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Abstract
Category theory is a branch of mathematics that is
used to abstract and generalize other mathemati-
cal concepts. Its core idea is to take the empha-
sis off the details of the elements of these concepts
and put it on the relationships between them in-
stead. The elements can then be characterized in
terms of their relationships using various universal
properties. The goal of this project was to imple-
ment a pedagogical library of category theory in
the computer proof assistant Lean, a software tool
for formalizing mathematics, and provide a differ-
ent perspective on various functional programming
concepts by finding parallels between them and the
universal properties of category theory.

1 Introduction
Mathematics is all about abstracting the world around us. It
essentially provides frameworks and systems for a vast va-
riety of concepts so that we could study, analyse and com-
pare relevant features of physical objects. Eugenia Cheng
has said that ”Category theory is the mathematics of math-
ematics. Whatever mathematics does for the world, category
theory does for mathematics” [1, §9]. Indeed, category the-
ory is all about abstracting mathematical concepts, in order to
study, analyse and compare structures and their relationships
in various branches of mathematics.

The core idea of category theory is taking the emphasis
off the internal details of the elements and focusing on their
relationships instead. This is where the universal properties
come in. By characterizing the objects in terms of their re-
lationships to other objects, universal properties capture the
common patterns across various fields, including mathemat-
ics, computer science, biology and more, and allow us to rea-
son about them more generally.

Computer proof assistants are software tools that allow
programmers to formally define and verify mathematical
structures, theorems, proofs and concepts in general. Imple-
menting these elements in proof assistants gives us complete
confidence in their correctness.

As with any other mathematical concept, category theory
can also be formalized in computer proof assistants and is al-
ready implemented in various languages, for example Lean
[2], Agda [3] and Coq [4]. These libraries, however, are all
quite advanced. They include a lot of complicated definitions
and documentation which can be very overwhelming for be-
ginners. Furthermore, the lack of concrete examples and in-
structions makes it difficult for novices to get started with us-
ing the aforementioned libraries.

To tackle these problems, I, along with my project group
members Ciprian Stanciu, Csanád Farkas, Pedro Brandão de
Araujo and Rado Todorov, implemented a pedagogical li-
brary of category theory in Lean. We implemented all the
core definitions of category theory as well as a few advanced
features while focusing on writing clear and understandable
code, many examples, beginner-friendly documentation and
instructions for using the library so that people who are new

to the concepts of category theory and formal verification
could use it as a learning tool.

The aim of this report is to explain the implementation of
the universal properties of category theory in the pedagogi-
cal library. More specifically, this research only focused on
four fundamental universal properties, namely initial objects,
terminal objects, binary products and binary coproducts. Fur-
thermore, due to the lack of papers highlighting the proper-
ties’ connection to functional programming, the research also
aims to answer the following question: Which parallels can
be drawn between the universal properties of category theory
and functional programming? All found parallels are also
exemplified with code snippets from the functional program-
ming language Haskell.

In the upcoming sections, I will first introduce the relevant
concepts of category theory and computer proof assistants, af-
ter which the methodology for implementing the library will
be discussed. Then I will explain the relevant concepts of cat-
egory theory in more detail along with their implementation
in the library and answer the research question. I will also
critically reflect on the ethical aspects and reproducibility of
the research, discuss the advantages and shortcomings of the
library compared to other solutions as well as some possible
future improvements and, finally, conclude the report.

2 Background
In this section, I will provide some important background in-
formation that is necessary for understanding the rest of the
paper. I will give a very high-level explanation of the relevant
concepts of category theory, namely categories and universal
properties, and what exactly are computer proof assistants. I
will also explain what is Lean and why we chose it for imple-
menting the library.

2.1 Category Theory
Category theory is a branch of mathematics that was devel-
oped in the 1940s by mathematicians Samuel Eilenberg and
Saunders Mac Lane and was properly introduced in a 1945
paper [5] by the same authors. It provides a general, high-
level framework for studying mathematical structures and re-
lationships between them by capturing the essential features
and common patterns across all areas of mathematics and can,
therefore, be used to abstract any mathematical concept.

Nowadays, category theory has found many applications
in various fields beyond mathematics, such as physics [6][7],
biology [8] and even philosophy [9], just to name a few. Fur-
thermore, it has proven to be particularly useful in computer
science as it provides a foundation for studying and designing
programming langagues.

Categories
As the name might suggest, category theory is mostly con-
cerned with studying categories. These are essentially just
structures, consisting of objects and morphisms (relation-
ships) between them, that enable abstracting concepts from
various fields into a common framework. The exact defini-
tion of a category along with its implementation is explained
in Section 4.1.



Universal properties
The main idea of category theory is abstracting away the spe-
cific, often messy and irrelevant details of the objects them-
selves and focusing on their relations to other objects within
the category. Instead of studying the objects in isolation, it
puts the emphasis on the interactions between them. This is
where universal properties come in.

Universal properties characterize the objects in a category
in a unique way, in terms of their relations to other objects.
They are useful because they capture common patterns and
parallels across various fields and, therefore, allow us to study
and reason about them in a unified way while avoiding rep-
etition by enabling the reuse of the same (or at least similar)
proofs for different categories.

Although there are many papers and books that explain the
connection between category theory and functional program-
ming [10][11][12], they usually focus on other elements of
category theory, mostly functors and monads, as well as lack
concrete examples. However, there are many parallels that
can be drawn between the universal properties of category
theory and various functional programming concepts and un-
derstanding them can give many insights into the nature of
these concepts.

Category theory includes several universal properties,
some more common and useful than others. This report will
only describe the four universal properties introduced in ”Cat-
egory Theory for Programming” [13, §3], namely initial ob-
jects, terminal objects, binary products and binary coprod-
ucts, as these are arguably the most fundamental ones. Their
definitions and implementations are explained in Section 4.2.

2.2 Computer Proof Assistants
Proving mathematical concepts by hand can be a very time-
consuming, repetitive and error-prone process. Handwritten
definitions, notations and logical steps can also lack the nec-
essary rigor and precision, making the proofs vulnerable to
misinterpretation and invalid reasoning. To tackle these prob-
lems, several systems and concepts, most notably Automath
and Martin-löf type theory, started to arise during the late
1960s and early 1970s [14, §2] which laid the foundation for
the computer proof assistants as we know them today.

Computer proof assistants, also known as interactive theo-
rem provers, are software tools for formalizing mathematical
concepts. They make use of dependent type theory, an exten-
sion of traditional type theory where the types are allowed to
depend on some values, to type check all terms in the code
which provides a high degree of confidence in the correctness
of the mathematical statements.

There are many different computer proof assistants avail-
able, each one with their own advantages and disadvantages.
Some of the most popular theorem provers are Agda, Coq,
Isabelle, HOL and, our choice, Lean.

Lean
Lean is a functional programming language and theorem
prover. It is an open source project launched in 2013 as an
effort to help mathematicians solve and formalize complex
math problems. Since then, it has been in constant devel-
opment thanks to the contributions of a large community of

students, professors and mathematicians. The community has
already formalized over half of the undergraduate mathemat-
ics curriculum in Mathlib [2], the unified library of mathe-
matics in Lean, and is aiming to finish digitizing the entire
curriculum in the next 5 years [15].

Lean is one of many proof assistants that is based on the
Curry-Howard correspondence, a framework for representing
proofs in formal logic as computer programs. More specifi-
cally, it states that propositions in formal logic can be inter-
preted as types in programming languages and each instance
of the type as its proof [16, §5]. Therefore, constructing a
proof for a proposition is equivalent to defining a term of the
corresponding type. Finally, type-checking the code ensures
that the terms are well-typed and, therefore, satisfy the logical
rules and constraints encoded in them.

We chose to implement the library in Lean as this is the
proof assistant of choice of the project’s responsible profes-
sor. We also considered using Agda because that is what our
supervisor is the most familiar with but ended up deciding for
Lean for two reasons. Firstly, Lean was designed with sim-
plicity in mind and has a more intuitive syntax which makes
it easier to learn for beginners. Secondly, Lean offers many
automation features which make the proofs less cluttered and
reduce manual effort by automating routine proof steps.

We opted for Lean 3 instead of Lean 4 as it is the current
stable version. It has been extensively used and tested by the
community, has a large ecosystem of libraries and tools as
well as documentation, tutorials and other learning resources.
Although the community is currently switching to Lean 4, we
prioritized the abundance of learning materials and existing
libraries of Lean 3 over the improvements that Lean 4 offers
due to the very limited time frame of roughly 9 weeks for
the whole project. Furthermore, unlike for Lean 3, there is
no Docker image for Lean 4 yet, so using the older version
allowed us to get started more quickly.

3 Methodology
The core of the project was implementing a pedagogical li-
brary of category theory in the computer proof assistant Lean.
The insights gained while learning about category theory and
implementing the library could then be used to answer the re-
search question. With that in mind, the project was split into
two phases.

During the first phase, we worked together with the project
group to familiarize ourselves with both category theory and
Lean and then implement the core features of the library. In
addition to some features that are irrelevant for this report,
such as functors, these include the definition and examples
for a category which were necessary for moving on to the
next phase.

During the second phase, each of us extended the library
individually by focusing on a different specific area of cate-
gory theory, implementing relevant definitions and examples
and answering their research question. My task was to imple-
ment the universal properties of category theory.

Although the codebase was developed on TU Delft’s self-
managed Gitlab instance, the repository was made publicly
available on Github and can be accessed here. To guaran-

https://github.com/sgciprian/ct


tee the correctness of the implemented definitions throughout
the project and when merging branches, we set up a very ba-
sic pipeline that simply checks whether the code compiles.
Since the successful compilation means that the definitions
are mathematically solid, we could be certain of the correct-
ness of the code. However, whether the design choices we
made are the best ones for the purpose of a learning tool, re-
mained our concern.

In the repository, we also included a folder called doc that
contains some explanations regarding the less intuitive defi-
nitions as well as used resources to make using the library as
convenient and informative as possible for beginners. Fur-
thermore, in the readme file, there are instructions for in-
stalling the library.

4 Implementation
In this section, I will give definitions of a category and the
four universal properties mentioned in Section 2.1 as well as
explain how they were implemented in Lean. Although the
section does include high-level explanations of the explicit
Lean code snippets, Lean’s reference manual [17] can be con-
sulted to better understand the exact syntax of the code.

4.1 Category
This section explains how a category is defined, how we im-
plemented it in Lean as well as an example of a category,
namely the category of sets.

Definition
Each category consists of the following four components:

1. Objects. Objects are the fundamental entities of a cate-
gory and can represent any kind of mathematical struc-
tures, such as sets, groups and even categories them-
selves. The collection of objects as a whole is usually
denoted by C0 and individual objects within this collec-
tion are often denoted by uppercase letters, most typi-
cally A, B, X , Y and Z.

2. Morphisms. Morphisms are relationships or mappings
between objects. Morphisms are targeted which means
they have a source and a target object, basically indicat-
ing that applying the morphism to its source results in
its target. The most intuitive example of morphisms are
simply functions between the objects but in some cate-
gories they are not so straight-forward. The collection of
morphisms for any pair of objects X,Y ∈ C0 is called a
hom-set and is usually denoted as either hom(X,Y ) or
X → Y .

3. Identity morphisms. For each object, there must ex-
ist an identity morphism which simply transforms the
object into itself. An identity morphism for an ob-
ject X ∈ C0 is usually denoted as IdX . Note that
IdX ∈ hom(X,X).

4. Composition function. This is a binary operation that
combines two morphisms into a new one that goes from
the source of one to the target of the other. More
specifically, given objects X,Y, Z ∈ C0 and morphisms
f ∈ hom(X,Y ) and g ∈ hom(Y,Z), the composi-
tion operation, denoted by ◦, returns a new morphism

g ◦ f ∈ hom(X,Z). Intuitively, it first applies f to go
from X to Y and then g to go from Y to Z, resulting in
a morphism that goes straight from X to Z. Note that
the morphism that is applied first (f in that case) is the
second argument of the operation.

Furthermore, in order for the category to be valid, these
components must also satisfy three properties:

1. Left unit law: for any morphism f ∈ hom(X,Y ), it
must hold that

f ◦ IdX = f

2. Right unit law. for any morphism f ∈ hom(X,Y ), it
must hold that

IdY ◦ f = f

3. Associative law. for any morphisms f ∈ hom(X,Y ),
g ∈ hom(Y, Z) and h ∈ hom(Z,W ), it must hold that

(h ◦ g) ◦ f = h ◦ (g ◦ f)

Categories are often visualized by directed graphs where
the vertices and edges represent the objects and morphisms,
respectively. For example, a simple category with objects
X,Y, Z ∈ C0 and morphisms f ∈ hom(X,Y ) and g ∈
hom(Y, Z) can be represented by the graph shown in Figure
1. Graphs are a very intuitive way for representing categories
and will prove useful for explaining the universal properties
of category theory.

Figure 1: A category with objects X , Y , Z and morphisms f and g
represented as a graph. The composition g ◦ f is also included.

Implementation
In Lean, we defined the category as a structure with fields that
represent the components and axioms described in the previ-
ous subsection. The following code segment can be found in
the file category.lean.:

structure category :=
--attributes
(C0 : Sort u)
(hom : Π (X Y : C0), Sort v)
(id : Π (X : C0), hom X X)
(compose : Π {X Y Z : C0} (g : hom Y Z) (f : hom X Y), hom X Z)
--axioms
(left_id : ∀ {X Y : C0} (f : hom X Y), compose f (id X) = f)
(right_id : ∀ {X Y : C0} (f : hom X Y), compose (id Y) f = f)
(assoc : ∀ {X Y Z W : C0}
(f : hom X Y) (g : hom Y Z) (h : hom Z W),

compose h (compose g f) = compose (compose h g) f)

https://github.com/sgciprian/ct/tree/main/doc
https://github.com/sgciprian/ct/blob/main/README.md
https://github.com/sgciprian/ct/blob/main/src/category/category.lean


C0 represents the type of objects in the category but can be
thought of as a collection of objects (collection of elements of
the given type). Sort u basically denotes any type universe
so C0 can basically be any type.

hom is a function that assigns a hom-set for each pair of
objects X,Y ∈ C0. Since the hom-set is of type Sort v, the
morphisms can also be of any type.

id is a function that assigns an identity function to each
object X ∈ C0.

compose is a function that takes two morphisms g ∈
hom(Y,Z) and f ∈ hom(X,Y ) and returns their compo-
sition. Note the curly brackets around X , Y and Z: these are
implicit arguments which means that Lean is able to deduce
their values based on the context so they do not have to be
passed to the function call.

In order to verify that the components do indeed satisfy the
Left unit law, Right unit law and Associative law, the struc-
ture also includes the corresponding axioms. When defining
a concrete instance of a category, these axioms need to be
initialized with the proofs of these properties.

Example
As an example, I will explain how we defined the cate-
gory of sets. The code segment can be found in the file
Set category.lean or Appendix A.

The objects in the Set category are sets which can be rep-
resented by Type 0 in Lean.

The morphisms in the Set category are simply functions be-
tween sets. Therefore, given sets X,Y ∈ C0, the morphisms
from X to Y are defined as X → Y , the functions between
them.

The identity function takes a set X ∈ C0 as input and re-
turns its trivial identity morphism: a function that leaves the
input element unchanged.

The composition function takes two functions g ∈ Y → Z
and f ∈ X → Y and returns their trivial composition: a
function that first applies f and then g.

Finally, the three laws need to be proven. Since all of them
state a property for all objects and morphisms in the cate-
gory, they can all be proven by first assuming a random value
for each implicit and explicit parameter and then proving the
property. Since all three laws are already proven for func-
tions, we made use of these proofs to prove the properties.

4.2 Universal Properties
This section gives definitions of the following universal prop-
erties: initial objects, terminal objects, binary products and
binary coproducts. Furthermore, it explains how I imple-
mented each property in the library as well as give an example
of it in the category of sets. All the code can be found in the
folder universal properties.

Initial objects
An object A ∈ C0 is initial if there is a unique morphism
from A to every object B ∈ C0. This is illustrated in Figure
2.

In the library, the property of initiality is checked by the
is initial function and the structure initial object repre-
sents an initial object in the given category:

Figure 2: A category with objects X , Y , Z and initial object I . A
dashed arrow represents a unique morphism and double-sided ar-
rows represent (possibly zero or many) morphisms in both direc-
tions. Identity morphisms are hidden in the graph.

def is_initial (C : category) (A : C.C0) : Prop :=
∀ (B : C.C0) (f g : C.hom A B), f = g

structure initial_object (C : category) :=
(object : C.C0)
(property : is_initial C object)

is initial takes as inputs the category C and object A ∈
C0 and returns a proposition indicating whether A is initial in
C. A is initial if for any object B ∈ C0 and any morphisms
f, g ∈ hom(A,B), f and g are equal, meaning there is a
unique morphism from A to each B.

initial object takes as input a category C and has two
fields: object and property. object must be initialized with
an object in the given category and property with a proof that
object is indeed initial in the given category.
Example:
The initial object in the Set category is the empty set (∅) be-
cause for any set S, there is exactly one function from ∅ to S,
namely the empty function.

To define the empty set as an initial element in Set,
is initial Set empty needs to be proven. Since the prop-
erty states that f = g must hold for all B, f and g, a random
value is assumed for all of them. Next, to prove that f = g, f
x = g x needs to be proven for all values in x. Since x is the
empty set, however, there is nothing left to prove. The code
segment doing all of this can be found in Appendix B.

Terminal objects
An object B ∈ C0 is terminal if there is a unique morphism
from every object A ∈ C0 to B. This is illustrated in Figure
3.

Figure 3: A category with objects X , Y , Z and terminal object T .
A dashed arrow represents a unique morphism and double-sided ar-
rows represent (possibly zero or many) morphisms in both direc-
tions. Identity morphisms are hidden in the graph.

The property of terminality is implemented analoguously
to initiality:

https://github.com/sgciprian/ct/blob/main/src/instances/Set_category.lean
https://github.com/sgciprian/ct/tree/main/src/universal_properties


def is_terminal (C : category) (B : C.C0) : Prop :=
∀ (A : C.C0) (f g : C.hom A B), f = g

structure terminal_object (C : category) :=
(object : C.C0)
(property : is_terminal C object)

Compared to is initial, the roles of A and B are switched
in is terminal. Now B is passed as an argument and the
property must hold for all A. Note that the morphisms f and
g still go from A to B, so that the property would check if
there is a unique morphism going from each A to B.
Example:
In the category of sets, every singleton set is a terminal object
because for any set S, there is exactly one function from S to
any one-element set {x}, namely a function that maps every
element in S to x.

To define a singleton set as a terminal object in Set,
is terminal Set unit needs to be proven. The proof starts
analogously to the one in the previous section regarding ini-
tial objects. However, given that the codomain only has
one element, f x = g x can be proved easily by using the
subsingleton.elim property. The code segment doing all of
this can be found in Appendix C.

Binary products
Given objects A,B ∈ C0, a triple

(P ∈ C0, π1 ∈ hom(P,A), π2 ∈ hom(P,B))

is called a product of A and B if for any triple

(Q ∈ C0, q1 ∈ hom(Q,A), q2 ∈ hom(Q,B))

there is a unique morphism f ∈ hom(Q,P ) such that π1 ◦
f = q1 and π2 ◦ f = q2. This is illustrated in Figure 4.

Figure 4: The relationship between the binary product (P, π1, π2)
and any triple (Q, q1, q2) in the category. The dashed arrow repre-
sents a unique morphism.

In the library, the property of binary products is
checked by the is binary product function and the structure
binary product represents a product in the given category:
def is_binary_product (C : category) {A B : C.C0}

(P : C.C0) (π1 : C.hom P A) (π2 : C.hom P B) : Prop :=
∀ (Q : C.C0) (q1 : C.hom Q A) (q2 : C.hom Q B),
∃! (f : C.hom Q P),

C.compose π1 f = q1 ∧ C.compose π2 f = q2

structure binary_product (C : category) (A B : C.C0) :=
(P : C.C0)
(π1 : C.hom P A)
(π2 : C.hom P B)
(property : is_binary_product C P π1 π2)

is binary product takes as input the category C, objects
A,B ∈ C0 (implicitly, meaning they do not need to be passed
to the function call), object P ∈ C0 representing the prod-
uct of A and B, and projection functions π1 ∈ hom(P,A)

and π2 ∈ hom(P,B) and returns a proposition indicating
whether the triple (P, π1, π2) is a binary product in C. The
triple is a binary product if for all Q ∈ C0, q1 ∈ hom(Q,A)
and q2 ∈ hom(Q,B), there exists exactly one morphism
f ∈ hom(Q,P ) such that π1 ◦ f = q1 and π2 ◦ f = q2.
binary product takes as input a category C and objects

A,B ∈ C0. It has three fields P ∈ C0, π1 ∈ hom(P,A) and
π2 ∈ hom(P,B) representing the triple and a property field
for validating that the triple is indeed a binary product.
Example:
The binary product in the category of sets is simply the
cartesian product along with the trivial projection functions.
For sets A and B, the cartesian product A × B is equal to
{⟨a, b⟩|a ∈ A, b ∈ B} and the projection functions π1 and
π2 are defined as a and b for each ⟨a, b⟩ ∈ A × B, respec-
tively. These elements form a binary product because for any
set Q and functions q1 and q2 from Q to A and B, respec-
tively, there is a unique function from Q to A × B, namely
f = ⟨q1, q2⟩, such that π1 ◦ f = q1 and π2 ◦ f = q2.

To define the cartesian product of two sets as a binary
product in Set, is binary product Set (A × B) (λp, p.1)
(λp, p.2) needs to be proven. This can be done by assuming
random values for Q, q1 and q2, defining the product mor-
phism f and, finally, proving that f is indeed a valid product
morphism. This can be done in two parts. Firstly, f must sat-
isfy the property of binary products (π1◦f = q1∧π2◦f = q2).
Secondly, f must be a unique function or, in other words, any
morphism that satisfies the property of binary products must
be equal to f . The code doing all of this can be found in
Appendix D.

Binary coproducts
Given objects A,B ∈ C0, a triple

(Cp ∈ C0, ι1 ∈ hom(A,Cp), ι2 ∈ hom(B,Cp))

is called a coproduct of A and B if for any triple

(D ∈ C0, i1 : hom(A,D), i2 : hom(B,D)

there is a unique morphism f ∈ hom(Cp, D) such that f ◦
ι1 = i1 and f ◦ ι2 = i2. This is illustrated in Figure 5.

Figure 5: The relationship between the binary coproduct (Cp, ι1, ι2)
and any triple (D, i1, i2) in the category. The dashed arrow repre-
sents a unique morphism.

Binary coproduct is implemented analoguously to binary
product:
def is_binary_coproduct (C : category) {A B : C.C0}

(Cp : C.C0) (ι1 : C.hom A Cp) (ι2 : C.hom B Cp) : Prop :=
∀ (D : C.C0) (i1 : C.hom A D) (i2 : C.hom B D),
∃! (f : C.hom Cp D),

C.compose f ι1 = i1 ∧ C.compose f ι2 = i2



structure binary_coproduct (C : category) (A B : C.C0) :=
(Cp : C.C0)
(ι1 : C.hom A Cp)
(ι2 : C.hom B Cp)
(property : is_binary_coproduct C Cp ι1 ι2)

Compared to is binary product, the variable names are
different in is binary coproduct in order to match the nota-
tion in the definition of binary coproducts. Since A and B
are now part of the functions’ domain, the directions of the
morphisms have also changed. Otherwise, the definitions of
binary products and coproducts are pretty similar.
Example:
The binary coproduct in the category of sets is the disjoint
union along with its inclusion maps. For sets A and B, the
disjoint union A⊕B is equal to {⟨a, 0⟩|a ∈ A} ∪ {⟨b, 1⟩|b ∈
B} and the inclusion maps ι1 and ι2 are defined as ⟨a, 0⟩ for
each a ∈ A and ⟨b, 1⟩ for each b ∈ B, respectively. These
elements form a binary coproduct because for any set D and
functions i1 and i2 from A and B to D, respectively, there
is a unique function from A ⊕ B to D, namely the function
f that is defined as f(⟨a, 0⟩) = i1(a) and f(⟨b, 1⟩) = i2(b),
such that f ◦ ι1 = i1 and f ◦ ι2 = i2.

To define the disjoint union of two sets as the binary co-
product in Set, is binary coproduct Set (A ⊕ B) sum.inl
sum.inr needs to be proven. This can be done by assuming
random values for D, i1 and i2, defining a coproduct mor-
phism f and finally proving that f is indeed a valid coproduct
morphism. This can be done in two parts. Firstly, f must sat-
isfy the property of binary coproducts (f ◦ ι1 = i1 ∧ f ◦ ι2 =
i2). Secondly, f must be a unique function or, in other words,
any morphism that satisfies the property of binary coproducts
must be equal to f . The code doing all of this can be found
in Appendix E.

5 Results
Learning about and defining the universal properties of cate-
gory theory in the pedagogical library gave me a much deeper
understanding of some of the underlying concepts of func-
tional programming languages as there are many parallels
that can be drawn between the two concepts. Understanding
these analogues allows us to reason about various functional
programming concepts in a categorical way by using these
properties which can lead to the design of more modular and
maintainable code in the future.

In this section, I will explain how the implemented univer-
sal properties relate to various functional programming con-
cepts and exemplify the observations with Haskell code snip-
pets. Although the examples are fairly simple, the book ”Pro-
gramming in Haskell” by G. Hutton [18] can be consulted to
better understand functional programming and Haskell syn-
tax.

5.1 Algebraic Data Types
Most functional programming languages make use of alge-
braic data types, which are composed of several distinct con-
structors, each of which can possibly have some arguments.
Here is a simple example in Haskell:

data Shape = Circle Float | Rectangle Float Float

The type Shape has two constructors: Circle and
Rectangle. To construct an element of this type, one has to
create either a circle by calling the corresponding constructor
with one argument of type Float (representing the radius) or
a rectangle by calling the corresponding constructor with two
arguments of type Float (representing the width and height).

Empty and unit types
Empty type is a type with no values. For example, the built-in
empty type in Haskell is called V oid and is defined simply by
data V oid. Since it has no constructors, it cannot have any
values either.

Unit type is a type with only one possible value. For exam-
ple, the built-in unit type in Haskell is called () and is defined
simply by data () = (). Since it only has one constructor
without any arguments, it only has one possible value too.

Similarly to the category of sets where the initial and ter-
minal objects are the empty and unit sets, respectively, empty
and unit types can be represented as initial and terminal ob-
jects, respectively, in the category of data types. This allows
us to reason about them in a categorical way. For example,
the property of initial objects being essentially unique within
a category gives us the insight that all empty types are also
equivalent in practice. The same goes for terminal objects
and unit types.

Both initial objects and empty types capture the notion of a
starting point. Therefore, it is not possible to define a (termi-
nating) function with an empty return type. However, since
there is a unique morphism from the initial object to any ob-
ject in the category, there is exactly one possible function
(the empty function) from the empty type to any other type.
In Haskell, this function is called absurd. It is the logical
reasoning tool of the principle of explosion which basically
states that any proposition can be proven from a contradic-
tion.

Both terminal objects and unit types capture the notion of
an ending point. Therefore, there is no point in defining func-
tions with arguments of unit types since they would always
act the same way. Terminal objects and unit types are also
similar in the sense that they do not really contain any infor-
mation other than the indication that they are terminal. There-
fore, unit types are often used in functional programming,
including in Haskell, as the return type of functions that per-
form side-effects (instead of returning an informative result)
to indicate the completion and termination of the evaluation.

Product and sum types
Algebraic data types are typically split into product and sum
types but are often a combination of both.

Product types contain one or more fields of possibly differ-
ent types to combine simpler values into more complex ones.
For example, tuples and records are product types.

Sum types, on the other hand, have values of different vari-
ants, each of which having its own separate constructor. For
example, the Shape type introduced earlier is a sum type of
two variants: Circle and Rectangle. Since both construc-
tors include at least one field, they also represent two separate
product types.

Many parallels can be drawn between binary products in
category theory and product types in functional program-



ming. Both of them combine multiple objects or values, re-
spectively, to construct new ones. Similarly to the category
of sets where the binary product of two sets is their carte-
sian product, the set of all possible values of a product type
is the cartesian product of the sets of all possible values of its
field types. Furthermore, since field accessors (for example,
functions fst and snd for tuples in Haskell) provide a way
to extract the individual values from the composite type, they
represent the projection morphisms. Therefore, product types
are a natural analogue to products in category theory and the
two concepts can be reasoned about in a similar manner.

Likewise, sum types are a natural analogue to coproducts.
Both of them essentially provide a way to construct an object
or value, respectively, by choosing one of the options. Sim-
ilarly to the category of sets where the binary coproduct of
two sets is their disjoint union, the set of all possible values
of a sum type is the disjoint union of the sets of all possible
values of its variants. Furthermore, the constructors can be
seen as the injection morphisms that transform the (possibly
empty or composite) types of their fields into a new value of
the corresponding sum type. Taking the Shape type as an
example again, the constructors Circle and Rectangle ba-
sically transform a Float and a pair of Floats, respectively,
into another type called Shape.

5.2 Pattern matching
Pattern matching is an important feature in functional pro-
gramming languages as it allows to destructure data and ex-
ecute specific code blocks according to the matched patterns
in the structure. For example, a function in Haskell that takes
one argument of type Shape and calculates its area could be
defined by using pattern matching as follows:

area :: Shape -> Float
area (Circle r) = r * r * pi
area (Rectangle a b) = a * b

If the provided Shape is a Circle, the first pattern is
matched and the area is calculated by the first formula. If
the Shape is a Rectangle, the second formula is used. Fur-
thermore, the individual arguments of each constructor are
extracted, in order to use them in the respective code blocks.

Binary products involve the idea of composing elements
into more complex structures while still having access to their
individual components through projection functions. This
idea corresponds really well to the extraction of the argu-
ments of product types in pattern matching.

Likewise, binary coproducts capture the notions of choice
and alternatives which correspond really well to pattern
matching handling different cases of sum types separately.

5.3 Recursion
The universal property of initiality is a powerful tool for rea-
soning about both recursive data types and functions.

Recursive data types
Values of recursive data types are built using constructors for
the base and recursive case(s). A classic example of a recur-
sive data type in Haskell is List:

data List a = Nil | Cons a (List a)

The base case for List is Nil which represents an empty
list and the recursive case is Cons which constructs a new list
by adding an element to the start of an existing one.

Initial objects capture the notions of emptiness and start-
ing points. Similarly, the base case(s) in recursive data types
represent the simplest and often emptiest (as is the case with
List) values of the type as well as the starting point(s) for
constructing more complex values of the same type. There-
fore, there are many parallels between these two concepts and
various properties of initial objects also apply for the base
cases of recursive data types. For example, from the property
of initial objects having a unique morphism to every object
within the category, one can reason that each value of a re-
cursive data type is constructed and represented uniquely by
starting from (one of) the base case(s) and applying a specific
combination of other constructors to it.

Recursive functions
Since the structure of recursive functions usually mimics that
of the data types they operate on, their base case(s) also have
many parallels with initial objects.

Recursive functions work by breaking down its arguments
into simpler terms until reaching the base case, assigning a
value to it and then doing some operations (defined in the
recursive cases) on this value to get the final result. For ex-
ample, we can take the length method in Haskell that returns
the number of elements in a list:

length :: List a -> a
length Nil = 0
length (Cons x xs) = 1 + length xs

It breaks down the provided list until reaching the base case
(empty list), assigns the value 0 to it and adds 1 for each ele-
ment in the list. This again coincides with the essence of an
initial object: it is the empty starting point from which the
final result is constructed.

6 Responsible Research
This section describes the ethical aspects as well as repro-
ducibility of the research.

6.1 Ethical Aspects
Since the project was mostly about developing a library, it
did not directly involve any human subjects. Therefore, the
research did not pose any risks that are often associated with
studies involving human participants such as informed con-
sent, privacy and data protection.

It was, however, important to acknowledge the potential for
indirect implications, such as the impact on future users and
developers of the library. We added clear and comprehensive
documentation, including guidelines for using the library as
well as warnings about potential limitations. Furthermore, we
did our best to follow the principles of universal design [19,
§4] to ensure that the library would be accessible for a wide
variety of users regardless of their experience in the domain.

6.2 Reproducibility
The library’s codebase, including its documentation, is pub-
licly accessible on Github. I, along with the rest of my project



group, have documented the important design decisions, ex-
ternal dependencies and guidelines for setting up the environ-
ment in either the repository, our individual papers or both so
that other researchers could examine and reproduce our work
with ease. Since we utilized Git to keep track of the changes
in the codebase, they can also access previous versions, in
order to better understand the evolution of the library.

7 Discussion
In this section, the implemented library will be compared to
other, already existing alternatives. Additionally, possible fu-
ture improvements will be listed and explained.

7.1 Comparison to Related Work
Defining the concept of category theory in computer proof
assistants, even Lean, is not a new idea. There are already ex-
isting libraries for it in various languages, for example Lean
[2], Agda [3] and Coq [4]. However, all of these are quite ad-
vanced and built for experts whereas our library aims to act as
a learning tool for beginners. With that in mind, this section
lists the advantages and disadvantages of our library com-
pared to the other, aforementioned category theory libraries.

Advantages
1. Since we focused on defining the elements as simply and

understandably as possible and did not make things too
complicated by over-generalizing things, our solution is
more intuitive and easier to use than the alternatives.

2. Concrete examples go a long way in learning new con-
cepts which is why we added at least one for each im-
plemented element, contrary to most other libraries.

3. To make the library more usable for beginners, we in-
cluded many comments and much documentation about
both category theory and Lean.

4. Because of all the aforementioned reasons, our library is
more beginner-friendly than its alternatives.

Disadvantages
1. Our library is not as general and abstract as its alter-

natives and might not be advanced enough for defining
some more complicated instances.

2. The number of implemented features in our library is sig-
nificantly smaller than in other libraries.

7.2 Possible Future Improvements
Due to time constraints, the implemented library only in-
cludes the most important elements of category theory. This
section lists and elaborates on some possible future improve-
ments and additions related to universal properties.

Add more universal properties
Currently, the library only includes definitions of four uni-
versal properties: initial and terminal objects, products and
coproducts. Although these are arguably the most common
and useful ones, there are also other properties that could be
added into the library in the future. These include but are not
limited to exponential objects, equalizers and coequalizers as
well as pullbacks and pushouts.

Add more examples of categories
The library currently includes three examples of concrete cat-
egory instances: Set, Pos (partially ordered sets) and Monoid.
However, there exist many more categories that could be de-
fined in the library in the future. The most common ones that
should, therefore, be implemented first are:

1. Top - category of topological spaces as objects and con-
tinuous maps as morphisms

2. Grp - category of groups as objects and group homo-
morphisms as morphisms

3. V ect - category of vector spaces as objects and linear
transformations as morphisms

Add more examples of universal properties
Even though the library already includes three aforemen-
tioned category instances, the implemented universal prop-
erties are currently only defined for one of them, the category
of sets. It would be beneficial to also define them (as well as
new ones in the future) for other categories.

Prove theorems about universal properties
The library currently only includes definitions and examples
of universal properties but no theorems related to them. To
deepen the insights into these properties further, various the-
orems (for example, the fact that initial and terminal objects
are isomorphic) could be defined and proven about them.

8 Conclusion
The main goal of this research project was to implement
a pedagogical library of category theory in the computer
proof assistant Lean and this report focused, more specifi-
cally, on the implementation of universal properties. During
the project, four universal properties, namely initial and ter-
minal objects as well as binary products and coproducts, were
defined along with their examples in the category of sets. By
including many examples and documentation, the library was
implemented in such a way that it would be beneficial for be-
ginners who want to start learning about category theory.

Furthermore, while implementing the library, this research
also tried to find parallels between the universal properties
of category theory and various functional programming con-
cepts, in order to give programmers a different, categorical
perspective for reasoning about these concepts. The most
significant parallels found were between initial objects and
empty types, initial objects and base cases in recursion, termi-
nal objects and unit types, binary products and product types
as well as binary coproducts and sum types. These parallels
allow us to leverage the abstract nature of category theory to
reason about functional programs and type systems which can
lead to the design of more modular and maintainable code in
the long run.



A Set Category
def Set : category :=
{
-- Type 0 in Lean is essentialy a set.
C0 := Type 0,

-- A morphism between two sets maps the elements from one set
-- to the other, same as what a function between types does.
hom := λ X Y, X → Y,

-- The identity morphism maps each element to itself.
id := λ X, λ (x : X), x,

-- Each morphism is a function, so morphism composition is the
-- same as composition of the underlying functions.
compose := λ {X Y Z} (g : Y → Z) (f : X → Y), g ◦ f,

-- We can use the proofs from function.comp.
left_id :=
begin
intros,
apply function.comp.right_id,

end,
right_id :=
begin
intros,
apply function.comp.left_id,

end,
assoc :=
begin
intros,
apply function.comp.assoc,

end,
}

B Empty Set as Initial Object in Set
lemma empty_set_initial_in_Set : is_initial Set empty :=
begin
intros B f g,
funext x,
cases x, -- There are no elements in the empty set, so we can
use cases to handle all possible cases (i.e., none)

end

def initial_object_in_Set : initial_object Set :=
{
object := empty,
property := empty_set_initial_in_Set

}

C Singleton Set as Terminal Object in Set
lemma singleton_set_terminal_in_Set : is_terminal Set unit :=
begin
intros A f g,
funext x,
apply subsingleton.elim (f x) (g x), -- Using the subsingleton
property to conclude f x = g x

end

def terminal_object_in_Set : terminal_object Set :=
{
object := unit,
property := singleton_set_terminal_in_Set,

}

D Binary Product in Set
lemma cartesian_product_binary_product_in_Set (A B : Set.C0) :

is_binary_product Set (A × B) (λ p, p.1) (λ p, p.2) :=
begin
intros Q q1 q2,

-- Define a product morphism f
let f : Q → A × B := λ x, (q1 x, q2 x),

-- Define and prove lemmas proj1 and proj2
-- They state that for any x ∈ Q, applying the projection
functions to (f x) yield (q1 x) and (q2 x), respectively

-- This is true because (f x) is defined as (q1 x, q2 x)
have proj1 : ∀ (x : Q), (λ p : A × B, p.1) (f x) = q1 x,
{
intro x,
simp [f],

},
have proj2 : ∀ (x : Q), (λ p : A × B, p.2) (f x) = q2 x,
{
intro x,
simp [f],

},

-- Prove that f is the unique product morphism
-- This can be done by splitting the goal into two subgoals and
proving them

-- The first subgoal states that f is indeed a valid product
morphism

-- The second subgoal states that f is the only valid product
morphism

existsi f,
split,

-- Prove the first subgoal
{
split,

-- Prove that the diagram commutes to the left
-- That is, applying the projection function π1 to f results
in q1
{
apply funext,
intro x,
exact (proj1 x),

},

-- Prove that the diagram commutes to the right
-- That is, applying the projection function π2 to f results
in q2
{
apply funext,
intro x,
exact (proj2 x),

},
},

-- Prove the second subgoal
{
intros g H,
apply funext,
intro x,
cases H with H1 H2,

-- Define and prove lemmas H1’ and H2’
-- They state that for any x ∈ Q, applying the projection
functions to (g x) yield (q1 x) and (q2 x), respectively
have H1’ : (λ (p : A × B), p.1) (g x) = q1 x,
{
rw ←H1,
refl,

},
have H2’ : (λ (p : A × B), p.2) (g x) = q2 x,
{
rw ←H2,
refl,

},

-- Use H1’ and H2’ to finish the proof
simp [f],
rw ←H1’,
rw ←H2’,
simp [H1’, H2’],

},
end



def binary_product_in_Set (A B : Set.C0) : binary_product Set A B
:=

{
P := A × B,
π1 := λ p, p.1,
π2 := λ p, p.2,
property := cartesian_product_binary_product_in_Set A B,

}

E Binary Coproduct in Set
lemma disjoint_union_binary_coproduct_in_Set (A B : Set.C0) :

is_binary_coproduct Set (A ⊕ B) sum.inl sum.inr :=
begin
intros D i1 i2,

-- Define the coproduct morphism
let f : (A ⊕ B) → D := λ x, sum.cases_on x i1 i2,

-- Define and prove lemmas inl and inr
-- They state that for any x ∈ A, applying f to the inclusion
functions applied to x yield (i1 x) and (2 x), respectively

-- This is true because (f x) maps (sum.inl x) to i1 x and
(sum.inr x) to i2 x

have inl : ∀ (x : A), f (sum.inl x) = i1 x,
{
intro x,
simp [f],

},
have inr : ∀ (x : B), f (sum.inr x) = i2 x,
{
intro x,
simp [f],

},

-- Prove that f is the unique coproduct morphism
-- This can be done by splitting the goal into two subgoals and
proving them

-- The first subgoal states that f is indeed a valid coproduct
morphism

-- The second subgoal states that f is the only valid coproduct
morphism

existsi f,
split,

-- Prove the first subgoal
{
split,

-- Prove that the diagram commutes to the left
-- That is, applying f to the inclusion function ι1 results
in i1
{
apply funext,
intro x,
exact (inl x),

},

-- Prove that the diagram commutes to the right
-- That is, applying f to the inclusion function ι2 results
in i2
{
apply funext,
intro x,
exact (inr x),

},
},

-- Prove the second subgoal
{
intros g H,
apply funext,
intro x,
cases x,

-- Prove the case where x = sum.inl x
{
change (g (sum.inl x)) with ((λ (p : A ⊕ B), g p) (sum.inl
x)),

-- Define and prove lemma H1’
-- It states that for any x ∈ A, applying g to (sum.inl x)
yields (i1 x)
have H1’ : (λ (p : A ⊕ B), g p) (sum.inl x) = i1 x,
{
rw ←H.1,
refl,

},
rw H1’,

},

-- Prove the case where x = sum.inr x
{
change (g (sum.inr x)) with ((λ (p : A ⊕ B), g p) (sum.inr
x)),

-- Define and prove lemma H2’
-- It states that for any x ∈ A, applying g to (sum.inr x)
yields (i2 x)
have H2’ : (λ (p : A ⊕ B), g p) (sum.inr x) = i2 x,
{
rw ←H.2,
refl,

},
rw H2’,

},
},

end

def binary_coproduct_in_Set (A B : Set.C0) : binary_coproduct Set
A B :=

{
Cp := A ⊕ B,
ι1 := sum.inl,
ι2 := sum.inr,
property := disjoint_union_binary_coproduct_in_Set A B,

}
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