons 128 neurons 256 neurons

Dense_2 128 neurons 128 neurons 256 neurons

Softmax 9 neurons 9 neurons 9 neurons

Parameters
(ASCAD Random
Keys)

302,713 47,305 124,489

Parameters
(ASCAD Fixed Key)

159,353 32,969 95,817

Parameters (CHES
CTF 2018)

466,553 63,689 157,257

where we apply pruning to the trained baseline neural network from 1% up to
99%. In each plot, there is a dashed green line that represents the average resulting
guessing entropy for the baseline model without pruning. Thus, the green line
is shown together with the plots to indicate the obtained guessing entropy when
baseline models are trained for 300 epochs without any pruning. We consider 300
epochs to skip possible underfitting scenarios. The models we consider range from
32,969 to 723,409 trainable parameters, and with 300 epochs, there are no extreme
overfitting cases.

The dashed red line is the resulting average guessing entropy after the trained
baseline model is pruned according to the indicated sparsity level (x-axis) and
initialized with random weights and trained for 50 epochs. Finally, the blue line
is the resulting average guessing entropy from the same previous pruned model and
re-initialized with initial weights from the baseline model according to LTH and
trained for 50 epochs. For each sparsity level, each experiment is repeated ten times.
Therefore, each plot results from training 98 × 2 × 10 = 1960 pruned models. The
plots also present the margin variation obtained with ten experiments (depicted as
the area in the respective color).

We briefly discuss the limits that pruning and the Lottery Ticket Hypothesis offer
regarding the results and their explainability:
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1. Pruning allows smaller neural networks that perform on the level or even better
than larger ones. This results from the regularization effect provided by pruning
out small weights according to some strategy (random pruning or LTH).

2. The Lottery Ticket Hypothesis assumes there will be smaller, good performing
sub-networks, so-called winning tickets. Winning tickets in profiling SCA allow
reaching small sub-networks with good attack performance, as measured with
GE. This provides an alternative solution for hyperparameter tuning in which
pruning is used to extract the best possible performance from a model by
disabling unnecessary weight connections.

3. In profiling SCA, finding an efficient model is also characterized by determining
a good balance between the model’s fitting capacity (i.e., its number of trainable
parameters) and its generalization. Regularization is the method that provides this
balance if one chooses to avoid tuning the model’s hyperparameters. However,
finding good regularizers might also pose critical difficulties, especially when
there are more hyperparameters to be tuned due to the regularizer choice.
Therefore, the pruning, and LTH process, offer a cheap and easy-to-deploy
alternative to regularize a large model. However, not all neural network sizes
will necessarily be converted from a baseline model that performs poorly into
an optimal one just by applying pruning strategies as regularizers. Other aspects,
such as dataset nature and the number of profiling traces, also will affect the
pruned model’s performance.

4. Pruning and LTH are not methods to provide explainability. However, explain-
ability and interpretability can be used to improve the pruning strategy. This can
be done by analysing, e.g., gradients [18], neuron relevance to classification [34]
or simply weight magnitude [9].

5.2 ASCAD with a Fixed Key

Figures 2, 3, and 4 provide results for the ASCAD Fixed Key dataset when MLP4,
MLP6, and MLP8 are used as baseline models, respectively, for different number

Fig. 2 ASCAD Fixed Key, MLP4. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces
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Fig. 3 ASCAD Fixed Key, MLP6. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces

Fig. 4 ASCAD Fixed Key, MLP8. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces

of profiling traces. There, we can immediately conclude that random initialization
(random init in figure legends) and LTH initialization (LTH init in figure legends)
provide different final guessing entropy results for different MLP sizes and the
number of profiling traces. For the LTH case, the model size and the number of
profiling traces have a small impact, and we can observe that, for all scenarios,
pruning up to 90% of the weights show similar key recovery results.

On the other hand, if the pruned models are initialized with random weights,
the model’s performance is directly related to model size and the number of
profiling traces. Adding more profiling traces improves the behavior of the model
that is randomly initialized, approaching the model’s behavior that is re-initialized
according to LTH. The baseline model performs better than the pruned model that
uses random initialization if the percentage of pruned weights is larger than 50% (for
MLP8), and the number of profiling traces is sufficient to build a strong model. For
the pruned model that follows the LTH initialization, the baseline model performs
better only if we prune more than 90% of weights.

Interestingly, we can observe that pruning and LTH weight initialization show
very stable results. Repeating the experiments ten times for each sparsity level tends
to provide similar final guessing entropy values. Random weight initialization after
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Fig. 5 ASCAD Fixed Key, CNN3. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces

Fig. 6 ASCAD Fixed Key, CNN4. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces

pruning clearly shows different final guessing entropy results, which is an obvious
consequence of the randomness of weight initialization.

Next, we give results for the three different CNN architectures. Figures 5 and 6
indicate that for 30,000 training traces, as the dataset is small, the baseline model
generally performs well but shows signs of overfitting. Then, pruning up to 60% of
weights improves the performance regardless of the weight initialization procedure,
although the LTH approach shows more stable and superior results. Increasing the
number of traces shows improved behavior for the baseline model. Still, carefully
selected sub-networks are sufficient to break the target, even when pruning 80% of
weights.

Going to a more complex architecture (CNN4), the baseline model performs
well and can reach a guessing entropy of one. However, this baseline model shows
more variation from the ten repeated experiments. Simultaneously, pruning enables
similar performance where the larger the training set, the smaller the differences
between weight initialization procedures (LTH initialization or random). In Fig. 7,
we consider the most complex CNN architecture. Interestingly, for 40,000 and
50,000 traces, we observe an even better performance of pruned networks when
compared to the baseline model for up to 60% pruned weights. Again, LTH
initialization tends to provide more stable results.
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Fig. 7 ASCAD Fixed Key, CNN4-2. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces

Fig. 8 ASCAD Random Keys, MLP4. (a) 60,000 profiling traces. (b) 100,000 profiling traces. (c)
200,000 profiling traces

5.3 ASCAD with Random Keys

In this section, we provide results for the ASCAD Random Keys dataset, as
introduced in Sect. 2.3. Again, we apply the LTH procedure for a different number of
profiling traces (60,000, 100,000, and 200,000) on the six different baseline models
(MLP4, MLP6, MLP8, CNN3, CNN4, and CNN4-2).

Figure 8 shows results for different number of profiling traces and the MLP4
baseline model. With four dense layers, this MLP can be considered a small model,
which is sufficient to break the ASCAD dataset for a large number of profiling
traces (above 100,000), as indicated by the baseline model guessing entropy results.
However, if the number of profiling traces is reduced (60,000), the guessing entropy
result for the baseline model trained for 300 epochs is worse due to overfitting. On
the other hand, applying the LTH process on this MLP4 baseline model shows good
results even when the number of profiling traces is reduced. A natural alternative to
fix the baseline model training would be to reduce the number of epochs to limit the
overfitting. However, we expose this result (Fig. 8a) to demonstrate how pruning
(even from 1% of weights) already regularizes the model and delivers successful
attack results (we also must mention that pruned model is trained for fewer epochs,
also reducing overfitting).
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Fig. 9 ASCAD Random Keys, MLP6. (a) 60,000 profiling traces. (b) 100,000 profiling traces. (c)
200,000 profiling traces

Fig. 10 ASCAD Random Keys, MLP8. (a) 60,000 profiling traces. (b) 100,000 profiling traces.
(c) 200,000 profiling traces

The observations are confirmed in Figs. 9 and 10 for MLP models with
more capacity (MLP6 and MLP8). Indeed, profiling sets that are too small cause
overfitting for the baseline model, which can be easily resolved following the
pruning method. Notice that random initialization always works worse than LTH
initialization, and it also gives more irregular behavior due to the randomness in
the process. This is even more evident in Fig. 10 where the variation of random
initialization after pruning is very significant. This confirms that the LTH is valid
in the profiling SCA context. As shown in Fig. 9, pruning approximately 90% of
the weights from the baseline model results in a successful attack when weights are
initialized with the LTH process.

Comparing Figs. 9 and 10, the larger baseline models tend to provide less
successful results when the LTH procedure is applied. Larger baseline models may
overfit training data more easily, and, as a consequence, the pruning process is
applied to a model that might overfit. The solution for this problem is to consider
early stopping for the baseline model training. This way, pruning would be applied
to the baseline model weights when they reach the best training epoch. To confirm
our hypothesis, we can consider Fig. 10c. The baseline model (MLP8) is trained
on 200,000 profiling traces for 300 epochs and does not overfit, as seen in the final
baseline model’s guessing entropy. In this case, the pruned model performance with
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Fig. 11 ASCAD Random Keys, CNN3. (a) 60,000 profiling traces. (b) 100,000 profiling traces.
(c) 200,000 profiling traces

Fig. 12 ASCAD Random Keys, CNN4. (a) 60,000 profiling traces. (b) 100,000 profiling traces.
(c) 200,000 profiling traces

LTH initialization is as good as for smaller baseline models trained on the same
number of profiling traces (see, e.g., Fig. 9c).

The CNN architectures selected for this analysis show better guessing entropy
results for the baseline model when more profiling traces are used, as shown in
Figs. 11, 12, and 13. However, when less profiling traces are used, as is the case
of results provided in Figs. 11b, 12b, and 13b, the baseline guessing entropy is
not reaching one on average. Adding more profiling traces helps, but the number
of profiling traces should align with the model complexity. The evaluated CNN
models worked well for the ASCAD Fixed Key dataset, as shown in the last section.
However, these models (especially CNN4 and CNN4-2) appear less appropriate for
the ASCAD Random Keys dataset. In such cases, pruning plays an important role in
(partially) overcoming this. After pruning, it is possible to reach very low GE values
(under 5) for a specific percentage of pruned weights. In particular, results show that
pruning plus LTH initialization is better than pruning plus random initialization.
For all cases, we can prune up to around 50% of weights and still reach good
performance even though we use (relatively) simple CNN architectures.
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Fig. 13 ASCAD Random Keys, CNN4-2. (a) 60,000 profiling traces. (b) 100,000 profiling traces.
(c) 200,000 profiling traces

Fig. 14 CHES CTF 2018, MLP4. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

5.4 CHES CTF 2018

For the CHES CTF 2018 dataset, we repeated the experiments on the same neural
network architectures defined in Tables 1 and 2. In this case, we observed much
better results for the three selected MLPs and CNN3 than results obtained for
CNN4 and CNN4-2. These results again confirm the practical advantage of the LTH
procedure in profiling SCA.

Figure 14 shows the guessing entropy for different sparsity levels on three
different number of profiling traces: 20,000, 30,000, and 40,000. As indicated by the
dashed green line in Figs. 14a, 14b, and 14c, the baseline guessing entropy cannot
reach one for MLP4 trained on 300 epochs. Adding more profiling traces helps,
but still, GE stays slightly above one on average. When the network is pruned,
we can immediately see how GE improves, especially for sparsity levels around
80–95%. The LTH initialization shows better (at least more stable) results than
random initialization. Figures 15 and 16 confirm our observations as more profiling
traces is required for good attack performance for the baseline model, especially
as the architecture becomes more complex. On the other hand, we can prune up to
95% of weights if we follow the LTH initialization and still reach superior attack
performance.
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Fig. 15 CHES CTF 2018, MLP6. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

Fig. 16 CHES CTF 2018, MLP8. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

Results for CNNs on the CHES CTF 2018 dataset are acceptable (i.e., converging
to GE close to one) for the CNN3 architecture only, as shown in Fig. 17. There,
we see the benefit of adding more profiling traces as the baseline model overfits.
Still, some sub-networks are providing better attack performance. For CNN4 and
CNN4-2 (Figs. 18 and 19), the baseline model provides poor performances when
trained on 300 epochs. We postulate this happens as the baseline model has a
significantly larger capacity than needed, so it either overfits or underfits, becoming
similar to random guessing. In other words, CNN4 and CNN4-2 on smaller profiling
sets (lower than 30,000 traces) show no generalization for the baseline model,
indicating that these two models are not compatible with the target dataset. We
can observe how the LTH procedure reduces guessing entropy for specific sparsity
level ranges even with those models. Observing Figs. 18 and 19, for sparsity
levels around 70%, LTH initialization reach significantly lower guessing entropy
values (GE ≤ 70) after training for 50 epochs. Increasing the number of attack
traces (we consider only 2000 attack traces) could lead to successful key recovery,
which is particularly interesting if a baseline model provided performance close to
random guessing. When the number of profiling traces is increased to 40,000 traces
(Figs. 18c and 19c), the baseline model shows slightly better results and the LTH
initialization still improves the attack performance. In this case, we can verify that
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Fig. 17 CHES CTF 2018, CNN3. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

Fig. 18 CHES CTF 2018, CNN4. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

Fig. 19 CHES CTF 2018, CNN4-2. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

random initialization might not be a good procedure, as the guessing entropy results
are inferior to the baseline model results.
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5.5 General Observations

Based on the conducted experiments, we provide several general observations:

• If the baseline model works poorly for a limited set of attack traces, pruning
might still improve performance.

• If the baseline works well and does not overfit, then pruning maintains the
performance but produces smaller and regularized networks.

• If there are not enough profiling traces for the model capacity, it will overfit, and
pruning can help avoid that.

• More profiling traces improve pruning results, but it also reduces differences
between weight initialization techniques.

• Pruning and LTH initialization procedure works the best, provided the neural
network architectures are large enough to utilize the winning tickets.

• Pruning can improve the attack results as indicated by the SCA performance
metrics.

6 Conclusions and Future Work

This chapter discussed how pruning could improve the attack performance for
deep learning-based side-channel analysis. We considered the recently proposed
Lottery Ticket Hypothesis that assumes there are small sub-networks in the original
network that perform on the same level as the original network. To the best of our
knowledge, both of those concepts were never before investigated in profiling SCA.
Our experimental investigation confirms this hypothesis for profiling SCA, which
allows us to prune up to 90% of weights and still reach good attack performance.
Thus, we manage to reach the same attack performance for significantly smaller
networks (easier to tune and faster to train). What is more, we show how pruning
helps when a large network overfits or has issues due to imbalanced data. In such
cases, pruning, besides resulting in smaller architectures, enables improved attack
performance.

As future work, we plan to consider more sophisticated pruning techniques
and different leakage models. Finally, as discussed, pruning allows smaller neural
networks and good performance but does not provide insights into neural networks’
explainability. It could be interesting to consider various feature visualization
techniques to evaluate the important features before and after the pruning. Also,
explainability and interpretability techniques could be efficiently applied here to
select weights to be pruned.
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