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Abstract

This study focuses on optimizing the use of high-performance computing on public cloud in-
frastructure, along with information theory, for assessing water systems. These assessments
are computationally intensive and can benefit from parallel computing and the evaluation of
the collected data with information theory. A case study of a water system analysis for the
Vlietpolder was conducted to test various cloud configuration settings using an embarrass-
ingly parallel batch computation. The hydrodynamic simulations involved D-HYDRO 1D2D
models with different precipitation events and model resolutions. The modelling results were
quantified using normalized Shannon’s Entropy to facilitate the comparison of system config-
urations, evaluating the batch computation process to determine whether enough simulations
have been performed and comparing individual simulations.

The study showed that public cloud infrastructure provides comparable computational per-
formance to local computers and servers, and offers opportunities for vertical and horizontal
scaling for parallelization. The study also provides insight into the impact of allocated re-
sources, node size, and node type on cloud infrastructure performance. Furthermore, the
quantified information derived from the simulations can be utilized to evaluate the batch
computation output and support cost-benefit analyses for selecting configuration settings and
model decisions given modeling scenarios.

The study concludes that combining cloud infrastructure and information theory can enhance
hydrodynamic modelling for batch computations in water system analysis. The findings pro-
vide insights into the potential benefits of utilizing public cloud infrastructure for large-scale
computations of hydrodynamic simulations.
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1 Introduction

Hydrodynamic simulations, particularly those based on the two-dimensional shallow water
equations, require numerically intensive schemes to be solved, resulting in significant com-
putational demands Cea and Costabile [2022]. High-performance computing involves using
parallel computing on large-scale computer clusters to solve complex problems. This can in-
volve using supercomputers, or cloud infrastructure Morales-Hernández et al. [2020]. With
cloud infrastructure approaching on-premise cluster-level performance, it has become an ap-
pealing platform for high-performance computing, as noted in Matsuoka et al. [2023] and
De Sensi et al. [2022].

In the cloud, the capacity of the CPU, memory and storage resources can be adapted to the
demands of the user. This is called cloud elasticity. This enables both vertical and horizontal
scaling, which entails selecting appropriate computing instances that match the computational
requirements. This includes choosing the type and size of instances used, as well as the degree
of parallelization of simulated processes. Embarrassingly parallel workloads, that do not re-
quire communication between the parallel tasks, may be accelerated as fast as cloud resources
permit Fox [2008]. To take advantage of cloud infrastructure and parallelize processes, deci-
sions about vertical and horizontal scaling must be made. In this research, different strategies
are tested and analysed to provide insight into these processes.

The cloud infrastructure’s elasticity facilitates the parallelization of processes, decreasing com-
putation time but introducing a new parameter, the computation cost. While the cost of per-
forming computations on on-premise systems is often not explicitly determined, each model
run on cloud infrastructure is explicitly charged. Even on the ”unlimited” cloud infrastructure,
it is desirable to limit the number of simulations.

Information theory, particularly Shannon’s Entropy, is utilized to quantify the collected infor-
mation. This measure assesses the amount of uncertainty or surprise of data and is utilized to
evaluate the information produced by hydrodynamical modelling output. At the batch compu-
tation level, the comparison of the entropy of individual events is used to determine whether
enough simulations have been performed. The collection of information is combined with the
costs of the cloud infrastructure and other parameters of the computational process of differ-
ent cloud configurations to make for different scenarios trade-offs. Indicators are introduced
that could help the modeller for different scenarios make a weighed decision by evaluating the
potential benefits and costs of a proposed decision.
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1 Introduction

1.1 Objective

This study focuses on utilizing high-performance computing on public cloud infrastructure,
together with information theory in water system assessments to determine the most time,
memory and cost-efficient HPC configuration. These assessments are computationally inten-
sive because a large number of input combinations need to be hydrodynamically modelled,
which process could be sped up by running parallel and evaluating the collection of infor-
mation from the inundation maps. The main research question to be answered to meet this
objective is as follow:

Research Question:
How could high-performance computing on cloud infrastructure and information theory enhance batch
computations for hydrodynamic modelling, such as in water system analysis?

The research has been divided into four sub-questions to enhance the process of answering.
Firstly, the possibilities and limitations of the configuration on public cloud instances have been
reviewed, which can be done by a literature study since bottlenecks of current computations
have been researched yet. Secondly, more detail is being paid to the amount of information
produced from the hydrodynamic modelling. This will be followed by focusing on the actual
performance of the computation by considering the different configurations. Lastly, informa-
tion theory will be used to quantify the amount of information of the outcomes of the model
simulations. The sub-questions are as follow:

Sub-Questions:

• What are the possibilities and limitations of HPC on cloud infrastructure for hydrody-
namic modelling?

• How to quantify the information obtained with hydrodynamic modelling?

• How to optimize the configuration of the cloud infrastructure for HPC with hydrody-
namic modelling?

• How could a cost-benefit analysis be performed of HPC on cloud infrastructure for hy-
drodynamic modelling?

1.2 Thesis Outline

In this section, an outline will be provided of the contents of this report and in what order
topics are presented and discussed.

In chapter 2, the literature review is performed to collect and analyse the existing literature on
the possibilities and limitations of the public cloud infrastructure. Furthermore, literature has
been considered about Shannon’s Entropy and the applications of this concept of information
theory in water resources management.

In chapter 3, the methodology is described of the experiments that have been performed. The
case study of the Vlietpolder is introduced, combined with the modelling process within the
water system analysis. For the evaluation of the computational processes on cloud config-
uration settings, the variants are discussed, and an overview is given of the tests that were

2



1.2 Thesis Outline

performed. This is followed by the method that is used to quantify the collected information
and how this relates to the scenarios that are considered for the cost-benefit analysis.

In chapter 4, the results are presented of the tests that have been performed. This considers an
analysis of the computational processes on the cloud configurations that include tests about
the pod resource allocation and the node size and type definition. The evaluation of the
hydrodynamic modelling results with Shannon’s entropy definition is presented, together with
the indicators for the scenarios of the cloud configuration.

In chapter 5, the discussion of the literature, methodology and results is shown. In this section,
the results are explored and combined with the related literature and how these relate to
utilising high-performance computing and information theory on the cloud infrastructure.

In chapter 6, the conclusion and recommendations for further research are given. The main
findings of this research are combined with answering the sub-questions and main research
question, followed by three recommendations for follow-up research.
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2 Literature Review

2.1 Hydrodynamic modelling

Hydrodynamic modelling is a simulation technique used to study the behaviour of water bod-
ies, such as oceans, lakes, rivers, and estuaries. It involves the use of mathematical models
and numerical methods to simulate the flow of water and the transport of materials within
these systems. The models used in hydrodynamic modelling allow to estimate various phys-
ical factors, such as water depth, velocity, and pressure, to describe the behaviour of water
bodies over time. Hydrodynamic modelling could be used for various purposes. Examples
are; providing a deeper understanding of the complex processes that take place within water
bodies, such as tides, waves, and currents, to evaluate the impact of various human activities,
such as coastal development and pollution, and assessing water systems to analyse the flood
risk of the built environment.

With the different types of utilization purposes, there are also different levels of complexity of
hydrodynamic modelling techniques. The floodplain flow determines the spatial representa-
tion that is required and based on this the models can be dimensionally grouped into 1D, 2D
and 3D, with an additional combination of 1D2D Teng et al. [2017]. The application types of
the 3 model representations and the combination will be described and discussed.

The simplest representation is to treat the flow as one-dimensional along the centre line of the
river channel. For many hydraulic simulations, a 1D assumption can be used, simply because a
detailed model solution is unnecessary or because the flow is remarkably 1D, such as a pipe or
in a confined channel. With assumptions such as cross-section averaged velocity and parallel
flow on the floodplains with respect to the main channel, 1D models can also be used to model
open surface floodplain flow Teng et al. [2017], the 1D conservation of mass and momentum
that are solved in the D-HYDRO 1D2D Suite are 2.1 and 2.2.

Conservation of mass 1D
∂Q
∂x

+
∂A
∂t

= 0 (2.1)

Conservation of momentum 1D
1
A

∂Q
∂t

+
1
A

∂

(
Q2

A

)
∂x

+ g
∂h
∂x

− g(S0 − S f ) = 0 (2.2)

The 2D models represent a two-dimensional field with the assumption that the water depth
as a third dimension is shallow in comparison to the other two dimensions, which means that
the velocity variation in the z-direction is assumed as average. The D-HYDRO 1D2D suite of
Deltares solves the two-dimensional shallow water equations, which represent the mass and
momentum conservation in a place Deltares [2022]. These equations can be derived by depth
averaging the Navier-Stokes equations Teng et al. [2017], and are presented in 2.3 and 2.5.
For many scales, a two-dimensional shallow water approximation is adequate. However, in
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2 Literature Review

certain events, insight into vertical features such as vertical turbulence, vertices and spiral flow
at bends could be relevant. For the representation of these features, 3D models could be used.
There are 2 common methods that 3D models are solved, the first one being the 2D shallow
water equations for horizontal flow with a quasi-3D extension to model velocity in vertical
layers and the second model three-dimensional Navier-Stokes equations Teng et al. [2017].

Conservation of mass 2D
∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= 0 (2.3)

Conservation of momentum 2D
∂(hu)

∂t
+

∂

(
hu2 + 1

2 gh2

)
∂x

+
∂(huv)

∂y
= 0 (2.4)

∂(hv)
∂t

+
∂(huv)

∂x
+

∂

(
hv2 + 1

2 gh2

)
y

= 0 (2.5)

Besides these three models, the combination of models is receiving wider recognition as it al-
lows to maximize the benefits of modelling approaches Teng et al. [2017]. The most significant
combination is the coupling of 1D and 2D models. The most suitable type of model depends
on the characteristics of the hydrodynamic problem and needs to be evaluated per scenario.
The general rule of thumb is that the more detailed and more extensive the model, the more
(computationally) expensive the simulation will be. In essence, 2D hydrodynamic models are
the most widely used models in flood extent mapping and flood risk estimation studies Teng
et al. [2017]. In the case of a water system analysis, the combination of 1D and 2D models is
used, to simulate the channels one-dimensionally and the floodplains in two dimensions.

The simulations are performed with the D-Hydro 1D2D Suite, which consists of three modules:
the D-Flow Flexible Mesh, D-Rainfall Runoff, and D-Real Time Control. The Rainfall-Runoff
model is used for the simulation of the hydrological processes. This involves including the
precipitation as external forcing, the soil type and seepage to determine the balance of the
ingoing and outgoing flows for the catchment areas. These catchment areas are linked to the
1D component of the model, the waterways, and depending on the groundwater level and
water level in the waterways, this flow can be in both directions. The 1D component of the
model simulates the channel flow with the 1D conservation of mass and momentum as shown
in 2.1 and 2.2, based on the predefined computational points along the 1D waterway. In the
waterways, structures such as gates, weirs and pumps are located that are controlled in the
modelling using the D-Real Time Control module. The 2D component simulates the overland
flow, without a predetermined flow path with the use of flexible mesh that is finer towards
the waterways. These two components are coupled with 1D2D links. At every computational
point of a 1D waterway a link is placed between the waterway and the nearest 2D grid cell.
The number of computational points along the 1D waterway, the grid size and the number of
1D2D links present a trade-off between accuracy and computation time. More links and grid
cells could increase the accuracy but could also increase the computational time and cost.

Hydrodynamic simulations, and two-dimensional shallow water equations specifically, require
computationally intensive numerical schemes to solve the equations that result in a burden Cea
and Costabile [2022]. Developments are going on that are decreasing the computational burden
of this type of modelling. These advances are in the field of computing science, where cloud

6



2.1 Hydrodynamic modelling

computing devices can be utilized to enable parallel computing Teng et al. [2017] as in the field
of artificial intelligence and machine learning (AI-ML). In the latter field, the simulations are
not performed numerically, but based on techniques such as surrogate modelling. However,
given that AI-Ml models require extensive data and training, this type of modelling is expected
to be an extension of mechanistic resource models and also requires advances with respect to
computational speed Morales-Hernández et al. [2020].

2.1.1 Water System Analysis

Flood risk assessment of regional water systems consists of the hydrological translation of
extreme precipitation events to the probability of exceedance of water levels, to test the norms
of the national administrative agreement on water (Nationaal Bestuursakkoord Water, NBW).
The objective of the analysis is to verify whether the norms for flood inundations are met for
the different return periods and, if not, what actions should be performed to comply with
the regulation. The focus of the water system analysis is not on extreme flood events, but
on the inundation of areas that are not intended to inundate. The largest difference with
respect to modelling extreme floods is that in the water system analysis, it is about economic
damage and/or nuisance in daily life, with no fatalities. The role of hydrodynamic modelling
in water systems analysis is to perform simulations on regional urban and rural areas of
interest with input parameters that represent real-life events that could occur. The simulations
are performed for parameters like groundwater table, precipitation volume and precipitation
patterns, where all possible combinations of the parameters need to be computed, resulting
in a large batch of hydrodynamic simulations. The model output of all the simulations is
evaluated, and return period maps are obtained. These return period maps could be used
as input for a damage assessment to get the associated cost of extreme precipitation events,
which could be used for the investment policy of water risks Velner and Spijker [2011].

2.1.2 HPC in hydrodynamic modelling

HPC refers to solving computational intensive problems with parallel processing on large-scale
computer clusters such as supercomputers or cloud infrastructure Morales-Hernández et al.
[2020]. The computational burden of hydrodynamic model simulations on a local computer
or a small-scale computing cluster, should be managed more efficiently with HPC. However,
high-performance computing for hydrodynamic modelling requires both developments on the
software side and the computational side. In this section, the focus will be on the software
side discussing the possibilities and limitations of the used software for model simulations.

The key characteristic of HPC is parallel processing, computing multiple processes simulta-
neously. Each simulation from a batch will be computed individually, however, rather than
performing them sequentially, these simulations are performed simultaneously parallel to each
other. The number of simulations that can be computed in parallel is dependent on the infras-
tructure that is being used, the size of the compute instances and the number of these active
instances, as the model characteristics, such as the amount of resources that are required and
allocated to each simulation. Thus a suitable infrastructure is required to perform the HPC.
However, from the software perspective, this should also be possible. There are different types
of parallel computing, in this case, these will be distinguished based on the communication
requirement. When communication between parallel processes takes place, called tightly cou-
pled modelling or grained parallelism and where no communication takes place, called loosely
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2 Literature Review

coupled modelling or embarrassingly parallelism. The latter type is the easiest to parallelize,
since in multi-CPU systems the computational burden shifts from the number of operations to
the communication between processors Morales-Hernández et al. [2020].

In the case of tightly coupled models, a single model is partitioned and computed on dif-
ferent instances, however, the partitions are still dependent on each other. After each time
step, it is required to exchange boundary conditions, since the cells require the water level
and flow velocity from their neighbouring cells for the next time step Deltares [2022]. When
performing the computation on a multi-CPU system, the communication of these boundary
conditions becomes the new computational burden Morales-Hernández et al. [2020]. How-
ever, GPU computing has emerged in the last few years which could cause an acceleration for
the parallel architecture. A central processing unit (CPU) is a versatile electronic component
that executes a wide range of instructions sequentially, serving as the primary ”brain” of a
computer system. In contrast, a graphics processing unit (GPU) is a specialized electronic
component specifically optimized for computationally intensive tasks related to graphics and
mathematical calculations. However, GPU systems require software adjustments whereas on
CPU systems that is not the case. From the software side, there are elements that could be con-
sidered to improve the efficient use of the resources, focusing on load balancing and limiting
communication.

One of the most important aspects of tightly coupled modelling for hydrodynamic modelling is
domain partitioning since this influences the overall computation process significantly. Firstly,
when the partitions are computed independently from each other, the computation time per
time step is determined by the slowest partition. After every time step, the boundary condi-
tions should be communicated with the neighbouring partitions, and this can only take place
when all partitions are finished. Therefore, all partitions should be well-balanced computa-
tionally, meaning that the computation times of the partitions are comparable. In hydrody-
namic modelling, the traditional handling of wet/dry cells is that dry cells are skipped in
the computational cycle, and the compute point is moved onto the next cell. This poses an
extra challenge to perform load-balancing Morales-Hernández et al. [2020]. Dry-wet cell mod-
elling is a dilemma for water resources hydrodynamics that can result in load imbalance and
computational inefficiencies that can affect scalability Tallent et al. [2010].

Furthermore, there is communication between the partitions that influence the computation
time. When researching the performance of three-dimensional hydrodynamic models with
Delft3D, communication has been found one of the bottlenecks since this takes a relatively
long time in comparison with the overall computation process Mogé et al. [2019]. When
the model is partitioned, subgroups of the model are created, and virtual boundaries in the
model are applied. However, at these virtual boundaries, boundary conditions should be
exchanged between the subgroups since parameters such as water level and flow velocity of
the neighbouring partition are still dependent on each other. These boundary conditions that
should be exchanged between the partitions after each time step in the numerical simulation
are called communication. With domain partitioning, well-balanced partitions and limiting
the required communication between the partitions is a relevant topic for high-performance
computing in hydrodynamic modelling. A large share of computation time spend on data
transfer results in inefficient use of resources that affect scalability Morales-Hernández et al.
[2020].

Workloads, where the parallel processes do not communicate and/or are independent of each
other, are called loosely coupled or embarrassingly parallel. These types of models are suit-
able for infrastructure that does not have optimal communication between computation cores
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since network performance has been seen as one of the main bottlenecks for the adaptation of
tightly coupled computations in the cloud De Sensi et al. [2022]. In case of the water system
analysis, the batch computation consist of individual hydrodynamic models that are simualted
independently from each other, therefore, this can be classified as an embarrassingly parallel
workload. From the software perspective, these types of computations are more accessible,
since the partitioning of a model and the communication between the sections are not nec-
essary. It involves computing different tasks in parallel, but all these tasks are independent.
However, in comparison with the regular computing method, on a local computer or cluster,
there are still differences that require attention in comparison with high-performance com-
puting. From the software side, considering purely the concept of embarrassingly parallel
computing, no significant adjustments are required. The D-HYDRO 1D2D software package is
used for hydrodynamic computations. The standard software package however is not compat-
ible with the computation method of the cloud infrastructure, that is done with Kubernetes.
Therefore, a Docker Image of the D-HYDRO software has been used, which is a pre-release
(beta version) with version Delft3D FM Suite 2022.04 1D2D. Computing with loosely coupled
systems requires attention with respect to the vertical and horizontal scaling strategies that are
enabled with the ’limitless’ resources that the cloud infrastructure has to offer.

2.2 Cloud Computing

Cloud computing is a term that is broadly used. In essence, it can be defined as physical infras-
tructure that consists of data centres worldwide that are equipped with computing resources
that are linked together and made accessible to the public. There are different services that
are being offered. From applications that run in the cloud environment, also called Software
as a Service (SaaS) to using the hardware and systems software in the data centres, where
the infrastructure is offered as a service (IaaS) Armbrust et al. [2010]. For High-Performance
Computing, the focus is on utilizing the computational resources of the cloud infrastructure
to run HPC applications in a flexible and cost-effective manner, as a potential alternative to
on-premise systems Reed et al. [2022].

The advantage of cloud computing in comparison to on-premise owned or long-term rent
systems is the possibility of running an application on the most appropriate computational
resources in a cost-effective way without the investment in a self-owned system. These re-
sources consist of a large variety of instances that are characterised in terms of memory, CPUs,
accelerators and network bandwidth De Sensi et al. [2022]. The public cloud is accessible to
the broad public in a pay-as-you-go manner, paying only for the resources that are required for
the computation process, enabling scalability options that can be adjusted to the application’s
requirements Armbrust et al. [2010]. The flexibility to select computational resources that suit
the application or to meet the requirements of the modeller such as computation time, is en-
abled by the two types of scaling that is offered by the cloud: horizontal scaling and vertical
scaling.

Horizontal scaling involves adding more computing resources, such as additional servers or
virtual machines, to an existing system to increase its capacity. This method is typically used
when there is a need to handle a higher volume of traffic or data without overloading the
existing infrastructure. On the other hand, vertical scaling involves increasing the capacity of
an existing system by upgrading its hardware resources, such as adding more RAM, CPU,
or storage. This method is typically used when there is a need to handle larger individual
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workloads, such as running complex simulations or data analytics. Cloud computing provides
the flexibility to implement both horizontal and vertical scaling techniques to meet the needs
of a wide range of applications, allowing optimizing the computing resources based on their
specific requirements Armbrust et al. [2010].

For the case of vertical scaling is determining the CPU for an instance. There can be selected
different processors, with different numbers of cores, clock frequency and architecture, these
processors can are categorized as general-workload and compute-optimized instances. Besides
multi-CPU solutions, there is also the option at various providers to select GPUs or TPUs
(Tensor Processing Units). However, the application should be qualified to run on GPUs and
TPUs, which is a limitation since most of the applications run standard on CPUs. Another
relevant configuration setting is the network bandwidth, which is associated with different
computation instances De Sensi et al. [2022]. Setting these configurations is called vertical
scaling, and also forms the basis of horizontal scaling, since in a cluster the upfront selected
node type will be added or removed.

The cloud environment has been considered a good match for embarrassingly parallel work-
loads since minor differences in the compute performance of an HPC in the cloud and an
equivalent on-premise HPC system are expected. However, there is a large difference between
the network performance when comparing those systems, making this one of the main bot-
tlenecks for the adaptation of tightly coupled computations in the cloud. This difference in
network performance could be justified by the ten times increase in latency that has been found
on the AWS and GCP infrastructure. Another benefit of the cloud environment is that in these
systems are frequently equipped with new hardware, whereas local compute resources have
longer life cycles De Sensi et al. [2022].

The shift from on-premise computing resources to cloud resources induces changes in the
economic considerations associated with computing. On-premise resources are typically ac-
quired through capital expenses and offer a certain level of computational power, while cloud
resources are acquired through operating expenses, with payments being made for the specific
resources and the amount of resources used. In the context of batch analytics, cloud comput-
ing exhibits a notable feature referred to as ”cost associativity,” wherein the cost of using 1000
machines for an hour is the same as using a single machine for 1000 hours. Nonetheless, when
comparing the costs of on-premise systems with those of the pay-as-you-go approach in the
cloud, the concept of elasticity must be considered. This concept facilitates the transfer of risks
associated with overprovisioning and underprovisioning from the user to the cloud provider
Armbrust et al. [2010].

2.2.1 HPC for hydrodynamic modelling on the cloud

Flood inundation modelling serves the purpose of understanding, assessing and predicting
flood events. The application purpose of any modelling is to provide context for the output
variables of interest, time and space scales, the required level of accuracy and computational
demands Teng et al. [2017]. In the water system analysis, relevant output parameters are the
maximum flood extent, the water depth and its return period as input for a damage assessment
Velner and Spijker [2011].

In the cloud, the computational resources are offered in a pay-as-you-go manner, which in
practice means that the costs for the computing process are expressed explicitly in a monetary
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value. In cases where the computation time of large computation processes is a limiting fac-
tor that influences model choices such as grid size, simulation period and variables that are
considered, the computation cost could replace this factor. The computation time when per-
forming batch computations in the cloud will not be a limiting factor anymore, since in theory
the computation time can be reduced to the computation time of the longest simulation when
all events are run in parallel. A large number of simulations can be performed, with a lot
of possible combinations or variables and model decisions, however in the context of a water
system analysis, the simulations are performed to obtain information about the maximal water
depth per pixel per return period inside the flood prone area. This information can again be
used to assess the damage of the extreme precipitation events, thus the gathered information
has value when it comes to the application of the results. When the cost of the computation
is explicit and the value of the information can be assessed and quantified, how can these be
used in an evaluation of different configurations of HPC for flood simulations?

2.3 Information theory

Hydrodynamic simulations generate information about inundations, information that is used
as input for a damage assessment and the basis of water system policy to evaluate whether
the norms are met and what the economical damage is of extreme precipitation events. When
considering the value of information, this can be defined as the expected value of the outcome
given a decision using that information minus the expected value of the outcome with a de-
cision based on prior information Weijs [2011]. Modelling decisions influence could influence
the quantity of information that is collected, for example, the grid size of the model. A higher
model resolution results in a more accurate inundation map, from which a more accurate dam-
age estimation can be made. The finer the model resolution, the larger the computation time
and computation cost. Furthermore, the output files are bigger, which corresponds with longer
writing and saving time. In this section, the literature on the quantification of information with
Shannon’s Entropy will be discussed, followed by literature about the damage assessment, that
could be used to express the value of the additionally obtained information.
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2.3.1 Shannon’s Entropy

In 1948 Shannon proposed a measure of information or uncertainty for any discrete probability
distribution based on the principle of entropy thermodynamic entropy. To quantify the infor-
mation produced by a Markoff process and to translate this to the rate at which information
is produced Shannon [1948]. The input for determining the entropy is a set of possible events
with probabilities of occurrences p1, p2, ...pn. These probabilities are everything that is known
concerning which event will occur and are translated to a measure of how much information
is collected or of how specific the outcome is Shannon [1948]. When applying the theorem of
Shannon’s Entropy on an event, events with a uniform distribution will have a larger entropy
than a sharply peaked one. This corresponds with the intuition that the former distribution
represents more uncertainty and unpredictability. Shannon’s entropy can be determined with
the following equation where the outcome has the units of bits of information:

Shannon’s Entropy −K
n

∑
i=1

pilog(pi) = H (2.6)

Shannon’s entropy has been applied in the water management and hydraulic engineering field
in various ways. Mishra et al. [2009] used the marginal entropy, to investigate the variability
associated with monthly, seasonal and annual time series of precipitation data. Where the
marginal entropy refers to the entropy of a single random variable in a system consisting of
multiple random variables. Haghizadeh et al. [2017] evaluated the flood potential of water-
sheds when there is a lack of high-quality data with the use of Shannon’s Entropy, finding that
using this measure, flood-susceptible areas were recognized. Singh [1997] reviewed contribu-
tions on entropy applications in hydrology and water resources and stated that entropy-based
modelling is versatile, robust and efficient and can be used to evaluate the adequateness of
available information.

The events that are simulated with hydrodynamic modelling ’produce’ information with every
time step and simulation that is being computed. As introduced in the cost-benefit analysis
section, the production of this information needs to be quantified in order to consider in the
analysis. In the literature, this has not been achieved with the use of Shannon’s entropy.
However, with the provided insight in the use cases contributes to quantifying information
obtained during the hydrodynamical modelling process

2.3.2 The damage assessment

Information is collected when the hydrodynamic simulations are performed. The value of in-
formation is the expected value of the outcome given a decision using that information, minus
the expected value of the outcome with a decision based on prior information. To determine
the values of the outcomes of certain decisions, the information from the hydrodynamic simu-
lations is used to determine the damage. This evaluation is done with the usage of the ’Schade
Slachtoffer Module 2017 (SSM-2017), a tool provided by Rijkswaterstaat to assess the damage
value as a function of the water depths and land use type. Physical damage is quantified as
the sum of the loss of capital or production per affected area or land use type. The relation
between damages and inundation characteristics for each land use type has been characterized
by damage functions Slager and Wagenaar [2017].
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The damage assessment provides critical information regarding potential inundation damage
and harm to essential and susceptible infrastructure. This information is particularly important
for municipalities, water boards, and provinces that require it to devise built environment
policies Slager and Wagenaar [2017]. Utilizing a more detailed model when evaluating regional
inundations can provide a higher level of precision in assessing damage, thereby resulting in a
more precise estimation of the damage caused. This, in turn, is used as input for water safety
policies. The value of information, defined as the difference between the expected value of
an outcome following a decision with higher accuracy versus a decision with lower accuracy,
is crucial in determining the feasibility of an investment aimed at preventing or reducing
damage. For example, when comparing two hydrodynamic simulations - one more detailed
than the other - the outcome provides a more precise or less precise damage assessment. If
the more accurate model predicts a lower damage assessment, it could result in a decrease in
public spending for required investments. Conversely, if the more accurate model predicts a
higher damage assessment, then the required investment may be larger, thereby resulting in
fewer damage costs.
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3.1 Case Study Vlietpolder

The Vlietpolder is a polder located in the municipality of Naalwijk, the Netherlands (51.990688,
4.227530) and falls under the waterboard of the Hoogheemraadschap van Delfland. For this
area, a water system analysis will be performed, where the return period of the inundation
area and depth are mapped for different precipitation events. The hydrodynamical modelling
of this study consists of the simulation of precipitation events with a range of rainfall volumes
and patterns. This is done with a 1D2D model, where the waterways are modelled in 1D
and the surrounding land in 2D, with the D-HDYRO 1D2D Suite from Deltares. The model is
built up from a flexible mesh grid, with changing grid cell dimensions that are larger at the
land areas and become smaller closer to the waterways. In the modelling suite, the standard
component D-flow is used for the hydrodynamic modelling itself, in combination with the
Rainfall-Runoff module to simulate precipitation events and the Real-Time Control module,
for water infrastructural elements such as weirs and pumps.

The Vlietpolder is characterized by the large number of greenhouses which influence the
rainfall-runoff in this area since the infiltration of precipitation into the soil is limited and
needs to be managed with the channels. The greenhouses are equipped with a basin for the
temporary storage of the precipitation for compensating the lack of infiltration in the soil. This
measure should store the water during and shortly after the precipitation event to gradually
release the water during a later stage as a measure to prevent inundation.

Figure 3.1: D-HYDRO 1D2D model representing the channels in the Vlietpolder with the ac-
companying objects that are included in the Real-Time-Control. Including and excluding
the Flexible Mesh.
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To perform the water system analysis, the stochastic method (stochastenmethode according
to Velner and Spijker [2011]) is used to identify the relevant system parameters that could
lead to extreme water levels. For the Vlietpolder, the precipitation volume and pattern are
selected as the key parameters, although other factors, such as the roughness coefficient of wa-
terways and the filling rate of retention basins at greenhouses, may also be relevant. Typically,
the groundwater level is included as a parameter, as it affects infiltration and precipitation
runoff. However, due to the large proportion of hard surfaces in the Vlietpolder, infiltration
is limited, and the groundwater level is not expected to impact the hydrodynamic modelling
significantly.

The distribution for the precipitation volume is discretized into bins, and the accompanied
probability of occurrence is determined, following the approach outlined in Velner and Spijker
[2011]. For the Vlietpolder, a rainfall event with a duration of 4 hours is chosen as decisive,
although longer rainfall events are typically relevant in rural areas and shorter events in urban
areas. The Vlietpolder is classified as a rural area, but due to its substantial land-covered
area, the 4-hour precipitation event is selected. The precipitation data is obtained from the
KNMI that provides per precipitation duration, the relation between the precipitation volume
and the return period Beersma et al. [2019]. This relation has been added in figure 3.2. This
distribution is discretized to precipitation volumes that will be used for the events of the batch
computation. For the precipitation volume, 19 values ranging from 10 to 100 mm with steps
of 5 mm are computed. An overview of the volumes with the corresponding probability of
occurrence is added to the appendix 1.
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Figure 3.2: The precipitation volume distribution for 4-hourly precipitation events.

The 7 different patterns show the distribution of the precipitation volumes during the 4-hour
simulation. The accompanied probabilities are added to the appendix in table 2. The precipita-
tion patterns are also stated in the technical report of the STOWA Beersma et al. [2019] and are
shown in figure 3.3. A pattern shows the distribution of the precipitation volume during the
simulation. The two most distinguishable patterns are the one that is the most uniform over
time, representing a constant precipitation event, and the one with a large peak, indicating a
short but intense event. The other 5 events are combinations of these two extremes.
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Figure 3.3: The precipitation patterns of the 4-hour event, indicating the share of the precipita-
tion volume per hour.

For each discretized precipitation volume, the seven precipitation patterns will be simulated.
This results in a batch of 133 hydrodynamic 1D2D simulations that must be computed. In
this case study, two parameters have been selected for the stochastic method, the precipita-
tion pattern and volume. However, for other water system analyses, at least two additional
parameters are not unusual. This results in significantly more computations needed in the
hydrodynamic batch computation, since each parameter will be discretized and all possible
combinations of parameters are computed when no subselection is made. This makes this case
study a relatively small batch computation. This batch computation is a representative start
to compute and analyze the results and scale up to even more compute-intensive tasks for
this research that focuses on utilising cloud infrastructure for High-Performance Computing
purposes. These hydrodynamic models also provide organized output that can be quantified
with information theory to analyze and review its applicability and apply this in the context
of a cost-benefit analysis.

3.2 High-performance computing on cloud infrastructure

Numerous cloud computing platforms offer similar utility computing services on a pay-as-
you-go basis. Prominent examples of such platforms include Google Cloud Platform (GCP),
Amazon Web Services (AWS), and Microsoft Azure (Azure). These platforms provide com-
parable service levels, and the Google Cloud Platform has been selected to be used as the
infrastructure for this research. While the high-level structure of these cloud platforms is simi-
lar, there are differences in the names and designations of their individual elements. However,
at a lower level, there are divergences in the working methods of these platforms. Therefore,
it is essential to carefully consider the specifics of each platform’s working methodology to
ensure that it aligns with the desired outcomes and objectives of the project.

For each simulation, an individual pod is created, which in the context of calculation processes
can be executed embarrassingly parallel, comprising a large batch of computations. These pods
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are considered independent and self-contained environments, wherein input parameters are
provided for a computation to perform the required software. Once a computation completes
and its output results are saved externally, the environment is subsequently deleted. In figure
3.4, the following paragraphs will discuss an architectural overview of the cloud infrastructure
and all the components.

To execute the computations, Argo Workflow is an engine that allows container-based work-
flows, facilitating the building, deploying, and managing of complex workflows within a Ku-
bernetes environment. With this workflow orchestrator, each computation is set up in a pod,
which loads the required software and input parameters from external sources. Additionally,
the required and allocatable resources, such as CPU and Memory, can be defined for each pod
in the configuration step. In appendix 6, an example of a workflow that consists of a YAML
file has been added.

After designing the workflow, it can be submitted to a Kubernetes environment, such as the
Google Kubernetes Engine (GKE) in Google Cloud Platform (GCP), which automates the de-
ployment, scaling, and management of containerised applications. The steps defined in the
workflow are executed within GKE, which retrieves the Docker image from the registry on
GCP, loads the input from Google Storage, and runs the computation on the Compute Engine.
A Docker image is a lightweight, standalone, executable package that includes everything
needed to run an application, including the code, libraries, runtime, environment variables,
and system tools. The Docker Image from the D-HYDRO 1D2D Suite has been used for the
computations.

In the Compute Engine, a node represents a single computing unit on which the pods will
be scheduled. The node can have different types and sizes, making it the basis of the vertical
scaling strategy. Single nodes can be combined in a larger network that works together to
perform a specific task or provide a particular service. This network is called a cluster. In the
cluster, the number of nodes needs to be configured. GKE also offers auto-scaling options,
where Kubernetes manages the scaling of the number of nodes. In these tests, a fixed number
of nodes per cluster are set to be able to analyse the horizontal scaling strategy. On this
cluster, the GKE will schedule the pods to be computed. Following the successful completion
of all pods, the environment is deleted, retaining only the output files of the D-HYDRO 1D2D
simulation and deleting the computation logging.

Figure 3.4: The overview of the Cloud Infrastructure shows the utilised resources’ architecture.
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3.2.1 Resource Allocation

To execute the computations, resources must be allocated to the pods to define the resources
that can be used for that computation. These resources include vCPU, memory, and ephemeral
storage. vCPU represents a portion of the physical CPU assigned to a virtual machine and is
responsible for executing logical and mathematical operations. The number of allocated vCPU
to a pod is expected to influence the computation time, as it determines the number of oper-
ations that can be executed simultaneously. Allocatable RAM determines the maximum size
of hydrodynamic numerical simulations that can be computed. The numerical models used in
hydrodynamic simulations often require large matrices, which can consume a significant share
of the available RAM. Insufficient available memory can result in computation failure. Thus,
the influence of vCPU on the computation time and the memory limit will be tested.

The allocation of these resources is crucial for the performance of computations and the ef-
ficient use of cloud infrastructure. To investigate the influence of vCPU and memory on the
computation process, this study will test different settings with events from the case study.

The case study consists of 133 batch simulations with varying precipitation volumes and pat-
terns. The simulation with the largest precipitation volume and pattern resulting in the largest
inundated area will be used as a benchmark to compare different simulations on a specific
configuration. Two grid sizes have been defined, a resolution of 10 by 10 meters and one of 5
by 5 meters, with the former grid used for the benchmark. The latter resolution is assumed
to be the most desirable model and also assumed to be the most accurate. However, these are
assumptions as these have not been verified with the model outputs and their implications on
the objective of the model use.

To test the influence of the vCPU of the pod, the benchmark model is run for different pod
vCPU, 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 1, 1.1, 1.2, 1.5, 2.0, with a constant memory of 4GB.
Ten simulations were run for each pod setting to obtain the average value of the computation
times and to analyse the variability of computation times with different pod settings.

To investigate other computational aspects that may influence computation time, the model is
also tested with a lighter simulation and a smaller grid size, as well as the same simulation
with finer grid size. These four simulations tested with different pod settings are expected to
provide more insight into the effect of allocatable vCPU on the computation. An overview of
the tested combinations is given in 3.1.

Table 3.1: Overview of the configurations for testing the resource allocation of vCPU.
Event Grid size Compute Instace
V100P2a 10x10 General Workload
V100P2a 10x10 Compute Optimized
V100P2a 5x5 General Workload
V10P0 10x10 General Workload

In addition to vCPU, memory allocation is also expected to have an impact on computation.
The same tests for memory allocation will be performed as for the vCPU. In that case, the
vCPU will be kept constant at 1.5vCPU and the memory will be discretized in equal steps
from 0.5GB to 6GB.
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3.2.2 Cluster Configuration

One of the advantages of cloud computing is its ability to perform vertical and horizontal
scaling, which offers a broad spectrum of configuration options. This section will focus on
testing these options. Vertical scaling refers to defining the characteristics of the computing
instance, which includes vCPU, memory, and network bandwidth associated with a node, as
well as the hardware itself, such as general workload or compute-intensive instances. Whereas,
horizontal scaling involves adjusting the number of nodes in a cluster based on the workload
demands. In this case, the nodes initially selected for the cluster are used for scaling. Therefore,
the type and size of the node are crucial when setting up a cluster, as it serves as the starting
point for horizontal scaling. Due to the various available options, different configurations will
be employed for running the batch computation of the case study. Subsequently, parameters
from the cloud environment, such as the utilization rate of a node, CPU usage per node and
pod, and memory usage per node and pod, will be downloaded and analyzed to evaluate the
computation process on the defined cluster.

3.2.3 Node size

This experimentation is aimed at investigating the effects of both horizontal and vertical scal-
ing on the batch computation of 133 simulations from the coarse model resolutions across the
three clusters. Specifically, parameters such as computation time, duration of batch compu-
tation, and node utilization will be analysed to determine the influence of node size on the
computational process. The number of simultaneous simulations conducted on the thin nodes
and the fat nodes will differ, with two simulations being computed on the thin nodes, and 21
pods on the fat nodes.

In order to investigate the impact of cluster configuration choices, an experiment involving
the deployment of three clusters with varying node sizes and numbers of nodes has been
conducted. Specifically, the three clusters will consist of thin, medium, and fat nodes, with the
thin nodes being allocated 4 vCPU and 16GB of memory, the fat nodes having 32 vCPU and
128 GB of memory, and the medium nodes 8 vCPU and 32GB of memory. The total amount
of vCPU and memory in each cluster remains consistent by adjusting the number of nodes,
despite the variation in node sizes and numbers. The thin and fat nodes will be represented
by 16 and 2 nodes, respectively, as shown in table 3.2.

Table 3.2: The cluster configuration overview for tests with thin, medium and fat nodes.
Cluster

Light Medium Heavy
vCPU per node 4 8 32
Memory per node 16 32 128
No. of nodes 16 8 2

Furthermore, it is essential to consider the pricing schemes of the clusters since they are com-
posed of nodes with varying sizes and numbers. The cost of running the fat nodes is higher
compared to that of the thin nodes. The cluster management fee is $0.10 per hour that the
cluster is active. The total cost of computation for each cluster will be analyzed using the cost
output from Google Cloud Platform.
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3.2.4 Virtual machine type

The virtual machine type is another fundamental aspect of vertical scaling, allowing for the
adjustment of a node’s computational capacity to meet application requirements. The virtual
machine type refers to a predefined configuration or specification of a virtual machine instance
offered by a cloud service provider. The terms Compute Engine instance, virtual machine in-
stance, VM instance, and VM are synonymous. On the Google Cloud platform, six standard
computational instances are available, spanning from general workload instances to memory-
and compute-optimized instances. General-purpose machines exhibit the most favourable
price-performance ratio and the most flexible vCPU-to-memory ratio, for standard and cloud-
native workloads. Since general-purpose VMs provide a well-balanced combination of CPU,
memory, and storage resources, which allows for efficient utilization of resources, making
them cost-effective for many applications. Compute-optimized instances, offer a high perfor-
mance and frequency per core, making them well-suited for performance-intensive workloads
like batches of hydrodynamic simulations. However, compute-optimized instances are more
expensive than general-purpose machines, presenting a trade-off between computation speed
and cost. It should be noted that there are more VM types available in Google Cloud Storage,
these are suitable for purposes other than High-Performance Computing, such as web services,
database management and virtual desktops, making these not relevant for further analysis.

The configuration of the cluster with regard to the node type is expected to impact computa-
tion speed and cost. Therefore, a series of experiments have been conducted to provide more
insight into these distinctions. Initially, batch computation will be performed for the coarse
model on a light and medium compute-intense cluster. Although it would be ideal to perform
the computation on the cluster with fat nodes, it is not feasible to obtain precisely the same size
fat nodes for general-workload machines as for compute-intensive machines. The computation
times per pod for this batch can be compared to those obtained from general-workload node
types. Pod computation times are derived from the time the pod has a vCPU, which includes
loading the input and uploading the output from and to the cloud storage bucket. The finer
model is anticipated to require more time for computation than for loading and uploading
data in comparison to the coarser model. To investigate these differences, the batch compu-
tations are computed with the fine model on a light cluster for both general workloads and
compute intense machines. Table 3.3 presents an overview of all tests performed to compare
the influence of node type on the computational process.

Table 3.3: The cluster configuration overview for testing general workload and compute-
intensive instances with different model resolutions and node sizes.

Grid Size Cluster Node Type VM Machine
10x10 Light General workload E2
10x10 Medium General workload E2
10x10 Light Compute intensive C2
10x10 Medium Compute intensive C2
5x5 Light General workload E2
5x5 Light Compute intensive C2

This experiment investigates the impact of various computing instance types on hydrodynamic
batch computations. The analysis of the computation process from these experiments provides
insights into the influence of these instance types on the computation time and cost. The
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inclusion of two model resolutions enables the evaluation of the effect of node types on both
small and large-scale computations.

3.3 Information quantification of the model results

One of the objectives of this study is to measure the amount of information obtained from
hydrodynamic modelling by quantifying the output parameters. The D-HYDRO 1D2D Suite
generates various parameters, including 1D and 2D flow velocity and water depth in the chan-
nel, which is used to determine the inundation area and depth for certain return periods and
for assessing the damage caused by extreme precipitation scenarios. While including flow ve-
locity is relevant for fluvial and coastal floodings, for pluvial inundations the 2D inundation
depth of the land area is the crucial parameter. Therefore, only the 2D inundation depth is
used to quantify the collected information.

To quantify the amount of information of the hydrodynamic model output, Shannon’s Entropy
is used as a measure, with its discrete form presented in equation 2.6 in the literature review.
To determine the spatial variability of the inundation depth over the land area, the model
output is represented as a 2D grid of the land area with inundation depths. The probability of
occurrence of water levels is calculated by representing the distribution of the numerical data
with a histogram, with the size of the bins determined using Sturges’ Rule.

Sturges’ rule 1 + 3.322 × log(N) = K (3.1)

Where K is the number of class intervals and N is the number of observations in the set. The
grid cells of the model will be used as the number of observations. The course and fine model
of the Vlietpolder consist of 82614 and 311455 grid cells, resulting in 39 and 43 bins. The lower
boundary of the distribution will be set at 0, which represents the dry cells, the minimal value
of inundation. The upper boundary of the distribution will be set at the largest water level
that has been computed for any cell during the simulation, for both the course and fine model
specifically. The y-axis of the histogram presents the number of grid cells of the model in a
respective bin. The equation of Shannon’s Entropy requires a probability as input, therefore
the count per bin is divided by the total number of grid cells.

The total number of bins influences the maximum value of Shannon’s Entropy. As different
bin sizes will be compared later on, normalization of this value is required. In the discrete
form of Shannon’s Entropy, the maximum value of entropy is ln(n), which occurs when all the
bins have the same probability of occurrence. The smallest possible value for entropy is zero,
which corresponds with the definition of Shannon’s Entropy. The normalization of Shannon’s
Entropy, as proposed in Kumar et al. [1986], is done by dividing Shannon’s Entropy by the
maximum value, ln(n), which results in an entropy between 0 and 1.

Normalized entropy −K × 1
ln(n)

n

∑
i=1

pi ln(pi) = H (3.2)

To determine the normalized entropy of a single inundation map, the inundation depths are
discretized into bins, and the count per bin is divided by the total number of grid cells. The
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total entropy per simulation of an event is obtained by continuously writing the inundation
map results during the simulation, with a reporting time interval of 15,000 seconds. The total
entropy per event is then computed as the cumulative entropy of the inundation maps with a
reporting interval of 15,000 seconds. The course and fine grid models have an average calcu-
lation time interval of 22 and 13 seconds, respectively. Writing the inundation map output at
each calculating interval would result in very large output files, and hence a reporting time in-
terval of 15,000 seconds is chosen as a trade-off between quantifying the collected information
and data manageability.

The methodology introduces a new method of quantifying the hydrodynamic model output,
which was not previously used. The proposed quantification method has the potential to
provide valuable insight into the information associated with individual events and batch
computations. This method will be used to quantify the information from a coarse-resolution
model and a fine-resolution model.

3.4 Cost-Benefit Analysis

The computational cost for the hydrodynamical simulations on the cloud infrastructure is
explicitly defined and can be obtained from the GCP BigQuery billing export. For operational
purposes, this means that on a project basis, the computational costs can be considered. This
could also result in the focus on the computation cost rather than on the computation time,
which could be a limiting factor for standard computing tasks. This shift of focus initiated the
idea of reflecting on a hydrodynamic simulation in the cloud from a cost-benefit perspective.

A cost-benefit analysis is a systematic approach to evaluating the potential benefits and costs
of a proposed decision. The purpose of conducting a cost-benefit analysis is to determine
whether the benefits of a proposed course of action outweigh the costs, and if so, to what
degree. It allows decision-makers to compare the expected costs and benefits of different
alternatives and choose the option that is most likely to result in a positive net benefit. By
taking a comprehensive view of the expected costs and benefits of cloud configuration and
modelling decisions, modellers can make more informed decisions, allocate resources more
effectively, and improve the overall efficiency of their operations.

The information that is obtained from the hydrodynamic modelling will be quantified with
Shannon’s entropy, as discussed in the previous section, 3.3. In the cost-benefit analysis, the
information that is collected, and the quantity of this, is assumed to be the benefit. The cost in
the CBA can be expressed in various ways, depending on the scenario’s objective. An objective
could be, for example, to obtain the largest amount of information for the minimum HPC cost
or to obtain information the fastest with respect to HPC time. In these cases, the cost in the
CBA is the HPC costs and the HPC duration, respectively. The cost could be dependent on the
objective of a modelling scenario. Therefore, in the CBA, not just a single parameter for the
cost should be used, but rather various factors should be included.

3.4.1 Multi-Criteria Analysis

In a Multi-Criteria Analysis, multiple criteria or factors are included to evaluate and compare
alternatives. The cost in a CBA is dependent on the objective of a scenario and, therefore,
could be represented by multiple factors. The benefit for each scenario will be the estimated
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amount of information that is dependent on the model resolution, and the cost will depend
on the selected factor. For each scenario, a decisive parameter is proposed that could be used
to select the most suitable model configuration that suits the scenario’s objective.

• The largest amount of information: when the hydrodynamic model output is evaluated
with Shannon’s entropy, a preference could be to collect the largest amount of informa-
tion.

• The cheapest scenario, collects the largest amount of information for minimal resources.
For this scenario, the indicator of the entropy/euro will be used, since this provides
a comparison between the different configurations and model resolutions. With this
indicator, the largest value will be most effective, since it provides the largest entropy per
euro.

• The fastest, the duration of the computation considers the computation time of the mod-
elling process, including the parallelization of the cluster. Therefore, the indicator for
the fastest scenario would be the entropy/duration, since this expresses the collected in-
formation over the computation time, with a larger value resulting in more information
being generated in a shorter period of time.

• The most efficient on the system, could be expressed with the indicator of entropy/
computation time. The duration of the process includes the parallelization of the pro-
cesses on the cluster set-up. However, when looking at the computation time, strictly
time spent in computation is considered the efficiency of the configuration is included.

These scenarios will be used to evaluate the configuration settings of the cloud infrastructure
and the modelling decisions that could be taken. During the analysis of the configuration
settings of the cloud infrastructure that will be done in section 2.1.2, the computational process
and associated costs will be evaluated. The data obtained in this process, in combination with
the quantification of the information in section 3.3, will be used to calculate the indicators that
are decisive for selecting a certain scenario.

3.4.2 The Marginal Cost-Benefit Analysis

Besides evaluating the different configurations for various scenarios with a Multi-Criteria
Analysis, two HPC configuration settings will be evaluated more thoroughly with a marginal
cost-benefit analysis. The marginal analysis is applied to examine the marginal changes in
costs and benefits associated with a particular configuration. The objective of this analysis
is to evaluate the marginal benefits and costs of the two configurations to propose the most
suitable configuration.

The two configurations will be the light cluster with compute-intensive and general-workload
machines. On both HPC configurations, the fine and the coarse model will be simulated since
it is expected these will have a different amount of information. The amount of information is
assumed to be the benefit for this analysis. The cost will be expressed as the total computation
time of D-HYDRO. For both models on the two HPC configurations, this variable is expected
to be different. To compare the marginal cost-benefits of the two configurations, for each
set-up the marginal benefit is determined by subtracting the amount of information of the
coarse model from the fine model. This represents the information gain. The marginal cost
is computed by subtracting the computation time from the coarse model from the time of the
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fine model, as this represents the cost of the additionally gained information. These marginal
costs and benefits are compared for each HPC configuration.

3.4.3 Evaluating the damage cost

Hydrodynamic simulations are employed to develop inundation maps for different return pe-
riods in the context of water system analysis, including the present case study. These maps
serve as inputs for damage assessments resulting from inundation events affecting the built
environment. The level of detail of the assessment depends on the resolution of the model
input, with finer models providing higher levels of detail compared to coarser models. Con-
sequently, damage assessments based on finer models are expected to be more accurate than
those based on coarser models. In cases where damage assessments based on the finer model
are lower than those based on the coarser model, the investments needed to meet policy re-
quirements could be reduced. Conversely, a more precise assessment resulting from a higher
level of detail of the inundation models can lead to less damage if the appropriate safety mea-
sures are taken during events. Overall, a higher level of detail in inundation models can have
a positive cost-benefit for damage assessment, but the balance between the benefits and costs
needs to be carefully evaluated.

The damage assessment in this study was conducted using the Schade Slachtoffermodule
(SSM) of Rijkswaterstaat Rijkswaterstaat. The minimum input required for this module is an
inundation map of the area of interest, which can be complemented with additional data such
as water level increase speed and flow velocities. However, the latter data are more relevant
for large-scale floods and less so for regional inundation caused by precipitation events Slager
and Wagenaar [2017]. The maximum water depth of an event was used as model input, and
the output was the damage assessment in terms of economic damage per land use type. To
enable a comparison of the assessment for different grid sizes, all events were evaluated for
models with two grid sizes.

For each event, the probability of occurrence was determined using statistics from KNMI
regarding the precipitation pattern and volume. By multiplying the difference in damage cost
with the probability of occurrence of the event, the annual cost of the damage difference was
estimated.

In short, the steps were performed to get the flood risk of the precipitation events:

1. Get the maximum inundation depths for all events for both grid resolutions.

2. Run the ’Schade slachtoffermodule’ (SSM) for all events.

3. Get the probability of occurrence per event based on the precipitation pattern and vol-
ume.

4. Evaluate the annual cost per year by multiplying the probability of occurrence of the
event with the damage assessment

This damage assessment will show the impact of the modelling decision of different grid sizes
on the cost estimation of precipitation events. In the result and discussion section, these will
be considered scenarios for the modeller.
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4.1 Introduction

Tests were conducted using various compute instances, different node sizes, and varying num-
bers of nodes in a cluster, in order to identify the most efficient use of cloud infrastructure for
high-performance computing. The batch computation for the water system analysis of Vliet-
polder, consisting of 133 events, was computed using several cloud infrastructure configura-
tions, and the computational process was analyzed and compared along with its associated
costs. Moreover, information theory concepts, particularly Shannon’s Entropy, were applied
to evaluate the model results of the hydrodynamic models and quantify the information ob-
tained. This measure of uncertainty or randomness was applied to the inundation maps of
the model output, and the entropy of the system was evaluated. Finally, a cost-benefit anal-
ysis was conducted to assess the value of the generated information from the hydrodynamic
simulations and the cost of using cloud infrastructure. This analysis involved weighing the
cost of obtaining more detailed information against its impact on the accuracy of the damage
estimation, which is linked to the inundation maps.

4.2 HPC on cloud infrastructure

4.2.1 Pod size Allocation

In this study, two rainfall events were tested on two grid sizes (5X5 and 10X10 [m2]) and two
compute instances in a cloud environment with various pod configurations to investigate the
impact of allocatable resources, such as CPU and memory, on the computation time. One of
the most extreme rainfall events was also tested with both grids on a general-purpose machine,
with a fixed memory and vCPU ranging from 0.1 CPU to 2 CPU. Each model configuration
was run 10 times, and the average computation time, as well as the minimum and maximum
values, were recorded and visualized.

The results indicate that the computation times for the coarse grid are significantly smaller
compared to the fine grid. Moreover, a larger vCPU than 1.0 does not result in a further
decrease of the computation time, while both configurations show an increase in computa-
tion time beneath 1.0 CPU. The spreading of the minimal and maximal values exhibits two
significant changes. The coarse model has a larger spreading of the values with decreasing
allocatable vCPU, and the spreading of the values is larger for the fine model compared to the
coarse model.
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Figure 4.1: The influence of the allocated vCPU on the computation time of the event V100P2a
for model resolutions 10x10 and 5x5. The dot represents the average out of 10 simulations,
and the error bar is the spreading of the pod computation time with the minimum and
maximum value out of the 10 simulations with the same configuration settings.

10 20 30 4050 100 200 300400500 1,000
Mean Computation Time [min]

0.1

0.2
0.3
0.4
0.5

1

2
3
4
5

10

vC
PU

V100P2a - 10x10 - Compute
V100P2a - 10x10 - General
V100P2a - 5x5 - General
V10P0 - 10x10 - General

Configuration

Figure 4.2: The influence of the allocated vCPU on the computation time of different event
types, model resolutions and compute instances. The compute-intensive machine and the
general-workload machine as the two different types of compute instances that have been
tested. The dot represents the average out of 10 simulations of the same configuration.

28



4.2 HPC on cloud infrastructure

The batch of computations consists of various events with different rainfall patterns, ranging
from a uniform precipitation pattern during the simulation to an event with a high density
at one specific moment during the simulation. Figure 4.1 considers one of the most intensive
events. Another test was performed with one of the least intensive events to see whether there
were differences. Furthermore, the tests have been performed on general-purpose machines,
also the compute-intensive machines will be considered and thus included in the tests. These
tests with another precipitation event and on a compute-intensive machine, are performed
in the same way as the previous test with the grid size. The results have been visualized
all together in figure 4.2, plotted on both log axis to show all the results in one figure. The
simulations on the coarse grid, but with variations in the precipitation events and compute
instance, show similar behaviour but with a shift in computation time. Furthermore, the
model that has been performed on the fine grid shows a less fluent pattern in comparison
with the 3 coarse models that have been tested. The vertical asymptote at a vCPU greater than
1.0 for the 5x5 model in 4.2 is not as straight as for the 10x10 models. Moreover, the linear line
of the increasing computation time with a decreasing vCPU shows more fluctuations for the
fine model compared to the coarse model.

4.2.2 Cluster configuration

The cluster is configured with two types of nodes, general-workload and compute intensive,
and varying node sizes, namely thin, medium, and fat. The goal is to identify the impact of
node sizes and types on the computational process. To this end, the influence of node sizes in
the cluster has been evaluated, followed by the node types.

Table 3.2 presents an overview of the configuration settings and batch simulation results for
various node sizes. The simulations were performed on three clusters with the same total
capacity for CPU and memory, but a different number and sizes of nodes. To analyze the
impact of node size on computational performance, the computation times of the 133 events
were plotted in a histogram for the light and heavy cluster configurations, which is illustrated
in Figure 4.3. The outcomes reveal that thin nodes have the fastest computation times, fol-
lowed by medium nodes, while fat nodes result in the longest computation time. In Table 4.1,
the duration of the computation process, which comprises the scheduling of pods on different
cluster configurations, and the computation time, which considers the overall computed min-
utes of all 133 pods, are presented. The computation process duration varied by a few tens of
minutes, whereas the total computation time differed by 2300 minutes between the light and
heavy clusters.

Table 4.1: The computation results for the batch simulation with the coarse model resolution
on the three different clusters; light, medium and heavy.

Cluster Grid Size Node Type Duration [min] Computation time [min] Utilization
Light 10x10 E2 259 7102 0.43
Medium 10x10 E2 242 8247 0.53
Heavy 10x10 E2 265 9438 0.56

Further analysis of the results shows that the batch computation on a cluster with thin nodes
does not behave in the same manner as the same batch calculated with the same total amount
of resources on fat nodes. Specifically, the total computation time is 33% longer on the cluster
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with fat nodes compared to the cluster of thin nodes. However, when considering the duration
of the computation, the process only takes 2% longer on the cluster with fat nodes, since
multiple processes take place in parallel. The medium cluster results in a total computation
time that is 16% larger with a computation time that is 6% smaller than the duration. The
utilization rate refers to the percentage of time that a virtual CPU is actively executing tasks
or processing instructions compared to its total available capacity. in 4.1, the fat nodes show
a larger utilization rate compared to the light nodes. This indicates that on the large cluster,
the vCPU is more effectively being used to perform computational workloads compared to the
medium and light cluster.
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Figure 4.3: Distributions of batch computation times on light and heavy cluster for the model
resolution of 10x10.

In addition, the influence of node types on the computational process has also been evaluated.
The tests were performed with compute intensive nodes, which have more suitable hardware
for computational processes. The results indicate a significant decrease in the computation
time. Specifically, the coarse grid has been tested on both medium and light clusters, which
show a decrease in the computation time in both cases of 25%. The fine grid has been tested
only on the light cluster, showing a decrease of 39%. Figure 4.4 illustrates the distribution of
the computation times of the pods on different node instances for the light cluster using the
coarse and fine resolution models.
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Table 4.2: The computation results for the batch simulation with both model resolution, two
different cluster node configurations and node types. The speedup of the compute-intensive
nodes is expressed in percentages compared to the equivalent settings with general work-
load nodes.

Cluster Grid Size Node Type Duration [min] Computation time [min]
Light 5x5 E2 1825 77410
Light 5x5 C2 1520 -16.7% 47055 -39.2%
Light 10x10 E2 259 7102
Light 10x10 C2 196 -24.3% 5342 -24.8%
Medium 10x10 E2 242 8247
Medium 10x10 C2 194 -19.8% 6181 -25.1%
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Figure 4.4: Distribution of computation time pods for light nodes on different compute in-
stances, presenting the coarse and fine model resolution.

The computation time range varies as the fine model requires significantly longer computa-
tion time than the coarse model. The bin sizes for both distributions are the same, enabling a
comparison of both graphs. For both grid sizes, the dispersion of computation times on the
compute-intensive nodes is smaller when compared to the general workload nodes. Addition-
ally, the distributions of the computation times on the compute-intensive cluster are shifted
towards the lower computation times for both models, similar to the computation times pre-
sented in table 4.2. The increase in computation time when the number of parallel processes
increases, as observed at the three cluster configurations on the general workload nodes also
account for the compute intensive cluster. Where the computation time of the batch on the
light compute intensive cluster is 5342 min, this is 6181 min on the medium cluster. For both
node types, the computation time increases 16% comparing the light cluster with the medium
cluster. In conclusion, the results demonstrate that compute-intensive nodes yield faster com-
putation times.

Overall, the results of this study suggest that the cluster configuration, specifically node sizes
and types, significantly impacts the computational process. The findings can inform the op-
timization of cluster configuration for hydrodynamical modelling, taking into account both
computational performance. In section, 2.3, the costs for the set-ups have been analysed based
on the computational performance will be showed.
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4.3 Information Quantification of Model Results

In this study, Shannon’s Entropy was utilized to measure the amount of information of the
output model for the 133 events in the batch computation of two grid sizes, using the method
outlined in Section 3.3. The temporal distribution of water level inundation maps during the
simulation was quantified using Shannon’s Entropy. The model generated results 105 times
during the simulation with a writing interval of 15000 seconds, and entropy was computed
at each time interval. Two inundation maps, representing medium and extreme precipitation
events, were compared in Figure 4.5, revealing differences in the extent and depth of inunda-
tion.

(a) Inundation map V50P2a (b) Inundation map V100p2a

Figure 4.5: Inundation map comparison at timestep 84 of the model simulation between pre-
cipitation event V50P2a and V100P2a for the model resolution of 10x10.

The inundation depth per grid cell per time step was stored in a table, which was used to
calculate the entropy of the inundation maps. The output data was binned and represented
as a histogram, as shown in Figure 4.6. Analysis of the histograms revealed that the first bin,
representing no to a small amount of inundation, had the largest count in both cases. However,
for the medium precipitation event, there were relatively small counts for larger inundation
depths, while the extreme event had larger counts and more bins with cells showing inun-
dation at greater depths. The resulting comparison of the histograms demonstrated that the
extreme precipitation event had a larger spread, more variability, and unpredictability, in line
with the definition of Shannon’s Entropy.
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Figure 4.6: Histogram comparison of the water depths in the grid cells at timestep 84 of the
model simulation between precipitation event V50P2a and V100P2a for the model resolution
of 10x10.

Finally, the development of entropy during the simulation was plotted, resulting in the graphs
of figure 4.7, where each point represents the cumulative entropy of the time steps. The entropy
development commenced at around time step 70, corresponding to the model setup where the
first half of the simulation was dedicated to wetting and filling the system and reaching steady
state initial condition before the actual precipitation event started. The intensive precipitation
event exhibited a steeper incline of entropy development compared to the medium event. Both
graphs showed a similar linear trend in the entropy development after time stamp 350 hours,
at which point the precipitation event was concluded and the system slowly returned to its
original state. This linearity could be attributed to the system slowly flushing out the water,
resulting in similar entropies since the inundated area remained constant.
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Figure 4.7: Entropy development during the model simulation of event V50P2a and V100p2a
for the model resolution of 10x10. The cumulative entropy development of the simulation is
shown, where per time step the entropy is determined.
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The cumulative entropy per event has been determined as the sum of all entropy estimations
per time step. The cumulative entropy for each of the 133 events of both grid sizes from
the batches have been sorted and plotted in figure 4.8. To compare both systems, in the
computation of the entropy a normalization has been done with respect to the number of grid
cells. The result is a distribution of the entropy of all events between the 0 and 3 bits. The first
45 ranked events have similar entropies, the inundation areas and depths are relatively small
for these scenarios, what results in a limited difference for the inundation depth distribution
and thus entropy. Between 45 and 73 events, the entropy for the fine grid is larger, followed
by 27 events where the coarse grid has a larger entropy. From event 90 to the final one, the
entropy for the finer grid is greater than the coarser grid again. A larger entropy represents
a larger variability of the input distribution. From an entropy of around 1.3 bits, the fine
grid has a greater entropy. In figure 4.8, also a histogram of the entropy per event is shown.
For both models there are a significant number of events up to 0.8 bits, with an especially
high bin count for the smallest entropy. After the 0.8 bits, the bins show a relatively uniform
distribution, where the fine grid counts at the largest amount of entropy.
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Figure 4.8: The development of the entropy with the ranked simulated models and the his-
togram distribution of the collected entropy per event.

When looking at the rate information is produced, the rolling window average entropy devel-
opment out of the simulations divided by the computation time of the simulations that have
been derived from the D-Hydro model output, two main observations can be made. The en-
tropy development for the coarse model is higher than the fine model, which indicates that
the additional generated information from the fine model is generated at a lower rate than the
information produced of the coarse model. The events are ranked on entropy on the x-axis.
The other trend is that the entropy development rate is larger for model that contain more
entropy, for both model resolutions. Despite the lower computation time of the events with a
lower entropy, the entropy development for events with a larger entropy is still higher.
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Figure 4.9: The entropy development rate of the batch computation ranked on entropy. Com-
puted by dividing the rolling window over the individual computation time of the pods for
both model resolutions

4.4 Cost-Benefit Analysis

This study presents various computational parameters for specific configurations that could
assist in making an appropriate decision for a given scenario. Specifically, this section presents
the costs associated with different model simulations on various cloud configurations, followed
by the results of damage assessments with different model resolutions to demonstrate the
economic impact of more accurate data. Finally, the study concludes by outlining criteria that
can be employed to determine the most suitable configuration for specific scenarios.

4.4.1 Cloud computing costs

In table 4.3 the configurations of the computation process and model resolutions are compared
with respect to the computing duration and associated costs. The model with the fine reso-
lution shows a larger computation time and associated costs with respect to the coarse model
resolution. The different set-ups that have been tested with the coarse resolution show that
the compute duration of the batch is smaller on compute-intensive clusters, however, there are
additional costs associated with this speed-up. In this table, the costs are presented of model
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and computation choices. These are linked to a benefit, whether it is a speed-up of the com-
putation time, higher model precision or lower costs. Firstly, a more detailed overview will be
provided of the build-up of the cloud computing costs, followed by the damage assessment.

Table 4.3: Duration and cost from computational process on different cloud configurations.
Cluster Grid Size Node Type Duration [min] Cost [€]
Light 5x5 E2 1825 € 103.10
Light 5x5 C2 1520 € 113.02
Light 10x10 E2 259 € 12.61
Light 10x10 C2 196 € 14.26
Medium 10x10 E2 242 € 12.00
Medium 10x10 C2 194 € 13.56
Heavy 10x10 E2 265 € 12.54

The initial experiment was performed with different node sizes in the cluster, comprising thin,
medium, and fat nodes, using the coarse grid. Table 4.3 illustrates that the cost for the three
cluster setups on the general workload nodes does not exhibit a substantial difference. Fur-
thermore, Figure 4.10 provides an overview of the costs associated with different categories
employed in the billing of the Google Cloud Platform, i.e., Compute Engine, Kubernetes En-
gine, Cloud storage, and Networking. The computation costs for the same batch calculation
on the three clusters are relatively alike, varying from 12 euros for the medium cluster to
12.61 euros for the light cluster. Compute Engine, which encompasses the infrastructure and
hardware exclusively used for computing, has the most substantial share of the costs. Cloud
Storage follows it, covering the costs for uploading and downloading data from storage to
nodes, and Kubernetes Engine, both having an equal share, with a minor fraction of costs
allotted to networking.

0 2 4 6 8 10 12 14 16
Sum of costs [€]

Compute intensive light
Compute intensive medium

General workload heavy
General workload light

General workload medium

Cloud Storage
Compute Engine
Kubernetes Engine
Networking

Service

Figure 4.10: Detailed cloud cost overview of computation model resolution 10x10 for different
configuration with respect to node size and type.
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When considering the cost overview of the simulation of the high resolution models, the com-
pute engine has the largest share of the total costs. The share for Cloud computing has a
similar amount as for the fine model. It should be noted that the axis have a different scale,
indicating larger absolute cloud computing costs. Which could be justified by the fact that the
high model resolution has larger output files that are transferred from the compute engine to
the cloud storage.
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Figure 4.11: Detailed cloud cost overview of computation model resolution 5x5 for different
node types.

Upon comparing the costs between the general workload and compute-intensive nodes for
computing the coarse model, an increase of approximately 13% is observed. The detailed
cost overview indicates that the difference in cost is primarily due to the rise in the Compute
Engine. This aligns with the anticipated outcome since optimized hardware is utilized, and
the Cloud Storage, Networking, and Kubernetes Engine components should not exhibit a
substantial variance.

Two batch computations have been performed for the same model, with two different grid
sizes. These consist of a coarse model and a fine model, with larger computation times and
costs for the fine model. In figure 4.12, the development of entropy is shown with the asso-
ciated costs of HPC on the cloud infrastructure. Comparing both models, the coarse batch
computation cost is significantly lower than for the fine model. The coarse model reaches a
certain amount of entropy with fewer resources. However, the fine model has a larger total
entropy.
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Figure 4.12: Cumulative entropy development versus the associated cumulative cloud comput-
ing costs for the coarse and fine resolution model.

The previous test outcomes revealed that the fine models exhibited significantly larger com-
putation times, and consequently higher computation costs. Specifically, on the standard light
and the compute light cluster, the computation cost for the fine model was seven times higher
than that of the coarse model. Furthermore, in all categories of the cost definition, the costs
escalated, with a significant proportion of the costs attributable to the compute engine. The
compute-intensive clusters, which demonstrated speed-ups of the computation process by 25
percent, were 13 percent more expensive compared to the standard nodes. The compute en-
gine, responsible for the faster but more expensive nodes, exhibited the most substantial in-
crease in the total cost of the cluster. The fine models are more expensive to compute, and
from the previous section about Shannon’s Entropy, is was observed that the higher resolution
models resulted in a larger entropy. However, the value of this information, or the benefit that
is achieved by computing a finer resolution model will be shown with the means of a damage
assessment.
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4.4.2 The Damage Assessment

To express the value of the additionally obtained information with the fine model, the inunda-
tion output maps of the simulations were used to make a damage assessment. Per grid cell, the
land-use type was defined. This is linked to a function that assesses the damage at a certain
water level, and with the inundation map of the Vlietpolder area, the total damage per event
has been determined. In figure 4.13, the cumulative flood risk of the batch computation is
shown for both grid sizes. The output of the damage assessment is the damage cost per event,
however, since the events have a different probability of occurrence, these cannot be compared
by simply summing them up. More extreme events, that result in a larger inundation area and
damage have a smaller probability of occurrence. To include both the damage cost and the
probability of the event, it was decided to present the flood risk, the product of these two has
been considered. The cumulative flood risk for the fine grid is lower than that for the coarse
grid. This implies that when this assessment is performed with the coarse grid, the damage
is overestimated compared to the fine grid, which could impact decisions made in the water
policy.
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Figure 4.13: Cumulative flood risk the simulated events versus the number of simulated models
that are ranked on entropy, both the coarse and fine resolution model.

4.4.3 The Scenarios of the Multi-Criteria Analyis

The batch computations with the different resolutions have been performed on different cloud
computing configurations, as presented in 4.4. There have been added two configurations
based on estimations and/or simplifications for the matter of comparison, a benchmark of
performing the computation on a local computer in series and in theory, the most optimal
solution to compute everything in parallel. For these configurations, four columns have been
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added that present a value or ratio that is relevant for different scenarios. These indicators
are:

• Total Entropy, indicating the total amount of entropy that has been collected during the
simulation, normalized for the number of grid cells that varies with the different model
resolutions. This indicator could be used to compare the model setup.

• Bits/€, the bits over the computation cost show the rate at which information is produced
per euro, also known as the benefit-cost ratio. When the most economical solution wants
to be selected, this is the relevant indicator.

• Bits/duration, the bits over the duration of the computation, indicate the rate at which
the entropy increases with respect to the duration of the computation. With the duration,
the computation time of the processes, including the parallelization, is considered. When
the objective is to collect the largest amount of information in the shortest period of time,
these parameters should be considered.

• Bits/Comp. time, the bits over the computation time indicate the raw computation time
of the process, excluding the parallel processes and the utilization rate of the configura-
tion. This indicator represents the efficiency of the entropy generation.

With these values and ratios presented, for different scenarios, a suitable decision can be made.
In the discussion, these results will be discussed in more detail.
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Table 4.4: Overview computational process of various configuration settings and model resolu-
tions with indicators for deciding the most suitable option for specific scenarios. The values
in this table are for the computation of the complete data set of 133 accumulated models.
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Table 4.4, gives an overview of the indicators that could be used to select the most suitable
configuration for the given scenarios. However, another approach is the comparison of the
configurations considering both the D-HYDRO computation time and the HPC cost, a com-
bination of two scenarios as mentioned in the MCA. This has been visualized in 4.14, where
for each configuration, the entropy rate of the batch computation is computed. The entropy
rate is defined as the amount of information divided by the HPC cost times the D-HYDRO
computation, representing a trade-off between the computation cost and computation time.
In the graph, there is a large difference between the entropy rates of the fine model and the
coarse model. Prior results showed that the difference in the amount of information between
the coarse and the fine model is limited. However, the computation time and cost increase
significantly. The entropy rates for the coarse model are more similar, with the entropy rate
for the light cluster with compute-optimized nodes being the largest.
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Figure 4.14: The entropy rate per configuration setting during the batch computation. The
compute-optimized and general-workload nodes, the light, medium and heavy cluster and
the coarse and fine model resolutions are included. The entropy rate is expressed as the
cumulative amount of information divided by the cumulative HPC cost and cumulative D-
HYDRO computation time.

4.4.4 The Marginal Cost-Benefit Analysis

The marginal cost-benefit analysis compares two configurations, the light cluster consisting of
compute-optimized and general-workload nodes. Where in the previous sections, the benefit
of the CBA was defined as the amount of information that was collected during the sim-
ulations, is the marginal benefit defined as the additionally gained amount of information
when running a more detailed (fine) model. The marginal cost is the additionally required
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D-HYDRO time to run the more detailed model, whereas the cost was beforehand defined as
the total HPC time, the total D-HYDRO time and the HPC cost.

In 4.15, the marginal costs and benefits are shown for the two configuration settings where that
were used to simulate the coarse and the fine models. These two models with different res-
olutions have been computed on different configurations, resulting in similar model outputs.
This results in almost equal marginal benefits for both curves in the graph as the cumulative
entropy difference is the same. However, the marginal costs that are expressed with the cumu-
lative time difference of the D-HYDRO computation times differ significantly. In the graph,
it can be observed that the marginal cost for the cluster with the compute-optimized nodes is
smaller compared to the general-workload nodes.
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Figure 4.15: Comparison of the marginal costs and benefits when computing the coarse and
fine resolution model on the light cluster with compute-optimized and general-workload
nodes.
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5.1 The configuration of the cloud infrastructure

Hydrodynamic modelling is a computationally intensive task that requires significant compu-
tational resources. Cloud computing offers a flexible and scalable solution to meet these de-
mands. To optimize the performance and cost-effectiveness of cloud-based high-performance
computing (HPC) resources for hydrodynamic modelling, it is essential to configure the infras-
tructure appropriately. In this regard, infrastructure analysis and comparison are conducted
at different levels of the cloud computing environment, ranging from the lowest level, which
involves pod allocation, to higher levels considering node sizes and types. The tests that were
performed with the water system analysis of the Vlietpolder enabled a comparison of different
cluster set-ups and resource allocations that provided insight into its influence on the compu-
tational process. In this section, the results will be discussed, with an analysis of the processes
taking place and their influence on application purposes.

5.1.1 Pod allocation

The efficiency of resource utilization depends on the appropriate allocation of resources for
each pod, which is at the lowest level of the cloud infrastructure. Overallocation of resources
for a pod results in underutilization, where computational space is reserved but not used,
leading to increased cost. On the contrary, there is under allocation of resources to the pod.
When this is the case, the implication on the computational process differs for both the vCPU
and the memory. In section 4.2.1, tests were performed to visualize the influence of different
allocated resources on the computation. In the case of vCPU, the computation slowed down
after a certain level but continued, as can be observed in 4.3 and 4.4. For the memory, there
is a limit of minimal allocation the computation needs, and when this is not met, it fails. For
the model with the coarse resolution, this limit is 0.75Gb and for the fine model 2.0Gb. The
memory requirement is dependent on the model characteristics. If the container exceeds the
memory request of the pod and the node that the pod is running runs out of memory overall,
it is likely the pod will be evicted The Kubernetes Authors [2023].

Figure 4.1 shows that the bandwidth of computation times increases as vCPU decreases for
the coarse grid. The D-HYDRO 1D2D Suite is a single-core program that uses a maximum of
one vCPU, even when more resources are allocated. When less than one vCPU is allocated, the
computation continues, but CPU throttling occurs, which could affect computational stability.
This phenomenon becomes more severe as allocated resources decrease, possibly justifying
the larger bandwidth of smaller allocated vCPU on the computation time. However, the broad
bandwidth of computation times for the fine model is not justified by this phenomenon. The
spreading of the computation times for the fine model cannot be specifically identified. How-
ever, multiple factors could have an influence. It could be the load-balancing techniques that
are used by the cloud platform that distributes the computation across multiple servers that
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could introduce additional variability for larger computations Shafiq et al. [2022]. Another fac-
tor that could influence the variability of the computations is when the virtualized hardware is
shared with another user that makes extensive use of the hardware components that influence
the performance of our virtual machine Schad et al. [2010].

The insight into the resource allocation could be used operationally when performing com-
putations with this single-core D-HYDRO 1D2D Suite image since the vCPU setting will be
applicable to all of those models. The required memory for the model simulation is model
dependent. For the coarse grid, 4Gb has been used and for the fine model 5Gb. For hydrody-
namic modelling, the required resources are dependent on the size of the matrix that needs to
be solved.

5.1.2 Node size

At the node level of the cloud infrastructure, there is the configuration of the cluster that
considers the nodes’ size and type. Firstly, the size of the nodes in a cluster is discussed
with the implication of the findings on optimizing the use of the cloud instances. Tests have
been performed with the batch computation of the hydrodynamic models of the Vlietpolder
on three different clusters. These clusters have the same total capacity with respect to vCPU
and memory, however, were comprised of different node sizes, a lot of thin nodes or a few
fat nodes. The HPC time of the batch process was similar on these three different cluster
configurations. However, the cumulative D-HYDRO time of the pods on the three clusters
significantly differed and increased for the larger node sizes.

The increase in computation time on larger nodes can be explained by the fact that on larger
nodes, more processes are taking place simultaneously. In this setup, there were two pods
running on an individual thin node and twenty pods on a fat node. The memory and CPU
allocation of the individual pod does not change. However, for other parameters, such as
internal node processes or external network devices, resource contention can be relevant. These
pods pull the image, read the input data in the Google Cloud Storage, write the output first on
the node and once the computation is finished in the GCS. These processes result in increased
network traffic and communication overhead, which could also result in delays. An HPC
performance analysis of the computational processes could provide more insight into which
of the bottlenecks, or a combination, results in the increased computation time. These insights
result in practical insight when setting up a cluster and whether these conditions apply to
specific types of batch computations.

However, the larger D-HYDRO time of the pods on the fat nodes does not influence the total
HPC time, which has to do with the utilization of the nodes. This is larger for the fat nodes than
the thin nodes, which the scheduling of the pods could justify. Namely, all pods that have been
scheduled on the three clusters had the same allocated resources. These pods are scheduled on
the nodes until the node does not have enough capacity for another one. The space that is left
on the node is wasted. A cluster consisting of 16 thin nodes, has 16 times some wasted space
on the node. Whereas a cluster with two fat nodes, only has twice this wasted space, enabling
a larger utilization. The advantage of the larger utilisation weighs in this specific scenario up
to the disadvantage of the slower computation times. The obtained insight into the resource
allocation to the pods could be applied when configuring the workflow to schedule pods on
the nodes to increase utilization.
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5.1.3 Node type

Thus far, only general-workload instances have been discussed as a vertical scaling strategy.
However, the node type can also be adjusted as part of vertical scaling, as compute-optimized
nodes have been used in the experiments. As expected, the results indicate that utilizing
compute-intensive nodes reduces computation time, resulting in faster simulations than gen-
eral workload nodes. Specifically, when computing on a compute-intensive cluster rather than
a general workload on the medium and light clusters, the computation time speedup for the
coarse grid model was approximately 25%, whereas that for the fine grid was 39.2%. This
difference in speed-up could be explained by the fact that the computation time for the fine
model is larger than that for the coarse model. The compute-optimized machines possess more
computation power and facilitate the acceleration of the computation time, while the reading
and writing processes remain constant. The net I/O time, the time required to read the input
files and write the output files, is expected to be greater for the fine grid than the coarse grid,
primarily due to the size of the model output. However, the relative I/O time for the fine grid
is expected to be shorter, given that the model simulation requires more time. The speedup of
the computation is attributed to the faster model simulation and will not affect the I/O time.

Furthermore, the distribution of the computation times for both model resolutions on the
compute-optimized and general workload light clusters are significantly different. On the
compute-optimized nodes, computations not only occur faster, but the spreading of the com-
putation times is smaller, as can be observed in the histogram of figure 4.4. This indicates
a more stable computation. This narrower range of computation times applies to both grid
sizes. Since the clusters have identical configurations, with the same number of nodes, node
sizes, and allocated resources to the pod, the discrepancy must be linked to the type of nodes
utilized. However, it could also be attributed to the underlying infrastructure since the nodes
are located within a larger cluster and data centre, which influences the performance of the
reserved hardware.

Allocation of resources to pods is also a critical configuration parameter that significantly im-
pacts the efficient utilization of computation, thereby increasing the utilization of nodes. The
size of the nodes, in turn, affects the performance of all pods scheduled on a particular node,
indicating a negative effect on overall node performance when the number of parallel pro-
cesses on a node rises, both applying for general workload and compute-intensive instances.
Meanwhile, the node type shows a reduced computation time and greater stability in compu-
tational performance. These observations are based on the impact of cloud configuration on
the computational process, and the associated costs of these choices will be discussed later, as
they also play a significant role in the configuration settings.

5.2 Quantification of Information with Shannon’s Entropy

The use of high-performance computing on cloud infrastructure has made it possible to per-
form many simulations in parallel, thereby eliminating the limiting factor of computation time.
However, another factor could be added as the computation costs of the cloud infrastructure
can be explicitly defined in monetary terms. To compare the computation time and cost of
the computation process, the obtained information from this process must be quantified. In
this discussion section, we explore the use of Shannon’s Entropy for quantifying the output of
hydrodynamic simulations of precipitation events.
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Shannon’s entropy is a measure of the amount of uncertainty or randomness in a system.
The differences in information arise from the variability in the input data, the complexity of
the hydrodynamic model, and the assumptions and simplifications made in the model. In
the context of hydrodynamic simulations of precipitation events, Shannon’s entropy can be
used to assess the amount of information contained in the inundation maps generated by
the simulations. However, the entropy value does not provide information on the physical
meaning or quality of the produced output variable, and it should be used in combination
with other metrics and analysis techniques to gain a comprehensive understanding of the
hydrodynamic model.

During a single model simulation, the model output was reported at 105 intervals. The cumu-
lative entropy was computed for both individual events and batch computations. Shannon’s
Entropy was normalized to account for the varying resolutions of different systems. The
quantification of entropy at each reported interval was performed by considering only the in-
undation map, which translates the inundation area and depths into a quantity of information.
It should be noted, however, that the inundation map is not the only output generated by the
model. The model also provides information on the flow velocity in the 2D area, as well as
water depth and flow velocities in the 1D channels. In the context of water system analysis,
where the primary focus is on the return periods of specific inundation depths, the inundation
map serves as the most relevant parameter. Nevertheless, depending on the intended use of
the model output, other parameters may also be of interest and should therefore be taken into
account in the computation of entropy.

The entropy value of a single inundation map represents the amount of variation in the water
depths. A minimum entropy value of 0 occurs when all grid cells have the same water depth,
which can align with the modelling purpose when there is no inundation in the area. However,
when the entire area is inundated with the same water depth, the entropy value will still be
zero because there is no variability. In that case, the definition of information does not align
with the use of the information in the context of water management. On the other hand, a
maximum entropy value occurs when the distribution of the histogram is uniform, indicating
that there is an equal probability for all water depths to occur with a significant amount of
variation in the distribution of water depths. While Shannon’s entropy measure is based on the
variability of a system, hydrodynamic modelling requires information on the return period of
certain inundation levels resulting from a batch computation. During this batch computation,
numerous simulations need to be performed where each event will have a unique entropy.

Combining the total entropies of all the events in a figure, such as in 5.1, an entropy increase
can be seen. For the first 60 models, the entropy are within a small range, resulting in a
high density of models with a similar entropy. However, after model 90, the spreading of the
entropy increases, and gaps begin to appear. In this case, the gaps between the entropies of
the simulated events are relatively small, indicating a good selection of combinations of events
that result in a well-spread distribution. From the perspective of model entropy, however, the
density of the models with low entropies is high and a the several events with low values, give
the same low amount of information. Only considering the quantity of information and not
the quality of the information, events in this range could be discarded from the analysis since
the same amount of information is provided.

Remarkably, the grouping of models with similar entropy values can be observed for the coarse
grid after 90 simulations and for the fine grid after 100 simulations, where the common pa-
rameter is precipitation volume. Figure 5.1 shows that the events are grouped by precipitation
volume, and the entropy varies within these groups due to different precipitation patterns.
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The gaps between the groups are caused by the discretization of the precipitation volume,
which is one of the key steps when initializing the relevant system parameters and setting up
the ’stochastic method’. In this case study, the gaps between the groups are limited due to
a sufficient number of steps in discretization. However, when the step size is increased, the
gaps become larger, and simulation events are missed. When performing a batch computation,
an overview of the entropy distribution could support the modeller in this situation, whether
enough events have been simulated or how much more and what type of events should be
added. Further research to link the entropy coverage to an end product, such as the return
period for inundation levels in this specific case, could provide more insight into the influence
of the entropy distribution on the end product.
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Figure 5.1: The entropy distribution versus the number of simulated event ranked on entropy
for the model resolution of 10x10, grouped by the precipitation volume.

The temporal evolution of entropy during a hydrodynamic model simulation via the cumu-
lative entropy of intervals is illustrated in figure 4.7. The entropy begins to develop at time
step 70, which coincides with the occurrence of a precipitation event in the model. Before
this time step, the model was initialized by simulating a light rainfall event and a period of
no further external forcing, allowing the system to reach a state of equilibrium as the initial
state. The entropy increment starts with an initial phase exhibiting an exponential function,
followed by a linear increment phase, which follows after the termination of the precipitation
event, while the system remains partially inundated. During these last intervals, the inunda-
tion map exhibits a high degree of similarity, thereby resulting in comparable entropies which
determine the angle of inclination of the linear increment. The cumulative entropy obtained
from the summation of intervals yields the total entropy of the simulation. However, after the
precipitation event has stopped, the entropy still increases due to the presence of inundated
areas. However, the benefit of this supplementary information for the modelling purpose is
limited. In combination with optimizing the HPC configurations, it could also be relevant to
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consider the efficiency of the simulation of a single model. Inefficiencies in a single model that
is going to be used for a large number of simulations make the overall batch that is computed
on HPC infrastructure also less efficient. The wetting and filling of the system and the simula-
tion period after the external forcing for the model of the Vlietpolder have a large share in the
total computation time. Optimizing this part has a large influence on the total computation as
well.

A comparison was made between the entropy development of coarse and fine models, as
depicted in Figure 4.7. The entropy values were normalized for the purpose of this compari-
son. The results reveal that the differences in entropy between the modelled simulations are
relatively minor. This can be attributed to the terrain and grid sizes used in the models. Specif-
ically, one cell of the coarse grid consists of four cells of the fine grid, resulting in a higher level
of detail. The fine grid showcases the variation that is reduced to a single level in the coarse
grid. However, the underlying terrain is relatively flat, mainly comprising agricultural land
and greenhouses, resulting in comparable inundation depths spread across the area, with min-
imal variations. Since the variation of the inundation depth is the input for Shannon’s Entropy,
these differences are slight. When examining the 10 by 10 and 5 by five grids, the higher level
of detail did not yield significant variation due to the slight differences in the order of mag-
nitude of the grid cells. These modelling resolutions are already highly detailed, and more
significant differences are expected when comparing higher resolutions, such as 100 by 100
and 10 by 10.

In this case study, the model output has been evaluated with Shannon’s Entropy, which al-
lowed for an evaluation of the information obtained from the simulations and supported in
determining whether an adequate number of models had been computed. A potential area
of interest lies in the application of this method to model inputs and the analysis of entropy
transfer from input to output. Further exploration of this application may support modellers
in selecting representative events or specific variable combinations that would reduce the num-
ber of simulations required. However, the complexity of the hydrodynamic model, as well as
the assumptions and simplifications made, may impact model results, requiring the consider-
ation of the relationship between input and output entropy. Further research on the entropy of
model input and entropy transfer, would require a suitable case study, one where the variables
are represented as distributions rather than deterministic values.

This discussion covers an exploration of the use of Shannon’s entropy as a measure for quan-
tifying the output of hydrodynamic simulations of precipitation events. While Shannon’s en-
tropy is a valuable metric for characterizing the variability of inundation maps produced by
simulations, it is recommended to combine it with a measure to oversee the quality of the
information, as now only the quantity of the information has been considered. By comparing
the total entropies of individual events, information distribution can be obtained that provides
insight into possible missing data, and the temporal evolution of entropy during a hydrody-
namic model simulation can provide valuable insights into the system’s behaviour. Shannon’s
entropy offers a mean for quantifying the information obtained by hydrodynamic simulations.
This parameter can be used as the benefit in the CBA as this enables the comparison of differ-
ent configuration settings.
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5.3 The cost-benefit analysis of HPC on the cloud

In this study, the cost of cloud usage was analyzed and divided into four categories, with the
most significant cost category being the Compute Engine. In the cloud, the cost associativity
concept applies to this category, which implies that the cost of running one machine for 1000
hours is equivalent to running 1000 machines for one hour. This implies that embarrassingly
parallel experiments can be accelerated to the extent allowed by the available cloud resources
until all simulations are executed in parallel. The remaining three cost categories are linked
to the transfer of data and I/O, which is model-dependent, and the cluster management fee,
which is charged per hour the cluster is active. To reduce the cluster management fee, which
is charged at a rate of $0.10 per hour per cluster, charged in 1-second increments, it is cheaper
to run more processes in parallel to reduce the active cluster time. The cost of data transfer
and I/O is associated with the model being computed and is charged independently of the
cloud configuration.

As demonstrated in the damage assessment, a more accurate model with a larger entropy
results in a larger total cost assessment. However, the difference in costs of the damage assess-
ment between the two model resolutions is smaller than the differences in entropy between
the two resolutions. The differences in entropy seem to be dampened out in the damage as-
sessment. This indicates that calculating cheaper and faster coarse model resolutions will be
better compared to fine-resolution models.

Selecting the appropriate node type, which tests the general workload and the compute-
intensive, also has a financial impact. It was observed that the computation duration decreased
by 20% to 32%, with an increase in the cost of 9% to 13%. However, a uniform recommendation
for using a specific node type cannot be made since it depends on the preference of the mod-
eller and the scenario under which the simulations are being performed. For the four scenarios
that were proposed in the methodology and the values for the indicators that were shown in
the results, the following configuration settings are the most suitable for each scenario:

• The largest amount of information: The largest amount of information, expressed as
entropy in bits, is obtained with the grid size of 5x5. Two configurations have the same
amount of entropy. Therefore, the modeller can choose the preferred option, the cheaper
or the faster one.

• The cheapest scenario: This indicator that belongs to this scenario is the amount of
information per euro, which is the fully parallel option performed on a local computer
with the 10x10 grid size. However, this is using no HPC and thus takes a long time.
From the HPC configurations, the medium cluster with general-workload nodes is the
most suitable with the coarse grid resolution.

• The fastest: The fastest scenario is selected by choosing the largest value of the indicator
that expresses the amount of collected information per unit of time. From the HPC
configurations, the medium cluster with compute-optimized nodes is the most suitable
with the coarse grid resolution.

• The most efficient on the system, is expressed with the indicator of entropy/ computation
time. For which the light cluster with the coarse grid on compute-optimized nodes is the
most suitable configuration.
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5 Discussion

For these scenarios the most suitable configuration has been selected based on the minimal
or maximal value of an indicator that has been computed for each configuration. However,
in figure 4.14, it was shown that a trade-off between the D-HYDRO computation time and
the computational HPC cost show different results. In that case, the entropy rate for the
configuration with the light cluster with compute-optimized nodes and the coarse model is
the most suitable set-up.

Furthermore, there is the marginal CBA, where the marginal costs and benefits of the com-
putation of a finer model are evaluated on two configurations. This evaluation only consists
of two configurations since the fine model has just been computed on the light cluster with
compute-optimized and general-workload nodes. In figure 4.15, the compute-optimized nodes
show a smaller marginal cost for the computation of additional information. It should be noted
that the marginal cost is expressed as the extra computational time that is required to perform
a more detailed model. This is again dependent on the objective of the modeller and the given
scenario. In the comparison of these marginal costs and benefits, the configuration with the
compute-optimized nodes would be the preferred option.
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6 Conclusion and Recommendation

This research focused on utilizing the high-performance computing on cloud infrastructure
together with information theory in water system assessments.

The first sub-question to be answered is What are the possibilities and limitations of HPC on cloud
infrastructure for hydrodynamic modelling?

The scalability, cost-effectiveness, and flexibility of cloud infrastructure provide significant ben-
efits for hydrodynamic modelling. The computational performance of the cloud infrastructure
reaches similar levels as the performance of on-premise systems. However, there are limita-
tions, such as network performance and technical expertise required to operate and manage
the infrastructure effectively. For embarrassingly parallel processes that do not require com-
munication, these can be accelerated as fast as available cloud resources will allow. Overall,
cloud-based HPC resources offer a promising solution to the computational challenges associ-
ated with hydrodynamic modelling.

In this research, the following was found about the second sub-question that states, How to
quantify the information obtained with hydrodynamic modelling?

The use of high-performance computing on cloud infrastructure has enabled large-scale hy-
drodynamic simulations of precipitation events to be performed in a reasonable amount of
time. Shannon’s entropy is a useful tool for quantifying the information contained in the inun-
dation maps generated by the simulations. By combining the total entropies of all the events,
an overview of the entropy distribution can be obtained, providing insights into the simula-
tion events’ coverage. However, it is important to note that the inundation map is not the
only output generated by the model and that the use of other parameters should be taken into
account in the computation of entropy, depending on the intended use of the model output.
Furthermore, it should be noted that the quantity of information should not be compared to
the quality of the information.

The third sub-question, How to optimize the configuration of the cloud infrastructure for HPC with
hydrodynamic modelling? , could be answered as follow:

This study conducted an infrastructure analysis and comparison at different levels of the cloud
computing environment to provide insight into the influence of different cluster set-ups and
resource allocations on the computational process. The results indicate that the efficiency of
resource utilization depends on appropriate allocation at the pod level, where overallocation
and under allocation of resources result in underutilization and computational failure, respec-
tively. At a node level, the size and type of nodes in a cluster also play a critical role in the
overall performance of the computational process. The larger the nodes, the larger the number
of parallel processes that slow down all the processes. When all the simulations are performed
in parallel, the cost associativity applies, and it is recommended to use thin nodes to per-
form the computation the fastest and cheapest as possible. Utilizing compute-intensive nodes
reduces computation time, thereby resulting in faster simulations compared to general work-
load nodes. The obtained insights into resource allocation can be applied when configuring the
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workflow to schedule pods on the nodes and increase utilization. These findings can be used
to optimize computational resources and achieve cost-effective and efficient simulations.

About the fourth sub-question, How could a cost-benefit analysis be performed of HPC on cloud
infrastructure for hydrodynamic modelling? , the following can be concluded:

A general recommendation for node selection could not be made as it depended on the pref-
erence of the modeller and the scenario under which the simulations were performed. The
parameters as computation time, duration and cost of the cloud infrastructure, in combination
with the quantification of information with Shannon’s Entropy, resulted in different indicators
that could be used to decide what configuration would be the most suitable for specific sce-
narios. Since the objective of different scenarios varies, the indicators could be used to make
weighted decisions. Shannon’s Entropy which is used to quantify the amount of gathered in-
formation is an essential concept in the CBA as it represents the benefit of this method, which
enables the comparison of configurations settings.

Finally, the main research question will be answered, How could high-performance computing on
cloud infrastructure and information theory enhance hydrodynamic modelling for batch computations,
such as in water system analysis?

High-performance computing on cloud infrastructure and information theory can enhance hy-
drodynamic modelling for batch computations in water system analysis. Cloud infrastructure
provides significant benefits such as scalability, cost-effectiveness, and flexibility. Cloud-based
HPC resources offer a promising solution to the computational challenges associated with
hydrodynamic modelling. The use of Shannon’s entropy is a valuable tool for evaluating
hydrodynamic simulations of precipitation events and can enhance the modelling process’s
efficiency and accuracy. To optimize the performance and cost-effectiveness of cloud-based
HPC resources for hydrodynamic modelling, it is essential to configure the infrastructure ap-
propriately, considering the allocation of resources at the pod level and the size and type of
nodes in a cluster. The cost of cloud usage is a significant consideration, and appropriate node
selection and resolution should be taken into account to achieve cost-effective and efficient
simulations.

Recommendations for follow-up research would be:

• High-Performance Computing on the Cloud with partitioned hydrodynamic model
simulations. The network performance of the cloud infrastructure poses a challenge for
tightly coupled systems that require significant communication. Model partitioning that
balances the computational weight with dry-wet modelling and minimizing the commu-
nication could make this bottleneck less significant.

• Performance analysis of hydrodynamic simulations on the cloud infrastructure. In this
research, the computational process has been analysed based on the computation time
on the pod and cluster levels. A performance analysis would provide insight into the
processes that are causing the deviations, rather than, as in this research, only measuring
their effect.

• The application of Shannon’s Entropy on the model input and entropy transfer. Re-
searching the input entropy and entropy transfer in hydrodynamic simulations could
gather insight into the effect of making a smart sampling of input variables to minimize
the number of events that need to be simulated. This could result in computation time,
duration and cost.
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A Precipitation volume and patterns

Table 1: Precipitation values for batch computation.
Precipitation Volume [mm] Probability of Occurance
10 0.999515
15 0.000135
20 9.74E-05
25 7.03E-05
30 5.07E-05
35 3.66E-05
40 2.64E-05
45 1.9E-05
50 1.37E-05
55 9.89E-06
60 7.14E-06
65 5.15E-06
70 3.71E-06
75 2.68E-06
80 1.93E-06
85 1.39E-06
90 1.01E-06
95 7.25E-07
100 1.88E-06

Table 2: Precipitation patterns batch computation
Pattern Probability
P0 0.1930
P1a 0.1768
P1b 0.1768
P1c 0.1768
P1d 0.1768
P2a 0.0590
P2b 0.0410

57





B YAML-file workflow

1 apiVersion: argoproj.io/v1alpha1

2 kind: Workflow

3 metadata:

4 generateName: gcs -delfland10bij10-test1.0-

5 spec:

6 entrypoint: scenario -workflow

7 #ttlStrategy:

8 #secondsAfterCompletion: 300 # Time to live after workflow is

completed , replaces ttlSecondsAfterFinished

9 #secondsAfterSuccess: 5 # Time to live after workflow is

successful

10 #secondsAfterFailure: 300 # Time to live after workflow

fails

11 imagePullSecrets:

12 - name: gcr -json -key

13

14 templates:

15 - name: only -running

16 steps:

17 - - name: delft3dfm

18 template: delft3dfm

19 arguments:

20 parameters:

21 - name: model

22 value: DIMR10bij10naar5

23

24 - name: define -subdirs

25 steps:

26 - - name: define -subdirs

27 template: read -members

28

29 - name: scenario -workflow

30 steps:

31 - - name: define -subdirs

32 template: read -members

33 - - name: run -scenario

34 template: run -scenario

35 arguments:

36 parameters:

37 - name: model

38 value: DIMR10bij10naar5
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B YAML-file workflow

39 - name: member

40 value: "{{item }}"

41 withParam: "{{steps.define -subdirs.outputs.result }}"

42

43 - name: read -members

44 inputs:

45 parameters:

46 - name: args

47 container:

48 image: eu.gcr.io/striking -theme -361911/readmembers:latest

49 command: [echo]

50 args: {{ inputs.parameters.args}}

51

52 - name: run -scenario

53 inputs:

54 parameters:

55 - name: model

56 - name: member

57 artifacts:

58 - name: my -art

59 path: /my -artifact

60 gcs:

61 bucket: delfland_cloud

62 key: "models /{{ inputs.parameters.model }}.tar.gz"

63 # serviceAccountKeySecret is a secret selector.

64 # It references the k8s secret named ’my-gcs -credentials

’.

65 # This secret is expected to have have the key ’

serviceAccountKey ’,

66 # containing the base64 encoded credentials

67 # to the bucket.

68 #

69 # If it’s running on GKE and Workload Identity is used ,

70 # serviceAccountKeySecret is not needed.

71 serviceAccountKeySecret:

72 name: my -gcs -credentials

73 key: gcssecretaccess

74 archive:

75 tar: {}

76

77 - name: bui

78 path: "/my -artifact/rr/default.bui"

79 gcs:

80 bucket: delfland_cloud

81 key: "buien /{{ inputs.parameters.member }}/ DEFAULT.BUI"

82 # serviceAccountKeySecret is a secret selector.

83 # It references the k8s secret named ’my-gcs -credentials

’.
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84 # This secret is expected to have have the key ’

serviceAccountKey ’,

85 # containing the base64 encoded credentials

86 # to the bucket.

87 #

88 # If it’s running on GKE and Workload Identity is used ,

89 # serviceAccountKeySecret is not needed.

90 serviceAccountKeySecret:

91 name: my -gcs -credentials

92 key: gcssecretaccess

93 archive:

94 tar: {}

95

96 outputs:

97 artifacts:

98 - name: model -output

99 gcs:

100 bucket: ’delfland_cloud ’

101 key: "models -output /{{ inputs.parameters.model}}_{{ inputs

.parameters.member }}.tar.gz"

102 # serviceAccountKeySecret is a secret selector.

103 # It references the k8s secret named ’my-gcs -credentials

’.

104 # This secret is expected to have have the key ’

serviceAccountKey ’,

105 # containing the base64 encoded credentials

106 # to the bucket.

107 #

108 # If it’s running on GKE and Workload Identity is used ,

109 # serviceAccountKeySecret is not needed.

110 serviceAccountKeySecret:

111 name: my -gcs -credentials

112 key: gcssecretaccess

113 archive:

114 tar: {}

115 # generate hello -art artifact from /tmp/hello_world.txt

116 # artifacts can be directories as well as files

117 path: /my -artifact

118 container:

119 image: hkvdeveloper/dhydro_test:1.0

120 command: ["bash"]

121 args: ["-c","cd /my -artifact/ && ./ run_docker.sh"]

122 #command: [sh , -c]

123 #args: ["ls -l /my -artifact"]

124 resources:

125 requests:

126 memory: "4Gi"

127 cpu: "1"

128 limits:
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129 memory: "4Gi"

130 cpu: "1"

131

132 - name: delft3dfm

133 inputs:

134 parameters:

135 - name: model

136 artifacts:

137 - name: my -art

138 path: /my -artifact

139 gcs:

140 bucket: delfland_cloud

141 key: "models /{{ inputs.parameters.model }}.tar.gz"

142 # serviceAccountKeySecret is a secret selector.

143 # It references the k8s secret named ’my-gcs -credentials

’.

144 # This secret is expected to have have the key ’

serviceAccountKey ’,

145 # containing the base64 encoded credentials

146 # to the bucket.

147 #

148 # If it’s running on GKE and Workload Identity is used ,

149 # serviceAccountKeySecret is not needed.

150 serviceAccountKeySecret:

151 name: my -gcs -credentials

152 key: gcssecretaccess

153 archive:

154 tar: {}

155 outputs:

156 artifacts:

157 - name: model -output

158 gcs:

159 bucket: ’delfland_cloud ’

160 key: "models -output /{{ inputs.parameters.model }}.tar.gz"

161 # serviceAccountKeySecret is a secret selector.

162 # It references the k8s secret named ’my-gcs -credentials

’.

163 # This secret is expected to have have the key ’

serviceAccountKey ’,

164 # containing the base64 encoded credentials

165 # to the bucket.

166 #

167 # If it’s running on GKE and Workload Identity is used ,

168 # serviceAccountKeySecret is not needed.

169 serviceAccountKeySecret:

170 name: my -gcs -credentials

171 key: gcssecretaccess

172 archive:

173 tar: {}
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174 # generate hello -art artifact from /tmp/hello_world.txt

175 # artifacts can be directories as well as files

176 path: /my -artifact

177

178 container:

179 image: eu.gcr.io/striking -theme -361911/hkvdeveloper/

dhydro_test:test

180 command: ["bash"]

181 args: ["-c","cd /my -artifact/ && ./ run_docker.sh"]

182 resources:

183 requests:

184 memory: "4Gi"

185 cpu: "1"

186 limits:

187 memory: "4Gi"

188 cpu: "1"
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