Grab optimization ME54035 Graduation project

A.J. van den Bergh

2 S

Grab optimization ME54035 Graduation project

by

to obtain the degree of Master of Science at the Delft University of Technology.

Student number:4510968Project duration:December, 2018 – June, 2019Supervisors:Dr. ir. D. Schott,TU DelftJ. Mohajeri MSc,PhD candidate TU DelftIr. W. de Kluijver,Nemag B.V.

This thesis is confidential and cannot be made public.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Preface

This report documents the graduation project in obtaining my Master degree in Mechanical Engineering at the Delft University of Technology at the section of Transport Engineering and Logistics. The goal of the project was to develop a systematic design optimization framework for grabs handling cohesive and compressible bulk materials. This report will present and discuss the outcomes of the findings.

I want to thank the people who helped me during the process of my graduation project. Especially my daily supervisor, Javad Mohajeri, who gave me excellent support and provided me with useful criticism during the regular meetings we had at the university. He was always willing to make time to discuss the results and supporting me in making design decision for the following steps. I want to thank him for his efforts in reading my writings and giving me feedback on the thesis. I want to thank dr. ir. Dingena Schott for her constructive feedback during the progress meetings.

Also, I would like to express my gratitude towards Nemag, the company who initiated this research together with the university for allowing me to graduate on this subject. In particular, I would like to thank ir. Wilbert de Kluiver for his guidance and support and ir. Michel Corbeau for asking the right questions which kept me focused on the overall goal instead of getting lost in the details.

Finally, I want to thank my fellow students from the Delft University of Technology, my friends and family, for their support through my entire studies.

A.J. van den Bergh Delft, July 2019

Summary

Grab unloaders are handling a variety of materials such as ores, coal, agriculture goods, biomass and scrap. The interaction of grabs with the bulk material is a complex process influenced by a variety of variables; grab, operational and bulk material variables. Cohesive bulk materials such as iron ore fines are complex bulk materials to handle; their bulk behaviour does not only depend on the mineral properties but also on the processing state such as consolidation effort and moisture content. Which makes design of such grabs complex and grab performance is hard to predict. To support the design process, a fast and effective model-based design in combination with a systematic optimization will be supportive.

The influence of cohesive and compressible bulk material on the grabbing process is researched. By a coupled DEM-MBD simulation, the grab interacting with bulk materials is analyzed. The contact parameters of the DEM model are varied by an experimental plan to investigate the influence of the DEM contact parameters (cohesion and plasticity) on the grabbing process. The influence of cohesion proved to be negligible, where the influence of compressibility (or plasticity) is significant. Increasing the plasticity of the bulk materials will increase the penetration resistance and thus influence the grabbing performance. Secondly, the bulk material consolidation state is investigated. When iron ores are stored in the hold of a bulk carrier the storage height will reach up to 12-15 meters, causing consolidation of the bulk material. Experiments at different consolidation pressures up to 300 KPa demonstrated that the effect of consolidation is significant in the grabbing process. These experiments showed a significant influence of the bulk variability on the grabbing process. Therefore, an generic optimization framework is developed to incorporate bulk material variability into the optimization process. The developed optimization framework consists of the following steps:

- 1. Initialization of optimization problem
- 2. Select incorporated bulk materials
- 3. Select design variables
- 4. Design experimental plan; Number of design points and creation of LHD.
- 5. Prepare and execute simulations
- 6. Fit surrogate model on simulation output
- 7. Define weight factors for bulk materials
- 8. Run optimizer
- 9. Validate results

The novelty of the optimization framework is that it is capable of handling the controlled and uncontrolled variables simultaneously. For cohesive iron ores, the bulk material behaviour is uncontrolled due to the dependency on moisture content and consolidation state. By incorporating various bulk materials at different consolidation states, the grab design could be optimized for a set of bulk materials. Which minimize the effect of the uncontrolled bulk variability on the grabbing process. To reach this goal the next objectives are set:

- · Maximize mass performance indicator (payload)
- · Minimize the standard deviation of the mass performance indicator

Where the first objective maximizes the payload for the crane capacity, the mass performance indicator is given by the ratio between payload en grab mass. The second objective minimizes the effect of bulk variability, when the standard deviation is zero the payload of the grab in each bulk material is equal, resulting in that the bulk material type or state does not influence the grab performance.

A design optimization of a NemaX iron ore grab is executed by following the optimization framework. Five grab design variables are explored to find the optimal solution. Three DEM bulk material models are incorporated to minimize the effect of bulk variability of the 'optimal' result. The bulk materials and corresponding weight factors are presented in Table 1.

Table 1: Bulk materials optimization framework

	Name:	Weight factor:
Dulk 01	Iron ore Pellets	0.1
DUIK 01	non-consolidated	0.1
Bulk 02	Artifical Fines	0.4
	low-consolidated	0.4
D11. 02	Carajas Sinterfeed	0.5
BUIK 03	high-consolidated	0.5

In total 24 designs evaluated by LHD DoE method to explore the design space and create data points on which a surrogate model is fitted. By a genetic algorithm the optimal solutions for the two objectives are determined. Figure 1 shows the Pareto front and the design points for the weighted mass indicator and standard deviation of the mass indicator. Where the objective is to reach the right-bottom corner as far as possible.

Figure 1: Pareto front

Support Vector Regression modeling with Polynomial Kernel functions proved to be the most accurate surrogate model, in order of prediction errors (<10%) and obtaining the optimal design.

The optimization framework proved to be effective to incorporate the bulk material uncertainties in the optimization process. By the framework, an iron ore grab is optimized by varying five grab variables and incorporating three bulk materials. Based on the optimization results for iron ores, the following design rules apply for iron ore grabs:

- Knife angle of around 5 degrees proved to be optimal in combination with a openings angle of 65 degrees.
- To maximize the payload regardless of the bulk variability, a short-wide grab is preferred.
- To minimize the influence of bulk variability, a long-small grab is preferred.
- The closing arm length must be as long as possible to maximize the strength of the closing mechanism. A stronger closing mechanism results in a better digging performance of the grab; the grab digs deeper into the bulk material.

List of Figures

1	Pareto front	vi
1.1	Discontinue unloading process [35]	1
2.1	Forces and stresses a: Applied force, b: decomposition of the force and stresses [39]	6
2.2	Equilibrium forces on a bulk solid element, Mohr stress circle [40]	6
2.3	Flow function [40]	7
2.4	Angle of repose measurement devices, a. poured angle of repose b. drained angle of repose c.	
	dynamic angle of repose [40]	8
2.5	Preshear and shear point in σ , τ diagram; a. Cohesive bulk material, b. non cohesive bulk ma-	
	terial, free-flowing [40]	9
2.6	Penetration resistance test device [21]	9
2.7	Penetration resistance at 100mm wedge displacement for varying consolidation levels, iron ore	
	fines pellet feed [21]	9
2.8	Bulk material conditions in the ship hold [27]	10
2.9	Grab classification by [36]	11
2.10	Nemag ore grabs with from left to right: 1) Clamshell grab 2) Scissors grab 3) NemaX grab	12
2.11	Model of the process	12
2.12	NemaX shell	13
2.13	Closing mechanism NemaX	14
2.14	NemaX loading cycle	15
2.15	DEM spring-damper contact model [9]	16
2.16	Co-simulation of DEM and MBD [15]	17
2.17	Link between the bulk properties and the grabbing process [19]	18
2.18	Optimization strategies [25]	18
2.19	Examples of Latin Hypercube Designs with $n_p = 2$ and $n_s = 20$ [44]	20
2.20	SVM regression, the tube with radius ϵ is fitted to the data [37]	22
2.21	Example of a Neural Network [3]	23
3.1	Artificial crane operator and Real crane data	26
3.2	Bulk material preparation LR 1: Generation 2: 2m reached 3: consolidation 4: compressed bulk	
	material	27
3.3	Maximum kinetic particle energy in the simulation	27
3.4	Mass export	28
3.5	Grab density	28
3.6	Digging path time-step investigation	30
3.7	Density distribution in the grab for increasing ΔT	31
3.8	EEPA contact model [24]	32
3.10	Angle of repose results	34
3.11	Compression and unloading of bulk material with 65 KPa	34
3.12	Densities compression test	35
3.13	penetration resistance setup	35
3.14	Penetration resistance, cohesion vs. compressibility	36
3.15	Knife path, cohesion vs. compressibility	37
3.16	Payload, cohesion vs. compressibility	37
3.17	Density distribution in the grab for case 10, 11, 12 and iron ore pellets	38
3.18	Mean effects of cohesion and compressibility	39
3.19	Consolidation pressure vs. bulk height	40
3.20	Bulk density consolidation experiment	40
3.21	Bulk height during consolidation	41

3.22	Knife path, consolidation experiment	41
3.23	Payload, consolidation experiment	42
3.24	Density distribution in the grab, consolidation experiment 0, 40, 65 & 120 KPa	42
3.25	Density distribution in the grab, consolidation experiment 200 & 300 KPa	43
3.26	Knifepath 300 KPa with DEM simulation	43
3.27	Performance indicators, consolidation experiment	44
4.1	Proposed optimization framework	46
5.1	NemaX NX5 reference grab 2D-sketch	51
5.2	Payload optimization, with case 25 as the reference case	53
5.3	Performance indicators optimization, with case 25 as the reference case	54
5.4	NemaX optimization grab designs	55
5.5	Knife trajectory of grab 05 and grab 17 in Carajas Sinterfeed	55
5.6	In grab bulk density	56
5.7	Cable force and velocity plots	56
5.8	Pareto fronts	58
5.9	Pareto analysis; KPI mass vs design variables	59
5.10	Prediction error	61
5.11	Knife trajectories of predicted optimal solutions	62
5.12	KPI mass validation experiment	62
5.13	Weighted KPI and standard deviation of multi objective optimization	63
6.1	Simulation flowchart	66

List of Tables

1	Bulk materials optimization framework	vi
2.1	Angle of repose vs flowability (rough estimations) [18]	8
2.2	List of used iron ore fines in an existing steel factory	11
2.3	NemaX shell design variables	13
2.4	Closing mechanism variables	14
2.5	Grab responses	14
2.6	Calibrated DEM models [15] [20]	17
3.1	Simulation set up	25
3.2	Experimental plan time-step investigation	30
3.3	Experimental Plan: Cohesion - Compressibility	32
3.4	Experimental plan, effect of consolidation	40
5.1	Experimental plan bulk materials for grab optimization	50
5.2	Bulk material properties optimization	51
5.3	Φ_p criteria for various seeds sizes at a 24 point 5 variables LHD	52
5.4	Best and worse performing grab designs	54
5.5	Prediction error surrogate models with the reference grab	57
5.6	Weight factors optimization	57
5.7	Validation experiments	60

Contents

List	of Figures v	ii
List	of Tables i	х
1	ntroduction 1.1 Project background 1.2 Problem definition 1.3 Objectives. 1.4 Scope 1.5 Research questions 1.6 Structure	1 1 2 2 3 3 5
-	2.1 Cohesive bulk materials. 2.1.1 Bulk measurement tools 2.1.2 Ship hold conditions. 2.1.2 Ship hold conditions. 2.1.2 Ship hold conditions. 1 2.2.1 Grabs and grab handling 1 2.2.1 NemaX variables 1 2.2.2 Operational variables 1 2.2.3 Process. 1 2.2.4 Outputs 1 2.2.3 Tools 1 2.2.4 Outputs 1 2.3 Tools 1 2.3.1 Discrete Element Method 1 2.3.2 Co-simulation 1 2.3.3 Calibrated material models 1 2.4.1 Optimization 1 2.4.2 Optimization 1 2.4.3 Conventional optimization 1 2.4.4 Non-conventional optimization 2 2.4.5 Surrogate modeling 2 2.5 Related research: 2 2.6 Conclusion 2	58013455666777891134
3	nfluence of cohesive bulk material23.1Simulation setup23.1.1In grab density distribution23.2Influence of Cohesion and Compressibility33.2.1Experimental plan33.2.2Verifying the input parameters33.2.3Co-simulation results33.3.1Experimental plan43.3.2Co-simulation results43.3.4Conclusion4	5 8 2 2 3 7 9 0 1 4
4	Optimization framework 4	5
5	Optimization and validation 4 5.1 Input optimization framework 4 5.2 Simulation results 5 5.3 Optimization 5	9 3

	5.4 Validation	60 61 63
6	Conclusions and recommendations	65
	6.1 Conclusions. .	65 66
Bił	liography	67
AF	esearch paper	71
В	Discrete Element Method B.1 Time integration B.2 Hertz-Mindlin contact model B.3 EEPA contact model	73 74 74 75
С	In-grab density distribution code	77
C D	In-grab density distribution code Screening analysis results	77 79
C D	In-grab density distribution code Screening analysis results D.1 Influence of cohesion and compressebility D.1.1 Co-simulation results	77 79 81 84
C D	In-grab density distribution code Screening analysis results D.1 Influence of cohesion and compressebility D.1.1 Co-simulation results D.2 Influence of consolidation D.2 L Co-simulation results	 77 79 81 84 94 96
C D	In-grab density distribution code Screening analysis results D.1 Influence of cohesion and compressebility D.1.1 Co-simulation results D.2 Influence of consolidation D.2.1 Co-simulation results D.3 Influence of time step	77 79 81 84 94 96 102
C D	In-grab density distribution code Screening analysis results D.1 Influence of cohesion and compressebility D.1.1 Co-simulation results D.2 Influence of consolidation D.2.1 Co-simulation results D.3 Influence of time step D.3.1 Co-simulation results	77 79 81 84 94 96 102 103
C D	In-grab density distribution code Screening analysis results D.1 Influence of cohesion and compressebility D.1.1 Co-simulation results D.2 Influence of consolidation D.2.1 Co-simulation results D.3 Influence of time step D.3.1 Co-simulation results D.4 D.4 D.4 D.4 D.4	77 81 84 94 96 102 103 109
C D	In-grab density distribution code Screening analysis results D.1 Influence of cohesion and compressebility D.1.1 Co-simulation results D.2 Influence of consolidation D.2.1 Co-simulation results D.3 Influence of time step D.3 Influence of time step D.4 Influence of particle stiffness D.5 Influence of the knife friction coefficient	77 81 84 94 96 102 103 109 109
C D	In-grab density distribution code Screening analysis results D.1 Influence of cohesion and compressebility D.1.1 Co-simulation results D.2 Influence of consolidation D.3 Influence of time step D.3 Influence of particle stiffness D.4 Influence of particle stiffness D.5 Influence of the knife friction coefficient	77 81 84 94 96 102 103 109 109 113 113