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Abstract

Current robots consume a lot of energy. The work required for a task is generally just a tiny
fraction of the total energy consumed. Most energy wastefully dissipated. Design of the 2
degree of freedom (DoF) Plugless Robot Arm shows that clever design can reduce these energy
losses to a tiny remaining fraction. The Plugless Arm is designed to perform a pick-and-place
task displacing packages of 1 kg over a vertical distance of 1 m and some additional horizontal
distance in a way that is capable of powering the full system.

Maximum energy recovery is achieved by the design of springs in parallel to the actuators such
that minimal actuator currents lead to minimal electric heat losses. This requires simultaneous
optimisation of the trajectory and the parallel elastic elements. In a Cartesian configuration
a novel method is tested which allows for implicit optimisation of an elastic element without
additional parameterisation. The optimal parallel spring characteristic can be expressed as a
pure function of the trajectory if the system dynamics are defined as a function of position
instead of time.

Afterwards the analytical optimal spring is replaced by a mechanism of low mechanical
complexity showing similar energy characteristics. The mechanism is translated to a polar
equivalent for the 2 DoF arm and optimised together with the trajectory of the arm. The
optimal nominal trajectory is followed under undisturbed conditions when applying a pre-
computed feedforward control signal to the actuators of the arm. Additional local optimal
linear state feedback control is computed by means of Differential Dynamic Programming.
All optimisation is done offline. Performance of the controller under disturbed conditions is
tested in terms of accuracy as well as energy consumption.

The system achieves a nominal energy retrieval of 3.64 J per cycle of 2.5 s, which is sufficient
to power a light controller, the necessary sensors and a special energy efficient gripper.
Some energy is left which can be used by the controller to recover from disturbances which
extract energy from the system. The controller is also able to recover additional energy from
disturbances which add energy to the system.

The implementation of the controller is further optimised to achieve minimal computational
energy consumption and memory requirements. By selective reduction of the control law,
considerable data reduction is achieved with negligible impact on the controller performance.
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Chapter 1

Introduction

The number of robots in industry is growing faster every year. And all of these robots consume
energy. Currently they consume so much energy that even a simple mobile robot arm such as
the KUKA YouBot can only function for 90 minutes before it needs recharging [1]. And this
is a very optimistic estimate as even the specifications warn for the sensitivity of the battery.
As long as robots keep consuming so much energy they will remain a slave of the power cable.
Because of that, and for a more sustainable world, robots must consume less energy. The
question is: How?

To challenge the limits of energy efficiency, I am part of a project team at the faculty of 3mE
of the Delft University of Technology committed to design a robot arm which is fully powered
by gravity only [2]. This “Plugless Arm” is to be a 3 degree of freedom (DoF) robot arm
which will pick up packages of a kilogram and put them down at different positions one meter
lower. The robot is to be fully powered by only the difference in potential energy: 9.81 J per
task cycle. This excess energy will have to compensate for any dissipating effects and power
all on board electronics. This really is very little. Considering a typical energy optimal task
cycle of about 2 s, total power consumption may be only 4 - 4.5 W. For comparison how small
this number actually is: The KUKA YouBot has a typical power consumption of 80 W [1],
but the arm is smaller than the Plugless Arm will be. The industrial robot UR5 is of closer
size, but a typical program already consumes 200 W [3]. The Plugless Arm will have a more
limited functionality than the UR5, but the success of the project will be an important step
towards functional robots with negligible energy demands.

In order to actually achieve this super energy efficient robot, all losses in the system need
to be minimised. For minimising the losses in a structured way, extensive literature research
was done in [4]. The survey systematically maps the energy losses encountered in the general
class of electrically powered robots acting in the physical world and subsequently discusses an
extensive number of solutions found in literature which would reduce energy loss significantly.
The three main sources of energy loss in a robotic system were found to be: 1) mechanical
friction between bodies in relative motion, 2) electric heating due to Ohmic resistance in
electric actuators, and 3) active electric components losing energy to transistors switching
when executing software instructions.
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2 Introduction

Of these three main loss factors, motor heating is dominant. This heat loss is proportional to
the square of the electric current. This current is in turn directly proportional to the motor
torque which supplies the system with mechanical power. Mechanical power in robotics is
usually required at low speeds, demanding high torques. Large torques are best produced by
a motor with a maximum torque/current ratio, in order to draw minimal current. However,
motor currents can be reduced far more by designing the system dynamics such that actuators
need to supply only minimum additional torque. Applying mechanical torque by means of
springs in parallel to the electric actuators may vastly reduce the torque required from the
actuators.

Next to that, electric actuators are also capable to function as generators. When used
to regenerate electric energy from excess mechanical energy in the form of negative work,
instead of wastefully dissipating it, the energy can be stored for later use and use by other
electrically powered components such as the processor. Recovering enough energy to power
the processor from the very little energy available from the task will be the major challenge of
the Plugless Arm design. The design will focus on maximum electric energy regeneration. The
electrical regenerative properties of the system also heavily depend on the backdrivability of
the entire drive train. A drive train containing transmissions has its losses magnified by each
transmission stage, which in backward direction results in rapidly diminishing regenerative
properties. Therefore for maximum electric energy regeneration, the system should be actuated
through minimum transmissions.

Finally, control software should be light, i.e. fast to compute with minimal instructions, while
exploiting the optimised nonlinear system dynamics to add minimum actuation torque, only
when absolutely necessary. Minimum actuator torques optimally using the system dynamics
can be computed using optimal control. Solving the optimisation problem however takes a lot
of computation power. Computationally light methods on the other hand tend to lead energy
inefficient control signals. The most energy efficient control to date has been achieved in the
Cornell Ranger [5]. Ranger has an optimal nominal trajectory wrapped in a low-bandwidth
reflex based feedback controller. The feedback control is achieved by local linear optimal
control in the form of a discrete Linear Quadratic Regulator (LQR). The LQR feedback
controller computes the optimal parameters for a correcting control sequence only once a
cycle. The moment in the cycle is picked strategically, such that sufficient robustness and
stability is achieved while control is both energy and computationally efficient. A similar
hybrid control strategy will have to be applied to the Plugless Arm.

This thesis is made up of two distinct parts: Mechanical design and control design. The
first part focuses on the design of a spring mechanism which, installed in parallel to each
actuator, will maximise the electric power return of the Plugless Arm. However, there is an
important footnote. Every mechanical component in relative motion adds a source of energy
loss to the system, whether it be in the form of friction, impact, hysteresis, etc. Therefore it
is imperative to keep the system as simple of construction as possible.

In literature, the following three approaches for optimising springs can be distinguished:

• Parameter fitting of a simple linear spring mechanism [6, 7]
• Full optimisation of both the spring characteristics and the trajectory [8]
• Expressing the optimal spring parameters as a function of the trajectory [9]
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The first approach contains only a very limited set of possible spring characteristics. The
best spring characteristic from the set may still not be a very close fit to the task and better
performance might have been achieved with a different spring mechanism with a different
form of force/torque characteristic. No such form restriction is imposed by either of the other
approaches. The second approach results in one very large and very nonlinear optimisation
problem. The size of the optimisation problem becomes much smaller when applying the
method of Schmit and Okada [9]. They solved for the optimal spring characteristic analytically,
such that only the trajectory remained in need of numerical optimisation. The resulting
reduced optimisation problem is much better solvable because the solution space has a
drastically lower dimensionality.

Yet so far all methods rely on some form of parameterisation of the spring characteristic. A
spring characteristic is a function of position while the trajectories are described as a function
of time. Time is preeminently suitable as a base parameter for trajectory description as it
always progresses monotonically. In the Plugless Arm case, monotonic progression is also
observed for position when considering half-cycles: the loaded arm goes only down and after
the event of unloading the arm only moves upward. As a result, the system dynamics can
be described alternatively, as a function of position instead of time (time remains in the
equations as a state variable). With all equations depending on position, the optimal spring
characteristic no longer needs parameterisation and can be described as a direct analytical
function of the trajectory. Then the trajectory is the only thing that remains to be optimised
numerically.

Once the optimised trajectory and corresponding optimal spring are obtained, the resulting
spring characteristic needs to be translated to a physical mechanism with low complexity.
The mechanism with simple mechanical structure described by Plooij in [10] has yielded
large actuator energy reduction in a horizontal pick and place task. For vertical pick and
place, already some promising results were obtained when applying the mechanism on parts
of the system [8]. The Plooij mechanism can be made suitable for the full system in a
straightforward way by adding a spring for endpoint gravity compensation. The resulting
combined spring mechanism has several properties which are similar to the previously obtained
optimal spring when comparing both spring characteristics. The spring characteristic of
the physical mechanism can be tuned by setting only a single parameter. Addition of this
parameter to the optimisation increases the size of the optimisation only slightly.

The method just described will not be applied directly to the full system of the multiple DoF
rotational arm. First the principles will be tested on a simple Cartesian description of the
end effector, in which the system dynamics in vertical and horizontal direction are decoupled.
This is done in Chapter 2. The results of the chapter are used subsequently in Chapter 3 to
design a 2 DoF arm with favourable dynamical properties for minimal additional control.

Once the mechanical system is designed, the attention can shift to its control. Optimal
nominal feedforward control was already considered during design of the mechanical system
in Part I. Part II of this thesis reviews the nominal controller from a control design perspective
and continues with the design of a feedback control law to stabilise the nominal trajectory
when disturbances act on the system. With the very little energy available for this purpose,
the maximum disturbance magnitude which can be rejected depends heavily on the energy
efficiency of the controller. To assure minimum control energy, some form of optimal control
will have to be implemented, but in a way that requires least online computation.
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4 Introduction

The most promising solutions found in literature [4] comprised combinations of local linear
controllers based on the LQR principles. A finite number of local LQR controllers can be
computed offline to guarantee stability of any predefined region of the state space [11]. The
region of the state space of interest for the Plugless Arm is limited to the proximity of the
nominal trajectory. For local optimal stabilisation of the nominal trajectory, iterative LQR
(iLQR), extendable to Linear Quadratic Gaussian control (LQG) control [12, 13], is very
suitable. Closely related to iLQG is Differential Dynamic Programming (DDP) [14], which
achieves quadratic convergence of the optimisation through the use of additional second-order
derivatives of the system dynamics.

None of the combined linear optimal control laws just mentioned are light to compute.
However, computation of the linear state feedback matrices can be done offline. Then online
only the state error needs to be multiplied by one of the predefined matrices. The matrices,
if not too many, can be stored in memory on forehand, resulting in optimal control with very
low online computation effort.

In Chapter 4 DDP is used to recompute the optimal trajectory for the mechanical arm
designed in Chapter 3 and the corresponding nominal feedforward control signal. At the
same time feedback gain matrices are obtained, at each time step providing optimal linear
state feedback control. The state feedback will ensure the pick-and-place trajectory to be
stable. Both the stability and the additional energy cost will be evaluated of recovering from
end state deviations as well as state noise. A reduced feedback control law is proposed which
reduces the memory requirements significantly while the control performance reduction is
negligible.

Finally, the findings of this thesis will be discussed in Chapter 5 before the final conclusions
are summarised in Chapter 6.

Linda van der Spaa Master of Science Thesis
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Chapter 2

Cartesian robot

The first goal of this thesis is to design a parallel spring mechanism such that the additional
positive work required from the actuators is minimised. Figure 2-1a shows the general Plugless
Arm configuration. The mobile platform on which the arm is mounted will not be considered
in the rest of this thesis. In this polar configuration the forces acting in different directions
on the joints are coupled. This coupled system is too hard to solve directly. Therefore this
chapter will consider a decoupled system which is a simplification of the polar arm. Not the
full arm, but only the end effector is described by a Cartesian model. This simplified arm
model, depicted in Figure 2-1b, has decoupled dynamics in vertical and horizontal direction.
This Cartesian model is used to test both mathematical principles as well as mechanism
principles in a way that the results are relatively easy to interpret. Afterwards, the results

1kg

1m

g

(a) Polar arm

1kg

1m

g

(b) Cartesian arm

Figure 2-1: Basic principle of the Plugless Arm in polar and Cartesian configuration.
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8 Cartesian robot

Table 2-1: Masses and gravity constant used throughout this chapter

Slider mass mslider 0.5 kg
Gripper mass mgripper 0.2 kg
Package mass mpackage 1.0 kg
Gravitational acceleration g 9.81 m/s2

can be applied insightfully to a rotational arm in a form similar to Figure 2-1a, which will be
done in Chapter 3.

The Cartesian “arm” consists of a gripper connected to a ‘slider’ which represents the mass of
the rest of the arm. The masses are listed in Table 2-1, as well as the gravitational constant
used throughout this thesis. A reasonable estimate of the mass of the lightweight gripper is
made based on [15].

For the Cartesian arm, vertical and horizontal dynamics can be viewed separately. The only
differences between the two directions is the external gravity force acting in vertical direction
and perhaps some friction forces of which the magnitude depends on the direction with respect
to the gravity. Since it is the gravitational potential energy which is to power the arm, and
of which the retrieval has to be maximised, this chapter will focus on the vertical part of
the system. Once the vertical part has been fully treated, a short section will discuss the
application in the horizontal direction.

First the one-dimensional model is constructed in Section 2-1, including the system dynamical
equations of motion as well as a drive train model including an actuator and the necessary
transmission. In order to obtain the optimal spring characteristic analytically and without
any prior parameterisation, the system model is described as function of position. The
analytical optimal spring characteristic is derived in Section 2-2. The corresponding trajectory
is optimised in Section 2-3.

Once the optimised trajectory and corresponding optimal spring are obtained, a physical
spring mechanism is matched to the analytical optimal spring in Section 2-4. The section
builds up the mechanism model consisting of two parts: a gravity balancing spring and a
“resonant” mechanism which is the rectilinear equivalent of the Plooij mechanism [10]. The
spring mechanism replaces the analytical optimal spring in the trajectory optimisation and
the trajectory extended with the single parameter of the spring mechanism is optimised anew.
The optimisation results with the analytical optimal spring and the physical mechanism are
compared in Section 2-5 and performance of the spring mechanism is evaluated.

Section 2-6 reviews horizontal application of the principle, after which a brief discussion on
how to combine the results of the two directions into a single 2D motion will be held in
Section 2-7. Finally, the findings of the previous sections are discussed in Section 2-8 before
Section 2-9 concludes the chapter.

2-1 System model

The model assumes that the centres of mass of the package, the gripper and the slider coincide.
The slider is the spindle nut, which is centred around the spindle shaft through which the

Linda van der Spaa Master of Science Thesis



2-1 System model 9

motion is actuated. The actuator is an electric motor of which the rotational torque is
transformed to a linear force on the load by the spindle, which has a transmission ratio ns in
rad/m.

The system acceleration is given by Newton’s second law in (2-1).
(

m+ (Jm + Js)n
2
s

)

ÿ = −mg + Fs + Ff + CnsTm (2-1)

Mass m is the total mass at the actuated joint, i.e. the sum of the masses of the slider, gripper
and package, the last only when going down. The two inertia terms: Jm and Js, are of the
motor and spindle respectively. The spring force acts through the term F s. Friction force
Ff can contain both Coulomb friction and viscous friction terms. However in the vertical
case, friction of the spindle is negligible and Ff is zero. The constant C is an efficiency term
expressing torque dependent loss of the motor and transmission. Torque Tm is the actuator
torque at the shaft.

The resulting equations of motion of the 1 degree of freedom (DoF) system as function of
time are:

[

ẏ
ÿ

]

=

[

0 1
0 0

] [

y
ẏ

]

+

[

0
−mg+Fj

m̃

]

(2-2)

with

m̃ = m+ (Jm + Js)n
2
s (2-2a)

Fj = Fs + CnsTm (2-2b)

C =

{

ηp when accelerating
1/η′

p when decelerating
(2-2c)

The combined joint force has been given its own symbol Fj.

In an ideal motor with zero no-load torque, the electric current consumed by the actuator is
given by I = Tm

kt
with torque constant kt. However in reality, at low torques no load current

may increase losses considerably. In the less ideal but more realistic case, current through
the motor I relates to the motor torque Tm according to (2-3).

I = InoLoadsign(Tm) +
Tm

k̄t

(2-3)

Here k̄t is the torque constant corrected for the constant current offset.

Motor and spindle selection First the motor is chosen, then an appropriate spindle. From
(2-1) it is seen that the transmission ratio ns should be as small as possible to lose least
power to the reflected motor and spindle inertia, which scales with n2

s . With also the relation
I ∼ Tm

kt
in mind, a motor with as large a kt as possible is desired. This also holds for rotational

systems. The selected motor will therefore also be used in other parts of this thesis. Details
of the selected motor can be found in Appendix A-1.

An appropriate spindle is selected based on preliminary results, which can be found in
Appendix B-1. The preliminary results are obtained using the selected motor and the same
optimisation as discussed in Section 2-3-1, using a simpler version of the drive train model.
Table 2-2 summarises the motor and spindle specific constants which are used in the full
model (2-2), (2-3).
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10 Cartesian robot

Table 2-2: Motor and spindle specifications and derived constants

No load current InoLoad 0.538 A
Terminal resistance R 0.343 Ω

Corrected torque constant k̄t 71.1 mNm/A
Rotor inertia Jm 306 kgmm2

Nut mass mnut 0.65 kg
Spindle inertia Js 519 kgmm2

Spindle reduction ratio ns 157 rad/m
Forward efficiency ηp 0.89
Backward efficiency η′

p 0.87

Model as function of position In order to obtain the joint force as function of position, the
equations of motions must be written as function of position as well. The alternative state
[

ẏ t
]T

is introduced. The resulting alternative state equations are:

d

dy

[

ẏ
t

]

= ẏ−1

[

ÿ
1

]

= ẏ−1

[

−mg+Fj

m̃

1

]

(2-4)

These equations are only integrable for ẏ 6= 0. This means that the trajectories must be
defined such that ẏ = 0 can only occur in the final state. This problem can be solved in the
following way: Even without the restriction on the velocity it is a natural choice to split the
task cycle in a downward and an upward trajectory, since the mass is different for the return
motion. In either direction it will definitely not be optimal to have the velocity changing signs
or becoming zero anywhere else than at the end positions. The initial velocity of each half
cycle is set to a small number ±ǫ. The distance ∆y that would have been traversed between
[

y0 0
]T

and
[

y0 ± ∆y ±ǫ
]T

and is now neglected is practically zero. Therefore no error

is induced by starting each trajectory at some small speed ‖ẏ0‖ = ǫ > 0 instead of ẏ0 = 0.

2-2 Analytically optimal spring

The net work of the task of the Plugless Arm originates from the difference in potential energy
of the end positions, which is constant. Kinetic energy at the beginning and end of the task
is zero. So the optimal spring characteristic function is the minimum of the electric energy
equation.

The electric energy of a task cycle is described as function of the position in (2-5). The same
separation of the downward and upward motion is observed as described at the end of the
previous section, since the direction of the variable over which is integrated may not change
under the integral.

E =

∫

down

Pe

ẏ
dy +

∫

up

Pe

ẏ
dy (2-5)

Both the electric power P e and velocity ẏ need to be a function of position y. By definition
of (2-4) velocity indeed is. The electric power is the sum of three parts: actuator heating,
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2-2 Analytically optimal spring 11

mechanical work and overhead power consumption (2-6). The motor and transmission are for
now assumed to be ideal, i.e. without no-load current, inertia and internal friction, efficiency
equals one in both transmission directions.

Pheat = I2R =
R

k2
tn

2
s

F 2
a (2-6a)

Pmech = Tmnsẏ = Faẏ (2-6b)

Poh = constant (2-6c)

The constants R, kt and ns are the wire resistance, motor torque constant and spindle
reduction ratio respectively. The motor current I and torque Tm are a linear function of
the total actuation force Fa felt by the load:

Fa(y) = Fj(y) − Fs(y) (2-7)

The joint force Fj(y) (2-2b) as function of the position y results through Fa(y) in the motor
torque Tm also being a function of position. With the state description of (2-4), the joint
force required for a certain trajectory is indeed obtained as a function of the position.

As a result of (2-6) and (2-7), the electric power is quadratic with respect to the spring force.
Furthermore the derivative of the energy is continuous when derived to the spring force.
Similar to the normal variable case, the minimum of the quadratic function can be obtained
analytically by setting the derivative equal to zero. The necessary theory on functional
derivatives will be reviewed in Section 2-2-1.

Subsequently, Section 2-2-2 derives the expression of the optimal spring force as a function
of the total joint force and the state of the joint. The state trajectory and corresponding
joint forces then remain to be optimised, but with the analytical expression for the optimal
spring, the spring characteristic will always implicitly be optimal. How well the optimality
holds under less ideal circumstances and the full model as presented in Section 2-1 will be
discussed in Section 2-2-3.

2-2-1 Method:
Analytical function optimisation by means of the functional derivative

Suppose there is some functional F(α,x(α),x′(α)) which should be optimised over some
interval [α0, α1] such that the corresponding cost function (2-8) is minimised.

J =

∫ α1

α0

F(α,x(α),x′(α))dα (2-8)

The objective is to find the optimal function x(α). Analogous to the scalar version,

∂J
∂x(α)

= 0

needs to be solved.

Taking a step back, consider a normal function f(x) with an optimum x⋆. Any nonzero
disturbance ξ of the optimum |f(x⋆ + ξ) − f(x⋆)| > 0. Therefore the derivative of f(x⋆ +ξ)−
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12 Cartesian robot

f(x⋆) to the disturbance ξ is only zero when ξ = 0. Since f(x⋆) is a constant, it drops out of
the equation. In other words:

df(x⋆ + ξ)

dξ

∣

∣

∣

∣

ξ=0

= 0 with x = x⋆ + ξ (2-9a)

∂f(x)

∂x

∣

∣

∣

∣

x=x⋆

= 0 (2-9b)

This relation is the generally known condition for an optimum of a function.

Extending this principle to functionals, let φǫ(α) = x(α) + ǫδ(α) for some differentiable
disturbance function δ(α) and a small magnitude ǫ. Then the cost J (2-8) of the disturbed
system is given by

Jǫ =

∫ α1

α0

F(α, φǫ(α), φ′
ǫ(α))dα =

∫ α1

α0

Fǫdα

As in the scalar case (2-9a), ∂Jǫ

∂ǫ

∣

∣

∣

ǫ=0
must be zero. And

dJǫ

dǫ
=

∫ α1

α0

dFǫ

dǫ
dα =

∫ α1

α0

(

✚
✚
✚
✚❩

❩
❩
❩

∂Fǫ

∂α

dα

dǫ
+
∂Fǫ

∂φǫ

dφǫ

dǫ
+
∂Fǫ

∂φ′
ǫ

dφ′
ǫ

dǫ

)

dα

=

∫ α1

α0

(

∂Fǫ

∂φǫ
δ(α) +

∂Fǫ

∂φ′
ǫ

δ′(α)

)

dα

Then by partial integration

dJǫ

dǫ

∣

∣

∣

∣

ǫ=0
=

∫ α1

α0

(

∂F
∂x

δ(α) +
∂F
∂x′

δ′(α)

)

dα

0 =

∫ α1

α0

(

∂F
∂x

− d

dα

∂F
∂x′

)

δ(α)dα+

[

∂F
∂x′

δ(α)

]α1

α0

Imposing the boundary conditions δ(α1) = δ(α0) = 0 (i.e. the system is not disturbed at the
boundary of the interval), the disturbance function drops out of the equation entirely. The
function x(α) that meets the condition (2-10) extremises (2-8).

∂F
∂x

− d

dα

∂F
∂x′

= 0 (2-10)

An example of this optimisation is found in every-day mechanics. Taking time t as α and
the action, the difference between kinetic and potential energy in a system with general
coordinates q(t), as the functional F = L(q, q̇) = T (q, q̇) − V (q), satisfaction of the
optimality criterion (2-10) results in the Lagrange equations:

d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj
+
∂V

∂qj
= 0

It is the relation the state must satisfy to keep the energy in the system constant. As
conservation of energy is a law of nature, this optimisation result describes the (mechanical)
behaviour of the system when no external forces are applied.
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2-2 Analytically optimal spring 13

2-2-2 Optimal spring force as function of joint force

For the Cartesian robot the electric energy consumption is the cost function to be optimised.
Combining Equations (2-5) to (2-7), the expression of the electric energy consumption per
cycle (2-11) has the same form as (2-8).

E =
∑

i∈{down,up}

∫ yi,1

yi,0

R

k2
tn

2
s

(Fj,i − Fs)
2

ẏi
+ (Fj,i − Fs) +

Poh

ẏi
ds (2-11)

Negative (Fj,i − Fs) results in energy gain, while any ‖Fj,i − Fs‖ > 0 brings energy loss. The
total cycle energy is obtained by taking the sum over the trajectories i ∈ {down,up}. Since
ydown,0 = yup,1 and yup,0 = ydown,1, the sum can be taken into the integral and the result of
(2-10) can be applied directly.

F(y, Fs(y)) =
R

k2
tn

2
s

(Fj,d − Fs)
2

ẏd
+(Fj,d − Fs)+

Poh

ẏd
−
(

R

k2
tn

2
s

(Fj,u − Fs)
2

ẏu
+ (Fj,u − Fs) +

Poh

ẏu

)

In this case F does not depend on F ′
s(y), which is the derivative of Fs(y) with respect to y.

Therefore the optimal spring characteristic function is obtained by solving dF
dFs

= 0.

dF
dFs

= −2
R

k2
tn

2
s

Fj,d − Fs

ẏd
− 1 −

(

−2
R

k2
tn

2
s

Fj,u − Fs

ẏu
− 1

)

= 2
R

k2
tn

2
s

(

Fj,d − Fs

−ẏd
+
Fj,u − Fs

ẏu

)

When set to zero,

Fj,d − Fs

−ẏd
+
Fj,u − Fs

ẏu
= 0 (2-12)

Fj,dẏu − Fj,uẏd

−ẏdẏu
− −ẏd + ẏu

−ẏdẏu
Fs = 0

means that, unless ẏdẏu = 0,

Fs (Fj,d(y), Fj,u(y), ẏd(y), ẏu(y)) =
Fj,d(y)ẏu(y) − Fj,u(y)ẏd(y)

−ẏd(y) + ẏu(y)
(2-13)

Since ẏd in itself is per definition negative (going down), Equation (2-13) is the different force
profiles averaged over the different velocity profiles. The same result holds in the rotational
case, when using joint torques and angular velocities instead of their linear counterparts. The
result is also extendable to more trajectories by taking for i multiple downward and upward
motions.

As was the case with the state equations (2-4), there is no proper solution when ẏ = 0. This
problem is solved the same way, by introducing small initial velocities ẏ0 = ±ǫ.

2-2-3 Implications of non-ideal circumstances

Any loss terms that can be brought outside the drive train can be included in the expression of
the joint force, such that the results of the previous subsection remains valid. Of the remaining
factors, any additional terms which do not hold a nonlinear relationship with Fs will cancel
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14 Cartesian robot

out. This applies to terms such as the no-load current (2-3). Therefore, when considering
the full model of Section 2-1, only the efficiency factor C (2-2c) remains. Including C in the
energy function (2-11), the optimality criterion (2-12) would look like:

∑

i

(

−2
R

k2
tn

2
s

Fj,i − Fs

C2
i ẏi

− 1

Ci

)

= 0 (2-14)

The term Ci is constant as long as Fj,i − Fs and ẏi do not change sign. The velocity will not
change sign during a half-cycle trajectory, however Fj,i − Fs might, also depending on Fs.

This nonlinear dependency on Fs makes it impossible to extract the spring force from (2-14)
the way (2-13) was obtained from (2-12). However, when considering the optimal spring force
by definition of (2-13) knowing that ẏd and ẏu will always have opposite signs, the spring
force, being the weighed average of the two joint forces, will always be in between the two joint
forces. That means that the sign of Fj,d(yk) − Fs(yk) and Fj,u(yk) − Fs(yk) will be opposite
for any position yk. Since Ci only depends on the sign difference between Fj,i(yk) − Fs(yk)
and ẏi,k, Cd will always equal Cu such that it cancels out in (2-14) and (2-13) also holds for
the full model described in Section 2-1.

2-3 Joint and motor force optimisation

The result of the previous section was an analytical expression of the optimal spring force as
function of joint force and velocity, both of which are a function of position. What remains to
be done is to find the optimal joint forces and velocities such that the total energy consumption
of the system is minimised.

The energy costs depend for the major part on the motor torque. However, the motor torque
depends on the spring force which in return depends on the state trajectory. Is is much more
straightforward to calculate the forces and torques from the state trajectory than the reverse.
As the forces appear in the top row of (2-4), the trajectory parameter for the optimisation
is chosen to be the acceleration divided by the velocity ẏ−1ÿ. In the sequel it will be simply
called by the name “acceleration profile”.

2-3-1 Optimisation

Indirect optimisation is done in the sense that the state space is not parameterised. Instead
the system states are obtained by integrating the state equations using the acceleration profile
along the trajectory parameter, which in this case is distance (usually time is used). All other
state variables relate to the chosen optimisation variable by the dynamic equations of motion,
such that only few variables need to optimised and the system dynamics need not be imposed
as constraints. The result is a low dimensional, minimally constrained, but very nonlinear
optimisation problem. The state equations (2-4) are integrated to obtain speed, time and
joint force. The optimal spring force and remaining motor torque can then be deduced from
the computed joint force.

The cost function of the optimisation is stated explicitly in Section 2-3-1-1. The trajectory
is not optimised at every distance instant. The trajectory vector to be optimised consists
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2-3 Joint and motor force optimisation 15

of only a small number of parameters. In between the trajectory is interpolated. This will
is discussed in Section 2-3-1-2. Because of the severe nonlinearity of the problem, the way
multi-start is used is described in Section 2-3-1-3. Section 2-3-1-4 discusses the constraints
the optimisation is subject to and in Section 2-3-1-5 the used numerical integration method
is discussed.

2-3-1-1 Cost function

The cost function is simply the required electric energy, as was already presented in Section 2-2,
but this time using the full model of Section 2-1.

E =

∫

Tmns +
I2R

ẏ
ds+ Pohtend (2-15)

The goal is to save as much energy as possible for the overheads. Rearranging (2-15), the
retrieved power is given by:

P = −
∫

Tmns + I2R
ẏ
ds

tend
(2-16)

Ideally it is desired to maximise P . However, as the final time tend is the result of state
integration, (2-16) is too nonlinear to be used as cost function. Instead an estimation of Poh

is made and the resulting energy shortage (2-15) is minimised.

The overhead power is consumed mainly in the processor, sensors and end effector (i.e.
gripper). For the Cornell Ranger the low overhead power was estimated at 8 W [16]. A
microprocessor and three rotary encoders for the final 3 DoF arm would need about 0.65
W [4]. The remaining electronics will not be entirely free of loss, 1 W for arm control will
probably still be quite optimistic. A gripper requiring minimal actuation energy is currently
being designed for the project. This gripper expected to use less than 1 W of power as well.
With a safety factor 2, and in between this back-of-the-envelope estimation and Rangers
estimated overheads, Poh is set to 4 W.

2-3-1-2 Trajectory parameterisation

By necessity, as described in Section 2-1, the regarded pick-and-place cycle is divided in
the downward and the upward motion. The distance parameters over which is integrated are

denoted ydown and yup respectively, resulting in the total cycle trajectory y =
[

ydown yup

]

.

To obtain an integration interval ∆y = 10−3 m, N = 1001 is chosen. Optimising the
acceleration profile at each small position step heavily taxes computation. Instead the
trajectory is parameterised at a small number of positions. This number is chosen at 9
for down and up separately. xdown,0 denotes the acceleration over velocity at ydown,0, xdown,9

at ydown,N−1. The other values of xdown are equally spaced in between. The same holds for up.
During trajectory evaluation, the intermediate acceleration over velocity values are obtained
by interpolation. For computational ease, this interpolation is done linearly. The total cycle

acceleration profile is encoded by x =
[

xdown xup

]

, which has a total length of 18.

At the final positions, ydown,N = 0 and yup,N = 1 respectively, both acceleration and
velocity should be zero. The final values xyN

:= 0 are required for the state integration
(Section 2-3-1-5), but because they are fixed, they can safely be left out of the parameterisation.
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16 Cartesian robot

2-3-1-3 Multistart optimisation

The optimisation problem is very nonlinear. A multistart implementation is required to cover
as much of the solution space as possible. If enough local minima are explored, the best can be
selected. It is then to be hoped that the lowest minimum will be a reasonable approximation
of the global optimum.

Though Matlab has a Multistart option for optimisations, the following manual implemen-
tation yielded better results:

The initial elements of x are chosen randomly between 0 and 3. This is quite arbitrary, but
both a larger range and a range that included negative numbers yielded worse results. A large
range is desired for optimal exploration of the solution space. The optimisation is performed
500 times.

2-3-1-4 Constraints

The optimisation problem is formulated such that most constraints are kept inherently. The
only constraints added as such to the solver, are the zero end-state velocities: ẏ(yend) = 0 at
arrival position yend = 0 when going down respectively yend = 1 when going up. Zero end
state acceleration is enforced by defining the optimal spring such that the resultant force is
zero: Fs(yend) = Fj(yend).

Aside from these endpoint constraints ensuring state equilibrium at the cycle extrema, there
is the important constraint on the velocity |ẏ| > ǫ to ensure numerical stability. In both state
equations and computation of the energetic cost, the velocity is found in the denominator.
Division by zero may never occur. In the optimisations, ǫ is set at 10−3 m/s. A trajectory
where ẏ = ±ǫ will definitely not be optimal as the cycle time will be large as a result,
therefore a crude state approximation suffices around ẏ = ±ǫ. During integration, whenever
the acceleration at one step causes the velocity at the next step to have crossed the ±ǫ
boundary, the velocity of the next step is set at ±ǫ (dependent on the direction of motion)
and time and acceleration are corrected accordingly. How exactly is described in the next
subsection.

Additionally, bounds can optionally be imposed on the velocity, acceleration and/or force. The
choice of ẏ−1ÿ as trajectory parameter results in these bounds all needing to be formulated
as nonlinear constraints. The way the entire optimisation problem is implemented, these
constraints are easily added. But in they complicate the optimisation process enormously.
Only adding bounds to the velocity resulted in excessively large optimisation times. Adding
multiple such bounds may very well make the problem practically unsolvable. Therefore no
such bounds were set.

2-3-1-5 Numerical integration

For numerical integration of the system states Runge-Kutta 4th method (RK4) is chosen. Its
approximation error is much smaller than for Euler’s method, yet it is still easy to implement.
To suite the current application, two modifications are made to the algorithm.
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2-3 Joint and motor force optimisation 17

The standard RK4 works as well for integration over distance as if it were time. Actually the
base parameter (distance/time) does not matter as long as the state equations are defined
accordingly. Yet aside from that the integration method is still applied in a non-standard
way.

Regular numerical state integration would look like
[

ẏk+1

tk+1

]

=

[

ẏk

tk

]

+ G
(

f

(

y,

[

ẏ
t

]

, Tj

)

,∆y

)

(2-17a)

yk+1 = yk + ∆y (2-17b)

where G(·, ·, ·) is some integration method to approximate the state increment and f(·, ·) is
the function describing the state derivative (2-4). However, instead of knowing the joint force
Tj(y) in f required to compute dẏ

dy
, dẏ

dy
(y) is known since this is the same as acceleration over

velocity, which is the parameter vector of the optimisation. So instead of simply having

d

dy

[

ẏ
t

]

= f

(

y,

[

ẏ
t

]

, Tj

)

this relation can only be used for the bottom row, while dẏ
dy

(y) is obtained directly from
interpolation of the trajectory parameter vector.

The other important concern is the velocity constraint |ẏ| > ǫ (Section 2-3-1-4). Each
integration step (2-17) that results in ẏ crossing the sign(ẏ)ǫ-line, the step is recomputed
using Euler’s method. By redefining ẏk+1 := ±ǫ, the maximum allowable dẏ

dy
(yk) = ẏk±ǫ

∆y
. Then

the with Euler’s method computed tk+1 still holds. This inverse integration step cannot be
computed using the Runge-Kutta method, since it uses multiple interdependent intermediate
values of dẏ

dy
. This backward correction has no risk of occurring in the final optimal trajectory,

as any solution with ẏk := ±ǫ, k 6= 0 will be suboptimal.

2-3-2 Results

Figure 2-2 shows the 15 optimal spring characteristics resulting in the least energy consumed
out of 500 optimisations. Figure 2-3 shows the same spring characteristics but for the solutions
showing large bumps. The characteristics clearly show they are composed of eight equally
spaced piecewise smooth parts. At the points where the characteristic is discontinuous in its
derivative, the jump in its derivative can be large, which results in undesired bumps in the
trajectory. Therefore solutions with large first order discontinuities in the spring characteristic
have been discarded.

Figure 2-4 shows the more detailed trajectory results to the optimal spring characteristic
indicated in black in Figure 2-3. The left and right plots in Figure 2-4 show the same
variables, only on the left they are plotted against time whereas on the right the distance is
on the x axis. Note that the bottom two plots have double y axes. The left axis corresponds
to the motor torque in Nm, the blue line, which is the difference between the joint forces in
yellow and the spring force in red, scaled by the spindle reduction and transmission efficiency.
The joint and spring forces are given in N on the right axis.

The top row of Table 2-3 shows the energy results to the result of Figure 2-4. The total
energy cost is E from (2-15) including the overhead term. The recovered energy, without the

Master of Science Thesis Linda van der Spaa



18 Cartesian robot

0 0.2 0.4 0.6 0.8 1
-1500

-1000

-500

0

500

1000

1500

2000

s [m]

F
or

ce
[N

]

Figure 2-2: Fifteen optimised springs causing least system energy consumption.
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Figure 2-3: Springs with least system energy consumption, bumpy results removed. The optimal
spring of the set is indicated by the bold black line.

Table 2-3: Energy results to the optimal trajectories with analytical optimal springs

cycle
time [s]

mechanical
loss [J]

I2R
loss [J]

total energy
cost [J]

recovered
energy [J]

recovered
power [W]

with reflected inertia
smooth trajectory 2.02 1.31 0.43 0.01 8.07 4.00
bumpy trajectory 1.87 1.39 0.58 -0.36 7.84 4.19
without spring 4.85 4.06 10.05 23.71 -4.30 -0.89

without reflected inertia
smooth trajectory 2.08 1.33 0.57 0.40 7.91 3.81
bumpy trajectory 1.75 1.28 0.26 -1.26 8.27 4.72
without spring 2.00 3.76 2.53 4.40 3.61 1.80
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Figure 2-4: Optimised trajectory, spring and residual motor torque, on the left plotted against
time, on the right against distance. The bottom plots show in yellow and red the joint forces and
optimised spring characteristic in N on the right axis, and in blue the residual motor torque in
Nm on the left axis.

overhead term, is also given. The recovered power is P from (2-16). For comparison, the table
also shows the energy results to the optimal bumpy case as well as the case without spring.
The bumpy trajectory recovers less energy, but because of the shorter cycle time the reduced
overhead cost results in a smaller total energy cost and more power is recovered. Without a
parallel spring it is seen it is not possible to recover any energy, even without overheads.

With spring, larger overall joint torques are achieved with only a fraction of the previous
mechanical and actuator losses. With the smooth optimal parallel spring a mechanical energy
loss reduction of over a factor 3 is observed with respect to the case without spring. The change
in electric energy consumption is even more dramatic. Due to the reduced actuator torques,
the spring has reduced the I2R loss by over a factor 20. Without spring the actuator heating
loss dominated the mechanical loss, with spring the reverse is the case.

The remaining mechanical losses originate partially from the transmission efficiency. Coulomb
and viscous friction would also appear in this term, but those are currently zero. A less direct
mechanical loss factor is the drive train reflected inertia, which increases the effective mass
that to be accelerated (2-2a). Currently the reflected inertia term is large. For the spindle
drive the reflected inertia is much larger than it will be in the polar arm with rotational joint,
due to the heavy spindle shaft and the relatively large spindle reduction ratio. Therefore the
bottom half of Table 2-3 shows the results when drive train inertia is not taken into account,
also important for later comparison of results.
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Without reflected inertia the optimisation returns a larger number of bumpy trajectories,
which show much larger first order discontinuities than observed in Figure 2-2. This is because
now large accelerations have a much lower energetic penalty. The smooth trajectory without
reflected inertia performs slightly worse compared to the trajectory with reflected inertia
mainly due to less optimised trajectories showing smooth behaviour. The bumpy trajectory
outperforms all others in every respect except its unacceptable bumpyness.

Without reflected inertia the difference in energetic performance is larger between the smooth
and the bumpy result, but on average the results with spring with and without reflected inertia
are very similar. The analytical optimal spring is very capable to compensate for reflected
drive train inertia. The overhead power drain is the major remaining loss.

Without spring the differences are large. Without reflected inertia the I2R losses are much
lower and the cycle time is much shorter. As a result, some energy is actually recovered.

The trajectories of Table 2-3 not shown in this section can be found in Appendix C-1.

2-4 Physical parallel spring

In the previous section the large benefit of a proper parallel spring mechanism was shown.
However for practical application, the spring force must be delivered by a physical mechanism.
The mechanism preferably has low complexity as complexity generally adds to energy loss.
Therefore this section will present the design of a relatively simple spring mechanism with
a force characteristic similar to optimal spring that was found in Section 2-3-2 and test its
performance using the same trajectory optimisation.

The mechanism parameters used in this section are chosen for reasons of mathematical clarity
and easy comparison of results in order to obtain important insights in the mechanism
principles which can be used for design of the real robot arm discussed in the next chapter.
This hypothetical spring mechanism for linear motion is never meant to be built. For the real
arm, design of its rotational counterpart will be discussed in Chapter 3.

In Figure 2-3 all close to optimal springs are seen to have similar form of force characteristic.
The arm is balanced in the end positions: in the top position without mass and in the bottom
position with mass. Near the endpoints a rapidly growing force pulls towards the other
endpoint while around the middle of the distance forces are small. The resonant mechanism
described by Plooij in [17] shows similar peaks at the quarter distances, while at the endpoints
and in the middle the torque (since it is a rotational mechanism) is zero. For our vertical case
additional gravity compensation is required. Therefore the spring mechanism for the vertical
motion consists of the following two parts:

1. A rectilinear “resonant” mechanism as described by Babitsky and Shipilov[18, Chapter 1].
This mechanism has equal potential energy at the endpoint positions. Furthermore,
both positions are in equilibrium. In between the potential energy of the mechanism is
lower. Once disturbed from one equilibrium endpoint, the mechanism is pulled towards
the other. In lossless ideal world theory without external forces, the mechanism would
need no energy to keep moving back and forth between the two positions indefinitely.

2. A linear spring balancing the gripper without package in the top position and with
package in the bottom position. This additional spring is required to compensate for
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Figure 2-5: The ‘resonant’ mechanism (1.) consists of a wheel connected to a slider in two ways:
by a rolling contact, on the right side of the wheel, and by a spring which is at its rest length
when both φ and y are zero. The endpoint balancing mechanism (2.) consists of a linear spring
connected to the slider which keeps the slider in position at the pick and place positions.

the external force present: gravity. By only balancing the mass in the end points, this
spring also helps the motion to the other end.

The combined mechanism is shown in Figure 2-5. Both springs are linear. Spring (1.) is by
definition a tension spring. Spring (2.) can be either be a tension spring or a compression
spring, dependent on whether it is placed at the top of the actuated slider or at the bottom
as depicted in Figure 2-5.

The resonant mechanism (1.) has stable positions in all cases φ = k ·2π, with k and arbitrary
integer. The system has one degree of freedom which can be chosen either as y or as φ, which
are related by:

y = rφ (2-18)

Here r is the effective wheel radius as depicted in Figure 2-5. Since all other forces in the
system are a function of y, it is chosen as the general coordinate. Notice that there is a shift
in the definition where y = 0 compared to the previous section. Now the package will be
picked up at y = 1

2 m and put down at y = −1
2 m. This shift of reference frame facilitates

computation of the mechanism forces but has no influence on the other calculations. To ensure
y = ±1

2 corresponds with φ = ±2π, the effective wheel radius r = 1
4π

. For comparative reasons
the inertia of the wheel is neglected.

2-4-1 Mechanical model

The two parts of the mechanism are independent of the other. Therefore they can and will
be described separately in this section before they are combined into a single spring energy
and force expression for the full mechanism. Both springs in the mechanism are linear.
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Resonant mechanism The energy stored in the spring ((1.) Figure 2-5) is given by (2-19).

Es1 =
1

2
ks1u

2
s1 (2-19)

Because of the mechanism geometry, the elongation us1 is

us1 =
√

∆x2 + ∆y2 (2-19a)

∆x = r(1 − cosφ) (2-19b)

∆y = y − r sinφ (2-19c)

Then the spring force Fs1 = −∂Es1

∂y
with φ = y

r
results in

Fs1 = ks1y

(

cos

(

y

r

)

− 1

)

(2-20)

The spring stiffness ks1 can be chosen freely. Larger ks1 results in a steeper energy function
and larger forces, resulting in a faster response. However larger speeds also tend to increase
energy losses. Therefore it will have to show from the optimisation which spring stiffness is
actually optimal.

Endpoint balancing spring The spring force of the endpoint balancing spring is straightforward
in calculation since it is linear in y.

Fs2(y) = −ks2(y − y0) (2-21)

The boundary conditions for endpoint balancing

Fs2

(

−1

2

)

= g (mslider +mgripper +mpackage)

Fs2

(

1

2

)

= g (mslider +mgripper)

dictate

ks2 = gmpackage (2-21a)

y0 =
mslider +mgripper + 1

2mpackage

mpackage
(2-21b)

Correspondingly, the spring energy is given by

Es2 =
1

2
ks2 (y − y0)2 (2-22)

Combined spring mechanism Figure 2-6 shows on the left the energy and force characteristics
of the two separate mechanism parts. Gravity for both the loaded and the unloaded case is
indicated by the thin yellow lines. The right half of the figure shows the result when summing
the two mechanism parts and the gravity. The bottom position y = −1

2 is in equilibrium in
the loaded case, when going down, the top position y = 1

2 is in equilibrium in the unloaded
case, when going up.
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Figure 2-6: Energy and force characteristic of both ‘resonant’ mechanism and endpoint balancing
spring. The thin yellow lines indicate the gravitational potential energy and force respectively for
the load carrying case (dashed) and the unloaded case (dash-dotted). The right shows the sum of
the parts on the left. When going down the bottom position y = −0.5 is stable, the same holds
for the top position y = 0.5 when going up. For large enough ks1, an additional global energy
minimum lies around y = 0.

2-4-2 Resonant mechanism optimisation

The parameter vector has to be expanded by one variable: the spring stiffness ks1 (2-20),
from now on simply called ks. The function computing the optimal spring force from the
total joint forces and trajectory (2-13) is replaced by the mechanism spring characteristic
Fs,mech(y, ks) = Fs1(y, ks) +Fs2(y) from (2-20),(2-21). However, the attempt to optimise both
the trajectory and the mechanism spring stiffness simultaneously did not yield valid results.
Therefore the following two alternative methods were explored.

1. The optimal trajectory found in Section 2-3-2 is used as a starting point. Subsequent
optimisation of the mechanism spring stiffness and trajectory is done iteratively.

It is observed that the attempt to optimise a trajectory from an already decent initial
trajectory does not lead to a new improved result. Presumably the valleys between the
ridges in the solution space deepen towards the region of the optimum. Once in one of the
deep valleys, the optimisation cannot come out. This is avoided by starting each trajectory
optimisation with the random number initialisation as described in Section 2-3-1-3. So
starting from an optimised trajectory, the spring is optimised to the trajectory. Then an
entirely new trajectory is optimised to the spring. This set of optimisations is repeated 50
times.
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2. The trajectory is optimised for a range of fixed spring stiffnesses. When taking the drive
train reflected inertia into account, a range of ks = 0, 10, . . . , 1000 is chosen. When not
taking reflected inertia into account, ks = 0, 1, . . . , 25 suffices. In case of ks = 0 there is
only the endpoint balancing spring.

This method covers the solution space in a more uniform way. The range of spring stiffnesses
is chosen based on the range of quite well performing spring stiffnesses found in the results
of the first method. The really well performing trajectories are only the outliers of a batch of
optimisation results. Therefore, in order to compare the performance of the different spring
stiffnesses it is important to optimise the trajectory a large number of times for each stiffness
value. For each different value of the spring stiffness for the case without drive train reflected
inertia, 1000 trajectory optimisations are performed.

2-4-3 Results

Figure 2-7 shows the result based on the result of Section 2-3-2. The optimal spring stiffness
was found to be ks = 82.5. The bottom plots of Figure 2-7 show that during most of the
trajectory the joint force is delivered for the main part by the spring, except for at the
start and end of the trajectory, where the motor torque characteristic show peaks for extra
acceleration at the start and extra deceleration near the end. Despite of this extra boost, the
accelerations and therefore velocity stays low, resulting in a long cycle time of over 4 s. The
top row of Table 2-4 shows the energy values corresponding to the trajectory.
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Figure 2-7: Optimised trajectory obtained when using optimal trajectory of Figure 2-4 as the
starting point, ks = 82.5. On the left plotted against time, on the right against distance. The
bottom plots show in yellow and red the joint forces and spring characteristic in N on the right
axis, and in blue the residual motor torque in Nm on the left axis.
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When not taking reflected inertia into account, less force/torque is required to achieve a faster
system response. This is seen when optimising the spring mechanism and trajectory without
reflected inertia. Then the optimum is found for a lower spring stiffness, while the cycle takes
only 2.26 s and all losses are less, resulting in over twice as much energy recovered (Table 2-4,
for the trajectory see Appendix C-2).

Optimising from scratch results in improved energy return both with and without reflected
inertia. Though it is not so straightforward to select the best result with the most suitable
spring stiffness. Figure 2-8 shows the minimal energy cost for the ranges of different spring
stiffnesses with and without reflected inertia. In the case without inertia (Figure 2-8b), a
polynomial fit is drawn to predict the general trend and the minimum appears to be around
ks = 7. But since the curve is very level in the region, a mechanism with ks = 5 or 9 may
perform equally well. In the current data set, the result costing the least energy was found
for ks = 4.

From Figure 2-8a it is even less clear which spring stiffness is optimal. On this scale the figure
shows very smooth looking trend suggesting a large spring stiffness is best, but above ks ≈ 800
it is all about the same, perhaps slightly worse when continuing past the ks = 1000. However,
at some high values for ks there are suddenly outliers below the general trend line. Since the
data making up the figure are the minimum cost values over a thousand optimisations per
ks, the outliers suggest the nice smooth trend does not show the real minimum. Actually,
it becomes doubtful whether the cost function is still returning the value that needs to be
minimised. After all, the cost function minimises the energy cost assuming a 4 W overhead
power drain. When the system with large reflected inertia favours low accelerations leading to
long cycle times, the overhead cost starts dominating the total cost to an extent that shorter
cycle times become more important than large energy recovery.

For the case without reflected inertia the minimum cost should still be a proper measure
since the energy that is recovered over a cycle is close to the 4 W. However for the case with
reflected inertia nowhere near enough energy is recovered to support this large a power drain.
A different performance metric is tried. Instead of the minimum total cost, Figure 2-9 shows
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Figure 2-8: Minimal energy cost for the ranges of resonant mechanism spring stiffnesses. In (b)
the bottom line trend is estimated by a third order polynomial.
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Figure 2-9: Minimal power consumption for the ranges of resonant mechanism spring stiffnesses,
overhead power not taken into account. In (b) the bottom line trend is estimated by a third order
polynomial.

for the ranges of spring stiffnesses the minimum power consumption (2-16) when not taking
the overheads into account.

Figure 2-9a show a new trend with no strange outliers. Actually this trend makes more sense.
A strong spring leads to a faster system response, but a faster response usually entails larger
energy loss. Somewhere there must be the trade-off. Figure 2-8a shows only the strong spring,
Figure 2-9a also shows the trade-off.

The second and third row of Table 2-4 show the energetic properties of the trajectories
appointed as optimal by both Figure 2-8a and Figure 2-9a. The first one has a shorter cycle
time and related to that a lower total energy cost. But both mechanical and electric losses
are larger. Even when the recovered energy is scaled by the cycle time the trajectory to the
minimum cost has less remaining recovered power.

When comparing Figures 2-8b and 2-9b, there is indeed barely a difference. The minimum
still lies between ks = 4 and ks = 10, this time ks = 10 yielding a slightly better result. The
bottom two rows of Table 2-4 show how little the difference is. The one has slightly lower

Table 2-4: Energy results to the optimal trajectories with optimised combined spring mechanism

ks

[N/m]
cycle
time [s]

mechanical
loss [J]

I2R
loss [J]

total energy
cost [J]

recovered
energy [J]

recovered
power [W]

with reflected inertia
from opt. spring 82.5 4.20 2.22 4.03 13.3 3.56 0.85
from scratch min cost 810 3.41 2.98 2.00 8.79 4.84 1.42
from scratch max power 610 4.03 2.17 1.60 10.1 6.04 1.50

without reflected inertia
from smooth 57.9 2.26 1.49 0.83 1.55 7.48 3.31
from scratch min cost 4 2.06 1.55 1.00 0.97 7.26 3.53
from scratch max power 10 2.07 1.53 0.97 0.97 7.30 3.53
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(a) With reflected inertia, optimal spring stiffness ks = 610
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(b) Without reflected inertia, optimal spring stiffness ks = 10

Figure 2-10: Optimal trajectories selected on basis of maximal power recovery, optimised from
scratch with and without reflected inertia taken into account; on the left plotted against time, on
the right against distance. The bottom plots show in yellow and red the joint forces and spring
characteristic in N on the right axis, and in blue the residual motor torque in Nm on the left axis
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energy losses, the other a tiny bit shorter cycle time, which in the balance results in equal
total energy cost and equal recovered power when rounding to two decimals. This illustrates
the high nonlinearity of the optimisation problem.

Figure 2-10 shows the trajectories to the results returning most power, with and without
reflected inertia. When comparing the two figures, equal velocities are reached during the
cycles. Only with reflected inertia it takes much longer to reach full velocity and deceleration is
also started earlier. The trajectory shape is almost fully determined by the spring characteristic.
The red and yellow lines (bottom plots) almost coincide.

This is certainly not the case in Figure 2-10b where initial acceleration and final deceleration
are achieved by a large peak in the actuator torque. But it is not so much that the actuator
torques are larger, they are within similar range for the case with reflected inertia, it is much
more that the total joint forces are much lower, almost a factor 6.

It is the slow increase of the spring force near the end positions which causes the performance
drop for large reflected inertia. With small reflected inertia, the actuator can nudge the
system into motion at the start, then the spring mechanism takes over. When the reflected
inertia gets large, the larger cycle time because of the slower response at some point starts
costing too much because of the presence of overhead power drain.

The other trajectory plots to the results presented in Table 2-4 can be found in Appendix
C-2.

2-5 Results compared

Table 2-5 summarises the energy results of the previous sections. The bumpy results observed
for the analytical spring are regarded as only being made possible by an unfortunate choice of
parameterisation of the trajectory (more about this in Section 2-8 Discussion). Nevertheless
they show a number which is probably closest to the maximum power that can be retrieved
by putting a parallel spring on the chosen spindle actuated mechanism and the chosen way of
parameterising the trajectory. It suggests a more careful trajectory parameterisation has the
potential to yield an analytical spring which can retrieve even more power from the system.
It is however not useful for evaluating the performance of the resonant mechanism, as such
bumpy profiles are not desired to be followed by a real mechanism. For comparing the two
different mechanisms, the smooth result will be used.

In Table 2-5 it is seen that, after the overheads, the mechanical losses, in this case due to
spindle efficiency only, are largest. For the analytically optimal springs, they are about 2 to 5
times larger than the I2R motor heating losses. For the resonant mechanisms the difference
is less than a factor 2, though the mechanical losses are still larger. All results in the table
compared show in all cases increase in mechanical loss and motor heating go together, as
they are both related to the motor torque, the mechanical losses by a linear relation, the I2R
losses quadratically.

In the cases with the mechanism and without any spring, the mechanical loss and especially
the electric heat loss increase when the reflected inertia is added. This is not the case for the
analytical optimal spring. The analytical spring can deliver any large force at the start and
end of the trajectory (Figure 2-4). The resonant mechanism exerts its maximum force later,
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Table 2-5: Summary of energy results from the previous sections

ks

[N/m]
cycle
time [s]

mechanical
loss [J]

I2R
loss [J]

total energy
cost [J]

recovered
energy [J]

recovered
power [W]

with reflected inertia
analytical spring (smooth) 2.02 1.31 0.43 0.01 8.07 4.00
analytical spring (bumpy) 1.87 1.39 0.58 -0.36 7.84 4.19
spring mechanism 610 4.03 2.17 1.60 10.1 6.04 1.50
no spring 4.85 4.06 10.05 23.71 -4.30 -0.89

without reflected inertia
analytical spring (smooth) 2.08 1.33 0.57 0.40 7.91 3.81
analytical spring (bumpy) 1.75 1.28 0.26 -1.26 8.27 4.72
spring mechanism 10 2.07 1.53 0.97 0.97 7.30 3.53
no spring 2.00 3.76 2.53 4.40 3.61 1.80

at a quarter of the distance to be travelled. Increased acceleration earlier along the trajectory
has to come from the motor, or the trajectory takes longer. The optimal result (Figure 2-10a)
shows a combination of both. In the top half of Table 2-5 it is seen the I2R losses are a small
factor 4 times larger when compared to the analytical (smooth) spring, and the cycle time
has become twice as long. Without spring, all force for acceleration has to come from the
motor, except for some help by gravity on the way down. As a result the I2R losses are far
larger, while the overhead costs have kept the cycle time from increasing much further.

The bumpy analytical springs are actually the only springs actually making the system retrieve
more energy than is consumed by the overheads. This is for the largest part due to the short
cycle time.

It is hard to compare the results to some absolute optimum. The theoretical maximum energy
that can be retrieved from one cycle is 9.81 J, but that would be for zero cycle time, which is
definitely unrealistic. Table 2-6 shows the recovered energy (overheads not taken into account)
of the mechanisms of Table 2-5 compared to the maximum recoverable energy: recovered energy

9.81 .
The second column compares the power retrieved by the resonant mechanisms to the power
retrieved with the smooth analytical optimal spring.

The optimal springs manage to recover 80-84% of the full recoverable energy, regardless of
the reflected inertia. The mechanisms manage 74% without and 62% with reflected inertia.
Without spring, only without reflected inertia any energy is recovered and then only just 37%.

The last column of Table 2-6, based on the last column of Table 2-5, places the results in a
more relative perspective, considering the relative energy return over time. Without the large
reflected inertia, the spring mechanism is capable of retrieving 93% of the power recovered by
the smooth analytical spring, while the system without spring manages less than half. With
reflected inertia, the spring mechanism achieves a power recovery of only 38%. But without
spring no power is recovered at all, it only costs.

It is seen that the proposed physical mechanism performs well under circumstances without
reflected inertia. With the large reflected inertia induced by the spindle drive performance is
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Table 2-6: Recovered energy and power compared. The first column shows the recovered energy
with respect to the maximum energy that could be gained in a cycle. The second column shows for
the power recovered with respect to the power that was recovered with the analytically optimised
smooth spring.

recovered energy w.r.t. recovered power w.r.t.
upper bound 9.81 smooth analytical spring

with reflected inertia
analytical spring (smooth) 0.82 1
analytical spring (bumpy) 0.80 1.05
spring mechanism 0.62 0.38
no spring -0.44 n.a.

without reflected inertia
analytical spring (smooth) 0.81 1
analytical spring (bumpy) 0.84 1.24
spring mechanism 0.74 0.93
no spring 0.37 0.47

much less, but still capable of recovering energy in a reasonable cycle time. In the rotational
arm, the transmission will have both lower inertia of itself and a lower transmission ratio.
Since the reflected inertia scales with the square of the transmission ratio (2-2a), the reflected
inertia in the polar arm will be only a fraction of the reflected inertia assumed in this chapter.
Therefore it is justified to conclude good performance of the mechanism based on the results
without reflected inertia.

2-6 Horizontal motion

The principle for horizontal application is the same as in the vertical direction. The only
difference is that now the gravitational acceleration acts perpendicular to the direction of
motion. This results in the following two changes in the mechanical model:

1. The computations for the are done with zero gravitational acceleration. For the resonant
mechanism this means there is no longer an endpoint balancing spring.

2. The spindle model now does show Coulomb friction. Ff in (2-1), or µC, is set to µmg,
with µ = 0.006 from the spindle specifications [19]. Note that this friction depends on
whether the ‘robot’ is loaded or unloaded.

Also in horizontal direction a distance of 1 m is used.

Horizontal motion always costs energy since there is no potential energy difference. Therefore
it makes no sense to evaluate the performance in terms of power loss without overheads, as
has been done in the vertical case. The optimum would erroneously lie at infinite cycle time.
Yet for comparison between results it is interesting to see the energy loss over time, the values
are still computed.

Since it was concluded at the end of the previous section that the case without reflected
inertia will be a closer representative of the later system with rotational drive, this section
will only consider the system without reflected inertia.
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2-6-1 Optimisation

Again the trajectory and spring will first be optimised using the implicit analytical optimal
spring. The best result out of 250 optimisations is selected.

Next, the result is used as initial trajectory for optimisation of the resonant mechanism.
Finally, further optimisation of the mechanism is again achieved by optimising the trajectory
for a range of mechanism spring stiffnesses, 1000 times per spring stiffness. The range ks =
0, 1, . . . , 25 proved sufficient. Since the optimum found from this last set of optimisations
outperforms the mechanism optimised from the analytical optimal spring trajectory, only the
result obtained from the range of spring stiffnesses will be presented.

2-6-2 Results

Figure 2-11 shows the optimal trajectory with an analytically optimal spring. The corresponding
energy results can be found in Table 2-7. Again the more bumpy result, listed in the table as
well, is discarded because of its larger first order discontinuities. But when comparing the two
in Table 2-7 it is seen the bumpy result was not selected by the optimisation because of its
lower energy losses but because of its shorter cycle time. In the total cost the overhead factor
is dominant. Therefore it may be that in the acquired results some of the system energy has
been sacrificed for the sake of a faster response.
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Figure 2-11: Optimised horizontal trajectory with analytically optimal spring, on the left plotted
against time, on the right against distance. The bottom plots show in yellow and red the joint
forces and optimised spring characteristic in N on the right axis, and in blue the residual motor
torque in Nm on the left axis.
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Table 2-7: Energy results of the horizontal optimisations

ks

[N/m]
cycle
time [s]

mechanical
loss [J]

I2R
loss [J]

total energy
cost [J]

energy
loss [J]

power
loss [W]

analytical spring (smooth) 1.94 0.21 0.14 8.11 0.36 0.19
analytical spring (bumpy) 1.81 0.25 0.14 7.61 0.39 0.22
spring mechanism 9 2.14 1.18 0.88 10.62 2.07 0.97
no spring 2.11 1.28 1.00 10.72 2.28 1.03
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Figure 2-12: Minimum energy consumption for the horizontal resonant spring mechanism with
different spring stiffness. The bottom line trend is estimated by a third order polynomial.
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Figure 2-13: Optimal horizontal trajectory with mechanism with ks = 9. On the left plotted
against time, on the right against distance. The bottom plots show in yellow and red the joint
forces and spring characteristic in N on the right axis, and in blue the residual motor torque in
Nm on the left axis.
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Figure 2-12 shows the minimum total energy cost for the range of springs with ks = 0, 1, . . . , 25.
Again the general trend is estimated by a third order polynomial. Compared to the vertical
case (Figure 2-8b) the results show a steeper curve with a minimum at a slightly larger spring
stiffness. The lowest power consumption of the full set is found at ks = 9. Figure 2-13
shows the corresponding trajectory and the energy results can be found in Table 2-7. For
comparison, the table also shows the energy results of the optimisation without spring.

The differences in energy loss between the optimal spring and the optimised resonant mechanisms
are more pronounced than they were in the vertical case. The mechanism performs hardly
any better than if there were no spring. This is because in contrast to the analytical spring
(Figure 2-11), the resonant mechanism does not produce large forces right at the beginning
and end of the trajectory (Figure 2-13). For a fast response it is important that the system
is made to move as quickly as possible. The mechanism will perform better if there is less of
a penalty on the cycle time.

Horizontal motion will never be implemented without the vertical motion. When combined,
the overhead energy is consumed only once per cycle, for which the energy regenerated from
the vertical motion compensates and is also used to power the horizontal mechanism, reducing
the extreme time pressure currently present.

2-7 Combined motion

The result of the previous sections was a combination of an optimal spring characteristic/
mechanism in combination with an optimal trajectory, either in vertical or in horizontal
direction. The motions are fully decoupled but for the shared factors of time and overheads.
When applying the optimal vertical result (both spring and motor signal) to the vertical drive
and the horizontal result to the horizontal drive, the motion that is slowest dictates the time
of arrival at the endpoint. The overhead energy consumption will increase negligibly for the
additional control of a second direction, but fast motion in one direction will no longer have
the benefit of decreasing the overhead energy consumption when the motion in the other
direction takes longer.

Table 2-8 shows the results of Sections 2-3-2, 2-4-3 and 2-6-2 combined. The total cycle time
is the maximum of the cycle times of the vertical and horizontal trajectories. The combined
energy cost is the sum of the mechanical loss and I2R loss of the two trajectories, the overheads
for the maximum cycle time and the -9.81 J provided by the task. The total recovered energy
is the combined energy cost without the overheads and the total recovered power is the total
recovered energy divided by the combined cycle time.

Table 2-8: Energy and power results of the combined motion (without reflected inertia)

cycle combined recovered recovered
time [s] energy cost [J] energy [J] power [W]

analytical spring (smooth) 2.08 0.76 7.55 3.63
spring mechanism 2.14 3.31 5.25 2.45
no spring 2.11 7.20 1.24 0.59
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The energy numbers are a worst case scenario, since the faster of the two motions has sacrificed
more energy for speed than necessary. Though the differences will not be large, as the
differences between the two cycle times was in all cases less than 10%. Despite the hard
conditions for the mechanism in horizontal direction, combined with the vertical direction,
the power recovery compared to the analytical springs is still a good 67%. This is still four
times more than the amount recovered without spring.

2-8 Discussion

The choice of acceleration divided by velocity ÿ
ẏ

as trajectory parameter results in very high
numbers required at start and end when the velocity is small. As ẏ rapidly in-/decreases,
this results in the large bulbs at start and end of trajectory, while ÿ

ẏ
is linear up to the next

point of parameterisation. Linear interpolation from itself already leads to functions which
are discontinuous in the first derivative, i.e. non-smoothness. Here, as ẏ is very nonlinear,
piecewise linear ÿ

ẏ
results in a sequence of weird polynomials. It would probably have been

better for the optimisation to have simply taken the acceleration ÿ as the trajectory parameter,
not divided by the velocity.

The fact that this choice of trajectory parameterisation occasionally results in erratic definitely
suboptimal forms of analytical optimal spring characteristics returning much energy in a cycle
time considerably shorter than otherwise, i.e. capable of large power recovery, suggests that
by a different choice of trajectory parameterisation, more power can be retrieved from the
system.

On closer inspection of the spring characteristics it was seen that ideally the parallel spring
provides a large force as close as possible to the end positions of the trajectory. The resonant
mechanism reaches its peak only at a quarter of the distance. A mechanism which would
achieve a rapid to instant increase in force when moving away from the endpoint followed by
a low to zero force middle region, would achieve a faster response with less additional motor
torque and would therefore be able to recover the energy during a shorter cycle time, thus
increasing the power available for the overhead systems.

There is also the ongoing discussion on considering energy versus power. I feel it necessary to
keep drawing the power into the discussion, even though the optimisation criterion is in terms
of energy. This is because the overhead power drain is no real constant. The more power can
be saved, the better. It is no use if all the energy can be saved and it takes an eternity to
reach the other end, because time is as important. The only unbiased way to view the energy
return versus time is to look at the power return. It was seen in Section 2-4-3 how unreliable
an optimum computed with the total energy cost function can become if the overhead power
estimate becomes too different from the amount of power that can be recovered by the system.
Unfortunately the recovered power as a mathematical expression in terms of the trajectory
parameters has some unmanageable nonlinear dependencies, originating from division by
the final time which in the current system description has become a state variable which is
obtained from integration of the (very nonlinear) system dynamics.

In the end, it is not as much the specific results in this chapter which are of interest, but what
they can mean for design of more complex robots which can be of practical use. What do
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these results mean for the design of a robot arm with multiple rotational degrees of freedom?

The spindle specific details are of no interest. Spindle drives do not apply in regular robotic
joints. Their large inertia makes them unpractical for energy efficient actuation. Yet some
form of drive train had to be selected in order to include a realistic drive train model to the
system equations.

Rotary transmissions are both lighter and exist with smaller reduction ratios. For that reason,
the drive train inertia was neglected in the final results presented in this chapter. But they
have been seen to be a very important source of mechanical energy loss. Care must be taken
to keep the reflected inertia as low as possible. And in design of a real robot they may not
be ignored.

The linear resonant mechanism used in this chapter has a rotational counterpart which has
proved its value in simple horizontal back and forward pick and place motions[17]. This
chapter has shown that the type of mechanism is indeed capable of retrieving most of the
energy externally added to the system (gravity on the package) when compared to a theoretical
spring mechanism which is analytically optimal.

The large remaining challenge is to design a rotational arm such that the path of the trajectory
has a similar potential energy profile. Then resonant mechanisms can be applied to create
very energy efficient parallel elastic actuation.

2-9 Conclusion

In this chapter two types of mechanisms for parallel elastic actuation have been simulated in a
simple Cartesian setup, compared and discussed. By defining the system dynamic equations
of motion as a function of distance instead of time, it was possible to calculate the optimal
spring analytically, given the trajectory. Optimising the trajectory automatically resulted in
the optimal parallel spring. However this spring is theoretically optimal and not necessarily
practically implementable.

A simple mechanical spring mechanism, in this chapter referred to as the ‘resonant mechanism’,
had on forehand already shown a promising energy profile. The force characteristic of the
analytically optimised spring shows similarity to the general form of the resonant mechanism
force characteristic. By applying the resonant mechanism to the system in vertical motion
instead of the analytically optimal spring and optimising the trajectory over a range of the
mechanism parameter, showed in simulation that over 90% of the energy that was retrieved
with the similarly formed optimal spring could also be retrieved by the resonant mechanism.
Compared to only electric energy regeneration, without any parallel springs, the resonant
mechanism recovered the double amount of energy.

When scaling the recovered energy with the cycle time of the corresponding trajectory, 3.53
W electric power was retrieved by the resonant mechanism, compared to 3.81 W with the
analytical optimal spring. This power is needed by an autonomous system to balance overhead
power consumption of components such as a processor and many types sensors.

These results apply when the reflected inertia of the drive train is not taken into account.
The analytical spring is relatively insensitive to additional reflected inertia in terms of power
recovery. This is less the case for the resonant mechanism. With the reflected inertia caused by
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the spindle, only 76% of the energy is recovered compared to the analytical optimal spring. In
combination with a much increased cycle time, this results in only 38% of the power recovered
otherwise. However, without spring additional energy would be required to keep the system
moving.

This performance drop is so dramatic because in the present Cartesian case the reflected
inertia is unreasonably large due to the spindle drive. Therefore it is justified to ignore the
reflected inertia for now. In the polar case it will be taken into account, but it will be much
smaller.

How the results of this chapter can be applied to a multiple-link polar robot arm is to be read
in the next chapter.
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Chapter 3

Multiple degree of freedom robot arm

From Chapter 2 energy and mechanism results were obtained for two decoupled degrees of
freedom: vertical and horizontal. However, in practice it is desirable to have a robot arm,
consisting of multiple links connected by rotational joints. Robot arms are popular because
they have a much smaller footprint for the same reachable workspace and can be much
lighter of design. By mounting them on a mobile platform, they are easily made mobile.
Furthermore, actuation of rotational joints, especially when backdrivability is a requirement,
can be done much more efficiently when no transmission such as a spindle is needed for driving
translational motion.

The problem now gets much more involved, as separate workspace dimensions are no longer
decoupled in the robot’s configuration space. This chapter will have its focus on only 2
DoF, which is the smallest number required for the task. Section 3-1 will introduce the
kinematics of the robot arm and the terminology of the different coordinate spaces and their
interdependence relationships used throughout this chapter.

Next, Section 3-2 will discuss the applicability of the optimal spring characteristic, obtained
in the previous chapter for the Cartesian case, to the polar arm through direct mapping.
In Section 3-3 the optimal physical Cartesian spring mechanisms are translated to the polar
configuration, which is a more successful approach to the problem. Afterwards, the full
system model of the rotational arm is drawn up in Section 3-4 and the trajectory of the arm
is optimised in Section 3-5.

Extra DoF provide extra freedom of motion through redundancy. The larger solution space
may contain better solutions, but also results in a larger space to explore when optimising
unless a clever coupling between the different DoF can be found. This is one of the topics
that will be discussed in Section 3-6 before Section 3-7 concludes the chapter.

3-1 The kinematic model and terminology

Figure 3-1 shows the 2 DoF robot arm. Compared to the Cartesian arm (Figure 2-1b), this
arm has four additional parameters: the link lengths l1, l2 and the position (x0, y0) of the
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1kg

1m

g

x0

y0

l1
l2

φ1

−φ2

Figure 3-1: Schematic representation of the 2 DoF rotational arm. By choosing different values
for the parameters x0, y0, l1 and l2, the same trajectory in workspace coordinates can be much
different in the configuration space coordinates of the robot.

shoulder. The choice of these parameter values has a large influence on the system dynamics
and will be made in Section 3-4-2.

The position the robot arm is in can be expressed in two different coordinate spaces: configuration
space q and workspace x. The configuration space is defined in terms of the independent
coordinates φi (Figure 3-1), the absolute angular positions of the (in this case two) links of
the robot. In contrast to the robot joint space, the workspace coordinates express the robot
position in terms of x, y and θ in the global world. The workspace coordinates relate to the
configuration space coordinates by the mapping:

x = x(q) (3-1)

The coordinate transformation (3-1) depends on l1, l2 and (x0, y0).

The derivative of the mapping with respect to the configuration space coordinates results in
the Jacobian

T (q) = ∇x(q) (3-2)

such that
ẋ = T (q)q̇ (3-3)

and approximately
∆x = T (q)∆q (3-4)

The coordinates q cover the whole joint space, but x is restricted by the implicit kinematic
constraints to only a part of the total workspace. In case of multiple DoF x is not unique for
each q. Therefore x(q) is generally not invertible.

The top position qu and a bottom position qd must be chosen such that the vertical difference
between the two end positions ye(qu) − ye(qd) = 1 m. The other way around, this endpoint
constraint and possible bounds on q also impose restrictions on the choice of l1, l2 and (x0, y0).
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3-2 Direct mapping from Cartesian to 2D polar configuration

In the previous chapter, optimal trajectory results were obtained over the x and y position

of the end effector. With x =
[

x y
]T

and q =
[

φ1 φ2

]T
the angles of the two links of

the robot arm T (q) (3-2) is square. As long as q does not denote a singular position of the
arm, T (q) is invertible and (3-5) can be used to directly map the Cartesian trajectory to the
polar case.

∆x = T (q)∆q (3-5)

Power is invariant under coordinate transformations F T
x

ẋ = F T
q

q̇, such that

Fq = T T (q)Fx (3-6)

Given the trajectory in terms of ∆x and Fx as obtained in Section 2-3-2, the equivalents in
configuration space coordinates can be computed using (3-5), (3-6).

However, optimality of the transformed results only holds under the following assumptions:

• The arm has negligible mass with respect to the concentrated mass at the end effector.

• The arm has negligible inertial moment.

With the very light gripper of Table 2-1 in mind, especially on the way up, when the arm is
unloaded, this first assumption will very likely not hold. When replacing the slider by the
construction of the arm and distributing its mass (Table 2-1), the assumption will definitely
not hold. Even if it would, the second assumption of negligible inertia can never hold as long
as masses are held by links of any length. The fact that a 1 kg package has to be transported
by the arm over a distance of a full meter will per definition result in inertial effects in the
dynamics of the arm.

Furthermore, the optimisations in Chapter 2 are done taking into account a drive train model
(with a spindle transmission) specific for the Cartesian case. The differences in the drive train
when actuating a polar joint will have considerable impact on the optimality of the results.

For these reasons this approach is abandoned.

3-3 Translation of drive mechanism principles

In Chapter 2 two different approaches were used to find an optimal spring characteristic for
a Cartesian arm: directly optimising the characteristic and optimising the parameters of a
heuristically selected physical mechanism. The previous section showed that the results of the
direct optimisation cannot be readily translated to the polar arm. In order to find mechanisms
for the polar arm, this section will therefore translate the results from the physical mechanism
optimisation to the polar configuration.
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3-3-1 Endpoint gravity balancing

Part of the physical mechanism keeps the arm balanced with gravity (Section 2-4). This
balancing part enforces two important properties:

• In the bottom position the arm is in stable equilibrium when it is carrying the package.

• In the top position the arm is in stable equilibrium when it is not carrying the package.

The equilibrium condition can be expressed as

− ∂Epot

∂φ

∣

∣

∣

∣

q⋆

= Ts(q
⋆) + Tg(q⋆) = 0 (3-7)

with spring torque Ts and gravity torque

Tg =

{

−(m+mpack)gl cosφ down
−mgl cosφ up

(3-8)

Stability requires satisfaction of

∂2Epot

∂φ2
> 0 or − ∂

∂φ

∑

T > 0 (3-9)

which will be referred to as positive system stiffness.

Linear torsion spring

In the Cartesian configuration gravity balancing was achieved by a simple linear spring Fs(y) =
−ks(y− y0) (2-21). Analogue to (2-21) in the Cartesian configuration, a linear torsion spring
can be applied in the polar configuration:

Ts,lin(φ) = −ks(φ− φ0) (3-10)

Solving the equilibrium condition (3-7) for the linear spring (3-10) at φu, φd results in the
following spring stiffness ks and rest length φ0:

ks =
(m+mpack)gl cosφd −mgl cosφu

φu − φd

φ0 =
(m+mpack)gl cosφd

ks
+ φd

The top plot of Figure 3-2 shows the linear spring force balancing the heavier mass in
an arbitrary down-position while also balancing the lighter mass in an equally arbitrary
up-position. The bottom plot of the figure shows the corresponding system stiffness. The
system stiffness in this Cartesian case simply equals the spring stiffness because the position
does not change the gravitational force on the arm.

However, gravitational torque on a joint rotating in a vertical plane is not constant with
respect to position, as was already seen in (3-8). The half-sines of the gravity for both the
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Figure 3-2: Force and stiffness for Cartesian gravity
balancing spring and gravity forces in vertical direction,
m1 and m2 being the masses of the loaded and unloaded
arm respectively
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Figure 3-3: Torque of gravity and two linear torsion
springs for one rotational link and corresponding stiffness,
m1 and m2 being the masses of the loaded and unloaded
arm respectively

loaded and the unloaded case are shown in the top plot of Figure 3-3. The figure also shows
two linear springs: the blue one balancing the system in down and up positions φd1, φu1 lying
far apart, the red one balancing the system in positions φd2, φu2 much closer together.

The red spring torque line crosses both mass torque lines from left to right from top to bottom
in the equilibrium points. In and around both equilibrium points the system is stable. The
system is stable as long as the spring torque has a steeper tangent than the gravity torque,
which is the same as the full system having a positive stiffness (bottom plot).

With the blue spring, positive system stiffness is only obtained in the bottom position. In
the top position the spring stiffness is smaller than the change in gravitational torque and
the blue line crosses the dash-dotted gravity torque line from lower on the left to higher on
the right. The top position is an unstable equilibrium. Stable equilibria at the top position
are only obtained for relatively small ranges of φu − φd.

For which combinations of φd, φu the top position is stable is shown in Figure 3-4a by the
region where the blue plane lies above the red. The red plane denotes for the unloaded case
the maximum change in gravity torque. As long as this maximum change in gravitational
torque is smaller than the spring stiffness (blue), the unloaded arm will be pulled towards the
top equilibrium for any φ.

The region increases as the arm becomes lighter, but not to a satisfactory extent.

However global stability is not required as long as the end position is included in the stable
region and control ensures the system does not exit the stable region. Figure 3-4 shows in
green the maximum angle at which, in the upward case, the total stiffness is positive, while
the yellow plane shows the angle of the pick position. The flat part of the green plane is the
same region that was found stable in Figure 3-4a. The sloping region where the maximum
stable angle is larger than the pick angle will also result in an attractive equilibrium at the top
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(a) Stable region where the blue plane lies above the red

(b) Stable region where the green plane lies above the yellow

Figure 3-4: Stability regions, where total system stiffness is positive and the equilibrium
attractive. The arm has an equivalent mass m2 = 0.7 kg (Table 2-1) at a length of l = 0.7
m.
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position. A larger difference between the two angles is desirable for an increased attractive
region.

Though the relaxation of the stability criterion provides some extension to the ranges of pick
and place angles, the area of both large pick and large place angles still falls in the unstable
region for all but the lightest arms. A linear spring force was perfect when the contribution
of gravity was linear, Figure 3-2. Now that gravity has entered the equations as a sinusoid, a
sinusoidal gravity balancing spring will be better suited for the situation.

Sinusoidal spring torque

The simplest mechanism resulting in a sinusoidal spring torque at the joint is drawn schematically
in Figure 3-5. The corresponding spring torque is

Ts,nonlin = ksa
2 cos(φ+ α) + f0 (3-11)

with zero free length/pretension, i.e. f0 = 0. Considering only positive ks, a and 0 < α < π,
(3-7) with (3-11) has a unique solution for any −π

2 < φd < φu <
π
2 . Furthermore, the end

positions are stable. The parameters ksa
2 and α can be solved for numerically.

Figure 3-6 shows three sinusoidal springs together with the gravitational torque. The first
spring (in blue) shows stability is achieved for large endpoint angles |φd| and |φu|. In fact,
the system stiffness remains positive (3-9) as long as |φd| , |φu| < π

2 , though the stiffness
approaches zero as the magnitude of the end position approaches π

2 .

The system stiffness in the end positions is equal for φd = −φu. As the trajectory gets
“decentred” (red in Figure 3-6), stability diminishes for the end position closer to 0, while the
other benefits from lower stiffness. The stability can be balanced again by adding free length
to the spring (in case |φu| < |φd|) or pretensioning the spring (in case |φd| < |φu|). Then f0

in (3-11) needs to be set accordingly. This was done for the yellow spring in Figure 3-6.

g

m

l

ks

φ
r

α

Figure 3-5: Nonlinear gravity balancing mechanism consisting of a linear zero free-length tension
spring of stiffness ks attached at radius r with an offset angle α
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Figure 3-6: Torque and stiffness for two sinusoidal gravity balancing springs and gravity. Stable
equilibria for large |φd| and |φu| (blue). Also when one of the endpoint angles has much smaller
magnitude than the other, endpoint stability is still achieved, though the endpoint with the angle
closer to zero has a stiffness closer to zero (red).

On the other hand for positioning at multiple bottom positions, it may be even favourable
to have small stiffness at the down position. When over a range of bottom angles the sum of
the spring torque and the gravity torque is smaller than the friction torques in the system,
the arm can be positioned at any of the positions without requiring additional actuation to
maintain its position.

In the rest of this chapter, the spring mechanism parameter ks, α and f0 are chosen numerically
such that

∑

Tdown(qd) = 0
∑

Tup(qu) = 0

∂

∂q

∑

Tdown(qd) =
∂

∂q

∑

Tup(qu)

In words: the equilibria in top and bottom position have equal system stiffness.

3-3-2 Rotational Resonant mechanism

The rotational resonant mechanism, also known as Plooij mechanism, is described extensively
in [10]. Its principle is shown schematically in Figure 3-7, its energy and force characteristics
are the same as in Figure 2-6 but with torque instead of force and angle instead of linear
distance.
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r1
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l0
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ks

Figure 3-7: The rotational resonant mechanism by Plooij. Two wheels of different radius are
connected by both a spring and a timing belt. The system is in equilibrium for θ = −ψ, 0, ψ.

The potential energy in the spring as function of the mechanism angle θ is given by (3-12).

Ep =
1

2
ksu

2 (3-12)

u =
√

x2 + y2 − l0 (3-12a)

x = r2 sin
θr1

r2
+ r1 sin θ (3-12b)

y = r1 + l0 + r2 − r1 cos θ − r2 cos
θr1

r2
(3-12c)

The following choice of parameters yield
∂Ep

∂θ
= 0 at θ = ψ,−ψ:

r1

r2
=
π + ψ

ψ

l0 =
r1 − r2

cosψ
− r1 − r2

The mechanism angle relates to the joint angle by θ = φ − β, where the offset angle β is
chosen such that

φu = ψ + β

φd = −ψ + β

The magnitude of the energy dip between θ = ψ and θ = −ψ depends on ks in combination
with the choice of r1 and r2.

3-4 Full system model

The spring torque is now known as function of the pick and place angles and only very few
parameters which can be used for scaling. For simulation and optimisation of the system, the
remainder of the model consists of the system dynamical equations of motion and a model of
the drive trains for actuation and electric energy regeneration.
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3-4-1 System dynamics

The dynamical equations of motion will first be constructed as function of time using the
“TMT-method”[20]. The map x(q) (3-1) of the system is given in (3-13).
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(3-13)

The corresponding mass matrix in workspace coordinates and gravitational force vector are
given in (3-14) and (3-15) respectively.

Mx = diag(m1,m1, J1,mj,2,mj,2,m2,m2, J2,me,me) (3-14)

Fg = −g
[

0 m1 0 0 mj,2 0 m2 0 0 me

]T
(3-15)

Once transformed to the configuration space coordinates the remaining torque and inertia
terms can be added, resulting in the following dynamic equations of motion:

[

q̇
q̈

]

=

[

∅ I
∅ ∅

] [

q
q̇

]

+

[

∅
M−1

q
(fq + Tf(q̇) + Ts(q) + CntrTm)

]

(3-16)

with

Mq = T TMxT + (Jm + Jtr)n
2
tr (3-16a)

fq = T T (Fg −Mx∇q(T (q)q̇)q̇) (3-16b)

Tf = −µvq̇ − µCsign(q̇) (3-16c)

and spring torques Ts combining the sinusoidal gravity balancing mechanism and the Plooij
mechanism from Section 3-3 and motor torques Tm. The motor and transmission constants
Jm, Jtr, ntr and C are diagonal matrices denoting respectively the rotor inertia, transmission
inertia, transmission reduction ratio and transmission efficiency (2-2c) for each of the joints.
The coefficients µv and µC describe the effects of viscous and Coulomb friction respectively.

The motor current, responsible for the I2R heat losses in the motor, is given by (2-3) and
repeated here for the overview.

I = InoLoadsign(Tm) +
Tm

k̄t

(2-3)

No-load current InoLoad, torque constant k̄t and wire resistance R can be found in the
specifications of the motor. The same motor will be used as in Chapter 2. The motor
constants are repeated in Table 3-1.
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Table 3-1: Motor and gear transmission specifications and derived constants

No load current InoLoad 0.538 A
Terminal resistance R 0.343 Ω

Corrected torque constant k̄t 71.1 mNm/A
Rotor inertia Jm 306 kgmm2

Gear inertia Jtr 1.3 kgmm2

Gear reduction ratio ntr 35
Forward efficiency η 0.76
Backward efficiency η′ 0.72

In Appendix A-3 a minimum gearbox is selected to provide the necessary transmission between
motor and joint. The choice was made based on the preliminary results obtained from the
optimisation described in Section 3-5 without transmission (Jtr = 0, ntr, η = η′ = 1). The
results of this preliminary optimisation are given in Appendix B-2. The transmission constants
are listed in Table 3-1 as well. The backward efficiency η′ was not given in the product
specifications.

3-4-2 Mechanical system parameters

To finish the model, a choice has to be made for the lengths of the arm links l1, l2, as well
as the position of the shoulder x0, y0. Comparing different robot arms, the following trends
are observed in link lengths: In SCARA robots[21, 22], sometimes the lengths of the two
main links are equal, but types both with a shorter first link and a shorter second link are
common. Looking at other robots by KUKA[23], many different sizes and proportions are
found, though often when considering the two main links of the robots, the second link is
longer than the first link. On the other hand, Universal Robots are consequent in letting the
links in their robot arms become shorter towards the end[3]. Even so in humans, the upper
arm is longer than the lower arm. From preliminary optimisation by Vosse [8] (3 links), the
last link was found to ideally be smaller. I have chosen to let the second link be 5 cm shorter
than the first link.

The optimal total arm length was determined by Vosse [8] to be between 0.54 and 0.80 m. A
longer arm means a larger reach, but also larger weight and inertia and a less compact robot.
The total arm length is chosen such that singular configurations are avoided near the end
positions, i.e. φ1 − φ2 > 10 deg. For stability, −0.4π < φ < 0.4π. Furthermore I want to be
able to reach three different bottom positions which meet these requirements over a range of
0.25 m. As a result, y0 has been chosen at 0.25 m, resulting in an x0 determined by a very
limited range of pick-angles. The chosen parameters are all listed in Table 3-2.

The masses of the links are estimated according to the following back-of-the-envelope equations:
Common aluminium alloys of type 6061 [24] have a density of 2.70 ×103 kg/m3. The yield
strength σy of the material, which should not be reached at any time, lies in the range of 55 -
276 MPa (depending on the precise alloy). The maximum tensile stress in a hollow tube with
radius r and wall thickness t under a bending load causing a maximum moment M at a cross
section of the tube is given by Mr

πr3t
. With the rather pessimistic estimation of a a total arm
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Table 3-2: Mechanical system parameters and end positions

links
lengths [m] masses [kg] moments of inertia [gm2]
l1 0.450 m1 0.191 J1 3.22
l2 0.400 m2 0.170 J2 2.26

mj,2 0.10
me 0.30

positions
pick-position place-position 1 place-position 2 place-position 3
y0 0.250 m
x0 0.385 m xd0 0.555 m xd1 0.680 m xd2 0.805 m
φu,1 0.387π rad φd0,1 0.093π rad φd1,1 0.052π rad φd2,1 -0.057π rad
φu,2 0.306π rad φd0,2 -0.399π rad φd1,2 -0.299π rad φd2,2 -0.139π rad

friction
µC 0.48 Nm
µv 0.00 Nms/rad

weight with package of 1.7 kg (Table 2-1) concentrated at the end of a 1 m long arm extended
perpendicularly to the direction of gravity, the maximum static moment is approximately 17
Nm. Adding a safety factor 5 for the dynamics, r = 2.5 cm and t = 2 mm leads to a maximum
stress of 21.6 MPa, which is still well below the yield strength of the material.

Assuming half of the weight of the tube can be saved by some clever topology optimised open
wall structure, the link weight per meter amounts to 1

2 tπrρAl = 1
2 · 0.002 ·π · 0.050 · 2.70 × 103

= 0.424 kg/m. This is comparable to the values used in [8], which are between 0.30 and 0.53
kg/m. Inertia of the separate links is taken to be 1

12ml
2 which is the second moment of inertia

of a rod.

The second part of Table 3-2 shows the positions of the shoulder and the arm configurations
for the different end positions. In this chapter, only the second place-position will be used for
optimisation.

The friction coefficients in the final section of the table are adopted from [10].

3-5 Trajectory optimisation

Now that the system model is fully defined, the trajectory can be optimised. Since the spring
model now known, there is no more need to consider the dynamics as function of position.
No special methods are required to optimise the trajectory in time.

3-5-1 Method

Now optimising in time, as conventional, no longer special care has to be taken to avoid zero
velocity during integration. On the other hand, in space the start and the endpoint of the
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trajectory were known, namely the end positions of the half-cycles. The trajectory end time
simply followed from the system dynamics. Now the end time has become an extra variable,
while the end positions have to be added as constraints to ensure they are reached at the end
of each half-cycle. The following subsections will remark briefly on the different components
defining the optimisation.

3-5-1-1 Cost function

The same as in the Cartesian case, the system energy consumption is minimised. However,
since now the equations are kept a function of time, the I2R losses can simply be integrated
over time. Division by velocity is no longer necessary, as was the case in (2-15).

E =

∫

Tmnsds+

∫

I2Rdt+ Pohtend (3-17)

3-5-1-2 Trajectory parameterisation

This time plain acceleration is taken as the trajectory variable. The acceleration is optimised
as eight values equally spaced in time for both up and down. The intermediate values are
obtained by linear interpolation.

As a result of the final times (one for down and one for up) are in principle additional trajectory
parameters to be optimised, this definition of the accelerations result in the acceleration as
function of time becoming a nonlinear function of the eight ‘corner-values’. No proper results
were obtained from the optimisation when the two final time vales were added to the trajectory
parameter vector.

In Chapter 2 it was found that the best results took close to one second per half-cycle.
Therefore it was decided to predefine the time for the motion in the first place as 1 s for going
down and 1 s for going up. The optimisation is run again for different final times in order to
evaluate the effect on the performance.

3-5-1-3 Constraints

The final states are imposed as explicit constraints, ensuring the system ends op at the
desired positions with zero velocity. Implicitly also zero acceleration is ensured in the end
states. This is achieved by only optimising the accelerations between the end states and
defining zero acceleration at the time the end state should have been reached.

3-5-1-4 Multistart optimisation

The same manual implementation is used as described in Section 2-3-1-3. Optimisations are
done in batches of 500.
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Table 3-3: Energy results to the optimisation for different cycle times, negative numbers for
recovery show loss

kT
s [Nm/rad] cycle

time
[s]

mechanical
loss [J]

I2R
loss
[J]

total
energy
cost [J]

recovered
energy
[J]

recovered
power
[W]

[

0.102 0.243
]

2.0 5.17 2.42 5.78 2.22 1.11
[

0.127 0.205
]

2.2 4.90 2.06 5.95 2.85 1.29
[

0.082 0.148
]

2.4 4.78 1.83 6.40 3.20 1.33
[

0.069 0.152
]

2.5 4.74 1.73 6.66 3.34 1.34
[

0.071 0.135
]

2.6 4.71 1.67 6.97 3.43 1.32

no spring 2.0 8.83 7.94 15.0 -6.96 -3.48
2.5 8.31 7.09 15.6 -5.59 -2.23
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Figure 3-8: Optimal trajectory with when applying the combined spring mechanism
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Figure 3-9: Optimal trajectory without springs

3-5-2 Results

Table 3-3 lists the optimisation results for different end times. Figures 3-8 and 3-9 show the
optimised trajectories with and without springs respectively for a cycle time of 2.5. Optimal
trajectories for different cycle times look very similar, only the motor torques get slightly
smaller as the cycle time gets longer. The position and velocity follow a smooth trajectory,
however the actuator torques that were found optimal show some bumps. Most of the time
the motor torques are seen to have opposite sign with respect to the velocity and the controller
runs in generator mode.

The comparative case without spring in Figure 3-9 shows actuator torques which are a factor
2 to 3 larger. The downward part of the cycle is again used for the major part for energy
recovery. But now the upward motion has to be powered by the actuators without help from
any spring. Now the upward part of the trajectory only costs a lot of energy, where in the
case with springs energy could even be recovered. The numbers to the large difference in
energy consumption in Table 3-3 show the springs achieve an energy cost reduction of about
9 J, which is about 60% of the combined mechanical and electric energy losses of the rigid
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system. The springs have achieved a reduction in the mechanical energy cost of 43% and
an electrical energy cost reduction of a factor 4. (The cost reduction is somewhat less for a
shorter cycle time.)

Table 3-3 shows increased energy recovery for increased cycle time. However, with the cycle
time the overhead energy consumption increases as well. The balance of the trade-off shows
in the last column of the table, where the recovered energy is divided by the cycle time to
show the recovery in terms of power. Maximum power is recovered for a cycle time of 2.5 s.
For that cycle time 34% of the total provided mechanical is recovered.

The relatively large mechanical losses that remain in the system are due to three factors:
Coulomb friction, transmission efficiency and reflected inertia of the drive train. With
the current system parameters, Coulomb friction and low transmission efficiency are the
dominant. Reduction of these factors would increase the energy recovery significantly.

3-6 Discussion

The percentage of the energy recovered with the spring mechanism in this chapter is considerably
less than predicted in the previous chapter by the system without reflected inertia. This
time reflected inertia is not the main factor reducing the energy efficiency. In the polar
arm considered in this chapter, a relatively large number for Coulomb friction is assumed,
especially when compared to the zero friction assumed for the vertical Cartesian case in the
previous chapter. Also the transmission efficiencies have been considerably lower.

The motions of the arm considered in this chapter have been quite restricted by only allowing
−0.4π < φ < 0.4π. For an increased range of motions, and through that increased applicability
of the arm, a way should be found to balance the arm on both sides of the vertical. However,
with only one spring as described in Section 3-3-1 this is not possible.

So far the optimisations have been done for a single trajectory from one pick-position to one
other place position. Ideally we would have a single spring per joint such that the system
has several low-energy trajectories to multiple goal positions. However, one gravity balancing
spring balances the arm in only two specific positions.

In some positions it is possible to achieve low system stiffness, but usually just in a single angle
at a time. How low the stiffness has to be for stable positioning in a deviated end position
depends on the static friction keeping the system in place. Ideally for low energy consumption,
(dynamic) friction is low. It would in this case be useful to achieve a combination of negligible
dynamic friction and high static friction. As a consequence a torque peak would be required
to pull the system free when starting a motion, but this merely needs to be an impulse.

Even so, low stiffness with respect to the static friction will only achieve relatively small
freedom of end position. Something else is required if different goal positions really require
different configuration angles. Mechanisms for variable stiffness and increasing pretension
add motors to the system and are therefore generally not desired.

A mechanism with a large potential is the Bi-directional Clutched Parallel Elastic Actuator
(BiC-PEA)[25]. It does add another actuator to the system, however in combination with
statically balanced brakes[26] the energy consumption can be very low.
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The BiC-PEA also has the potential to improve energy recovery even when considering only
a single pick and place position. Engaging the spring when going towards an end position
and disengaging near the end position at near standstill when high tension is built up, a large
mechanical torque to boost the return motion can be suddenly applied by reengaging the
spring at a desired moment. The spring torque can even be applied in the same direction in
which the spring was originally tensioned.

Even without springs, the system was found to consume little power. The 6.2 W, consumed
by the system when the result without spring from Table 3-3 is combined with the assumed 4
W overhead power consumption, is still less than the 11.5 W used by the world’s most energy
efficient robot: Cornell Ranger[5]. Instrumental for this very low power consumption is the
capability of the drive train to convert mechanical energy back into electric energy. Still,
the spring mechanism designed in this chapter reduced the system power consumption even
further by almost 3.6 W form 2.2 W to -1.3 W, passing the boundary below which power
is actually recovered. Whether or not the recovered power will be enough to keep the full
system, including overheads, running without an additional power source depends on whether
the control can be designed so light that the required processor and sensors need no more
than the available single Watt of power.

3-7 Conclusion

This chapter showed the mechanical design of a spring mechanism for energy efficient parallel
elastic actuation of rotational joints in a polar robot arm. The mechanism adds a gravity
balancing spring with a sinusoidal torque characteristic to the mechanism designed by Plooij.
With the spring mechanism, an energy recovery of 3.34 J is achieved over a task cycle of 2.5 s.
This is a large improvement with respect to the 5.59 J each cycle would have costed without
springs. Note the verbal sign difference between the recovery and the cost.

Due to large Coulomb friction and low transmission efficiency, the amount of electric power
retrieved is at most 1.34 W. This is less than the estimated 4 W required for the overheads.
The next chapter will show how this will be enough.
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Control Design
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Chapter 4

Local linear optimal control for
trajectory stabilisation

The result of the previous chapter is a spring mechanism for the 2 degree of freedom (DoF)
arm which achieves maximum power return when the arm performs its task under nominal
circumstances. However in the real world there are always disturbances. Therefore, to
make the system more robust against these disturbances, an additional feedback controller is
designed in this chapter.

The optimal nominal trajectory with a corresponding optimal feedback control law is designed
using Differential Dynamic Programming (DDP)[12, 14]. The method uses the full nonlinear
system to optimise the feedforward control signal in combination with the nominal trajectory.
Along the trajectory, at each time step an LQR state feedback gain matrix is computed which
is the local optimal linear policy for correcting state errors. Disturbances, both originating
from the environment as well as from system model errors, are modelled as Gaussian state
noise around the nominal trajectory. The resulting increase in actuator energy consumption
will be evaluated.

Section 4-1 will explain the main principles of the optimisation method and where the
stochastic noise enters. In Section 4-2 the settings of the DDP algorithm for the Plugless
Arm will be determined such that the actuation energy of the full controller can be obtained
from the result. The optimisation result is discussed in Section 4-3. The nominal trajectory
is compared to the result of the previous chapter and the performance of the additional
feedback controller is evaluated in terms of energy efficiency, precision and target accuracy
under disturbed conditions.

Apart from the actuator losses which should be minimised it is also important to keep the
processor energy consumption as low as possible. Section 4-4 will look into the computational
energy cost of the controller and other aspects that require consideration. Based on the
conclusions of that section, a reduced controller implementation is proposed in Section 4-5.

The findings of this chapter will be discussed in Section 4-6 before Section 4-7 concludes this
last substantive chapter of this thesis report.
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4-1 Method

The DDP algorithm takes the initial state and an initial control input sequence. Furthermore
it requires the system dynamics to compute the next state from the previous state given a
control input, and a cost function to evaluate a {state sequence, control sequence}-tuple.
Both the cost function and the description of the system dynamics have to be continuously
differentiable with respect to the state. In a forward pass the algorithm computes the state
progression which is an recursive expression of the state and function of the control inputs.
Subsequently the control inputs are optimised locally recursively from the final state back
to the initial state using local linear approximations of the state dynamics and cost function
around the trajectory obtained in the forward pass. These forward and backward passes are
computed alternately until convergence. When the solution has converged, the algorithm
returns: the nominal state trajectory, the corresponding feedforward control inputs and a list
of state feedback gain matrices, one for each time step. The iLQG Matlab function is used
as supplied by Tassa [14].

4-1-1 Discrete system dynamics

The algorithm uses the discrete system dynamics describing the next state as function of the
previous state and the input applied to that previous state:

xk+1 = f(xk,uk) (4-1)

Around a nominal trajectory
{

X̄, Ū
}

with X̄ := {x̄0, x̄1, . . . , x̄N } and Ū := {ū0,u1, . . . , ūN−1}
where any x̄i with i > 0 is obtained using (4-1), the system dynamic deviation from the
nominal trajectory can be linearly estimated.

δxk+1 = Akδxk +Bkδuk (4-2)

with

Ak =
∂f

∂x

∣

∣

∣

∣

x̄k,ūk

(4-2a)

Bk =
∂f

∂u

∣

∣

∣

∣

x̄k,ūk

(4-2b)

4-1-2 Cost function

The cost function consists of a final term lf which is only a function of the final state xN and
a number of running cost terms l(xi,ui) which can be a function of input as well as state at
each intermediate discrete time instance. The "cost-to-go" at a state k, with input sequence
Uk := {uk,uk+1, . . . ,uN−1}, is then given by:

Jk(xk,Uk) =
N−1
∑

j=k

l(xj ,uj) + lf (xN ) (4-3a)
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where xj for j > k are obtained by means of (4-1). In recursive notation:

JN (xN , [ ]) = lf (xN ) (4-3b)

Jk(xk,Uk) = l(xk,uk) + Jk+1(f(xk,uk),Uk+1) (4-3c)

Then the optimal cost-to-go per time step, starting from k = N , depends only on the input
of the time step under consideration.

V k(xk) = min
uk

[l(xk,uk) + Vk+1(f(xk,uk))] (4-4)

For ease of optimisation, all parts of the cost function l, lf are chosen such that they are
quadratic in x and u. Furthermore, given some nominal control signal ū corresponding to
some yet to be optimised nominal trajectory ū, the local linear control input deviation

δuk(δxk) = kk +Kkδxk (4-5)

will be a local linear estimate optimising the trajectory at time k. At the same time, Kk

provides the local optimal linear state feedback law. At the optimal nominal trajectory ū⋆,
δuk(0) = 0 ⇒ kk = 0∀k.

Reformulating the cost-to-go (4-4) as function of the state deviation δx = x − x̄ and applying
the result of (4-5) which is linear in δx, results in the following quadratic expression of the
optimal cost-to-go:

vk(δxk) = sk + δxT
k sk +

1

2
δxT

k Skδxk (4-6)

where sk, sk and Sk are the combined scalar, linear and quadratic cost terms respectively,
which are defined recursively as a function of the cost terms, system matrices and state
feedback gains of the next time step. For more details the reader is referred to [12].

Important to know is that kk,Kk optimising δuk in (4-4) of which (4-6) is an alternative
notation, are functions of sk+1, Sk+1, Ak, Bk and the part of the cost lk depending on u, but
not of sk+1.

4-1-3 Including noise

Noise on the states is assumed to be normally distributed and, in case of the Plugless Arm,
assumed independent of the input. The noise enters the system as an additional stochastic
term in (4-2).

δxk+1 = Akδxk +Bkδuk + Ckξk (4-7)

with different nose modes ξk,i ∼ N(0; 1) for each of the state variables i = 1, .., 4. The matrix
Ck contains weight factors scaling the standard deviation of the noise modes. The magnitude
of the noise is taken constant for all k. Furthermore, the noise on the different states is
assumed independent, therefore C is diagonal:

C = diag
([

cξ,1 cξ,2 cξ,3 cξ,4

])

(4-8)

The recursive term in the cost-to-go is no longer a deterministic value:

Jk(xk,Uk) = l(xk,uk) + E [Jk+1(f(xk,uk),Uk+1)]
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Since the noise is assumed independent of state and input, translation to the form of (4-6)
results only sk receiving an extra term due to the noise:

1

2

∑

i

cT
ξ,i,kSk+1cξ,i,k

However, this noise term will not influence the optimal trajectory, as sk is the constant term
in (4-6) and will drop out of any optimisation of the cost-to-go vk with respect to δxk.

4-2 Optimisation settings

Again the downward and upward trajectories are optimised separately. The corresponding
top and bottom position provide the initial states for the two half-cycles. The optimal control
signal obtained in Chapter 3 is supplied as initial control sequence.

4-2-1 Cost function

The cost function in DDP has a backward recursive form: the cost of the final state, the final
cost lf (xN ) is a function of the final state only, the cost of every earlier state equals the cost
of the next state plus a “running cost” term. This running cost li(xi,ui) can be function of
both the state and the control input at the specific time instant. In DDP the target state
cannot be set by means of a constraint, as was done in the previous chapters.

The final cost is the weighted square distance to the target position:

lf (xN ) = (xN − xtarget)
TCf (xN − xtarget) (4-9)

The weights in diagonal weight matrix Cf are chosen sufficiently large, such that the deviation
in the final position and velocity of the end effector stays below 1 mm respectively 1 mm/s.
The weights are all chosen equal to what from now on will be called cf . Different values for
cf result in different nominal trajectories, different response to disturbances. Therefore the
next subsection will evaluate a number of different values for cf .

For the Plugless Arm, the running cost is the delivered work plus the I2R actuator heat loss.

l(xk,uk) = ∆t
2
∑

i=1

(

(

InoLoadsign(uk,i) +
uk,i

k̄t

)2

R+ uk,intrφ̇k,i

)

(4-10)

The sum of l(uk) over all k is the electric energy consumption of the controller. Indeed (4-10)
is the discrete equivalent of the energy cost equation of the previous chapter (3-17), but
without the overhead power consumption. Since the final time has been fixed, the overhead
term has become a constant and can safely be dropped for the optimisation.

4-2-2 System dynamics and state integration

The system dynamics are described in detail in Section 3-4. The spring stiffnesses of the Plooij
mechanisms (Section 3-3-2) on the two joints are set to ks1 = 0.07 Nm/rad and ks2 = 0.15
Nm/rad respectively. These values are the rounded of result as presented in Table 3-3.

State integration in this chapter has been done using Euler’s method.
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4-2-3 Constraints

The provided implementation of the DDP algorithm supports bounds on the control input.
Indeed the actuator torques should stay in the region [−0.15, 0.15] Nm to ensure the gearbox,
with reduction ratio 35:1 and maximum intermittent output torque of 6 Nm (Appendix A-3),
will not break. However when the final state cost cf is chosen wisely, the constraint is
unnecessary, as the results of the unconstrained optimisation already stay within the bounds.
Therefore the bounds on the optimisation are not activated. They would only slow down the
optimisation.

4-3 Results

The controller is optimised multiple times, using final state costs:

cf = 101, 102, 103, 104, 105, 106, 109

The resulting nominal trajectories are evaluated as well as the rejection of two types of
disturbances.

4-3-1 Nominal trajectory

The nominal trajectories for the different final cost factors cf are shown in Figure 4-1, the
result to cf = 103 plotted on top in black. The corresponding energy and power recovery
values are listed in Table 4-1. The last two columns show the error in position and velocity in
workspace coordinates (magnitude of the vector) of the final state of the end effector, either
when having gone down or up depending on the which error was larger. For comparison, the
table also repeats the result from the previous chapter.

For cf = 101 the final state is outright inaccurate. For cf = 102 the final state is already
much closer to the goal state, but not yet sufficient. For the rest up to cf = 105 both
the optimal trajectories and the energy results are very similar with sufficient positioning

Table 4-1: Energy results of the nominal trajectory computed with DDP compared to the result
of Section 3-5-2, all trajectories having a cycle time of 2.5s

cf mechanical
loss [J]

I2R
loss [J]

recovered
energy [J]

recovered
power [W]

max. end pos.
error [mm]

max. end vel.
error [mm/s]

from DDP 101 4.58 1.49 3.74 1.50 32.0 11.1
102 4.62 1.54 3.65 1.46 2.84 1.50
103 4.62 1.54 3.64 1.46 0.288 0.185
104 4.63 1.55 3.64 1.46 0.025 0.016
105 4.63 1.55 3.64 1.46 0.005 0.008
106 5.37 3.24 1.19 0.48 0.003 0.004
109 4.70 1.74 3.36 1.35 3.14 2.57

from Ch. 3 4.74 1.73 3.34 1.34 0 0
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accuracy, increasing with cf . When cf gets really large lf (xN ) >>
∑

k l(xk,uk) for most of
the trajectories explored during the optimisation and the energy consumption of the trajectory
only starts to matter once a trajectory has been found of which the final state lies really really
close to the desired final state. As a result is is much more likely that the algorithm at the
end ends up in some local optimum. This clearly happened for cf = 106, 109. cf = 105

appears to be the largest cost factor for which the optimisation still returns a proper solution.
For larger cf the optimisation results are no longer reliable because of the ill balanced cost
function. The reason that the optimisation is done for very large values of cf , even though
the parameter appears to have no influence on the nominal trajectory, is for the sake of the
feedback control, which will be evaluated in the next subsection.

Comparing the black lines, of position, velocity and motor torque for the two joints, in
Figure 4-1 to the result of the previous chapter (Figure 3-8), the position and velocity profile
are similar, only the velocity perhaps a bit less rounded of form. But improvement is apparent
when comparing the bottom plots showing the motor torque signal. The DDP optimised
actuator torques are much smoother. Comparing the results in Table 4-1, the DDP optimised
nominal trajectory shows much lower I2R loss and also decreased mechanical loss. In total
less energy is dissipated and more power is recovered.

Figure 4-1: Optimal DDP trajectory for different final cost factors, for cf = 103 extra plotted
in black
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4-3 Results 63

4-3-2 State feedback

The feedback gains for cf = 102, 103, 104, 105, 106 all show similar trends. The gains for
cf = 103 are shown in Figure 4-2. The spikes near the end of the cycle in blue are observed
in some optimisation results. The gains increase as cf increases, which is only logical since it
means the relative importance of arriving at the desired final state is larger with respect to
keeping the energy consumption low.

In all results the cross terms (right) are much smaller than the terms that feed back the
link state to actuator controlling that same link (right). The velocity gains (bottom) show a
spike at the start and end states of the first (downward) half-cycle. Apart from those specific
spikes, the control gains are generally quite smooth over the cycle, increasing in magnitude
towards the end of each half-cycle. At the beginning of each half-cycle the gains are small.
For the velocity feedback this is more extremely the case.

Most differences are observed near the end of the second half cycle. In the case shown in
Figure 4-2 the gains for the actuator on the first joint lose their smoothness over time. In the
specific results to cf = 104, 106, the position feedback terms (top) stay very low for the entire
upward going half-cycle, not showing any increase towards the end at all. Near the end of
the half-cycle a very narrow spike in the velocity feedback is still observed.

To avoid excessive control torques as a result of the large gains near the end of half-cycles,
the actuator torque limits proposed in Section 4-2-3 will be applied to crop the control signal
when necessary. If this poses too much of a limit on the feedback control, it can be considered
to optimise the nominal trajectory with extra bounds on the torque.
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Figure 4-2: Optimal DDP feedback gains. Top: position feedback, bottom: velocity feedback,
left: direct terms from link to corresponding actuator, right: cross terms from link to the other
actuator. In bottom plots the values that fall outside the window at the first and the last state
of the first half-cycle are up to several magnitudes larger than the rest of the feedback gains.
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4-3-3 Disturbance rejection

Two kinds of disturbances are considered: a large initial position disturbance and continuous
state noise.

4-3-3-1 Offset initial state

Figure 4-3 shows the trajectories obtained with two different controllers when starting a half
cycle at a position very different from nominal. The initial positions (configuration space,
joint angles) are listed in Table 4-2. In Figure 4-3 the resulting trajectories of the end effector
are plotted in workspace coordinates, i.e. x and y position. The magnitude of the velocity
is shown by the colours. The dark blue is zero velocity, the lighter the colour the larger the
velocity. For reasons of clarity, the velocity of the nominal trajectory is not shown. The
magnitudes of the endpoint deviations after one and two half-cycles respectively are also listed
in Table 4-3, together with the energy consumption of the first two full cycles of the deviated
trajectories. Note that the state errors listed in the table are with respect to the nominal
trajectory from the optimisation. The end state error of the nominal trajectory, as listed in
Table 4-1, is the maximum number that adds to this value when considering the end state
with respect to the desired end state.

The feedback gains discussed in the previous subsection are valid close to nominal trajectory,
around the point the system was linearised. The initial positions chosen for this test are
definitely not close to the nominal initial positions (see Table 4-2). Yet the controller optimised
for cf = 103 (Figure 4-3a) shows convergence to the nominal trajectory in one half-cycle. The
same is the case for the other controllers with significant position feedback near the end of
each half-cycle: the controllers optimised for cf = 102, 105.

The controllers to cf = 104, 106 have next to no state feedback for the entire upward going
half-cycle. They rely on large velocity feedback for deceleration when they have about arrived.
It can be expected that as a consequence the disturbed trajectory takes longer to converge
to the nominal one. The responses of the controller to cf = 104 are shown in Figure 4-3b.
Remarkably enough the upward motion does seem to achieve a large trajectory correction still.
When disturbed in the bottom position (right), the end effector appears to reach the nominal
top position at the end of the same half-cycle. Table 4-3 confirms that the position error at
the end of the first half-cycle is indeed brought back to only few millimetres. However, the
end velocity remains relatively large as the spike in the velocity feedback results in a control
signal exceeding the posed bounds by far. This is the case for both down and up. As a result,
the return motion still shows a large deviation from the nominal trajectory. More than one
full cycle is required to get the end effector back on the original track within the accepted
error margins of 1 mm and 1 mm/s respectively.

Table 4-2: Deviated starting positions of the trajectories shown in Figure 4-3

deviated nominal

φT
top

[

1.5 0.7
] [

1.217 0.961
]

φT
bottom

[

0.3 −0.6
] [

0.163 −0.940
]
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Table 4-3 shows the differences between the controllers with and without significant state
feedback in the upward going half-cycle very clearly. The controllers with the feedback (cf =
102, 103, 105) rapidly reduce the final state error each half cycle. The larger cf , the smaller
the final state error at the end of the first half-cycle.

Control signal cropping hardly occurs at all for cf = 102, 103, 105, and then only for cf = 105

in the last time step of the first half-cycle when starting from the deviated bottom position.
This shows in the table as a larger final state deviation than expected when considering the
result in the other direction being much more accurate compared to the result to cf = 103.

Looking at the results to cf = 104, 106, it stands out that the final state error after going up
is not necessarily smaller than the error in the bottom position at the start of the half-cycle.
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Figure 4-3: Trajectories in workspace started in alternative top position (φ1, φ2) = (1.5, 0.7)
(left) and bottom position (φ1, φ2) = (0.3,−0.6) (right) respectively. The colour of the line
shows the magnitude of the corresponding velocity vector at each state. The dark blue line is the
nominal trajectory without the velocity shown.
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Table 4-3: Energy recovery and end state errors to the deviated trajectories for the different
controllers

Retrieved energy [J] Final state error
deviated (position [mm]; velocity [mm/s])

cf position cycle 1 cycle 2 nominal half-cycle 1 half-cycle 2

102 top 3.74 3.63
3.65

(2.2; 0.57) (0.0003; 0.0004)
bottom 2.60 3.62 (3.1; 0.57) (0.00003; 0.00001)

103 top 3.73 3.63
3.64

(0.19; 0.054) (0.00001; 0.00024)
bottom 2.58 3.63 (1.0; 0.34) (0.00000; 0.00000)

104 top 3.22 3.63
3.64

(2.0; 163) (13; 10)
bottom 2.62 3.64 (6.8; 42) (0.68; 4.5)

105 top 3.74 3.64
3.64

(0.0018; 0.0005) (0.0002; 0.0001)
bottom 2.45 3.64 (0.65; 53) (0.00014; 0.00004)

106 top 2.12 1.88
1.19

(0.0002; 0.0001) (8.9; 282)
bottom 0.99 1.88 (27; 209) (0.0003; 0.0000)

This makes sense when considering the lack of position feedback observed in Section 4-3-2
in combination with excessive velocity feedback cropped low by the control input bounds.
Disabling the bounds on the control signal show improved error correction, though still an
order of magnitude worse than would have been expected when inter- and extrapolating the
other error results.

Looking at the corresponding energy results listed in Table 4-3, apparently the first disturbance
adds energy to the system while the second removes energy. Most controllers to recover extra
energy during that first cycle. All controllers show convergence of energy per cycle after one
cycle. This is also the case for the controllers which take longer to actually converge the
trajectory. Interestingly, the last controller appears to converge to a more energy efficient
trajectory than its nominal one. This is presumably due to the optimisation, being made
unstable by the out of proportion cost function, having ended up in a local minimum.

4-3-3-2 Noisy state trajectory

Todorov and Tassa [27, 28] already warn for a poor response to additive noise. The reason for
this is the fact that both the optimal trajectory and the feedback law are invariant to the noise
term since the noise appears as a constant in the cost function (Section 4-1-3). Todorov and
Tassa therefore propose an alternative controlle based on iterative Local Dynamic Programming
(iLDP). This method no longer considers the optimal cost for a trajectory with only a
single state per time step, but also for states in the neighbourhood. To support this in the
optimisation the in DDP quadratic cost-to-go function is in iLDP extended to a cubic form,
together with a quadratic (instead of linear) control policy. Effectiveness of the algorithm
has so far only been proven in online optimisation. The increased computational demands
of the controller, especially when it has to be implemented online, make the iLDP controller
unsuitable for the Plugless Arm application.
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This section will evaluate the effect of noise on the current controller, optimised for cf = 103,
and how small the noise will have to stay for the system trajectory to stay within the accepted
bounds of ±1 mm, ±1 mm/s respectively.

Because the noise is stochastic, the result is a probability distribution. The probability
distribution is estimated using the Monte Carlo method, simulating 2000 trajectories for each
noise distribution C listed in Table 4-4. Half of the trajectories go down, the other half go
up. The point clouds of the end states show the form of the probability distribution of the
end effector position at the end of a half-cycle. Figure 4-4 shows the end effector end states
for noise applied to each of the states separately. Again the magnitude distribution of the
velocity is shown by the colours of the dots.

The plots in Figure 4-4 clearly show the end positions distributed along the line that is the
local direction of motion of the link that is disturbed. In the top position, link one has a larger
angle than link two, which results in a lower slope of the range of disturbed end positions.

The results shown in Figure 4-4 correspond to the first four noise distributions of Table 4-4.
The rest of the table shows different combinations of noise on the different states. Combinations
of the separate noise modes result in point clouds with a form that is a combination of the
point clouds seen in Figure 4-4. When combining the two position noise modes, the resulting
top position distribution fans out between the two lines, but maintains an elongated shape in
the general direction of the two lines. The bottom distribution on the other hand becomes
more circular as the angle between the principal axes of the two separate distributions is
large. The same holds for the velocity noise.

Noise on the first link has the largest the largest effect on the end effector disposition, which
is not strange as it is the base link of the arm. It disturbs the top position more than the
bottom position. For all the other noise modes, the bottom position is more sensitive.
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Figure 4-4: End position distributions around the desired endpoint for the four single state noise
modes. The top plots show the top positions, the bottom plots the bottom positions. Note that
each subplot has its own axes range. Also the velocity colour coding is relative only within its
own plot, i.e. the same colour in different plots stands most likely for a different magnitude of
velocity.
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Table 4-4: Standard deviations of the normal distributed noise modes and the resulting expected
final state error and energy cost

Noise standard deviation Expected error Expected
energy
cost [mJ]

[mm/∆t] [mm/s/∆t] position [mm] velocity [mm/s]
cξ,1 cξ,2 cξ,3 cξ,4 top bottom top bottom

1 0 0 0 3.86 2.20 1.99 0.21 58.5
0 1 0 0 1.81 1.95 1.95 0.28 49.8
0 0 1 0 0.21 0.29 0.87 0.19 2.52
0 0 0 1 0.13 0.29 0.35 0.19 0.153

1 1 0 0 4.24 3.12 3.20 0.30 105
0.5 0.5 0 0 2.06 1.61 1.42 0.21 29.7
0.2 0.2 0 0 0.82 0.69 0.67 0.19 6.01

0 0 1 1 0.22 0.29 0.91 0.19 4.24
0 0 0.5 0.5 0.16 0.29 0.53 0.19 0.303
0 0 0.2 0.2 0.14 0.29 0.38 0.19 0.343

0.2 0.2 1 1 0.83 0.67 1.10 0.19 6.52
0.2 0.2 0.5 0.5 0.80 0.67 0.74 0.19 5.78
0.1 0.1 0.2 0.2 0.42 0.41 0.49 0.19 1.79

Of all the separate noise modes, the velocity of the second link has the least disturbing effect.
Also to all the separate noise modes, the velocity of the bottom position is the least disturbed.
On the other hand, the inaccuracy of 0.19 mm/s in the bottom end point velocity appears
to be a minimum that remains no matter how much further disturbances are lowered. Even
so the lower bounds on the position accuracy of the bottom end point velocity appears to be
0.29 mm. For the rest, combinations of the different noise modes show no surprises.

In order for the final state disturbances to remain at an average below 1 mm respectively 1
mm/s, the state disturbances may not be larger than 0.2 mm and 0.5 mm/s per time step
respectively. The combination of very low noise standard deviations of the bottom row of the
table results in almost 99% of the bottom positions to stay within within the bounds of 1 mm
and 1 mm/s, but still only 76% of the top positions satisfies these bounds.

The energy loss to these low amounts of noise are seen in the last column of Table 4-4 to be
in the order of magnitude of milli-Joules. For noise which disturbs the system near bounds
deemed acceptable, there is no significant extra energy lost.

4-4 Processor energy consumption

The energy consumed by the processor depends very much on the specific type of microprocessor
and depending on the microcontroller there is a number of additional tasks, for example
memory management, which are performed outside the processor itself, which also cost energy.
For an exact answer how much energy the controller software really costs, measurements
need to be done on the hardware. But this section will give an estimate about the order of
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magnitude of the energy consumption of the software and and discuss the possibilities so that
the robot arm with the proposed controller really can function pluglessly.

Components of microcontrollers already consume some energy by just being switched on, idly
doing nothing. Additionally every software instruction is executed by switching transistors.
Every transistor switch some small amount of energy is dissipated. This energy consumption
is proportional to the number of software instructions that is executed.

To summarise how much energy is available for the Plugless Arm microcontroller: The
mechanical system as designed in Chapter 3 with the DDP optimised controller, the second one
from Table 4-3, yields a 3.64 J energy recovery over a 2.5 s cycle under nominal circumstances.
This energy must power the additional control in case of disturbances, the processor for the
control computations, but also the necessary sensors and the gripper being the end effector.
A very energy efficient gripper has been designed for this robot arm, needing only 0.35 J per
cycle [29]. Furthermore, assuming a sensor on each joint consuming 50 mW [4], over a cycle
time of 2.5 s costs another 0.25 J. Disturbance rejection by the current controller cost little
extra energy and part of the time even recovers extra energy from the disturbances Table 4-3.
Keeping good half a Joule for coping with energy extracting disturbances, 2.5 J or 1 full Watt
is left to power the microcontroller.

4-4-1 Number of processor instructions estimate

So far in Matlab, all computations have been done using floating point numbers (floats).
For this microcontrollers usually have a Floating Point Unit (FPU), which costs additional
energy and is relatively slow. For high-speed simple control it is advised not to use floats1.
The alternative are fixed point numbers which support decimal numbers, but are much closer
to integers when it comes down to computing.

Not considering floats, calculations of the form a·b+c are generally considered one instruction.
However, multiplication of fixed point numbers require some extra actions in the form of bit
shifting. And of course there is always the required overflow checking and occasional handling
of the resulting exceptions.

Furthermore, how hard it is to compute or do something on a (micro)controller/processor is
usually measured in number of clock cycles, as so far the interest of most programmers is to
minimise time and energy tends to be a less pressing concern. The number of clock cycles
required for different types of instructions depends on the processor architecture, support
for pipelining for parallel computing, etc. The simplest microprocessors just execute 1 basic
instruction per clock cycle.

For the following back-of-the-envelope calculation I will assume:

• 2 instructions per addition
• 4 instructions per multiplication
• 2 instructions per min,max-operation
• 1 instruction for writing some value to some address (actuator for example)
• 1 instructions to load a value from memory or a sensor

1concluded after a several conversations with different people with experience in the area
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Additional instructions may be required to locate something in memory, but if the data is
stored efficiently, it should suffice to simply call the next data address.

To the following piece of pseudo-code, the number of software instructions according to the
assumptions just made are added at the end of each line.

for each time step : xN

load nominal control torques from memory m 2
load state feedback gains from memory mxn 8
load nominal state from memory n 4
load current state from sensor n 4
subtract the two states 2xn 8
multiply the result with the state feedback gains 4xmxn 32

and add the numbers 2xmx (n−1) 12
for each of the two resulting numbers : xm x2

take the min with a constant 2 2
take the max with a constant 2 2

write the control torques to the actuators m 2

For the current 4-state (n = 4), 2-input (m = 2) system, this little piece of basic controller
code costs 80 instructions. Multiplying that with the 2 times N = 1000 steps per half-cycle,
results in a total number of 1.6 × 105 software instructions per cycle for the controller in its
most basic implementation.

To understand how light this controller computationally is, consider computing the next
state from the current state-input pair using the nonlinear system model (3-16). This requires
computation of Mq(q), fq(q, q̇), Tf(q̇), Ts(q), CntrTm and combining these results to obtain q̈

before integration can be applied to obtain the next state estimate. For these calculations, the
previous list of numbers of instructions is extended by the following additional mathematical
operations:

• 1 instruction for testing the sign of a number
• 1 instruction fir multiplying a number with the sign of another number
• 4 instructions for division, assumed similar to multiplication
• Square root – Several algorithms exist for taking square roots. A fast implementation

is the Non-Restoring Algorithm [30]. Assuming one instruction per clock cycle in the
paper, performing a square root operation takes 25 instructions.

• Trigonometric functions – The CORDIC optimised algorithm for computing sines and
cosines requires one bit shift and an add/subtract operation per bit of the number [31].
Considering 16-bit numbers, a sine/cosine operation would cost 48 instructions.

• Matrix inverse – Instead of (left) multiplying a vector by the matrix inverse x = A−1b,
it is computational more efficient to obtain x by solving Ax = b. Still, for a non-sparse
r × r matrix such as Mq this takes r(r−1)

2 divisions, r(r−1)(2r−1)
6 multiplications and as

many subtractions [32, Chapter 3]. With the previous assumptions, solving the matrix
equation costs 2r(r− 1) + r(r− 1)(2r− 1) = r(r− 1)(2r+ 1) instructions, where in this
case r = n

2 = 2 leads to a total number of 10 instructions.

Applying these assumptions, the total number of instructions required just to compute the
next system state is estimated at 1728. More details about how this number is obtained can
be read in Appendix D.
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Computation of the running cost term (4-10) takes one division, four multiplications (taking
the square is the same as multiplying the value with itself) and two additions per input, plus
the summation of the two inputs and the scaling with the time step, i.e. 54 instructions. The
final cost (4-9) consists of eight subtractions, eight multiplications and a concluding three
additions, also resulting in 54 instructions.

Now consider online optimisation using iterative Linear Quadratic Gaussian control (iLQG),
which is a computationally lighter form of DDP, only taking into account the first order
gradients of the system dynamics and cost with respect to the state and input. One iteration
consists of a forward pass, estimation of the gradients of the dynamics and the cost function
and a concluding backward pass. Especially when starting from a state close to the offline
optimised trajectory and using that trajectory to initialise the optimisation, a single iteration
should already provide a reasonably close to optimal result. The optimisation can be done
from the current time step all the way to the end of the half-cycle with the final state
deviation as final cost, or for a limited horizon, optimising only to get the system back
to the pre-optimised trajectory in the next H time steps.

In the first case, at time step k of the half-cycle the optimisation has to be run over the
next N − k time steps, at the end of which the final state must be reached. The forward
pass and numerical gradient estimation consist for the main part of (1 + n + m)(N − k)
times computing the state and cost at the following time step. The backward pass consists of
matrix-vector algebra, requiring separated a total of (1+m+2(n+m)2 +3n2(2m+n)+m2n)
multiplications, (2n3 + 6n2m+ 3m2n−n2 − 2n+m2 +m) additions, solving of 2(n+ 1) 2 × 2
matrix equations and a Cholesky decomposition2, all over (N − k) time steps. The Cholesky
algorithm for decomposing a 2×2 matrix [33, Chapter 7] takes two square roots, two divisions a
multiplication and a subtraction: 64 operations, which brings the total number of instructions
of the backward pass to 989(N − k). As a result, the total number of instructions for online

optimisation of one half-cycle is (7(1728 + 54) + 989)N(N+1)
2 = 6.74 × 109, times 2 makes

13.5 × 109 instructions per cycle.

Optimising only over a small horizon H = 10 time steps, the number of required instructions
would be 2N(7(1728 + 54) + 989)H = 269 × 106 instructions per cycle, 135 × 103 per time
step. This is still over three orders of magnitude more than the proposed offline optimised
controller.

So far only the computations required by the controller have been discussed, without any
filtering on the incoming sensor signals. Depending on the sensors, some filter will probably
have to be applied in order to obtain an adequate state estimate. This will add to the
number of instructions. But even if a filter would double the number of instructions of the
simple controller, the number remains very low compared to control methods based on model
predictive methods and online optimisation.

4-4-2 Microcontroller energy consumption estimate

There are many different microcontrollers, ranging from very simple to about full computers
in their own right.

2Obtained from the Matlab code
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The world’s most energy efficient robot to date, the Cornell Ranger, uses a combination
of several ARM type microcontrollers for its control [5]. The main control loop of Ranger
runs on a ARM9 processor. Additional low level sensor monitoring and control is done
by four separate ARM7 processors while two more are used for communications and display.
According to the datasheets [34, 35] both ARM7 and ARM9 microprocessors have a maximum
total power dissipation of 1.5 W with clock speeds upto 60 respectively 125 MHz and upto 40
KB RAM and 512 KB flash memory. The processors have 32-bit support and use pipelining
for concurrent instruction execution and therefore faster operation.

For the Plugless Arm, the ARM microcontrollers would not be employable in their full
capacity. Nor is their capacity required for the proposed controller. Unfortunately I was
not able to gain insight in the distribution of internal energy consumption of the ARM
microcontrollers. Instead I will give an overview two other devices designed for low-power
applications.

The TMS320VC5510 is a fixed-point digital signal processor operating at a maximal clock
speed of 200 MHz and having a maximum power consumtion of 730 mW [4, 36], which is
about half of that of the ARM processors and well within the bounds set for the Plugless
Arm. Of the different components, most power (upto 208 mW) is consumed by the External
Memory Interface. This component is essential since the TMS320VC5510 itself is not a full
microcontroller containing its own memory banks. The data required for the controller will
therefore have to be accessed from some external location. Other necessary processes require
together between about 100 and 365 mW. The CPU takes between 3 and 158 mW from
idle to running at 100%, consuming 0.8 nJ per instruction. For the number of instructions
required for the controller as computed in the previous subsection, this would amount to
a computational energy consumption of 128 µJ. This is an insignificant amount of energy
compared to the power consumption of the other processor components, and also compared
to the other losses in the system.

Scoring even lower on energy consumption are Arduino microcontrollers. They are full
microcontrollers with integrated memory, though a limited amount. The Arduino Nano [37]
is the smallest microcontrollers of the Arduino family and lightest in energy demand. The
base power consumption is only 95 mW, though code appears to cost 5 nJ/instruction based
on measurements presented in [38]. As a result the controller implementation of the previous
subsection would cost 0.8 mJ, which is still a negligible amount.

However if instead the online iLQG controller, computed in the previous subsection for
comparison, would be implemented with its three to five orders of magnitude larger number of
required instructions, the controller power consumption would rise to the order of magnitude
of mW, even W. But then also the clock speed would become a problem. The online
optimisation for the 10-step horizon controller, with the current control frequency of 800
Hz, would require a minimal clock speed of 110 MHz, and additional margin is advisable.
The Arduino Nano would not support this and it will be very tight on the ARM9.

Table 4-5 summarises the energy specifications of the different microcontrollers/-processors
discussed in this section, together with their clock speeds and flash memory. It is clear that
with the proposed precomputed linear controller the online computational energy consumption
and available clock speed will not be the problem. But with the number of precomputed
values, memory may become a serious issue.
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Table 4-5: Summary of microcontroller/-processor properties

Processor ARM9 [34] ARM7 [35] TMS320VC5510 [4, 36] Arduino Nano [37, 38]

Max. power consumption 1.5 W 1.5 W 730 mW 179 mW
Base power consumption 100 - 365 mW 95 mW
Controller power consumption 51.2 µW 320 µW
Clock speed 125 MHz 60 MHz 200 MHz 16 MHz
Flash memory 512 KB 512 KB - 32 KB

4-4-3 Memory limitations

Small microcontrollers have limited memory. Especially when considering microcontrollers as
small as the Arduino Nano this becomes a serious issue. Even when external memory can
be added at will, like to the TMS320VC5510 microprocessor, large memory slows down data
retrieval to the point where it can become the bottleneck of the program, especially when the
program is based mostly on lookup tables, like the Plugless Arm controller.

The memory required for the current controller design can be computed using the following
numbers:

• 16-bit numbers take the space of 4 bytes per number
• 2 nominal control values
• 4 numbers for the nominal state
• 8 numbers per feedback gain matrix
• 2000 time steps per control cycle

The result is 4(2 + (8 + 4))2000 = 112 KB required memory, 16 KB for the feedforward signal
and 96 KB for the feedback controller.

The Arduino Nano however has only 32 KB, which includes 2 KB used by the bootloader and
also the memory in which the program instructions have to be stored. The following section
will explore if the controller can be reduced to fit within the available memory of the Arduino
Nano.

4-5 Controller reduction

From the previous section it was concluded that not so much the number of computations
needs to be reduced as the number of values that need to be stored in memory. However, the
effect for the controller is the same: the number of computations must be reduced.

4-5-1 Structure

The current controller runs at 800 Hz, with its 2000 discrete time steps over a cycle of 2.5
s. This is the case for both the nominal feedforward signal and the feedback loop. In this
section two different methods for controller reduction are proposed:

1. Reduction of the control frequency
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2. Reduction of the feedback to only part of the cycle. After all, Section 4-3-2 showed that
during a large part of the cycle the optimal feedback gains are next to zero.

In order to get the memory usage down from 112 KB to at most 25 KB, the controller
frequency would have to be reduced to a mere 160 Hz. However when optimising the controller
at this low a frequency, no stable solution is obtained. On the other hand, the feedback control
would have to be reduced to only 9% if the controller data memory usage is to stay below 25
KB including the 16 KB required for the feedforward control. Too little of the feedback will
remain. Therefore a combination of the two reduction options is required.

The first step is to reduce this nominal frequency. A reduction to 500 Hz is chosen, still
yielding a proper nominal trajectory. Then the memory required for storing the nominal
control values is reduced from 16 KB to 10 KB. The memory required for the feedback part
of the controller would still be 60 KB.

It was already seen in Section 4-3-2, that after an initial push on the velocity, the feedback
gains had insignificant magnitude until about the last quarter of the half-cycle. This suggests
that it may be sufficient to add the feedback term only near the end of each half-cycle.
Switching on feedback control only at the final quarter of each half-cycle would reduce the
memory required for the feedback part of the controller further to 15 KB.

The resulting combined controller would need only 25 KB of memory. This would fit on
the Arduino Nano. A remaining 5 KB of memory would be left for storing the program
instructions, which is ample for this simple controller.

4-5-2 Optimisation

The main difference with respect to the earlier DDP optimisations is that there is no initial
near optimal control signal available to start the optimisation from. Previously the nominal
control signal obtained in the previous chapter could be used. This time however, the
number of sampling instances is lower. Instead the optimisations (one for each half-cycle)
are initialised with zero control signal.

Furthermore, the final cost coefficient cf is set to 2 × 103.

4-5-3 Performance

The system performance in term of positioning accuracy will not improve with reduced control.
The question is whether the reduction in accuracy will be small enough.

First only the frequency reduction is tested. The nominal result is shown in Figure 4-5
and its energy properties are listed in Table 4-6. For comparison, the result for 800 Hz is
repeated in the table. Only little more energy is lost with the lower frequency controller,
and the maximum final state error magnitude in workspace coordinates of the end effector
is comparable. The trajectory in Figure 4-5 shows a slight overshoot in the position of the
first joint when returning to the top position. Related to that, the control torque on the first
joint near the end of the cycle is positive, actively (regeneratively) braking the link returning
to the position it overshot.
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Figure 4-5: Optimal trajectory controlled at a frequency of 500 Hz

Table 4-6: Energy results of the nominal trajectory computed with DDP compared to the result
of Section 3-5-2, all trajectories having a cycle time of 2.5s

control
frequency [Hz]

mechanical
loss [J]

I2R
loss [J]

recovered
energy [J]

recovered
power [W]

max. end pos.
error [mm]

max. end vel.
error [mm/s]

500 4.72 1.60 3.48 1.39 0.207 0.226
800 4.62 1.54 3.64 1.46 0.288 0.185

Figure 4-6 shows the optimal feedback gains to the trajectory. It is striking that there is hardy
any feedback during the entire upward half-cycle. During the downward half-cycle there is
significant feedback during about the first fifth and the second half of the motion.

Two levels of feedback reduction are proposed. The first one keeps the feedback in the
downward half-cycle for the first 108 cycles. That is to the point where the blue line of the
velocity feedback gains in the bottom plots of Figure 4-6 drop back to zero. Also the feedback
is kept from halfway down to the end of the half cycle. The second reduction only keeps the
feedback in the second half of the downward cycle. Both reduced controllers drop the feedback
during the upward half-cycle since there is hardly any feedback there anyway.

Figure 4-7 shows the end effector position and velocity error at the end of each half-cycle for
five full cycles for the full feedback controller and the two reduced feedback controllers. With
this lower frequency control, but probably mainly because of the lacking feedback control in
the upward half-cycle, the final state error does not get reduced to an invisibly small number,
as was the case before. Instead it keeps oscillating, being closer to zero in the bottom position
and less close to zero in the top position. The oscillations seem to remain bounded, a constant
type of oscillation.
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Figure 4-6: Optimal DDP feedback gains. Top: position feedback, bottom: velocity feedback,
left: direct terms from link to corresponding actuator, right: cross terms from link to the other
actuator. In bottom plots a few large values fall outside the window.
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In the left plots the system was started from a deviated top position, in the right plots from a
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Linda van der Spaa Master of Science Thesis



4-5 Controller reduction 77

Table 4-7: Energy recovery to the deviated trajectories for full and partial 500 Hz feedback
control, corresponding to the results shown in Figure 4-7

deviated Retrieved energy [J]
controller position cycle 1 cycle 2

full feedback
top 3.59 3.49
bottom 2.77 3.48

34% feedback
top 3.58 3.49
bottom 2.59 3.48

25% feedback
top 2.77 3.47
bottom 2.32 3.49

When keeping 34% of the feedback controller, the magnitude of the error becomes only slightly
larger. Convergence to the steady oscillations still happens in the same amount of half-cycles.
When disturbed above, the position is corrected within the first half-cycle, when disturbed
below, it takes one half-cycle extra, since the upward half-cycle exerts little control. When
keeping only the proposed quarter of the feedback controller, an extra full cycle is required
before the system arrives at the same small oscillating error as with the slightly less reduced
feedback law.

The steady state oscillations in all cases stay below 0.5 mm respectively 0.2 mm/s, which is
perfectly acceptable. Not acceptable is the extra full cycle the 25% controller needs to get
the system there.

Table 4-7 shows the energy recovery corresponding to the different trajectories of the different
controllers. Again even though the trajectory of the second cycle may still look wildly different
from nominal, the energy recovery values have returned to normal after only a single cycle.

The 34% controller needs a little more energy to get back on track after the bottom disturbance,
but only 0.18 J, which is about 6% of the energy recovered during the cycle. The 25%
controller loses another 10% of the energy that would otherwise have been recovered. More
important is that the 25% controller even needs additional energy to correct the top deviation,
while both other controllers achieve that correction with increased energy gain.

A look at the nominal torques in Figure 4-1 show that this is the part of the trajectory in
which usually most positive work is delivered by the actuators, i.e. the part of the nominal
trajectory that costs energy. The feedback control at the beginning of the cycle reduces this
energy loss as much as the disturbance allows. This is the part of the feedback controller
which harvests the excess mechanical energy added by the disturbance. It is important not
to remove this part of the controller.

4-5-4 Final notes

It is not strictly necessary to reduce the controller as a slightly larger microcontroller than the
Arduino Nano would still be supported by the Plugless Arm. There is the trade-off: On one
hand a larger microcontroller with more memory will consume more energy, even/especially
when not computing. On the other hand the tighter control would be able to recover more
energy from the system.
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With the 34% feedback controller, additional 5.2 KB of memory would be required. Considering
only 5 KB was left for the program code, this is too much. Choosing a microcontroller with the
additional capacity, the additional capacity is probably enough to support the full controller.
However, the example of the extra controller reduction shows that large part of the feedback
controller is simply unnecessary.

Also now the choice was made between either full state feedback or no feedback at all. More
clever choices can be made by also allowing locally for single or partial state feedback. It is
very likely that with this method enough extra memory can be saved to make the controller
fit on the Arduino Nano.

An additional option for memory reduction is to store each number in only 8 bits instead of
16. The effects of the reduced precision will have to be tested together with the fixed-point
implementation. After all, the test so far have all still been done in Matlab, using floats.
It is more accurate to test the bit lenght of the numbers in combination with the fixed-point
implementation directly on the microcontroller.

With the use of smaller numbers, more numbers can be stored and a higher control frequency
can be maintained wit all its benefits.

4-6 Discussion

A large point of improvement is the noise rejection. The suggestions on the topic by Todorov
and Tassa [27, 28] are too computational intensive for the current application. Some other
method will have to be found.

Proper noise rejection is important for functioning in the physical world where environmental
factors like air displacement will act on the system in an unpredictable way. But not only
external factors will disturb the system in a way that can be modelled as additive stochastic
noise. Inherently the system model will contain some deviations with respect to the real
system. Small deviations originating from estimation errors or negligence of higher order
nonlinear factors such as friction may be modelled as noise.

If it turns out that some system parameters are not perfectly known or change over time, some
form of adaptive control might need to be considered. Though this requires the control law
to be a function of the model parameters, which is not the case if the controller is optimised
offline before hand the way the current controller is.

With the current controller the computational costs are low. There is room to do more online
computing, but not enough to support full online optimisations, which require several orders
of magnitude more computations than the current simple controller.

The final state error has been evaluated in workspace coordinates, in mm and mm/s, while
the term appearing in the cost function is in configuration space, in rad and rad/s. I chose the
evaluation in workspace coordinates because the error of the end effector state will be visible
in workspace coordinates. Conform to this, it might have been wiser to have formulated the
penalty on the final state also though the state transformation in workspace coordinates.

Also several methods exist for adding constraints to the DDP control problem [39], for example
using Lagrange multipliers [40]. None of these methods is currently supported by the provided
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Matlab algorithm. Furthermore, replacing the final state cost by an end state constraint will
also have an effect on the computed optimal feedback gains. Then there will no longer be a
factor in the cost function weighting the importance of arriving at the desired end state with
respect to minimisation of the control input. I do not dare to speculate on the consequences
for the feedback control.

Furthermore, in this chapter state integration was done using Euler’s method, which provides
a less accurate estimation of the state progression than the Runge-Kutta 4th method used in
the previous chapters. It may also be due to this increased integration error that a difference
of energy recovery of the nominal trajectory as large as 0.3 J per cycle is observed with respect
to the optimisation results presented in Chapter 3.

As the time between sampling instants becomes larger, Euler integration will cause larger
integration errors. At some point these errors will become significant and seriously deteriorate
the optimisation result.

However when the Euler method was replaced by the Runge-Kutta 4th method (RK4),
remarkably enough results did not improve. When optimising the controller in Section 4-3
using RK4, a proper nominal trajectory was found also for cf = 106. The nominal trajectories
were very similar to the ones shown in Figure 4-1 and the energy values were very close to
those presented in Table 4-1. However except for the inaccurate controller to cf = 102,
none of the controllers showed any significant feedback gain during the upward half-cycle.
Disturbance rejection was accordingly poor, as discussed in Section 4-3-3 for the controller to
cf = 104.

Also the optimisation appeared sensitive to the trajectory used for initialisation. Seemingly
more so for RK4 than for Euler integration.

I suspect that the disappointing performance of RK4 has to do with the finite difference
approximations used so frequently in DDP. Using Euler integration, the first order derivative
obtained by the finite differencing algorithm exactly retrieves the state derivative. This is no
longer the case when RK4 is applied. It may be that the reduced accuracy of the first and
second order terms of the quadratic approximation of the system dynamics and cost function
result in reduced optimisation performance. Though the fact that the optimisation “knows”
that it is merely locally approximating the full dynamics and cost would suggest that these
errors should be so small that they have no such influence.

4-7 Conclusion

The nominal controller is very energy efficient. The controller is able to retrieve 3.64 J from
the system over a cycle of 2.5 s, resulting in a power generation of 1.46 W. This is even slightly
more than was found when the system was optimised in Chapter 3.

The controller is capable of correcting large disturbances of the initial position within one
half-cycle. Depending on the disturbance the correction either costs additional energy or
extra energy can be regenerated from the correction.

To continuous state noise the controller responds less well, or actually just less. In a sense
this is positive as is it means negligible energy is lost on countering noise. On the other hand,
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state noise is not really countered. The controller can only disturbances up to a fraction of a
millimeter per time step without losing accuracy of the pick and place positions.

The computation costs of the controller are very low. So low in fact that they are negligible
with respect to the base line power consumption of some very energy efficient microprocessors.
Because the controller depends on looking up a considerable number of precomputed values,
it is important to choose a microcontroller with sufficient memory for data storage.

Taking all together, it is definitely possible to implement the controller on a microprocessor
using at most the 1 W that is available from the Plugless Arm.
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Chapter 5

Discussion

The mathematical method to determine the theoretical optimal spring is only applied to
the Cartesian model. The mechanism fit is reasonably well, but more suitable mechanisms
might exist. It depends on how low the internal friction can be made how much mechanical
complexity can be added to the mechanism. On the other hand there is the question whether
additional complexity is really required for a better fitting spring mechanism.

Translating the mechanism from Cartesian to polar configuration proved sufficiently effective
in terms of sufficient energy recovery. However increased friction loss and reduced transmission
efficiency turned out to be instrumental in the lower amount of anergy that could be retrieved
in the polar arm.

The possibility certainly exists that the full prior analytical optimal spring analysis would
have insights leading to a more efficient spring mechanism. The analytical method making
time a function of position is less straigthforward for more complex systems including multiple
degrees of freedom, but would still work as long as there is one DoF with a monotonic motion
between defined endpoints, i.e. not changing direction during motion. Then the positions of
all other DoF, as well as all velocities and time, can be made a function of the DoF. Then for
that DoF, the optimal spring characteristic can be computed. For multiple springs, the DoF
have to be decoupled. Constraining the end time to the same value for all DoFs, the optimal
spring can be computed separately for each DoF, provided the position coordinates can be
chosen in a way without interdependence. As a result, design for more degrees of freedom
becomes increasingly complex very fast for the analytical optimisation method.

Furthermore, in the mechanical design part of this thesis an optimal spring mechanism has
been designed to a 2 DoF arm. The arm itself has not been optimised. Furture optimisation
of the arm will almost certainly increase the energy that can be recovered from the system.

The same holds for optimisation of the pick and place positions in angular coordinates. The
spring design method of Section 3-3 can be extended to more DoF relatively easily, given the
desired final states. For the current 2 DoF, the choice of the end state angles depended only
the choice of position of the shoulder joint. The choice of shoulder placement was made on
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considerations of reach. Another choice might have lead to a more efficient pick and place
motion. The more DoF the arm has, the more free variables can be chosen, which will have
an impact on the maximum achievable energy efficiency of the motion. This opens up an
entire new space for optimisation. A space which increases rapidly in dimensionality for each
additional DoF. The right choice for the endstates is its own complex optimisation problem,
a challenging field for future exploration.

Then there is the controller. Differential Dynamic Programming works well for finding very
energy efficient and effective nominal control trajectories. The feedback policies proved
unpredictable, at least for this system which was mechanically designed to be self-stable in the
target states. Minimal feedback control regularly amounted to no feedback at all. In the cases
that significant feedback gain was found during both halves of the task cycle, recovery from a
displaced starting position was adequate enough. But in most cases significant feedback was
only obtained during the downward half-cycle. The state deviation would then grow during
the upward half-cycle. In total the error measured at only one of the end positions would, if
not decrease, at least stay bounded over time. But for real convergent behaviour some state
feedback should be enforcable at least in the neighbourhood of each end position. The noise
rejection capabilities leave even more to be desired.

The universal problem of effective noise and uncertainty handling in a computationally light
way remains. The current controller is computationally very light, i.e. there is room for
additional online computation to improve disturbance rejection. A method different from
DDP or iLQG is required for design of a feedback controller which can guarantee disturbance
rejection within definite bounds.

Not only have I been designing the controller for its control properties, I also wanted to
stress the importance of implementability and the considerable energy that can be lost in the
area if choises are not considered carefully. My background is in mechanical engineering and
systems and control Engineering, not in electronics, embedded systems, algorithmics or some
of the other fields I touched in this thesis. But by touching these fields I wanted to show the
importance of them all in relation to eachother. This is not just the case for the Plugless
Arm, but for any system combining elements of such a multitude of fields. The best designs
are obtained when an interdisciplinary team optimises the system over all the interconnected
fields simultaneously, or at least iteratively, each field considering the others as well.

Insights from control have been instrumental in the mechanical design of the Plugless Arm
presented in this thesis. And controller design is of no use if the resulting controller cannot
be implemented. On the other hand the mathematical possibility to view the system from
a different perspective, position instead of time, has led to valuable new insights. The
electromechanic properties of electric motors allow for electric energy regeneration, but only
if other factors comply, such as drive trian backdrivability, but also the circuitry should not
overheat from return currents. And a large number of questions, such as how to store the
recovered electric energy in an efficient way and in a way that the components who require it
are provided with a stable voltage, remain yet to be solved.
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Chapter 6

Conclusion

In this thesis a spring mechanism for optimal parallel elastic actuation and a controller have
been designed for the two degree of freedom (DoF) Plugless Arm. First the parallel spring
has been optimised analytically. By rewriting the system dynamics such that all became a
function of position, including time, the analytical optimal spring could be described as a
function of the optimal trajectory without any need for additional parameterisation.

Based on the characteristic of the analytical optimal spring, a mechanism was designed
based on simple mechanical principles, such that internal losses stay minimal. The proposed
mechanism in combination with the proposed controller achieves an optimal energy retrieval
of 3.64 J out of the available 9.81 J, over a cycle time of 2.5 s. The pick and place endpoints
of the cycle are mechanically stable and maintaining these position costs in itself no energy.

The major factors responsible for the remaining energy loss are: the general friction (modelled
as Coulomb friction), relatively low transmission efficiency and the considerable reflected
inertia of the drive train. Yet even despite those losses, the recovered energy over the cycle
time provides 1.46 W of power. This power is sufficient to power an energy efficient gripper,
sensors, a light microcontroller and save some for additional disturbance rejection.

Occasionally recovery from a disturbance may reduce the energy consumption of a cycle,
but there are also situations in which extra energy can be recovered from a disturbance.
Precomputed state feedback gains achieve local optimal control while requiring negligible
computational power from the processor, only sufficient memory. Implementing only a part
of the feedback control law is found to be as effective as use of the full feedback controller,
reducing the memory required for storing the precomputed values as well as the number of
online computations.

The result is an extremely energy efficient robot arm controlled by a very light controller.
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Appendix A

Specs and choices of drive train
elements

A-1 Motor

The motor by Maxon is chosen for its high torque, low speed output, such that minimal
additional transmission is required.
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Figure A-1: Speed, torque, power and efficiency
relations of the brushless DC motor

From the motorspecifications[41]:

Nominal voltage 24 V
Nominal current 6.06 A
Nominal torque 0.444 Nm
Nominal speed 2590 rpm

271 rad/s
Stall torque 4.94 Nm
Stall current 70 A
No load speed 3190 rpm

334 rad/s
No load current 0.538 A
Maximum efficiency 83 %
Terminal resistance 0.343 Ω
Torque constant 70.5 mNm/A
Corrected constant 71.1 mNm/A
Rotor inertia 3060 gcm2

Figure A-1 shows the full motor torque, speed and power characteristics, as well as the
efficiency. Optimal efficiency is achieved for torques in the range 0.2 - 0.8 Nm (η ' 0.8).
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A-2 Spindle

Based on preliminary calculations with guessed transmission ratio and friction parameters,
an estimation of the velocities, actuation forces and required motor power is made:
‖v‖ < 8 m/s
‖F‖ < 25 N

Based on these bounds, a spindle is chosen for a reasonable approximation of parameters in
the linear drive required in Chapter 2.

Spindles have speed limits, in the catalogues [19, 42] speed limits are given as the product of
the shaft rotation speed ωrpm in rpm and the nominal diameter d0 in mm. Precision rolled
ball screws with recirculation through a flange (further referred to as long lead ball screws)
have a permissible speed limit of ωrpmd0 ≤ 90000. Planetary roller screws have a permissible
speed limit of ωrpmd0 ≤ 160000 [42].

The motor described in Section A-1 may turn up to 3190 rpm, which is its no load speed.
So in case of a long lead ball screw d0 ≤ 28 mm, in case of a planetary roller screw d0 ≤ 50
mm. However, the motor is so strong that for delivering 10 N to the load with 1 Nm of
motor torque, a spindle reduction ratio of 10 is required. Consequently the spindle requires
a minimal lead Ph = 2π

10 ≈ 0.6 m. However, the largest available lead for a spindle which can
handle the required speed is only 30 mm (planetary roller screw with d0 = 48 mm). On the
other hand, only a tenth of the power the motor can supply is required.

Friction

The dynamic coefficient µ of friction of long lead ball screws is 0.006. In planetary roller
screws, the practical dynamic friction coefficient µprac depends strongly on the helix angle

α = atan
(

Ph

πd0

)

and varies from 0.009 for negligible angles up to 0.035 for larger angles. The

static friction coefficient µs felt when motion is initiated, is taken to be twice the dynamic
friction coefficient. Only Coulomb friction is assumed by SKF.

Efficiency

Efficiency in forward direction (motor driving load) is given by

η =
1

1 + πd0

Ph
µ

(A-1)

In case of long lead ball screws the practical efficiency is then given by ηp = 0.9η. For
planetary roller screws the practical efficiency is simply obtained by calculating (A-1) using
µprac.

Efficiency in the backward direction is given by

η′ = 2 − 1

η
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Selection

Friction is smallest for long lead ball screws. However if vmax = 3.5 m/s is to be achieved:

60vmax
Ph

1000

d0 < 90000

Ph

d0
> 2

1

3

Unfortunately the largest available ratio Ph

πd0
for long lead ball screws is only 1.25, Ph = 40

mm and d0 = 32 mm. As a result the maximum obtainable linear speed is only 1.8 m/s. In
this speed limited case, the practical efficiency would be ηp = 0.89. The resulting backward
efficiency η′

p = 0.87.

In the case of planetary roller screws, which can handle higher speeds,

Ph

d0
> 1.3

Unfortunately the largest ratio Ph

πd0
that is found in the planetary roller screws is only 0.67.

With the planetary roller the same maximum speed of 1.8 m/s is achieved. Only with the
resulting helix angle of α = 12◦, the practical friction µprac > 0.04 and the practical efficiency
is only about 0.8.

The dynamic loads in the system are of such low value, that it is no issue.

For the final rotational 3 DoF robot arm there will be a gear instead of a spindle and speed
limits will be less of a problem. For the purpose of Ch. 2 it is sufficient to select a hypothetical
spindle with reasonable properties. It is assumed that the long lead rolled thread ball screw
with d0 = 32 mm and Ph = 40 mm can actually handle the required speeds.

TL 32x40R

Nominal diameter d0 32 mm
Lead Ph 40 mm
Preload Tpr (optional) 0.05 -0.50 Nm
Nut mass 0.65 kg
Nut length 54.8 mm
Screw inertia 490 kgmm2/m

Preload torque is recommended for high positioning accuracy under load. The standard
precision: over a distance of 1 m, the lead error is still below 0.1 mm. This is sufficient for
the application.

A spindle length of 1.06 m is required to cover the 1 m distance, including the length of the
nut. As result, the spindle inertia Js amounts to 519 kgmm2.

The spindle reduction ratio ns in rad/m relates to lead according to ns = 2000π
Ph

, resulting in
a spindle reduction ratio of ns = 157 rad/m.
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A-3 Gears

The acceleration profile of the arm in Chapter 3 is first optimised without any additional
gear transmission. These preliminary results are presented in Apendix B-2. The gears need
to be able to handle the output torque, upto about 8 Nm, though not continuously. The
preliminary results also show the motor heat losses to be three orders of magnitude larger
than the recovered mechanical energy. A reduction ratio of about 30:1 is required to get the
I2R losses within reasonable bounds. This reduction will also result in the torques required
from the motor to lie in the area where the efficiency is largest. Such reduction cannot be
achieved by a single gear stage. The choice was made for the two-stage planetary gear with
maximum reduction ratio by Maxon [43].

GPX 32 HP ∅32 mm, 2-stage
Reduction ratio ntr 4554/130
Max. continuous torque 4 Nm
Max. intermittent torque 6 Nm
Maximum efficiency 0.76
Mass inertia 13 gcm2

Outer diameter 32 mm
Gearhead length 46.3 mm
Max. transmittable power (continuous) 110 W
Max. transmittable power (intermittent) 140 W

A larger reduction ratio through an additional gear stage would result in even lower efficiency.
Also for this reduction ratio, the reflected inertia is still reasonably small with respect to
the torque driving the joint. With an increased reduction ratio the motor heat losses start
increasing again, this time because of the additional power required to compensate for the
reflected inertia of the motor and transmission.
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Appendix B

Preliminary optimisation results for
component selection

B-1 Preliminary results to Ch. 2

Assumed is the motor as described in Appendix A-1 with a minimal transmission to connect
the rotational actuator to the translational load. The dynamic system model (2-4) is used.

d

dy

[

ẏ
t

]

= ẏ−1

[

−g +
Fj

m

1

]

The spring torque Fs is given by (2-13). The remaining torque is delivered by the motor
Fm = Fj −Fs. The simple motor model (B-1) is used, which is linear in the transmission ratio
ns.

Tm =
C

ns
Fm (B-1)

C =

{

1
ηtr

when accelerating

η when decelerating

The efficiency ηtr is set at 0.8. A well manufactured transmission will in all probability have
a higher efficiency, but for the moment the slightly pessimistic estimation will suffice.

Motor current I = Tm

kt
, and through it the I2R loss, decreases with ns, whereas refected inertia

and friction increase with ns. Furthermore, ηtr tends to decrease as the transmission ratio
grows larger. For larger ns the optimisation results will overestimate the recoverable energy.
The optimisation is performed as described in Section 2-3-1. Also the overhead power in the
cost function Poverheads = 4 W.

Table B-1 shows optimisation results for different ns grouped in two sections. The recovered
power, bottom row of the first section, is the amount of power that is available to support
overhead costs. With the 80% efficiency and no other losses, expected recovered mechanical
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Table B-1: Optimisation results for different ns, recovered power excl. overheads

spindle reduction ratio ns [rad/m] 2π 5π 10π 20π 50π 100π

cycle duration [s] 3.31 1.89 2.00 1.74 1.99 2.09
recoverend mechanical energy [J] 7.84 7.84 7.85 7.83 7.80 7.65
energy lost to I2R heating [J] 7.30 3.11 1.57 0.64 0.41 0.54
recovered power [W] 0.16 2.50 3.13 4.14 3.72 3.40

max (|Fm|) [N] 7.10 9.48 9.86 9.45 18.3 38.6
max (|v|) [m/s] 13.4 6.96 5.00 3.92 2.54 2.80
max (|a|) [m/s] 660 377 109 130 32.0 27.6
max (|Pmech|) [W] 92.9 65.4 44.3 34.0 45.0 33.7

energy would in all cases be 7.85 J. In the table it is seen the results come close for low
transmission ratios. As ntr grows large, the reflected inertia becomes significant and a decrease
in recovered mechanical energy is observed. Large decrease in I2R is witnessed for increasing
ntr at first.

The second section of Table B-1 mechanical limits of the trajectories are listed. The maximum
motor torques are seen to decrease with transmission ratio, but not proportional to the
transmission ratio. Highest velocities are observed for low and high transmission ratios.

Increasing transmission ratios also tend to have an increasingly deteriorating effect on the
backdrivability. For maximum regeneration the load to drive backward transmission should
be as direct as possible, which means ns as small as possible.

Considering the peak forces and velocities, a transmission ratio of 10 rad/m would already
be sufficient.
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B-2 Preliminary results to Ch. 3

Figure B-1 shows the motor torques found when optimising the 2 DoF robot arm (Section 3-5)
without additional transmission between the motors and their respective joints. Table B-2
summarises the minimum, maximum and average values of the control torque signal.

From Table B-2 it is seen, without any gear reduction between the motor and the joint, the
I2R losses are excessively large.
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Figure B-1: Motor torques when driving the 2 DoF arm with gravity balancing springs without
any additional transmission

Table B-2: Summary of torque values to Figure B-1

maximum
torque [Nm]

minimum
torque [Nm]

average absolute
torque [Nm]

First joint 7.80 -3.02 2.09
Second joint 4.27 -6.83 2.63

Table B-3: Energy results to the trajectory of Figure B-1

recovered mechanical energy I2R loss

6.97 J 2.30 kJ(!)
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Appendix C

Additional optimisation results to
Chapter 2

C-1 Analytical optimal spring

Extra trajectory results to Table 2-3.

With reflected inertia
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Figure C-1: Bumpy optimised trajectory
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Figure C-2: Optimised trajectory without parallel spring

Without reflected inertia
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Figure C-3: Smooth optimised trajectory
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Figure C-4: Bumpy optimised trajectory
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Figure C-5: Optimised trajectory without parallel spring

C-2 Physical mechanism

Extra trajectory results to Table 2-4.
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With reflected inertia
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Figure C-6: Optimised for minimum total energy cost, optimal spring stiffness ks = 810

Without reflected inertia
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Figure C-7: Optimised trajectory obtained when using the trajectory of Figure C-3 as initial
trajectory
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Figure C-8: Optimised for minimum total energy cost, optimal spring stiffness ks = 4

C-3 Horizontal

Extra trajectory results to Table 2-7.
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Figure C-9: Bumpy optimised trajectory with analytical spring
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Figure C-10: Optimised trajectory without parallel spring
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Appendix D

Calculation of number of instructions
for computing next state

Table D-1 summarises the assumed numbers of instructions for the different mathematical
operations.

Table D-1: Estimated number of instructions per operation

operation number of instructions

load value 1
sine/cosine 48
multiply/divide 4
times sign 1
add/subtract 2
square root 25
test sign 1
solve for matrix 10

The following listing decomposes the calculation of the next state in a number of subcalculations,

given state x =
[

qT q̇T
]T

and input Tm. Per subcalculation the number of operations is

counted.

Master of Science Thesis Linda van der Spaa



100 Calculation of number of instructions for computing next state

calculation operation load sin/cos mul/div ×sign +/− √
test matrix

CntrTm 2 4 2
Ts,gravity(q) 2 2 4
Ts,Plooij(q) 8 28 20 2
Tf(q̇) 2 2 2
fq(q, q̇) 8 62 22
Mq(q), fq(q, q̇) 4 12 13
M−1

q
(fq + Tf(q̇) + Ts(q) + CntrTm) 8 1

xnext = x + ẋ∆t 4 4 4

subtotals 6 22 114 2 73 2 2 1

Multiplying the numbers of operations with their respective numbers of instructions from
Table D-1 results in a total of 1728 instructions.
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Glossary

List of Acronyms

3mE Mechanical, Maritime and Materials Engineering

TU Delft Delft University of Technology

DDP Differential Dynamic Programming

DoF degree of freedom

iLDP iterative Local Dynamic Programming

iLQG iterative Linear Quadratic Gaussian control

LQG Linear Quadratic Gaussian control

LQR Linear Quadratic Regulator

RK4 Runge-Kutta 4th method

List of Symbols

ǫ A small positive number

η Efficiency

µC Coulomb friction

µv Viscous friction

ξ Normal distributed noise mode with distribution N(0; 1) (Chapter 4)

φ Angular position

ω Angular velocity

A State matrix of the linearised discrete system dynamics
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106 Glossary

B Input matrix of the linearised discrete system dynamics

C Transmission efficiency term with motor/generator switching mode

cf Final state cost coefficient

C Matrix scaling the standard deviations of the noise modes

d0 Nominal (spindle) diameter (in mm)

E Expectancy of the term which follows in square brackets

E Energy

fq Reduced force vector

f Discrete function of the nonlinear state dynamics

F Functional

F Force

g Gravitational acceleration (9.81 m/s2)

I Electric current

I Identity matrix

i Index

J Cost function

J Inertia

k Arbitrary integer

kt Motor torque constant

k Optimal feedforward input correction

ks Spring stiffness

K Optimal state feedback gain

l Cost (Chapter 4)

l Link length (Chapter 3)

m Mass

M Mass matrix

m Number of states (Chapter 4)

N Normal distribution N(µ;σ2), with mean µ and standard deviation σ

N Total number of discrete steps of the trajectory

n Number of states (Chapter 4)

n Reduction ratio

Ph Spindle lead (in mm)

P Power

q State vector in configuration space coordinates

R Electric resistance

r Radius

sk Linear cost term

Sk Quadratic cost term

sk Scalar cost term

T Jacobian of the kinematic map
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T Torque

t Time

U Full set of inputs to a trajectory

u Control input

V Optimal cost to go as function of the state

v Optimal cost to go as function of the state deviation

x State vector in workspace coordinates

X Full set of states of a trajectory

x Optimisation parameter vector (Chapter 2)

y Vertical position

Subscripts

a Actuation

d Down

e Electric

f Friction

g Gravity

j Joint

m Motor

oh Overheads

rpm Angular velocity in rotation per minute

s Spring
Spindle, in case of reduction ratio ns

Static, in case of friction coefficient µs

tr Transmission

u Up

q Generalized coordinates

x Workspace coordinates

e End

f Final
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