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Summary

Grab unloaders are handling a variety of materials such as ores, coal, agriculture goods, biomass and scrap.
The interaction of grabs with the bulk material is a complex process influenced by a variety of variables; grab,
operational and bulk material variables. Cohesive bulk materials such as iron ore fines are complex bulk
materials to handle; their bulk behaviour does not only depend on the mineral properties but also on the
processing state such as consolidation effort and moisture content. Which makes design of such grabs com-
plex and grab performance is hard to predict. To support the design process, a fast and effective model-based
design in combination with a systematic optimization will be supportive.

The influence of cohesive and compressible bulk material on the grabbing process is researched. By a cou-
pled DEM-MBD simulation, the grab interacting with bulk materials is analyzed. The contact parameters of
the DEM model are varied by an experimental plan to investigate the influence of the DEM contact param-
eters (cohesion and plasticity) on the grabbing process. The influence of cohesion proved to be negligible,
where the influence of compressibility (or plasticity) is significant. Increasing the plasticity of the bulk ma-
terials will increase the penetration resistance and thus influence the grabbing performance. Secondly, the
bulk material consolidation state is investigated. When iron ores are stored in the hold of a bulk carrier the
storage height will reach up to 12-15 meters, causing consolidation of the bulk material. Experiments at dif-
ferent consolidation pressures up to 300 KPa demonstrated that the effect of consolidation is significant in the
grabbing process. These experiments showed a significant influence of the bulk variability on the grabbing
process. Therefore, an generic optimization framework is developed to incorporate bulk material variability
into the optimization process. The developed optimization framework consists of the following steps:

1. Initialization of optimization problem

2. Select incorporated bulk materials

3. Select design variables

4. Design experimental plan; Number of design points and creation of LHD.
5. Prepare and execute simulations

6. Fit surrogate model on simulation output

7. Define weight factors for bulk materials

8. Run optimizer

9. Validate results

The novelty of the optimization framework is that it is capable of handling the controlled and uncontrolled
variables simultaneously. For cohesive iron ores, the bulk material behaviour is uncontrolled due to the de-
pendency on moisture content and consolidation state. By incorporating various bulk materials at different
consolidation states, the grab design could be optimized for a set of bulk materials. Which minimize the ef-
fect of the uncontrolled bulk variability on the grabbing process. To reach this goal the next objectives are
set:

¢ Maximize mass performance indicator (payload)
¢ Minimize the standard deviation of the mass performance indicator

Where the first objective maximizes the payload for the crane capacity, the mass performance indicator is
given by the ratio between payload en grab mass. The second objective minimizes the effect of bulk variabil-
ity, when the standard deviation is zero the payload of the grab in each bulk material is equal, resulting in that
the bulk material type or state does not influence the grab performance.



vi Summary

A design optimization of a NemaX iron ore grab is executed by following the optimization framework. Five
grab design variables are explored to find the optimal solution. Three DEM bulk material models are incorpo-
rated to minimize the effect of bulk variability of the optimal’ result. The bulk materials and corresponding
weight factors are presented in Table 1.

Table 1: Bulk materials optimization framework

Name: Weight factor:
Iron ore Pellets
Bulk 01 non-consolidated 0.1
Bulk 02 Artifical Fines 04

low-consolidated
Carajas Sinterfeed

high-consolidated 0-5

Bulk 03

In total 24 designs evaluated by LHD DoE method to explore the design space and create data points on which
asurrogate model is fitted. By a genetic algorithm the optimal solutions for the two objectives are determined.
Figure 1 shows the Pareto front and the design points for the weighted mass indicator and standard deviation
of the mass indicator. Where the objective is to reach the right-bottom corner as far as possible.
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Figure 1: Pareto front

Support Vector Regression modeling with Polynomial Kernel functions proved to be the most accurate surro-
gate model, in order of prediction errors (<10%) and obtaining the optimal design.

The optimization framework proved to be effective to incorporate the bulk material uncertainties in the
optimization process. By the framework, an iron ore grab is optimized by varying five grab variables and
incorporating three bulk materials. Based on the optimization results for iron ores, the following design rules
apply for iron ore grabs:

¢ Knife angle of around 5 degrees proved to be optimal in combination with a openings angle of 65 de-
grees.

» To maximize the payload regardless of the bulk variability, a short-wide grab is preferred.
¢ To minimize the influence of bulk variability, a long-small grab is preferred.

* The closing arm length must be as long as possible to maximize the strength of the closing mechanism.
A stronger closing mechanism results in a better digging performance of the grab; the grab digs deeper
into the bulk material.
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